
NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 1 of 9

E:\X3J3\147\98-216.wpd

Revisiting OOP Syntax1

by Craig T. Dedo2

October 25, 19983

I believe that it would be helpful for J3 to revisit the issue of syntax for OOP in Fortran 2000, for4

the reasons that Dr. Werner W. Schulz explains in his e-mail, which is quoted in full below.5

I believe that one of the strengths of the Fortran language is that it has a relatively easy and6

straightforward grammar and syntax, especially compared with most of the other languages whcih are7

popular right now. The current syntax that is proposed for OOP could be made much easier for8

application developers to use.9

Please think over the issues in this message which Dr. Schulz sent to comp-fortran-90 mailing list10

and give them your careful and thoughtful consideration.11

[Begin e-mail from Dr. Werner W. Schulz]12

Date: Mon, 10 Aug 1998 17:09:57 +0100 (BST)13

Message-ID: <Pine.SOL.3.96.980810160414.14987F-100000@taurus.cus.cam.ac.uk>14

MIME-Version: 1.015

Content-Type: TEXT/PLAIN; charset=US-ASCII16

Subject: OOP in Fortran 200017

From: "Dr W.W. Schulz" <wws20@cus.cam.ac.uk>18

To: fortran90 mailing list <comp-fortran-90@mailbase.ac.uk>19

X-List: comp-fortran-90@mailbase.ac.uk20

X-Unsub: To leave, send text ’leave comp-fortran-90’ to mailbase@mailbase.ac.uk21

X-List-Unsubscribe: <mailto:mailbase@mailbase.ac.uk?body=leave%20comp-fortran-90>22

Reply-To: "Dr W.W. Schulz" <wws20@cus.cam.ac.uk>23

Sender: comp-fortran-90-request@mailbase.ac.uk24

Errors-To: comp-fortran-90-request@mailbase.ac.uk25

Precedence: list26

X-UIDL: d3e7f741ac3f7b463eccb58127b2ce7427

X-Mozilla-Status: 900328

There have been several comments in comp.lang.fortran (clf) about the lack of generic29

classes and functions in the F2000 proposal. That is a heavy setback.30

But the OOP proposal itself contains several problematic or far from ideal31

constructs.32

The various documents of J3 are available at ftp://ftp.ncsa.uiuc.edu/x3j3/doc/year/.33

9x-000.txt is a list of all submitted papers, minutes, current draft, etc.34

for a particular year. Some relevant papers for OOP are35

 year 98: 152, 140, 137, 136, 133, 108, 10036

 year 97: 230, 196, 195, 194, 183, 182 (and earlier)37

Please read the full papers for more details.38

Let me quote from 98-152r1.txt since it is the latest and should be close to39

the current discussion in J3. (Fortran Words are always in UPPER case, otherwise40

