J3/98-186r1

Page 1 of 5
Date: 11 August 1998
To: J3
From: Van Snyder

Subject: Edits for type-bound procedures — R6.b Polymorphism
References: 97-230r1, 98-136, 98-152r1

1 Background

Paper 97-230r1 provided specifications for type-bound procedures; papers 98-136 and 98-152r1
proposed syntax for type-bound procedures; paper 98-152r1 was approved at meeting 145. This
paper provides partial edits for type bound procedures. Edits for the SELECT KIND construct
described in 98-152r1 are not complete.

2 Edits

Edits refer to 98-007r2. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and | in the text.

[CONTAINS [39:3+]
[PRIVATE |
[proc-binding-construct |...]
[Editor: Part of R428] [39:29+]
or proc-component-def-stmt
[Editor: Delete — Should be part of R428] [40:8-9]
R432a proc-component-def-stmt is PROCEDURE([proc-interface |), m [40:22+]

W proc-component-attr-spec-list :: W
W proc-decl-list
R432b proc-component-attr-spec is POINTER
or PASS_OBJ
Constraint: The POINTER attribute shall be specified.
[Editor: Add passed-object dummy argument to the index.]

If PASS_OBJ is specified the proc-interface shall have a dummy argument that has the same
type as the type-name. The first of these is called the passed-object dummy argument.
It shall be a scalar nonpointer variable. The use of PASS_OBJ is explained in [new section]
12.4.1.1.

R432c proc-binding-construct is proc-binding
or select-kind-construct

R432d proc-binding is binding-by-name
R432e binding-by-name is PROCEDURE [[, binding-attr | ::] m
B binding-name | => binding]

J3/98-186r1
Page 2 of 5

If => binding is absent it is assumed to have been present with the same name as binding-name.

R432f binding-attr is PASS_OBJ
or NON_OVERRIDABLE
or access-spec

If PASS_OBJ is specified the proc-interface shall have a dummy argument that has the same
type as the type-name. The first of these is called the passed-object dummy argument. It
shall be a scalar nonpointer polymorphic variable. The use of PASS_OBJ is explained in [new
section] 12.4.1.1.

R432g binding is procedure-name
or deferred-binding

Constraint: The procedure name shall be the name of an accessible module procedure or ex-

ternal procedure that has explicit interface.
R432h select-kind-construct is select-kind-stmt

[case-stmt
proc-binding-construct ... |
end-select-kind-stmt

R432i select-kind-stmt is SELECT CASE (scalar-initialization-expr)
I don’t see how this can be differently useful from type-bound generic procedures if scalar- J3 note
initialization-ezpr is allowed to be any more general than kind-parameter-name.

Constraint: The scalar-initialization-expr shall be of type integer.
R432j end-select-kind-stmt is END SELECT

[Editor: Insert new section. Add type bound procedure and binding to the index.] [44:22+]
4.5.1.5 Type-bound procedures

Each binding specifies a type-bound procedure. If a type is accessible the public binding
names of its type-bound procedures are accessible. The specific names of procedures bound to
the type are not automatically made accessible by accessing the type.

An example of a type and a type-bound procedure Note 4.x
TYPE, EXTENSIBLE :: POINT
REAL :: X, Y
CONTAINS

PROCEDURE, PASS_0BJ :: LENGTH => POINT_LENGTH
END TYPE POINT
REAL FUNCTION POINT_LENGTH (A, B)

CLASS(POINT), INTENT(IN) :: A, B

POINT_LENGTH = SQRT((A%X - B%X)**2 + (ALY - BYY)*x2)
END FUNCTION POINT_LENGTH

4.5.1.5.1 Deferred type-bound procedures

R432k deferred-binding is NULL([abstract-interface-name |)

Constraint: The abstract interface name shall be the name of an abstract interface (12.3.2.1.4).

Constraint: The abstract interface name shall be present unless the binding is overriding
(4.5.3.2) an inherited (4.5.1.3) binding.

A binding that specifies the NULL intrinsic instead of a procedure name creates a deferred type-

bound procedure. The abstract-interface-name argument to the NULL intrinsic is required to
establish the characteristics of the binding unless they are inherited (4.5.1.3) from the parent

type.

J3/98-186r1
Page 3 of 5

An extension of a type that specifies a deferred type-bound procedure shall contain a procedure
binding for each inherited (4.5.1.3) deferred type-bound procedure. This new binding may
confirm that the type-bound procedure is still deferred, or supply a specific procedure.

It is possible to override (4.5.3.2) an inherited (4.5.3.1) binding with a null binding.

[Editor: Add inherit to the index.]
4.5.3.1 Inheritance

An extended type includes all of the type parameters, components, and procedure bindings
of the parent type. These are said to be inherited by the extended type from the parent
type. Entities inherited by the parent type from its parent type are inherited by an extended
type. Inherited entities retain their attributes. Additional type parameters, components, and
procedure bindings may be declared in the derived type definition for the extended type.

The order of type parameters for an extended type is the type parameters inherited from the
parent type, followed by type parameters declared in the extended type, in the order declared.

For purposes of intrinsic input/output (9.4.2) and value construction (4.5.6), the order of the
components of an extended type is the components inherited from the parent type, followed
by the components declared in the derived type definition of the extended type, in the order
declared.

Editor: Replace “component” by “component or type parameter” twice.]

