
Reference number of working document: ISO/IEC JTC1/SC22/WG5 Nxxxx

Date: 2010-2-24

Reference number of document: ISO/IEC TR 99999:2010(E)

Committee identification: ISO/IEC JTC1/SC22

Secretariat: ANSI

Information technology — Programming languages — Fortran —
Updater procedures

Technologies de l’information — Langages de programmation — Fortran —
Procédures pour mettre à jour les structures de données

c© ISO/IEC 2010

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying or microfilm, without permission in writing
from the publisher. Droits de reproduction réservés. Aucune partie de cette publication ne peut être
reproduite ni utilisée sous quelque forme que ce sout et par aucun procédé, électronique ou mécanique,
y compris la photocopie et les microfilms, sans l’accord écrit de l’éditeur.

ISO/IEC Copyright Office • Case Postale 56 • CH-1211 Genève • Switzerland

ISO/IEC TR 99999:2010(E)

Contents
0 Introduction . 1

0.1 History . 1
0.2 The problem to be solved . 1
0.3 What this report proposes . 1

1 General . 1
1.1 Scope . 1
1.2 Normative References . 1

2 Requirements . 2
2.1 General . 2
2.2 Summary . 2
2.3 Updater definition syntax . 3
2.4 Invocation of an updater . 4
2.5 Generic accessors . 4
2.6 Specific accessors . 4
2.7 Reference to updaters . 5
2.8 Extension of function reference syntax . 6
2.9 Reference to accessors . 6
2.10 Reference to accessors and updaters in variable-definition contexts 7

3 Required editorial changes to ISO/IEC 1539-1:2010(E) 8

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national stan-
dards bodies (ISO member bodies). The work of preparing International Standards is normally carried
out through ISO technical committees. Each member body interested in a subject for which a techni-
cal committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of technical committees is to prepare International Standards. Draft International Stan-
dards adopted by the technical committees are circulated to the member bodies for voting. Publication
as an International Standard requires approval by at least 75% of the member bodies casting a vote.

ISO/IEC TR 99999:2010(E) was prepared by Joint Technical Committee ISO/IEC/JTC1, Information
technology, Subcommittee SC22, Programming languages, their environments and system software in-
terfaces.

This technical report specifies an extension to the computational facilities of the programming language
Fortran. Fortran is specified by the International Standard ISO/IEC 1539-1:2010(E).

It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax specified by this technical
report be included in the next revision of the Fortran International Standard without change unless
experience in the implementation and use of this feature identifies errors that need to be corrected, or
changes are needed to achieve proper integration, in which case every reasonable effort will be made to
minimize the impact of such changes on existing implementations.

c© ISO/IEC 2010 – All rights reserved i

ISO/IEC TR 99999:2010(E)

ii c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

0 Introduction

0.1 History

1 After high-level programming languages had been in use for about a decade, it was realized that programs
are difficult to maintain and modify because the details of the implementation of each data structure
were exposed in the syntax used to reference the representation of the data.

2 Two fundamentally different solutions were proposed for the problem.

3 In 1970 Douglas T. Ross proposed that the same syntax ought to be used to refer to every kind of data
object, and to procedures.

4 Charles M. Geschke and James G. Mitchell repeated this proposal in 1975.

5 In 1972 David Parnas proposed that this could be achieved almost completely by encapsulating all
operations on a data structure in a family of related procedures.

6 No major programming language has been revised to incorporate the principles advocated by Ross,
Geschke and Mitchell.

7 Rather, it has apparently been judged that the problem can be adequately solved by program authors
employing the principles advocated by Parnas.

1. Charles M. Geschke and James G. Mitchell, On the problem of uniform references to data structures,
IEEE Transactions on Software Engineering SE-2, 1 (June 1975) 207-210.

2. David Parnas, On the criteria to be used in decomposing systems into modules, Comm. ACM
15, 12 (December 1972) 1053-1058.

3. D. T. Ross, Uniform referents: An essential property for a software engineering language, in Soft-
ware Engineering 1 (J. T. Tou, Ed.), Academic Press, (1970) 91-101.

0.2 The problem to be solved

1 There are two problems with the Parnas agenda.

2 First, it is difficult and costly to apply completely and consistently. If it hasn’t been applied carefully
and completely during the original development of a program, the program is difficult to modify.

3 Second, it is potentially inefficient, because all operations on data structures are encapsulated within
procedures. Awareness of this potential is an incentive not to use it carefully and completely.

0.3 What this report proposes

1 This technical report extends the programming language Fortran so that the representation of a data
abstraction can be changed between a data object and a procedure without changing the syntax of any
references to it, unless the reference is a character substring.

