J3/98-181

Page 1 of 3
Date: 18 July 1998
To: J3
From: Van Snyder
Subject: Typos, miscellaneous remarks on 98-007r2
Page and line numbers to which remarks refer are in the margin.
“4‘477 % “4‘277

Would be clearer if written: “A structure constructor (4.5.6) may be used to construct a constant
value of derived type from an appropriate sequence of constant expressions (7.1.6.2).” As it is
written it at first appears to specify “a structure constructor from an appropriate sequence of
constant expressions.”

It seems unnecessary to prohibit a nonkind type parameter to be used for initialization. It should
be allowed so long as the associated “actual parameter” has the appropriate restrictions. E.g.
it shall be an initialization expression in an object declaration, but it could be anything in an
allocation or an intent(out) dummy argument if it’s value is deferred (see 98-172) in the object
declaration.

The word “itself” doesn’t seem to contribute anything.

Are we concerned about split infinitives?

“parent type” is not the correct term. Need a term for “the type being defined” or “the type
of which the component is a member.”

“precesed” — “preceded”

Need a section 4.5.1.5 Allocatable components.

Replace by “An extended type has a subobject name that is the same name and has the same
type as its parent type. This is not an additional component; it denotes a subobject that has
the parent type and that consists of all of the components and subobjects inherited from the
parent type. If the parent type is an extended type, the subobject having the parent type name
has a subobject having the same name as its parent type.” There’s related “repair” in 98-179.

The paragraph should be a note because it’s a consequence of the “no duplicate specification”
rule. No fixup for grandparents is necessary because there is no subobject having the same
name as the grandparent type name — although there is one within the subobject having the
same name as the parent type.

“summy” — “dummy”

“sucessful” — “successful”
Add “component definition” to the list.

Add procedure-declaration-stmt and PROCEDURE to the index.
Indent

Remove the constraint.

Replace “components” by “components and subobjects”.

Add a new paragraph:

For an object of extensible type, the subobject that has the same name as the parent type is
accessed as though it were a component.

[15:13]
[29:35-36]

[30:29]

[40:39]
[40:45]
[41:31]

[41:33]
[44:224]
[48:1-12]

[48:16-19)]

54:4]

58:34
62:46
66:14

67:26
69:38
84:35

86:7+]

— o o o o
[s e e T Y Wi Y AL

J3/98-181
Page 2 of 3

I couldn’t find a syntax rule that defines designator. Should this be data-ref?

Is there a special reason that “expressions whose primaries are constant expressions” is not
simply “constant expressions”?

Is there a special reason that this is not simply “deferred”?

Is there a special reason that “expressions whose primaries are initialization expressions” is not
simply “initialization expressions”?

Is there a special reason that this is not simply “deferred”?

This could probably be simplified to:

Constraint: The declared type of target shall be an extension type of the declared type of
pointer-object.

Is this OK? It would be nice to allow it. It would be nice to allow elemental procedures to
be actual arguments so long as the interface is explicit — in that case, the processor can tell
whether the dummy procedure is or is not declared to be elemental.

“compatable” — “compatible”

What is the relation between character count and user-defined derived-type 1/0?

WGH didn’t like w, d, m arguments of DTIO procedures, and limitations of the DT format
descriptor. Alternatives discussed included:

1. Allow any number, including zero, of numbers after the letters after DT. Replace the w,
d, marguments with a single non-optional rank-one argument of assumed shape in which
these values are deposited.

2. Allow optional arbitrary text, enclosed between (and), e.g. DT(foo5bar7.3), or as a
character string, e.g. DT"foo5bar7.3". Delete the w, d, m arguments.

3. Arbitrary text, like item 2, with an arbitrary number of numbers and an assumed shape
argument, like item 1.

Would be more precise if “list item list” were replaced by “input or output item list”. I don’t
think a “list item” is formally defined — the term is used elsewhere, with the meaning “an item
in the list”. “list item list” is therefore “the list of items in the list” which has no meaning.

“must” — “shall”

Delete “,” before (LEN=*) in seven places

Belongs in section 10.5.5

L(and77 — CLOI,”

Implies nonadvancing 1/O for unformatted files. See 98-174. Nonadvancing [/O would be
simpler than described therein if “SIZE =" is prohibited for unformatted nonadvancing 1/0.

Is it necessary that the value of the variable specified in the ID= specifier shall have been set
by a data transfer operation initiated on the same unit as specified in the wait statement?

“elemnt” — “element”
“theh” — “the”

Doesn’t cover functions having result of derived type with nonkind parameters. Should it? If
s0, does the following work?

(e) A result that has a nonkind type parameter value that is not constant and not assumed
(character or derived type functions only).

[86:11]
[106:40]

[107:6]
[107:21]

[108:4]
[123:16-17]

[123:36-37]

[124:25]
[160:3-10]

[167:39fT,
193:34ff]

[168:19]

168:27]
168, 169]

[

[
[170:38-40]
[171:15)]
[171:15-24]

173:21-24]
[208:21]

[208:29)]
[217:25-26]

J3/98-181
Page 3 of 3

“which” — “that”.

R311 and R1207 use defined-operator but 12.3.2.1.1 is entitled Defined operations. Should
these be consistent?

“(12.4)" — “(7.1.7.7, 7.3, 12.4)"
“(7.5.1.3)" = “(7.5.1.3, 12.4)”

“disambiguate” — “resolve” (here and elsewhere)?

There is no discussion of the relation between derived-type 1/O procedures and extensible or
polymorphic types. DTIO procedures evidently cannot be dispatched, i.e. selected at run-time
depending on the dynamic type of a polymorphic object.

Second “procedure” — “procedure or procedure pointer”.

“those” — “values of corresponding type parameters”

Inadequate concerning actual arguments that are dummy procedures associated to dummy
procedures. Add the following sentence at 24+ and 274:

In a sequence of associations of dummy procedure actual arguments to dummy procedure
dummy arguments, the ultimate actual argument that is not a dummy procedure shall be a
function (24+) subroutine (274).

CLMOLD?? — “B??

14.1.2.5 Components, type parameters, and subobject names

[Editor: Replace “component” by “component or subobject”.]

Yes. “the same scope as the type of which it is a component” lifts it out of the scope of the
type definition.

Is this true?

Remove “and”.

In 14.7.5 and 14.7.6, is it necessary to discuss the part of an actual argument of extensible type
that is argument associated to a dummy argument having an ancestor type?

class (5.1.1.8) A class named N is the set of types extended from the type named N.

Inadequate in the context of polymorphism. Replace by

(1) The components of that type, including components inherited from ancestor types in the
case of extensible types, and

Should “an intrinsic” be “a”?

Should “an intrinsic” be “a”?

[224:4]
[226:1]

[228:23-24,
26-27]

[252:37]
[308:33]
[308:34-38]
[308:41-42]

[311:7]
[314:34]
[317-318]

[342:28+]
[343:41]

[345:38]
[349:14,16]

