
13 November 2000 Page 1 of 3 J3/00-306

Subject: Issue 211, more work on derived types and constructors
From: Van Snyder
References: 00-276 00-251 00-275

1 Introduction

Subclause 4.5.6 Construction of derived-type values doesn’t work for extended types.
This paper uses the term “component order” defined in paper 00-275 to eliminate the terms
“flattened form” and “nested form” that are the subject of issue 211.
The paragraph at [57:16-21] explains that a type-param-value is “assigned to the ... type
parameter.” This is true only in the case that the type-param-value is an expression. It is not
true in the case that the type-param-value is an asterisk or a colon – at least not without a
lot of wriggling that simply isn’t there. It’s better to say here only how the type-param-values
correspond to the type parameters.
The explanation of how component values are constructed from the values in the constructor
uses the phrase “converted according to the rules of intrinsic assignment to a value that agrees in
type and type parameters with the corresponding component ... the shape of the expression shall
conform with the shape of the component.” Since this doesn’t say it does intrinsic assignment,
or that it works as if by intrinsic assignment, there’s some question how it handles pointer and
allocatable components of a derived type component value. This paper explicitly says “as if by
intrinsic assignment.”
The paragraph on constructing a value for an allocatable component is silent concerning type
parameters, especially deferred parameters, and includes the phrase “any other expression that
evaluates to an array” at [58:31] – a holdover from the days when the only allocatable entities
were arrays.
This paper revises the discussion of construction of values for allocatable components to include
deferred type parameters, and so as not to depend on “arrayness” to get “allocatability.”

2 Edits

Edits refer to 00-007r2. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks for the editor are noted in the margin, or appear between [and] in the text.

An ancestor component is the parent component or an ancestor component of the parent 54:15+
Same ¶component.

R451 component-spec is [keyword =] component-constructor 56:42-57:4
R451a component-constructor is expr

or target
Constraint: Every type-param-value within the derived-type-spec shall be a scalar-int-expr.
Constraint: No component of the type shall have more than one corresponding component-spec.
Constraint: There shall be a component-spec that corresponds to each component that does

not have default initialization.

13 November 2000 Page 2 of 3 J3/00-306

Constraint: If a component-constructor corresponds to a nonpointer nonallocatable component,
its type, kind type parameters and rank shall conform to those of the corresponding
component in the same way that the expr shall conform to the variable in an
intrinsic assignment (7.5.1.4).

Constraint: If a component-constructor corresponds to an allocatable component, the target 57:16-21
shall be a reference to the intrinsic function NULL() with no arguments, or the
type and type parameters of the component-constructor shall conform to those of
the corresponding component in the same way that the expr shall conform to the
variable in an intrinsic assignment (7.5.1.4), the rank of the component-constructor
shall be the same as the rank of the component, and every deferred type parameter
of the component-constructor shall correspond to a deferred type parameter of the
component.

J3 internal note
Unresolved integration issue xxx
The last two of the above constraints refer to intrinsic assignment, wherein the referenced
requirements on type, kind type parameters and rank are not constraints.

Constraint: If a component-constructor corresponds to a component that has the POINTER
attribute, the target shall satisfy the same constraints as required of a target in a
pointer assignment statement (7.5.2) in which the component is the pointer-object.

Each type-param-value within the derived-type-spec (4.5.5) is assigned to the corresponding type
parameter after being converted according to the rules for an intrinsic assignment statement
(7.5.1.5) in which the type parameter is the variable and the component-constructor is the expr.
If the first component-spec does not include a component name keyword and has the same type
as an ancestor component, it corresponds directly to the ancestor component having the same
type, and therefore indirectly to the components of that type. Each succeeding component-
constructor that does not include a keyword corresponds to a succeeding component after the
last component of that ancestor component, in component order (4.5.4).
Otherwise if the first component-spec does not include a component name keyword it corre-
sponds to the first component in component order, and each succeeding component-constructor
that does not include a keyword corresponds to a succeeding component, in component order
(4.5.4).
If a component name keyword is present, the component-constructor corresponds directly to
the component named by the keyword.
If a component-constructor corresponds to a nonpointer nonallocatable component, its array
bounds if any and its type parameters shall conform to those of the corresponding component in
the same way that the expr shall conform to the variable in an intrinsic assignment. The value
of the component-constructor is assigned to the component after being converted according to
the rules for an intrinsic assignment statement (7.5.1.5) in which the component-constructor is
the expr and the component is the variable.
If a component-constructor corresponds to a pointer component, the target shall satisfy the
same requirements as the target in a pointer assignment in which the component is the pointer-
object, and the target is assigned to the component as if the target and component were the
target and pointer-object in a pointer assignment (7.5.2).

[Editor: “expr” ⇒ “component-constructor”.] 57:22

[Editor: Delete. This also deletes unresolved issue note 211.] 57:24-32

13 November 2000 Page 3 of 3 J3/00-306

[Remove the term “nested form” from the example.] 57:39-44

COLOR_POINT(PV, 3) ! Available even if TYPE(POINT)
! has private components.

COLOR_POINT(POINT(1.0, 2.0), 3) ! Requires the components of
! TYPE(POINT) to be accessible.

COLOR_POINT(1.0, 2.0, 3.0) ! Requires the components of
! TYPE(POINT) to be accessible.

[Editor: Delete – superceded by last paragraph of edit for [57:16-21] above.] 58:12-14

If a component-constructor corresponds to an allocatable component, it shall 58:25

[Editor: “expression” ⇒ “component-constructor”.] 58:27

[Editor: Delete “of the constructor”.] 58:28

the component-constructor is an allocatable entity, the corresponding component has the same 58:29-33
allocation status as that allocatable entity and, if it is allocated, the same bounds (if any) and
value. Otherwise the component corresponding to the component-constructor is allocated, with
the same bounds if the component-constructor is an array, and it has the same value.

ancestor component (4.5.3.1): the parent component or an ancestor component of the parent 403:29+
component.