2 The facility specified by this technical report is compatible to the computational facilities of Fortran as
standardized by ISO/IEC 1539-1:2010(E).

c© ISO/IEC 2010 – All rights reserved 1

ISO/IEC TR 99999:2010(E)

Information technology – Programming Languages – Fortran

Technical Report: Accessors

1 General

1.1 Scope1

1 This technical report specifies an extension to the programming language Fortran. The Fortran language2

is specified by International Standard ISO/IEC 1539-1:2010(E) : Fortran. The extension allows the3

representation of a data object to be changed between an array and a procedure, or between a structure4

component and a procedure, without changing the syntax of references to that data object, unless the5

reference is a character substring.6

2 Clause 2 of this technical report contains a general and informal but precise description of the extended7

functionalities. Clause 3 contains detailed instructions for editorial changes to ISO/IEC 1539-1:2010(E).8

1.2 Normative References9

1 The following referenced documents are indispensable for the application of this document. For dated10

references, only the edition cited applies. For undated references, the latest edition of the referenced11

document (including any amendments) applies.12

2 ISO/IEC 1539-1:2010(E) : Information technology – Programming Languages – Fortran; Part 1: Base13

Language14

c© ISO/IEC 2010 – All rights reserved 1

ISO/IEC TR 99999:2010(E)

2 Requirements1

2.1 General2

1 The following subclauses contain a general description of the extensions to the syntax and semantics of3

the Fortran programming language to provide that the representation of a data object can be changed4

between an array and a procedure, or between a structure component and a procedure, without changing5

the syntax of references to that data object, unless the reference is a character substring.6

2.2 Summary7

2.2.1 General8

1 This technical report defines a new form of subprogram called an updater. An updater subprogram9

defines an updater procedure. It can be invoked in a variable definition context, in which case the value10

is passed to its acceptor variable. There is presently nothing comparable in Fortran, but it has been11

provided in other languages such as Mesa and POP-2 (but not in any widely-used language). This allows12

the representation of a data abstraction to be changed between function and updater procedures, and a13

data object, without changing the syntax of references to it, unless the reference is a character substring.14

2.2.2 Definition of updater subprograms15

1 A new subprogram entity called an UPDATER is defined. An updater declares a subprogram that16

defines an updater procedure. When an updater is referenced in a variable definition context, the value17

to be defined is considered to be an actual argument, and is associated with the updater’s acceptor18

variable, which is considered to be a dummy argument.19

2 Updater subprograms can be type bound procedures and can be procedure pointer targets.20

2.2.3 Syntax of reference to updater procedures21

1 A reference to an updater is permitted where a variable is permitted to appear in a variable definition22

context.23

NOTE 2.1
For example, an updater reference can appear as the variable in an intrinsic assignment statement,
in an input/output list in either a READ or WRITE statement, in place of a variable in a control
information list. . . .

2 An updater is referenced using the same syntax as a function reference.24

2.2.4 Accessor generic interface25

1 A generic interface that specifies both functions and updaters is an accessor generic interface.26

2 Where an accessor reference appears in a value reference context a function is invoked to produce a27

value. Where it appears in a variable definition context an updater is invoked to accept a value. Where28

it appears as an actual argument associated with a dummy argument with INTENT(IN), a function is29

invoked to produce a value before the procedure to which it is an actual argument is invoked. Where30

it appears as an actual argument associated with a dummy argument with INTENT(OUT), an updater31

is invoked to accept a value after the invoked procedure completes execution. Where it appears as an32

actual argument associated with a dummy argument with INTENT(INOUT) or unspecified intent, a33

2 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

function is invoked to produce a value before the procedure to which it is an actual argument is invoked,1

and an updater is invoked to accept a value after the invoked procedure completes execution.2

NOTE 2.2
If an accessor reference appears as an actual argument, copy-in, copy-out or copy-in/copy-out
argument passing is required.

2.3 Updater definition syntax3

1 An updater subprogram defines an updater procedure.4

R1236a updater-subprogram is updater-stmt5

[specification-part]6

[execution-part]7

[internal-subprogram-part]8

end-updater-stmt9

R1236b updater-stmt is [prefix] UPDATER updater-name10

([dummy-arg-name-list]) [ACCEPT (acceptor-name)]11

R1236c end-updater-stmt is END [UPDATER [updater-name]]12

C1261a (R1236g) If ACCEPT appears, acceptor-name shall not be the same as updater-name.13

C1261b (R1236a) An ENTRY statement shall not appear within the updater.14

C1261c (R1236a) An internal updater subprogram shall not contain an internal-subprogram-part .15

C1261d (R1236c) If updater-name appears in the end-updater-stmt , it shall be identical to the updater-16

name specified in the updater-stmt .17

C1261e (R1236a) The acceptor variable name shall not be specified to have the ALLOCATABLE or18

POINTER attribute within the scoping unit of the updater. No INTENT attribute other than19

INTENT(IN) shall be specified for the acceptor variable name within the scoping unit of the20

updater.21

2 The name of the updater is updater-name.22

3 The type and type parameters of the updater name may be specified by a type specification in the UP-23

DATER statement or by the updater name appearing in a type declaration statement in the specification-24

part of the scoping unit of the updater subprogram. They shall not be specified both ways. If they are25

not specified either way, they are determined by the implicit typing rules in force within the scoping26

unit of the updater. If the updater is an array, this shall be specified by specifications of the name of27

the updater variable within the scoping unit of the updater.28

4 The acceptor variable is considered to be a dummy argument. Unless the VALUE attribute is specified29

for it within the updater part, it has the INTENT(IN) attribute, and this may be confirmed by explicit30

specification. The specifications of the acceptor variable attributes, the specification of dummy argument31

attributes, and the information in the UPDATER statement, collectively define the characteristics of32

the accessor (12.3.1).33

NOTE 12.40a
An acceptor variable cannot be a pointer or allocatable.

