
IEEE 754R

Progress and Prospects

David Hough
Sun Microsystems

8 April 2003
http://754r.ucbtest.org

http://camino.oakapple.net

Floating Point?

� Virgule flottante?

� Gleitkomma?

� ...

� ...

� Scaled integers!

� + exception handling

IEEE 754: Situation in 1977

� Mainframe/mini diversity

� DEC VAX – not enough exponent in double

� IBM 360 – almost chopped hex! - killed single

� Cray – fast hardware

� Micros to be different?

754 Binary Formats

� Signed zeros

� Subnormal numbers

� Normal numbers

� Infinity

� Quiet NaNs

� Signaling NaNs

754 Exceptions

� Inexact

� Underflow/Subnormal

� Overflow

� Division by Zero (Pole 1/0)

� Invalid Operation/Signaling NaN Operand

754 Success Mostly

� Binary Formats – single, double, extended

� Default Rounding for common arithmetic
operations

� Default Nonstop Exception Handling for 5
exception groups

754 Problems

� Dynamic exception handling

� Rounding modes expensive to use

� Global state inhibits optimization

� No language binding – language support is just
becoming available

� NaNs not portable

� Binary ⇔ Decimal conversion unpredictable

� Expression evaluation unpredictable, especially
with extended precision

Simple Expression Evaluation –
Typical RISC

� double x, y, z ;

� z = x * y ;

� One arithmetic instruction, one rounding error.
Max error 0.5 ulp.

� z = x * y * z ;

� Two instructions, two rounding errors. Max
error almost 2 ulp. Chance of gratuitous
intermediate over/underflow.

IA32 Extended Temporary

� double x, y, z ;

� z = x * y ;

� Four arithmetic instructions, two rounding errors.
Max error 0.5 + ε ulp

� z = x * y * z ;

� Six instructions, three rounding errors. Max
error 0.5 + 2 * ε ulp – and no chance of
gratuitous intermediate over/underflow

� Complicated expression evaluation unpredictable
due to limited registers

Diversion: Sun Math Libraries

� Multiple (SPARC) libraries for multiple goals:

� libm - Full IEEE support – modes and exceptions
– part of Solaris

� fdlibm - Portability of C source code – also Java

� libmcr - Correct rounding – C source

� libm - Almost correct rounding

� libmopt - Not quite so correct rounding

� libmvec - Vectorizability

libmvec vector library

� For loops, generally Fortran, usually invoked by
compiler

� Default rounding and exception handling

� Inexact flag unpredictable

� ...

� 2-4X faster than libmopt for vectors of length
100-1000

� But 1.1-2X slower for vectors of length 1

fdlibm portable library

� C or Java source code to provide “similar” results
on all platforms

� libmopt more accurate (0.65 vs 0.85 ulps)

� libmopt faster 1.3-2X

� Fdlibm compiled with GCC instead of Sun
compilers, can be 1.1X faster but with greater ulp
errors and more test vector failures

libm vs libmopt

� libmopt almost always faster (often 2X) and more
accurate!

� libmopt shows many more exception flag errors
for pow(x,y)

� libmopt less accurate and less careful about
log10(10 n)

libmcr – correctly rounded

� research work in progress

� Gaston Gonnet tests

� 2-5X performance penalty vs libmopt; 2-3X vs
fdlibm

What price correct rounding?

� Relative Cost = increase in execution time /
decrease in error bound

� Transcendental functions are easier – exp(x)

� Algebraic functions are harder – pow(x,y) and
especially sqrt(x2 + y2) and above all x3

� x*y+z is easier than x*x*x !

Standards for Transcendental
Functions

� Require public implementations which do
everything right and do not cost too much more.
Vectorizable is good.

� Which functions to standardize?

� Static declarations of limited contexts in which
accuracy or performance is more important?
How much less accuracy is tolerable?

754R Original Goal: Merge 3 Existing
Standards

� 754 binary floating point

� 854 “radix and word-length independent” decimal
floating point

� 1596.5 SCI formats and language

Current Goal

� Revisit areas that have proved to be problematic
to see which require revision: lots of cost relative
to value

� Move some design aspects to a higher level,
closer to user programming than to system
implementation

Contentious areas unlikely to change

� Gradual underflow and subnormal numbers

� Nonstop default exception handling

� Binary format

� Signed zeros

PURPOSE

This standard provides a discipline for performing
floating-point computation that yields results
independent of whether the processing is done in
hardware, software, or a combination of the two.
For operations specified in this standard, numerical
results and exceptions are uniquely determined by
the values of the input data, sequence of operations,
and destination formats, all under user control.

SCOPE

This standard specifies formats and methods for
binary and decimal floating-point arithmetic in
computer programming environments: standard and
extended functions in 32-, 64-, and 128-bit formats
and extended precision formats, and recommends
formats for data interchange. Exception conditions
are defined and default handling of these conditions
is specified.

Hardware or Software?

It is intended that an implementation of a floating-
point system conforming to this standard can be
realized entirely in software, entirely in hardware, or
in any combination of software and hardware. It is
the environment the user of the system sees that
conforms or fails to conform to this standard.

Important Additions

� 32-, 64-, and 128-bit decimal formats in dense
encodings developed and donated by IBM

� 128-bit binary format (quad)

� fused multiply-add

� min/max (but much debate remains)

� correctly-rounded conversion between binary and
decimal (in principle)

� quiet functions and predicates promoted

Important Rewrites

� Tables of comparison predicates

� Format descriptions use integers rather than
fractions

Incompatible Changes

� Quiet/Signaling NaN bit defined (doesn't work for
HPPA)

� Extended precision rounding control should
affect exponents (Java on IA32)

Meta-issues

� Undefined behavior, e.g. (int) ∞

� Implementor choices, e.g. underflow

� Upward performance compatibility 754 ⇒ 754R

� Commutativity: signed zeros and quiet NaNs

� Static specification

� Names of operators

Base Conversion

� Correctly-rounded in principle, but no agreed text

� Can any NaN, quiet or signaling, be converted in
one direction and then in reverse without
changing its bit pattern, on one system?

� Among systems?

Quiet NaNs

� NaN1 + NaN2 = ?

� 754 says “a quiet NaN”

� NaN2 + NaN1 might be different

� But if NaN contains or points to debug
information, that information should be preserved
according to some rule

� Implies extra comparison circuitry

� What about double converted to single?

Signaling NaNs

� Useful for uninitialized storage, but 754
implementations guessed wrong – all 1's is quiet
not signaling.

� Intended to be a symbolic link to further
information. Not completely supported in 754
negate/abs.

� Most operations should operate on the linked
value, by a trap – but how to specify at a higher
level so software might be portable?

Subdividing exceptions

� Underflow and exact subnormal result – very
confusing for implementors

� Signaling NaN operand vs other invalid results

� Naming individual invalid results: 0*∞, 0/0, ∞/∞,
sqrt(−1), ... to facilitate alternate exception
handling

Alternate Exception Handling

� 754's hardware trap mechanism moved to
appendix, but... no replacement text yet

� Facilities to support:

� Presubstitution

� Counting mode

� Break

� Longjump

Break/jump on Exception

� for (i = 0, i < n, i++) {

� z(i) = z(i) * x(i) ;

� }→overflow: goto retry←

� ...

� retry: ...

Counting Mode

� count = 0;

� for (i = 0, i < n, i++) {

� z(i) = z(i) * x(i) ;

� }→overflow, underflow: z(i), count =
scaledprod(z(i),x(i),count);←

� z(i) = scalb(z(i), − count);�

� ...

Presubstitution

�
� for (i = 0, i < n, i++) {

� z(i) = (sin(c * x(i)) / x(i)) ;

� }→zero-div-zero: c;←

� ...

Exception Handling Implementations

� 754 asynchronous traps

� Numerical operands tested before each operation

� Numerical result tested after each operation

� Exception flags tested after each operation

� Exception flags tested outside loop

� Doesn't matter unless you care about
performance! Let user specify behavior, let
compiler specify implementation

Extended Precision

� Will anybody implement any extended precision
other than IA32? If so then it is specified by
IA32, not 754R

� Standard can be conveniently simplified if
extended is removed

� Effect can be obtained through expression
evaluation rules

Types of expressions

� Normal: none of accuracy, predictability, or
performance are particularly important

� Performance: as fast as possible. Order of
evaluation, extra precision can be sacrificed.
Most dot products, FFT's.

� Predictability: Identical results on all platforms.
Dynamic arithmetic parameter determination;
double-double precision.

� Accuracy: as much as possible without crossing a
performance boundary. Residuals.

Canonical/Standard/Normal/Boring
Expression Evaluation

� An operation specified by the standard, on
operands all of the same type, produces the result
specified by the standard rounded correctly to the
user's destination precision

� Correctly-rounded transcendental functions could
fit here

� Completely portable and predictable results for a
limited class of expressions

Kinds of Extended Precision
Expression Evaluation

� All operands are promoted to a specific higher
precision; operations are performed in that
precision; results converted to destination
precision. Fast and accurate on IA32.

� Widest-needed

� Fused multiply add

� What do these have in common?

An Extended Evaluation Paradigm

� Use any higher intermediate precision for
anonymous temporaries as long as the error
bound for each operation and the exponent range
is >= that implied by the operands.

� Encompasses IA32-style. Avoids need for
specifying extended precision types.

� Reproducible results available with round-to-odd-
unless-exact rounding mode.

Static Declarations

� Attach static declarations to a specific operator,
expression, or block of code.

� Declare expression evaluation, rounding
direction, alternate exception handling.

� Explicit declarations override inherited dynamic
modes.

� Problematic because they imply a language
binding; some languages are dynamic; this
proposal is for staticly-compiled languages.

And now for something completely
different?

� 754 design for intervals as pairs of points was
intended to make interval arithmetic possible to
implement with point arithmetic by providing
rounding modes and infinity points

� That design is not efficient: information must be
recomputed constantly

� Exceptions might be completely rethought:
Bill.Walster@sun.com

� A format specific to interval arithmetic:
Guy.Steele@sun.com

Participation

� Anybody may join email list

� Anybody may attend meetings by conference
phone, starting at 22:00 ⇒ 02:00

� Special need to hear from people using obscure
aspects of standard e.g. Signaling NaNs

