
Asynchronous Tasks in Fortran 

Introduction 
The principle of asynchrony is fundamental to many aspects of computing, and appears in many 
forms, many of which already overlap with the use of Fortran. Fortran supports asynchronous 
execution already via coarrays, since two images execute independent of one another unless 
explicitly synchronized. However, some use cases for asynchrony are a poor fit for coarrays, either 
due to the need for data to be distributed across images and explicitly communicated between 
them, or because the number of images is fixed and - except for termination - does not change 
throughout the execution of a program. 

It is also possible to achieve asynchrony using DO CONCURRENT, but this assumes that an 
implementation generates the appropriate type of paralleism required for asynchronous 
execution. In any case, DO CONCURRENT imposes a number of restrictions on the code that can 
be executed within that scope, particularly that impure procedures are not permitted. This 
excludes the possibility of long-running and/or complex tasks that cannot be contorted to fit 
within the scope of a single DO CONCURRENT region. 

Related Efforts 
Ada, C and C++ are ISO languages with support for asynchronous execution in one form another, 
with features introduced in 1995, 2011 and 2011, respectively. We will briefly highlight the 
asynchronous parts of these languages below. 

Within the domain of high-performance computing (HPC), the standardized directives known as 
OpenMP and OpenACC support asynchronous execution, which is used in Fortran applications 
today. The use cases for directive-based asynchronous execution in Fortran applications provide 
use cases for the features we are proposing. 

Ada Tasks 

Ada has tasks a first-class feature in the language. Ada tasks are similar to OS threads, in that 
they can act asynchronously relative to their parent, and can act on data from the parent scope, 
for example with a discriminate (argument) that is a pointer to data allocated and initialized 
elsewhere. In contrast to coarrays, Ada tasks can be created and destroyed within a program, 
tasks can create and wait on additional tasks, and tasks can access global variables. 

https://dwheeler.com/lovelace/s13s1.htm 

C Threads 

The ISO C11 language introduced both threads and atomic operations, which are primitives that 
allow the implementation of asynchronous execution similar to Ada tasks. For example, the user 
can spawn a thread, provide it with pointers to data that it can manipulate. Because C provides 
nothing like Ada's protected objects, users must take care and use atomic operations when 



multiple threads access data concurrently. Users can also built their own protected accesses using 
mutexes. 

C++ Threads 

C++11 added equivalent features to C11 - threads, atomics, mutexes - as well as related features 
like async, promise and future. In later versions of the standard, C++ has introduced parallel 
algorithms (e.g. std::for_each, which has the ability to behave like Fortran 2008 DO 
CONCURRENT). 

OpenMP Tasks 

OpenMP 3.1 introduced tasks on top of the existing threading model. The 3.1 version of tasks did 
not support dependencies, other than parent tasks waiting on child tasks. In OpenMP 4.0, task 
dependencies were introduced, which permitted the synchronization of tasks using memory 
locations as identifiers. The implementation of task dependencies is considerably more 
complicated, and is a cautionary tale for Fortran. 

OpenACC Async 

OpenACC has async, which provides a queue-like mechanism for allowing asynchronous 
execution of certain features. This is a natural match when OpenACC targets another device, such 
as a GPU, which naturally executes asynchronously relative to the host controlling it. 
OpenACC async does not allow interactions between different asynchonrous regions, and 
furthermore offers multiple streams of asynchrony, enumerated as integers. Because 
asynchronous regions cannot interact, it is legal for an implementation to ignore asynchrony and 
wait for completion of such regions before proceeding. This allows naive implementations or 
ones that only target CPUs, where asynchronous parallel execution might not be productive. 

Motivating Examples 

Basic Overlap 

Modern computers have many different execution units, some which are fully general, like CPU 
cores, and others which are specialized. For example, Intel's latest server CPU (codename: 
Sapphire Rapids) has at least three different on-chip accelerators, including the Data Streaming 
Accelerator (DSA), which is capable of executing data parallel operations like fill, copy and 
compare faster than the CPU cores, and also asynchronously relative to them. While current 
Fortran compilers could utilize the DSA for DO CONCURRENT, the current semantics provide no 
mechanism for the programmer to encourage such a region to be executed on the DSA while 
returning control immediately to allow the CPU to execute the following code. 
https://www.intel.com/content/www/us/en/developer/articles/technical/scalable-io-between-
accelerators-host-processors.html 