5 If ACCEPT appears, the name of the acceptor variable of the updater is acceptor-name and all oc-34

c© ISO/IEC 2010 – All rights reserved 3

ISO/IEC TR 99999:2010(E)

currences of the updater name in execution-part statements in the scoping unit of the updater refer to1

the updater itself. If ACCEPT does not appear, the acceptor variable name is updater-name and all2

occurrences of the updater name in execution-part statements in the scoping unit are references to the3

updater variable.4

6 The characteristics of the updater where it is referenced in a variable definition context are the charac-5

teristics of the acceptor variable.6

2.4 Invocation of an updater7

1 When an updater is invoked, the following events occur in the order specified.8

(1) All actual argument expressions and the expression (if any) defining the value to be accepted9

are evaluated. The value might be provided by other than an expression, for example by an10

associated INTENT(OUT) dummy argument, from a keyword in an input/output control11

list, in an input list,12

(2) The actual arguments are associated with their corresponding dummy arguments. The value13

to be accepted is considered to be an actual argument, and is associated with the acceptor14

variable.15

(3) All specification expressions within the specification-part of the scoping unit of the updater16

are evaluated.17

(4) Control is transferred to the first executable construct of the execution-part of the updater.18

2 When the updater is invoked the value of the acceptor variable is the accepted value and the updater19

shall not change the value of the acceptor variable unless it has the VALUE attribute.20

3 As is the case with functions, if an updater is pure all dummy arguments shall have the INTENT(IN)21

attribute or the VALUE attribute.22

4 Updaters are not interoperable; therefore the UPDATER statement does not include a proc-language-23

binding-spec.24

2.5 Generic accessors25

1 A generic interface bloc that specifies both functions and updaters specifies a generic accessor. The26

syntax of interface blocks is extended to define accessor generic interfaces.27

R1205 interface-body is . . .28

or updater-stmt29

[specification-part]30

end-updater-stmt31

2.6 Specific accessors32

1 An ACCESSOR statement is provided to specify that a function and an updater are grouped together33

to form an accessor.34

R1217a accessor-declaration-stmt is ACCESSOR (accessor-interface, accessor-interface)35

[[, accessor-attr-spec] . . . ::] accessor-decl-list36

R1217b accessor-interface is name37

R1217c accessor-attr-spec is access-spec38

or INTENT (intent-spec)39

or OPTIONAL40

4 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

or POINTER1

or SAVE2

R1217d accessor-decl is accessor-entity-name [=> accessor-pointer-init]3

R1217e accessor-pointer-init is lbracket initial-accessor-target , initial-accessor-target rbracket4

or (/ initial-accessor-target , initial-accessor-target /)5

R1217f initial-accessor-target is procedure-name6

C1222a (R1217c) The name shall be the name of a nonintrinsic function or updater, or the name of an7

abstract interface of a nonintrinsic function or updater that has explicit interface. If is declared8

by a procedure-declaration-stmt it shall be previously declared.9

C1222b (R1217a) One accessor-interface shall specify a function and the other accessor-interface shall10

specify an updater. The updater shall specify the same dummy arguments as the function, with11

the same names. The names and all attributes of corresponding dummy arguments shall be12

identical. The characteristics of the result variable of the function and the acceptor variable13

of the updater shall be identical, except that the function result value may be allocatable or a14

pointer.15

NOTE 12.13a
An acceptor variable cannot be allocatable or a pointer.

C1222c (R1217d) If => appears in accessor-decl , the accessor entity shall have the POINTER attribute.16

C1222d (R1217f) The procedure-name shall be the name of a nonelemental external or module function17

with explicit interface, or a nonelemental external or module updater.18

C1222e (R1217e) One initial-accessor-target shall specify a function and the other shall specify an up-19

dater. The characteristics of the function shall be identical to the characteristics of the accessor-20

interface that specifies a function, except that the function may be pure even if the accessor-21

interface is not, and the characteristics of the updater shall be identical to the characteristics22

of the accessor-interface that specifies an updater, except that the updater may be pure even if23

the accessor-interface is not.24

C1222f (R1217b) If accessor-entity-name is neither a pointer nor an actual argument, accessor-interface25

shall not specify an abstract interface.26

2 If accessor-entity-name is neither a pointer nor an actual argument the accessor-interface specifications27

specify a specific function and a specific updater that correspond to the accessor. If accessor-entity-name28

is either a pointer nor an actual argument the accessor-interface specifications specify the characteristics29

of the functions and updaters that can correspond to the accessor.30

2.7 Reference to updaters31

1 A reference to an updater is permitted where definition of a variable is permitted.32

R1218a updater-reference is procedure-designator [([actual-arg-spec-list])]33

R1218b actual-args is ([actual-arg-spec-list])34

C1223a (R1218a) The procedure-designator shall designate an updater.35

2 If an updater name appears without actual-args it nonetheless specifies invocation of the updater unless36

it is an actual argument associated with a dummy procedure, or a proc-target in a pointer assignment37

c© ISO/IEC 2010 – All rights reserved 5

ISO/IEC TR 99999:2010(E)

statement. For this reason, a procedure shall have explicit interface where it is invoked if it has an1

updater dummy procedure argument. If it is desired to invoke the updater when it appears in these2

contexts, actual-args shall appear.3

2.8 Extension of function reference syntax4

1 The syntax of function-reference is changed so as not always to require () if there are no actual arguments.5

R1219 function-reference is procedure-designator [actual-args]6

C1223a (R1219) If actual-args does not appear, function-reference shall not be a proc-target in a proce-7

dure pointer assignment statement.8

NOTE 2.3
If a procedure-designator appears as the proc-target in a procedure pointer assignment statement,
and actual-args does not appear, it is not a function-reference; it designates the function.