[Editor: Start a new paragraph, add override to the index.]
4.5.3.2 Type-bound procedure overriding

If a binding has the same binding name as one inherited from the parent type:

o It shall have PASS_OBJ specified if PASS_OBJ is specified for the binding inherited from
the parent type.

e It shall not have PASS_OBJ specified if PASS_OBJ is not specified for the binding inher-
ited from the parent type.

e [t shall be pure if the binding inherited from the parent type is pure.
e [t shall be elemental if the binding inherited from the parent type is elemental.
e It shall not be elemental if the binding inherited from the parent type is not elemental.

e It shall have the same number of dummy arguments as the binding inherited from the
parent type. Each dummy argument other than the passed-object dummy argument shall
have the same characteristics (12.2.1) and dummy argument name as the binding inherited
from the parent type.

e It shall be a subroutine if the binding inherited from the parent is a subroutine.

e It shall be a function having the same result characteristics (12.2.2) as the binding inher-
ited from the parent type if the the binding inherited from the parent type is a function.

e The binding inherited from the parent type shall not have NON_OVERRIDABLE speci-
fied.

e The binding declared in the type overrides the one inherited from the parent. The
binding inherited from the parent is not accessible in objects of the type.

[47:39-44]

[48:16-17]
[48:28+]

J3/98-186r1
Page 4 of 5

An example of procedure over-riding. See example 4.x.

TYPE, EXTENDS(POINT) :: POINT_3D
REAL :: Z
CONTAINS
PROCEDURE, PASS_0OBJ :: LENGTH => POINT_3D_LENGTH
END TYPE POINT_3D
REAL FUNCTION POINT_3D_LENGTH (A, B)
CLASS(POINT_3D), INTENT(IN) :: A, B
IF (EXTENDS_TYPE_QF(B,A)) THEN
POINT_3D_LENGTH = SQRT((A%X-BAX)**2 + (A%Y-B%Y)**2 + (ALZ-BAZ)**2)
RETURN
END IF
PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect’
STOP
END FUNCTION POINT_3D

4.5.3.3 Procedure binding accessibility

The default accessibility of procedure bindings is PUBLIC, independently from the accessibility
of components. The default accessibility may be changed by an explicit PRIVATE statement
following the CONTAINS, and may be overridden by an accessibility attribute.

or type-bound-proc-name ([actual-arg-spec-list |)

type-bound-proc-name is data-ref % binding-name

Constraint: The binding-name shall be the name of a procedure binding (4.5.1.5) to the declared
type of the data-ref.

The procedure binding named by type-bound-proc-name is determined by the dynamic type of

the data-ref. The procedure binding to the dynamic type of the data-ref shall not be deferred

(4.5.1.5.1).

or CALL type-bound-proc-name &
B [([actual-arg-spec-list |) |

[Editor: add “that does not refer to a type-bound procedure for which PASS_OBJ is specified,”
after “function reference,”]

[Editor: Add a new section. Add passed-object dummy argument to the index.]
12.4.1.1 The effect of PASS_OBJ on argument association

In a reference to a type-bound procedure for which the binding includes the PASS_OBJ annota-
tion, the data-ref is associated, as an actual argument, to the passed-object dummy argument
(4.5.1). In a procedure reference that uses a structure component that is a procedure pointer
that has the PASS_OBJ annotation, the penultimate part-ref is associated, as an actual argu-
ment, to the passed-object dummy argument (4.5.1). The actual argument list identifies the
correspondence between the actual arguments supplied and the remaining dummy arguments.
In the absence of an argument keyword, an actual argument is associated to the dummy ar-
gument occupying what would be the corresponding position in the dummy argument list if
the passed-object dummy argument were removed. If an argument keyword is present, the ac-
tual argument is associated to the dummy argument whose name is the same as the argument
keyword. The passed-object dummy argument shall not be identified by an argument keyword.

[Editor: Add “binding name” to the list.]

Note 4.y

[224:8+]
[224:10+]

[224:12+]
[225:11]

[225:36+]

[303:38]

J3/98-186r1
Page 5 of 5

[Editor: Add “(12.4.1)” after “reference”.]
[Editor: Add “(12.4.1)” after “reference”.]

14.1.2.5 Components, type parameters, subobjects and bindings

A binding name has the scope of the derived type definition. Outside of the type definition,
it may appear only within a call statement or function reference. If the type is accessible
in another scoping unit by use association or host association and the type does not contain
the PRIVATE statement (4.5.1), the binding name is accessible for use in a call statement or
function reference in that scoping unit.

binding (4.5.1.5): An association, declared within a derived type definition, of a specific pro-
cedure to a name.

[Editor: Add in the same paragraph]

(4.5.3)If a procedure is bound to an extensible type by the same binding name as one that
would be inherited from the parent type, it overrides the one that would be inherited from the
parent type.

passed-object dummy argument (4.5.1): The first argument of a specific procedure that is
bound to a type by a procedure binding that has the PASS_OBJ annotation, and that has the
same type as the type to which the procedure is bound.

type-bound procedure (4.5.1.5): A procedure that is declared to be associated to a type. It
is invoked using a binding name. It is accessed if the type to which it is bound is accessed, and
its accessibility is public.

307:4]
307:9]
308:33]
308:47+]

— o o

[342:3+]

346:37+]

[347:10+]

[349:26+]