Recent NVIDIA GPUs also contain asynchronous copy engines within the processor, in addition to 
the asynchronous DMAs for copying outside of the GPU. 



https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-
ampere-architecture/ https://docs.nvidia.com/cuda/cuda-driver-api/api-sync-
behavior.html https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-
architecture-whitepaper.pdf 

Similar compute engines to DSA exist for the capability required by Fortran's MATMUL, for 
example. Processors from Apple, Intel and NVIDIA have dedicated matrix units, which are 
separate silicon from the general purpose logic and may be capable of executing independently, 
i.e. asynchronously. 
https://nod.ai/comparing-apple-m1-with-amx2-m1-with-
neon/ https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/advanced-
matrix-extensions/overview.html 

Even without special processing engines, all modern CPUs, including ones found in cheap cell 
phones, contain multiple cores. While Fortran permits programs to utilize parallelism across cores 
using coarrays and DO CONCURRENT, the former does not support shared-memory and thus 
requires unnecessary copies of data between images when cores can access the same data 
coherently, and the latter is limited to highly structured data parallelism and prohibits impure 
procedures. There are uncountable examples of less structured models for multicore parallelism, 
including OS threads, that can be expressed in terms of asynchronous tasks. For example, if one 
has N independent operations and N cores, annotating the operations as asynchronous allows 
them to run in parallel across cores. While it is possible for compilers to do such transformations, 
they rarely do, because proving the profitability is difficult and being too aggressive here risks 
offending the user. This is not unlike the possibility for autoparallelization of DO loops, and the 
reason why DO CONCURRENT exists to allow programmers to describe the desired behavior of a 
program to the compiler. 
Finally, and of great relevance to the Fortran community, are the use of accelerators or 
coprocessors, which are attached to CPUs via a high-bandwidth interconnect, and which support 
a large portion of Fortran programming language. Recently, both NVIDIA and Intel have begun 
to support DO CONCURRENT on GPUs, but the current semantics do not permit the programmer 
to describe the asynchronous nature of GPU computing, which is default in native APIs like 
OpenCL, CUDA, HIP and SYCL (or Intel's Data Parallel C++). Fortran programs that use OpenMP 
or OpenACC can achieve asynchronous behavior in DO CONCURRENT, but not without stepping 
outside of the standard. 

Asynchronous Communication 
Asynchronous communication is regarded as an important tool for scaling distributed 
applications. Library-based communication such as MPI and OpenSHMEM includes non-blocking 
operations, which are allowed to behave asynchronously relative to the calling context. While 
coarray operations may be asynchronous between images, i.e. "one-sided", collective operations 
are synchronous - there is no mechanism to express a pipeline of collectives, or overlap of 
collectives with computation. 

Quantum chemical many-body theory 

This is a specific example of the basic overlap described above, which has been proven to be 
enormously beneficial to performance in a real-world scientific application. 



Quantum chemical many-body theory requires the computation of a large number of terms 
(dozens to hundreds), many of which are independent of one another. In a Fortran 
implementation where DO CONCURRENT and intrinsics like MATMUL are capable of being executed 
asynchronously relative to the rest of the program, the availability of an asynchronous or task-like 
mechanism allows a more efficient implementation of this than is otherwise possible. 
Shown below is the computational graph associated with one version of the populare CCSD 
method. It has been implemented using GPU parallelism, and asynchronous execution of data 
parallel kernels and matrix multiplication operations enables better utilization of the GPU and 
overlap of computation and data movement, leading to a 2.5x speedup relative to the 
synchronous GPU implementation. 

 

https://pubs.acs.org/doi/abs/10.1021/ct100584w https://dl.acm.org/doi/10.1145/2425676.242568
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Opportunities for Asynchrony in Fortran 
There are at least four different types of opportunities for asynchrony in Fortran: 

1. DO CONCURRENT execution on coprocessors, specialized or not. 
2. Data parallel intrinsics such as MATMUL. 
3. Coarray communications, especially collectives. 
4. General code not included above. 



We will describe the associated use cases in more detail below. 

DO CONCURRENT 
If DO CONCURRENT is executed a separate processor, as is available with the Intel and NVIDIA 
compilers today, then the implementation looks like this: 
Before: 

DO CONCURRENT (i=1:N) SHARED(X,Y,Z) 
  Z(i) = X(i) + Y(i) 
END DO 
CALL toimia() 
After: 

COPY X(1:N) and Y(1:N) to GPU 
ALLOCATE Z(1:N) on the GPU 
INVOKE Z(:) = X(:) + Y(:) 
WAIT on the GPU 
COPY Z(1:N) to the CPU 
CALL toimia() 
In contrast, by adding the asynchronous feature of OpenACC, we will achieve the following: 

Before: 

!$ACC PARALLEL LOOP ASYNC 
DO CONCURRENT (i=1:N) SHARED(X,Y,Z) 
  Z(i) = X(i) + Y(i) 
END DO 
CALL toimia() 
!$ACC WAIT 
After: 

COPY X(1:N) and Y(1:N) to GPU 
ALLOCATE Z(1:N) on the GPU 
INVOKE Z(:) = X(:) + Y(:) 
CALL toimia() 
WAIT on the GPU 
COPY Z(1:N) to the CPU 
Whichever of the time spent in toimia() or WAIT+COPY is lesser will be eliminated from the 
program execution time, because they will happen concurrently. The pointless time spent in WAIT 
will be replaced with something useful. 

Data parallel operations 

NVIDIA Fortran supports execution of numerous data parallel operations on GPUs, 
including MATMUL, TRANSPOSE, and array assignments. The underlying library implementation of 
these routines in CUDA is naturally asynchronous, but the Fortran compiler has no standard 
syntax to expose that to users. Today, it must rely on OpenACC directives, i.e. 
the async statement described above, to allow the programmer to express their intent and to 
coordinate one or more streams of execution that are permitted to execute asynchronously 
relative to one another. 
It is not possible to solve this problem with DO CONCURRENT because the compiler may map 
these statements to the GPU, and Fortran provides no way to map DO CONCURRENT to different 
devices, or nest multiple DO CONCURRENT regions, where the outer one uses CPU threads and the 
inner one uses a GPU. 



Asynchronous Communication 

In the following program, there is no need to synchronize images between coarray collectives, or 
finish any of them before initiating the PRINT operation. 

subroutine stuff(A,B,C,D) 
implicit none 
double, intent(inout) :: A, B, C 
double, intent(in) :: D(:) 
call co_sum(A) 
call co_min(B) 
call co_max(C) 
print*,D 
end subroutine stuff 
In MPI-3, it is natural to express the independent nature of these operations using nonblocking 
collectives. 

subroutine stuff(A,B,C,D) 
use mpi_f08 
implicit none 
double, intent(inout) :: A, B, C 
double, intent(in) :: D(:) 
type(MPI_Request) :: R(3) 
call MPI_Iallreduce(MPI_IN_PLACE, A, 1, MPI_DOUBLE, MPI_SUM, 
MPI_COMM_WORLD, R(1)) 
call MPI_Iallreduce(MPI_IN_PLACE, B, 1, MPI_DOUBLE, MPI_MIN, 
MPI_COMM_WORLD, R(2)) 
call MPI_Iallreduce(MPI_IN_PLACE, C, 1, MPI_DOUBLE, MPI_MAX, 
MPI_COMM_WORLD, R(3)) 
print*,D 
call MPI_Waitall(3,R,MPI_STATUSES_IGNORE) 
end subroutine stuff 
An asynchronous syntax for coarray communications would allow Fortran compilers to exploit 
asynchronous communication libraries like MPI. 

Other Asynchronous Operations 

Any time two or more operations or regions of code contains no conflicting data references, they 
may be executed independently. In theory, compilers can recognize this automatically, but as 
nearly all forms of asynchronous execution require non-zero runtime overhead, compilers will not 
do so unless they can prove profitability. Proving both the lack of conflicting data references and 
profitability is extremely difficult. This is the reason why essentially all successful implementations 
of parallelism and asynchrony are explicit. 

In the most explicit forms of asynchrony, the programmer creates a thread in their program and 
associates with it a procedure to execute, and conflicting data references, known as race 
conditions, must be dealt with explicitly using atomic operations or other synchronization 
primitives. 

