
J��������
Page � of �

Date� �� October ����

To� J�

From� Van Snyder

Subject� Integrating abstract procedure interfaces� procedure pointers� dummy procedures and

type	bound procedures


References� ��	���

� Background

Several problems have been noticed that would be reduced or eliminated if modications along the

lines proposed in this paper were adopted�

� In order to get a useful �non	sequence� derived type denition into an interface body� one

must USE the module in which it appears
 It is not possible to USE a module from within

itself� but in order for a procedure to have access to private components� it must be within

the same module as the type
 If a procedure that needs access to private components of a

type has a dummy procedure argument that has an argument of the type� it is not possible

to write an explicit interface for the dummy procedure


� Some people have expressed a preference to write the bodies of type	bound procedures inside

of type declarations
 Other people refuse to be required to do so


� The use of the NULL intrinsic function to dene abstract type	bound procedures is not parallel

to the use of any other intrinsic function


� Proposal

� Dene the concepts of �abstract procedure� � a procedure that explicitly has no body� and

cannot be invoked � and �incomplete procedure� � a procedure for which the characteristics

and body are specied at di�erent places �see also ��	��� for other applications of the latter�


In what follows� a �concrete procedure� means either a complete or incomplete procedure�

but not an abstract one


� Refer to abstract or concrete procedures in procedure declaration statements �section �
� in

��	���r��
 Allow referring to concrete procedures because in many applications� one will have

access to a collection of procedures� e
g
 from a module� that might be targets of a pointer


It would be easier to allow one of them to serve as the �template� for the pointer rather than
to require writing an additional abstract interface� identical to the interfaces in the set of

concrete procedures that are expected to be targets of the procedure pointer


Additional features not present in ��	���r�� Allow a list of concrete procedures in the position

in a procedure declaration statement �see �
�
�
�� where the interface is expected
 These

procedures shall have the same characteristics �or maybe not��


	 In a procedure pointer declaration it means that only one of those procedures can be

assigned to the pointer
 If the target in a pointer assignment is a pointer� is is required to

have been declared with a list of concrete procedures� naming a �not necessarily proper�

subset of the set of procedures allowed for the pointer




J��������
Page � of �

	 In a dummy procedure declaration in means that only one of those procedures can be
an actual argument associated to the dummy argument
 During association of an actual

argument pointer to a dummy procedure� the actual argument pointer is required to

have been declared with a list of concrete procedures� naming a �not necessarily proper�

subset of the set of procedures allowed for the dummy procedure


This is well	dened� but perhaps a bit unexpected� A PROCEDURE declaration statement with

no interface allows any procedure to be pointer or argument associated� with one interface�

abstract or concrete� it allows any procedure with the same interface� with more than one

interface� they must all be concrete� and only those listed are allowed


There are several alternatives to support the desire to have several procedure pointers or

dummy procedures that are constrained to the same set of concrete procedures�

�
 The user could repeat the list in each procedure pointer or dummy procedure declaration


�
 The user could specify a derived type that consists of a procedure pointer component

with the desired interface� and use it instead of repeating the list in numerous procedure

pointer declarations
 This subterfuge is clumsy� however� in the case of dummy proce	

dures �a procedure pointer assignment is needed for each dummy procedure argument�

possibly before each call�


�
 The standard could allow to encapsulate the list of procedures in an interface spec	
ication� to which the user could refer from procedure pointer or dummy procedure

declarations


The interface specication could look like a generic interface block� but it would change

the semantics of generic interfaces� it would be necessary to allow the characteristics

of specic procedures in the interface to intersect
 It would thereby not be possible to
check at the point an interface block is declared whether invocations of the generic thus

dened would inevitably be unambiguous� the checks would necessarily be applied to

the invocations


It would seem to be better to use a di�erent syntax of interface specication� but this is

just chipping around the edges of the real problem� which is the lack of a comprehensive

type algebra that included �procedure declaration� as one of the kinds of user	denable
types


�
 The standard could dene a comprehensive type algebra
 This is far beyond the scope

of work allocated for the current e�ort


My preferences� in order� are � and �� �� don�t do this feature� �


� Delete the interface	block	based denition of abstract interfaces �section ��
�
�
�
� in ��	
���r��


� If we ever do generic type	bound procedures� allow reference to abstract procedures from
within interface blocks� for the purpose of dening generic abstract interfaces for abstract

types


� Change the syntax of a PROCEDURE statement used to dene a type	bound procedure to be
the same as a procedure declaration statement �see section �
�
�
��
 Allow either a concrete

or abstract procedure to specify the interface
 The distinction between a pointer declaration

and a procedure binding would depend on the presence or absence of the POINTER attribute�

respectively




J��������
Page � of �

� Allow denition of abstract procedures� incomplete procedures �interface information only�
or complete procedures within or without type denitions


� Allow denition of abstract procedures and incomplete procedures �interface information only�

in modules before CONTAINS� with the bodies for incomplete procedures after CONTAINS


� Syntax ideas

To dene an abstract or incomplete procedure� use the same sort of information as would be put into

an interface body� with the crucial di�erence that abstract and incomplete procedure denitions do

access the host environment by host association


Alternatives�

�
 Begin with an ordinary procedure header� and nish the procedure declaration by writ	

ing ABSTRACT or SEPARATE
 Can�t be put before CONTAINS because of the ambiguity of

REAL FUNCTION F � N � in xed form � unless we allow �� notation in procedure headers


�
 Put ABSTRACT or SEPARATE in the procedure header


�
 Use ABSTRACT or SEPARATE to introduce �divisions� of the module or type denition� similar

to the way CONTAINS is presently used


�
 Use ABSTRACT ��� END ABSTRACT and SEPARATE ��� END SEPARATE


It is desirable to indicate� when the procedure body is written� that it is the completion of an earlier

incomplete procedure
 �Compilers can gure this out� but it�s tedious and error prone for humans to

do so
� I suggest adding a keyword to the procedure header� e
g
 COMPLETING or CONTINUING
 Need

to decide whether it�s allowed� prohibited or required to repeat argument and result characteristics
where the procedure is completed


� Examples

��� Procedure pointers

Abstract procedure denitions from Note ��
��� re	written in two of the forms advocated here�

FUNCTION �� REAL�FUNC � X � or ABSTRACT FUNCTION REAL�FUNC � X �

REAL� INTENT�IN� �� X REAL� INTENT�IN� �� X

REAL �� REAL�FUNC REAL �� REAL�FUNC

ABSTRACT END FUNCTION REAL�FUNC

SUBROUTINE �� SUB � X � or ABSTRACT SUBROUTINE SUB � X �

REAL� INTENT�IN� �� X REAL� INTENT�IN� �� X

ABSTRACT END SUBROUTINE SUB

The examples in note �
�� wouldn�t change


��� Dummy procedure argument

If a procedure needs access to private components of a type� and it has a dummy procedure that

has an argument of that type� then it is impossible to write an explicit interface for the dummy

procedure in Fortran ��
 It�s easy here�



J��������
Page � of �

MODULE M

TYPE �� T

PRIVATE

� ���

END TYPE T

SUBROUTINE �� IDUM � X � or ABSTRACT SUBROUTINE IDUM � X �

TYPE�T�� INTENT�IN� �� X TYPE�T�� INTENT�IN� �� X

ABSTRACT END SUBROUTINE IDUM

CONTAINS

SUBROUTINE SUB � A� DUM �

TYPE�T�� INTENT����� �� A

PROCEDURE�IDUM� �� DUM

���

END SUBROUTINE SUB

���

END MODULE M

��� Abstract type �type with abstract type�bound procedure�


���� Abstract procedure declared outside of the type

SUBROUTINE �� A�SUB � X � or ABSTRACT SUBROUTINE A�SUB � X �

REAL� INTENT�IN� �� X REAL� INTENT�IN� �� X

ABSTRACT END SUBROUTINE A�SUB

TYPE �� T � I think TYPE� ABSTRACT �� T would be a good idea

� Otherwise� the only way one knows it	s abstract is to

� look at the definitions of the interfaces of all of the

� procedure bindings�

��� � Data components

CONTAINS

PROCEDURE�A�SUB� �� T�SUB

� Compare to present PROCEDURE �� T�SUB 
� NULL�A�SUB�

END TYPE T


���� Abstract procedure declared inside of the type

TYPE �� T

��� � Data components

CONTAINS

SUBROUTINE T�SUB � X � or ABSTRACT SUBROUTINE T�SUB � X �

REAL� INTENT�IN� �� X REAL� INTENT�IN� �� X

ABSTRACT END SUBROUTINE SUB

END TYPE T



J��������
Page � of �

��� Concrete type �type with concrete type�bound procedure�


�
�� Concrete procedure declared outside of the type

MODULE M

TYPE �� T

��� � Data components

CONTAINS

PROCEDURE�C�SUB� �� T�SUB

� Compare to present PROCEDURE �� T�SUB 
� C�SUB

END TYPE T

CONTAINS

SUBROUTINE C�SUB � X �

REAL� INTENT�IN� �� X

���� Body of procedure

END SUBROUTINE C�SUB

END MODULE M


�
�� Concrete procedure de�ned inside of the type

TYPE �� T

��� � Data components

CONTAINS

SUBROUTINE T�SUB � X �

REAL� INTENT�IN� �� X

���� Body of procedure

END SUBROUTINE A�SUB

END TYPE T


�
�� Concrete type containing incomplete procedure declaration

The purposes proposed here are identical to those proposed in ��	���� Dene a procedure interface

at one point� and the body elsewhere


MODULE M

TYPE �� T

��� � Data components

CONTAINS

SUBROUTINE SUB � X � or SEPARATE SUBROUTINE SUB � X �

REAL� INTENT�IN� �� X REAL� INTENT�IN� �� X

SEPARATE END SUBROUTINE SUB

END TYPE T

CONTAINS

COMPLETING SUBROUTINE SUB � Finishing SUB defined in T

��� � Body of SUB

END SUBROUTINE SUB

END MODULE M



J��������
Page � of �

��	 Procedure interface before CONTAINS and body after CONTAINS

MODULE M

PRIVATE

PUBLIC �� SUB

SUBROUTINE �� SUB � X � or SEPARATE SUBROUTINE SUB � X �

REAL� INTENT�IN� �� X REAL� INTENT�IN� �� X

SEPARATE END SUBROUTINE SUB

� Note to other humans� All of the public procedures of this module

� are written as incomplete procedures above this point� For

� purposes of knowing the interface to this module� there	s no need

� to read beyond this point�

CONTAINS

COMPLETING SUBROUTINE SUB � Finishing SUB defined before CONTAINS

��� � Body of SUB

END SUBROUTINE SUB

END MODULE M


