
8 October 2000 Page 1 of 6 J3/00-304

Subject: Semantics of the select kind construct are not described, and it appears to be a
mess to use; also issues 287-289, part of issue 293

From: Van Snyder
References: 98-179, 00-179, 00-186, 00-194, 00-233, 00-234

1 Introduction

The select kind construct, apparently intended to be used within a derived type definition to
select different specific procedures to invoke using an object of derived type, depending on the
kind parameters, is not described further than providing its syntax. In particular, the relation
between select kind, inheritance, and procedure overriding is not described.
Furthermore, if I understand it correctly, it is quite cumbersome to use. Suppose one has a
type with three kind parameters, and one anticipates three values for each of those parameters.
If one procedure is needed for each combination of kind type parameter values, this results in
a requirement to bind 27 procedures to the type. It appears to require 92 statements to do
so, using the select kind construct: Three nested select kind constructs are needed. The inner
ones needs 8 statements each – the SELECT CASE and END SELECT statements, 3 CASE
statements, and 3 procedure declaration statements. Each middle one encloses three of these,
and adds five more statements, for a total of 29 statements per middle level case. The outer
one has three middle ones, and adds five more statements, for a total of 92 statements. The
proposal here would allow to use one statement – albeit perhaps using more than one line, but
not 92 lines.
As I understand it, this is a very clumsy explicit replacement for the automatic generic resolution
mechanism. (Actually, the intent is to specify how to generate dispatch tables, but the generic
mechanism could do that more clearly.)
I propose in this paper to replace the select kind construct with the already-developed generic
resolution mechanism.
This strategy has a simple extension to type-bound defined assignment, type-bound defined
operators, type-bound derived-type input/output procedures (see 00-233), and type-bound final
procedures (see 00-194).

2 Specifications

Several specific procedures may be bound to a type by using one binding name. The spe-
cific procedures bound to (not inherited into) a single type-bound procedure name shall be
distinguishable according to the rules for unambiguous generic procedure reference (14.1.2.3).
The PASS OBJ declaration applies to the binding name, and thereby to all of the specific
procedures bound to the type, and all of its extensions, by that name, so we don’t need to
worry about the case that a binding name has PASS OBJ in the parent type but not in the
type being declared, or vice-versa.
The rules for overriding are not much more difficult than in the case of nongeneric type-bound
procedures. We don’t have an explanation for the semantics of the select kind construct, but I
don’t think it would be simpler than this: If a specific procedure to be bound to a type by a
particular binding name is not distinguishable from one bound to the parent by the same name,
but with the type of the passed-object dummy argument replaced by the present type, by using

8 October 2000 Page 2 of 6 J3/00-304

the rules in section 14.1.2.3, it overrides the one inherited from the parent. Otherwise, it extends
the set of procedures accessible by applying the generic procedure resolution mechanism to the
binding name.
Now consider procedure invocation. Define a type-bound generic interface for a type and
binding name to be the set of procedures inherited for that binding name from the parent of
the type, minus the overridden ones, plus the ones declared in the type. Each procedure in such
a generic interface has a corresponding one in each generic interface for each extension type –
either the same procedure or one that overrides it. First, one procedure is selected from the
type-bound generic interface for the declared type of the invoking object and specified binding
name, according to the generic resolution rules. Then the corresponding procedure from the
type-bound generic interface for the dynamic type of the invoking object and the same binding
name is invoked. From an implementors point of view, there is a separate dispatch table for
each distinct generic resolution of a binding name.

3 Syntax

The proposed syntax to specify generic type-bound procedures is to specify non-generic pro-
cedure bindings by using the PROCEDURE statement, and generic bindings by using a new
GENERIC statement. This has the disadvantage of requiring a new statement, and the ad-
vantage that the processor can detect one case in which one mistakenly extends the generic set
instead of overriding a non-generic binding – the case when the name is already non-generic.
The PROCEDURE statement is unchanged, and the proc-binding is extended to include
R440 proc-binding is <as at present>

or GENERIC (proc-interface-name)
[, binding-attr-list] :: binding-name => NULL()

or GENERIC [, binding-attr-list] ::
binding-name => procedure-name-list

A binding-name specified in a PROCEDURE statement shall not be the same as any other
binding name specified within the same derived type definition, no matter whether specified
in a PROCEDURE or GENERIC statement; if it is the same as an inherited one, the present
overriding rules apply – it is not permitted to extend a generic set with a PROCEDURE
binding. A binding name specified in a GENERIC statement may be the same as the binding
name specified in another GENERIC statement, having the same effect as if the procedure-
name-lists were combined in a single statement.

