Page 1of 3

Subject: Concerning deferred type parameters, including issues 78, 79, 134,
138, 140, 141

From: Van Snyder

1 Edits

Edits refer to 99-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by —+
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

1.1 Problems not addressed by editor’s issues

The deferred parameters of the result of NULL() are undefined.

Is this needed if item 3 of the proposed new section 14.8 advocated to address item 134 below
is accepted?

Replace “with the same shape.” by “. If it is an array, it is allocated with the same bounds.
If it has deferred type parameters, the values of type parameters of the component of expr are
used for the values of corresponding parameters of the component of variable.”

If type parameters of a function result are deferred, which parameters are deferred is a charac-
teristic.

At the invocation of the procedure, a dummy procedure pointer becomes disassociated if it has
INTENT(OUT). If it does not have INTENT(OUT) then it receives the pointer association
status of the actual argument and, if the actual argument is currently associated, the dummy
procedure pointer becomes associated with the same target.

This would not be needed if dummy procedure pointers were considered to be dummy data
objects, not dummy procedures.

(7) If it has type parameters, they shall not be the subject of parameter inquiry.

1.2 Issues 78 and 141

Constraint: If pointer-object is a data object, all deferred or assumed parameters of target shall
correspond to deferred parameters of pointer-object.

Otherwise, a run-time check is required to make sure the nondeferred parameter value of
pointer-object is the same as the deferred or assumed parameter value of target.

[Editor, replace starting with “If pointer-object”.]

The definition status of each deferred parameter of pointer-object is assumed from the definition
status of the corresponding parameter of target. If parameters of target that correspond to
deferred parameters of pointer-object are defined, their values are assumed by corresponding
parameters of pointer-object.

[Editor: delete through “related” .]

138:15+

Question to

J3
157:42

266:294

279:324

Note to J3

281:13+4

159:33+

Note to J3

160:12-15

160:18-24

Page 20f 3

[Editor: delete.]

1.3 Issue 79

[Editor: Change the period that ends the sentence to a colon and replace “That is...” by the
following:]

o If the actual argument is a pointer, a reference to the associated dummy data object or
dummy function procedure pointer may occur if the actual argument pointer is associated
with a target.

o If the actual argument is allocatable, a reference to the associated dummy data object
may occur if the actual argument is allocated.

o A reference to the dummy data object may occur if the associated actual argument is

defined.

e Inquiry about a type parameter of the dummy data object may occur if the corresponding
type parameter of the associated actual argument is defined.

e The dummy data object, its pointer association status and deferred type parameters, or
allocation status and deferred type parameters may be changed if the associated actual
argument is definable.

[Editor: delete.]
[Editor: delete.]
[Editor: Add the following after “target.”:]

Deferred or assumed type parameters of the dummy argument become associated with corre-
sponding type parameters of the actual argument.

1.4 Issue 134

A deferred type parameter is a nonkind type parameter for which an expression to calculate
a value is not specified in the declaration of an object. A type parameter is indicated to be
deferred by using a colon in a type declaration statement or a component definition statement.

Values of deferred type parameters of an object become defined or undefined as specified in
14.8.

[Editor: delete. Was in the wrong place, anyway.]

[Editor: delete.]

[Editor: Add a new section 14.8:]

14.8 Definition and undefinition of deferred type parameters

A deferred type parameter of an object may be defined or may be undefined and its definition
status may change during execution of a program. An action that causes a deferred type

parameter to become undefined does not imply that it was previously defined. An action that
causes a deferred type parameter to become defined does not imply that it was previously

undefined.
The definition status of deferred type parameters is changed by the following events:

160:32:48

78:34-36

276:39-41
277:1-16
27737

32:34+

32:41-33:19
33:8-19
379:114

Page 3of3

Successful execution of an ALLOCATE statement or allocation of an allocatable compo-
nent during intrinsic assignment (7.5.1.5) causes deferred type parameters of the allocated
object to become defined.

Execution of a pointer assignment statement causes the values of deferred parameters of
pointer-object and its ultimate components to assume the definition status of correspond-
ing parameters of target and its ultimate components. This includes pointer assignments
that result from intrinsic assignment of objects of derived type that have components
with the POINTER attribute.

. Events that cause a pointer to become undefined (14.6.2.1.3) or to become disassociated

(14.6.2.1.2) except by deallocation cause the deferred type parameters of the pointer to
become undefined.

Deallocating (6.4.3) a pointer or an allocatable object causes the deferred type parameters
of the object and its subobjects to become undefined. This includes deallocation of an
allocatable component of a derived type object during intrinsic assignment (7.5.1.5).

Reference to a procedure causes the deferred type parameters of dummy arguments that
do not have INTENT(OUT), and their subobjects, to assume the same definition status as
corresponding type parameters of corresponding actual arguments and their subobjects.

Any change in the definition status of deferred type parameters of an object causes the
same change in the corresponding deferred type parameters of an associated object of the
same type.

If the change suggested for VALULE in 99-133 is accepted, add “other than a dummy arugment
that has the VALUE attribute” after the first "object” in the last item above.

1.5

Issue 138

[Editor: delete — covered by solution to issue 140.]

1.6

Issue 140

Note to J3

88:1-25

A deferred type parameter of a disassociated pointer, of a function procedure pointer, of a 108:22-23

pointer with undefined association status, or of an unallocated variable shall not be the subject

of a type parameter inquiry.

[Editor: delete.]

108:24-33

