
Reference number of working document: ISO/IEC JTC1/SC22/WG5 Nxxxx

Date: 2018-08-11

Reference number of document: ISO/IEC TS 99999:2018(E)

Committee identification: ISO/IEC JTC1/SC22

Secretariat: ANSI

Information technology — Programming languages — Fortran —
Coroutines and Iterators

Technologies de l’information — Langages de programmation — Fortran —
Coroutines et Iterators

c© ISO/IEC 2018

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying or microfilm, without permission in writing
from the publisher. Droits de reproduction réservés. Aucune partie de cette publication ne peut être
reproduite ni utilisée sous quelque forme que ce sout et par aucun procédé, électronique ou mécanique,
y compris la photocopie et les microfilms, sans l’accord écrit de l’éditeur.

ISO/IEC Copyright Office • Case Postale 56 • CH-1211 Genève • Switzerland

ISO/IEC TS 99999:2018(E)

Contents
0 Introduction . ii

0.1 History . ii
0.2 What this technical specification proposes . iii

1 General . 1
1.1 Scope . 1
1.2 Normative References . 1

2 Requirements . 2
2.1 General . 2
2.2 Summary . 2
2.3 Coroutine syntax and semantics . 3
2.4 ITERATOR and ITERATE construct syntax 9
2.5 VALUE attribute . 13
2.6 PRESENT (A) . 13

3 Examples . 14
3.1 Forward communication example . 14
3.2 First reverse communication example . 14
3.3 Second reverse communication example . 15
3.4 Example using a coroutine . 16
3.5 Iterator for a queue . 17
3.6 Preserving automatic variables . 18

4 Required editorial changes to ISO/IEC 1539-1:2010(E) 19

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national stan-
dards bodies (ISO member bodies). The work of preparing International Standards is normally carried
out through ISO technical committees. Each member body interested in a subject for which a techni-
cal committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of technical committees is to prepare International Standards. Draft International Stan-
dards adopted by the technical committees are circulated to the member bodies for voting. Publication
as an International Standard requires approval by at least 75% of the member bodies casting a vote.

ISO/IEC TS 99999:2018(E) was prepared by Joint Technical Committee ISO/IEC/JTC1, Information
technology, Subcommittee SC22, Programming languages, their environments and system software in-
terfaces.

This technical specification specifies an extension to the computational facilities of the programming
language Fortran. Fortran is specified by the International Standard ISO/IEC 1539-1:2010(E).

It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax specified by this technical
specification be included in the next revision of the Fortran International Standard without change unless
experience in the implementation and use of this feature identifies errors that need to be corrected, or
changes are needed to achieve proper integration, in which case every reasonable effort will be made to
minimize the impact of such changes on existing implementations.

c© ISO/IEC 2018– All rights reserved i

ISO/IEC TS 99999:2018(E)

0 Introduction

0.1 History

Many problems in computational mathematics require the algorithm that solves the problem to access
software that is provided by the user of that algorithm, to specify the problem. Examples include
evaluating integrals, solving differential equations, minimization, and nonlinear parameter estimation.

In Fortran this has been provided in three ways.

• The procedure that implements the algorithm invokes a procedure of a specific name,

• The name of the procedure that defines the problem is passed to the procedure that implements
the algorithm, or

• The procedure that implements the algorithm returns to the invoker whenever it requires a com-
putation that defines the problem.

The first two of these methods are called forward communication; the last is called reverse communica-
tion.

Forward communication works well in the simple cases where the procedure that implements the algo-
rithm can provide all the information needed by the procedure that defines the problem.

Before Fortran 2003, when additional information was needed, programs exploited methods known to
reduce the reliability of programs or increase the cost of their development and maintenance: global
data. Fortran 2003 provides type extension, which reduces the problem substantially, but can introduce
other problems such as performance penalties caused by pointer components.

Programs developed in Fortran 2003 would probably use type extension to pass additional data to the
procedure that defines the problem. Revising existing programs that use reverse communication to use
type extension could be prohibitively expensive, especially if rigorous recertification is required, while
revising them to use coroutines would be relatively inexpensive.

Reverse communication does not require information necessary to define the problem to be passed
through the procedure that implements the algorithm, or require the procedure that defines the problem
to access such information by using global data or type extension. There is, however, no structured
support for reverse communication in Fortran. In order for the procedure to continue after the calcu-
lations that define the problem, it has to know it isn’t starting a problem, and how to find its way to
continue its process. This usually involves GO TO statements, or transformation of the procedure into
an inscrutable “state machine.” The state of the computation is usually represented in SAVE variables,
which causes the procedure that implements the algorithm not to be thread safe.

In some problems, it is desirable to preserve the activation record, primarily to avoid re-creating au-
tomatic variables. If a procedure is used to solve a large number of related problems, and it requires
substantial “working storage,” re-creating working storage as automatic variables, or allocating allocat-
able variables or pointers that do not have the SAVE attribute, can be a significant fraction of the total
cost of solving one problem. Alternatives are allocatable variables or pointers with the SAVE attribute.
This is not thread safe.

If coroutines had been available during the development of Fortran 2003, defined input/output would
not have been needed. Instead, it could have been possible to specify a coroutine to process the input
or output list, having an unlimited polymorphic argument to associate with each list item in turn.

ii c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

0.2 What this technical specification proposes

This technical specification proposes a form of procedure known as a coroutine. A coroutine has the
property that an instance of it can be suspended and later resumed, to proceed from the point where it
was suspended. Local entities and the state of execution of the procedure are preserved in an activation
record, and do not become undefined when the procedure is suspended. The invoking scope retains the
activation record, and can have a separate activation record for each thread.

A related form of procedure, known as an iterator, is also proposed.

Suspending and resuming a coroutine (or iterator) is more efficient that returning from and calling a
subroutine again, because the activation record does not need to be destroyed and reconstructed.

