J3/98-193r1

Page 1 of 3
Date: 12 August 1998
To: J3
From: Van Snyder

Subject: Edits for explicitly typed allocations
References: 98-146, 98-160, 98-172r3

1 Background

In Fortran 95, character length cannot be deferred until allocation. In Fortran 2000, without
change, one will in addition not be able to defer specifying parameters of parameterized derived
types until allocation, nor will one be able to allocate a polymorphic object with a type extended
from its declared type. This paper addresses those deficiencies.

Specifications and syntax were proposed in 98-172r2, and approved with minor amendments.
A post-meeting 98-172r3 will include the amendments.

2 Edits

Edits refer to 98-007r2. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and | in the text.

“

[Editor: Change “...or assumed” to “...or be assumed or deferred”.]

[Editor: Start a new section after note 4.4. Add “deferred” to the index.]
4.2.1 Deferred type parameters

A deferred type parameter is a nonkind type parameter of an entity for which specifying the
value is deferred until the entity is allocated (6.3.1), associated to a target (7.5.2), or associated
to an actual argument (12.4.1). The values of deferred type parameters of unallocated arrays
or disassociated pointers are undefined. A deferred type parameter may be specified in a type
declaration statement or a component definition statement. A deferred type parameter may be
specified only if the entity has the POINTER or ALLOCATABLE attribute. A deferred type
parameter is indicated by a colon. An entity that is declared with a deferred type parameter is
a deferred-parameter entity.

i

[Editor: Replace clause beginning “it is required...” with the following;:]
it is required to specify values explicitly for all kind parameters of a derived type entity, and

either to defer or specify values explicitly for all nonkind parameters of a derived type entity.

or :

Constraint: A colon may be used as a type-param-value only for a nonkind type parameter.

Constraint: A colon may be used as a type-param-value only if the declared entity has

the POINTER or ALLOCATABLE attribute.
[Editor: Move the constraints at [49:4-6] to here, and make them ordinary normative text — so
we can use type-spec in allocate statements, where type parameters are not required to be
specification expressions.]

[30:28]
30:33+]

38:13-14]

[48:38+]
[49:8+]

J3/98-193r1
Page 2 of 3

[Editor: Start a new paragraph. Add “deferred” to the index.]

A nonkind parameter of a derived type that is specified by a colon is a deferred type parameter
(4.2.1). Specification of the values of deferred parameters is deferred until execution of an
ALLOCATE statement (6.3.1), pointer assignment (7.5.2), or argument association (12.4.1).

[Editor: Delete the constraint. Replace “allocatable array” by “allocatable variable” everywhere
it appears.]

R510 char-len-param-value is scalar-int-ezpr

or :

Constraint: If char-len-param-value is colon the declared entities shall also have either
the POINTER or the ALLOCATABLE attribute.

If the character length parameter value is an integer expression it shall be a specification
expression.

The reason to specify this using normative text instead of a syntax term at 57:2 is to allow
type-spec to be used in allocate statements, where type parameters are not required to be
specification expressions.

[Editor: Start a new paragraph. Add “deferred” to the index.]

A deferred character length parameter is a deferred nonkind type parameter (4.2.1) of a
character entity; it is specified by a colon char-len-param-value. Specification of the length of
the character entity is deferred until execution of an ALLOCATE statement (6.3.1), pointer
assignment (7.5.2), or argument association (12.4.1).

in a type declaration statement, a component definition statement, or an ALLOCATE state-
ment. Nonkind type parameters may be deferred.

and type parameters may be specified in a type declaration statement, a component definition
statement, or an ALLOCATE statement. Nonkind type parameters may be deferred.

R623 allocate-stmt is ALLOCATE ([type-spec :: | allocation-list m
B [, STAT = stat-variable |)

[Editor: Change “array” to “variable”.

Constraint: The type-spec shall not be CLASS.

Constraint: If a type-spec is specified, allocate objects that are not polymorphic shall be
of the type specified by type-spec, and allocate objects that are polymorphic
(5.1.1.8) shall have a declared type that is an ancestor type (4.5.3) of the type
specified by type-spec.

Constraint: If the shape of an allocate object is deferred, allocate-shape-spec-list shall be
specified.

[Editor: Start a new paragraph.]

At the time an ALLOCATE statement is executed type parameters may be specified by ex-
pressions given in the type-spec in the allocate statement. A value shall be specified for every
deferred type parameter. If a value is specified for a nondeferred type parameter, it shall be the
same as the value specified in the object’s declaration. Otherwise, an error condition exists.

Type parameter values are associated to type parameter names as specified in 4.5.5. If a
type parameter value is associated by position to a type parameter name, a type parameter
value shall be associated by position to all type parameter names that appear earlier in the
type parameter name list (including type parameter names inherited from an extensible type’s

[49:16+]

[54:6]
[57:2]
[57:3+]
[57:84]

[57:12.5+]

J3 note

[57:18+]

[62:40]
[63:2]
[90:15]

[90:21, 23] |
[90:23+]

90:25+]

J3/98-193r1
Page 3 of 3

parent type).

Subsequent redefinition or undefinition of any entity within any expression that provides a value
for a deferred type parameter does not affect the value of the parameter.

If a type is specified, allocation of a polymorphic object (5.1.1.8) allocates an object with the
specified dynamic type; otherwise it allocates an object with the dynamic type of the declared
type of the object.

If an allocate-shape-spec-list is specified for an array that is not a deferred-shape array, the
bounds specified shall be the same as the bounds for the object; otherwise, an error condition
exists.

[Editor: Change “bound” to “bound or type parameter value”.]

[Editor: Change “array” to “deferred-shape array”.]
[Editor: Delete (it was moved to 90:25+).]

[Editor: Start a new paragraph]

If pointer-object has deferred nonkind parameters, the values of those parameters are assumed
from the values of the corresponding parameters of target.

Do we need to say anything about the relation of explicitly specified nonkind parameters of
pointer-object and target? Character length is apparently not a problem, but are the values of
other explicitly specified nonkind type parameters of pointer-object required to be the same as
corresponding nonkind type parameters of target?

Editor: Change “character length is assumed” to “character length is assumed or deferred”]

“

Editor: Change “or a target” to “, a target, or has a deferred type parameter”.]

Editor: Replace “type parameters” by “non-deferred type parameters”.]

[
[
[Editor: Replace “type parameters” by “non-deferred type parameters”.]
[
[

Editor: Add new paragraph after Note 12.21]

If a dummy argument is a deferred-parameter entity and does not have INTENT(OUT) the
values of the deferred type parameters are assumed from the corresponding type parameters of
the actual argument. If the dummy argument has INTENT(OUT), the corresponding actual
argument is a pointer and its pointer association status (14.6.2.1) is disassociated, or the cor-
responding actual argument is allocatable but not allocated, the deferred type parameters are
undefined.

If a dummy argument does not have INTENT(IN) the corresponding actual argument shall
have deferred the same type parameters as the dummy argument.

There really isn’t any point to the combination of INTENT(IN) and deferred parameters, since
one could in this case use assumed parameters. It is, however, easier to allow than to prohibit
the combination.

deferred type parameter (4.2.1) A derived type parameter specified by a colon.

deferred-parameter entity (4.2.1) A derived type or character entity having a deferred type
parameter.

[90:26]
[90:34]
[91:1-2]
[124:7+]

J3 note

[216:18]
[217:22]
[226:20-21]
[227:21]
[228:11+4]

J3 note

[343:25+]

