
31 December 2004 J3/05-122

Subject: Draft edits for Coroutines
From: Van Snyder
Reference: 04-380r2

1 Introduction1

Assuming Coroutines get onto the J3 work plan, the reason for this paper is to get a running start on2

the edits.3

2 Edits4

Edits refer to 04-007. Page and line numbers are displayed in the margin. Absent other instructions, a5

page and line number or line number range implies all of the indicated text is to be replaced by associated6

text, while a page and line number followed by + (-) indicates that associated text is to be inserted after7

(before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.8

or resume-stmt 11:28+9

or suspend-stmt 11:31+10

[Editor: Replace “When . . . point.” by the following paragraph:] 15:6-711

If execution of an instance of a procedure defined by a coroutine subprogram is suspended by execution of12

a SUSPEND statement (12.5.2.5 1
2), and execution of that instance is subsequently resumed by execution13

of a RESUME statement (12.4.1), execution continues with the first executable construct following the14

SUSPEND statement that suspended execution of that instance. Otherwise, when any procedure is15

invoked, execution begins with the first executable construct appearing after the invoked entry point.16

[Editor: Insert “, SUSPEND” after “RETURN”.] 15:917

If expr is a derived-type object that has procedure instance associations (16.4.3 1
2), variable acquires the 142:3+ New ¶18

same associations.19

If proc-target is a procedure pointer that has a procedure instance association (16.4.3 1
2), proc-pointer- 142:8+ New ¶20

object acquires the same association.21

[Editor: Add a comma at the end of each item in the list.] 168:12-1922

Execution of a SUSPEND statement (12.5.2.5 1
2) within the range of the DO construct inactivates the 168:23+23

DO construct but does not necessarily terminate the loop. The DO construct can be reactivated by24

execution of a RESUME statement (12.7.4) that resumes the procedure instance in which the loop is25

executing.26

[Editor: Replace “statement or an” by “, SUSPEND, or”.] 249:16-1727

If the main program is defined by a Fortran main program program unit, an instance of the main program 250:1+ New ¶28

is created when execution of the program begins.29

[Editor: Replace “or subroutine” by “, subroutine, or coroutine”.] 256:1730

3 1
2 The procedure is a coroutine, 258:4+31

R1218 1
2 resume-stmt is RESUME procedure-designator 266:19+32

C1222 1
2 (R1218 1

2) The procedure-designator shall designate a coroutine subprogram.33

When an instance of a procedure (12.5.2.3) defined by a coroutine subprogram is created by execution 268:0+ New ¶34

of a CALL statement, a procedure instance association (16.4.3 1
2) is established (16.4.5).35

[Editor: Insert a new subclause and renumber subsequent ones — TEX-o-matic:]36

12.4.01
2

RESUME statement37

31 December 2004 Page 1 of 5

31 December 2004 J3/05-122

Execution of a RESUME statement resumes execution of an instance of the procedure defined by the1

coroutine specified by the procedure-designator . If the procedure-designator is a procedure name that is2

not a procedure pointer the resumed instance is the one that is procedure instance associated (16.4.3 1
2)3

with the currently-executing instance of the scoping unit containing the RESUME statement. If the4

procedure-designator is a procedure pointer the resumed instance is the one that is procedure instance5

associated with the procedure pointer. If the procedure-designator is data-ref %binding-name the re-6

sumed instance is the one that is procedure instance associated with the data-ref . The resumed instance7

shall exist, and the necessary procedure instance association shall not have been terminated (16.4.5).8

If we allow internal coroutines to be actual arguments or procedure pointer targets, we will need the
following paragraph:
If the subprogram designated by the procedure-designator is defined within a scoping unit, the same
instance of that scoping unit shall exist as existed at the instant the SUSPEND statement was executed.

J3 remark

9

NOTE 12.19 2
3

Execution of a RESUME statement does not invoke a procedure. Entities that normally become
undefined or undergo default initialization when a procedure is invoked by a CALL statement do
not become undefined or undergo default initialization when a RESUME statement is executed.
Automatic entities are not created anew. Rather, the data entities of the resumed instance, and
its argument associations, continue to exist.

[Editor: After “prefix” insert “[COROUTINE]”.] 282:810

C1247 1
2 (R1232) If COROUTINE appears, prefix shall not include ELEMENTAL. 282:10+11

Does PURE make sense for coroutines? See C1268, since the instance hangs around as though every
data entity had the SAVE attribute.

J3 question
12

If COROUTINE appears, the subprogram is a coroutine subprogram (12.7.4). 282:29+13

[Editor: Add a new sentence at the end of the paragraph:] 282:3214

The instance is destroyed when execution of the subprogram or statement function is complete.15

NOTE 12.39 1
2

Suspending execution of an instance (12.5.2.5 1
2) does not destroy it.

[Editor: Replace “and an” by “, an”, “and local” by “, an independent set of local” and “objects” by 282:33-3416

“objects, and an independent set of procedure instance associations (16.4.3 1
2)”.]17

12.5.2.5 1
2 SUSPEND statement 284:34+18

Execution of a SUSPEND statement suspends execution of the instance of the subprogram in which it19

appears. Execution continues at the executable construct following the CALL statement that initiated20

execution of that instance, or the RESUME statement that resumed execution of that instance, whichever21

was most recently executed. Execution of the suspended instance may be resumed at the executable22

construct following the SUSPEND statement by execution of a RESUME statement (12.4.0 1
2).23

R1237 1
2 suspend-stmt is SUSPEND24

C1259 1
3 (R1237 1

2) A SUSPEND statement is allowed only in the scoping unit of a coroutine subprogram.25

NOTE 12.40 2
3

Execution of a SUSPEND statement does not terminate execution of an instance of a procedure.
Entities that normally become undefined when a RETURN or END statement is executed do not
become undefined when a SUSPEND statement is executed. The effect is as if a nonrecursive
coroutine contained a SAVE statement without a saved-entity-list , or as if each instance of a

31 December 2004 Page 2 of 5

31 December 2004 J3/05-122

NOTE 12.40 2
3 (cont.)

recursive coroutine were defined by a separate subprogram that contained a SAVE statement
without a saved-entity-list . Additionaly, argument associations are retained.

12.7.4 Coroutines 289:13+1

A coroutine subprogram is a subroutine in which COROUTINE appears in its SUBROUTINE state-2

ment.3

If execution of an instance of a procedure defined by a coroutine subprogram is suspended by execution of4

a SUSPEND statement (12.5.2.5 1
2), and that instance is subsequently resumed by executing a RESUME5

statement (12.4.1), execution continues with the first executable construct following the SUSPEND6

statement that suspended execution of that instance of the coroutine. When a procedure defined by7

a coroutine subprogram is invoked by a CALL statement, execution begins with the first executable8

construct of the subprogram.9

[Editor: Insert “procedure instance association,” before “or”.] 410:1610

[Editor: Insert a new subclause and renumber subsequent ones — TEX-o-matic.] 418:7+11

16.4.31
2

Procedure instance association12

Procedure instance association is the association between an instance of a coroutine subprogram13

and14

(1) An instance of a scoping unit that contains a CALL statement in which the procedure15

designator is a procedure name that is not a procedure pointer and designates a coroutine16

subprogram; at any instant an instance of a scoping unit might have as many prodedure17

instance associations as the number of CALL statements within it in which the designator18

is a procedure name that is not a procedure pointer and designates a coroutine,19

(2) A procedure pointer that designates a coroutine subprogram; at any instant a procedure20

pointer can have only one procedure instance association, or21

(3) the data-ref in a data-ref %binding-name that designates a coroutine subprogram; at any22

instant a derived-type object might have as many procedure instance associations as the23

number of coroutines bound to its type.24

A procedure instance association is established by 419:20+25

(1) Execution of a CALL statement in which the procedure-designator is a procedure name that26

designates a coroutine subprogram and is not a procedure pointer; the association is between27

the currently-executing instance of the scoping unit containing the CALL statement and the28

instance of the procedure created by execution of the CALL statement,29

(2) Execution of a CALL statement in which the procedure-designator is a procedure pointer30

that designates a coroutine subprogram; the association is between the instance of the31

procedure pointer designated by the procedure designator at the instant the CALL statement32

is executed and the instance of the procedure created by execution of the CALL statement,33

(3) Execution of a CALL statement in which the procedure-designator is a data-ref %binding-34

name that designates a coroutine subprogram; the association is between the instance of35

the data-ref designated by the procedure designator at the instant the CALL statement is36

executed and the instance of the procedure created by execution of the CALL statement,37

(4) Execution of a pointer assignment (7.4.2) in which the proc-target is a procedure pointer that38

has the procedure instance association; the proc-pointer-object acquires the same association,39

or40

(5) Execution of an intrinsic assignment (7.4.1.2) in which the expr or a subobject of it is a41

derived-type object that has the procedure instance association; the variable or the subob-42

ject of it that corresponds to the subobject of expr that has the association acquires the43

same association.44

31 December 2004 Page 3 of 5

31 December 2004 J3/05-122

A procedure instance association between an entity and a procedure instance is terminated by1

(1) Execution of a RETURN or END statement within the instance associated with the entity,2

(2) Establishment of a procedure instance association between3

(a) An instance of the same coroutine and the entity, if the entity is not a procedure4

pointer, or5

(b) An instance of any coroutine and the entity, if the entity is a procedure pointer,6

(3) Execution of a RETURN or END statement within the entity, if the entity is a procedure,7

(4) An event that causes an entity that is a procedure pointer to become disassociated (16.4.2.1.2),8

to become undefined (16.4.2.1.3), to have its association status changed in another manner9

(16.4.2.1.4), or to be pointer assigned (7.4.2) other than by a pointer assignment that copies10

the same association,11

(5) An event that causes an entity that is a data-ref to become defined (16.5.5) other than by12

an intrinsic assignment that copies the same association, or13

(6) An event that causes an entity that is a data-ref to become undefined (16.5.6).14

NOTE 16.16 1
2

In intrinsic assignment of derived-type objects, pointer components, including procedure pointer
components, are assigned as if by execution of a pointer assignment statement.

C.9.41
2

Coroutines (12.7.4) 480:38+15

The most common use, but not the exclusive use, of coroutines is to provide access from “library”16

procedures to user-provided code by way of reverse communication. Here is an example of a zero-finder17

that can access user-provided code either by forward or reverse communication.18

COROUTINE SUBROUTINE ZERO_FINDER (X1, X, F, TOL, STATUS, FUNC)19

! ASSUME F IS MONOTONE BETWEEN X1 AND X. F(X1)*F(X) SHALL BE <= 0.20

REAL, INTENT(INOUT) :: X1, X, F ! ARGUMENTS, FUNCTION VALUE21

REAL, INTENT(IN) :: TOL ! TOLERANCE22

INTEGER, INTENT(OUT) :: STATUS ! 0 => EVALUATE F(X)23

! 1 => DONE, |F(X)| <= TOL24

! -1 => F(X1)*F(X) INITIALLY > 025

INTERFACE26

REAL FUNCTION FUNC (X)27

REAL, INTENT(IN) :: X28

END FUNCTION FUNC29

END INTERFACE30

OPTIONAL :: FUNC31

32

REAL :: XSAVE, F133

34

IF (PRESENT(FUNC)) THEN35

F1 = FUNC(X1)36

F = FUNC(X)37

ELSE38

XSAVE = X39

STATUS = 040

X = X141

SUSPEND42

F1 = F43

STATUS = 044

31 December 2004 Page 4 of 5

31 December 2004 J3/05-122

X = XSAVE1

SUSPEND2

END IF3

IF (F1 > 0.0 .AND. F > 0.0 .OR. F1 < 0.0 .AND. F < 0.0) THEN4

STATUS = -15

RETURN6

END IF7

DO8

IF (ABS(F) <= TOL) THEN9

STATUS = 110

RETURN11

END IF12

X = 0.5 * (X + X1) ! VERY NAIVE13

IF (PRESENT(FUNC)) THEN14

F = FUNC(X)15

ELSE16

STATUS = 017

SUSPEND ! GET A NEW F18

END IF19

END DO20

END SUBROUTINE ZERO_FINDER21

22

PROGRAM FIND_ZERO23

! COMPUTE SQRT(2) USING THE ZERO_FINDER COROUTINE24

REAL :: X1=1.0, X=2.0, F, TOL=1.0E-625

INTEGER :: STATUS26

CALL ZERO_FINDER (X1, X, F, TOL, STATUS)27

DO28

SELECT CASE (STATUS)29

CASE (-1:)30

PRINT *, ’OOPS, ZERO NOT BRACKETED’31

STOP32

CASE (0)33

F = 2 - X**234

RESUME ZERO_FINDER35

CASE (1)36

PRINT *, ’SQRT(2) = ’, X37

EXIT38

END SELECT39

END DO40

END PROGRAM FIND_ZERO41

31 December 2004 Page 5 of 5