Coroutines and iterators have a long history in languages, including CLU, Sather, C#, Java, Python,
and Julia. Tasks and protected variables in Ada are very similar to coroutines.

c© ISO/IEC 2018– All rights reserved iii

ISO/IEC TS 99999:2018(E)

Information technology – Programming Languages – Fortran

Technical Specification: Coroutines and iterators

1 General

1.1 Scope1

This technical specification specifies extensions to the programming language Fortran. The Fortran2

language is specified by International Standard ISO/IEC 1539-1:2010(E). The extensions are varieties3

of procedures known as coroutines and iterators. They have the property that an instance of one can4

be suspended, and later resumed to continue execution from the point where it was suspended. Local5

entities and the state of execution of the procedure are preserved in an activation record, and do not6

become undefined when the procedure is suspended. The invoking scope retains the activation record,7

and can have a separate activation record for each thread.8

Clause 2 of this technical specification contains a general and informal but precise description of the9

extended functionalities. Clause 3 contains several illustrative examples. Clause 4 contains detailed10

instructions for editorial changes to ISO/IEC 1539-1:2010(E).11

1.2 Normative References12

The following referenced documents are indispensable for the application of this document. For dated13

references, only the edition cited applies. For undated references, the latest edition of the referenced14

document (including any amendments) applies.15

ISO/IEC 1539-1:2010(E) : Information technology – Programming Languages – Fortran; Part 1: Base16

Language17

c© ISO/IEC 2018– All rights reserved 1

ISO/IEC TS 99999:2018(E)

2 Requirements1

2.1 General2

The following subclauses contain a general description of the extensions to the syntax and semantics of3

the Fortran programming language to provide coroutines and iterators.4

2.2 Summary5

2.2.1 What is provided6

This technical specification defines new forms of procedures, called coroutines and iterators, an instance7

of which can be suspended and later resumed to continue execution from the point where it was sus-8

pended. Local entities and the state of execution of the procedure are preserved in an activation record,9

and do not become undefined when the procedure is suspended. The invoking scope retains the activation10

record, and can have a separate activation record for each thread. There is presently nothing comparable11

in Fortran, but coroutines and iterators have been provided by other programming languages, including12

CLU, Sather, C#, Java, Python, and Julia. Tasks and protected variables in Ada are very similar to13

coroutines.14

This technical specification defines statements to define coroutines and iterators, statements to suspend,15

resume, and terminate coroutines, an inquiry function to determine whether a coroutine is suspended,16

and a looping control construct that invokes an iterator.17

2.2.2 Coroutines18

A coroutine is a procedure that can be suspended, and later resumed to continue execution from the19

point where it was suspended. Local entities and the state of execution of a coroutine are preserved in20

an activation record, and do not become undefined when it is suspended. The invoking scope retains the21

activation record, and can have a separate activation record for each thread. A coroutine can be pure,22

but it cannot be elemental. Each invocation of a coroutine creates a new instance, independently of23

whether an instance is already in a state of execution. A coroutine identifier shall have explicit interface.24

2.2.3 Iterators25

An iterator is a procedure that produces a result value, as does a function subprogram. It is intended to26

be used as an abstraction to produce the elements of a data structure, one at a time. It can be invoked27

or resumed only within the ITERATE statement of an ITERATE construct. Local entities and the state28

of execution of an iterator are preserved in an activation record, and do not become undefined when it29

is suspended. An iterator identifier shall have explicit interface.30

2.2.4 ITERATE construct31

The ITERATE construct uses an iterator to process the elements of a data structure, one at a time.32

When execution of the construct commences, the iterator is invoked and a new instance of it is created.33

Therefore, an ITERATE construct within another ITERATE construct can use the same iterator. Each34

time the iterator suspends it provides a value, and the body of the construct is executed. After the35

construct body is executed, the iterator is resumed at the first executable construct after the SUSPEND36

statement that suspended execution of the iterator. Execution of the ITERATE construct completes,37

the activation record of the instance is destroyed, and the instance of the iterator ceases to exist when38

• the iterator executes a RETURN or END statement,39

• an EXIT statement that belongs to the construct is executed,40

2 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

• an EXIT or CYCLE statement that belongs to an outer construct and is within the range of the1

construct is executed,2

• a branch occurs from a statement within the ITERATE construct to a statement that is neither3

the end-iterate-stmt nor within the range of the construct, or4

• a RETURN statement within the construct is executed.5

2.2.5 SUSPEND statement6

When an instance of a coroutine or iterator executes a SUSPEND statement, execution of the instance7

is suspended; local variables of the instance do not become undefined. For a coroutine, the sequence of8

execution continues after the CALL statement that invoked the coroutine, or after the RESUME state-9

ment that resumed execution of the same instance of the coroutine, whichever occurred most recently.10

For an iterator, the sequence of execution proceeds to the block of the ITERATE construct.11

2.2.6 RESUME statement12

When a RESUME statement is executed the procedure designator in the RESUME statement shall13

designate an instance variable of a suspended instance of a coroutine. Execution of the specified instance14

of the specified coroutine is resumed by re-establishing argument associations and transferring control15

to the first executable construct after the SUSPEND statement that most recently suspended execution16

of the specified instance of the coroutine. Expressions in the specification part are not re-evaluated,17

and the specification part is not elaborated again. Therefore, local variables of the instance, including18

automatic variables, retain the same bounds, length parameter values, definition status, and values if19

any, that they had when the instance was suspended.20

NOTE 2.1

Because argument associations are re-established, dummy arguments might have different extents,
length parameter values, allocation status, pointer association status, or values (if any).