C1223b (R1219) If actual-args does not appear, function-reference shall not be an actual argument if the9

invoked procedure does not have explicit interface, or the invoked procedure has explicit interface10

and the corresponding argument is a function (with or without the POINTER attribute).11

2 If function-reference is the proc-target in a procedure pointer assignment statement, or an actual argu-12

ment, and the designated function returns a pointer result, and the result of the function is the intended13

pointer target or actual argument, actual-args shall appear.14

2.9 Reference to accessors15

1 A reference to a generic accessor is permitted where a reference to or definition of a variable is permitted.16

Where a generic accessor reference appears as a primary in an expression it is considered to be a reference17

to a function in its interface. Where a generic accessor appears in a variable definition context it is18

considered to be a reference to an updater in its interface. The usual generic resolution rules apply,19

with one extension: Since the value to be accepted is considered to be an actual argument, the acceptor20

variable characteristics contribute to generic resolution.21

NOTE 2.4
The acceptor variable is considered to be a dummy argument and the value to be accepted is
considered to be an actual argument.

A reference to a specific accessor is permitted where a reference to or definition of a variable is
permitted. Where a specific accessor reference appears as a primary in an expression it is considered
to be a reference to its function. Where a specific accessor appears in a variable definition context
it is considered to be a reference to its updater.

R1218c accessor-reference is procedure-designator [(actual-args)]22

C1223b (R1218c) The procedure-designator shall designate an accessor.23

2 Unlike a reference to a function, if an accessor name appears without actual-args it nonetheless specifies24

invocation of the accessor unless it is an actual argument associated with a dummy procedure, or a25

proc-target in a pointer assignment statement. For this reason, a procedure shall have explicit interface26

where it is invoked if it has an accessor dummy procedure argument. If it is desired to invoke the accessor27

when it appears in these contexts, actual-args shall appear.28

6 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

2.10 Reference to accessors and updaters in variable-definition contexts1

1 The syntax of designator is extended to allow references to accessors in value-providing and variable2

definition contexts.3

R601 designator is . . .4

or accessor-reference5

2 The syntax of variable is extended to allow reference to updaters in variable-definition contexts.6

R602 variable is designator7

or updater-reference8

or expr9

3 The syntax of intrinsic assignment already allows reference to an accessor in its variable-definition10

context.11

R732 assignment-stmt is variable = expr12

4 If assignment-stmt is accessor-reference = expr , an updater in the accessor’s interface is invoked.13

5 The following intrinsic functions could be defined to be accessors. When a reference appears in a14

variable-definition context15

• REAL(X) with complex X is equivalent to X%RE,16

• AIMAG(X) with complex X is equivalent to X%IM,17

• ABS(X) with numeric X changes the modulus without changing the phase,18

• FRACTION(X) with real X changes the fraction, and19

• EXPONENT(X) with real X changes the exponent.20

c© ISO/IEC 2010 – All rights reserved 7

ISO/IEC TR 99999:2010(E)

3 Required editorial changes to ISO/IEC 1539-1:2010(E)1

The following editorial changes to ISO/IEC 1539-1:2010(E), if implemented, would provide the facilities2

described in foregoing clauses of this report. Descriptions of how and where to place the new material3

are enclosed between square brackets. Page and line numbers refer to ANSI/INCITS/PL22.3 standing4

document 10-007r1.5

[2:10+ 1.3.1+] Editor: Insert new subclauses:6

1.3.1a7

acceptor variable8

variable that transfers a value into an updater invoked in a variable definition context (12.6.2.3a)9

1.3.1b10

accessor11

generic interface, procedure pointer, or dummy procedure that allows a function to be invoked by an12

expression or an updater (12.6.2.3a) to be invoked in a variable definition context13

1.3.1b.114

specific accessor15

accessor that is specified by a PROCEDURE statement16

[5:3+ 1.3.20+] Editor: Insert two new subclauses:17

“1.3.20a18

characteristics19

(acceptor variable) properties listed in 12.3.2a20

[8:34+ 1.3.61+] Editor: Insert a new subclause:21

“1.3.62.1a22

dummy accessor23

dummy argument that is an accessor”24

[8:37 1.3.62] Editor: After “SUBROUTINE” insert “, UPDATER”.25

[9:37 1.3.66] Editor: Before “end-block-data-stmt” insert “end-updater-stmt , ”.26

[15:15+ 1.3.120+] Editor: Insert a new subclause:27

“1.3.120a28

accessor reference29

appearance of a procedure designator for an accessor, or operator symbol in a context requiring execution30

of a function from an accessor interface during expression evaluation (12.5.3)”31

[15:22 1.3.120.2] Editor: Append a clause at the end: “; an accessor reference that results in execution32

of a function part from the accessor iterface is a function reference”.33

[20:35+ 1.3.153+] Editor: Insert a new subclause:34

“1.3.153a35

updater36

procedure that is invoked in a variable definition context37

8 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

[27:18+ R203] Editor: Add an alternative for R203 external-subprogram:1

or updater-subprogram2

[27:28+ R203+] Editor: Add quotations of the new syntax rule R1236a:3

R1236a updater-subprogram is updater-stmt4

[specification-part]5

[execution-part]6

[internal-subprogram-part]7

end-updater-stmt8

[28:30+ R211] Editor: Add an alternative for R211 internal-subprogram:9

or updater-subprogram10

[28:34+ R1108] Editor: Add an alternative for R1108 module-subprogram:11

or updater-subprogram12

[29:31+] Editor: Add an alternative for R214 action-stmt :13

or end-updater-stmt14

[30:8 C201] Editor: Delete “or”; After “end-subroutine-stmt” insert “, or end-updater-stmt , ”.15

[30:14 2.2.1p2] Editor: Replace “or” by a comma; after “subroutine” insert “, or an updater subprogram”.16

[30:26 2.2.3p1] Editor: Replace “either a function or a subroutine” by “a function, a subroutine, or an17

updater”.18

[31:18+2 Table 2.1] Editor: After “PROGRAM” insert “, UPDATER”.19

[32:11,13 2.3.3p1] Editor: After “end-subroutine-stmt” insert “, end-updater-stmt , ” twice20

[34:17 2.4.1.2p1] Editor: Replace “and function results” by “, function results, and acceptor values,”21

[34:29+ 2.4.3.1p2+] Editor: Insert a new paragraph:22

“A data entity that is passed to an updater that is invoked in a variable definition context is called the23

acceptor value.”24

[45:24+ 3.3.2.2p3] Editor: In the table of adjacent keywords where separating blanks are optional, insert25

“END UPDATER” in alphabetical order.26

[52:3+ 4.3.1.2p2+] Editor: Insert a new paragraph:27

If the data entity is an acceptor variable in an updater, the derived type may be specified in the28

UPDATER statement provided the derived type is defined within the body of the updater or is accessible29

there by use or host association. If the derived type is specified in the UPDATER statement and is defined30

within the body of the updater, it is as if the acceptor variable were declared with that derived type31

immediately after the derived-type-def of the specified derived type.32

[73:31+ C741+] Editor: Insert a note:33

c© ISO/IEC 2010 – All rights reserved 9

ISO/IEC TR 99999:2010(E)

NOTE 4.42a
If generic-spec is generic-name and binding-name-list includes both functions and updaters, one
should probably provide a function with the same dummy argument characteristics and result
variable type, kind, and rank as each updater’s dummy argument characteristics and acceptor
variable type, kind, and rank and vice versa.

[78:15 4.5.7.3p2] Editor: Replace “or” by a comma; append a phrase at the end of the sentence: “, or1

both shall be updaters for which all acceptor variables have the same characteristics (12.3.2a)”.2

[87:11+ 5.1p3+] Editor: Insert a new paragraph:3

An updater has a type and rank and may have type parameters and other attributes that determine the4

uses of the updater. The type, rank, and type parameters are the same as those of its acceptor variable.5

[89:20 C515] Editor: After “for” insert “an acceptor variable or for”.6

[91:17 C523] Editor: Before “a function” insert “an acceptor variable and not”.7

[91:20 C525] Editor: Before “and” insert “shall not be an acceptor variable,”.8

[97:9 C538] Editor: “or” by a comma; at the end insert “, or an acceptor variable”.9

[97:11+ C539+] Editor: Insert a new constraint:10

C539a (R523) An entity with the INTENT(OUT) or INTENT(INOUT) attribute shall not be an11

acceptor variable.12

[99:5 C543] Editor: Replace “or” by a comma; after “subroutine” insert “, or all be updaters”.13

[101:7 C554] Editor: Replace “a function result” by “an acceptor variable, a function result variable”.14

[103:6+ R527+] Editor: Insert a new constraint:15

C563a (R527) An object-name shall not be an acceptor variable.16

[104:30 C567] Editor: After “function result name” insert “, an acceptor variable”.17

[107:20+ C579+] Editor: Insert a new constraint:18

C579a (R551) An object-name shall not be an acceptor variable.19

[109:24 5.5p4] Editor: Add a sentence at the end of the paragraph: “An explicit type specification in an20

UPDATER statement overides an IMPLICIT statement for the name of the acceptor variable of that21

updater subprogram.”22

[117:3+ R601] Editor: Insert an additional alternative for syntax rule R601 designator :23

or accessor-reference24

[117:12+ R602] Editor: Insert an additional alternative for syntax rule R602 variable25

or updater-reference26

10 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

[125:15-16 6.5.4p3] Editor: Replace “reference to a function” by “function reference”.1

[150:5 7.1.11p1] Editor: At the end of the sentence insert “or UPDATER statement (12.6.2.1a)”.2

[150:22 7.1.11p2(9)] Editor: delete “function” (it’s not needed to qualify “argument” in any of the other3

list items).4

[158:30+ R740] Editor: Insert an additional alternative for R740 proc-target , and an additional syntax5

rule:6

or accessor-target7

R740a accessor-target is accessor-name8

or lbracket procedure-name, procedure-name rbracket9

or (/ procedure-name, procedure-name /)10

11

[158:33 C729] Editor: After “pointer” insert “, a specific accessor”.12

[159:3+ C730+] Editor: Insert new constraints:13

C729b (R738, R740) If proc-pointer-name or proc-component-ref is an accessor, proc-pointer-object14

shall have explicit interface.15

C729c (R740) If proc-target is accessor-target , proc-pointer-object shall be a specific accessor, its func-16

tion interface shall be the same as the interface of the function specified by accessor-target , and17

its updater interface shall be the same as the interface of the updater specified by accessor-target .18

