
11/17/98 1 of 3

J3/98-238r2

To: J3
From: interop
Subject: Enumeration types
Date: November 13, 1998
References: 98-165r1, 98-171r1, 98-194r1

The specifications were adopted in the february 1998 meeting. The syntax was adopted in the
november 1998 meeting. The edits are in the form of a J3 note.

1. Specifications

It is in the context of interoperability of Fortran and C that a correspondance for the enums
allowed in C is needed in Fortran. The facility in Fortran shall be used to pass C enum values
in the variable list of a C function, both from C into Fortran and from Fortran into C. The C
enum facility is described in the C9X committee draft, section 6.7.2.2. This facility will also
be available as a alternative method of specifying integer named constants.

2. Syntax

To declare enumeration types and their literals, the ENUM statement is introduced:

enum-def-stmt is ENUM, BIND(C) :: enum-def-list
or ENUM [kind-selector] [::] enum-def-list

enum-def is type-alias-name (enumerator-list)

enumerator is named-constant [= scalar-int-initialization-expr]

The type-alias-name is used as type name in the definition of an enumeration type. It defines a
type alias for an integer type with a kind type parameter as specified below.

The named-constants in the enumerator-list are declared of type integer. The kind of integer
used to represent the named-constant and the integer type of type-alias-name shall be one of
the following:

• If BIND(C) is specified, then the kind is selected for the named-constants by the proces-
sor, and will be of a kind that interoperates with the C integer type that the target C proces-
sor would use to represent an enum type containing the same values. The integer type of
type-alias-name shall have the same kind type parameter.

• If kind-selector is specified, then the kind type parameter specified in the kind-selector is
used to represent the named-constant and the integer type of type-alias-name.

• If neither BIND(C), nor kind-selector is specified, then the kind is selected for the named-
constants by the processor. A kind, c.q. representation method will be chosen, such that the
largest scalar-int-initialization-expr fits in it.

An enumerator with = defines an integer constant as the value of the corresponding named

11/17/98 2 of 3

constant. If the first enumerator has no =, then the value of its named constant is 0. Each sub-
sequent enumerator with no = defines its named constant as the value of the constant expres-
sion obtained by adding 1 to the value of the previous named constant.

The use of enumerators with = may produce named constants with values that duplicate other
values in the same enumeration.

3. Edits

All references are to J3/98-007r3.

• After [10:12], add to R207:
or enum-def-stmt

• After the following subsection before [56:14], and renumber subsequent subsections.

4.6 Enumerators

begin J3 note

Enumerators provide a method of defining integer named constants. It is possible to pass C
enum values in the argument list of a C function, both from C into Fortran and from Fortran
into C.

R4xx enum-def-stmt is ENUM, BIND(C) :: enum-def-list
or ENUM [kind-selector] [::] enum-def-list

R4xx enum-def is type-alias-name (enumerator-list)

R4xx enumerator is named-constant [= scalar-int-initialization-expr]

The type-alias-name is used as type name in the definition of an enumeration type. It defines a
type alias for an integer type with a kind type parameter as specified below.

The named-constants in the enumerator-list are declared of type integer. The kind of integer
used to represent the named-constant and the integer type of type-alias-name shall be one of
the following:

• If BIND(C) is specified, then the kind is selected for the named-constants by the proces-
sor, and shall be of a kind that interoperates with the C integer type that the target C proc-
essor would use to represent an enum type containing the same values. The integer type of
type-alias-name shall have the same kind type parameter.

• If kind-selector is specified, then the kind type parameter specified in the kind-selector is
used to represent the named-constant and the integer type of type-alias-name.

• If neither BIND(C), nor kind-selector is specified, then the kind is selected for the named-
constants by the processor. A kind, c.q. representation method will be chosen, such that the
largest scalar-int-initialization-expr fits in it.

An enumerator with = defines an integer constant as the value of the corresponding named
constant. If the first enumerator has no =, then the value of its named constant is 0. Each sub-

11/17/98 3 of 3

sequent enumerator with no = defines its named constant as the value of the constant expres-
sion obtained by adding 1 to the value of the previous named constant.

begin note
The use of enumerators with = may produce named constants with values that duplicate other
values in the same enumeration.
end note

end J3 note

4. Example

Fortran main:

program main
use iso_c_types
implicit none
integer (c_int) :: l
enum, bind(c) :: xen(red=1, green, blue=30)
type(xen) :: color
interface block

bind(c, name=’Csub’) subroutine c_sub(l, color)
use iso_c_types
integer(c_int) :: l
enum, bind(c) :: xen(red=1, green, blue=30)
type (xen) :: color
end subroutine c_sub

end interface
.
.
call c_sub(l, color)
if (color.eq.red) <do something>
if (color.eq.green) <do something else>
.
.

end program main

C sub:

enum couleur {red=1, green, blue=30};
void Csub(l, couleur)
int l;
{
.
.
}

