9 August 1999 J3/99-194

Page 1 of 2
Subject: Comments on C interoperability
References: 98-170r1, 99-133
From: Van Snyder

This paper is identical to 99-133, except for this sentence and the page headings.

There is no pretense offered that remarks in this paper constitute complete edits necessary to
correct problems or answer questions noted here. Some of the alleged problems may not be
problems at all. Some of them should perhaps turn into unresolved issues.

Page and line numbers refer to 99-007r1.

The constraint “If BIND(C) is present, there shall be no proc-component-def-stmts in the type
definition” compromises the usability of C interoperability. It is not unusual in C programs that
structs have “pointer to function” components. In contrast, I don’t see that proc-component-
def-stmts cause any trouble for C interoperability, so why prohibit them? Maybe we need a
BIND(C) attribute for procedure pointers, and a constraint that BIND(C) pointers can only
be pointed at BIND(C) procedures, and non-BIND(C) pointers can only be pointed at non-
BIND(C) procedures, for it all to hang together. The ability to interface to the X-windows
system has been suggested as a “success test” for C interoperability, but interfacing to the X-
windows system requires the ability to put “pointer to function” components in structs (see the
typedef for the struct XImage in X1ib.h.) One of the reasons offered for not using POINTER(C)
or POINTER,BIND(C) for C pointers was that pointer-to-void is difficult to represent (see re-
marks concerning 407:28 below). There is no similar problem for procedure pointers. Procedure
pointers are allowed to have an empty interface, which means they can have either functions of
any result type or subroutines as targets.

The fact that a type alias does not define a new type will cause mutability and portability
problems when objects used for generic resolution are defined by using type aliases. The reason
for using type aliases in C programs is usually not for the purpose of “hiding” the type, as
asserted at 63:23, but rather to make programs more mutable. Due to defects in the C language,
it is usually necessary to change the declaration of an object for portability reasons, for example
from “int” to “long int”. The purpose of type aliases is to allow to make this change in one place,
instead of numerous places (consider the ubiquity of the Unix type “time_t”.) Presumably, the
same reasons will arise in writing interfaces to C programs. If a type alias does not define a
new type, and one is required to change the kind parameter of a C-interoperable type from,
say, C_SHORT to C_LONG, and the kind parameter C_LONG corresponds to a Fortran kind,
generic resolutions may have surprisingly different results, or fail altogether. If type aliases are
used in the declaration of procedure interfaces, generic sets of interfaces that are unambiguous
may become ambiguous. The fact that type aliases do not create new types in C is not a
problem in C because C does not have generic procedures.

If there’s more to this constraint than just saying the length shall be 1 (see unresolved issue
89), then “assumed” needs to be “assumed or deferred”.

I don’t see any problem with a dummy argument that has the VALUE attribute becoming
associated with a pending I/O sequence. There may, however, be a problem if the associated
actual argument is associated with a pending I/O sequence — in that case, the copy-in takes
place at a time not well-determined with respect to the progress of the asynchronous I/0.
Similar considerations apply to a VOLATILE actual argument associated to a VALUE dummy
argument.

Why put “that has the BIND(C) attribute” in normative text? That is, what’s wrong with

42:20-21

63:21-23

72:1-4

72:19-22

85:26

9 August 1999 J3/99-194
Page 2 of 2

allowing the BIND(C) attribute for non-BIND(C) procedures? It ought to be enough to put it
after the word “argument” at 85:42. See also unresolved issue 87.

If the VALUE attribute is allowed for non-BIND(C) procedures, it would be useful that the
VALUE attribute does not imply all of the properties of INTENT(IN). In particular, it should
be OK to change a VALUE dummy argument, but that change is not reflected in the associ-
ated actual argument. This would also require changes to definition of argument association
in the VALUE case, because changes in the dummy argument would have no effect on the
corresponding (not associated) actual argument.

In any case, add VALUE to the index.

Add VALUE to the index.
We probably need the VALUE attribute in this list.

Allowing C_PTR to be a type alias is an invitation for portability problems, especially if used
for generic resolution. Yet another reason type aliases ought to introduce new types, not new
names for existing ones.

Couldn’t we provide a means to convert between C pointers and Fortran pointers? E.g.
F_pointer => TRANSFER(C_pointer, <mold>)
together with some extensions of RESHAPE, and a new intrinsic, say
C_pointer = Transfer To C (F_pointer)?
The latter would strip off everything that can’t be represented in a C pointer — that is, every-
thing but the base address. I continue to prefer the combination of BIND(C) and POINTER
attributes, preferably spelled POINTER(C), as advocated in 98-170rl. As I understand it, the
only problem was C’s pointer-to-void. Could this be finessed using an intrinsic derived type
(not object) C_VOID, together with the above suggested extension of TRANSFER? E.g.

TYPE(C_VOID), POINTER(C) :: FOO => NULL() ! A C pointer, initially null
TYPE(MY_C_STRUCT), TARGET :: BAR ! A C struct that can be a target
TYPE(MY_C_STRUCT), POINTER(C) :: BAZ ! A C pointer
FOO => TRANSFER (BAR, FOO) ! C pointer assignment
BAZ => BAR ! C pointer assignment
NULLIFY (FOO) ! instead of FO0O0 = C_NULL

[

FOO => NULLQ) ditto

If so the Transfer_To_C intrinsic wouldn’t be needed, nor would the C_PTR type, the VALUE
attribute, the LOC intrinsic function, or the C_NULL object be needed, as remarked in 98-
170r1.

I can’t figure out what the word “original” does in these two places.

92:34
267:20-29

404:3

407:28

409:33,34

