
1 May 2001 Page 1 of 5 J3/01-197

Subject: Comments on section 4
From: Van Snyder

1 Edits

Edits refer to 01-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks are noted in the margin, or appear between [and] in the text.

1.1 Minor syntax change in the procedure binding statement

It would be useful and harmless to allow several procedure bindings to be specified in a single
statement. I don’t use a foobar-list kind of syntax rule construction, because it would be difficult
to tie in the constraint at [43:13].

[, binding-name [=> binding]] ... 43:12+

[Editor: “the binding is” ⇒ “all bindings are” (or “each binding is”?).] 43:14

1.2 Final subroutine specifications are stricter than necessary

In writing data types and procedures for a simple data structure, i.e. a doubly-linked list, it
appeared that it might be useful to allow final subroutines to be the same as subroutines used
for other purposes, and to that end, it might be useful to allow them to have optional dummy
arguments. Also, it doesn’t seem to hurt if the first argument of the type is optional, because it
will, after all, be present when the subroutine is used for finalization. In fact, this would allow
a final subroutine to be used for several types. Of course, all of this could be done with an
additional layer of subroutines, but this adds to code bulk, and therefore adds to lifetime cost.

1.2.1 Specs

Allow a final subroutine to have any number of arguments, so long as at least one is of the type
to which the subroutine is bound as a final subroutine, and all of the rest are optional.

1.2.2 Syntax

No changes are required in the syntax.

1.2.3 Edits

Constraint: Each final-subroutine-name shall be the name of a module subroutine. It shall 43:31-35
have at least one dummy argument of the derived type being defined. The first
of these shall be be a nonpointer, nonallocatable, nonpolymorphic argument; all
of its nonkind parameters shall be assumed. It shall not have INTENT(OUT).
The term “finalized argument” is defined in 4.5.10 to specify this argument. If the
subroutine has additional arguments, they shall be optional.

1 May 2001 Page 2 of 5 J3/01-197

Constraint: The rank and kind type parameters of the finalized argument (4.5.10) of a final 43:38-40
See §1.4subroutine shall not be the same as those for the finalized argument of another

final subroutine specified for the same derived type.

The first dummy argument of a subroutine that is of the same type as the type to which the 58:26+
subroutine is bound as a final subroutine is the finalized argument. If a subroutine is bound
to several types as a final subroutine, different dummy arguments will be finalized arguments
in different contexts.
[Editor: “dummy” ⇒ “finalized”.] 58:28

[Editor: After “argument” insert “associated with the finalized argument, and any other argu- 58:30,32
ments are not present” twice.]

[Subroutines don’t have kind type parameters. Editor: “with” ⇒ “for which the finalized 58:31
See §1.4argument has”.]

finalized argument (4.5.10) : The first dummy argument of a final subroutine that is of the 402:4+
same type as the type to which the subroutine is bound as a final subroutine. If a subroutine
is bound to several types as a final subroutine, different dummy arguments will be finalized
arguments in different contexts.

1.3 It is a mistake that enumerations are aliases

Some of the advantages of enumerations being new types, not aliases for integers, are described
in section 4 of 98-171r2. Other advantages that are not therein described include the possibility
to use enumerators for input and output.
We should leave room for the possibility that the authors of a future revision of the standard may
conclude that defining enumerations to be aliases was a mistake, and wish to define enumerations
that are new types, with differently spelled syntax. A natural dichotomy would be that ENUM
introduces a new type, and ENUMALIAS introduces an alias. It would be inconsistent with
the syntaxes for types and type aliases to keep ENUM meaning “introduce an alias” and expect
a future committee to come up with something different, say NEWENUM, to introduce a
new one. On the other hand, it would preserve what in the 1980’s was called “The beloved
Fortran tacked-on look.” Instead, the syntax should be changed now so as to make it explicit
that enumerations, as presently defined, are aliases.
Although it is possible and reasonable that the authors of a future revision of the standard may
prefer a syntax such as

TYPE, ENUM :: type-name

enumerator-def-stmt

END TYPE [type-name]
it would be unkind to that committee to paint them into a corner now.

[Editor: “enum” ⇒ “ENUMALIAS”.] 14:39

[Editor: “ENUM” ⇒ “ENUMALIAS” twice.] 60:22,23

[Editor: “ENUM” ⇒ “ENUMALIAS” twice.] 60:26,29

[Editor: “ENUM” ⇒ “ENUMALIAS” four times.] 62:3,5,6,9

[Editor: “ENUM” ⇒ “ENUMALIAS”.] 462

1 May 2001 Page 3 of 5 J3/01-197

1.4 Miscellaneous edits

[Editor: Insert a space between “ ” and “[”.] 40:41

[Editor: Insert “(4.6)” after “alias” because it’s a forward reference.] 41:7

Constraint: The same type-attr-spec shall not appear more than once within a single derived- 41:4+
type-stmt.

Constraint: If SEQUENCE is present a proc-comnponent-def-stmt shall not be present. 41:34+

[Editor: Add these instances of “DIMENSION”, “ALLOCATABLE” and “access-spec” to the 41:40-42
index. The instance of “POINTER” on the previous line is already in the index.]

[Editor: There is only one declaration-type-spec: “a declaration-type-spec” ⇒ “the declaration- 42:6,9
type-spec” twice.]

