1 March 2001 Page 1 of 6 J3/01-115

Subject: Issues 287, 288, 294, 296 and part of 290: Type-bound operators, assignment and
generic procedures

From: Van Snyder

References: 00-304r1

1 Edits

Edits refer to 01-007. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks are noted in the margin, or appear between [and | in the text.

[Editor: after “(12.3.2.1)” insert “, or a subroutine and a generic procedure binding (4.5.1.5),”] 31:18

[Editor: “construct” = “stmt” twice.] 41:15-16

R440 proc-binding-stmt is specific-binding 41:20-21
or generic-binding
or final-binding

[Editor: Move [41:33-35] to here.]
R441 specific-binding is PROCEDURE | (abstract-interface-name) | 41:22

[Editor: Move [41:36] to here.] 41:23+

Constraint: The abstract-interface-name shall be specified if and only if the binding is NULL()
and is not overriding an inherited binding. [This was formerly at [41:37-38].]
[Now that we have generic bindings, if may be desirable to change this constraint,
to avoid a disturbing antisymmetry: One (presently) cannot specify the interface
of a deferred specific binding that is overriding another specific binding, but one is
required to specify the interface of a deferred generic binding that is overriding a
generic binding — otherwise we wouldn’t know which one to override.]

[Editor: Move [42:28-29] to here.]

R441% generic-binding is GENERIC [(abstract-interface-name) | m 41:24-26
B [, binding-attr-list] :: generic-spec => binding-list

Constraint: The abstract-interface-name shall be specified if and only if binding-list is a single
binding which is NULL().

Constraint: If generic-spec is generic-name, generic-name shall not be the name of a specific
binding of the type.

Constraint: If generic-spec is OPERATOR (defined-operator), the interface of each binding
shall be as specified in 12.3.2.1.1.

Constraint: If generic-spec is ASSIGNMENT (=), the interface of each binding shall be as
specified in 12.3.2.1.2.

Constraint: If generic-spec is dtio-generic-spec, the interface of each binding shall be as specified
in 9.5.4.4.3. The type of the dtv argument shall be type-name.

R4412 final-binding is FINAL [::] final-subroutine-name-list

[Editor: Delete unresolved issue note 287.] 41:27-32
[Editor: Delete. Note that [41:33-36] have been moved upward.] 41:37-40

1 March 2001 Page 2 of 6 J3/01-115

[Editor: Delete unresolved issue note 288.]

[Editor: Delete.]

Constraint: In a generic-binding, if generic-spec is dtio-generic-spec, PASS_OBJ shall not be
specified.

Constraint: In a generic-binding, if generic-spec is OPERATOR (defined-operator) or AS-
SIGNMENT (=), PASS_OBJ shall not be specified, but each interface shall
satisfy the conditions that would be required if it had been specified.
[Alternative that Malcolm prefers:] In a generic-binding, if generic-spec is OPER-
ATOR (defined-operator) or ASSIGNMENT (=), PASS_OBJ shall be specified.

Constraint: If PASS_OBJ is specified, the procedure named by procedure-name or the interface
named by abstract-interface-name shall have a scalar nonpointer nonallocatable
dummy argument of type type-name. The first such dummy argument shall be
polymorphic if and only if the type is extensible.

Constraint: PASS_OBJ shall be specified for an overriding binding if and only if it is specified
for the binding being overridden.

Constraint: PASS_OBJ shall be specified for a generic-binding if and only if it is specified for
all generic bindings, both inherited and declared within the type definition, with
the same generic-spec.

Constraint: NON_OVERRIDABLE shall be specified for a generic-binding if and only if it is
specified for all generic bindings with the same generic-spec declared within the
type definition.

Constraint: Within the specification-part of a module, each generic-binding shall specify the
same accessibility, either explicitly or implicitly, as every other generic-binding in
the same type definition that has the same generic-spec.

J3 internal note

Unresolved issue xxx

Some time ago we changed the syntax for deferred bindings from PROCEDURE :: binding-
name => NULL(abstract-interface-name) to PROCEDURE(abstract-interface-name)
it binding-name => NULL(), partly to make it consistent with PROCEDURE statements,
and partly to avoid introducing the use of abstract-interface-name as an actual argument.
Now that we have generic bindings, should we (almost) change this back? The “almost” part
means to allow NULL(procedure-pointer) instead of NULL(abstract-interface-name), or the
present form, but not both in the same statement.

[Editor: Delete “If ... extensible.” It’s covered by one of the constraints inserted by the edit
for [42:34-35] above.]

[Editor: Delete.]

[Editor: “-construct” = “-stmt”.]

There are five categories of type-bound procedures: A binding specified by PROCEDURE spec-
ifies a named type-bound procedure. A binding specified by GENERIC :: generic-name speci-
fies a named type-bound generic interface. A binding specified by GENERIC :: OPERATOR (
defined-operator) specifies a type-bound defined operation (12.3.2.1.1). A binding specified by
GENERIC :: ASSIGNMENT (=) specifies a type-bound defined assignment (12.3.2.1.2). A
binding specified by GENERIC :: dtio-generic-spec specifies a type-bound user-defined derived-
type input/output procedure (9.5.4.4.3, 12.3.2.1.3).

42:1-11
42:12-17
42:34-35

42:37+

42:39-42

42:45-43:2
47:12

47:12+
Same q

1 March 2001 Page 3 of 6 J3/01-115

[Editor: Add the above paragraph to the index for “generic interface”.]

The interface of a binding is the interface of the procedure specified by procedure-name or the
interface of the abstract interface specified by abstract-interface-name.

A binding is associated with a derived-type definition if it is specified within that definition, or
inherited into the type that definition defines.

A binding specified by GENERIC may override one inherited from the parent type (4.5.3.2)
with the same generic-spec. Otherwise it extends the generic interface for that generic-spec.
If the generic-spec is generic-name, the set of all accessible nonoverridden bindings inherited
from the parent for that generic-spec, together with the bindings for that generic-spec declared
within the type definition, constitutes a type-bound generic interface. If the generic-spec is
not generic-name, the set of all accessible nonoverriding generic bindings for that generic-spec,
together with specific procedures specified in accessible generic interface blocks with the same
generic-spec, constitute a generic interface. Generic interfaces specified in these ways shall
satisfy the requirements stated in 14.1.2.3.

The same generic-spec may be used in several generic-bindings within a single derived-type
definition. All bindings specified with a particular gemeric-name within a single derived-type
definition contribute to the same type-bound generic interface. Otherwise, all bindings specified
with a particular generic-spec contribute to the same generic interface.

[Editor: Delete.]

For purposes of overriding (4.5.3.2) and generic resolution (14.1.2.3, 14.1.2.4.11), the declared
type of a passed-object dummy argument (4.5.1.7) of a procedure binding inherited from the
parent type is considered to be the same as the type into which it is inherited.

[This avoids saying “Except for the passed-object dummy argument,” and then needing to say
what rules apply to the passed-object dummy argument, at [53:8] and in (14.1.2.3, 14.1.2.4.1%).]

A procedure binding declared within a derived type definition overrides one inherited from
the parent type if:

(1) It is declared using PROCEDURE and it has a binding name that is the same as one
inherited from the parent type, or

(2) It is declared using GENERIC, it has the same generic-spec as one inherited from the
parent type, and the interface of the procedure specified by the procedure-name or the
interface specified by abstract-interface-name is not distinguishable, by using the rules in
14.1.2.3, from one inherited from the parent for the same generic-spec.

If it is declared using GENERIC (generic-name) but it does not override one inherited from
the parent, it extends the type-bound generic interface having that generic-name. Otherwise if
it is declared using GENERIC but it does not override one inherited from the parent, it extends
the generic interface having that generic-spec. A binding that overrides one inherited from the
parent shall match the overridden binding in the following ways:

[Editor: Delete “the procedure of” and “that of”.]

[Editor: “Except ... argument, the” = “The”. The deleted part is now provided by the edit at
[52:20+] above. This is defective as it presently stands because it doesn’t say anything about
how the characteristics of the passed-object dummy arguments of the inherited and overriding
binding correspond.]

47:25+
New q

47:31-38
52:20+

52:41-53:3

53:4
53:8

1 March 2001 Page 4 of 6 J3/01-115

[Editor: Delete.] 53:34-38
[Editor: After “(12.3.2.1)” insert “, or a generic procedure binding (4.5.1.5),”] 56:29
[Editor: “block (" = “(4.5.1.5,"] 112:16
[Editor: Delete “block” thrice.] 112:18-22
[Editor: Delete unresolved issue note 294.] 114:1-5
[Editor: “block (7 = “(4.5.1.5,”] 126:35
[Editor: “block (7 = “(4.5.1.5,"] 127:5
[Editor: Delete “block”.] 130:2
[Editor: “block (7 = “(4.5.1.5,”] 130:16
[Editor: “block (7 = “(4.5.1.5,"] 132:26
[Editor: “interface block” = “generic interface” .| 247:27-28

[Editor: “it ... names” = “the functions shall have interfaces that are distinguishable according 248:15
to the rules stated in 14.1.2.3, and references are resolved using the rules stated in 14.1.2.4.1”.

If ASSIGNMENT (=) is specified in a generic specification, all of the procedures in the generic 248:28
interface [NOTICE that the word “block” is intentionally deleted!]

[Editor: Before “Each” insert “A particular defined assignment may, as with generic names, 248:29
apply to more than one subroutine, in which case the subroutines shall have interfaces that are
distinguishable according to the rules stated in 14.1.2.3, and references are resolved using the

rules stated in 14.1.2.4.1.”]

[Editor: “As ... name” = “A particular dtio-generic-spec may, as with generic names, apply 249:13-15
to more than one subroutine, in which case the subroutines shall have interfaces that are
distinguishable according to the rules stated in 14.1.2.3, and references are resolved using the

rules stated in 14.1.2.4.3.”]

[Editor: Delete unresolved issue note 296.] 249:16-25

[Editor: Delete — redundant now that “distinguishable according to the rules stated in 14.1.2.3” 249:26-31
is specified above.]