[159:3+ C730+] Editor: Insert new constraints:19

C730a (R740a) The accessor-name shall be the name of a specific accessor.20

C730b (R740a) One procedure-name shall specify a function and the other shall specify an updater.21

C730c (R740a) The procedure-name shall not be a pointer.22

[175:15 C816] Editor: After “end-subroutine-stmt” insert “, end-accessor-stmt”.23

[175:28 C818] Editor: After “end-subroutine-stmt” insert “, end-accessor-stmt”.24

[181:5 C828] Editor: After “end-subroutine-stmt” insert “, end-accessor-stmt”.25

[271:3 11.1p1] Editor: Before “MODULE” insert “UPDATER, ”.26

[272:10 R1108] Editor: Add an alternative for R1108:27

or updater-subprogram28

[277:7 12.1p2] Editor: After “FUNCTION” insert “, UPDATER”.29

[277:12 12.2.1p1] Editor: Replace “or a subroutine” by “, a subroutine, or an updater”.30

[277:15 12.2.1p1] Editor: Append a sentence at the end of the paragraph:31

c© ISO/IEC 2010 – All rights reserved 11

ISO/IEC TR 99999:2010(E)

“A reference to an updater appears in a variable definition context.”1

[277:28 12.2.2p4] Editor: Replace “the” by “its”; replace “or FUNCTION” by “, FUNCTION, or UP-2

DATER”.3

[278:9 12.3.1p1] Editor: Replace “or subroutine” by “, subroutine, or updater”.4

[278:11 12.3.1p1] Editor: Replace “and” by a comma. Append a new clause at the end of the sentence:5

“, and the characteristics of its acceptor variable if it is an updater”.6

[278:28+ 12.3.3-] Editor: Insert a new subclause:7

“12.3.2a Charactistics of acceptor variables8

Acceptor variables are considered to be dummy data objects.”9

[279:13 12.4.2.1p1] Editor: Replace “subroutine or a function” by “subroutine, a function”. After “result10

name” insert “, or an updater with a separate acceptor variable name”.11

[279:23+ 12.4.2.2p1(2)+] Editor: Insert a list subitem:12

“(a′) is a dummy accessor or updater procedure,”13

[279:33+ 12.4.2.2p1(4-5)] Editor: Delete “or” on item (4), replace the period at the end of item (5) by14

“, or”, and insert a list subitem:15

“(6) the procedure is defined by an updater subprogram.”16

[280:4 12.4.3.1p1] Editor: After “SUBROUTINE” insert “, ACCESSOR”.17

[280:21+] Editor: Add an additional alternative for interface-body :18

or updater-stmt19

[specification-part]20

end-updater-stmt21

[281:2 C1203] Editor: Replace “or” by a comma. Before “shall” insert “, or the updater-name in the22

updater-stmt”.23

[281:18-19 12.4.3.2p3] Editor: Replace “or” by a comma; after “subroutine-stmt” insert “, or the updater-24

name in the updater-stmt”.25

[282:1- Note 12.4+] Editor: Insert a new note:26

NOTE 12.4a
If generic-spec is generic-name and interfaces are provided for both functions and updaters, one
should probably provide a a function with the same dummy argument characteristics and result
variable type, kind, and rank as each updater’s dummy argument characteristics and acceptor
variable type, kind, and rank, and vice versa.

[283:9 12.4.3.4.1p2] Editor: After “function” insert “or updater”.27

[284:8 12.4.3.4.2p1] Editor: Replace “function” by “dummy”.28

12 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

[284:11-14 12.4.3.4.2p2] Editor: Delete “function’s”. Delete “of the function”.1

[286:3 12.4.3.4.5p3] Editor: After “functions” insert “or updaters”.2

[286:4-5 12.4.3.4.5p3] Editor: Delete “or”, change period to “, or” insert a list item:3

• one is an updater with nonzero rank and the other is not known to be a function.4

[286:15 C1215] Editor: Replace “or both be functions” by “, both be functions, both be updaters, or5

one shall be a function and the other shall be an updater”.6

[286:38 12.4.3.4p5] Editor: After “functions” insert “or updaters,”.7

[289:1- 12.4.3.6+] Editor: Insert a new subclause:8

1.2.4.3.6a Specific accessors9

An ACCESSOR statement specifies that a function and an updater are grouped together to form a10

specific accessor.11

R1217a accessor-declaration-stmt is ACCESSOR (accessor-interface, accessor-interface)12

[[, accessor-attr-spec] . . . ::] accessor-decl-list13

R1217b accessor-interface is name14

R1217c accessor-attr-spec is access-spec15

or INTENT (intent-spec)16

or OPTIONAL17

or POINTER18

or SAVE19

R1217d accessor-decl is accessor-entity-name [=> accessor-pointer-init]20

R1217e accessor-pointer-init is lbracket initial-accessor-target , initial-accessor-target rbracket21

or (/ initial-accessor-target , initial-accessor-target /)22

R1217f initial-accessor-target is procedure-name23

C1222a (R1217c) The name shall be the name of a nonintrinsic function or updater, or the name of an24

abstract interface of a nonintrinsic function or updater that has explicit interface. If is declared25

by a procedure-declaration-stmt it shall be previously declared.26

C1222b (R1217a) One accessor-interface shall specify a function and the other accessor-interface shall27

specify an updater. The updater shall specify the same dummy arguments as the function, with28

the same names. The names and all attributes of corresponding dummy arguments shall be29

identical. The characteristics of the result variable of the function and the acceptor variable30

of the updater shall be identical, except that the function result value may be allocatable or a31

pointer.32

NOTE 12.13a
An acceptor variable cannot be allocatable or a pointer.

