
20 July 2000 Page 1 of 4 J3/00-251

Subject: Issues 19 and 211, more work on derived types and constructors
From: Van Snyder
References: 00-247

1 Introduction

Subclause 4.5.6 Construction of derived-type values doesn't work for extended types.
This paper de�nes the term \component order" and uses it for value construction and intrinsic
input/output. It also eliminates the terms \attened form" and \nested form" that are the
subject of issue 211.

Subclause 4.5.3.1 Inheritance includes a de�nition of the order of components and parameters
of an extended type, for purposes of derived-type value construction and intrinsic input/output,
but doesn't de�ne terms by which to reference these de�nitions. Furthermore, putting them in
the \Inheritance" subclause makes them hard to �nd, even with a cross reference. This paper
moves those discussions into subclauses that have no other purpose.

The paragraph at [55:3-7] explains that a type-param-value is \assigned to the ... type pa-
rameter." This is true only in the case that the type-param-value is an expression. It is not
true in the case that the type-param-value is an asterisk or a colon { at least not without a
lot of wriggling that simply isn't there. It's better to say here only how the type-param-value s
correspond to the type parameters.

The explanation of how component values are constructed from the values in the constructor
uses the phrase \converted according to the rules of intrinsic assignment to a value that agrees in
type and type parameters with the corresponding component ... the shape of the expression shall
conform with the shape of the component." Since this doesn't say it does intrinsic assignment,
or that it works as if by intrinsic assignment, there's some question how it handles pointer and
allocatable components of a derived type component value. This paper explicitly says \as if by
intrinsic assignment."

The paragraph on constructing a value for an allocatable component is silent concerning type
parameters, especially deferred parameters, and includes the phrase \any other expression that
evaluates to an array" at [57:3] { a holdover from the days when the only allocatable entities
were arrays.

This paper revises the discussion of construction of values for allocatable components to include
deferred type parameters, and so as not to depend on \arrayness" to get \allocatability."

This paper depends on the terms parent component and ancestor component introduced in
paper 00-247.

2 Edits

Edits refer to 00-007r2. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
indicates that immediately following text is to be inserted after the indicated line. Remarks for
the editor are noted in the margin, or appear between [and] in the text.

[Editor: Delete. The substance is re-inserted by the edit for [54:28+] below. This is an unex- 52:44-49

year/00/00-247.pdf.gz
year/00/00-247.pdf.gz

20 July 2000 Page 2 of 4 J3/00-251

pected place to �nd this material, terms are needed for these concepts, and subclause numbers
that subsume only this material are needed for cross references.]

4.5.3 1

2
Derived type component order 54:28+

[Editor: Insert \order, component" into the index.]

The component order of the components of a derived type is the component order of the
parent type, if the type is an extended type, followed by the order of the declarations of
components declared by component-def-stmts in the derived type de�nition.

The component order of the ultimate components of a derived type is the order of the ulti-
mate components of the parent type, if the type is an extended type and the parent type has
components, followed by the order of the declarations of components that are of intrinsic type,
and the order of the ultimate components that result from component-def-stmts that specify
derived type, taken in the order the declarations appear in the derived type de�nition.

4.5.3 2

3
Type parameter order

[Editor: Insert \order, type parameter" into the index.]

The type parameter order of a derived type is the type parameter order of the parent type,
if the type is an extended type and the parent type has parameters, followed by the order of
the declarations of parameters declared in the derived type de�nition.

If the �rst type-param-spec does not include a keyword, it corresponds to the �rst type parameter 55:3-7
in type parameter order (4.5.3 2

3
), and each succeeding type-param-spec that does not include a

keyword corresponds to the succeeding type parameter in type parameter order. If a keyword
is present, the type-param-value corresponds to the type parameter named by the keyword.

R450 component-spec is [keyword =] component-constructor 55:14-18
R450a component-constructor is expr

or target

Constraint: Every type-param-value within the derived-type-spec shall be a scalar-int-expr.

Constraint: No component of the type shall have more than one corresponding component-spec.

Constraint: There shall be a component-spec that corresponds to each component that does
not have default initialization.

