
30 September 2002 USTAG/02-290

Subject: Proposed technical changes
From: Van Snyder

Introduction1

The following propositions are offered as potential technical changes to be advocated by USTAG2

as formal US public comments on the committee draft.3

The reasons for these are:4

(1) To correct a recently-added feature that was broken at its inception.5

(2) To remove a processor-dependent feature that is worthless and, with one no-longer-6

used exception, has never been implemented.7

(3) To remedy an inconsistency.8

(4) So as not to foreclose future extension.9

(5) By ignoring the advice in 98-170r2, facilities of C interoperability that could have10

been provided in a simple integrated way, but were insisted not to be necessary,11

have since been dribbled into Section 15 in an unnecessarily complex way.12

(6) To remedy another inconsistency.13

Edits are offered, with respect to 02-007r3, to illustrate the magnitude of the proposed change14

and to serve as a starting point for developing edits if the changes are accepted.15

1 Using ACHAR(10) to signal a new line doesn’t work16

Using ACHAR(10) to signal a new line in formatted stream access doesn’t work as well as we17

expect features of Fortran to work. The problem results from a conspiracy of the facts that the18

result of ACHAR(10) is a character of default kind, the variable and the expr have to be of19

the same kind in intrinsic assignment for characters, and both operands have to be of the same20

kind in an intrinsic character concatenation operation.21

The reason for providing a character that causes a new line when it is output to a unit connected22

for formatted stream access was to allow a stream to be constructed in one or several parts of23

a program using concatenation and assignment, and output – perhaps to several units – in a24

different part of the program. The alternative was to use / formatting, but the sentiment was25

that that was inadequate.26

The current mechanism, ACHAR(10), works just fine for characters of default kind, but it27

cannot be put into character strings of any other kinds. Essentially everything else in Fortran28

works for all kinds of the data type to which they apply.29

Multiple kinds of characters were put into Fortran to support the needs of our colleagues who30

use other kinds of characters. If the facility to put a character that signals a new line when it31

is output to a unit connected for formatted stream access into a character string is useful for32

default kind, it is equally useful for other kinds of characters. The facility ought to be made33

complete. If a case cannot be made to make it complete, the case that it is necessary at all is34

very weak.35

Either finish it or delete it.36

1.1 Proposition37

Replace the specification that ACHAR(10) causes a new line when it is output to a unit con-38

nected for formatted stream access with a specification that the result of an intrinsic function,39

30 September 2002 Page 1 of 10

30 September 2002 USTAG/02-290

say NEW LINE, does that. The intrinsic function should have an argument that specifies the1

kind of the result – else there’s little point in changing anything. The argument ought to be2

optional, and if it’s absent the kind of the result ought to be default kind.3

1.2 Edits to 02-007r34

[Editor: “the intrinsic . . . ACHAR(10)” ⇒ “a reference to the intrinsic function NEW LINE”.] 230:6-75

13.7.82 NEW LINE ([KIND]) 333:18-6

Description. Returns a character that causes a new line when it is output to a unit7

connected for formatted stream access.8

Class. Inquiry function.9

Argument. KIND (optional) shall be a scalar integer initialization expression.10

Result Characteristics. The result is a character of length one; it is of the kind given11

by KIND if KIND is present, or of default kind if KIND is absent.12

Result Value. The result value is a processor-dependent character that causes a new13

line when it is output to a unit connected for formatted stream output.14

It is recommended that the result of NEW LINE is ACHAR(10) if KIND is absent or15

present with the value SELECTED CHAR KIND (‘DEFAULT’), or CHAR(10,KIND)16

if KIND is present with the value SELECTED CHAR KIND (‘ASCII’) or SELECT-17

ED CHAR KIND (‘ISO 10646’).18

2 Disappearing common blocks and module variables are an anachro-19

nism20

Fortran 77 provided that a nonsaved named common block may cease to exist when no program21

unit is referencing it. Fortran 90 provided that a nonsaved module variable may cease to22