2.2.7 The TERMINATE statement21

When a TERMINATE statement is executed, the activation record of the specified instance of the22

specified coroutine is destroyed and that instance of the coroutine cannot thereafter be resumed. The23

procedure designator in the TERMINATE statement shall designate an instance variable of a suspended24

instance of the coroutine.25

An instance of a coroutine that is not suspended shall not be terminated.26

2.3 Coroutine syntax and semantics27

2.3.1 Coroutine definition syntax28

A coroutine is a subprogram. It can be an external subprogram, a module subprogram, an internal29

subprogram, or a separate module procedure. It can be bound to a type. It can be pure, but it cannot30

be elemental. Each invocation of a coroutine creates a new instance, independently of whether an31

instance is already in a state of execution.32

R1226a coroutine-subprogram is coroutine-stmt33

[specification-part]34

[execution-part]35

[internal-subprogram-part]36

end-coroutine-stmt37

c© ISO/IEC 2018– All rights reserved 3

ISO/IEC TS 99999:2018(E)

R1226b coroutine-stmt is [prefix] COROUTINE coroutine-name1

[([dummy-arg-name-list])]2

R1226c end-coroutine-stmt is END COROUTINE [coroutine-name]3

C1251a (R1226b) Neither declaration-type-spec nor ELEMENTAL shall appear in prefix .4

C1251b (R1226a) An internal coroutine subprogram shall not contain an internal-subprogram-part .5

C1251c (R1226c) If a coroutine-name appears in the end-coroutine-stmt it shall be identical to the6

coroutine-name in the coroutine-stmt .7

NOTE 2.2

When a coroutine is invoked by a CALL statement, a new activation record is created, regardless
whether it is invoked recursively. Therefore, whether RECURSIVE or NON RECURSIVE appears
in the prefix is irrelevant.

Unresolved Technical Issue Recursive Coroutine

The appearance of RECURSIVE or NON RECURSIVE in the prefix could be prohibited instead
of ignored.

2.3.2 Coroutine interface body8

The interface of a coroutine can be declared by an interface body.9

R1205 interface-body is ...10

or coroutine-stmt11

[specification-part]12

end-coroutine-stmt13

2.3.3 Coroutine reference14

2.3.3.1 General15

An identifier of a coroutine shall have explicit interface.16

2.3.3.2 Coroutine instance variables17

Within a scoping unit, if the coroutine-name of a coroutine, or a name associated with one by use or host18

association, appears as the procedure-designator in a CALL statement, or as an actual argument that19

corresponds to a dummy argument that does not have the VALUE attribute, a local instance variable20

identified by that procedure-designator exists and has a scope of that inclusive scope.21

A coroutine procedure pointer, or a dummy procedure that has a coroutine interface, is an instance22

variable.23

If an object is of a type that has a type-bound coroutine, that object contains an instance variable for24

that coroutine, identified by that binding.25

An instance variable is not a local variable if it is26

• a dummy coroutine without the VALUE attribute,27

• accessed by use or host association, or28

• represented within an object of derived type that has a binding to the coroutine, and the object is29

not a local variable.30

4 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

Otherwise, it is a local variable.1

An instance variable is a derived-type object that identifies a coroutine and represents an instance of2

it. The types of different instance variables are not necessarily the same, but they all have a private3

allocatable activation record component, and a private procedure pointer component that identifies the4

coroutine. If it is a dummy procedure with a coroutine interface, the association of the procedure pointer5

component is that of the corresponding actual argument. Otherwise, if it is a coroutine pointer, the6

procedure pointer component has default initialization of NULL(). Otherwise, the procedure pointer7

component is associated with the coroutine specified by the procedure-designator .8

2.3.3.3 Coroutine activation records9

An instance variable has a private allocatable component that represents the coroutine’s activation10

record. It is allocated if and only if the instance of the coroutine is active. The activation record11

represents the state of execution of the instance, and its unsaved local variables. If a local variable of a12

coroutine has the SAVE attribute, it is shared by all instances; it is not part of an activation record.13

The activation record component of a local instance variable is initially deallocated, even if it is a dummy14

coroutine with the VALUE attribute. A local instance variable does not initially represent an active15

instance when the procedure is invoked, even if it is a dummy coroutine with the VALUE attribute and16

the corresponding actual argument represents an active instance. Unlike a dummy data object with the17

VALUE attribute, the allocation status, and value if any, of the allocatable component that represents18

its activation record, is not copied from the actual argument that corresponds to a dummy coroutine19

with the VALUE attribute.20

NOTE 2.3

Because the activation record component of an instance variable is allocatable, it is or becomes
deallocated, and the instance it represents is terminated, under the same conditions that an allo-
catable component of a derived-type object is or becomes deallocated.

An instance of a coroutine is accessible if and only if is represented by an accessible instance variable21

that represents an active instance.22

2.3.3.4 Creating an instance of a coroutine23

When a coroutine is invoked by a CALL statement, an instance of the coroutine is created. The activation24

record component of its instance variable is allocated as if by an ALLOCATE statement. Expressions25

within its specification part are evaluated and its specification part is elaborated, creating local variables26

of the instance that do not have the SAVE attribute. When the instance executes a RETURN, END,27

or SUSPEND statement, execution of the CALL statement is completed.28

2.3.3.5 Suspending a coroutine instance29

When an instance of a coroutine executes a SUSPEND statement, execution of the instance of the30

coroutine is suspended and the execution sequence continues by executing the executable construct31

following the CALL statement that invoked that instance of that coroutine, or the RESUME statement32

that resumed execution of that instance of that coroutine, whichever occurred most recently. The33

activation record component of its instance variable is not deallocated.34

2.3.3.6 Resuming a coroutine instance35

An instance of a coroutine is resumed by executing a RESUME statement (2.2.6) with a designator36

that designates its instance variable. When it is resumed, argument associations are re-established and37

control is transferred to the first executable construct after the SUSPEND statement that most recently38

c© ISO/IEC 2018– All rights reserved 5

ISO/IEC TS 99999:2018(E)

suspended execution of the instance of the coroutine represented by the instance variable used to resume1

it. Its activation record is not re-created. Expressions in the specification part are not re-evaluated,2

and the specification part is not elaborated again. Therefore, local variables of the instance, including3

automatic variables, retain the same bounds, length parameter values, definition status, and values if4

any, that they had when the instance was suspended.5

NOTE 2.4

Because argument associations are re-established, dummy arguments might have different extents,
length parameter values, allocation status, pointer association status, or values (if any).