Constraint: If a component-constructor corresponds to a nonpointer nonallocatable component,
its type, kind type parameters and rank shall conform to those of the corresponding
component in the same way that the expr shall conform to the variable in an
intrinsic assignment (7.5.1.4).

Constraint: If a component-constructor corresponds to an allocatable component, the target 55:25-32
shall be a reference to the intrinsic function NULL() with no arguments, or the
type and kind type parameters of the component-constructor shall conform to those
of the corresponding component in the same way that the expr shall conform to the
variable in an intrinsic assignment (7.5.1.4), the rank of the component-constructor

shall be the same as the rank of the component, and every deferred type parameter
of the component-constructor shall correspond to a deferred type parameter of the
component.

J3 internal note
Unresolved integration issue xxx
Two of the above constraints refer to intrinsic assignment, wherein the referenced requirements
on type, kind type parameters and rank are not constraints.

20 July 2000 Page 3 of 4 J3/00-251

Constraint: If a component-constructor corresponds to a component that has the POINTER
attribute, the target shall satisfy the same constraints as required of a target in a
pointer assignment statement (7.5.2) in which the component is the pointer-object .

Each type-param-value within the derived-type-spec (4.5.5) is assigned to the corresponding type
parameter as if by intrinsic assignment (7.5.1.5).

If the �rst component-spec does not include a component name keyword and has the same type
as an ancestor component, it corresponds directly to the ancestor component having the same
type, and therefore indirectly to the components of that type. Each succeeding component-

constructor that does not include a keyword corresponds to a succeeding component after the
last component of that ancestor component, in component order (4.5.3 1

2
).

Otherwise if the �rst component-spec does not include a component name keyword it corre-
sponds to the �rst component in component order, and each succeeding component-constructor

that does not include a keyword corresponds to a succeeding component, in component order
(4.5.3 1

2
).

If a component name keyword is present, the component-constructor corresponds directly to
the component named by the keyword.

If a component-constructor corresponds to a nonpointer nonallocatable component, its array
bounds if any and its nonkind type parameters shall conform to those of the corresponding com-
ponent in the same way that the expr shall conform to the variable in an intrinsic assignment,
and its value is assigned to the component as if the component-constructor and the component
were the expr and variable in an intrinsic assignment (7.5.1.4).

If a component-constructor corresponds to a pointer component, the target shall satisfy the
same requirements as the target in a pointer assignment in which the component is the pointer-

object, and the target is assigned to the component as if the target and component were the
target and pointer-object in a pointer assignment (7.5.2).

[Editor: \expr") \component-constructor ".] 55:33

[Editor: Delete. This also deletes unresolved issue notes 19 and 211.] 55:35-56:2

[Editor: Delete { superceded by last paragraph of edit for [55:25-32] above.] 56:27-29

If a component-constructor corresponds to an allocatable component, the allocation status of 56:40-57:5
the component is as described in Table 4.1.

Table 4.1: Allocation status of allocatable component of constructor
component constructor Allocation status of component
intrinsic function NULL() not currently allocated
allocatable entity allocation status of the component

constructor
nonallocatable entity currently allocated

If the component-constructor is not a reference to the intrinsic function NULL(), nondeferred
type parameters of the component shall have the same values as corresponding type parame-
ters of the component-constructor . If the component-constructor is currently allocated or not
allocatable, the component has the same bounds as the component-constructor , the deferred
type parameters of the component have the same values as corresponding type parameters of
the component-constructor , and the value of the component-constructor is assigned to the com-
ponent as if the component-constructor and the component were the expr and the variable in
an intrinsic assignment (7.5.1.5).

20 July 2000 Page 4 of 4 J3/00-251

NOTE 4.48 1

2

A component-constructor that is a pointer and that does not correspond to a pointer compo-
nent shall be associated with a target.

[Editor: \components ... comprise") \e�ective items (9.5.2) that result from expanding".] 188:44

component order (4.5.3 1

2
): The order of all of the components of a derived type. 399:23+

type parameter order (4.5.3 2

3
): The order of all of the type parameters of a derived type. 407:24+

