 J3/01-384R1
Date: November 29, 2001

To: J3

From: Dick Hendrickson

Subject: Wording clarifications for chapter 8

1) Page 148, note 8.3. The last part of the note isn't deducible from the

text. The text forbids transfer into the block. It doesn't forbid

references to the statement. I think

 IF (.FALSE.) GO TO 10

or

 RETURN

 GO TO 10

are both allowed by the normative text (with 10 inside a different block).

We can't just normatively disallow references to a statement label outside

of its block as that would disallow an ASSIGN.

PROPOSAL: Delete Note 8.3 on Page 148

2) Page 148, line 8 says execution of a block is terminated when a transfer

of control out of the block takes place. I'd read 161:1 to say that a

procedure reference causes a transfer of control (to the invoked procedure).

But a CALL doesn't terminate execution of a block. There may be a similar

problem with all of the blocks. Maybe we should improve the definition of

transfer of control?

PROPOSAL: 148:8 replace "transfer of control" with "branch".

3) Page 151, note 8.8

 PRINT *, 'UNEXPECTED RIGHT PARENTHESIS'

 EXIT

We've been asked about a gazillion times why EXIT doesn't exit from

constructs other than a DO. This example looks like the EXIT maybe leaves

the IF or maybe the CASE and will confuse people who are used to more

flexible exiting in other languages.

PROPOSAL, Page 151, Note 8.8

Change DO I = 1, 80

to

 SCAN_LINE: DO I = 1, 80

Change EXIT to EXIT SCAN_LINE

Change ENDDO to ENDDO SCAN_LINE

4) Page 152, lines 3 to 5. The phrase "entity identified by a name" sounds

awkward to me (how else would you identify an entity?).

PROPOSAL: 152[3:4] "an entity identified by a name" -> "named entity"

 152[4:5] "entity identified by the name" -> named entity

 152{5] insert (16.7.1.5) after "associating entity"

5) Clarify that type-guard, unlike IF-ELSEIF, does not take the first

match.

PROPOSAL Page 153, NOTE 8.11. Start the note with
"This algorithm does not examine the type guard statements in source

text order when it looks for a match."

6) Page 154, Note 8.13 The note is confusing because it omits vector

valued subscripted arrays which are also not allowed.

PROPOSAL after "(16.8.7)" add " or is an array reference with a vector

valued section subscript"

7) Partially clarify what the associate-name is.

PROPOSAL 153[10] add at end " The <associate-name> is a construct entity
(16.1.3)"

PROPOSAL 154[23] add at end " The <associate-name> is a construct entity
(16.1.3)"

8) Page 156, line 7 To me the phrase "A particular" suggests that I can

terminate any random iteration.

PROPOSAL 156[7] "A particular" => "The current"
9) Page 161, now that we have enhanced the normal termination to include

the effects of C's exit() we should include a backward pointer to remind

people that STOP is now different.

PROPOSAL

 162[6] After "normal termination" insert "(2.3.4)"

