
As in N1434

module FOO_M

interface FOO

module procedure REAL_FOO, DOUBLE_FOO

end interface

submodule :: REAL_SUB_FOO

subroutine REAL_FOO (A, B)

real :: A, B

end subroutine REAL_FOO

submodule :: DOUBLE_SUB_FOO

subroutine DOUBLE_FOO (A, B)

double precision :: A, B

end subroutine DOUBLE_FOO

end module FOO_M

November 14, 2001 Page 1 of 4 J3/01-372

Notes on N1434 case

• The generic interface and the specific in-

terfaces are created separately. This in-

creases development and maintenance costs.

• One is required to specify the submodule

in which the body of a procedure is to

be found. This may be desirable in some

cases, to help the human reader or for the

compiler to double-check your layout. It

may be an undesirable restriction on flexi-

bility in other cases.

November 14, 2001 Page 2 of 4 J3/01-372

As in 01-371

module FOO_M

interface FOO

submodule subroutine REAL_FOO (A, B)

real :: A, B

end subroutine REAL_FOO

submodule(double_sub_foo) subroutine &

& DOUBLE_FOO (A, B)

double precision :: A, B

end subroutine DOUBLE_FOO

end interface

end module FOO_M

• The “submodule” prefix on a procedure

header in an interface block indicates its

body is in a submodule.

• It is optional whether one specifies the sub-

module in which the body is to be found.

November 14, 2001 Page 3 of 4 J3/01-372

In either case

submodule(foo_m) REAL_SUB_FOO

contains

! The "submodule" prefix here indicates

! it’s a continuation, with interface in

! FOO_M or one of its ancestors (FOO_M

! doesn’t have ancestors in this case,

! because it’s a module).

submodule subroutine REAL_FOO ! (A, B)

! real :: A, B

...

end subroutine REAL_FOO

end submodule REAL_SUB_FOO

Notice that the interface is not respecified.

Can you think of a graceful way to allow it?

November 14, 2001 Page 4 of 4 J3/01-372