the same word may be used in a different sense.)41

NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 2 of 9

E:\X3J3\147\98-216.wpd

EXAMPLES from 98-152:1

a) Classes are constrcuted from TYPE with the new attributes2

 EXTENSIBLE or EXTENDS(parent-TYPE):3

 TYPE,EXTENSIBLE :: vector_2d4

 REAL x,y5

 CONTAINS6

 PROCEDURE,PASS_OBJ :: length => length_2d7

 END TYPE8

 REAL FUNCTION length_2d(v)9

 CLASS(vector_2d) v10

 length_2d = SQRT(v%x**2+v%y**2)11

 END FUNCTION12

 TYPE,EXTENDS(vector_2d) :: vector_3d13

 REAL z14

 CONTAINS15

 PROCEDURE,PASS_OBJ :: length => length_3d16

 END TYPE17

 REAL FUNCTION length_3d(self)18

 CLASS(vector_3d) self19

 length_3d = SQRT(self%x**2+self%y**2+self%z**2)20

 END FUNCTION21

Usually one would put these TYPEs and the corresponding type-bound procedures22

into one or several modules, so a complete vector_3d would look like this:23

 MODULE vector_3d_mod24

 USE vector_2d_mod25

 IMPLICIT NONE26

 TYPE,EXTENDS(vector_2d) :: vector_3d27

 REAL z28

 CONTAINS29

 PROCEDURE,PASS_OBJ :: length => length_3d30

 PROCEDURE,PASS_OBJ :: distance => distance_3d31

 END TYPE32

 PRIVATE :: length_3d, distance_3d33

 CONTAINS34

 REAL FUNCTION length_3d(self)35

 CLASS(vector_3d), INTENT(IN) :: self36

 length_3d = SQRT(self%x**2+self%y**2+self%z**2)37

 END FUNCTION38

NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 3 of 9

E:\X3J3\147\98-216.wpd

 REAL FUNCTION distance_3d(self,p)1

 CLASS(vector_3d), INTENT(IN) :: self2

 TYPE(vector_3d), INTENT(IN) :: p3

 distance_3d = SQRT((self%x-p%x)**2+(self%y-p%x)**2+(self%z-p%x)**2)4

 END FUNCTION5

 END MODULE vector_3d_mod6

b) Invocation of these constructs:7

 TYPE(vector_2d) vec8

 TYPE(vector_3d) x9

 REAL size10

 ...11

 size = vec%length() ! Invokes length_2d(vec).12

 size = x%length() ! Invokes length_3d(x).13

Note the correspondence between PASS_OBJ in the TYPE declaration and14

invoking object as in vec%length().15

So far these have been monomorphic objects (vec,x).16

c) Polymorphism is enabled by this construct:17

 CLASS(vector_2d), POINTER :: y18

 y => vec19

 y => x20

There is also a non-pointer CLASS, but that is allowed only as a scalar21

dummy argument in procedures. It is necessary in connection with PASS_OBJ.22

Note that CLASS is different from class in Java,C++, Eiffel, and similar23

OOP languages and OOP literature but rather more like Ada95’s OOP version.24

d) PROCEDUREs can ’point’ to NULL(procname), i.e. they represent abstract25

or deferred procedures whose interface is defined by procname26

(see proposal for procedure pointers for details).27

e) Visibility: PRIVATE can be added to PROCEDURE as an attribute.28

f) Overriding of procedure characteristics:29

 "When overriding a type-bound procedure without the PASS_OBJ attribute,30

 all characteristics of the overriding procedure shall be the same as31

 that of the procedure being overridden."32

 "When overriding a type-bound procedure with the PASS_OBJ attribute,33

 only the characteristics of the dummy argument used for passing the34

 invoking object shall be different."35

i.e. the dummy arguments have to have the same type declaration as in the36

original extensible TYPE.37

(Question: Is there ever a reasonable type-bound procedure which does not38

require the invoking object to be passed?)39

NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 4 of 9

E:\X3J3\147\98-216.wpd

CRITICISM of the proposed Syntax:1

a) Next to TYPE(type-name)2

 TYPE(type-name), POINTER3

there are also:4

 TYPE(type-name), EXTENSIBLE/EXTENDS(parent-type)5

 TYPE(type-name), POINTER ! same as before but type-name is extensible6

and7

 CLASS(base-type)8

 CLASS(base-type), POINTER9

Note that extensible TYPEs share the rules for pure TYPEs but are otherwise10

separate though this is not obvious in variable declarations.11

The problem construct is the non-pointer CLASS construct since it is not12

safe from run-time errors (the same problem appears in Ada95).13

Example:14

 CLASS(vector_2d) :: vc2 ! dummy argument in some procedure15

 TYPE(vector_2d) :: t2 ! obvious versions from above16

 TYPE(vector_3d) :: t317

 TYPE(vector_4d) :: t418

If the actual run-time of vc2 is actually a vector_3d then the following happens:19

 vc2 = t2 ! run-time error, not enough fields to assign20

 vc2 = t3 ! ok.21

 vc2 = t4 ! uses first three fields and skips fourth22

The statements are legal but not run-time safe.23

Currently the non-pointer CLASS construct is needed since J3 doesn’t want to24

introduce a SELF construct which would be safe (see below).25

I personally don’t like the names either since they are in conflict with26

common usage in OOP literature notwithstanding the fact that Ada95, Modula-327

etc use TYPE.28

(There is also the awkwardness that a sub-TYPE of a parent-TYPE is not necessarily29

a subtype of the parenttype. I can give references and examples for anyone interested30

in this subtlety. It is better to separate class and type instead of mixing TYPE31

and type as in Fortran. It wasn’t so bad with F90’s TYPEs but under OOP it does32

become an issue.)33

b) extensible TYPEs with deferred procedures are not specially marked or limited.34

This can lead to run-time errors if, for example, vector_2d and vector_3d have a35

concrete LENGTH function while the programmer decided to defer (again) the LENGTH36

function on -say- vector_4d. If one now invoke the LENGTH function of a polymorphic37

object of base vector_1d which happens to a vector_4d, a run-time error occurs.38

c) Asymmetry of procedure argument list. The PASS_OBJ attribute requires a dummy39

non-pointer CLASS argument which is not present in the invocation statement.40

NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 5 of 9

E:\X3J3\147\98-216.wpd

d) The PROCEDURE declaration is not transparent. Neither does it reveal whether a1

