
From: Kurt W. Hirchert J3/98-188r1 (Page 1 of 4)
Subject: Tutorial on Initial / Final Procedures Meeting 146

J3/98-188r1 (Page 1 of 4)

The basic idea of this feature is simple — between the time memory is “allocated” for a
variable and the first explicit operation on that variable, the processor automatically
generates a call to the initial procedure for that variable (if there is one for its type), and
between the last explicit operation and the “deallocation” of the variable, a call to the final
procedure is generated.5

At the basic level, the only syntax is that which identifies a procedure as being the initial or
final procedure for a type. For that syntax, we have chosen to use type-bound procedure
notation with “special” names. The usual semantics of type-bound procedures implies
that initial and final procedures are applicable wherever the type itself is. Note that, as i n
the example below, a type need not be extensible (“object-oriented”) to have type-bound10

procedures.

MODULE I_F_demo
 TYPE I_F_type
 INTEGER :: id
 CONTAINS15

 PROCEDURE :: (INITIAL) => demo_init
 PROCEDURE :: (FINAL) => demo_final
 END TYPE I_F_type
 INTEGER :: last_id = 0, pop = 0
 CONTAINS20

 SUBROUTINE demo_init(the_var)
 TYPE(I_F_type),INTENT(INOUT) :: the_var
 the_var%id = last_id + 1; last_id = the_var%id; pop = pop + 1
 END SUBROUTINE demo_init
 SUBROUTINE demo_final(the_var)25

 TYPE(I_F_type),INTENT(INOUT) :: the_var
 pop = pop - 1
 END SUBROUTINE demo_final
 SUBROUTINE info(tag,the_element)
 CHARACTER(*),INTENT(IN) :: tag30

 TYPE(I_F_type),INTENT(IN) :: the_element
 PRINT *,tag,' is element#',the_element%id,'/',last_id,' -- ', &
 & pop-1,' others exist.'
 END SUBROUTINE info
END MODULE I_F_demo35

PROGRAM demo
 USE I_F_demo
 TYPE(I_F_type) :: var
 TYPE(I_F_type),POINTER :: ptr40

 CALL info('var',var)
 CALL inner; CALL info('var',var)
 ALLOCATE(ptr); CALL info('var',var); CALL info('ptr',ptr)
 CALL inner; CALL info('var',var)
 DEALLOCATE(ptr); CALL info('var',var)45

 CONTAINS
 SUBROUTINE inner
 TYPE(I_F_type) :: var2
 CALL info('var',var); CALL info('var2',var2)
 END SUBROUTINE inner50

END PROGRAM demo

From: Kurt W. Hirchert J3/98-188r1 (Page 2 of 4)
Subject: Tutorial on Initial / Final Procedures Meeting 146

J3/98-188r1 (Page 2 of 4)

The output of this example should be something like the following:

 var is element#1/1 -- 0 others exist.
 var is element#1/2 -- 1 others exist.
 var2 is element#2/2 -- 1 others exist.
 var is element#1/2 -- 0 others exist.5

 var is element#1/3 -- 1 others exist.
 ptr is element#3/3 -- 1 others exist.
 var is element#1/4 -- 2 others exist.
 var2 is element#4/4 -- 2 others exist.
 var is element#1/4 -- 1 others exist.10

 var is element#1/4 -- 0 others exist.

This output trace reflects

+ the creation of var in demo,

+ the creation of var2 in the first call to inner,

– the destruction of var2 in the first call to inner,15

+ the allocation of ptr,

+ the creation of var2 in the second call to inner,

– the destruction of var2 in the second call to inner, and

– the deallocation of ptr.

[The destruction of var in demo also took place and generated one final call to demo_final,20

but since no output was generated afterwards, we don’t really see its effects.]

The bulk of the specification of this feature describes when these procedures and in what
 order :

• Most of these simply make explicit ordering requirements that should be
“intuitively obvious”.25

• A few provide ordering options that may make implementation more convenient.

