23 March 2001 Page 1 of 3 J3/01-114r2

Subject: More comments on Section 13
From: Van Snyder

1 Edits

Edits refer to 01-007. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks are noted in the margin, or appear between [and | in the text.

[There is more gratuitous repetition in section 13 than in other sections. Whenever something is 13.4-13.13
duplicated, it’s an opportunity to get it wrong (twice). Editor: Delete all subclauses from 13.4
through the end of 13.13, except 13.5.7, 13.7.1, 13.8.0, 13.8.1, 13.8.2 and 13.13.0. Lift 13.5.7 to
be 13.5.0. Combine 13.7.1 into 13.7.0 and keep the composite. The subclauses proposed to be
deleted contribute nothing, either in content or organization, that is not done better elsewhere.

[Editor: The right-hand column wraps back to the left margin of the left-hand column. Pre- 282:19-27
sumably, it was intended to wrap back to the left-hand margin of the right-hand column.]

J3 internal note 288:24+
Unresolved issue xxx

Between Fortran 90 and Fortran 95, the “Result Type and Type Parameters” clause was
replaced by “Result Characteristics.” In itself, there’s no problem with this, but it sometimes
says “Same as <one of the arguments>.” The introduction to the section is nebulous about
whether the descriptions of the arguments apply to actual arguments or dummy arguments. If
the specifications apply to the dummy arguments, it is not entirely appropriate to say that the
characteristics of the result are the same as the characteristics of an argument — for example,
INTENT, VOLATILE and optionality are characteristics. If the specifications apply to the
actual arguments, it is not entirely appropriate to say that the characteristics of the result are
the same as the characteristics of an argument — for example, POINTER, ALLOCATABLE
and ASYNCHRONOUS are characteristics. The introduction should specify whether the
descriptions apply to actual or dummy arguments. The “Results Characteristics” paragraphs
should say “The type and type parameters are the same as those of <one of the arguments>;
the other characteristics are ...” instead of just “Same as <one of the arguments>.”

[This description doesn’t work after we changed subclause 7.5.2 to allow higher-rank views 292:11-15
of rank-one objects. It is also more complicated than necessary. Editor: Replace “shall ...
POINTER.” by “shall be allowable as target in a pointer assignment statement (7.5.2) in which
POINTER is pointer-object.”]

NOTE 13.161 322:26+

Unlike other floating-point manipulation functions, NEAREST operates on machine repre-
sentable numbers rather than model numbers. On many systems there are machine repre-
sentable numbers that lie between adjacent model numbers.

J3 internal note 323:16+
Unresolved issue xxx.
This does not seem to have been updated to account for deferred type parameters.

23 March 2001 Page 2 of 3 J3/01-114r2

[No other function result kind is described by writing “the kind type parameter is the processor-
dependent kind type parameter....” This is repetitive and redundant, and it’s not necessary to
say it twice, or even more than once. Editor: “the processor-dependent kind type parameter
for the” = “that of”.]

2 NULL is weird already...

[Is it really necessary to require MOLD to be a pointer? NULL is weird already; why not make
it easier to use, e.g. why not allow “NULL((/ CHARACTER(LEN=5) :: /))"7]

Argument. MOLD may be of any type or may be a procedure or procedure pointer. If it is a
pointer its association status may be undefined, disassociated or associated; if it is associated,
the target need not be defined with a value. If it is allocatable it need not be allocated; if it is
allocated it need not be defined with a value.

[Broken concerning type parameters, because deferred type parameters of disassociated pointers
or of unallocated allocatables are not specified to be undefined.]

Result Characteristics. The result is a disassociated pointer or an unallocated allocatable.
The array bounds of the result are undefined. If MOLD is not present the result characteristics,
including whether the result is a pointer, procedure pointer or allocatable, are determined from
context (7.1.4.1). Otherwise if MOLD is not a pointer or an allocatable, is a pointer that is
associated with a target, or is a procedure pointer that is associated with a procedure, the
result is a pointer and its characteristics are the same as MOLD. Otherwise if MOLD is an
allocated allocatable the result is an unallocated allocatable and its characteristics are the
same as MOLD. Otherwise the result characteristics other than deferred type parameters are
the same as MOLD, and deferred type parameters are undefined.

3 COMMAND_ARGUMENT_COUNT

According to [275:29-30], “all standard intrinsic functions are pure.” A careful reading of the
definition of purity reveals that it means side effects are not caused. One might also expect,
although unreasonably, that pure functions do not depend on side effects.

The COMMAND_ARGUMENT_COUNT function has no arguments, but does not return the same
result value every time the program is executed. Therefore, a processor cannot, at compile time,

replace the reference by its result. Although the function is technically pure, it doesn’t smell
pure. Replace it with an argument to GET_COMMAND_ARGUMENT.

[Editor: Delete subclause 13.17.21.]
[Editor: After “STATUS” insert “, COUNT”

COUNT (optional) shall be scalar and of type default integer. It is an INTENT(OUT) argu-
ment. It is assigned a value equal to the number of command arguments
available. If there are no command arguments available or if the proces-
sor does not support command arguments, then the value is 0. If the
processor has a concept of a command name, the command name does
not count as one of the command arguments.

327:14-15

323:12-14

323:15-16

295:18-26
303:28
304:4+

23 March 2001 Page 3 of 3 J3/01-114r2

4 Unfinished business

The notes accompanying EXTENDS_TYPE_OF and SAME_TYPE_AS are defective in not
considering unlimited polymorphic objects and unallocated allocatable objects. Either repair
them or delete them.

