
13 May 2001 Page 1 of 4 J3/01-204

Subject: Comments on section 7
From: Van Snyder

1 Edits

Edits refer to 01-007r1. Page and line numbers are displayed in the margin. Absent other
instructions, a page and line number or line number range implies all of the indicated text
is to be replaced by immediately following text, while a page and line number followed by +
(-) indicates that immediately following text is to be inserted after (before) the indicated line.
Remarks are noted in the margin, or appear between [ and ] in the text.

[There are two kinds of assignment statements – “value” assignment and pointer assignment – 111:3
and they are both discussed in this section. Editor: “statement” ⇒ “statements”.]

[The constraint appears to say that one can define “==” for ones own derived type objects, but 112:28+
not “.EQ.”. I understand that this is really saying that an overloading of an intrisic operator
won’t have the same precedence as a defined operator, but that’s a subtle point that may be
lost on a reader who is not experienced with the idioms used to construct the standard. It
would be helpful to have a note to explain this constraint.]
NOTE 7.41

2

It is possible to define the interpretation of an intrinsic operator for derived types. Such
definition does not, however, change the precedence of the intrinsic operator to be the same
as the precedence of a defined operator.

(4) An actual argument if the associated dummy argument is not a pointer. 117:23+

[Editor: “when” ⇒ “if” (or “where”).] 118:1

[Editor: “is” ⇒ “are”.] 118:3

[Editor: There appears to be an extra blank before “is”.] 119:5

[Editor: Insert “or dummy procedure pointer” after “procedure”.] 119:43

[The sentence “Raising a negative-valued primary to a real power is prohibited” could be inter- 122:18
preted to allow (-1.5) ** 2.0, since the exponent is mathematically an integer. Editor: “real
power” ⇒ “power of real type”.]

[Editor: “A” ⇒ “An accessible”.] 130:35

[Editor: “A” ⇒ “An accessible”.] 131:5

[Editor: “which” ⇒ “that”.] 131:16

2 Curiously inconsistent organization

2.1 Types and type parameters of operands

The requirements on the types and kind type parameters of operands are discussed in a curiously
inconsistent way.
The requirement that the kind type parameters of character concatenation shall be the same is
described at least three times – at [115:38] (which is actually two lines), [116:8-9] and [128:13-



13 May 2001 Page 2 of 4 J3/01-204

14]. Interestingly, most other restrictions on kind type parameters are constraints, but there
isn’t one concerning the kinds of characters involved in a concatenation operation associated
with syntax rules R710-711 at [113:22].
The one at [115:38] is in a note, but the other two are normative.
The requirement that the kind type parameters of characters compared by the intrinsic rela-
tional operations shall be the same are also described at least three times – at [115:38] (which
is actually two lines), [116:11] and [128:38-39]. Again, the usual place for such a restriction is
in a constraint, but there isn’t one associated with syntax rules R712-713 at [113:32-1].
The one at [116:11] is normative, but the other two are in notes.
Notice that the requirements are both expressed normatively in 7.1.2, but one is normative and
one is informative in 7.2.[23].
My preferences are

1. Express both of these requirements as constraints,

2. Remove or make a note of “with the same kind type parameters” at [128:13-14].

3. Make the note “two character operands cannot be compared unless they have the same
kind type parameter value” at [128:38-39] normative.

The discussion of how operand types and type parameters are converted in numeric intrinsic
operations is in 7.1.2, at [116:1-4]. The discussion of how operand types and type parameters
are converted in relational operations is in 7.2.3, at [129:22-25].
It would be better to discuss both of these conversions in 7.1.2, or to move the one that is in
7.1.2 to be in 7.2.1.

2.2 Restricted expression

The term “restricted expression” is introduced for the purpose of defining “specification expres-
sion” in 7.1.6. It is not used anywhere other than for this purpose. Such a device is not needed
to define “initialization expression” in 7.1.7.

[Editor: Move to [119:34+].] 119:7

[Editor: “restricted” ⇒ “specification” and move the constraint to [119:34+] (after the syntax 119:8
rule moved by the previous edit).]

[Editor: Combine with the paragraph ending at [119:6]; “A restricted expression” ⇒ “it”.] 119:9

[Editor: “restricted” ⇒ “specification” thrice.] 119:17,18,20

[Editor: “restricted” ⇒ “specification” thrice.] 119:25,27,28

[Editor: “restricted” ⇒ “specification” thrice.] 119:31,32,34

3 Potential problems with no edits offered

Do we want to mention WHERE and FORALL in the introduction to this section? 111:2-3
What if the dummy argument has assumed or deferred type parameters? At [99:40-41] and 117:40
[309:34-36], type parameter inquiry is only proscribed for deferred parameters of disassociated



13 May 2001 Page 3 of 4 J3/01-204

pointers or unallocated allocatables, so inquiring about assumed type parameters of dummy
arguments is presumably OK. In order to do this, it seems the optional argument of NULL
ought to be required. This is also the topic of interpretation request 19, at least in the context
of assumed character length. Make sure this is updated if interppretation request 19 changes
this. One way is to replace “in” by “either in” at [118:2] and add “or corresponding to a dummy
argument that has assumed or deferred type parameters” at the end of the sentence at [118:3].

The term “base object” appears to be defined only for structures. 119:11-14

Is the prohibition against dummy procedures too strong? Couldn’t it be against nonoptional 119:43
dummy procedures, together with a prohibition against having actual arguments associated
with them when the function is used in a specification expression?

[78:33-38] and [85:10-13] are similar but not identical. The difference isn’t entirely accounted for 7.1.7
120-122by the fact that one is in an attribute description, and the other is in a statement description.

This is perhaps another illustration that saying something twice is an opportunity to get it
wrong, or at least incomplete (twice). Consolidate them, removing the duplication, and move
them to 7.1.7.
These uses of “When” are probably correct, but we need to think about them. 123:12,21

Tables 7.6 and 7.7 are redundant. We don’t need both of them. 130:9-24
Does this intentionally contradict 14.1.2.4.1, which says that an interface with an argument of 130:39-41
the correct type, type parameters and rank takes precedence over an elemental interface? If so,
what happens if both (a) and (b) are satisfied?

Does this intentionally contradict 14.1.2.4.1, which says that an interface with arguments of 131:10-13
the correct type, type parameters and rank takes precedence over an elemental interface? If so,
what happens if both (a) and (b) are satisfied?

The entire subclause can be deduced from 7.1.1. It should be a note. 7.4
I suggest: 133:23+
Constraint: In the case of intrinsic assignment, the variable and expr shall have the same rank

or the expr shall be a scalar.
Constraint: In the case of intrinsic assignment, the types and kind type parameters of variable

and expr shall conform according to the rules in table 7.9.
Put table 7.9 here.
This paragraph’s title is “Intrinsic assignment conformance rules” so we don’t need “for an in- 134:20-22
trinsic assignment statement” again. The part about “rules of Table 7.9” should be a constraint
(see edit proposed for [133:23+] above). Replace by “The variable and expr shall conform in
shape. If variable is of derived type, corresponding type parameters of variable and expr shall
have the same values.”
If these changes are not accepted, at least move table 7.9 to [134:22+]. Also see 00-318 and
01-103r2. Malcolm doesn’t like these.
The description of the absence of defined assignment is incorrect. It would be possible to 134:2-3
enumerate the conditions here (e.g. having to do with rank), but they are already spelled
out in 7.5.1.6. This could be corrected by, for example, “generic ... parameters” ⇒ “defined
assignment, as specified in 7.5.1.6”. This results, however, in a circular definition if [134:15-18]
isn’t adjusted as well. It would be a bit of surgery, but it would work to specify first what is
defined assignment, and then specify that intrinsic assignment isn’t defined assignment.

Is it necessary to evaluate all expressions within variable if, e.g., one of the dimension expressions 135:4



13 May 2001 Page 4 of 4 J3/01-204

is zero?
Does this intentionally contradict 14.1.2.4.1, which says that an interface with arguments of 136:40-44
the correct type, type parameters and rank takes precedence over an elemental interface? If so,
what happens if both (a) and (b) are satisfied?

It would be simpler to require that target not be a pointer with undefined association status. 138:6-7,16-
17We don’t allow the RHS of an intrinsic assignment to be undefined; why should we allow it in

the case of pointer assignment?

Either we should mention both procedure references and defined assignment statements, or 138:35
neither of them.


