9 May 2001 Page 1 of 3 J3/01-198

Subject: Comments on section 5
From: Van Snyder
References: 01-138r1, 01-166

1 Edits

Edits refer to 01-007rl. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks are noted in the margin, or appear between [and | in the text.

[PARAMETER and VALUE are the only right-hand sides that are not in alphabetical order. 65:35, 66:7
Editor: Alphabetize the right-hand sides.]

[Simplification:]

[Editor: Insert “ALLOCATABLE,” before “TARGET”] 66:34
[Editor: Delete.] 67:1-2
[Doesn’t account for a SAVE statement without a saved-entity-list. Editor: Delete “or” at 68:20-21
[68:20] and insert “or by the presence of a SAVE statement without a saved-entity-list in the

same scoping unit” after “(5.2.11)".]

[This note is anachronistic noise. Editor: Delete it.] 68:35-44
[The word “would” is incorrect if IMPLICIT NONE is specified. Editor: “would” = “could”.] 69:4

[Editor: “the function” = “a function; after “association” insert “, or the derived type is 71:2
defined within an interface body or is accessible there by use association or as a consequence
of an IMPORT statement”.]

[Editor: “effector” = “affector”.] 72:13
[Editor: After “argument” insert “, is not a structure constructor”.] 73:38
[The sentence “If an explicit-shape ... expressions” is the definition of the term “automatic 73:39, 40

array” in the previous paragraph. We might as well use the term. Editor: “If an explicit-
shape ... expressions, the” = “The”; before “are” insert “of an automatic array”.]

[The following note would reduce the occurrence of some questions and mistakes:] T4:15+
NOTE 5.121

‘The lower bound is not taken from the associated actual argument.

[Editor: Delete “The ALLOCATABLE ... (5.2.2).” because it’s redundant.] 74:20-21
[Editor: Delete “in a type ... definition statement.” because it’s redundant.] 74:22-25
[Editor: Delete “The POINTER ... (5.2.10).” because it’s redundant.] 74:28-30
[Editor: Delete “An array ... definition statement.” because it’s redundant.] 74:31-32
[Simplification:]

Editor: Insert “or a disassociated array pointer” after “array”. 74:35
Editor: Start a new paragraph with “The lower...” 74:37

Editor: Delete “The size ... 13.1.” 74:39-41

9 May 2001 Page 2 of 3 J3/01-198

[The bounds ... are unaffected by ... the bounds? Editor: At [75:2] “bounds” = “bounds’ 75:1-2
specification expressions”.]

[Editor: After “name” insert “that is not the name of a block data program unit”; Delete “, or 76:6
... procedure” because it has nothing to do with the EXTERNAL attribute, which is the topic
of this subclause.]

[Editor: “the” = “a”] 76:16

[Editor: Delete “, 12.4.1.4” because alternate returns are not germane to the present discussion.| 77:9

[A dummy argument is not a type, derived or otherwise. Editor: After “type” insert “object”.] 77:18

Notice that if a structure is an actual argument that is associated with a dummy argument 77:47+
that has INTENT(OUT), its components become undefined upon invocation of the procedure.
Therefore, its components cannot be used as actual arguments associated with other dummy
arguments.

[Editor: Delete. See [65:5-6].] 78:22

[Pointers don’t “point to”. Accessing a target doesn’t “end up”. Editor: “point only to” = 79:39-40
“only be associated with”; “end up ... target” = “access an object that is neither an explicitly
specified target nor an allocated object”.]

[This sentence implies that appearing in a DATA statement is enough to cause implicit typing. 82:4-5
There is no leeway for IMPLICIT NONE. Replace by wording similar to [85:7-8].]

If a variable that appears in a DATA statement is typed by the implicit typing rules, its
appearance in any subsequent specification of the specification-part shall confirm this implied

type and the values of any implied type parameters. An array name,

[Syntax rules are by-and-large in depth-first order. Editor: Move [83:14-15] to here.] 83:9+

[Simplification:]
The data-stmt-constant shall be NULL() if and only if the corresponding data-stmt-object has 83:33-34
the POINTER attribute.

[Editor: Delete.] 83:40-41
[Where else would the initialization expression appear? Editor: Delete “that appears ... 85:11
equals”.

[Duplicates [78:39]. Editor: Delete.] 85:18
Constraint: A declaration-type-spec in an implicit-spec shall not use the CLASS keyword. 87:12+
[Editor: After “same” insert “kind”.] 90:45
[Editor: Insert a space between “[” and “common...”] 92:38

[The phrase “use association or” contradicts the constraint at [93:7]. Delete it.] 93:40
[Editor: Before “type parameters” insert “kind” thrice.] 94:17,18,21

2 Potential problems with no edits offered

The assertion that “All of a [data object’s] attributes may be included in a type declaration 65:5-6
statement...” will not be true if the answer to interpretation 90 that is described in 01-138r1

9 May 2001 Page 3 of 3 J3/01-198

stands.

There appears to be no reason for the “that has a language-binding-spec” part. I don’t see why
VALUE wouldn’t work just fine for Fortran subprograms.

“If the kind ... default integer” duplicates [34:1-2].
“If the kind ... default real” duplicates [36:1-2].
“The kind ... (0.0D0)” duplicates [36:4].

“If the kind ... default complex” duplicates [37:2-3].

“If the kind ... default character” duplicates [38:1-2].
Duplicates [40:1-3].

If we had a term for “type compatible and all the kind type parameters have the same value”
the discussions of argument association and generic resolution would be simpler.

Why is “base object” here? If it needs to be here, insert “a” before “variable”.

Where else might a bind-spec-list appear?
“Shape” should be “bounds”.

“explicit-shape” and “deferred-shape” should be “explicit-bounds” and “deferred-bounds” here,
everywhere else these syntax terms appear, and everywhere the non-syntax terms similar to
them appear.

Is the concept of “defined” defined for anything other than a variable or a pointer association
status?

The specs really said “disassociated”! This would be cool, but almost certainly “disassociated”
should be “undefined”. Evidence for this appears at [257:27] and [354:5].

The essence of note 5.16 supports the answer to interpretation 31 proposed in paper 01-166.

This only says when a pointer can’t be referenced. Do we assume the contrapositive to be true?
If so, this supports the answer to interpretation 31 proposed in paper 01-166.

If the advice implied by the remark for 67:27 above is accepted, insert “and the procedure has
a language-binding-spec” after the first “argument”.

The difference between the effect of VOLATILE on allocatable entities and their allocation
status should be described.

Do we need to say anything about deferred or assumed type parameters?

The term “base object” appears to be defined only for structures. If that’s true, what does the
constraint mean?

Is it really possible to put a host-associated object into a common block? How could that
possibly work?

Can pointers with deferred type parameters be in common? If so, can a pointer with deferred
type parameters be “common associated” with a pointer that has nondeferred type parameters.

67:27

69:7-8
69:11-12
69:15
69:21-22
70:28-30
70:28-30
71:14-17

72:9
72:39-40
73:10
73:16,18

74:35,39

76:43

77:17-29
79:2-3

80:5

80:24+

87:12-+
90:21

93:39-40

94:18-19

