
9 May 2001 Page 1 of 3 J3/01-198

Subject: Comments on section 5
From: Van Snyder
References: 01-138r1, 01-166

1 Edits

Edits refer to 01-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks are noted in the margin, or appear between [and] in the text.

[PARAMETER and VALUE are the only right-hand sides that are not in alphabetical order. 65:35, 66:7
Editor: Alphabetize the right-hand sides.]

[Simplification:]
[Editor: Insert “ALLOCATABLE,” before “TARGET”.] 66:34
[Editor: Delete.] 67:1-2

[Doesn’t account for a SAVE statement without a saved-entity-list. Editor: Delete “or” at 68:20-21
[68:20] and insert “or by the presence of a SAVE statement without a saved-entity-list in the
same scoping unit” after “(5.2.11)”.]

[This note is anachronistic noise. Editor: Delete it.] 68:35-44

[The word “would” is incorrect if IMPLICIT NONE is specified. Editor: “would” ⇒ “could”.] 69:4

[Editor: “the function” ⇒ “a function; after “association” insert “, or the derived type is 71:2
defined within an interface body or is accessible there by use association or as a consequence
of an IMPORT statement”.]

[Editor: “effector” ⇒ “affector”.] 72:13

[Editor: After “argument” insert “, is not a structure constructor”.] 73:38

[The sentence “If an explicit-shape ... expressions” is the definition of the term “automatic 73:39, 40
array” in the previous paragraph. We might as well use the term. Editor: “If an explicit-
shape ... expressions, the” ⇒ “The”; before “are” insert “of an automatic array”.]

[The following note would reduce the occurrence of some questions and mistakes:] 74:15+
NOTE 5.121

2

The lower bound is not taken from the associated actual argument.

[Editor: Delete “The ALLOCATABLE ... (5.2.2).” because it’s redundant.] 74:20-21

[Editor: Delete “in a type ... definition statement.” because it’s redundant.] 74:22-25

[Editor: Delete “The POINTER ... (5.2.10).” because it’s redundant.] 74:28-30

[Editor: Delete “An array ... definition statement.” because it’s redundant.] 74:31-32

[Simplification:]
Editor: Insert “or a disassociated array pointer” after “array”. 74:35
Editor: Start a new paragraph with “The lower...” 74:37
Editor: Delete “The size ... 13.1.” 74:39-41

9 May 2001 Page 2 of 3 J3/01-198

[The bounds ... are unaffected by ... the bounds? Editor: At [75:2] “bounds” ⇒ “bounds’ 75:1-2
specification expressions”.]

[Editor: After “name” insert “that is not the name of a block data program unit”; Delete “, or 76:6
... procedure” because it has nothing to do with the EXTERNAL attribute, which is the topic
of this subclause.]

[Editor: “the” ⇒ “a”.] 76:16

[Editor: Delete “, 12.4.1.4” because alternate returns are not germane to the present discussion.] 77:9

[A dummy argument is not a type, derived or otherwise. Editor: After “type” insert “object”.] 77:18

Notice that if a structure is an actual argument that is associated with a dummy argument 77:47+
that has INTENT(OUT), its components become undefined upon invocation of the procedure.
Therefore, its components cannot be used as actual arguments associated with other dummy
arguments.

[Editor: Delete. See [65:5-6].] 78:22

[Pointers don’t “point to”. Accessing a target doesn’t “end up”. Editor: “point only to” ⇒ 79:39-40
“only be associated with”; “end up ... target” ⇒ “access an object that is neither an explicitly
specified target nor an allocated object”.]

[This sentence implies that appearing in a DATA statement is enough to cause implicit typing. 82:4-5
There is no leeway for IMPLICIT NONE. Replace by wording similar to [85:7-8].]
If a variable that appears in a DATA statement is typed by the implicit typing rules, its
appearance in any subsequent specification of the specification-part shall confirm this implied
type and the values of any implied type parameters. An array name,

[Syntax rules are by-and-large in depth-first order. Editor: Move [83:14-15] to here.] 83:9+

[Simplification:]
The data-stmt-constant shall be NULL() if and only if the corresponding data-stmt-object has 83:33-34
the POINTER attribute.
[Editor: Delete.] 83:40-41

[Where else would the initialization expression appear? Editor: Delete “that appears ... 85:11
equals”.]

[Duplicates [78:39]. Editor: Delete.] 85:18

Constraint: A declaration-type-spec in an implicit-spec shall not use the CLASS keyword. 87:12+

[Editor: After “same” insert “kind”.] 90:45

[Editor: Insert a space between “[” and “common...”.] 92:38

[The phrase “use association or” contradicts the constraint at [93:7]. Delete it.] 93:40

[Editor: Before “type parameters” insert “kind” thrice.] 94:17,18,21

2 Potential problems with no edits offered

The assertion that “All of a [data object’s] attributes may be included in a type declaration 65:5-6
statement...” will not be true if the answer to interpretation 90 that is described in 01-138r1

9 May 2001 Page 3 of 3 J3/01-198

stands.
There appears to be no reason for the “that has a language-binding-spec” part. I don’t see why 67:27
VALUE wouldn’t work just fine for Fortran subprograms.

“If the kind ... default integer” duplicates [34:1-2]. 69:7-8

“If the kind ... default real” duplicates [36:1-2]. 69:11-12

“The kind ... (0.0D0)” duplicates [36:4]. 69:15

“If the kind ... default complex” duplicates [37:2-3]. 69:21-22

“If the kind ... default character” duplicates [38:1-2]. 70:28-30

Duplicates [40:1-3]. 70:28-30

If we had a term for “type compatible and all the kind type parameters have the same value” 71:14-17
the discussions of argument association and generic resolution would be simpler.

Why is “base object” here? If it needs to be here, insert “a” before “variable”. 72:9

Where else might a bind-spec-list appear? 72:39-40

“Shape” should be “bounds”. 73:10

“explicit-shape” and “deferred-shape” should be “explicit-bounds” and “deferred-bounds” here, 73:16,18
everywhere else these syntax terms appear, and everywhere the non-syntax terms similar to
them appear.

Is the concept of “defined” defined for anything other than a variable or a pointer association 74:35,39
status?
The specs really said “disassociated”! This would be cool, but almost certainly “disassociated” 76:43
should be “undefined”. Evidence for this appears at [257:27] and [354:5].

The essence of note 5.16 supports the answer to interpretation 31 proposed in paper 01-166. 77:17-29

This only says when a pointer can’t be referenced. Do we assume the contrapositive to be true? 79:2-3
If so, this supports the answer to interpretation 31 proposed in paper 01-166.

If the advice implied by the remark for 67:27 above is accepted, insert “and the procedure has 80:5
a language-binding-spec” after the first “argument”.

The difference between the effect of VOLATILE on allocatable entities and their allocation 80:24+
status should be described.
Do we need to say anything about deferred or assumed type parameters? 87:12+

The term “base object” appears to be defined only for structures. If that’s true, what does the 90:21
constraint mean?
Is it really possible to put a host-associated object into a common block? How could that 93:39-40
possibly work?

Can pointers with deferred type parameters be in common? If so, can a pointer with deferred 94:18-19
type parameters be “common associated” with a pointer that has nondeferred type parameters.

