
J3 99-116r1 1/2

To: X3J3
From: /interop
Subject: Edits for ENUMs

Add type alias, enumerations, and procedure declarations to table 2.1, "Requirements on
statement ordering".
 Page 13, table 2.1 add to the block starting on line 38 with the words "Derived-type
definitions:
 "type alias definitions,
 enumeration declarations,
 procedure declarations,"

Add type alias definitions, enumeration definitions, and procedure definition to table 2.2,
"Statements allowed in scoping units".
Page 14, line 30 after "statement, " add
 " type alias statements, enum statements, procedure declaration statements, "

Replace section 4.7
Delete page 56 line 20 through page 57 line 30 and replace with:
"4.7 Enumerations and enumerators

An enumeration is a type alias name for an integer type. An enumerator is a named
integer constant. An enumeration definition specifies a set of enumerators associated
with the type alias name of the enumeration. Enumerations and enumerators may
interoperate (16.2) with the enumeration types and enumerators of the companion
processor (2.5.10).

 R453 enum-def-stmt is ENUM, BIND(C) :: enum-def-list
 or ENUM [kind-selector] [::] enum-def-list

 R454 enum-def is type-alias-name (enumerator-list)

 R455 enumerator is named-constant [= scalar-int-initialization-expr]

The enumeration is treated as if it were explicitly declared in a type alias statement as a
type alias for an integer whose kind parameter is determined as follows:

(1) If BIND(C) is present, the type kind is that which interoperates with the companion
 processor's integer type which the companion processor uses to represent the
 enumeration type containing the same values.

 (2) If kind-selector is specified, the kind of the enumeration and the enumerators is the
 kind type specified by the kind-selector.

 (3) If neither BIND(C) nor kind-selector is specified, the kind type of the enumeration

J3 99-116r1 2/2

 is processor dependent. The value of the kind type chosen by the processor shall
 characterize a representation method that can represent the values of all the
 enumerators in enumerator-list.

An enumerators is treated as if explicitly declared with type type-alias-name and the
PARAMETER attribute. The enumerator is defined in accordance with the rules of
intrinsic assignment (7.5.1.4) with the value determined as follows:

(1) If scalar-int-initialization-expr is present, the value of the enumerator is the result
of scalar-int-initialization-expr.

(2) If scalar-int-initialization-expr is not present and the enumerator is the first
enumerator in enumerator-list the enumerator has the value 0.

(3) If scalar-int-initialization-expr is not present and the enumerator is not the first
enumerator in enumerator-list, it has the value of the constant expression formed by
adding 1 to the value of the enumerator which immediately precedes it in
enumerator-list.

 NOTE 4.51
 The declarations

 ENUM (SELECTED_INT_KIND(1)) :: DIGITS (ZERO, ONE, TWO)
 ENUM :: PRIMARY_COLORS (RED=4, BLUE=9, YELLOW)
 TYPE (DIGITS) :: X

 are equivalent to the declarations

 TYPEALIAS :: DIGITS => INTEGER (SELECTED_INT_KIND(1))
 TYPE (DIGITS), PARAMETER :: ZERO = 0, ONE = 1, TWO =2
 TYPE (DIGITS) :: X

 ! Note that the kind type parameter for PRIMARY_COLORS is processor dependent, but
 ! the processor must select a kind type sufficient to represent the value of YELLOW, the
 ! enumerator whose value (10) is the largest of all enumerators associated with
 ! PRIMARY_COLORS. The following declaration is one possibility for PRIMARY_COLORS.
 TYPEALIAS :: PRIMARY_COLORS => INTEGER (SELECTED_INT_KIND(2))
 TYPE (PRIMARY_COLORS), PARAMETER :: RED = 4, BLUE = 9, YELLOW = 10 "

