
J��������
Page � of �

Date� � November ����

To� J�

From� Van Snyder

Subject� Controlled explicit covariance

References� ��	��
� ��	���

� Background

The problem of binary methods is frequently discussed in the object	oriented programming

literature� A binary method is a type	bound procedure that takes two arguments of the type

to which it is bound� and� when inherited� both arguments are expected to change to the new

type�

A simple example that is frequently used is the �	dimensional DISTANCE function� Suppose

the DISTANCE function is bound to a type POINT that has X and Y components� and suppose

DISTANCE has two arguments of type POINT� Suppose a new type COLOR POINT is extended from
POINT by adding a COLOR component� The COLOR component doesnt participate in calcula	

tions of distance between two COLOR POINT objects� so it is possible and reasonable to use the

DISTANCE function bound to the type POINT� rather than to require de�ning a new� identical

one�

The Ada	�� language� and perhaps others� specify that every dummy argument of the type to

which the procedure is bound is expected to change to the extended type when it is inherited�

The present design for object	oriented programming in Fortran speci�es that only the �rst such

argument changes type�

In this case� the Fortran policy is clearly wrong � it doesnt make sense to require converting
a COLOR POINT object to a POINT object before its distance from another COLOR POINT object

can be computed�

In other cases� the Fortran policy is correct� Neither policy is universally applicable� and there

appears to be no automatic way to choose which one to use� if both are allowed�

� Proposal

Allow a speci�cation that dummy arguments and perhaps other objects have the same type

as the argument called the passed�object dummy argument in ��	

�r�� This is the dummy

argument associated with the object in which context the procedure is invoked �the invoking

object��

In ��	��
 Werner Schulz advocated a declaration LIKE�me� �� ARG� where me is the object

with which the invoking object is associated �the passed�object dummy argument in ��	

�r��

the SELF object advocated in ��	��
� and the SELF dummy argument advocated in ��	�����

A LIKE�me� �� ARG declaration could also be used with the current syntax and semantics of
��	

�r��

Suppose we de�ne

REAL FUNCTION DISTANCE � A� B �

� REAL FUNCTION DISTANCE �B� SELF �A� � using notation from ��	




� REAL FUNCTION A � DISTANCE �B� � yet another alternative

TYPE�POINT� �� A� B

���

END FUNCTION DISTANCE



J��������
Page � of �

Then when DISTANCE is inherited into COLOR POINT� the A argument is considered to be of type
COLOR POINT but the B argument remains of type POINT�

Suppose instead we de�ne

REAL FUNCTION DISTANCE � A� B �

� REAL FUNCTION DISTANCE �B� SELF �A� � using notation from ��	




� REAL FUNCTION A � DISTANCE �B� � yet another alternative

TYPE�POINT� �� A

LIKE�A� �� B

���

END FUNCTION DISTANCE

Then when DISTANCE is inherited into COLOR POINT� both the A and B arguments are considered

to be of type COLOR POINT � that is� the A and B arguments are covariant�

The name in parentheses after LIKE is required to be what is called the passed�object dummy

argument in ��	

�r�� the SELF object in ��	��
� or the SELF argument in ��	����

In addition to declaring that dummy arguments are LIKE the SELF argument� it is useful to

declare that function results� dummy function results� dummy procedure SELF arguments� and

dummy procedure dummy arguments are LIKE the SELF argument�

This form of explicit controlled covariance is useful� safe and easy to explain�

If a DISTANCE function were to be inherited into a �	dimensional type� say POINT D� it would

be silly to use it� It would also be silly to use a DISTANCE function that takes a POINT D SELF

argument� and a POINT dummy argument� The most useful form is to take SELF and dummy

arguments of the same type� Therefore� the inherited DISTANCE function can be overridden

with one that takes SELF and dummy arguments both of type POINT D� not one of type POINT

and one of type POINT D�

More precisely� the overriding procedure shall have the same characteristics as the inherited

procedure� after adjusting the type of the SELF argument and any others LIKE it to be of the

extended type�

Without a LIKE�A� �� B declaration� one can simulate the desired e�ect by using a polymorphic

B argument� which may have the undesirable side	e�ect of unnecessary run	time procedure
dispatching if its used as an invoking object� With a LIKE�A� �� B declaration� in the absence

of an exception system� it is important to prohibit polymorphic invoking objects for procdedures

that have a LIKE dummy argument� and polymorphic actual arguments associated with LIKE

dummy arguments� The semantic of LIKE is that the speci�ed object has the same type as the

invoking object� This cannot be veri�ed by a compiler if either the invoking object� or objects

associated with LIKE dummy arguments are polymorphic� Without an exception system� there

is no way to handle the run	time error that ought to result if the invoking object and an object

associated with a LIKE dummy argument have di�erent dynamic types�

Provision for a LIKE�A� �� B declaration in the language standard would not compel its use

in object	oriented programs� It would allow a choice and �exibility that would otherwise be

absent�


