
3 July 2000 Page 1 of 5 J3/00-234

Subject: Semantics of the select kind construct are not described, and it appears to be a
mess to use

From: Van Snyder
References: 98-179, 00-179, 00-186, 00-194, 00-233

1 Introduction

The select kind construct, apparently intended to be used within a derived type de�nition to
select di�erent speci�c procedures to invoke using an object of derived type, depending on the
kind parameters, is not described further than providing its syntax. In particular, the relation
between select kind, inheritance, and procedure overriding is not described.

Furthermore, if I understand it correctly, it is quite cumbersome to use. Suppose one has a
type with three kind parameters, and one anticipates three values for each of those parameters.
If one procedure is needed for each combination of kind type parameter values, this results in
a requirement to bind 27 procedures to the type. It appears to require 92 statements to do
so, using the select kind construct: Three nested select kind constructs are needed. The inner
ones needs 8 statements each { the SELECT CASE and END SELECT statements, 3 CASE
statements, and 3 procedure declaration statements. Each middle one encloses three of these,
and adds �ve more statements, for a total of 29 statements per middle level case. The outer
one has three middle ones, and adds �ve more statements, for a total of 92 statements. The
proposal here would allow to use one statement { albeit perhaps using more than one line, but
not 92 lines.

As I understand it, this is a very clumsy explicit replacement for the automatic generic resolution
mechanism. (Actually, the intent is to specify how to generate dispatch tables, but the generic
mechanism could do that more clearly.)

I propose in this paper to replace the select kind construct with the already-developed generic
resolution mechanism.

This strategy has a simple extension to type-bound de�ned assignment, type-bound de�ned
operators, type-bound derived-type input/output procedures (see 00-233), and type-bound �nal
procedures (see 00-194).

2 Speci�cations

Several speci�c procedures may be bound to a type by using one binding name. The spe-
ci�c procedures bound to (not inherited into) a single type-bound procedure name shall be
distinguishable according to the rules for unambiguous generic procedure reference (14.1.2.3).

The PASS OBJ declaration applies to the binding name, and thereby to all of the speci�c
procedures bound to the type, and all of its extensions, by that name, so we don't need to
worry about the case that a binding name has PASS OBJ in the parent type but not in the
type being declared, or vice-versa.

The rules for overriding are not much more di�cult than in the case of nongeneric type-bound
procedures. We don't have an explanation for the semantics of the select kind construct, but I
don't think it would be simpler than this: If a speci�c procedure to be bound to a type by a
particular binding name is not distinguishable from one bound to the parent by the same name,
but with the type of the passed-object dummy argument replaced by the present type, by using

year/00/00-179.pdf.gz
year/00/00-186.pdf.gz
year/00/00-194.pdf.gz
year/00/00-233.pdf.gz
year/00/00-233.pdf.gz
year/00/00-194.pdf.gz

3 July 2000 Page 2 of 5 J3/00-234

the rules in section 14.1.2.3, it overrides the one inherited from the parent. Otherwise, it extends
the set of procedures accessible by applying the generic procedure resolution mechanism to the
binding name.

Now consider procedure invocation. De�ne a type-bound generic interface for a type and
binding name to be the set of procedures inherited for that binding name from the parent of
the type, minus the overridden ones, plus the ones declared in the type. Each procedure in such
a generic interface has a corresponding one in each generic interface for each extension type {
either the same procedure or one that overrides it. First, one procedure is selected from the
type-bound generic interface for the declared type of the invoking object and speci�ed binding
name, according to the generic resolution rules. Then the corresponding procedure from the
type-bound generic interface for the dynamic type of the invoking object and the same binding
name is invoked. From an implementors point of view, there is a separate dispatch table for
each distinct generic resolution of a binding name.

3 Syntax

The proposed syntax to specify generic type-bound procedures is to specify non-generic pro-
cedure bindings by using the PROCEDURE statement, and generic bindings by using a new
GENERIC statement. This has the disadvantage of requiring a new statement, and the ad-
vantage that the processor can detect one case in which one mistakenly extends the generic set
instead of overriding a non-generic binding { the case when the name is already non-generic.

The PROCEDURE statement is unchanged, and the proc-binding is extended to include
R440 proc-binding is <as at present>

or GENERIC (proc-interface-name)
[, binding-attr-list] :: binding-name => NULL()

or GENERIC [, binding-attr-list] ::
binding-name => procedure-name-list

A binding-name speci�ed in a PROCEDURE statement shall not be the same as any other
binding name speci�ed within the same derived type de�nition, no matter whether speci�ed
in a PROCEDURE or GENERIC statement; if it is the same as an inherited one, the present
overriding rules apply { it is not permitted to extend a generic set with a PROCEDURE
binding. A binding name speci�ed in a GENERIC statement may be the same as the binding
name speci�ed in another GENERIC statement, having the same e�ect as if the procedure-

name-lists were combined in a single statement.

4 Edits

Edits refer to 00-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

proc-binding 43:16-17
[proc-binding] ...

[Editor: Delete.] 43:19-20

3 July 2000 Page 3 of 5 J3/00-234

R440 proc-binding is PROCEDURE(proc-interface-name) 43:21-24
[, binding-attr-list] :: binding-name => NULL()

or PROCEDURE [[, binding-attr-list] ::]
binding-name [=> binding]

or GENERIC(proc-interface-name)
[, binding-attr-list] :: binding-name => NULL()

or GENERIC [, binding-attr-list] ::
binding-name => binding-list

Constraint: If => binding appears, a double-colon separator shall appear before binding-name.
Constraint: The binding name shall not be the same as a binding name inherited (4.5.3.2) from

the parent type for which the NON OVERRIDABLE binding attribute is speci�ed.
Constraint: If a binding name is inherited (4.5.3.2) from the parent type, then the binding name

inherited from the parent type and the one being declared shall both be declared
with GENERIC or both be declared with PROCEDURE.

or NULL(procedure-name) 43:37
or NULL(procedure-pointer-name)

[Editor: Replace \procedure that has" by \procedure. The procedure-pointer-name shall be 43:39
the name of an accessible procedure pointer. The procedure or procedure pointer shall have".
After the second \procedure" insert \or procedure pointer".]

Constraint: If NULL is speci�ed NON OVERRIDABLE shall not be speci�ed. 43:46-44:8
Constraint: If the binding name is the same as one inherited (4.5.3.2) from the parent type,

PASS OBJ shall be speci�ed if and only if it is speci�ed for the binding of the same
name in the parent type.

Constraint: If PASS OBJ or NON OVERRIDABLE is speci�ed for a generic binding name in
one procedure binding within the derived type de�nition, it shall be speci�ed in all
procedure bindings for that binding name within the derived type de�nition.

Constraint: If an access-spec is speci�ed for a generic binding name in one procedure binding
within the derived type de�nition, and it speci�es an accessibility di�erent from the
default accessibility, the same access-spec shall be speci�ed for every GENERIC
statement that speci�es the same generic binding name within the derived type
de�nition.

[Editor: Delete \-construct".] 48:12

[Editor: Replace \said to be deferred" with \a deferred procedure binding".] 48:26

may override (4.5.3.2) the inherited (4.5.3.1) deferred binding with another deferred binding. 48:29

[Editor: Note that 00-233 inserts a section of the same number. Put this one �rst.] 48:30+
4.5.1.5.1 Generic bindings

For a particular type and binding-name, a binding speci�ed by a GENERIC statement speci�es
a type-bound generic interface. The set of bindings speci�ed for that binding-name, and those
that are inherited (4.5.3.1) into that type and not overridden (4.5.3.2), de�nes a type-bound
generic interface, in exact analogy to a generic procedure name (12.3.2.1).

[Editor: Insert the following unresolved issue note only if paper 00-233 also passes.]

J3 internal note

3 July 2000 Page 4 of 5 J3/00-234

Unresolved issue xxx (integration)
Investigate the possibility of combining this section with the following similar one about type-
bound derived-type input/output.

Each binding in each such type-bound generic interface has a corresponding one in the type-
bound generic interface for that binding-name and each extension type { either the same bind-
ing, or one that overrides it.

The same binding-name may be used in several GENERIC statements within a single derived
type de�nition. The e�ect is as if all of the NULL() bindings were speci�ed by NULL(procedure-

pointer-name) with procedure-pointer-name specifying a procedure pointer with the same inter-
face as the proc-interface-name , and then all the bindings were speci�ed by a single statement.

For purposes of overriding (4.5.3.2) and generic resolution (14.1.2.3, 14.1.2.4.2 1

2
), the declared 53:22+

type of a passed-object dummy argument (4.5.1.6) of a procedure binding inherited from the
parent type is considered to be the same as the type into which it is inherited.

A procedure binding declared within a derived type de�nition overrides one inherited from the 53:36-41
parent type if:

(1) It is declared using PROCEDURE and it has a binding name that is the same as one
inherited from the parent type, or

(2) It is declared using GENERIC, it has the same binding name as one inherited from the
parent type, and the speci�c or deferred procedure to be bound to the type by a particular
binding name is not distinguishable, by using the rules in 14.1.2.3, from one inherited from
the parent and bound to the same binding name.

If it is declared using GENERIC but it does not override one inherited from the parent, it
extends the generic binding (4.5.1.5.1) having that binding name. If a binding overrides one
inherited from the parent, it and the inherited one shall match in the following ways:

[Editor: Replace \Except ..., the" by \The". It's now provided by the edit at [53:22+] above.] 54:3

[Editor: Insert the following after note 4.44. Note that the same constraint is inserted by paper 54:28+
00-233, but therein it applies to two syntax rules.]
The following constraint applies to syntax rule R440:

Constraint: If a procedure binding overrides one inherited from the parent type, the one inher-
ited from the parent type shall not specify the NON OVERRIDABLE attribute.

[Editor: After \)" add \or generic bindings (4.5.1.5.1)".] 342:14

[Editor: Add a new section, after { not a subsection of { 14.1.2.4.2.] 346:22+
14.1.2.4.2 1

2
Resolving generic type bound procedure references

If a generic type-bound procedure binding is speci�ed by data-ref % binding-name in a function
reference or call statement:

(1) If the reference is consistent with one of the speci�c interfaces in the generic binding
(4.5.1.5.1) for the binding-name and the declared type of the data-ref, that interface is
selected.

(2) Otherwise, if the reference is consistent with an elemental reference to one of the speci�c
interfaces in the generic binding (4.5.1.5.1) for the binding-name and the declared type
of the data-ref, that interface is selected.

3 July 2000 Page 5 of 5 J3/00-234

(3) If an interface is selected by (1) or (2) above, the reference is to the speci�c binding that
provides the interface in the generic binding for the binding-name and the dynamic type
of the data-ref that corresponds to the selected interface.

If no interface is selected in (1) or (2), or the reference determined in (3) is to a deferred binding
(4.5.1.5), an error condition occurs.

deferred procedure binding (4.5.1.5): a type-bound procedure binding that speci�es the 400:17+
NULL() intrinsic. A deferred procedure binding shall not be invoked.

