J3/98-223

Page 1 of 2
Date: 4 November 1998
To: J3
From: Van Snyder
Subject: Controlled explicit covariance

References: 98-220, 98-222

1 Background

The problem of binary methods is frequently discussed in the object-oriented programming
literature. A binary method is a type-bound procedure that takes two arguments of the type
to which it is bound, and, when inherited, both arguments are expected to change to the new
type.

A simple example that is frequently used is the 2-dimensional DISTANCE function. Suppose
the DISTANCE function is bound to a type POINT that has X and Y components, and suppose
DISTANCE has two arguments of type POINT. Suppose a new type COLOR_POINT is extended from
POINT by adding a COLOR component. The COLOR component doesn’t participate in calcula-
tions of distance between two COLOR_POINT objects, so it is possible and reasonable to use the
DISTANCE function bound to the type POINT, rather than to require defining a new, identical
one.

The Ada-95 language, and perhaps others, specify that every dummy argument of the type to
which the procedure is bound is expected to change to the extended type when it is inherited.
The present design for object-oriented programming in Fortran specifies that only the first such
argument changes type.

In this case, the Fortran policy is clearly wrong — it doesn’t make sense to require converting
a COLOR_POINT object to a POINT object before its distance from another COLOR_POINT object
can be computed.

In other cases, the Fortran policy is correct. Neither policy is universally applicable, and there
appears to be no automatic way to choose which one to use, if both are allowed.

2 Proposal

Allow a specification that dummy arguments and perhaps other objects have the same type
as the argument called the passed-object dummy argument in 98-007r3. This is the dummy
argument associated with the object in which context the procedure is invoked (the invoking
object).

In 98-220 Werner Schulz advocated a declaration LIKE(me) :: ARG, where me is the object
with which the invoking object is associated (the passed-object dummy argument in 98-007r3,
the SELF object advocated in 98-220, and the SELF dummy argument advocated in 98-222).
A LIKE(me) :: ARG declaration could also be used with the current syntax and semantics of
98-007r3.

Suppose we define

REAL FUNCTION DISTANCE (A, B)
! REAL FUNCTION DISTANCE (B) SELF (A) ! using notation from 98-222
! REAL FUNCTION A % DISTANCE (B) ! yet another alternative
TYPE(POINT) :: A, B

END FUNCTION DISTANCE

J3/98-223
Page 2 of 2

Then when DISTANCE is inherited into COLOR_POINT, the A argument is considered to be of type
COLOR_POINT but the B argument remains of type POINT.

Suppose instead we define

REAL FUNCTION DISTANCE (A, B)
! REAL FUNCTION DISTANCE (B) SELF (A) ! using notation from 98-222
! REAL FUNCTION A % DISTANCE (B) ! yet another alternative
TYPE(POINT) :: A
LIKE(A) :: B

END FUNCTION DISTANCE

Then when DISTANCE is inherited into COLOR_POINT, both the A and B arguments are considered
to be of type COLOR_POINT — that is, the A and B arguments are covariant.

The name in parentheses after LIKE is required to be what is called the passed-object dummy
argument in 98-007r3, the SELF object in 98-220, or the SELF argument in 98-222.

In addition to declaring that dummy arguments are LIKE the SELF argument, it is useful to
declare that function results, dummy function results, dummy procedure SELF arguments, and
dummy procedure dummy arguments are LIKE the SELF argument.

This form of explicit controlled covariance is useful, safe and easy to explain.

If a DISTANCE function were to be inherited into a 3-dimensional type, say POINT_3D, it would
be silly to use it. It would also be silly to use a DISTANCE function that takes a POINT_3D SELF
argument, and a POINT dummy argument. The most useful form is to take SELF and dummy
arguments of the same type. Therefore, the inherited DISTANCE function can be overridden
with one that takes SELF and dummy arguments both of type POINT_3D, not one of type POINT
and one of type POINT_3D.

More precisely, the overriding procedure shall have the same characteristics as the inherited
procedure, after adjusting the type of the SELF argument and any others LIKE it to be of the
extended type.

Without a LIKE(A) :: B declaration, one can simulate the desired effect by using a polymorphic
B argument, which may have the undesirable side-effect of unnecessary run-time procedure
dispatching if it’s used as an invoking object. With a LIKE(A) :: B declaration, in the absence
of an exception system, it is important to prohibit polymorphic invoking objects for procdedures
that have a LIKE dummy argument, and polymorphic actual arguments associated with LIKE
dummy arguments. The semantic of LIKE is that the specified object has the same type as the
invoking object. This cannot be verified by a compiler if either the invoking object, or objects
associated with LIKE dummy arguments are polymorphic. Without an exception system, there
is no way to handle the run-time error that ought to result if the invoking object and an object
associated with a LIKE dummy argument have different dynamic types.

Provision for a LIKE(A) :: B declaration in the language standard would not compel its use

in object-oriented programs. It would allow a choice and flexibility that would otherwise be
absent.