R1214% abstract-interface-name is name 250:43

Constraint: The name shall be the name of an abstract interface (12.3.2.1).

[Editor: After “names” add “or generic bindings (4.5.1.5)”.] 342:14
[Editor: “procedure name” = “identifier”.] 344:21
[Editor: After “reference” insert “, is a generic type-bound reference” . 344:23

[Editor: After “reference” insert “, is a specific type-bound reference, is a reference to a user- 344:24
defined derived-type input/output procedure”.]

[Editor: “A procedure name” = “An identifier” | 344:25

[Editor: “an interface block with that name” = “a generic interface with a generic-spec other 344:26
than a dtio-generic-spec that specifies that identifier”.]

[Editor: “name” = “identifier” twice.] 344:27-28

1 March 2001 Page 5 of 6 J3/01-115

[Editor: “procedure name” = “identifier”.]

[Editor: “name” = “identifier”.]

[Editor: “name” = “identifier” twice.]

114) A reference is established to be to a generic type-bound interface if it is of the form data-
2
ref % binding-name and binding-name is the generic-name in a generic-spec in a binding
specified using GENERIC within the definition of the declared type of data-ref.

[Editor: “names” = “identifiers”.]

(1) If the declared types of the actual arguments that are not procedures or procedure pointers
are type compatible with, and have the same kind type parameters as the corresponding dummy
arguments of one of the nonoverridden specific interfaces of a generic interface

Editor: “name” = “identifier”.]

Editor: “interface block that provides that” = “generic interface that provides that specific”.]

Editor: “procedure” = “interface”.]

Editor: “name” = “identifier”.]

Editor: “interface block that provides that” = “generic interface that provides that specific”.]

Editor: “name” = “identifier”.]

[Editor: “name is a function name or subroutine name, the name” = “identifier refers to a
function or subroutine, the identifier”.]

If the procedure has a passed-object dummy argument, the reference is to the procedure named
by the procedure-name specified by a proc-binding-stmt that is associated with (4.5.1.5) the
dynamic type of the actual argument that corresponds to the passed-object dummy argument.
NULL() shall not be specified in that proc-binding-stmit.

[Editor: Add a new section, after — not a subsection of — 14.1.2.4.1.]
14.1.2.4.1% Resolving references to type-bound generic procedures

If a type-bound generic interface is specified by data-ref % binding-name in a function reference
or call statement:

(1) If the reference is consistent with one of the specific interfaces in the generic binding
associated with (4.5.1.5) the declared type of the data-ref and having a generic-name
that is the same as the binding-name, that interface is selected.

(2) Otherwise, if the reference is consistent with an elemental reference to one of the specific
interfaces in the generic binding associated with the declared type of the data-ref and
having a generic-name that is the same as the binding-name, that interface is selected.

(3) If an interface is selected by (1) or (2) above, the reference is to the specific binding
associated with the dynamic type of the data-ref that either is the binding that provides
the specific interface in (1) or (2), or overrides it.

If no interface is selected in (1) or (2), or the specific binding determined in (3) is a deferred
binding (4.5.1.5), an error condition occurs.

344:29
344:30
344:32-33

344:34+

345:3
345:4

345:5
345:7
345:8
345:10
345:12-13
345:42
345:44-45

345:46+
New q

1 March 2001 Page 6 of 6 J3/01-115

5 reference is established to be to a specific type-bound procedure if it is of the form data-

2% A ref is established to be t ific t bound dure if it is of the f dat
ref % binding-name and binding-name is the binding-name in a specific-binding within
the definition of the declared type of data-ref.

A reference is established to be to a user-defined derived-type input/output procedure by
the rules specified in 9.5.4.4.3.

—~
[\
Wi
S—

If the reference is of the form data-ref % binding-name and binding-name is the same
as one specified in a specific-binding associated with (4.5.1.5) the declared type of data-
ref, then the reference is to the procedure-name, if any, specified in the specific-binding
associated with the dynamic type of data-ref and that has the same binding-name. If
that specific-binding is a deferred binding (4.5.1.5), an error condition occurs.

—~
ot
N[
S—

[Editor: Delete unresolved issue note 290.]

deferred procedure binding (4.5.1.5): a type-bound procedure binding that specifies the
NULL() intrinsic. A deferred procedure binding shall not be invoked.

[Editor: “an interface block” = “a generic interface”.]

[Editor: “an interface block” = “a generic interface”.]

generic identifier (4.5.1.5, 12.3.2.1): A lexical token that appears in a generic procedure
binding or an INTERFACE statement and is associated with all the procedure names or abstract
interfaces in the generic interface.

generic interface (4.5.1.5, 12.3.2.1): An interface specified by a generic procedure binding or
a generic interface block.

generic procedure binding (4.5.1.5): a procedure binding specified by a GENERIC proce-
dure binding statement.

[Editor: After “type” insert “, as a defined operator, or by defined assignment”.]

[Editor: After “module” insert “, or a generic procedure binding may be specified in a derived
type definition”.]

345:48+

346:20+

346:24-27
402:14+

402:23
403:10
404:15-17

404:18+

409:31
445:4

