
J��������r�
Page � of �

Date� �� August ����
To� J�
From� Van Snyder
Subject� Speci�cations and syntax for enumeration types
References� ��	�
�r�� ��	�
�r�

� Introduction

Enumeration types are necessary� or at least very useful� for C interoperability� because the
C standard allows a processor to choose a di�erent integer representation �a di�erent kind
parameter� from the Fortran perspective� for each enumeration� It is di�cult to predict what
representation will be chosen�

Enumerations have important uses beyond C interoperability� In particular� using them as
array dimensions� do inductors� and subscripts allows compilers to provide subscript bounds
checking at very low run	time cost � frequently zero cost�

� Enumeration types

To declare enumeration types and their literals� the TYPE statement is extended�

type�de�nition�stmt is TYPE ��enum�spec�list � �� enum�def�list

enum�def is type�name �� literals

enum�spec is access�spec

or BIND�C�

literals is ORDERED ��kind�selector��
� ordered�enum�list �

or UNORDERED ��kind�selector��
� unordered�enum�list �

ordered�enum is named�constant � � explicit�shape�spec � �

unordered�enum is named�constant

� � scalar�int�initialization�expr �
or named�constant � boz�literal�constant

Values of enumeration types are represented by integers�

If BIND�C� is speci�ed� C representational rules apply� and kind�selector is not allowed�

If kind�selector is not speci�ed� the kind of integer used to represent enumerations is separately
selected for each enumeration type by the processor�

Notice that ���� is not optional� just as it is not optional in the case of initializing a pointer
object by using ��� NULL��� in a type�declaration�stmt�

Enumeration types cannot be parameterized� Literals of enumeration types can be renamed
during USE association�

What is the e�ect of USE� ONLY on an enumeration type� Does it make just the type available� ���
or the type and the literals� Either way is probably wrong for some circumstances� It would be
useful to have two syntaxes� one to say �use only the type�� say� USE� ONLY� T� and another
to say �use only the type and its literals�� say� USE� ONLY� T����



J��������r�
Page � of �

Objects of enumeration types can be declared by using
TYPE�type�name� �� enumeration�variable �

BIND�C� objects of enumeration types cannot appear in COMMON� in EQUIVALENCE� or
within SEQUENCE derived types� Maybe it�s ok for non	BIND�C� objects�

The intrinsic function INTmay be used to retrieve the numeric representation of an enumeration
literal or object of enumeration type� In the case of ordered enumerations� or of unordered enu	
merations in which no explicit value is provided for the k �th literal� the �rst literal is represented
by zero� and the k �th literal is represented by SIZE�k�� �th literal� � INT�k�� �th literal��

The size of unordered enumeration literals� or of ordered scalar enumeration literals� is one�
The size of an array enumeration literal is the number of values� The SIZE intrinsic function
may be used to retrieve the size of an enumeration literal�

If explicit�shape�spec is speci�ed for an ordered enumeration� the size must be positive� If E is
an enumeration literal with bounds e��e�� E�e�� denotes the �rst value� etc�� E and E�k � l� are
sequences of values of the type of E� and INT�E� and INT�E�k � l�� are sequences of integers�
LBOUND�E� returns e� and UBOUND�E� returns e��

It is useful to allow ordered enumeration literals to have a size other than one so that one can
declare a type with literals having representations� say� �� � and ��� while still guaranteeing
that there are no gaps or duplications in the set of values of the type� Another application is to
de�ne an enumeration type with one literal of a speci�ed size� which is used as an array bound�
If a variable of the type is then used as a subscript� array bounds checking has no cost �at least
at the point of use as a subscript � but maybe it does where the variable gets a value�� Here�s
an example�

TYPE �� E �� ORDERED� EV���� �

REAL �� X�EV�

TYPE�E� �� SUB

DO SUB � TINY�E�	 HUGE�E� 
 No check needed for value of SUB here

PRINT �	 X�SUB� 
 Bounds checking for X is FREE


END DO

You also can simulate unsigned integers � there�s no arithmetic �not directly� anyway�� but you
have a better chance of getting the right representation than with SELECTED INT KIND� Here�s
an example� TYPE �� B �� BV��
���

It is possible for two literals of an unordered enumeration type to have the same representation�

The intrinsic function KINDmay be applied to a value of enumeration type to determine the kind
of integer used to represent values of the type� The kind of a value of a BIND�C� enumeration
could be �� if the C processor uses a representation for the type for which the Fortran processor
has no kind�

The only intrinsic operations de�ned on values of unordered enumeration types are assignment
���� equality ��EQ� or ���� and inequality ��NE� or ����

��� Additional features of ordered enumerations

� All numeric relational operators are de�ned on values of ordered enumeration types�

� Scalar values of ordered enumeration types may be used in SELECT CASE constructs and
DO constructs� Array ones may be used in CASE statements�



J��������r�
Page � of �

� TINY and HUGE are de�ned for ordered enumeration types� and return the �rst and last
literal of the type� respectively �not an integer�� Thus if one has a variable E of an ordered
enumeration type� it is permitted to write DO E � TINY�E�	 HUGE�E�� to use TINY�E�

and HUGE�E� for array dimensions� etc�

� Scalar values of ordered enumeration types may be used in array dimensions and scalar
or array ones may be used in subscripts� If an array has a dimension bound given by
a value of an ordered enumeration type� the other bound of that dimension shall be of
the same type� or omitted �in which case it is taken to be TINY or HUGE� as appropriate��
and a subscript for that dimension shall be of the same type as the bound� A subscript
triplet must consist of scalar values of an enumeration type� An omitted lower or upper
bound of a subscript triplet is taken to be TINY or HUGE� respectively� An increment of
a subscript triplet is an integer� Should increments of subscript triplets of enumeration Straw vote

types be prohibited�

� An elemental constructor having the same name as the type is de�ned� It takes a single
integer argument and returns a value of the enumeration type� One can guard against an
out	of	range argument by writing� e�g�

IF � I �� INT�TINY�E�� �AND� I �� INT�HUGE�E�� � E � �type�of�E��I�

A constructor is not provided for unordered enumeration types because di�erent values
of the type may have the same representation� and there may be integers between the
smallest one that represents a value of the type and the largest one that represents a value
of the type that do not represent values of the type�

� Two elemental intrinsic functions are de�ned� say SUCC and PRED �spelling negotiable�
that return the successor and predecessor of a value of an ordered enumeration type� The
result is the same type as the argument� not an integer�

Should SUCC and PRED be provided� Straw Vote

Should SUCC�HUGE�E�� be an error� or TINY�E�� The obvious anti	symmetric question Straw Vote

applies to PRED� Whatever choice is made for the behavior of SUCC and PRED� one can
guard against the error� or detect wrap	around� similarly to guarding against the error in
the constructor�


