
6/23/99 1 of 4

J3/99-155

Date: 1999/06/10
To: J3
From: interop
Subject: Resolution of unresolved issues 147, 150, 152, 156, 158
References: J3/98-165r1, J3/98-195r1, J3/98-196r2, J3/98-239

Edits refer to J3/99-007R1

1. [10:36] Add to R214
or bind-stmt

2. [69:40] Add to R504
or BIND(C [, BINDNAME = scalar-char-initialization-expr])

3. [70:9-11] Delete J3 note 147

4. [72:4] Add constraints

Constraint: If a BIND(C) attribute is specified, the variable shall be declared in the
specification part of a module.

Constraint: A function-name may not be given the BIND(C) attribute in a
type-declaration-stmt

5. [85:43] Add new paragraph and note and renumber following notes.

5.1.2.15 BIND attribute

The BIND attribute specifies that the variable interoperates with a C variable with external
linkage. Only one variable that is associated with a particular C variable with external linkage
is permitted to be declared within a program.

NOTE 5.22

The BINDNAME= bind-spec is meant to allow the user to specify a companion processor
name that is not valid a Fortran name, and provides a mechanism through which the processor
can distinguish between upper and lower case. The name is a (potentially) mangled name,
rather than the name that is actually specified in the companion processor code.

END NOTE 5.22

6/23/99 2 of 4

6. Add after [93:11] and renumber following sections and syntax rules

5.3.13 BIND statement

R539 bind-stmt is BIND(C [, BINDNAME= n
n scalar-char-initialization-expr) [::] bind-entity-list

R540 bind-entity is object-name
or / common-block-name /

The BIND statement specifies the BIND attribute (5.1.2.15) for all objects named in the bind
entity list. Only one variable that is associated with a particular C variable with external link-
age is permitted to be declared within a program.

NOTE 5.33

It is not allowed to have two or more variables equivalenced through the use of several
BIND(C) statement. For example the following is not allowed:

BIND (C, BINDNAME = ‘_alpha_’) alpha
BIND (C, BINDNAME = ‘_alpha_’) beta

END NOTE 5.33

7. [285:14] Change constraint to:

Constraint: A NAME= bind-spec or BINDNAME= bind-spec shall not be specified in the
function-stmt or subroutine-stmt of an abstract interface body (12.3.2.1) or an
interface body for a dummy procedure.

8. [285:16-20] Delete J3 note 150

9. [285:32] Change “specfied” to “specified”

10. [285:33-37] Delete J3 note 152

11. [290:17] Add the following sentence:

At most one NAME= specifier is permitted to appear in a bind-spec-list.

An additional BINDNAME= specifier may also appear, followed by a scalar default initializa-
tion expression of type default character. More than one BINDNAME= specifier may appear
in a bind-spec-list for a subprogram, but not in a bind-spec-list for a function-stmt or subrou-
tine-stmt in an interface body. The value of the BINDNAME= specifier shall be the name by
which a procedure defined by Fortran may be referenced from C.

Any leading and trailing blanks in the value of a NAME= specifier are ignored. The value of
the NAME= specifier in the bind-spec-list for a function-stmt or subroutine-stmt in an inter-
face body must correspond to some C function with the same name.

6/23/99 3 of 4

12. [291:24-34] Delete J3 note 156

13. [291:35-44] Replace Note 12.36 by

NOTE 12.36

The intent here is that NAME= allows the user to specify C names that are not valid Fortran
names, and provides a mechanism through which the processor can distinguish between upper
and lower case.

A processor shall give a unique label, often referred to as a binder name, to each external pro-
cedure in a program. The label is derived in some way from the name of the external proce-
dure and need not be the same as the binding label.

A processor may permit a procedure defined by means of Fortran to be known by more than
one binder name if it needs to be referenced from more than one companion processor, each
with a different way of transforming an external name to a binder name.

The value of the BINDNAME= specifier is intended to specify one or more alternative names
by which a procedure defined by Fortran may be referenced from C, when a user wants to
build a library that supports multiple C processors at once. The name is a (potentially) man-
gled name, rather than the name that is actually specified in the C code.

This is not the only possible meaning of the BINDNAME= specifier; nor is the processor
required to ascribe such a meaning to the specifier.

END NOTE 12.36

14. [292:1-11] Remove J3 note 158

15. [362:11] Add the following note and renumber following notes.

NOTE 14.2

Two external procedures might have the same name, but will still be distinct entities, because
the values specified by NAME= specifiers might be different. For example,

program p
interface

bind(c,name=’CSub’) subroutine c_sub
end subroutine c_sub

end interface
....
call f_sub
....

end program p

subroutine f_sub
interface

bind(c,name=’CSub2’) subroutine c_sub
end subroutine c_sub

end interface

6/23/99 4 of 4

....
end subroutine f_sub

END NOTE 14.2

16. [411:40] Add paragraph

16.2.7 Interoperation with C global variables

A C variable with external linkage interoperates with a variable declared in the scope of a
module or with a common block.

The BIND(C) attribute shall only be specified for a variable if it is declared in the scope of a
module. The variable shall interoperate with a C variable that has external linkage. The varia-
ble shall not be explicitly initialized, it shall not have the POINTER attribute, the ALLOCAT-
ABLE attribute, appear in an EQUIVALENCE statement or be a member of a common block.

If a common block is given the BIND(C) attribute, it shall be given the BIND(C) attribute in
all scoping units in which it is declared. A C variable with external linkage interoperates with
a common block that has the BIND(C) attribute, if the C variable is of a struct type and the
variables that are members of the common block interoperate with corresponding components
of the struct type, or if the common block contains a single variable, and the variable interop-
erates with the C variable.

A variable in a common block with the BIND(C) attribute shall not be explicitly initialized
and it shall not be the parent object of an equivalence-object in an EQUIVALENCE statement
(5.6.1).

If a variable or common block has the BIND(C) attribute, it has the SAVE attribute as well.

A variable with the BIND(C) attribute is a global entity of a program (14.1.1). Such an entity
shall not be declared in more than one scoping unit of the program.

NOTE 16.15

The following is an example of the usage of bind(c) for variables and a common block:

module example_1
integer, bind(c) :: i
integer :: j, k
bind(c) :: j

end module example1

program example_2
common /com/ k
bind(c) :: /com/
...

end program example2

END NOTE 16.15