4 Edits

Edits refer to 00-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks for the editor are noted in the margin, or appear between [and] in the text.

proc-binding-stmt 41:17-18
[proc-binding-stmt] ...

R440 proc-binding-stmt is specific-binding-stmt 41:20-27

8 October 2000 Page 3 of 6 J3/00-304

or generic-name-binding-stmt
or dtio-binding-stmt
or final-binding-stmt

R441 specific-binding-stmt is PROCEDURE [(proc-interface-name)]
[, binding-attr-list] :: binding-name => NULL()

or PROCEDURE [[, binding-attr-list] ::]
binding-name [=> binding]

[Editor: Move [41:34] to here.]
Constraint: The binding name shall not be the same as one inherited (4.5.3.2) from the parent

type with the NON OVERRIDABLE binding attribute.
Constraint: The binding name shall not be the same as one declared in the parent type with

GENERIC.
Constraint: The proc-interface-name shall be specified if and only if the binding does not

override one inherited from the parent type.
[Editor: Copy [42:12-15] to here. Move [42:28-29] to here.]
R441a generic-name-binding-stmt is GENERIC (proc-interface-name)

[, binding-attr-list] :: binding-name => NULL()
or GENERIC [, binding-attr-list] :: binding-name

=> binding-list
Constraint: No binding shall override (4.5.3.2) one inherited (4.5.3.1) from the parent type that

has the NON OVERRIDABLE binding attribute.
Constraint: The binding name shall not be the same as one declared in the parent type with

PROCEDURE.
Constraint: If several bindings or proc-interface-names are specified for a single binding name,

their interfaces shall differ as specified in 14.1.2.3.
[Editor: Move [42:12-15] to here.]
R441b dtio-binding-stmt is GENERIC [, NON OVERRIDABLE] ::

dtio-generic-spec => procedure-name-list
or GENERIC (proc-interface-name) ::

dtio-generic-spec => NULL()

[Editor: Replace “(indeed ... bindings” with “for binding-name and dtio-generic-spec but not 41:30-31
for assignment or operators”.]

Constraint: No binding shall override (4.5.3.2) one inherited (4.5.3.1) from the parent type that 41:34-38
has the NON OVERRIDABLE binding attribute.

Constraint: Each procedure-name shall be the name of an accessible module procedure or exter-
nal procedure that has an explicit interface as specified for the dtio-generic-spec in
9.5.4.4.3. The type specified for the dtv argument shall be the type being defined.

Constraint: The proc-interface-name shall be the name of an accessible abstract interface that
defines an interface as specified for the dtio-generic-spec in 9.5.4.4.3. The type
specified for the dtv argument shall be the type being defined.

Constraint: If several bindings or proc-interface-names are specified for a single dtio-generic-
spec, the kind type parameters of their dtv arguments shall differ.

[Editor: Replace unresolved issue 288:] 42:1-11
NOTE 4.191

2

8 October 2000 Page 4 of 6 J3/00-304

A proc-interface-name is not permitted in a PROCEDURE binding that overrides an inherited
one so as to avoid an opportunity for an error. It is required for NULL() GENERIC bindings to
specify whether an inherited binding is to be nullified, an inherited NULL() binding confirmed,
or a new NULL() binding created.

[Editor: Delete. The substance was inserted above.] 42:16-17

R441c final-binding-stmt is FINAL [::] final-subroutine-name-list 42:17+

Constraint: If the binding name is the same as one inherited (4.5.3.2) from the parent type, 42:33+
PASS OBJ shall be specified if and only if it is specified for the binding of the same
name in the parent type.

Constraint: If PASS OBJ or NON OVERRIDABLE is specified for a generic binding name or
dtio-generic-spec in one procedure binding within the derived type definition, it
shall be specified in all procedure bindings for that binding name or dtio-generic-
spec within the derived type definition.

Constraint: If an access-spec is specified for a generic binding name in one procedure binding
within the derived type definition, and it specifies an accessibility different from the
default accessibility, the same access-spec shall be specified for every GENERIC
statement that specifies the same generic binding name within the derived type
definition.

[Editor: Delete.] 42:35

[Editor: Delete – its essence was inserted above.] 42:43-44

[Editor: Delete lines 3-11 of unresolved issue 289. The constraint after R441b now says “for” 43:1-20
instead of “in”, so it applies to all of the dtio-generic-specs in the type. The reference to 14.1.2.3
is changed by this paper to depend on kind type parameters. If paper 00-311 (which deletes it
entirely) doesn’t pass, at lines 12-14 replace “Same comment ... constraint” by “Why does the
last constraint after R1208 apply to”, and then move the issue to [247:8+].]