[Simplification:]
[Editor: Insert “neither” before “the”.] 42:26
[Editor: Insert “nor the ALLOCATABLE”; delete “not”.] 42:27
[Editor: Delete.] 42:28-29

[Components don’t have interface, explicit or otherwise. Editor: “the ... explicit” ⇒ “proc- 42:40
interface shall be present and shall specify an”.]

[Editor: “variable” ⇒ “argument”.] 42:41

[Editor: Delete “statement” (compare to style at [43:8]).] 43:3

[In two constraints on final subroutine names, the type to which the terms “that type” and
“that derived type” refers is unclear.]
Constraint: A final-subroutine-name shall not be the same as one specified previously within 43:36-37

the definition of the same derived type.
Constraint: The rank and kind type parameters of the dummy argument of a final subroutine 43:38-40

See §1.2shall not be the same as those for the dummy argument of another final subroutine
specified for the same derived type.

[We seem to have lost the constraint on PASS OBJ for type-bound procedures that is parallel 43:44+
to the one at [42:40-43] for procedure pointer components.]
Constraint: If PASS OBJ is specified, the interface specified by abstract-interface-name or

the procedure specified by binding shall have a scalar, nonpointer, nonallocatable
dummy argument of type type-name. The first such dummy argument shall be
polymorphic if and only if type-name is extensible.

[Editor: If Frame has such a thing, add a non-line-breaking space after “defined-operator”.] 43:46

[Pointers don’t “point to”. Editor: “to” ⇒ “with”.] 45:24

[Doesn’t account for the possibility that components for which default initialization is specified 46:1
need not appear in structure constructors. Editor: “overrides” ⇒ “may override”.]

[Editor: Insert a comma after “TODAY”.] 46:31

[Editor: The first “status” ⇒ “pointer association status (5.1.2.11)”.] 47:37

[The subclause is about pointer components. Editor: Delete “of a pointer component”.] 47:37-38

[Editor: “in” ⇒ “by”.] 48:11

1 May 2001 Page 4 of 5 J3/01-197

[Editor: Insert “be” after “to”.] 48:16

If a procedure is bound to several types as a type-bound procedure, different dummy arguments 49:24+
Same ¶may be the passed-object dummy argument in different contexts.

[Make it clearer that the components and bindings of the parent type are in the scope of the 53:17
extension type. Editor: “by” ⇒ “into the scope of”.]

Constraint: A colon may be used as a type-param-value only in a declaration-type-spec in the 56:17+
declaration of an entity with the POINTER or ALLOCATABLE attribute.

[Compare to [69:39-40].]

[Editor: “parant” ⇒ “parent”.] 57:11

[Editor: Delete “PV”.] 57:17

[Subroutines don’t have kind type parameters. Editor: “with” ⇒ “for which the dummy 58:31
See §1.2argument has”.]

[Editor: Capitalize “if”. Then move the constraint either to [62:31+] or [62:40+].] 62:34

[The constraint seems to be requiring only that all of the ac-value expressions have the same 63:5-6
type and type parameters as each other. The intent is almost certainly that they have the same
type and type parameters as specified by the type-spec. Editor: “of the same” ⇒ “of that”;
after “values” insert “as specified by type-spec”.]

[The sentence “Each ac-value ... parameters” is identical in substance to the constraint at 63:10-12
[63:1-3]. Editor: Delete it.]

If a procedure is bound to several types as a type-bound procedure, different dummy arguments 404:41+
Same ¶will be the passed-object dummy argument in different contexts.

2 Potential problems with crappy edits or no edits offered

1. Assignment isn’t an operation. 2. Intrinsic assignment isn’t defined for polymorphic objects. 32:6

It requires substantial sophistication to understand that “execution of a derived-type intrinsic 32:43-44
assignment statement” determines the values of deferred type parameters only indirectly. It
would be better to delete it.
Intrinsic assignment is not defined for polymorphic objects. 33:15

This paragraph isn’t connected to anything previous or subsequent in this subclause, and it 37:43-45
contributes nothing on its own. Its substance belongs in 13.11.100.

Constraint: If EXTENDS or EXTENSIBLE is specified in the derived-type-stmt, no component- 42:2+
name, including an inherited one, shall be the same as the type-name.

OR
Constraint: If EXTENDS or EXTENSIBLE is specified in the derived-type-stmt and a compo-

nent has the same name as the type being defined, the type shall not be extended.
[Otherwise, there can be an ambiguity between an inherited component and the parent com-
ponent of an extension type.]

The sentence “Pointers ... undefined” belongs in 5.1.2.11, where its substance isn’t even men- 47:35-36

1 May 2001 Page 5 of 5 J3/01-197

tioned!

Need 4.5.1.41
2 Procedure Pointer Components. 48:22+

Move to 4.5.1.51
2 (to be with other type-bound procedures), or move 4.5.1[56] to be just before 51:28-41

this subclause.
This sentence appears to have no connection to anything previous or subsequent in this or 58:25
nearby subclauses, nor does it contribute anything on its own. It should be deleted. It’s
substance is adequately covered in section 12.

The method of finalizing array components should be the same as in step 1. 58:34-35

Subclause 4.5.11 should be 4.5.10.1. 58:41
Subclause 4.5.12 should be 4.5.10.2. 59:23
There is no prohibition against a type-alias-name being defined in terms of another one, so 4.6
it’s presumably allowed. There is therfore apparently a need to prohibit a circular definition.
A constraint that a type-alias-name in a type-spec in a type-alias shall have been previously
declared (which may perhaps be within the same statement) would suffice.