exist when no executing program unit is accessing the module in which it is declared. To23

my knowledge, only a Burroughs compiler actually caused nonsaved named common blocks to24

disappear, and no compiler causes nonsaved module variables to cease to exist when no program25

unit is accessing the module in which the variables are declared.26

Because one cannot detect or control whether nonsaved module variables or nonsaved named27

common blocks cease to exist, removing this facility from the Fortran standard cannot invalidate28

any standard-conforming program.29

Modern style guides recommend to use module variables instead of common blocks, so whether30

nonsaved named common blocks remain defined when no executing program unit is referencing31

them is becoming a moot question.32

Modern style guides recommend to use module procedures instead of external procedures. If33

a program consists entirely of a Fortran main program and module procedures, every module34

is always accessible. Even if a program includes external procedures, every module is always35

accessible if none of the external procedures includes a USE statement – and it is unlikely that36

a developer would put a USE statement in an external procedure. Therefore, whether nonsaved37

module variables cease to exist when no executing program unit is referencing the module in38

which they are defined is probably a moot question.39

Memory is cheap and plentiful and will become cheaper and more plentiful, and virtual memory40

is nearly universally available. If it hasn’t been sufficiently important for processors to cause41

unreferenced variables to cease to exist, there will be less need in the future to do so. One can42

30 September 2002 Page 2 of 10

30 September 2002 USTAG/02-290

control exactly when storage is in use by a variable by using ALLOCATE and DEALLOCATE1

statements. Because one cannot depend on processors automatically causing unreferenced vari-2

ables to cease to exist, careful developers use those facilities already.3

The only way to allow module variables to cease to exist when no executing scoping unit is4

accessing them is to provide a reference counter for each module, and increment and decrement5

it whenever a scoping unit that accesses the module comes into existence or ceases to exist. If6

a small procedure is in a module that has numerous USE statements, it is possible that most of7

the execution time of that procedure is consumed in incrementing and decrementing reference8

counters, even if the program is processed by a processor that does aggressive inter-module9

inlining.10

Therefore, the possibility that module variables might cease to exist is not only not useful, it11

has the potential to be downright harmful.12

2.1 Proposition13

Remove the discussion that nonsaved named common blocks may become undefined when no14

executing program unit is executing them, and the discussion that nonsaved module variables15

may become undefined when no executing program unit is referencing the module in which16

they are declared. Mark the use of SAVE for common block names and for module variables as17

obsolescent.18

2.2 Edits to 02-007r319

(3) Previous standards provided that module variables and variables in common blocks 3:20+20

could become undefined when no active program unit is accessing them. This feature21

has not been implemented by any processor, and provision for it is removed from22

this standard.23

[Editor: Delete “If the object . . . finalized . . . undefined.”] 60:19-2124

[Editor: Delete “A variable . . . the module.”] 61:0+4-525

[Editor: Delete “An entity . . . undefined.” (That’s the whole paragraph.) Some of it will be 82:9-1126

re-inserted below.]27

[Editor: Set “or / common-block-name /” in obsolescent font.] 89:1428

[Editor: Set “or included . . . the list” in obsolescent font.] 89:2129

[Editor: Delete. Some of it will be re-inserted below.] 89:23-90:130

The current definition status of the common block storage sequence, and the values of those 96:11+
New ¶

31

common block objects that are defined, are made available to each scoping unit that specifies32

the common block. For a named common block, this may be confirmed by specifying the SAVE33

attribute for the common block name. The definition status of each object in the common34

block storage sequence depends on the association that has been extablished for the common35

block storage sequence.36

[Editor: Delete “(1) Execution . . . undefined (16.5.6).” (That’s the whole list item.)] 98:21-2337

[Editor: Delete “that appears . . . execution”.] 115:8-938

[Editor: Delete “if the module . . . execution”.] 115:10-1139

[Editor: Replace C1107 with the following nonconstraint paragraph:] 246:23-2540

30 September 2002 Page 3 of 10

30 September 2002 USTAG/02-290

A procedure pointer or variable declared in the scoping unit of a module retains its association1

status, allocation status, definition status, and value unless it is a pointer and its target becomes2

undefined. This may be confirmed by specifying the SAVE attribute for the entity.3

[I can’t think of a reason for the only-list to be optional other than to keep nonsaved module 247:244

variables in existence. Editor: Set the square brackets in obsolescent font.]5

[Editor: Set “SAVE” in obsolescent font.] 250:46

(3) When execution of an instance of a subprogram completes, its unsaved local proce- 411:33-417

dure pointers and variables become undefined.8

2.3 On the other hand . . .9

When we removed “Printing” we violated a “contract” with the users of the standard that10

features would not be deleted until they had endured in one edition marked as obsolescent. Perhaps11

the “disappearing module variables and common block variables” feature, and the “printing”12

feature, should both be set in obsolescent font.13

3 A bizarre inconsistency14

It is bizarre that one can write15

typealias :: FOO => INTEGER16

type(foo) :: BAR17

but one cannot write18

type(integer) :: BAR19

There’s nothing other than tradition preventing this: A derived type is prohibited from having20

the same name as an intrinsic type, so there is no possibility of confusion.21

3.1 Proposition22

Allow type-specs for intrinsic types in TYPE() type specifiers.23

3.2 Edits to 02-007r324

[Editor: Replace syntax rule R503 by] 67:16-2325

R503 type-spec is intrinsic-type-spec26

or TYPE (derived-type-spec)27

or TYPE (type-alias-name)28

or TYPE (intrinsic-type-spec)29

30

R5031
2 intrinsic-type-spec is INTEGER [kind-selector]31

or REAL [kind-selector]32

or DOUBLE PRECISION33

or COMPLEX [kind-selector]34

or CHARACTER [char-selector]35

or LOGICAL [kind-selector]36

30 September 2002 Page 4 of 10

30 September 2002 USTAG/02-290

4 NONKIND is an unfortunate attribute name1

NONKIND is an unfortunate name for an attribute of a type parameter. By using this name,2

we imply that two attributes of this variety are all that we will ever permit. We may want3

additional attributes of this variety. One possibility is an INITIALIZATION attribute, that4

indicates the parameter value has to be specified by an initialization expression, but it’s not5

used for generic resolution. This would not be a KIND attribute, but what we currently call6

nonkind is explicitly prohibited from being used for initialization.7

4.1 Proposition8

What we currently call nonkind type parameters can only ultimately be used for character9

lengths or array dimensions. So as to allow other attributes of the KIND–NONKIND variety,10

change NONKIND to something more focused, such as EXTENT.11

4.2 Edits to 02-007r312

[Editor: “a nonkind” ⇒ “an extent” (change the index entry too).] 32:713

[Editor: “A nonkind” ⇒ “An extent”.] 32:1214

[Editor: “a nonkind” ⇒ “an extent” at the following places: [32:13-14], [32:14+2], [32:22],15

[33:1], [45:28], [70:21-22], [415:36].]16

[Editor: “nonkind” ⇒ “extent” at the following places: [41:11], [44:35], [46:1], [50:12], [110:7],17

[125:13], [199:15], [269:10], [382:28], [424:26].]18

or EXTENT 42:1719

[Editor: “NONKIND” ⇒ “EXTENT”.] 46:4+520

[Editor: In the fourth line of Note 4.24, “NONKIND” ⇒ “EXTENT”.] 4721

[Editor: In the first line of Note 4.70, “a nonkind” ⇒ “an extent”.] 65:bottom22

[Editor: “Nonkind” ⇒ “Extent”.] 77:1823

[Editor: “Nonkind” ⇒ “Extent”.] 77:2324

[Editor: “A nonkind” ⇒ “An extent”.] 418:725

5 Lots of C interoperability stuff is too complicated26

In 98-170r2 it was proposed to use a POINTER(C) attribute to indicate an entity interoperates27

with a C pointer. The advantages cited for this approach were:28

• A C PTR type would not be needed.29

• A VALUE attribute for dummy arguments would not be needed – at least not strictly for30

the purpose of C interoperability.31

• The C LOC intrinsic function would not be needed.32

• Safe C pointer dereferencing would be possible, using semantics very similar to existing33

Fortran semantics.34

• It would not be necessary to define a C NULL PTR named constant.35

30 September 2002 Page 5 of 10

30 September 2002 USTAG/02-290

Since 26 June 1998, two more unnecessary intrinsic functions, viz. C F POINTER and C AS-1

SOCIATED, have been added to Section 15.2

The argument that won the day against the approach proposed in 98-170r1 in 1998 was that3

many of the things that would be possible if it were adopted were never going to be necessary.4

They have in fact been implemented, but in unnecessarily complex ways.5

One can produce pointers to pointers by the usual Fortran subterfuge of a structure having6

only a pointer component. The C standard does not, however, require the same physical7

representation for a pointer to a pointer and a pointer to a struct whose only component is8

a pointer, and this was one of the arguments advanced against the approach advocated in9

98-170r1. Nonetheless, the present design assumes that all C pointers have the same physical10

representation.11

5.1 Proposal12

Define a variation on the pointer attribute, possibly spelled POINTER, BIND(C), or more13

tersely POINTER(C), that indicates the entity is a C pointer, not a Fortran pointer. Once we14

have an entity that’s a pointer, much of the already-defined semantics are available.15

Require that such a pointer be a scalar nonpolymorphic object with no nonkind type parame-16

ters. Provide no additional operations on the pointer association status beyond those already17

provided for any other scalar Fortran pointer.18

Then19

• C LOC and C F POINTER are subsumed by ordinary pointer assignment,20

• The C NULL PTR constant’s functionality is provided by the NULLIFY statement, the21

NULL() intrinsic, or pointer assignment from a disassociated pointer of either the Fortran22

or C variety,23

• C ASSOCIATED is subsumed by ASSOCIATED (with variations in its semantics to make24

it behave like C ASSOCIATED for the two-argument case).25

After a net reduction of nearly three pages, we have a simpler facility with more power and no26

less safety.27

5.2 Edits to 02-007r328

[Editor: “POINTER or ALLOCATABLE attribute” ⇒ “ALLOCATABLE attribute or the 32:2129

POINTER attribute without the (C) annotation”.]30

R432 component-attr-spec is POINTER [(C)] 42:3331

[Editor: “POINTER attribute” ⇒ “the POINTER attribute without the (C) annotation”.] 43:1-232

C4281
2 (R431) A component that has the POINTER attribute with the (C) annotation shall 43:7+33

be a scalar.34

R437 proc-component-attr-spec is POINTER [(C)] 43:2735

[Editor: Insert “[(C)]” after “POINTER”.] 43:3336

If a pointer component is specified with the (C) annotation it is an interoperable pointer, as 48:7+
New ¶

37

described in 5.1.2.11.38

[Editor: Insert “[(C)]” after “POINTER”.] 68:1039

30 September 2002 Page 6 of 10

30 September 2002 USTAG/02-290

[Editor: “POINTER attribute” ⇒ “the POINTER attribute without the (C) annotation”.] 68:311

C5091
2 (R501) An object that has the POINTER attribute with the (C) annotation shall be a 68:31+2

scalar.3

[Editor: Delete “POINTER,” at [69:25] and insert “, and the POINTER attribute shall not be 69:25,274

specified unless it has the (C) annotation” after “specified” at [69:27].]5

[Editor: Delete “, POINTER,” and insert “, and the POINTER attribute shall not be specified 69:316

unless it has the (C) annotation,” after “specified”.]7

If the POINTER attribute is specified with the (C) annotation it is an interoperable pointer; 81:18+
New ¶

8

it has the following properties:9

(1) If it has interoperable type and type parameters (15.2) it shall have the same repre-10

sentation as the companion processor would use for a pointer of the same type and11

type parameters; otherwise it shall have the same representation as the companion12

processor would use for a C void pointer.13

(2) If it is not associated with a target its representation shall be the same as the14

companion processor uses for the value NULL specified by the C standard.15

(3) If it is associated with a target its representation shall be the same as would result16

if the companion processor were to apply the C & operator to its target.17

[Editor: Insert “[(C)]” after “POINTER”.] 89:218

[Editor: Add a sentence at the end of the paragraph: “A data pointer with the C annotation 98:1619

shall not be associated with a data pointer that does not have the C annotation; A procedure20

pointer with the C annotation shall not be associated with a procedure pointer that does not21

have the C annotation.”]22

[Editor: After “one” insert “or be a pointer with the (C) annotation”.] 143:723

[Editor: “, and . . . data-target” ⇒ “. If data-target is not a pointer with the (C) annotation, 144:3-424

its size”; before “The” insert “If it is a pointer with the (C) annotation, it shall be associated25

with an element of a rank-one array, and the number of elements from the element that is the26

target of the pointer to the end of the array, inclusive, shall not be less than the size of the27

data-pointer-object .”]28

[Editor: “and” ⇒ “whether it is a target (5.1.2.14 5.2.13),”; “or . . . 5.2.13)” ⇒ “, and if it is a 252:3029

pointer, whether it has the (C) annotation”.]30

[Editor: After “pointer, insert “, if it is a pointer, whether it has the (C) annotation”.] 252:3631

[Editor: Delete “and”; after “procedure pointer” insert “, and if it is a pointer or procedure 253:532

pointer, whether it has the (C) annotation”.]33

[Editor: Insert “[(C)]” after “POINTER”.] 260:2034

A procedure pointer that has the POINTER attribute with the (C) annotation is an interop- 261:13+
New ¶

35

erable procedure pointer; it has the following properties:36

(1) If proc-interface appears and proc-interface specifies the interface of an interoperable37

procedure, then it shall have the same representation as the companion processor38

would use for a function pointer having the same characteristics; otherwise it shall39

have the same representation as the companion processor would use for a C void40

pointer.41

30 September 2002 Page 7 of 10

30 September 2002 USTAG/02-290

(2) If it is not associated with a target procedure its representation shall be the same1

as the companion processor uses for the value NULL specified by the C standard.2

(3) If it is associated with a target procedure its representation shall be the same as3

would result if the companion processor were to apply the C & operator to its target.4

[Editor: Delete Note 12.15.] 262:top5

[Editor: Before “If” insert “If the dummy argument is a pointer with the (C) annotation, the 265:256

actual argument shall be a pointer with the (C) annotation, a reference to a function that7

returns a pointer with the (C) annotation, or a reference to the NULL intrinsic function with a8

MOLD argument that is a pointer with the (C) annotation. If the dummy argument is a pointer9

that does not have the (C) annotation, the actual argument shall not be a pointer with the10

(C) annotation, a function that returns a pointer with the (C) annotation, or a reference to the11

NULL intrinsic function with a MOLD argument that is a pointer with the (C) annotation.”]12

If the dummy argument is a procedure pointer that does not have the (C) annotation, the 267:13-1413

associated actual argument shall be a procedure pointer that does not have the (C) annotation,14

a reference to a function that returns a procedure pointer that does not have the (C) annotation,15

or a reference to the NULL intrinsic function that does not have a MOLD argument that is16

a pointer with the (C) annotation. If the dummy argument is a procedure pointer with the17

(C) annotation, the actual argument shall be a procedure pointer with the (C) annotation, a18

function that returns a procedure pointer with the (C) annotation, or a reference to the NULL19

intrinsic function with a MOLD argument that is a pointer with the (C) annotation.20

Case (ii1
3) If TARGET is present and POINTER has the (C) annotation the result is

false if POINTER is not associated with a target.
300:16+

21

Case (ii2
3) If TARGET is present and is a pointer with the (C) annotation, and

POINTER has the (C) annotation, the result is true if the representations of
TARGET and POINTER compare equal in the sense of 6.3.2.3 and 6.5.9 of
the C standard, and false if they do not compare equal in that sense.22

[Editor: Delete subclause 15.1.2.] 382:9-385:023

[Editor: Delete subclause 15.2.2.] 386:1-4-24

6 An old inconsistency25

At [128:5-6] we have “The evaluation of a function reference shall neither affect nor be affected26

by the evaluation of any other entity within the statement.” Therefore27

call S (intentoutarg=Y, intentinarg=F(Y))28

is OK, because Y isn’t evaluated: If Y is defined before the statement is executed, it’s defined29

when F is invoked. On the other hand30

X = G (intentoutarg=Y, intentinarg=F(Y))31

is prohibited by [128:6-7], where we have “If a function reference causes definition or undefinition32

of an actual argument of the function, that argument or any associated entities shall not appear33

elsewhere in the same statement.”34

Here’s an interesting one:35

30 September 2002 Page 8 of 10

30 September 2002 USTAG/02-290

type T; integer :: X = 2; end type T1

type(t) :: V(2) = (/ t(1), t(2) /)2

call S (intentoutarg = v(v(1)%x))3

Does v(1) undergo default initialization before v(1)%x is used for a subscript, in which case4

v(1)%x is 2, in which case it’s v(2) that undergoes default initialization, in which case v(1)%x5

still has the value 1, in which case it’s v(1) that undergoes default initialization, ...?6

Clearly, expressions within designators have to be evaluated before actual arguments associated7

with INTENT(OUT) dummy arguments become undefined or undergo default initialization. So8

there should be no problem with9

X = G (intentoutarg=Y, intentinarg=F(Y))10

if F is an array instead of a function. Unfortunately, [128:6-7] explicitly makes this statement11

illegal.12

6.1 Proposition13

Instead of putting up with this, we should specify an order for things that happen during pro-14

cedure invocation, but without putting an order on the processing of arguments. Actual argu-15

ments associated with INTENT(OUT) dummy arguments are finalized, then become undefined,16

then undergo default initialization. This change wouldn’t invalidate a standard-conforming For-17

tran 95 program, so no interpretation is necessary.18

6.2 Edits to 02-007r319

[Editor: After “statement” insert “except as a primary in an expression that is an actual 128:720

argument to the same function reference”.]21

[Editor: Insert a new third-level subclause 12.4.2, and make the existing 12.4.2 and 12.4.3 272:122

subsidiary to it:]23

12.4.2 Procedure reference24

When a procedure is invoked, the following events occur, in the order specified.25

(1) Expressions within actual arguments are evaluated, and expressions that are actual26

arguments associated with dummy arguments that do not have INTENT(OUT) are27

evaluated. The order of evaluation of these expressions is not specified.28

(2) Each actual argument is associated with its corresponding dummy argument. If29

the dummy argument has INTENT (OUT) its corresponding actual argument is30

finalized and then31

(a) If it is not allocatable and not a pointer it becomes undefined; if it is of derived32

type any of its ultimate components that are allocatable become deallocated33

and the pointer association status of any of its ultimate components that are34

pointers becomes undefined; then it undergoes default initialization;35

(b) If it is a pointer its pointer association status becomes undefined;36

(c) If it is allocatable it becomes deallocated.37

The order of processing arguments, the relative order of these events between one38

argument and another, and whether arguments are associated before, during or after39

finalization and events (2a), (2b), or (2c) above are not specified.40

(3) The sequence of execution transfers to the procedure.41

30 September 2002 Page 9 of 10

30 September 2002 USTAG/02-290

12.4.2.1 Function reference1

[Editor: Delete “When ... executed.”] 272:3-42

12.4.2.2 Subroutine reference3 272:9

[Editor: Delete “When ... executed.”] 272:11-124

30 September 2002 Page 10 of 10

