J3/98-225

Page 1 of 3
Date: 10 November 1998
To: J3
From: Van Snyder
Subject: Specifications and syntax for generic type-bound procedures

References: 97-230r1, 98-136, 98-140, 98-152r1, 98-179r1, 98-007r3

1 Specifications

Allow a specification that a generic identifier (12.3.2.1) is bound to a type. As with specific type
bound procedures, all public generic identifiers are accessible if the type is accessible. None
can be excluded by using USE, ONLY. The specific procedures that implement a generic are not
automatically made accessible by accessing the type.

2 Syntax

A generic type-bound procedure is specified by putting
R437a generic-proc-binding is GENERIC [[, binding-attr] :: | generic-spec =>m
B specific-procedure-name-list
within a type definition. PASS_OBJ shall not be specified if generic-spec is not generic-name.

3 Semantics of genericity and overriding

If a generic-proc-binding is specified in an extended type and it has the same generic-spec as
one inherited from the parent type, then any specific procedures associated with the generic-
spec that correspond in the way specified in 4.5.3.2 (Type-bound procedure overriding) to
specific procedures associated with the inherited generic-spec override the corresponding specific
procedures that are inherited from the parent type. Otherwise, they extend the generic.

In quasi-mathematical notation:

Let D(T, N) be the set of specific procedures Declared in generic procedure bindings having the
generic-spec N within the declaration of T'. Let S(T, N) be the set of Specific procedures asso-
ciated with the generic-spec N and the type T', after accounting for inheritance and overriding.
If T is not an extension type then S(T, N) = D(T, N).

If T is an extension type, then let S(P(T),N) be the set of specific procedures associated
with the generic-spec N inherited into the type T from its parent type P(T). Let O(T,N) C
S(P(T),N) be the set of specific procedures that are Overridden by specific procedures in
D(T, N) according to the criteria specified in 4.5.3.2 (Type-bound procedure overriding). Then
S(T,N)=D(T,N)US(P(T),N)—O(T,N).

See paper 98-171rl for yet another point of view.

The dependence of overriding on the passed-object dummy argument at [53:1-2] means that
overriding doesn’t work when PASS_OBJ is not specified. Therefore overriding doesn’t work
for bindings that don’t specify PASS_OBJ, type-bound operators or assignment. Overriding
should depend on the first dummy argument of the type.

Define a term overriding dummy argument for the first argument of the type, and define
overriding in terms of it, instead of in terms of the passed-object dummy argument.

Note



J3/98-225
Page 2 of 3

In the definition of overriding at [53:1-2], the characteristics of the passed-object dummy
argument are exempt from being the same for the overriding and overridden procedure. Except
for the type, the characteristics should be the same.

If N is the binding-name of a proc-binding within T' then S(T', N) is the specified or implied
binding.
If N is a defined operator or assignment, define 3(N) = Uy S(T, N).

The procedures that are elements of S(7, N) or ¥(N) shall be distinguishable by using the
rules specified in 14.1.2.3 (Unambiguous generic procedure references).

If the definition of unambiguous generic procedure references (14.1.2.3) is not changed, then
generic type-bound operators or assignments are essentially worthless for extensible types.
Consider types T', U an extension of T', V and W not an extension of V. Consider four type-
bound operators or assignments with the same generic identifier X, and identify the specific
procedures by their dummy argument types. Group the procedures according to the type of
their overriding dummy argument, say X7 = {(T,V), (T, W)} and Xy = {(U,V), (U,W)}. If
neither V nor T is an extension of the other, then Xy should be considered to be a separate
generic set that overrides X7; Xy U X7 should not be considered to be a single generic. It
should be required that generic resolution be unambiguous within Xy and separately within
X7. Within Xy U X7 it is ambiguous.

If W is an extension of V then Xy U Xp must be considered as a whole, and is there-
fore ambiguous. Otherwise the procedures could be grouped as Xy = {(7,V), (U,V)} and
Xw = {(T,W),(U,W)}, and dispatching (see below) could yield different results depending
on whether the first or second argument is used for the dispatching argument.

4 Semantics of dispatch

The explanation of dispatching at [238:20-21] is inadequate. Define the dispatching object to
be the data-ref if the procedure is invoked using one, or the actual argument associated with
the overriding dummy argument if the procedure is invoked using a type-bound operator or
defined assignment.

At a reference to a type-bound procedure, let T' be the declared type of the dispatching object,
and N be the generic identifier or binding name by which the procedure is invoked. If the
procedure is invoked using a data-ref and PASS_OBJ is not specified, then the data-ref is
not associated with a dummy argument. Using all the actual arguments that are associated
with dummy arguments, select a specific procedure P from S(7, N) in the usual way of doing
generic resolution. A procedure P’ is selected from S(T”, N), where T" is the dynamic type of
the dispatching object, and P’ is either P itself, or a procedure that overrides P (directly or
indirectly).

Referring to the matrix representation of generic type-bound procedures introduced in paper
98-171r1, a row is selected by T. This row represents S(7, N). Within that row, a column
C is selected according to the usual rules for generic resolution. Within that column, again
considering the entire array, a new row is selected using 7”. This row represents S(7", N). P’
is the element at position (77, C') within this array.

The procedure P’ is invoked.

In the discussion in the previous section, if U is an extension of 7' and W is an extension
of V', and the type-bound operator or defined assignment is invoked with two polymorphic
arguments, then there are two dispatching objects, and the result of dispatching, P’, could

Note

Note



J3/98-225
Page 3 of 3

be different depending on which one is used for dispatching and which one is used for generic
resolution.

The combination of dispatch and argument association has bizarre semantics if it is allowed
that the data-ref is not associated with a dummy argument: It may be possible to dispatch
to a procedure that has no arguments of the type of data-ref, or any of its ancestor types.

I propose that the PASS_OBJ be eliminated from procedure bindings within derived types,
and the passed-object dummy argument specification be moved to the procedure header (see
98-222). Then the dispatching object is always associated with a dummy argument.

5 This proposal is incomplete

This proposal does not include consideration of KIND type parameters of the dispatching object.
In terms of the matrix representation of generic type-bound procedures introduced in paper 98-
171r1, a row should probably be selected using the type T' and its kind type parameters. The
definitions of an unambiguous generic collection need work. The sets D(T, N), S(T, N) and
O(T, N) above should be parameterized in terms of the kind type parameters of T', in addition
to T itself.

Note



