
J3 / 01-208
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Design Considerations for Stream I/O May 20, 2001

Page 1 of 4

E:\ANSI_J3\157\01-208.wpd

Design Considerations for Stream I/O1

To: J32

From: Craig Dedo3

Date: May 20, 20014

Subject: Design Considerations for Stream I/O5

This paper is a reprint of 01-119, which I submitted for consideration at J3 Meeting 156. At6

that meeting, several members expressed reservations about some of the theory in this paper. 7

Unfortunately, I did not have the time to develop the theory further since the end of Meeting 156. I8

am actively asking for specific constructive criticism of the ideas in this paper so that we may have9

a solid foundation for resolving the remaining problems with stream I/O.10

Analysis11

The two unresolved issues about stream I/O, 127 and 128, suggest that there may be some12

serious design defects, not just some editorial fixes to be done. This paper discusses these design13

considerations and attempts to construct a solid foundation for resolving these two issues. It will14

attempt to provide a rigorous model using a general approach starting with first principles. 15

Although many of these ideas are well known and some of them are already part of the16

normative text of Fortran 2000, I believe that it is useful to present them in as well organized and17

coherent a manner as possible.18

It is my position that stream I/O (and all other I/O access methods for that matter) are19

intimately connected with the host operating system and file system and must take file system20

properties into full consideration in order to work well.21

The original purpose of stream I/O was to allow users of Fortran to access C-style “byte stream”22

files or, alternatively, files that have no internal record structure. This is explicitly stated in the23

two WG5 work items, 63 and 63a, proposing stream I/O.24

Following are some design principles and assumptions that form the foundation of this analysis.25

1. Implementation details should be left to the processor. 26

2. We should design for all commercially significant operating systems and file systems.27

3. Fortran compilers should work well on a wide variety of operating systems and file systems. No28

one operating system or file system should dominate the design of Fortran.29

4. Fortran compilers should honor the standards and conventions of the host operating system and30

file system(s). If the operating system and file system are silent on an issue, then the31

Fortran compiler is free to do as it pleases.32

5. Operating systems can support more than one file system, often simultaneously on the same33

system. A good example is Microsoft Windows NT, which can have some disk volumes with34

the FAT file system and other volumes with the NTFS file system on the same system at the35

same time.36

6. No concept of a file is universal, even though some concepts are very widespread. 37

7. We do not know what file systems will dominate computing 10 to 20 years from now. There is38

no guarantee or even a high likelihood that the file systems which are predominant today39

will continue to dominate computing.40

8. In the next 10 to 20 years, we may have commercially significant installable file systems that41

are designed by parties other than the vendor of the operating system, such as commercial42

third parties or even by the user through development kits.43

9. Stream I/O in Fortran is an access method, not some other kind of file attribute. This is a44

correct design decision.45

J3 / 01-208
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Design Considerations for Stream I/O May 20, 2001

Page 2 of 4

E:\ANSI_J3\157\01-208.wpd

We should rigorously distinguish the concepts of access method, record structure (a.k.a. record1

type), and data format. Although these three concepts are closely related, they really are2

independent concepts that can be clearly distinguished.3

� An access method is the way that the program finds the data in a file. Previous versions of4

Fortran allowed only two access methods, sequential and direct. J3 is now adding stream5

access to Fortran 2000.6

� A record structure, or record type, is the way that records are organized and marked off from7

one another. A file system may support more than one record structure. For example, a file8

system may support variable-length records, fixed-length records and stream records.9

� Data format specifies whether the data is read and written using formatted input/output10

statements or is unformatted.11

It may be possible to access a file of a given record structure in more than one way. This12

possibility is explicitly anticipated in the normative text of the Fortran 2000 draft [165:18-21,13

175:44-176:2].14

File systems can vary widely in complexity and internal structure. At one extreme is the Unix-15

style concept of a file, “A file is nothing more than a stream of bytes.”. At the other extreme is the16

OpenVMS RMS (for Record Management Services) file system, which has a very complex internal17

file structure and record structure. It may be useful to draw an analogy.18

One could consider file systems to be strongly or weakly typed, just like data types in19

programming languages. In weakly typed languages, data objects are given a data type, but it is20

relatively easy to look at the data in an object as if it were of another data type without generating21

an error condition. In contrast, in strongly typed languages, considering a data object to be22

something other than the data type it was declared to be is an error and generates an error23

condition.24

Similarly, file systems can be classified as weakly typed if the data in the records can be25

accessed as if it had two or more record structures, e.g., by variable-length records or by stream. 26

There is little or no difference in the record structure. In contrast, in a strongly typed file system, a27

given record structure is carefully defined and differentiated from other record structures. If a file28

is created with one kind of record structure and then there is an attempt to access it as if it had a29

different kind of record structure, an error occurs.30

If stream I/O is to work properly in Fortran, it must work equally well on both weakly typed31

and strongly typed file systems. This means that any characteristic or attribute of a file system that32

varies from one file system to another needs to be left to the operating system and file system. 33

Hence, any issue which is concerned about such file system attributes is necessarily processor-34

dependent.35

If a file system recognizes more than one internal structure, it may be allowable to read the data36

in an existing file with a given record structure only by using one particular access method or by37

using more than one access method. If more than one access method is allowed, the processor may38

be able to detect the file’s record structure or the user may need to specify which record structure is39

in use through means not specified in the Fortran standard. An example of the latter method of40

detection would be to use one or more nonstandard I/O keywords which specify the internal file and41

record structure.42

The same problems also exist when creating a file or writing to an existing file. Different access43

methods may, by default, create files with different internal file or record structures. If the host44

J3 / 01-208
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Design Considerations for Stream I/O May 20, 2001

Page 3 of 4

E:\ANSI_J3\157\01-208.wpd

operating system or file system allows the Fortran compiler to use an access method to write to1

more than one kind of file or record structure, then the Fortran compiler must have some way of2

determining which structure to use.3

Here is an example. Consider a hypothetical file system that has at least two different record4

structures, variable length sequential records and stream records. It is possible for the file system5

to support all four of the following combinations:6

Access Method Record Structure7

Sequential Variable Length Sequential8

Sequential Stream9

Stream Variable Length Sequential10

Stream Stream11

There is no requirement in the Fortran 2000 draft that a Fortran processor using such a file system12

needs to support all four combinations.13

A related issue is how file systems mark the end of a record (EOR). There are many different14

ways of doing this with operating systems and file systems that are commercially important today. 15

The following table lists the methods used by several file systems today.16

File System17 EOR Method

MacOS18 <CR>

Microsoft Windows FAT19 <CR><LF>

Microsoft Windows NTFS20 <CR><LF>

Unix21 <LF>

VMS RMS22 Depends on record structure (record type)

Issues23

Here is the full text of the two issues related to stream I/O.24

Issue 127: I’m not convinced that end-of-file conditions are fully covered for formatted streams. 25

Note that there is no endfile record in a formatted stream (and I doubt we want there to26

be one). A strict reading of the 2nd sentence of 9.2.3.2 would tell me that it didn’t apply27

because the endfile wasn’t a result of reading an endfile record, but that’s subtle. I’d28

suggest explicitly adding something about sequential; didn’t do that myself in case29

someone thinks that this should apply.30

What happens when reading a partial record at the end of a file? We say that there may31

be partial records, but I don’t see where we ever say what the effects of such a thing are. 32

If there is a partial record at the end of a file, is it possible to position after it so that it is33

the previous record? Should, perhaps, reading past the end of a partial record be an34

error instead of an EOF or EOR condition? Does padding apply to partial records? 35

Some of these questions are probably best answered elsewhere than in 9.2.3.2, but I’ll36

lump them all into one J3 note.37

Issue 128: The words in 10.5.3 about linefeeds in A output imply to me that a nonadvancing38

formatted stream output statement that writes a linefeed as the last character in a39

stream file will cause there to be an empty and incomplete record at the end of the file. 40

Is this empty incomplete record supposed to be distinguishable from having no record? 41

If so, I wonder how Unix-like systems are supposed to distinguish it. If not, I wonder42

J3 / 01-208
NCITS / J3 ANSI Fortran Standards Committee Craig T. Dedo
Design Considerations for Stream I/O May 20, 2001

Page 4 of 4

E:\ANSI_J3\157\01-208.wpd

whether we have it described correctly. Same with / editing, where this was just copied1

from. These holes leave me unconvinced that the description of record handling “just2

works” with formatted stream I/O. This related to unresolved issue 127 about handling3

of incomplete records. 4

References5

01-007r1, Fortran 2000 Draft6

98-209r2, Specs and Syntax for M.25, Stream I/O7

98-211r2, Edits for M.25, Stream I/O8

99-110r1, Stream I/O - Suggested Changes (Unresolved Issue 68)9

01-191, Changes to List of Unresolved Issues10

01-192, Open Unresolved Issues11

01-209, Issue 127 - End-of-File in Formatted Stream Files12

01-210, Issue 128 - Empty Incomplete Record13

Compaq Computer Corporation, Guide to OpenVMS File Applications, Chapter 2, “Choosing a File14

Organization” (Web site: www.openvms.compaq.com:8000/72final/4506/4506_pro)15

[End of J3 / 01-208]16