C1222c (R1217d) If => appears in accessor-decl , the accessor entity shall have the POINTER attribute.33

C1222d (R1217f) The procedure-name shall be the name of a nonelemental external or module function34

c© ISO/IEC 2010 – All rights reserved 13

ISO/IEC TR 99999:2010(E)

with explicit interface, or a nonelemental external or module updater.1

C1222e (R1217e) One initial-accessor-target shall specify a function and the other shall specify an up-2

dater. The characteristics of the function shall be identical to the characteristics of the accessor-3

interface that specifies a function, except that the function may be pure even if the accessor-4

interface is not, and the characteristics of the updater shall be identical to the characteristics5

of the accessor-interface that specifies an updater, except that the updater may be pure even if6

the accessor-interface is not.7

C1222f (R1217b) If accessor-entity-name is neither a pointer nor an actual argument, accessor-interface8

shall not specify an abstract interface.9

If accessor-entity-name is neither a pointer nor an actual argument the accessor-interface specifications10

specify a specific function and a specific updater that correspond to the accessor. If accessor-entity-name11

is either a pointer nor an actual argument the accessor-interface specifications specify the characteristics12

of the functions and updaters that can correspond to the accessor.13

[289:13+ 12.5.1] Editor: Insert new syntax rules and constraints, and a new paragraph:14

R1218a accessor-reference is procedure-designator [actual-args]15

R1218b actual-args is ([actual-arg-spec-list])16

C1223a (R1218a) The procedure-designator shall designate an accessor.17

Unlike a reference to a function, if an accessor name appears without actual-args it nonetheless specifies18

invocation of the accessor unless it is an actual argument associated with a dummy procedure, or a19

proc-target in a pointer assignment statement. For this reason, a procedure shall have explicit interface20

where it is invoked if it has an accessor dummy procedure argument. If it is desired to invoke the accessor21

when it appears in these contexts, actual-args shall appear.22

NOTE 12.15a
If a dummy argument is a dummy accessor procedure, it is not possible to invoke the associated
actual argument before or after invoking the procedure. It is not sensible to do so because the only
possible use would be to return a procedure pointer. The acceptor variable of an updater cannot
be a pointer, and therefore not a procedure pointer, and therefore the result of the function cannot
be a procedure pointer.

[289:15+ 12.5.1] Editor: Insert new syntax rules and constraints23

R1219a updater-reference is procedure-designator [actual-args]24

C1223a (R1218a) The procedure-designator shall designate an updater.25

[291:3 12.5.2.1p1] Editor: Replace “either a subroutine reference or a function reference” by “a reference26

to a subroutine, function or accessor”.27

[292:5 12.5.2.1p1] Editor: Insert a new paragraph before “Exactly”:28

“In a reference to an updater, the value to be accepted is considered to be an actual argument that29

corresponds to the acceptor variable, which is considered to be a dummy argument.”30

[292:10 12.5.2.2p1] Editor: Replace “function-reference” by “updater-reference, function-reference, or”31

[302:2 12.5.3p1] Editor: Replace “a function-reference or by” by “an accessor-reference, a function-32

14 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

reference, or”.1

[302:18+ 12.5.4p1+] Editor: Insert new subclauses:2

12.5.4a Updater reference3

An updater is invoked when an accessor-reference appears in a variable definition context. The value4

to be accepted is considered to be an actual argument associated with the acceptor variable. When an5

updater is invoked, all actual argument expressions are evaluated, then the arguments are associated,6

and then the updater is executed. When the actions specified by the updater are completed the value7

in the variable definition context has been accepted. In a reference to an elemental updater, all array8

arguments shall have the same shape.9

12.5.4b Updater reference as an actual argument10

When a subroutine or function completes execution, if an updater reference corresponds to an actual11

argument that does not have INTENT(IN), the updater is invoked to accept the value of that actual12

argument before a branch resulting from an alternate return occurs.13

12.5.4c Accessor reference as an actual argument14

When a subroutine, function, or updater is invoked, if any dummy argument that does not have IN-15

TENT(OUT) corresponds to an accessor reference, the function specified by the accessor is invoked to16

evaluate the actual argument to be associated with the dummy argument before the procedure is exe-17

cuted. If any dummy argument that does not have INTENT(IN) corresponds to an accessor reference,18

the updater specified by the accessor is invoked to accept the value of the dummy argument after the19

procedure completes execution and before a branch resulting from an alternate return occurs.20

[303:38-39 12.5.5.2p4] Editor: After “a function name” by “an accessor name, a function name,”; delete21

“or”; after “subroutine name” insert “, or an updater name”.22

[304:14 12.5.5.4p2] Editor: Replace “a function or” by “an accessor, a function, or a”23

[305:20 12.6.2.1p1] Editor: Replace “or FUNCTION” by “, FUNCTION, or UPDATER”.24

[305:23 12.6.2.1p2] Editor: Replace “or FUNCTION” by “, FUNCTION, or UPDATER”.25

[305:35 C1247] Editor: Replace “or subroutine-stmt” by “subroutine-stmt , or updater-stmt”.26

[308:17+ 12.6.2.3+] Editor: Insert a new subclause:27

12.6.2.3a Updater subprogram28

1 An updater subprogram is a subprogram that has an UPDATER statement as its first statement.29

2 An updater subprogram defines an updater procedure.30

R1236a updater-subprogram is updater-stmt31

[specification-part]32

[execution-part]33

[internal-subprogram-part]34

end-updater-stmt35

R1236b updater-stmt is [prefix] UPDATER updater-name36

([dummy-arg-name-list]) [(ACCEPT acceptor-name)]37

c© ISO/IEC 2010 – All rights reserved 15

ISO/IEC TR 99999:2010(E)

R1236c end-updater-stmt is END [UPDATER [updater-name]]1

C1261a (R1236g) If ACCEPT appears, acceptor-name shall not be the same as updater-name.2

C1261b (R1236a) An ENTRY statement shall not appear within the updater.3

C1261c (R1236a) An internal updater subprogram shall not contain an internal-subprogram-part .4

C1261d (R1236c) If updater-name appears in the end-updater-stmt , it shall be identical to the updater-5

name specified in the updater-stmt .6

3 The name of the updater is updater-name.7

4 The type and type parameters of the updater name may be specified by a type specification in the8

UPDATER statement or by the acceptor variable name appearing in a type declaration statement in the9

specification-part of the scoping unit of the updater subprogram. They shall not be specified both ways.10

If they are not specified either way, they are determined by the implicit typing rules in force within the11

scoping unit of the updater. If the updater is an array, this shall be specified by specifications of the12

name of the acceptor variable within the scoping unit of the accessor.13

5 The acceptor variable is considered to be a dummy argument. Unless the VALUE attribute is specified14

for it within the updater part, it has the INTENT(IN) attribute, and this may be confirmed by explicit15

specification. The specifications of the acceptor variable attributes, the specification of dummy argument16

attributes, and the information in the UPDATER statement, collectively define the characteristics of17

the updater (12.3.1).18

NOTE 12.40a
An acceptor variable cannot be a pointer or allocatable.

6 If ACCEPT appears, the name of the acceptor variable is acceptor-name and all occurrences of the19

updater name in execution-part statements in the scoping unit of the updater refer to the updater itself.20

If ACCEPT does not appear, the acceptor variable name is updater-name and all occurrences of the21

updater name in execution-part statements in the scoping unit of the updater are references to the22

acceptor variable.23

7 The characteristics of the updater where it is referenced in a variable definition context are the charac-24

teristics of the acceptor variable.25

[309:7-8 12.6.2.5p1] Editor: Delete “or”; Before “Its interface” insert “, or by an updater-subprogram26

whose initial statement contains the word MODULE,”.27

[312:18 C1276] Editor: After “function” insert “or updater”.28

[314:14 12.8.3p1] Editor: Delete the first sentence: “An elemental subroutine. . . actual arguments”29

because its first part repeats C1289, and its second part doesn’t say anything new.30

[314:20+ 12.8.3+] Editor: Insert a new subclause:31

12.8.4 Elemental updater actual arguments32

An elemental updater has only scalar dummy arguments, but may have array actual arguments. All33

actual arguments shall be conformable. If an actual argument is an array the effect is the same as would34

be obtained if the updater were applied separately, in array element order, to corresponding elements of35

each array actual argument.36

16 c© ISO/IEC 2010 – All rights reserved

ISO/IEC TR 99999:2010(E)

NOTE 12.51
The acceptor value is considered to be a dummy argument. The value to be accepted is considered
to be an actual argument.

[425:8+ 15.1p1+] Editor: Insert a note:1

NOTE 15.0a
Updaters are not interoperable.

[441:20+ 16.3.3p1+] Editor: Insert a subclause:2

16.3.3a Updater acceptor variables3

For each UPDATER statement there is an acceptor variable. If there is no ACCEPT clause, the acceptor4

variable has the same name as the updater subprogram; otherwise the acceptor variable has the name5

specified in the ACCEPT clause.6

[441:17-20 16.3.3] Editor: In lieu of the previous edit, delete subclause 16.3.3 because it duplicates7

12.6.2.2p4 [307:12-20], and 16.3.3a would duplicate 12.6.2.3a paragraph 5.8

[444:14 16.5.1.4p2(10)] Editor: After “in a subroutine-stmt” insert “, in an updater-stmt ,”9

[444:15 16.5.1.4p2(11+)] Editor: Insert a list item:10

“(11a)an acceptor-name in an updater-stmt ,”11

c© ISO/IEC 2010 – All rights reserved 17

	Introduction
	History
	The problem to be solved
	What this report proposes

	General
	Scope
	Normative References

	Requirements
	General
	Summary
	Updater definition syntax
	Invocation of an updater
	Generic accessors
	Specific accessors
	Reference to updaters
	Extension of function reference syntax
	Reference to accessors
	Reference to accessors and updaters in variable-definition contexts

	Required editorial changes to ISO/IEC 1539-1:2010(E)

