
f90gl and C Interoperability

A report to J3 on a user’s perspective of proposed C interoperability in the current

draft of the next Fortran standard

J3/00-121

William F. Mitchell
Mathematical and Computational Sciences Division

National Institute of Standards and Technology
Gaithersburg, MD 20899-8910

February 24, 2000

1 Introduction

The purpose of this report is to provide user feedback on the C interoperability parts of the current
draft of the next Fortran standard (J3/00-007 January 13, 2000, henceforth the proposed standard).
It is hoped that this information will be useful to J3 as they continue the development of this
standard.

There are three primary reasons for needing a C interoperability standard in Fortran:

1. writing mixed language programs,

2. calling routines in a Fortran library from a C program, and

3. calling routines in a C library from a Fortran program.

In this report I only consider the third situation. In particular, it is primarily based on an exam-
ination of the implementability of the Fortran 90 bindings for the OpenGL library (henceforth, the
bindings) under the proposed standard. Currently the bindings have been implemented in Fortran
90 in the program f90gl. Such a program is by definition non-standard (since it uses mixed language
programming) and relies heavily on preprocessing the Fortran source code, wrapper functions on
both sides of the Fortran/C interface, and additional C code. The goals of a new implementation
using standard C interoperability are:

1. the bindings are implemented as specified,

2. the interface handles all C interoperability issues for the user,

3. existing programs that use f90gl require no changes,

4. preprocessing of the interface code is not required,

5. no C code is used in the implementation,

6. a minimum number of Fortran wrappers are used, with most of the interface consisting of
INTERFACE blocks for the C routines, and

7. the implementation of the interface is portable.

1

J3/00-121

It is not possible to achieve all of these goals under the current proposed standard, nor do I
perceive the possibility of achieving all of the goals under any modification of the standard. But
it is hoped that some of the suggestions in this report will effect the final version of the standard
in such a way that it minimizes the deviation from these goals, and improves the usability of C
interoperability for all Fortran/C users.

In Sections 2 and 3 I present all of the interface issues I encountered while designing an implemen-
tation of the bindings using C interoperability in the proposed standard. Each subsection addresses
one issue. Code snippets are presented for clarification. Usually these consist of a C prototype
for the function to which the interface is being designed, Fortran code that would appear in the
specification part of the opengl module, and Fortran code that would appear in the subroutine part
of that module, the distinction of which should be clear from context. It should also be understood
that the code surrounding these snippets will contain any required USE statements. In many cases,
this code is believed to represent a correct solution to the stated issue, and is presented to verify
that I have not misinterpreted some aspect of the proposed standard. In other cases, the proposed
standard is not sufficient to address the issue, and the code snippets either illustrate the problem or
present possible solutions under a modification of the proposed standard.

Finally, Section 4 contains a summary of the recommended modifications to the proposed stan-
dard.

2 Constants

2.1 Most kind type parameters

The bindings provide named constants to be used as kind type parameters to match Fortran types
with C types. Most of these kind type parameters can be defined directly from the ISO C BINDING
kind type parameters, for example

INTEGER, PARAMETER :: GLFLOAT = C_FLOAT

The short integers are more problematic as illustrated by GLSHORT. The bindings specify that
INTEGER(GLSHORT) corresponds to the C type GLshort (assumed to be a C short) if the processor
supports that kind of integer, and GLint otherwise. This can be determined as follows:

! short_exists equals 1 if C_SHORT is non-negative and 0 if negative
INTEGER, PARAMETER :: short_exists = (SIGN(1,C_SHORT)+1)/2, &

GLSHORT = short_exists*C_SHORT + (1-short_exists)*C_INT

The f90gl kind type parameters are not fully portable. Their definition depends on the definition
of the corresponding type in OpenGL, which may vary among implementations. It is also remotely
possible that the OpenGL library may use a type that is not supported by ISO C BINDING (besides
the unsigned types). The following entities must be valid kind type parameters: C INT, C FLOAT,
C DOUBLE, C CHAR. Also, C SIGNED CHAR must be valid to avoid using C wrappers. However,
in practice these issues are not expected to be a problem.

The kind type parameter GLBOOLEAN will still be set to KIND(.TRUE.), which is portable,
with the option of changing it “by hand” to the processor’s kind type parameter for a one byte
logical, because there is no SELECTED LOGICAL KIND function.

2.2 GLCPTR

The type GLCPTR is used for storing, but not dereferencing, C pointers. It seems that this could
just be a type alias for C PTR in ISO C BINDINGS:

TYPEALIAS :: GLCPTR => C_PTR

The bindings state that “the derived type TYPE(GLCPTR) is provided for storing C pointers”,
but I don’t see where it makes any difference if it is a type alias instead of a derived type. If there
is some difference, then GLCPTR can be

2

J3/00-121

TYPE GLCPTR
TYPE(C_PTR) :: ptr

END TYPE

It is common in C libraries for a NULL pointer to be used for special purposes in either input
or output of a function. This means that a Fortran user must be able to assign NULL to a vari-
able of TYPE(C PTR), or at least pass NULL as an actual argument, and must also be able to
compare a variable of TYPE(C PTR) to NULL to check output results. These capabilities could be
added to ISO C BINDING. The module could contain a symbolic constant C NULL POINTER of
TYPE(C PTR) which contains the C NULL value. It could also provide a function of type default
logical, C PTR IS NULL, which takes one argument of TYPE(C PTR) and returns .TRUE. if and
only if the argument equals C NULL POINTER. (The spelling of these two new entities is, of course,
arbitrary.) Or to be more general, the module could overload the == operator to compare any two
variables of TYPE(C PTR) for equality. I assume that the usual intrinsic assignment for variables
of derived type apply to TYPE(C PTR). Thus, while there is no provision for dereferencing a C
pointer, they can be copied, compared for equality, set to NULL, and tested for NULL.

The bindings specify that GLNULLPTR is a named constant of TYPE(GLCPTR), the operator
== is extended to compare two variables of TYPE(GLCPTR), and the operator == will return
.TRUE. if GLNULLPTR is compared to a variable of TYPE(GLCPTR) that has been assigned the
C NULL pointer. The additions to ISO C BINDING suggested in the previous paragraph would
enable this. Otherwise, an implementation of the bindings would either need to make assumptions
on what a C pointer is, as is currently done in f90gl, which is not portable, or possibly use some C
code to define GLNULLPTR and the function that compares for equality.

2.3 GLUT fonts

GLUT contains several large data structures with the data to draw characters. It is necessary to
pass the address of one of these structures to the character drawing function. This should be possible
by binding a Fortran variable to the C variable containing the data, and using C LOC to get the
address to be passed. I assume that when a Fortran variable, X, is bound to a C variable with
external linkage, Y, then C LOC(X) is the same as &Y, but the current wording of the proposed
standard does not make this clear.

Using the stroke roman font as an example, GLUT contains the code

typedef struct {
const char *name;
int num_chars;
const StrokeCharRec *ch;
float top;
float bottom;

} StrokeFontRec;

StrokeFontRec glutStrokeRoman = { "Roman", 128, chars, 119.048, -33.3333 };

where chars is an array of data containing the strokes for each character.
The symbol GLUT STROKE ROMAN, which the user passes to the character drawing function,

is defined in glut.h (which the C user #includes) as

extern void *glutStrokeRoman;
#define GLUT_STROKE_ROMAN (&glutStrokeRoman)

The interface of the character drawing function is

void glutStrokeCharacter(void *font, int character);

The Fortran interface is:

3

J3/00-121

TYPE, BIND(C) :: strokefontrec
TYPE(C_PTR) :: name
INTEGER(C_INT) :: num_chars
TYPE(C_PTR) :: ch
REAL(C_FLOAT) :: top, bottom

END TYPE

TYPE(strokefontrec), BIND(C,NAME="glutStrokeRoman") :: GLUT_STROKE_ROMAN

INTERFACE
BIND(C,NAME="glutStrokeCharacter") SUBROUTINE c_glutstrokecharacter(font,ch)
TYPE(C_PTR), VALUE :: font
INTEGER(GLCINT), VALUE :: ch
END SUBROUTINE c_glutstrokecharacter

END INTERFACE

INTERFACE glutstrokecharacter
MODULE PROCEDURE f90glutstrokecharacter

END INTERFACE

SUBROUTINE f90glutstrokecharacter(font,ch)
TYPE(strokefontrec), INTENT(IN), TARGET :: font
INTEGER(GLCINT), INTENT(IN) :: ch
CALL c_glutstrokecharacter(C_LOC(font), ch)
END SUBROUTINE f90glutstrokecharacter

An example of the use of this function is

USE opengl_glut
CALL glutStrokeCharacter(GLUT_STROKE_ROMAN, INT(ICHAR("a"),GLCINT))

2.4 Enumerators

OpenGL provides many constants of type GLenum to be passed as actual arguments to the library
functions. It would be tempting to define these as a Fortran enumeration, bound to the C enum to
insure that the values agree. However, this cannot be done for several reasons. First and foremost
is that the OpenGL implementation is not required to use an enum for these constants. Indeed, I
know of at least one implementation that uses preprocessor macros. Second, the bindings state that
these constants are of type INTEGER(GLENUM), and the use of an enumeration would produce
the type TYPE(GLENUM). But in considering the use of an enumeration, two issues were found.

First, there is no binding between a Fortran enumeration and C enum to help avoid errors in
the assignment of values to the enumerators. The addition of such a binding, in which the Fortran
enumerators get their values from the C enum, would be very useful.

Second, because the enumeration is defined in a single statement, the number of enumerators is
limited by the number of continuation lines. Granted, with the increase in number of continuation
lines to 99 it is possible to define quite large enumerations, but they are still limited. In the MESA
implementation of OpenGL, GLenum contains 644 enumerators, many of which have lengthy names
(up to 31 characters), and requires 16679 non-blank characters to define the enumeration. This
requires 128 continuation lines of dense text.

One solution for larger enumerations would be to allow the same type-alias-name to be used
in more than one enum-def, with the interpretation that the second instance is a continuation of
the previously defined enumeration. However, it may be difficult to uniquely define the enumerator
values when they are not provided, especially if the definition spans multiple modules.

Another solution would be to use an ENUM construct, similar in form to the derived type
definitions, instead of an ENUM statement. Then continuation lines are not needed. Without

4

J3/00-121

providing all the proper BNF, the form is

enum-def is ENUM enum-kind-selector type-alias-name
enumerator-list...

END [ENUM [type-alias-name]]

enum-kind-selector is ,BIND(C) ::
or [kind-selector][::]

enumerator is named-constant [= scalar-int-initialization-expr]

The problem here is that it may not be possible to detect the END, since that could be another
enumerator.

3 Procedures

3.1 The easy case

Most OpenGL functions just require an interface block. These interface blocks are contained in
the specification part of the opengl module. Note that the interface block contains a generic name
because the binding states that all procedure names corresponding to OpenGL procedures are generic
names. For example, the interface block for

GLint glRenderMode(GLenum mode)

is

INTERFACE glrendermode
BIND(C,NAME="glRenderMode") INTEGER(GLINT) FUNCTION glrendermode(mode)
USE opengl_kinds
INTEGER(GLENUM), VALUE :: mode
END FUNCTION glrendermode

END INTERFACE

3.2 Short integers

When the short integers are not supported by the processor, f90gl handles the discrepancy by calling
the int version of the OpenGL routine instead of the short version, or by converting the type in a C
wrapper. Since we wish to avoid C wrappers, consider the first approach. It would be desirable to
handle this with a generic interface

void glColor3s(GLshort red, GLshort green, GLshort blue)
void glColor3i(GLint red, GLint green, GLint blue)

INTERFACE glcolor3s

BIND(C,NAME="glColor3s") SUBROUTINE glcolor3s(red,green,blue)
USE opengl_kinds
INTEGER(GLSHORT), VALUE :: red, green, blue ! or INTEGER(C_SHORT)
END SUBROUTINE

BIND(C,NAME="glColor3i") SUBROUTINE glcolor3i(red,green,blue)
USE opengl_kinds
INTEGER(GLINT),VALUE :: red, green, blue
END SUBROUTINE

END INTERFACE

5

J3/00-121

But, if C SHORT is -1, this would result in either identical interfaces (using GLSHORT) or
an illegal kind specification (using C SHORT). So the discrepancy must be resolved in a Fortran
wrapper, unless some other new feature of f2k applies. Using short exists from Section 2.1, the
interface blocks (in the specification part of the module) and wrapper functions (module procedures)
look like:

PRIVATE
PUBLIC :: glcolor3s, glcolor3i

! generic interface block for module procedure

INTERFACE glcolor3s
MODULE PROCEDURE f90glcolor3s

END INTERFACE

! generic interface block for the GLINT form, which doesn’t need a wrapper

INTERFACE glcolor3i
BIND(C,NAME="glColor3i") SUBROUTINE glcolor3i(red,green,blue)
USE opengl_kinds
INTEGER(GLINT), VALUE :: red, green, blue
END SUBROUTINE c_glcolor3i

END INTERFACE

! interface block for C procedures

INTERFACE
BIND(C,NAME="glColor3s") SUBROUTINE c_glcolor3s(red,green,blue)
USE opengl_kinds
INTEGER(GLSHORT), VALUE :: red, green, blue
END SUBROUTINE c_glcolor3s

BIND(C,NAME="glColor3i") SUBROUTINE c_glcolor3i(red,green,blue)
USE opengl_kinds
INTEGER(GLINT), VALUE :: red, green, blue
END SUBROUTINE c_glcolor3i

END INTERFACE

! wrapper subroutine (after CONTAINS)

SUBROUTINE f90glcolor3s(red,green,blue)
INTEGER(GLSHORT), INTENT(IN) :: red, green, blue
IF (short_exists == 1) THEN

CALL c_glcolor3s(red,green,blue)
ELSE

CALL c_glcolor3i(red,green,blue)
ENDIF
END SUBROUTINE

Some OpenGL routines that take a short integer do not have an equivalent routine that takes a
GLint. For example, glPolygonStipple takes an array of 128 one-byte integers. For these routines, I
see no alternative but to use a C wrapper in which the GLint type integer from Fortran is copied to
a short integer in C. Recall that this is only necessary when the processor does not support short
integers.

6

J3/00-121

3.3 Rank one arrays

Array arguments of rank one can be handled in the interface block using an assumed size array. For
example, the interface block for

void glVertex2dv(GLdouble *v)

is

INTERFACE glvertex2dv
BIND(C,NAME="glVertex2dv") SUBROUTINE glvertex2dv(v)
USE opengl_kinds
REAL(GLDOUBLE), DIMENSION(*), INTENT(IN) :: v
END SUBROUTINE glvertex2dv

END INTERFACE

3.4 GLboolean

The OpenGL type GLboolean is defined to be unsigned char, and the corresponding type in the
binding is LOGICAL(GLBOOLEAN), where GLBOOLEAN is a named constant with a valid kind
type parameter for LOGICAL. This requires a Fortran wrapper to convert the logical value to
INTEGER(C SIGNED CHAR).

void glDepthMask(GLboolean flag)

INTERFACE
BIND(C,NAME="glDepthMask") SUBROUTINE c_gldepthmask(flag)
USE ISO_C_BINDING
INTEGER(C_SIGNED_CHAR), VALUE :: flag
END SUBROUTINE c_gldepthmask

END INTERFACE

INTERFACE gldepthmask
MODULE PROCEDURE f90gldepthmask

END INTERFACE

SUBROUTINE f90gldepthmask(flag)
LOGICAL(GLBOOLEAN), INTENT(IN) :: flag
INTEGER(C_SIGNED_CHAR) :: cflag
IF (flag) THEN

cflag = 1
ELSE

cflag = 0
ENDIF
CALL c_gldepthmask(cflag)
END SUBROUTINE f90gldepthmask

Although the OpenGL Reference Manual says GLboolean is an unsigned char, and every OpenGL
implementation I have seen uses this type, the OpenGL Specification states that it can be any type
that contains at least one bit. If an OpenGL implementation uses a different type, the above
implementation will fail.

If INTEGER(C SIGNED CHAR) is not supported by the processor, then I don’t see any way of
avoiding the use of a C wrapper to convert the argument to GLboolean. One would probably use
INTEGER(C INT) for passing the argument between the Fortran and C wrappers.

7

J3/00-121

3.5 Character string arguments

INTENT(IN) character arguments require a Fortran wrapper to append the null character.

void glutAddMenuEntry(char *name, int value)

INTERFACE
BIND(C,NAME="glutAddMenuEntry") SUBROUTINE c_glutaddmenuentry(name,value)
CHARACTER(LEN=*,KIND=C_CHAR), INTENT(IN) :: name
INTEGER(GLCINT), VALUE :: value
END SUBROUTINE c_glutaddmenuentry

END INTERFACE

SUBROUTINE f90glutaddmenuentry(name,value)
CHARACTER(LEN=*,KIND=C_CHAR), INTENT(IN) :: name
INTEGER(GLCINT), INTENT(IN) :: value
CALL c_glutaddmenuentry(name//C_NULL_CHAR, value)
END SUBROUTINE f90glutaddmenuentry

3.6 Character string function result

Some OpenGL functions return a pointer to a null-terminated (sometimes static) string. The Fortran
bindings for these functions return a pointer to an array of type CHARACTER(LEN=1), with the
stipulation that the pointer is allocated in the interface and can be deallocated by the user. The
last statement requires that a Fortran wrapper be used, but even without the stipulation it does
not appear that these functions interoperate. However, I find the wording in section 16.2.1 of the
proposed standard to be confusing, and am not sure when one can interoperate with a C string. For
a C function

char *c_func(void)

(assume it returns a string of 10 characters) it is not clear to me that either of the following
forms are legal.

CHARACTER(LEN=10) :: str1
CHARACTER(LEN=1), DIMENSION(10) :: str2
str1 = c_func()
str2 = c_func()

Also, there is the problem of not knowing the length of the C string until after the function call,
so one does not know how large to allocate the array (or what to use as the length parameter of a
character variable). These same problems exist with an INTENT(OUT) character string argument.
I just don’t see how character strings of unknown length can be returned from C.

The workaround for this requires the use of two C wrappers, one to return the length of the
string and a second to return the string. For the OpenGL function

const GLubyte * glGetString(GLenum name)

(GLubyte is unsigned char), the interface is

void f90glGetStringLen(GLenum name, GLint *length, const GLubyte *str)
{

str = glGetString(name);
length = strlen(str);

}

8

J3/00-121

void f90glGetString(const GLubyte *str, GLubyte *fort_str, GLint length)
{

int i;
for (i=0; i<length; i++) fort_str[i] = str[i];

}

INTERFACE
BIND(C,NAME="f90glGetStringLen") SUBROUTINE c_getstringlen(name,l,s)
USE opengl_kinds
USE ISO_C_BINDING
INTEGER(GLENUM), VALUE :: name
INTEGER(GLINT), INTENT(OUT) :: l
TYPE(C_PTR), INTENT(OUT) :: s
END SUBROUTINE c_getstringlen

BIND(C,NAME="f90glGetString") SUBROUTINE c_getstring(c_str,f_str,len)
USE opengl_kinds
USE ISO_C_BINDING
TYPE(C_PTR), INTENT(IN) :: c_str
CHARACTER(KIND=C_CHAR,LEN=1), DIMENSION(*), INTENT(OUT) :: f_str
INTEGER(GLINT), VALUE :: len
END SUBROUTINE c_getstring

END INTERFACE

FUNCTION f90glgetstring(name) RESULT(res)
INTEGER(GLENUM), INTENT(IN) :: name
CHARACTER(LEN=1), DIMENSION(:) :: res
TYPE(C_PTR) :: c_str
INTEGER(GLINT) :: length
CALL c_getstringlen(name,length,c_str)
ALLOCATE(res(length))
CALL c_getstring(c_str,res,length)
END FUNCTION f90glgetstring

3.7 Argv

glutInit takes the standard C argc and argv. In the Fortran interface, they are optional arguments
with argv being an array of character strings with one command line argument per array entry.
This matches with argument text from the main program and SIZE(argument text), but a Fortran
wrapper is required to convert this to a form that interoperates with the C form. The C form is
an array of length argc of pointers to null terminated character strings, which can be realized as
an array of TYPE(C PTR) using C LOC to get the addresses of the character strings. Because
of the need to add the null terminator, the strings must be copied to character strings of length
SIZE(argument text)+1. This copy could be avoided if Fortran used null termination, i.e., appended
the null character at position LEN(string)+1 for all strings. The copy could also be avoided by having
the length of argument text be one larger than the minimum required to hold the longest command
line argument, in which case C NULL CHAR can be added in place.

void glutInit(int *argcp, char **argv)

INTERFACE
BIND(C,NAME="glutInit) SUBROUTINE c_glutinit(argcp,argv)
USE ISO_C_BINDING
INTEGER(C_INT), INTENT(INOUT) :: argcp
TYPE(C_PTR), INTENT(INOUT), DIMENSION(*) :: argv

9

J3/00-121

END SUBROUTINE c_glutinit
END INTERFACE

SUBROUTINE f90glutinit(argcp,argv)
! ignore the fact that the arguments are optional for this example
INTEGER(GLCINT), INTENT(IN) :: argcp
CHARACTER(LEN=*), INTENT(IN), DIMENSION(*) :: argv
INTEGER(GLCINT) :: local_argc, i
TYPE(C_PTR), DIMENSION(SIZE(argv)) :: c_argv
CHARACTER(LEN=LEN(argv)+1), DIMENSION(SIZE(argv)) :: long_argv
local_argc = argcp
long_argv = argv
DO i=1,SIZE(argv)

long_argv(i)(LEN_TRIM(argv(i))+1:LEN_TRIM(argv(i))+1) = C_NULL_CHAR
END DO
c_argv = C_LOC(long_argv) ! is C_LOC elemental?
CALL c_glutinit(local_argc,c_argv)
END SUBROUTINE f90glutinit

3.8 Arrays allocated by C

Often a C library routine will take a pointer which is allocated as an array, the size of which is not
known until the routine is executed, to return values to the calling procedure. This situation does
not arise in OpenGL, but does in another library for which I have written a Fortran interface. For
example,

void get_list(int *list, int size) {
/* perform calculations to determine and set size */
list = (int *) malloc(size*sizeof(int));
/* fill the list with values */
}

I do not see any way to interface with this under the proposed standard. The semantics do
not seem unreasonable; the address of the array is returned by the C function. This may incur a
performance penalty, but it should be doable provided there is syntax that indicates this is a different
kind of array. Perhaps allowing both BIND(C) and ALLOCATABLE to be attributes of the same
array could signal that this is an array that must be allocated by a means other than Fortran.

The approach I currently use for this situation is a hack that is not portable, not supported by
the proposed standard, and possible only because I have the ability to modify the C library. list
is declared as a Fortran pointer, and the malloc statement is replaced by a call to a Fortran routine
that allocates the pointer. In general, this is unacceptable.

3.9 Void* arguments

Several OpenGL routines accept an argument of type void* which can be any of several types, and
another argument of type GLenum which specifies what type is being passed. To allow different
types to be passed, the void* argument can be declared TYPE(C PTR) with C LOC giving the
address to pass. This will require Fortran wrapper functions with a generic interface so that the
user passes the actual argument of whatever type.

void glCallLists(GLsizei n, GLenum type, const GLvoid *lists)

INTERFACE
BIND(C,NAME="glCallLists") SUBROUTINE c_glcalllists(n,type,lists)
USE opengl_kinds

10

J3/00-121

USE ISO_C_BINDING
INTEGER(GLSIZEI), VALUE :: n
INTEGER(GLENUM), VALUE :: type
TYPE(C_PTR), VALUE :: lists
END SUBROUTINE glcalllists

END INTERFACE

INTERFACE glcalllists
MODULE PROCEDURE shortglcalllists, &

intglcalllists, &
floatglcalllists

END INTERFACE

SUBROUTINE shortglcalllists(n,type,lists)
INTEGER(GLSIZEI), INTENT(IN) :: n
INTEGER(GLENUM), INTENT(IN) :: type
INTEGER(GLSHORT), DIMENSION(*), INTENT(IN) :: lists
CALL c_glcalllists(n,type,C_LOC(lists))
END SUBROUTINE shortglcalllists

SUBROUTINE intglcalllists(n,type,lists)
INTEGER(GLSIZEI), INTENT(IN) :: n
INTEGER(GLENUM), INTENT(IN) :: type
INTEGER(GLINT), DIMENSION(*), INTENT(IN) :: lists
CALL c_glcalllists(n,type,C_LOC(lists))
END SUBROUTINE intglcalllists

SUBROUTINE floatglcalllists(n,type,lists)
INTEGER(GLSIZEI), INTENT(IN) :: n
INTEGER(GLENUM), INTENT(IN) :: type
REAL(GLFLOAT), DIMENSION(*), INTENT(IN) :: lists
CALL c_glcalllists(n,type,C_LOC(lists))
END SUBROUTINE floatglcalllists

Like the discussion about short integers in Section 3.2, this will not work if short integers are not
supported by the processor. But unlike that discussion, we do not have multiple subroutines to select
from at run time. I do not see how to get around this one without using conditional compilation. It
would be useful to have compilers be required to support Part 3 of the Fortran standard, CoCo.

Using conditional compilation, we only need to remove the short version from the generic interface
block. It is not necessary to remove the short version of the subroutine, but may be desirable to
reduce the size of the executable. The generic interface block with conditional compilation is:

INTERFACE glcalllists
MODULE PROCEDURE &

?? if (short_exists) then
shortglcalllists, &

?? endif
intglcalllists, &

floatglcalllists
END INTERFACE

Note, however, that here short exists is a preprocessor variable. To define this within the program
requires that the conditional compilation facility be extended to allow the use of named constants
from intrinsic modules in a coco-initialization-expr. The alternative is to use the same process
employed by the current version of f90gl: compile and execute a program that determines whether or

11

J3/00-121

not the short integers are supported, and writes appropriate lines into the preprocessor’s initialization
file (CoCo SET). This process can be built into a Unix makefile or DOS batch file, but may not be
appropriate for other compilation schemes. Another alternative is to set these variables “by hand”
in the initialization file.

3.10 Callback functions

Many C libraries, including GLU and GLUT, use callback functions. These are functions that are
registered by sending a pointer to the function to a routine which saves the pointer so that the
function can be called at a later time. For example, in GLUT the function is called when some event
occurs, such as a mouse button being pressed. C LOC should provide the capability to implement
this. The bindings indicate that dummy procedure arguments are passed in the same manner as
procedure arguments in Fortran, so a wrapper function for the registration will be required to convert
the argument to TYPE(C PTR). Moreover, the specification of C LOC says that if the argument is
a procedure then it must have the BIND(C) attribute. The bindings do not impose this restriction,
but this can be handled by using a reverse-wrapper function that is registered instead of the user’s
function, and using a procedure pointer to invoke the user’s function. For example:

For the C prototype

void glutMouseFunc(void (*func)(int button, int state, int x, int y))

the specification part of the module contains

INTERFACE PROCEDURE()
SUBROUTINE spec_mousefunc(button,state,x,y)
USE opengl_kinds
INTEGER(GLCINT), INTENT(IN) :: button, state, x, y
END SUBROUTINE func

END INTERFACE

PROCEDURE(spec_mousefunc), POINTER, SAVE :: user_mousefunc

INTERFACE
BIND(C,NAME="glutMouseFunc") SUBROUTINE c_glutmousefunc(func)
USE ISO_C_BINDING
TYPE(C_PTR), VALUE :: func
END SUBROUTINE c_glutmousefunc

END INTERFACE

INTERFACE glutmousefunc
MODULE PROCEDURE f90glutmousefunc

END INTERFACE

and the module subprogram part contains

SUBROUTINE f90glutmousefunc(func)
PROCEDURE(spec_mousefunc) :: func
user_mousefunc => func
CALL c_glutmousefunc(C_LOC(wrapper_mousefunc))
END SUBROUTINE f90glutmousefunc

BIND(C) SUBROUTINE wrapper_mousefunc(button,state,x,y)
INTEGER(GLCINT), VALUE :: button, state, x, y
CALL user_mousefunc(button, state, x, y)
END SUBROUTINE wrapper_mousefunc

12

J3/00-121

Unresolved issue 151 asks if the BIND prefix-spec should be allowed for module subprograms
(currently a constraint prohibits it). If this change is not made, then the reverse-wrappers (or any
procedure argument to C) must be external subprograms, which is highly undesirable.