FUNCTION or a SUBROUTINE is meant nor is the interface (argument list) directly2

visible (except for NULL(procname)). Without these features the PROCEDURE3

declaration is largely useless and should be scrapped.4

(Similar criticism applies to the procedure pointer construct.)5

The bodies of the PROCEDUREs are kept separately elsewhere, most commonly in the6

same module. I view this separation as awkward for two reasons: firstly, constructs7

that belong together should stay together in one linguistic unit, secondly, the8

separation requires (for all practical purposes) a module hierarchy that follows9

that of the extensible TYPE hierarchy, an unnecessary doubling of names, etc.10

is a consequence.11

The PROCEDURE declaration can take attributes but FUNCTIONs and SUBROUTINEs12

cannot (why not?). (Adding attributes to FUNCTIONs and SUBROUTINEs would help13

to make Fortran syntax more regular in any case. Currently procedures must be14

declared PUBLIC/PRIVATE in separate attribute statements which cause a number of15

limitations in Fortran syntax.)16

e) There seems to be a general tendency in J3 to miss more appropriate names:17

 EXTENSIBLE/EXTENDS is used when everyone in OOP talks of inheritance18

(so why not use INHERIT <class> similar to USE <module>?). Inheritance is19

not always extension, sometimes only a redefinition.20

The attribute syntax is also not very suitable for multiple inheritance21

should that be added in the future. A separate statement INHERIT <class> is22

better suited.23

 NON_OVERRIDABLE (15 chars!) is an attribute to PROCEDURE to prevent24

redefinition of procedures later on. FINAL seems to be a good word, too, and it25

is ten characters shorter (FROZEN didn’t get a majority vote!). The longest words26

in FORTRAN95 so far are ALLOCATABLE, EQUIVALENCE and UNFORMATTED with 11 chars each.27

 Arguments against TYPE (monomorphic use) and CLASS (polymorphic use) I28

have already noted.29

What are the ALTERNATIVES?30

Let me propose a different Fortranese:31

a) Classes:32

 CLASS :: vector_2d ! Attention: CLASS is different from above33

 SELF :: me ! here: me is of CLASS vector_2d34

 REAL :: x, y35

 !CONTAINS necessary?36

 FUNCTION length()37

 length = SQRT(x**2 +y**2)38

 END FUNCTION length39

 FUNCTION distance(p)40

NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 6 of 9

E:\X3J3\147\98-216.wpd

 LIKE(me), INTENT(IN) :: p1

 distance = SQRT((x-p%x)**2 +(y-p%y)**2)2

 END FUNCTION distance3

 END CLASS vector_2d4

 CLASS :: vector_3d5

 INHERIT :: vector_2d ! me, x, y are taken over from vector_2d6

 REDEFINE :: length, distance ! but me now means a vector_3d class7

 REAL :: z8

 FUNCTION length()9

 length = SQRT(x**2 +y**2 +z**2)10

 END FUNCTION length11

 FUNCTION distance(p)12

 LIKE(me), INTENT(IN) :: p ! p is now vector_3d, not _2d13

 distance = SQRT((x-p%x)**2 +(y-p%y)**2 +(z-p%z)**2)14

 END FUNCTION distance15

 END CLASS vector_3d16

The SELF construct allows a dynamic type change under inheritance.17

LIKE(me) is also a dynamic type declaration and always changes in18

line with the actual type of the current object.19

Invocation is the same as the J3 proposal but note that the asymmetry in20

the argument list is gone since ’SELF :: me’ always stands in for the21

invoking object:22

 CLASS(vector_2d) :: vec23

 size = vec%length() ! one could even skip the parentheses24

 ! no one needs to know whether length is a25

 ! variable or a function26

’me’ inside the CLASS definition refers to the current object ’vec’.27

Some restrictions are that class procedure names cannot be used as actual arguments28

to dummy procedure arguments (obviously) and class procedures should not contain saved29

local variables (ex- or implicitly).30

b) Polymorphic objects:31

 REF(vector_2d) :: poly_vec32

REF always has the (implicit) POINTER attribute and only pointer assignment is33

allowed (=>) but not assignment (=).34

The variable poly_vec can point to any variable that inherits from35

the ancestral class incl. this class itself (nothing new).36

Class procedures with arguments declared with LIKE cannot be invoked37

from polymorphic objects since this could result in run-time errors.38

NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 7 of 9

E:\X3J3\147\98-216.wpd

(This is an example of a sub-CLASS derived from a parent-CLASS not being a1

sub-type of the parent-type, see distance function in vector_2d and2

vector_3d.)3

By the way, there are now three different versions possible for the4

distance function of the vector_nd classes. Here are some examples:5

 - LIKE(me): the most obvious choice since usually I want to compare two6

 vectors of the same type7

 - REF(vector_1d): can only compute the distance of projection on x-axis of8

 the invoking vector and any other one or more dimensional vector9

 (maybe one should call this x_distance)10

 - CLASS(vector_2d): requires exactly a two-dimensional vector.11

 (doesn’t look very useful in this context, but maybe elsewhere)12

c) Abstract classes:13

 CLASS, ABSTRACT :: abstract_vector14

 SELF :: me15

 FUNCTION, ABSTRACT :: length()16

 END FUNCTION length17

 FUNCTION, ABSTRACT :: distance(p)18

 LIKE(me), INTENT(in) :: p19

 END FUNCTION length20

 END CLASS abstract_vector21

 REF(abstract_vector) :: av ! is legal22

 CLASS(abstract_vector) :: bv ! is illegal23

Any class with at least one abstract procedure (or inherited) must be declared24

abstract as well. Only polymorphic objects can be declared with an abstract base25