If a coroutine is invoked before a DO CONCURRENT construct begins execution, the same instance of it6

shall not be resumed during more than one iteration of that execution of that construct. A coroutine shall7

not be invoked using the same instance variable during more than one iteration of a DO CONCURRENT8

construct. If a coroutine is invoked during an iteration of a DO CONCURRENT construct, that instance9

of it shall be terminated during that iteration, and it it shall not be terminated or resumed during a10

different iteration of that execution of that construct.11

If a coroutine is invoked from within a CRITICAL construct or from within a procedure invoked during12

execution of a CRITICAL construct, the same instance of it shall be terminated during that execution13

of that construct, and it shall not be resumed after that execution of that construct completes. If a14

coroutine is invoked before execution of a CRITICAL construct begins, the same instance of it shall not15

be resumed from within that execution of that CRITICAL construct or from within a procedure invoked16

during that execution of that CRITICAL construct.17

Unresolved Technical Issue Critical

The restrictions concerning critical sections might not be necessary or useful.

An instance of a coroutine that has ceased to exist shall not be resumed.18

2.3.3.7 Terminating a coroutine instance19

An instance of a coroutine is terminated, and the activation record component of the instance variable20

used to terminate the instance is deallocated, when21

• a RETURN or END statement is executed by the instance of the coroutine,22

• a TERMINATE statement that designates the instance variable is executed,23

• a CALL statement invokes the coroutine using its instance variable,24

• the instance variable is an unsaved local variable, and execution of the procedure in which it is a25

local variable is terminated by execution of a RETURN or END statement,26

• the instance variable is the proc-pointer-object in a pointer assignment statement that is executed,27

• the instance variable is a proc-pointer-object in a NULLIFY statement that is executed, or28

• the instance variable corresponds to a dummy procedure pointer that has INTENT(OUT) and the29

CALL statement or function reference is executed.30

Unresolved Technical Issue Duplicate

Executing a CALL statement that references a coroutine using a designator with which an instance
is associated could alternatively be defined to be an error.

2.3.4 Coroutine procedure pointers31

A coroutine procedure pointer is an instance variable. The ASSOCIATED intrinsic function inquires32

whether the procedure pointer component is associated with a coroutine. The SUSPENDED intrinsic33

6 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

function inquires whether its activation record component is allocated, that is, whether it represents an1

instance of a coroutine that has not terminated.2

A coroutine procedure pointer shall not be a coindexed object or a subobject of a coindexed object.3

2.3.5 SUSPEND statement4

Execution of a suspend statement within a coroutine suspends execution of an instance of that coroutine5

(2.3.3.5).6

Execution of a suspend statement within an iterator suspends execution of an instance of that iterator7

(2.4.4).8

R1241a suspend-stmt is SUSPEND9

C1270a (R1241a) A suspend-stmt shall appear only within the inclusive scope of a coroutine or iterator.10

2.3.6 RESUME statement11

Execution of a RESUME statement causes execution of an instance of a coroutine to be resumed (2.3.3.6).12

R1223a resume-stmt is RESUME procedure-designator [([actual-arg-spec-list])]13

C1237b (R1223a) The procedure-designator shall designate a coroutine instance variable.14

C1237b (R1223a) The procedure-designator shall not be a coindexed object or a subobject of a coindexed15

object.16

The procedure-designator shall designate a suspended instance of a coroutine.17

When a RESUME statement is executed, argument associations are re-established, but expressions in the18

specification part of the coroutine are not re-evaluated and the specification part is not elaborated again.19

Therefore, local variables, including automatic variables, of the instance retain the same bounds, length20

parameter values, definition status, and values if any, that they had when the instance was suspended.21

NOTE 2.5

Because argument associations are re-established, dummy arguments might have different extents,
length parameter values, allocation status, pointer association status, or values (if any).

When the instance of the coroutine that is resumed by execution of a RESUME statement executes a22

SUSPEND, RETURN, or END statement, execution of the RESUME statement is completed.23

2.3.7 SUSPENDED (PROC)24

Description. Whether a coroutine is suspended.25

Class. Transformational function.26

Argument. PROC shall be a procedure-designator that designates a coroutine instance variable. It27

shall not be a coindexed object or a subobject of a coindexed object.28

Result Characteristics. Default logical.29

Result Value. The result has the value true if and only if the activation record component of PROC30

is allocated.31

c© ISO/IEC 2018– All rights reserved 7

ISO/IEC TS 99999:2018(E)

2.3.8 The TERMINATE statement1

Execution of a TERMINATE statement causes an instance of a coroutine to be terminated (2.3.3.7).2

R1223b terminate-stmt is TERMINATE (procedure-designator [terminate-opt-list]3

R1223c terminate-opt is STAT = stat-variable4

or ERRMSG = errmsg-variable5

C1237c (R1223b) The procedure-designator shall designate a coroutine instance variable.6

C1237d (R1223b) The procedure-designator shall not be a coindexed object or a subobject of a coindexed7

object.8

The procedure-designator shall designate an instance variable of a coroutine, and its activation record9

component shall be allocated. A coroutine instance shall not terminate itself by executing a TERMI-10

