
J��������r	
Page � of �

Date� � March ����
To� J�
From� Van Snyder
Subject� Unresolved issues ��	 �
	 �����	 ��	 ��	 and �� concerning explicitly typed allocations
References� ���
�r


Except for changes to address unresolved item �
	 the reason for each change is indicated in the
margin	 along with the position to which an edit applies �the great majority of changes apply
to item �
��

The decision for each unresolved issue was�

�� Noticed that some of it is already covered elsewhere� Fixed the rest as a by�product of
plugging a hole noted below �deferred parameters of function result types��

�
 Grepped for all the instances of �allocate� �as I should have before writing ���
��� Added
another �ALLOCATED� intrinsic with an argument named SCALAR that applies to
scalars�

�� The requirement to allow allocatable and pointer arrays not to have deferred shape is spec

changewithdrawn because it introduces undesirable opportunities to get run�time errors that are
not compile�time checkable�

�� Introduced three constraints to specify what�s compile� time checkable	 and speci�ed what
is required to be run�time checked	 and which if it fails thereby causes an error status to
be returned�

�� It is necessary to specify all of the type parameters in an ALLOCATE statement if any spec
changeare speci�ed� It�s necessary to specify them if any are deferred in the declaration�

�� Clari�ed the wording� Doing so required thinking about functions results that have de�
ferred type parameters� This is mentioned in the next paragraph�

�� Clari�ed the wording� The result is that if a dummy argument has deferred type param�
eters	 the corresponding actual argument shall have deferred the same type parameters	
and that the non�deferred type parameters of actual and dummy arguments shall have
the same values�

�� Did what the editor suggested�

Two holes are plugged�

� The behavior of function result types that have deferred parameters is de�ned�

� The behavior of assumed type parameters during allocation is de�ned�

� Edits

Edits refer to ����� Page and line numbers are displayed in the margin� Absent other
instructions	 a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text	 while a page and line number followed by �



J��������r	
Page 
 of �

indicates that immediately following text is to be inserted after the indicated line� Remarks for
the editor are noted in the margin	 or appear between � and � in the text�

�Editor� In the same paragraph�� New in Fortran 
 is the ability to declare that structure xvi�
��
components and objects that are not arrays have the ALLOCATABLE attribute� they therefore
are automatically deallocated under the same conditions as allocatable arrays were automati�
cally deallocated in Fortran ��� Also new in Fortran 
 is the capability to specify nonkind
type parameters	 and the speci�c types of polymorphic objects	 during allocation�

�Editor� Delete from �A deferred� to the end of the text of unresolved issue ��� The sentence ������ ��
on �����
 is moved to ������ Add the following��

If a colon is speci�ed for the type�param�value of a nonkind type parameter	 the type parameter
is a deferred type parameter� The value of a deferred type parameter of an object may be
speci�ed when the object is allocated �������	 assumed from an actual argument when the
object is a dummy argument associated with an actual argument	 or assumed from a target

during execution of a pointer assignment statement �����
� in which the object appears as a
pointer�object�

�Editor� Replace �a pointer or allocatable array� by �allocatable or a pointer�� ���
�

�Editor� Replace �allocatable arrays or pointers� by �allocatable or pointers�� �����

�Editor� Delete �an� and �array�� �����

�Editor� Delete �arrays� twice� ����	�

Constraint� If an asterisk is used as a type�param�value in the declaration of an entity	 it shall ���
��
�
be a dummy argument�

Constraint� If a colon is used as a type�param�value in the declaration of an entity or component	
it shall have the ALLOCATABLE or POINTER attribute�

Constraint� When a type�param�value appears other than within an ALLOCATE statement	
the scalar�int�expr shall be a speci�cation�expr�

�Editor� Delete �an� and �array�� �����

�Editor� Replace �array� by �entity�� ���


�Editor� Replace �shall evaluate to array� by �an entity of the same rank�� ���
�

�Editor� Replace �array� by �entity� twice��� ���
�	
�

�Editor� Replace �shape� by �bounds� twice�� ���
�	
�

�Editor� Delete �array��� ���
�

�Editor� Replace �an allocatable array� by �allocatable�� ���
�

�Editor� Delete �if you agree this paper �xes issue �
��� �������

�Editor� Replace �array� by �variable�� �����

�Editor� Replace �an allocatable array� by �allocatable�� ��������

�Editor� Replace �array� by �variable�� �����

�Editor� Delete �an� and �array�� ����


�Editor� Delete �an� and �array�� �����

Constraint� When a type�value appears other than within an ALLOCATE statement	 the �����
scalar�int�expr shall be a speci�cation expression�



J��������r	
Page � of �

�Editor� Insert into the list�� ���
�

���
�
� It may be used in an ALLOCATE statement to denote the assumed length of a dummy
argument�

Constraint� If a proc�entity is an external function	 proc�interface is present	 and the result type ���
� ��	
deferred
parms of
function
results

is not character� the type parameters of the result type shall be deferred or speci�ed
by initialization expressions� If the result type is character� the length parameter shall be

deferred� speci�ed by an initialization expression� or an asterisk�

�Editor� Delete unresolved issue ��� The �rst paragraph is covered by 
��������	 which applies
������
� ��	
deferred
parms of
function
results

to abstract interfaces	 and the second is �xed below �I hope�� I couldn�t �nd where there is a
de�nition for what is meant by �the procedure�s characteristics shall be consistent with those
speci�ed in the procedure de�nition� at 
��������	 but when I do �nd it I presume there will
be work to be done there to account for deferred parameters��

If proc�interface is present and consists of abstract�interface�name	 it speci�es an explicit speci�c ������ ��	
deferred
parms of
function
results

interface ��
���
��� for the declared procedures or procedure pointers�

If proc�interface is present and consists of declaration�type�spec	 it speci�es that the declared
procedures or procedure pointers are functions having implicit interface and the speci�ed result
type� If a type is speci�ed for an external function	 its function de�nition ��
���
��� shall specify
the same result type and type parameters�

If proc�interface is absent	 the procedure declaration statement does not specify whether the
declared procedures or procedure pointers are subroutines or functions�

Deferred parameters of function result types have no values� they simply indicate that those
parameters of the function result will be determined by the function	 when it is invoked�

�Editor� Change �array� to �variable�� ����

�Editor� Remove �array as an�� �����

�Editor� Change �array� to �variable�� �����

�Editor� Remove �an� and �array�� ����


�Editor� Change �array� to �variable�� ����

�Remove �array as an�� ���


�Change �array� to �variable�� ����

�Change �an allocatable array� to �allocatable�� ���


�Change �arrays� to �variables�� ���
�

A deferred type parameter of a disassociated pointer	 a function procedure pointer	 an unallo� ����� ��
cated variable	 or a pointer with unde�ned association status shall not be referenced�

�Change �arrays� to �variables� twice�� ����
	��

�Editor� Delete � covered by ���
��
��� ��������
��Constraint� If an allocate�object has a deferred type parameter	 type�spec shall appear�
������ ��

Constraint� A type�param�value in the type�spec shall not be a colon�
Constraint� The type�param�value shall be asterisk if and only if each allocate�object is a dumy

argument for which the corresponding type parameter is assumed�

�Editor� Delete �if you agree this paper �xes lines ������ of issue ��� lines ��� are updated ������ ��



J��������r	
Page � of �

and moved downward���

When an ALLOCATE statement having a type�spec is executed	 type parameters are speci�ed �������
�� ��by type�param�values in the type�spec in the ALLOCATE statement� If the value speci�ed for

a nondeferred type parameter is not the same as the value speci�ed in the object�s declaration	
an error condition occurs�

If a type�param�value in a type�spec in an ALLOCATE statement is an asterisk it denotes the
current value of that assumed type parameter�

For derived types	 values are assigned to type parameters as speci�ed in ������ For intrinsic
types	 values are assigned to type parameters	 with the correspondence determined by position
or by name as de�ned in ����

�Editor� Replace �array� by �entity�� �����

�Editor� Replace �array� by �variable� every time it appears in this range �and replace �an� ��������
by �a� as necessary�� Yes	 I checked them all��

�Editor� Replace �array� by �variable� twice�� �����	��

�Editor� Replace �array� by �variable� every place it appears in this range �and replace �an� ������
�����by �a� as necessary�� Yes	 I checked them all��

�Editor� Replace �an allocatable array� by �allocatable� the �rst two times	 remove the last ��������
�array���

�Editor� Replace �allocated allocatable arrays� by �allocatable and currently allocated�� �����

�Editor� Replace �an array� by �a variable�� ���



�Editor� Replace �array� by �entity�� �����

�Editor� Remove �array��� ������

�Editor� Replace �array� by �entity�� �����


�Editor� Remove the word �array� twice�� ���������

�Editor� Remove the word �array�� ������

Constraint� If the pointer�object is a function procedure pointer	 the pointer�object and target ������ ��
shall have deferred corresponding type parameters�

�Editor� Delete� It�s covered by the constraint at ���������� ���
��
�
��If pointer�object is a data object or function procedure pointer	 all nondeferred type parame�
���������
��

ters of pointer�object shall have the same values as corresponding type parameters of target� If
pointer�object is a data object that has deferred type parameters	 the values of those param�
eters are assumed from the values of corresponding parameters of target� The corresponding
parameters of target can be deferred	 assumed	 or explicitly declared�

Deferred parameters of function procedure pointers have no values� instead	 they indicate
that those parameters of the function result will be determined by the function	 when it is
invoked� Remember that any entity with deferred type parameters	 including a function result	
is required to have the ALLOCATABLE or POINTER attribute�

Note �����
�



J��������r	
Page � of �

Remove unresolved issue ��� There is no constraint that all of the type parameters agree	 only
that all kind type parameters agree� kind type parameters cannot be deferred� The paragraph
at ������� �� does discuss dynamic type parameters	 by saying that values of deferred type
parameters of pointer�object are assumed by target�
Verifying that the values of nondeferred nonkind type parameters of pointer�object are the
same as corresponding parameters of target requires a run�time check	 regardless whether
nondeferred parameters of pointer�object correspond to deferred or nondeferred parameters of
target� The most obvious case is when they�re both assumed� If the check fails there�s no way
to catch it� This is in the same category as array bounds checking� A subscript out�of�bounds
is an indication that the program is not standard�conforming� so is a mismatch of pointer�
object and target type parameters� I know lots of people want to use square brackets for array
constructors	 but I have another suggestion	 at least within pointer assignment statements� Let
me put �STAT�variable and�or ERRMSG�default�char�variable� at the end of the statement	
so that I can catch mismatched type parameters�

J� note �not
an edit�

�Editor� Replace �an allocatable array� by �allocatable�� ������

�Editor� Remove the word �array�� ������

�Editor� Replace �an allocatable array� by �allocatable�� 
�����

�Editor� Replace �a pointer or an allocatable array� by �allocatable or a pointer� twice�� 
���
��
�

�b� A dummy argument that is allocatable	 an assumed shape array	 a pointer	 or a target	 
���
��
�
�
 ��

The constraint at line 
� is not needed	 because of the constraint at ���
��
�� FYI

Except for the case of the character length parameter of an actual argument of type default 
���
����
��character associated with a dummy argument that is not assumed shape	 the type parameters

of an actual argument that correspond to nondeferred nonassumed type parameters of the
associated dummy argument shall have the same values as corresponding type parameters of
the associated dummy argument�

In the most generally allowed case	 verifying that the value of a nondeferred nonassumed type
parameter of a dummy argument is the same as the corresponding type parameter of the
associated actual argument requires a run�time check� If the check fails	 there�s no way to
trap it� This is in the same category as array bounds checking� A subscript out�of�bounds is
an indication that the program is not standard�conforming� so is a mismatch of actual and
dummy argument type parameters�
Should this remark be in appendix C	 or is it enough just to have it transiently for ourselves�

J� note �not
an edit�

If a dummy argument that does not have INTENT�OUT� has deferred or assumed type param�
eters	 the initial values of those parameters are assumed from the values of the corresponding
type parameters of the associated actual argument�

If the dummy argument that does not have INTENT�IN� has deferred type parameters �and is
therefore allocatable or a pointer�	 it may be re�allocated using type parameter values di�erent
from the original deferred parameter values of the associated actual argument� If it is a pointer	
it may acquire type parameter values di�erent from the original deferred parameter values of
the associated actual argument by pointer assignment�

Note �
����
�

An actual argument associated with a dummy argument that is allocatable or a pointer shall
have deferred the same type parameters as the dummy argument�

�Editor� Delete� 
��������
��



J��������r	
Page � of �

The edits at 
���
���� make it clear that deferred parameters can be changed if the dummy
argument doesn�t have INTENT�IN�� The intent is that actual and dummy arguments shall
have deferred the same type parameters � even in the INTENT�IN� case� If you really want
to use deferred parameters just to get at the values of the actual argument�s parameters	
you should use assumed parameters instead� This is not precisely symmetrical to the case
of pointer assignment because when you do a pointer assignment	 and then later re�allocate
either the pointer object or the target	 the other one isn�t a�ected� This is not true in the
case of actual and dummy arguments � if you re�allocate the dummy argument	 the associated
actual argument gets reallocated	 so it better have deferred at least all of the deferred param�
eters of the dummy argument� Specifying concrete values for parameters of the dummy that
correspond to deferred parameters of the actual is just an opportunity for them to disagree�
If you want to enforce a speci�c value for a parameter of the dummy that corresponds to a
deferred parameter of the actual	 defer the dummy�s parameter	 and check its value explicitly�
If you want to set a deferred parameter of the actual argument to a speci�c value during
allocation	 defer the corresponding parameter of the dummy and put the desired value in the
allocate statement	 not the type declaration for the dummy argument�
Should this remark be in appendix C	 or is it enough just to have it transiently for ourselves�

J� note �not
an edit�

�Editor� Replace �an allocatable array� by �allocatable� twice�� 
�����

�Editor� Remove the �rst sentence�� 
����
���

�Editor� Add a new section� 
������
��
� Allocation status inquiry functions

The inquiry function ALLOCATED tests whether an allocatable variable is currently allocated�

�Editor� Delete this line� Moved to 
������� 
�
���

�Editor� Add a new section� 
�����
��
�	
	� Allocation status inquiry functions

ALLOCATED � ARRAY � Array allocation status
ALLOCATED � SCALAR � Scalar variable allocation status

�Editor� Add a new section� 
������
��
��
�� ALLOCATED � SCALAR 

Description
 Indicate whether or not an allocatable scalar is allocated�

Class
 Inquiry function�

Argument
 SCALAR shall be an allocatable scalar�

Result Characteristics
 Default logical scalar�

Result Value
 The result has the value true if SCALAR is currently allocated and has the
value false if SCALAR is not currently allocated�

�Editor� Replace �or ��� allocated� by �� If it is allocatable it shall be currently allocated��� �����

�Editor� Add the sentence �If it is an unallocated allocatable variable	 it shall not have deferred �����
length���

�Editor� Replace �array� by �object�� ������

�Editor� Remove the �rst �array� and replace the second one by �object�� ����
�

�Editor� Replace �array� by �entity�� �
���


��� An object�name in an allocate�stmt � ������



J��������r	
Page � of �

���
�
� An array�name in a dimension�stmt �

�Editor� Replace �array� by �entity�� �����

allocatable variable ��
�
	
�
�� A variable having the ALLOCATABLE attribute� It may �����
���
be referenced or de�ned only when it has space allocated� If it is an array	 it has a shape only
when it has space allocated� It may be a named variable or a structure component�

�Editor� Replace �array� by �variable�� ������

�Editor� Replace �a pointer or allocatable array� by �allocatable or a pointer�� �����

C
��
�
� Automatic arrays and allocatable variables ��
�� �
�
	
�
� �������

A major advance for writing modular software is the presence of automatic arrays	 created
on entry to a subprogram and destroyed on return	 and allocatable variables	 including arrays
whose rank is �xed but whose actual size and lifetime is fully under the programmer�s control
through explicit ALLOCATE and DEALLOCATE statements� The declarations

SUBROUTINE X �N� A� B�

���

REAL WORK �N� N�� REAL� ALLOCATABLE �� HEAP ��� ��

specify an automatic array WORK and an allocatable array HEAP� Note that a stack is an
adequate storage mechanism for the implementation of automatic arrays	 but a heap will be
needed for allocatable variables�


