2 August 1999 J3/99-189
Page 1 of 3

Subject: Type parameters are distinguished along the wrong axis
From: Van Snyder

1 Introduction

Type parameters are required to be integers, and therefore can’t fruitfully be used in non-integer
initialization expressions. To allow this, type parameters need three attributes. NONKIND
should be split between INITIALIZATION that’s not used for KIND, and SPECIFICATION.
If we freeze the NONKIND terminology now, it will be difficult to change it to initializa-
tion/kind/specification at a later date. This isn’t a large change; most of it is in 4.5.1.1. The
remainder consists mostly of replacing “nonkind” by “specification”.

2 Edits

Edits refer to 99-007r2. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and | in the text.

[Editor: Add “integer scalar” before “expression”.]

A type parameter is either a kind type parameter, an initialization type parameter, or a speci-
fication type parameter.

[Editor: Delete “nonkind type parameter” from the index and add “initialization type param-
eter” and “specification type parameter” to the index.]

[[Editor: Replace “an expression” by “a specification expression.”]

[Editor: Replace “nonkind” by “specification” four times.]

The value of an initialization type parameter shall be specified by an initialization expression.
An initialization type parameter may in turn be used within the derived type definition for the
type.

A typical use of an initialization type parameter is to specify the value of a primary in an
initialization expression for a component.

[Editor: Replace “nonkind” by “specification.”]

[Editor: Replace “nonkind” by “specification.”]

or kind-type-param-name

Constraint: The kind-type-param-name shall be the name of a kind type parameter of a derived
type in which definition the kind-param appears.

[Editor: Replace “or nonkind” by “, initialization, or specification”.]

type-param-attr-spec is KIND
or INITTALIZATION
or SPECIFICATION

[Editor: Delete “NONKIND attribute” from the index and add “INITTIALIZATION attribute”

32:13
32:12

32:28
32:28-33
32:34+

NOTE 4.41

32:41
33:3
34:17+7
34:22+7

40:40
42:24-25

2 August 1999 J3/99-189
Page 2 of 3

and “SPECIFICATION attribute” to the index.]

If a type parameter has the KIND attribute it is a kind type parameter. If it has the
INITTALIZATION attribute it is an initialization type parameter. If it has the SPECIFI-
CATION attribute it is a specification type parameter

A type-param-attr-spec may be used to specify explicitly whether a type parameter has the
KIND attribute, the INITIALIZATION attribute or the SPECIFICATION attribute. If a type
parameter is not given the KIND or INITTALIZATION attribute, either explicitly, or implicitly
as described below, it has the SPECIFICATION attribute. It is allowed but not required to
specify that a type parameter has the SPECIFICATION attribute.

Type parameters may themselves have type parameters, so long as there is no circular depen-
dence between type parameters. If a type parameter has intrinsic type, and its parameters are
not specified, the parameters of the type parameter have their default values.

The following is prohibited due to a circular dependence between two type parameters.

TYPE will_not_compile (k, n)
TYPE (type_1 (k)) :: n
TYPE (type_1l (n)) :: k
TYPE (type_1 (k)) :: comp = n
END TYPE will_not_compile

A kind type parameter shall have integer type. Any type parameter may be used as a primary
in a specification expression (7.1.6) within the derived-type-def. A kind or initialization type
parameter may be used in an initialization expression (7.1.7) within the derived-type-def.

With the exception stated below, a type parameter is implicitly given the KIND attribute [if
it is used as a kind-param or] if it appears in the derived-type-def as a primary in an expres-
sion that is used to specify a kind parameter for a component, so long as that expression is
not within an actual argument for a SELECTED_CHAR_KIND, SELECTED _INT_KIND, or
SELECTED_REAL_KIND intrinsic function. With the same exception stated below, a type
parameter that does not implicitly have the KIND attribute is implicitly given the INITIAL-
IZATION attribute if it appears in the derived-type-def as a primary in an expression that
is required to be an initialization expression. If a type parameter implicitly has the KIND
or INITTALIZATION attribute, it shall not be specified to have a different type parameter
attribute.

KIND will get more complicated if we allow PARAMETER within TYPE definitions.

If IMPLICIT NONE is not in effect it may not be necessary to declare anything explicitly
about a type parameter. Even if it is necessary to declare its type, it will frequently implicitly
have the INITTALIZATION or KIND attributes. For example, consider

TYPE matrix (k, n, v)
REAL(k) :: element(n,n) = v
END TYPE matrix

If the implicit typing rules have not been changed, the parameters k and n are implicitly
of type integer, and v is of type default real. The parameter v has the INITTALIZATION
attribute because it is used in a context that requires it. The parameter k has the KIND
attribute because it is used in a context that requires it.

45:13-46:33

NOTE
4.201

See
tentative
additions

for page 34

Note to J3

NOTE
4.21

2 August 1999 J3/99-189
Page 3 of 3

The following example uses explicit type parameter specifications.

TYPE humongous_matrix (k, d, init)
INTEGER, KIND :: k
INTEGER (selected_int_kind(12)), SPECIFICATION :: d
REAL(k), INITIALIZATION :: init
REAL(k) :: element(d,d) = init
END TYPE humongous_matrix

In the following example, dim is explicitly declared to be a kind type parameter, even though
it is not required by anything shown here. This would allow generic resolution of procedures
distinguished only by values of dim.

TYPE general_point (dim)
INTEGER, KIND :: dim
REAL :: coordinates (dim)
END TYPE general_point

If a derived type that has a component that is a pointer to a (possibly different) derived
type, the appearance of a type parameter of the containing type in an expression for a kind or
initialization type parameter of the component implicitly declares it to be a kind or initialization
type parameter, respectively, of the containing type only if the type definition for the type of
the component preceeded that of the containing type.

This rule is to avoid an indeterminacy caused by mutually recursive derived type definitions.
For example

TYPE type_1 (i)
INTEGER, KIND :: i ! —-- required because type_2 has not yet been
! —— defined, and therefore whether it has a
! -— kind type parameter is not yet known.
TYPE (type_2 (i)), POINTER :: comp
END TYPE type_1

TYPE type_2 (j)
! —— No explicit attribute specification needed for j. J
! —— implicitly has the KIND attribute because it is used to
! —— specify a kind parameter of the previously defined type
!' —— type_1.
TYPE (type_1 (j)), POINTER :: comp

END TYPE type_2

This is not an issue except with pointer components, because a nonpointer component is
required to be of a previously defined type.

Editor: Replace “nonkind” by “specification” twice.]

Editor: Replace “nonkind” by “specification”.]

[
[
[Editor: Replace “nonkind” by “specification”.]
[Editor: Replace “non-kind” by “specification”.]

NOTE
4.21 cont.

NOTE
4.22

59:3, 5
71:47

135:18
263:35