NATE statement.11

When a TERMINATE statement is executed, the activation record component of the instance variable12

is deallocated, as if by a DEALLOCATE statement. The effects of STAT= and ERRMSG= specifiers13

include the same effects as in a DEALLOCATE statement. In addition, if a coroutine instance terminates14

itself by executing a TERMINATE statement, a processor-dependent nonzero value shall be assigned to15

stat-variable, and that value shall be different from any value that might be assigned by a DEALLOCATE16

statement. If the activation record component of the instance variable is not allocated or a coroutine17

instance terminates itself by executing a TERMINATE statement, and STAT= does not appear, an18

error condition exists.19

2.3.9 Coroutine to process input or output statement20

The READ and WRITE statements are revised to include an optional PROCESSOR=coroutine-name21

specifier. The PROCESSOR=specifier shall not appear in a statement that specifies namelist or list-22

directed formatting, or that has both ASYNCHRONOUS=’YES’ and SIZE= specifiers. The specified23

coroutine shall have the following interface:24

coroutine coroutine-name (unit, item, format, iostat, iomsg, size)25

integer, intent(in) :: unit26

class(*), INTENT(intent-spec), optional :: item(..)27

character(*), intent(in), optional :: format28

integer, intent(out), optional :: iostat29

character(*), intent(inout), optional :: iomsg30

integer, intent(out), optional :: size31

end coroutine coroutine -name32

If the statement is a READ statement, the intent-spec of its item argument shall be OUT. If it is a33

WRITE statement, the intent-spec of its item argument shall be IN.34

When a data transfer statement with a PROCESSOR=coroutine-name specifier is executed, the specified35

coroutine is invoked even if there is no first list item. The processor resumes the coroutine if and only36

if there is another list item, to process each list item. The item argument is present if and only if there37

is another list item.38

The format argument is present if and only if the data transfer statement is a formatted data transfer39

statement. The value of the format argument begins and ends with parentheses, and corresponds to40

the item argument, as if the item and format were processed without using the coroutine. It might41

contain edit descriptors even if the item argument is not present; for example, it might contain control42

8 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

or character string edit descriptors.1

If a list item is of a derived type that has a pointer or allocatable direct component, and the data2

transfer statement is a formatted data transfer statement, the corresponding format item shall be a3

DT edit descriptor. If the corresponding format item is a DT edit descriptor, or the list item is of a4

derived type that has a pointer or allocatable direct component, the list item is associated with the item5

argument. Otherwise, the list item is expanded as specified in subclause 9.6.3 of ISO/IEC 1539-1:2010(E)6

The iostat or iomsg argument is present if and only if the corresponding specifier appears in the data7

transfer statement; it is associated with the specified entity.8

If an error, end-of-file, or end-of-record condition occurs, and the iostat argument is present, the9

coroutine shall assign the appropriate value to that argument, as specified in subclause 9.11 of ISO/IEC10

1539-1:2010(E). If the iomsg argument is present, a value may be assigned to it. If the iostat argument11

is absent, the coroutine shall return rather than suspending. If no error occurs and the iostat argument12

is present, the value zero shall be assigned to it. A value shall not be assigned to the iomsg argument13

unless a nonzero value is or would be assigned to the iostat argument. If no error, end-of-file, or14

end-of-record condition occurs the coroutine shall suspend.15

The size argument is present if and only if the data transfer statement is a READ statement in which16

a SIZE= specifier appears. If it is present, a value shall be assigned to it, to specify the number of17

characters transferred from the file.18

If the data transfer statement is a formatted data transfer statement, data transfer statements other19

than those that specify an internal file that are executed while the coroutine is active are processed as20

if ADVANCE=’NO’ were specified, even if ADVANCE=’YES’ is specified in the statement that caused21

the coroutine to be executed.22

After processing the last list item, or if the coroutine assigns a nonzero value to the iostat argument,23

the processor terminates the coroutine. Because the coroutine might use asynchronous data transfer24

statements, after terminating the coroutine, the processor performs a wait operation if the statement25

that caused the coroutine to be executed is not an asynchronous data transfer statement.26

If the coroutine terminates instead of suspending, an error condition occurs in the statement that caused27

the coroutine to be executed.28

2.4 ITERATOR and ITERATE construct syntax29

2.4.1 ITERATOR syntax30

An iterator is a subprogram. It can be an external subprogram, a module subprogram, an internal31

subprogram, or a separate module procedure. It can be bound to a type. It can be pure, but it cannot32

be elemental.33

R1232a iterator-subprogram is iterator-stmt34

[specification-part]35

[execution-part]36

[internal-subprogram-part]37

end-iterator-stmt38

R1232b iterator-stmt is [prefix] ITERATOR iterator-name39

([dummy-arg-name-list]) [RESULT (result-name)]40

c© ISO/IEC 2018– All rights reserved 9

ISO/IEC TS 99999:2018(E)

R1232c end-iterator-stmt is END ITERATOR [iterator-name]1

C1258a (R1232b) If RESULT appears, result-name shall not be the same as iterator-name.2

C1258b (R1232b) If RESULT appears, the iterator-name shall not appear in any specification statements3

in the scoping unit of the iterator subprogram.4

C1258c (R1232b) ELEMENTAL shall not appear in prefix .5

C1258d (R1232a) An internal iterator subprogram shall not contain an internal-subprogram-part .6

C1258e (R1232c) If an iterator-name appears in the end-iterator-stmt it shall be identical to the iterator-7

name in the iterator-stmt .8

The result variable name of an iterator is the result-name if one appears; otherwise it is the iterator-name.9

NOTE 2.6

When an iterator is invoked by an ITERATE construct, a new activation record is created, even if
it is invoked recursively. Therefore, whether RECURSIVE or NON RECURSIVE appears in the
prefix is irrelevant.

Unresolved Technical Issue Recursive Iterator

The appearance of RECURSIVE or NON RECURSIVE in the prefix could be prohibited instead
of ignored.

2.4.2 Iterator interface body10

An iterator interface can be declared by an interface body.11

R1205 interface-body is ...12

or iterator-stmt13

[specification-part]14

end-iterator-stmt15

2.4.3 ITERATE construct syntax16

An ITERATE construct is used to iterate over the elements of a data structure, which elements are17

provided by invoking and resuming an iterator.18

R837a iterate-construct is iterate-stmt19

block20

end-iterate-stmt21

R837b iterate-stmt is [iterate-construct-name:] ITERATE [CONCURRENT]22

(iteration-control)23

24

R837c iteration-control is variable = iterator-reference25

or data-pointer-object => iterator-reference26

or declaration-type-spec [, ALLOCATABLE] ::27

variable-name [(array-spec)] = iterator-reference28

or declaration-type-spec [, POINTER] ::29

variable-name [(array-spec)] => iterator-reference30

31

10 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

R837d end-iterate-stmt is END ITERATE [iterate-construct-name]1

C828a (R837a) If the iterate-stmt of an iterate-construct specifies an iterate-construct-name, the corre-2

sponding end-iterate-stmt shall specify the same iterate-construct-name. If the iterate-stmt of an3

iterate-construct does not specify an iterate-construct-name, the corresponding end-iterate-stmt4

shall not specify an iterate-construct-name.5

C828b (R837c) If = appears and ALLOCATABLE does not appear, array-spec shall specify explicit6

shape. If ALLOCATABLE appears or => appears, array-spec shall specify deferred shape.7

C828c (R837c) If = appears, the type, type parameters, and rank of variable or variable-name shall8

conform to those of the result of iterator-reference in the same way that those of variable and9

expr are required to conform in an intrinsic assignment-stmt .10

C828d (R837c) If => appears, the type, type parameters, and rank of data-pointer-object or variable-11

name shall conform to those of the result of iterator-reference in the same way that those of12

data-pointer-object and data-target are required to conform in a pointer-assignment-stmt .13

C828e (R837c) The variable shall not be a coindexed object or a subobject of a coindexed object.14

C828f (R837c) If declaration-type-spec appears it shall specify the same declared type and kind type15

parameters as the result of iterator-reference, and shall not specify any assumed length type16

parameters.17

C828g (R837c) If => appears, either declaration-type-spec shall appear, or data-pointer-object shall18

have the POINTER attribute.19

C828h (R837c) If CONCURRENT appears, declaration-type-spec shall appear.20

C828j (R837a) If CONCURRENT appears, the construct shall neither contain an EXIT statement21

that belongs to the construct or an outer construct, nor a CYCLE statement that belongs to an22

outer construct.23

R1219a iterator-reference is procedure-designator ([actual-arg-spec-list])24

C1225a (R1219a) The procedure-designator shall designate an iterator.25

C1225b (R1219a) The procedure-designator shall not be a coindexed object or a subobject of a coindexed26

object.27

If declaration-type-spec appears, it specifies the type and type parameter values of the variable-name,28

and variable-name is a construct entity of the ITERATE construct. If => also appears it has the pointer29

attribute, and this may be confirmed by the appearance of POINTER. If = appears the variable-name30

may be declared to have the ALLOCATABLE attribute. It does not have any additional attributes.31

2.4.4 ITERATE construct and iterator execution semantics32

When the iterate-stmt of an ITERATE construct is executed the construct becomes active. If the33

procedure-designator in iterator-reference is a pointer, it shall be associated with an iterator. The values34

of the nondeferred length parameters of variable, variable-name, or data-pointer-object shall be the same35

as corresponding parameters of the result of iterator-reference.36

The iterator is invoked and an activation record is created for an instance of it when the iterate-stmt37

is executed. The instance of the iterator is associated with the iterate-stmt ; it is not represented by an38

instance variable. Execution of the iterator begins with its first executable construct.39

c© ISO/IEC 2018– All rights reserved 11

ISO/IEC TS 99999:2018(E)

While the construct is active, the following occur in the specified order:1

1. If = appears the iterator result value is assigned to variable or variable-name as if by an assignment2

statement; if => appears the result value is assigned to data-pointer-object or variable-name as if3

by pointer assignment.4

NOTE 2.7

Because the assignment of the result of iterator-reference to variable or variable-name is as if by
an assignment statement, it might cause finalization of variable, invocation of defined assignment,
or allocation or reallocation of an allocatable variable.

2. The block of the ITERATE construct is executed.5

3. The instance of the iterator is resumed by re-establishing argument associations and transferring6

control to the first executable construct after the SUSPEND statement whose execution suspended7

its execution. Expressions in the specification part are not re-evaluated and the specification part8

is not elaborated again. Therefore, local variables, including automatic variables, of the instance9

retain the same bounds, length parameter values, definition status, and values if any, that they10

had when the instance was suspended.11

NOTE 2.8

Because argument associations are re-established, dummy arguments might have different extents,
length parameter values, allocation status, pointer association status, or values (if any).

Invoking or resuming the iterator, assigning a value, and executing the block , is an iteration. If12

declaration-type-spec appears, each iteration has a different instance of variable-name.13

If CONCURRENT appears, the processor may invoke and resume the iterator, and assign it value, in14

the sequence of execution that began execution of the construct, and then execute each corresponding15

block in a separate sequences of execution. Alternatively, it may invoke and resume the iterator, assign16

its value, and execute the corresponding block, in a separate sequence of execution for each iteration.17

The processor shall ensure that when the iterator is invoked or resumed, no other iteration of the same18

execution of the construct resumes the construct’s instance of the iterator until it executes a RETURN,19

END, or SUSPEND statement. In either case, the separate sequences of execution may be executed in20

any order, or concurrently.21

NOTE 2.9

If the processor chooses to invoke or resume the iterator, assign values to instances of variable-
name, and execute corresponding blocks, independently within separate sequences of execution,
instead of invoking and resuming the iterator within the sequence of execution that initiated the
construct, this effectively requires an iterator to be a monitor procedure, or that invoking or
resuming it is protected as if by a critical section.

Because the variable-name is a construct entity, if it is allocatable, it is not allocated before the iterator22

is invoked, and it becomes deallocated at the end of each iteration. The variable is not a construct23

entity.24

When the iterator executes a RETURN or END statement, a value is not assigned to variable or25

variable-name, or associated with data-pointer-object . If the result variable is allocatable, it shall be26

deallocated before execution of the RETURN or END statement completes. Whether a non-allocatable27

result variable is finalized is processor dependent.28

12 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

NOTE 2.10

Because an iterator is allowed but not required to have assigned a value to its result variable when
it executes a RETURN or END statement, requiring a processor to finalize the result variable
would require the processor to keep track of its definition status.

If CONCURRENT does not appear, execution of an ITERATE construct completes, the activation1

record of the iterator instance is destroyed, the iterator instance ceases to exist, and the construct2

becomes inactive when3

• the iterator executes a RETURN or END statement,4

• an EXIT statement that belongs to the ITERATE construct is executed,5

• an EXIT or CYCLE statement that belongs to an outer construct and is within the range of the6

ITERATE construct is executed,7

• a branch occurs from a statement within the range of the ITERATE construct to a statement that8

is neither the end-iterate-stmt nor within the range of the ITERATE construct, or9

• a RETURN statement within the ITERATE construct is executed.10

If CONCURRENT appears, execution of an ITERATE construct completes, the activation record of the11

iterator instance is destroyed, the iterator instance ceases to exist, and the construct becomes inactive12

when the iterator executes a RETURN or END statement and execution of all iterations is completed.13

When execution of the ITERATE construct completes, if declaration-type-spec does not appear14

• if = appears and block was executed, the value of variable is the value assigned by the ITERATE15

statement before the final execution of block , or assigned during the final execution of block ;16

otherwise its definition status and value (if any) are the same as before execution of the ITERATE17

construct, or18

• if => appears and block was executed, the association status of data-pointer-object is as established19

by the ITERATE statement before the final execution of block , or established during the final20

execution of block ; otherwise its association status is the same as before execution of the ITERATE21

construct.22

NOTE 2.11

The variable might become undefined during the final execution of block . The association status
of data-pointer-object might become undefined during the final execution of block .

2.4.5 Restrictions on DO CONCURRENT constructs23

Subclause 8.1.6.7 of ISO/IEC 1539-1:2010(E) concerning restrictions on DO CONCURRENT constructs24

is revised to apply to ITERATE CONCURRENT constructs as well.25

2.5 VALUE attribute26

The VALUE attribute shall be allowed for a dummy coroutine.27

2.6 PRESENT (A)28

The PRESENT intrinsic function inquires whether an optional dummy argument is associated with an29

actual argument in a function or iterator reference, a CALL statement, or a RESUME statement.30

c© ISO/IEC 2018– All rights reserved 13

ISO/IEC TS 99999:2018(E)

3 Examples1

This subclause presents four examples of a simple quadrature procedure. One uses forward communica-2

tion, two use reverse communication without coroutine syntax, and the fourth uses reverse communica-3

tion with coroutine syntax. An illustration how a coroutine can be used to preserve an activation record4

primarily for the purpose of avoiding re-creating automatic variables follows.5

3.1 Forward communication example6

subroutine INTEGRATE (A, B, ANSWER, ERROR, FUNC)7

real, intent(in) :: A, B ! Bounds of the integral8

real, intent(out) :: ANSWER, ERROR9

interface10

real function FUNC (X)11

real, intent(in) :: X12

end function FUNC13

end interface14

real, parameter :: ABSCISSAE(...) = [...]15

real, parameter :: WEIGHTS(...) = [...]16

integer :: I17

answer = weights(1) * func(0.5*(b+a))18

do i = 2, size(weights)19

answer = answer + weights(i) * func(0.5*(b+a) + (b-a) * abscissae(i))20

answer = answer + weights(i) * func(0.5*(b+a) - (b-a) * abscissae(i))21

end do22

answer = (b - a) * answer23

error = ...24

end subroutine INTEGRATE25

3.2 First reverse communication example26

This example uses computed GO TO to resume computation after each integrand value is computed.27

Notice that the DO construct cannot be used because computation needs to be resumed within the28

construct. Further, this subroutine is not thread safe.29

subroutine INTEGRATE (A, B, ANSWER, ERROR, WHAT)30

real, intent(in) :: A, B ! Bounds of the integral31

real, intent(inout) :: ANSWER, ERROR32

integer, intent(inout) :: WHAT33

real, parameter :: ABSCISSAE(...) = [...]34

real, parameter :: WEIGHTS(...) = [...]35

real, save :: RESULT36

integer, save :: I37

go to (10, 20, 30), what38

i = 139

answer = 0.5 * (a + b)40

what = 141

return42

10 result = answer * weights(1)43

11 i = i + 144

if (i > size(weights)) then45

what = 046

answer = (a - b) * result47

14 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

error = ...1

return2

end if3

answer = 0.5*(b+a) + (b-a) * abscissae(i)4

what = 25

return6

20 result = result + weights(i) * answer7

answer = 0.5*(b+a) - (b-a) * abscissae(i)8

what = 39

return10

30 result = result + weights(i) * answer11

go to 1112

end subroutine INTEGRATE13

This subroutine is used as follows:14

what = 015

do16

call integrate (a, b, answer, error, what)17

if (what == 0) exit18

! evaluate the integrand at ANSWER and put the value into ANSWER19

end do20

! Integral is in ANSWER here21

3.3 Second reverse communication example22

This example avoids GO TO statements and statement labels by structuring the quadrature subroutine23

as a “state machine.” The state indicates how to resume computation after each integrand value is24

computed. Although a DO construct can be used, control flow is difficult to follow because it is controlled25

by the state variable. This subroutine is also not thread safe.26

subroutine INTEGRATE (A, B, ANSWER, ERROR, WHAT)27

real, intent(in) :: A, B ! Bounds of the integral28

real, intent(inout) :: ANSWER, ERROR29

integer, intent(inout) :: WHAT30

real, parameter :: ABSCISSAE(...) = [...]31

real, parameter :: WEIGHTS(...) = [...]32

real, save :: RESULT33

integer, save :: I34

do35

select case (what)36

case (0)37

i = 138

answer = 0.5 * (a + b)39

what = 140

return41

case (1)42

result = weights(1) * answer43

what = 244

case (2)45

i = i + 146

if (i > size(weights)) then47

what = 048

c© ISO/IEC 2018– All rights reserved 15

ISO/IEC TS 99999:2018(E)

answer = (a - b) * result1

error = ...2

return3

end if4

answer = 0.5*(b+a) + (b-a) * abscissae(i)5

what = 36

return7

case (3)8

result = result + weights(i) * answer9

answer = 0.5*(b+a) - (b-a) * abscissae(i)10

what = 411

return12

case (4)13

result = result + weights(i) * answer14

what = 215

end select16

end do17

end subroutine INTEGRATE18

This example is used the same way as the previous example.19

3.4 Example using a coroutine20

The coroutine organization is much clearer than the previous two examples.21

coroutine INTEGRATE (A, B, ANSWER, ERROR)22

real, intent(in) :: A, B ! Bounds of the integral23

real, intent(out) :: ANSWER, ERROR24

real, parameter :: ABSCISSAE(...) = [...]25

real, parameter :: WEIGHTS(...) = [...]26

integer :: I27

answer = 0.5*(b+a)28

suspend29

result = answer * weights(1)30

do i = 2, size(weights)31

answer = 0.5*(b+a) + (b-a) * abscissae(i)32

suspend33

result = result + answer * weights(i)34

answer = 0.5*(b+a) - (b-a) * abscissae(i)35

suspend36

result = result + answer * weights(i)37

end do38

answer = (b - a) * result39

error = ...40

end subroutine INTEGRATE41

This coroutine is used as follows:42

call integrate (a, b, answer, error)43

do while (suspended(integrate))44

! Evaluate the integrand at ANSWER and put the value into ANSWER45

resume integrate (a, b, answer, error)46

end do47

! Integral is in ANSWER here48

16 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

3.5 Iterator for a queue1

This example performs a breadh-first traversal of a binary tree. It illustrates that the block of an2

ITERATE construct might change the object that is the attention of its iterator. Whether this “makes3

sense” in the general case is the responsibility of the iterator and other procedures that act on its4

arguments, or variables to which it has access by use or host association, not the processor or the5

standard.6

type :: Tree_Node_t7

class(tree_node_t), pointer :: LeftSon => NULL(), RightSon => NULL()8

end type Tree_Node_t9

10

class(tree_node_t), pointer :: Root => NULL()11

12

type :: Queue_Element_t13

class(*), pointer :: Thing => NULL()14

class(queue_element_t), pointer :: Next => NULL()15

end type Queue_Element_t16

17

type :: Queue_t18

class(queue_element_t), pointer :: Head => NULL(), Tail => NULL()19

contains20

procedure :: DeQueue21

procedure :: EnQueue22

end type Queue_t23

24

type(queue_t) :: MyQueue25

26

call Fill_The_Tree (root)27

call myQueue%enQueue (root) ! Doesn’t enqueue if root is NULL()28

iterate (class(*) :: node => myQueue%deQueue())29

! This is an example where it ought to be possible to invoke (or resume) a30

! type-bound iterator (or function) that has no arguments other than31

! the passed-object argument without ().32

select type (node)33

class (tree_node_t)34

call node%processIt35

call myQueue%enQueue (node%leftSon)36

call myQueue%enQueue (node%rightSon)37

end select38

end iterate39

40

contains41

42

iterator DeQueue (TheQueue) result (Thing)43

class(queue_t), intent(inout) :: TheQueue44

class(*), pointer :: Thing45

class(queue_element_t), pointer :: This46

do47

this => theQueue%head48

if (.not. associated(this)) return ! terminate ITERATE construct49

thing => this%thing50

theQueue%head => this%next51

deallocate (this)52

c© ISO/IEC 2018– All rights reserved 17

ISO/IEC TS 99999:2018(E)

suspend ! Process Thing and come back here1

end do2

end iterator DeQueue3

4

subroutine Enqueue (TheQueue, Thing)5

class(queue_t), intent(inout) :: TheQueue6

class(*), intent(in), pointer :: Thing7

class(queue_element_t), pointer :: This8

if (associated(thing)) then9

allocate (this)10

this%thing => thing11

if (associated(theQueue%tail)) then12

theQueue%tail%next => this13

else14

theQueue%head => this15

end if16

theQueue%tail => this17

end if18

end subroutine Enqueue19

3.6 Preserving automatic variables20

If one needs to invoke a procedure to solve several differently-sized problems, and the expense of creating21

local automatic variables is significant, it can be invoked initially in such a way as to create its automatic22

variables with the maximum extents necessary for the entire spectrum of problems to be solved. It can23

then be suspended, which does not destroy its automatic variables. When it is resumed to solve each24

problem, the automatic variables are intact.25

18 c© ISO/IEC 2018– All rights reserved

ISO/IEC TS 99999:2018(E)

4 Required editorial changes to ISO/IEC 1539-1:2010(E)1

To be provided in due course.2

c© ISO/IEC 2018– All rights reserved 19

	Introduction
	History
	What this technical specification proposes

	General
	Scope
	Normative References

	Requirements
	General
	Summary
	Coroutine syntax and semantics
	ITERATOR and ITERATE construct syntax
	VALUE attribute
	PRESENT (A)

	Examples
	Forward communication example
	First reverse communication example
	Second reverse communication example
	Example using a coroutine
	Iterator for a queue
	Preserving automatic variables

	Required editorial changes to ISO/IEC 1539-1:2010(E)