3.11 Multiple callback functions

The callback functions in GLUT are further complicated by the fact that GLUT supports multiple
simultaneous graphics windows, and each window has its own set of callback functions. The current
window is only known within GLUT, not in the Fortran interface, so GLUT provides a pair of set/get
functions for the Fortran interface to use for specifying and retrieving the callback functions for the
current window. The prototypes are

void __glutSetFCB(int which, void *func);
void* __glutGetFCB(int which);

The set function can be called from the Fortran wrapper of the routine that sets the callback
function. But the get function, which should be called from the reverse wrapper to obtain a pointer
to the user’s callback function, cannot be called from Fortran under the proposed standard. The
additional capability needed here is interoperability with a function whose return value is a pointer
to a function (in the C sense) to get a procedure pointer (in the Fortran sense). The alternative is
to use reverse-wrappers in C instead of Fortran.

3.12 GLUTNULLFUNC

The bindings specify that the symbol GLUTNULLFUNC will be provided to be passed as the
actual argument in cases where a C program would pass NULL to a pointer to a function. Since
Fortran does not use “procedureness” as a disambiguator, GLUTNULLFUNC must be a procedure.
ASSOCIATED can be used to determine if the actual argument is GLUTNULLFUNC, however this
means that the dummy argument must be a procedure with an implicit interface. Using the same
example as section 3.10, and assuming the existence of C NULL POINTER recommended in section
2.2, this adds the (public) module subroutine

SUBROUTINE GLUTNULLFUNC()
END SUBROUTINE GLUTNULLFUNC

and changes the Fortran wrapper to

SUBROUTINE f90glutmousefunc(func)
PROCEDURE() :: func
PROCEDURE(), POINTER :: func_ptr
func_ptr => func
IF (ASSOCIATED(func_ptr,GLUTNULLFUNC)) THEN

NULLIFY(user_mousefunc)
CALL c_glutmousefunc(C_NULL_POINTER)

ELSE
user_mousefunc => func
CALL c_glutmousefunc(C_LOC(wrapper_mousefunc))

ENDIF
END SUBROUTINE f90glutmousefunc

The abstract-interface-name spec mousefunc must also be removed from the declaration of us-
er mousefunc. This removes all uses of the abstract-interface-name.

13

J3/00-121

3.13 GLU tesselator

This is an example of a struct in the GLU library with a corresponding structure in the Fortran
bindings, however they do not interoperate. The Fortran structure stores a pointer to the C struc-
ture (which is returned by the creation routine) and procedure pointers for any registered callback
functions, which are associated with a particular tesselator.

INTERFACE PROCEDURE()
SUBROUTINE spec_tess_begin(type)
USE opengl_kinds
INTEGER(GLENUM), INTENT(IN) :: type
END SUBROUTINE spec_tess_begin

SUBROUTINE spec_tess_edge_flag(flag)
USE opengl_kinds
LOGICAL(GLBOOLEAN), INTENT(IN) :: flag
END SUBROUTINE spec_tess_edge_flag

...

END INTERFACE

TYPE glutesselator
TYPE(C_PTR) :: object
PROCEDURE(spec_tess_begin), POINTER :: user_tess_begin
PROCEDURE(spec_tess_edge_flag), POINTER :: user_tess_edge_flag
...

END TYPE

The bindings specify that the creation routine returns a Fortran pointer to the structure:

GLUtesselator* gluNewTess(void)

INTERFACE
BIND(C,NAME="gluNewTess") FUNCTION c_glunewtess()
USE ISO_C_BINDING
TYPE(C_PTR) :: c_glunewtess
END FUNCTION c_glunewtess

END INTERFACE

FUNCTION f90glunewtess()
TYPE(glutesselator), POINTER :: f90glunewtess
ALLOCATE(f90glunewtess)
f90glunewtess%object = c_glunewtess()
IF (f90glunewtess%object == C_NULL_POINTER) THEN ! or however that is checked

DEALLOCATE(f90glunewtess)
ELSE

NULLIFY(f90glunewtess%user_tess_begin,...)
ENDIF
END FUNCTION f90glunewtess

The callback registration for a tesselator is different from other callback registrations, in that the
dummy procedure may have one of several interfaces, which requires that the interface be implicit.