In Ada, the underlying mechanism of asynchrony is not exposed, and the programmer describes 
tasks, which will be implemented using threads or similar, by the Ada runtime library. Because 
Ada tasks are permitted to synchronous, e.g. using the rendezvous, they must be implemented in 
such a way that task synchronization cannot deadlock. This requires that tasks be mapped to 



parallel execution agents or that the runtime library schedule tasks concurrently, e.g. using 
coroutines. 

In contrast to Ada, OpenMP tasks are not required to use independent execution agents and 
therefore cannot synchronize with one another without the possibility of deadlock, in contrast to 
OpenMP threads. Similarly, OpenACC async does not require an independent execution agent 
and cannot synchronize with other asynchronous regions. 
While Ada, C and C++ allow tasks/threads to synchronize, but OpenMP tasks and OpenACC 
async may not, they both permit essentially arbitrary code to execute within them, limited only by 
the semantics of concurrent data access. All of the above provide mechanics for describing the 
potential for concurrent data access, whether or not they permit such access to implement 
synchronization. 

Syntax and Semantics for Fortran Asynchrony 
The terms asynchronous, concurrent and parallel are heavily used in computing, not always in 
consistent ways. Because Fortran already defines ASYNCHRONOUS in the context of data, we will 
not reuse it to describe execution, at least as syntax. We will however, use the term to describe 
when execution units are independent of one another. 

Inspired by Ada, the syntax TASK will be used to describe a region that is asynchronous relative 
to the parent task. However, like OpenMP tasks, Fortran tasks should not permit synchronization 
between tasks since this requires a more involved implementation. Like DO CONCURRENT, 
a TASK is a programmer hint that it is allowed, desired, and/or profitable to implement the 
contained code using an asynchronous mechanism, such as an OS thread or a dedicated 
execution unit that operates independently of the primary CPU computing logic. 
A TASK extends BLOCK. It is expected that implementing TASK as BLOCK is legal, in the same way 
that implementing DO CONCURRENT as DO is legal, but that high-quality implementations will do 
more. 
Because tasks - including the implicit task of the program - may execute independently of one 
another, the programmer must not make conflicting data accesses. Concurrent reads are not 
conflicting and always permitted. Writes that are concurrent with other reads or writes will have 
unspecified, implementation-defined behavior. Unlike DO CONCURRENT, which explicitly prohibits 
impure procedures, Fortran tasks may call any procedures. The burden is on the programmer to 
avoid conflicting data accesses, in the same way that coarray programs should not do so. 
While tasks execute independently of their parent task, a sequence of tasks created by the same 
parent will execute in sequence relative to one another. In order to relax this behavior, tasks may 
be associated with different streams of execution. A stream of execution for tasks is labeled with 
an integer. 

Streams of tasks are synchronized to the parent task via the TASK WAIT [(stream-
number[,stream-number]...)] statement, where stream-number is a scalar-integer-
expression. If no stream index is provided, the TASK WAIT statement synchronizes all streams. 
The above syntax and semantics of streams is similar to OpenACC async, and thus is known to 
be implementable by multiple compilers. It is also similar to OpenMP constructs with NOWAIT or 
tasks without dependencies. 
Ada tasks provide a number of important semantics to exclude problematic programs. For 
example, a parent task may not terminate while a child task has an outstanding data reference, 
since this would create incorrect and difficult to debug programs. Similarly, Fortran tasks 



implicitly wait on child tasks unless the child task contains no references to data associated with 
the parent task. 

("Concurrent and Real-Time Programming in Ada" by Alan Burns and Andy Wellings) 

Fortran tasks need a way to describe the access properties of data. Locality specifiers are similar 
to what OpenMP and OpenACC use to describe the behavior or asynchronous/task regions and 
can be reused. A Fortran TASK region begins with LOCALITY statements such as the following: 
TASK [(stream-number[,stream-number]...)] 
  LOCALITY(SHARED) :: X(:) ! shared but conflicting accesses are 
prohibited 
  LOCALITY(LOCAL_INIT) :: IBEGIN, IEND, IX 
  REAL :: A 
  A = COS(IX) 
  X(IBEGIN:IEND) = A 
END TASK 
The above task assigns to a range of the array X, as prescribed by the indices provided by the 
parent task. 

The REDUCE locality specifier is not permitted in tasks. All data declared within a task cannot be 
accessed by the parent but may be accessed by child tasks, according to the child tasks locality 
statements. 
 
 