class, but not monomorphic classes. Since polymorphic objects eventually must26

refer to a monomorphic object this presents no problem.27

Once a prcoedure is made concrete (by redefining it upon inheritance) it cannot28

be redefined to ABSTRACT since this would lead to run-time errors under polymorphism.29

d) CLASSes should be compilation units like MODULE, FUNCTION, etc. It is not30

necessary to encapsulate them inside MODULEs but it is allowed.31

The class procedures interfaces are known and must be checked at32

compile time (like module procedures; the CLASS/REF declaration acts33

in a similar way to the USE module declaration).34

e) Extra features:35

 -READONLY:36

I would like to see that the class variables (x,y in vector_2d) are by default37

declared READONLY (as in Eiffel). They can also be PRIVATE but never PUBLIC.38

NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 8 of 9

E:\X3J3\147\98-216.wpd

Reason: Objects have a state (the variables) and behaviour(procedures). The1

language should ensure that objects are always in a consistent state. This2

is not possible with PUBLIC variables, esp. in large programming projects.3

Example: On top of the vector_2d version a unit_vector_2d CLASS is added4

by inheritance (i.e. x**2 +y**2 = 1.0 at all times is required). This is5

impossible to maintain if the x and y variables are accessible directly6

(polymorphism is the culprit).7

The lack of READONLY currently requires to make all variables PRIVATE if one wants8

to impose some protection of objects with the added work of writing the trivial9

set_x, set_y, etc subroutines. READONLY would be the equivalent to INTENT(IN) in10

procedures and be at least as useful.11

Polymorphism requires that there is only a one-way direction of redefining12

attributes: from PRIVATE to READONLY but not vice versa (to PUBLIC for procedures).13

(One can also allow FUNCTION to variable redefinition if one can drop the 14

parentheses for argumentless class functions.)15

 -ALLOCATE:16

I would like to see an enhanced ALLOCATE version so that one can point polymorphic17

objects to unnamed monomorphic objects at run-time, similar to the new construct18

in other languages.19

 -GENERIC CLASSES:20

A possible syntax could be:21

 CLASS, GENERIC :: array(T)22

 T, dimension(:), allocatable :: A23

 ! plus many procedures24

 SUBROUTINE set(i, value)25

 INTEGER, INTENT(IN) :: I26

 T, INTENT(IN) :: value27

 A(i) = value28

 END SUBROUTINE set29

 END CLASS array30

 CLASS(array(REAL)) :: x31

I think it is very lamentable that the Fortran committees could not put this into32

the F2000 plan. We will have to wait until 2008 (TEN YEARS!) to get anything like33

it. This is unacceptable; the competition is not sleeping but far ahead already.34

 -PROCEDURE INTERFACE CHANGES:35

Upon inheritance arguments can be changed in a covariant fashion. This is often36

required in real applications. Inheritance usually means specialisation37

and this in turn requires procedures with more specialized arguments.38

However, covariance is at odds with polymorphism which would require to exclude39

such procedures from use by polymorphic objects to avoid run-time errors.40

 -The F90 TYPE construct:41

The F90 TYPE construct should be left to dissipate slowly since it is42

not really needed. Only CLASS and CLASS, POINTER and REF should be kept.43

NCITS-J3 / 98-216
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Revisiting OOP Syntax October 25, 1998

Page 9 of 9

E:\X3J3\147\98-216.wpd

The proposed alternative syntax and semantics avoid run-time errors and emphasize1

type-safety, efficiency and clarity.2

It is a little more restrictive than other OOP languages but not by much, while3

safer than C++, for example, though not yet as powerful. Added power will come4

from generic classes and procedures which should be included asap.5

This bare bone version of OOP in Fortran is a more consistent and -in my view-6

more viable and elegant version since it embodies more of the underlying7

ideas of OOP and not just the techniques.8

Like to hear your comments.9

Cheers,10

WWS11

---12

| Werner W Schulz |13

| Dept of Chemistry email: wws20@cam.ac.uk |14

| University of Cambridge Phone: (+44) (0)1223 336 502 |15

| Lensfield Road Secretary: 1223 336 338 |16

| Cambridge CB2 1EW Fax: 1223 336 536 |17

| United Kingdom WWW: |18

---19

[End of e-mail from Dr. Werner W. Schulz]20

[End of J3 / 98-216]21