• A few provide institute fairly arbitrary ordering decisions to give users a basis for
portable programming in esoteric situation.

 Components

Since, as a general rule, initial and final procedures tend to perform operations on the
components of the type, it follows that if a component is itself of a derived type with initial30

and final procedures, the initial procedure for the component must be called before the

From: Kurt W. Hirchert J3/98-188r1 (Page 3 of 4)
Subject: Tutorial on Initial / Final Procedures Meeting 146

J3/98-188r1 (Page 3 of 4)

initial procedure for the variable which contains it, and the final procedure for the
component is called after the final procedure for the variable which contains it.

A similar order applies to types that extend another type, as the type being extended is
effectively a component within the extension type.

 Allocatable and Pointer

When you ALLOCATE a variable, the initial procedure is called for its elements. When5

you DEALLOCATE a variable, the final procedure is called. [This corresponds to when a
compiler generates code to do default initialization and automatic deallocation of
allocatable components.] Note that the automatic deallocation of an allocatable variables
and components triggers final procedures just as explicit DEALLOCATE statements do.

If you ALLOCATE a variable of a type that has a final procedure, your program is required10

to deallocate it. [If the variable is allocatable, this should happen automatically, but if it is a
pointer, this places a requirement on the logic of your program.]

 “Ordinary” nonSAVEd

In an executable scoping unit, the initial routines for “ordinary” nonSAVEd variables are
called “in the prolog” and final routines “in the epilog”. [Again, this corresponds to when
a compiler generates code to do default initialization and automatic deallocation of15

allocatable components.]

 “Ordinary” SAVEd

The time of initialization and finalization for “static” variables has intentionally been only
partially specified to allow various implementation strategies, including the following:

1. In a processor with sufficient support in the linker, a list of static initializations to
perform can be accumulated prior to execution, so the main program prolog can do20

those calls.

2. If the linker doesn’t provide the support for building such a list, then on each
invocation of an executable scoping unit, the processor can check a flag to determine
whether that is the first invocation of the scoping unit, and, if so, do the
initialization of the static variables.25

Other strategies are possible (e.g., starting asynchronous execution of the initialization i n
the main program prolog and waiting for it to complete in the executable scoping unit
prolog), but the above two are the most likely strategies. In either case, the likely strategy
for finalization is to build a list of finalizations to perform during initialization and then
process the list immediately prior to the implicit closing of I/O units on program30

From: Kurt W. Hirchert J3/98-188r1 (Page 4 of 4)
Subject: Tutorial on Initial / Final Procedures Meeting 146

J3/98-188r1 (Page 4 of 4)

termination. A compiler would be permitted to do the analysis to determine if a scoping
unit could not possibly be referenced again and, if so, to begin the finalization early, so it
seems unlikely that any compiler will go to the trouble of doing so.

 Modules

In general, modules (or specific instances of modules) are initialized before the scoping
units that reference them and finalized after. It is expected that this will typically be5

achieved in one of two ways:

1. With the necessary linker support to build lists of static initialization routines, this
list can be properly sorted before being processed from the main program prolog.

2. Otherwise, the prolog for all executable scoping units can test flags to determine
whether the modules being referenced have been initialized, yet. (It could then also10

set a flag to cause the matching finalization to occur when exiting that instance of
the executable scoping unit.)

F90 and F95 describe modules as having multiple instances, but go to significant lengths to
allow implementations which reuse a single static instance. The rules for initial and final
procedures attempt to be consistent, but if an implementation has a reason to support15

multiple instances of a module (e.g., parallel execution on a multi-processor system), it
might be appropriate to use approach 1 for the shared “static” variables and approach 2 for
the variables specific to particular instances.

 Within a Scoping Unit

An arbitrary ordering rule has be applied which, in effect, says that initial and final
procedures for a variable may reference variables declared before that variable in the20

scoping unit, but not those declared after.

Ω