void gluTessCallback(GLUtesselator* tess, GLenum which, GLvoid(*CallBackFunc)())

14

J3/00-121

INTERFACE
BIND(C,NAME="gluTessCallback") SUBROUTINE c_glutesscallback(tess,which,func)
TYPE(C_PTR), VALUE :: tess
INTEGER(GLENUM), VALUE :: which
TYPE(C_PTR), VALUE :: func
END SUBROUTINE c_glutesscallback

END INTERFACE

SUBROUTINE f90glutesscallback(tess,which,func)
TYPE(glutesselator), POINTER :: tess
INTEGER(GLENUM), INTENT(IN) :: which
PROCEDURE() :: func
TYPE(C_PTR) :: func_loc
SELECT CASE(which)

CASE(GLU_TESS_BEGIN)
tess%user_tess_begin => func
func_loc = C_LOC(wrapper_tess_begin)

CASE(GLU_TESS_EDGE_FLAG)
...

END SELECT
CALL c_glutesscallback(tess%object,which,func_loc)
END SUBROUTINE f90glutesscallback

However, the tesselator object, in which the pointer to the callback function is stored, does not
get passed to the callback function, so this does not provide access to the pointer to the user’s
callback function. This requires using a module variable

TYPE(glutesselator), POINTER, SAVE :: current_tess

which get assigned to the tesselator argument of every call to a GLU procedure that uses tesse-
lators,

current_tess => tess

and then current tess%user tess begin (for example) is called in the reverse-wrapper.
Note that the edge flag callback function has a LOGICAL argument, which does not interoperate

with any C type. The type transformation occurs in the reverse-wrapper.

BIND(C) SUBROUTINE wrapper_tess_edge_flag(flag)
INTEGER(C_SIGNED_CHAR), VALUE :: flag
IF (flag == 0) THEN

CALL current_tess%user_tess_edge_flag(.FALSE._GLBOOLEAN)
ELSE

CALL current_tess%user_tess_edge_flag(.TRUE._GLBOOLEAN)
ENDIF
END SUBROUTINE wrapper_tess_edge_flag

Some of the callback functions contain void* arguments. For these, the procedure pointers must
have an implicit interface to avoid conflicts between the proc-interface and the interface of the
actual argument provided by the user. The corresponding argument in the reverse-wrapper is more
problematic. There is no way to determine the actual type of the void* argument. The only approach
I can think of is to use a non-conformant implementation in which the argument is declared as (say)
an assumed size rank one integer array, and hope that the compiler simply passes the address along.

void vertex(void *vertex_data)

15

J3/00-121

TYPE glutesselator
TYPE(C_PTR) :: object
...
PROCEDURE(), POINTER :: user_tess_vertex
...

END TYPE

BIND(C) SUBROUTINE wrapper_tess_vertex(vertex_data)
! In the C routine that calls this, vertex_data is void*.
! In the user routine being called, vertex_data may be integer or real
! (or possibly another type) and may be a scalar or an assumed size array.
! Note that the interface to user_tess_vertex is implicit.
INTEGER(GLINT), INTENT(IN), DIMENSION(*) :: vertex_data
CALL current_tess%user_tess_vertex(vertex_data)
END SUBROUTINE wrapper_tess_vertex

4 Summary

This section contains a summary of the suggested changes to the proposed standard. It is realized
that some of these may be technically impossible (e.g. binding a Fortran enumeration to a C enum)
and some may be politically impossible (e.g. changes to Part 3 of the standard). Nevertheless,
summarizing all of the issues encountered seems worthwhile.

• Add C NULL POINTER to ISO C BINDINGS and provide the ability to compare an entity
of TYPE(C PTR) for equality with C NULL POINTER.

• Change the wording to make it clear that if a Fortran variable, X, is bound to a C variable,
Y, then C LOC(X) is the same value as &Y.

• Allow a Fortran enumeration to be bound to a C enum to insure that the enumerators have
the same values.

• Change the syntax or semantics of an enumeration declaration in such a way that the number
of enumerators is not limited by the limit on the number of continuation lines.

• Clarify the wording about interoperating with C strings.

• Provide a means by which a character string of unknown length can be returned from a C
function, both as an argument and as a function result.

• Have the length of argument text be one larger than the minimum required to hold the longest
command line argument.

• Provide a means by which an array allocated in a C function can be returned to a calling
Fortran procedure.

• Require that processors support Part 3 of the standard.

• Allow the use of named constants from intrinsic modules in CoCo initialization expressions.

• Allow the BIND prefix-spec on module procedures.

• Provide a means by which a C pointer to a function can be returned to Fortran and assigned
to a procedure pointer.

16