[Editor: Delete.] 43:21-27

[Editor: Replace “binding ... construct” by “specific-binding-stmt”.] 47:44

[Editor: Replace “said to be deferred” with “a deferred procedure binding”.] 48:14

may override (4.5.3.2) the inherited (4.5.3.1) deferred binding with another deferred binding. 48:17

4.5.1.5.1 Generic bindings 48:18+
For a particular type and binding-name, a binding specified by a GENERIC statement specifies
a type-bound generic interface. The interface of a binding is the interface of the bound procedure
name or the interface of the abstract interface specified by the proc-interface-name. The set
of bindings specified for that binding-name, and those that are inherited (4.5.3.1) into that
type and not overridden (4.5.3.2), defines a type-bound generic interface, in exact analogy to a
generic procedure name (12.3.2.1).
J3 internal note
Unresolved issue xxx (integration)
Investigate the possibility of combining this section with the following similar one about type-
bound derived-type input/output.

Each binding in each such type-bound generic interface has a corresponding one in the type-
bound generic interface for that binding-name and each extension type – either the same bind-

8 October 2000 Page 5 of 6 J3/00-304

ing, or one that overrides it.
The same binding-name may be used in several GENERIC statements within a single derived
type definition. The effect is as if all of the NULL() bindings were specified by NULL(procedure-
pointer-name) with procedure-pointer-name specifying a procedure pointer with the same inter-
face as the proc-interface-name, and then all the bindings were specified by a single statement.

[Editor: Before “The” insert “The interface of a binding is the interface of the bound procedure 48:20
name or the interface of the abstract interface specified by the proc-interface-name.”]

For purposes of overriding (4.5.3.2) and generic resolution (14.1.2.3, 14.1.2.4.21
2), the declared 54:18+

type of a passed-object dummy argument (4.5.1.7) of a procedure binding inherited from the
parent type is considered to be the same as the type into which it is inherited.

A procedure binding declared within a derived type definition overrides one inherited from the 54:29-35
parent type if:

(1) It is declared using PROCEDURE and it has a binding name that is the same as one
inherited from the parent type, or

(2) It is declared using GENERIC, it has the same binding name or dtio-generic-spec as one
inherited from the parent type, and the specific or deferred procedure to be bound to the
type by a particular binding name or dtio-generic-spec is not distinguishable, by using
the rules in 14.1.2.3, from one inherited from the parent and bound to the same binding
name or dtio-generic-spec.

If it is declared using GENERIC but it does not override one inherited from the parent, it
extends the generic binding (4.5.1.5.1) having that binding name or dtio-generic-spec. If a
binding overrides one inherited from the parent, it and the inherited one shall match in the
following ways:

[Editor: Replace “Except ..., the” by “The”. It’s now provided by the edit at [54:18+] above.] 54:40

[Editor: Delete “way ... issue that the”. Constraints inserted by this paper address NON OVER- 55:30-33
RIDABLE.]

[Editor: After “names” add “or generic bindings (4.5.1.5.1)”.] 346:14

[Editor: Add a new section, after – not a subsection of – 14.1.2.4.2.] 350:24+
14.1.2.4.21

2 Resolving generic type bound procedure references

If a generic type-bound procedure binding is specified by data-ref % binding-name in a function
reference or call statement:

(1) If the reference is consistent with one of the specific interfaces in the generic binding
(4.5.1.5.1) for the binding-name and the declared type of the data-ref, that interface is
selected.

(2) Otherwise, if the reference is consistent with an elemental reference to one of the specific
interfaces in the generic binding (4.5.1.5.1) for the binding-name and the declared type
of the data-ref, that interface is selected.

(3) If an interface is selected by (1) or (2) above, the reference is to the specific binding that
provides the interface in the generic binding for the binding-name and the dynamic type
of the data-ref that corresponds (4.5.1.5.1) to the selected interface.

8 October 2000 Page 6 of 6 J3/00-304

If no interface is selected in (1) or (2), or the reference determined in (3) is to a deferred binding
(4.5.1.5), an error condition occurs.

deferred procedure binding (4.5.1.5): a type-bound procedure binding that specifies the 406:16+
NULL() intrinsic. A deferred procedure binding shall not be invoked.

