
3 June 2005 J3/05-195

Subject: Second draft of edits for parameterized modules
From: Van Snyder
Reference: 03-264r1, 04-153, 04-383r1, 05-107, 05-181, WG5/N1626-J3-014

1 Introduction1

Parameterized modules were put onto the WG5 “allowed” list at Delft, where the project was descoped2

from the proposal in 04-383r1, restricting parameterized modules to be global entities, and module pa-3

rameters to be only types and data entities. Instance parameters that correspond to module parameters4

that are data entities are restricted to be initialization expressions.5

All that needs to be said about submodules is that parameterized modules do not have them.6

The editor’s guidance will be needed concerning the preferred method to specify where the edits apply.7

2 Detailed specifications as revised at Delft8

Provide a variety of module called a“generic module”. A generic module is a template or pattern9

for generating specific instances. It has“generic parameters” but is otherwise structurally similar to a10

nongeneric module. A generic parameter can be a type, a data object, a procedure, a generic interface,11

a nongeneric module, or a generic module.12

By substituting concrete values for its generic parameters, one can create an“instance of a generic13

module”. Entities from generic modules cannot be accessed by use association. Rather, entities can be14

accessed from instances of them. Instances of generic modules have all of the properties of nongeneric15

modules, except that they are always local entities of the scoping units in which they are instantiated.16

Provide a means to create instances of generic modules by substituting concrete values for their generic17

parameters Provide a means to access entities from instances of generic modules by use association.18

It is proposed at this time that generic modules do not have submodules.19

The varieties of entities allowed as generic parameters are:20

Generic parameter Associated instance parameter
Type Type
Data entity Initialization expression

2.1 Definition of a generic module — general principles21

A generic module shall stand on its own as a global entity. Instances do not access scoping units where22

they are instantiated by host association. The MODULE statement that introduces a generic module23

differs from one that introduces a nongeneric module by having a list of generic parameter names.24

The “interface” of a generic module is the list of the sets of characteristics of its generic parameters.25

The interface shall be explicitly declared, that is, the variety of entity of each generic parameter, and the26

characteristics required of its associated actual parameter when an instance is created, shall be declared.27

There shall be no optional parameters. Generic parameters and their associated instance parameters are28

described in detail in section 2.3 below.29

Other than the appearance of generic parameters in the MODULE statement, and their declarations,30

generic modules are structurally similar to nongeneric modules, as defined by R1104:31

R1104 module is module-stmt32

[specification-part]33

[module-subprogram-part]34

end-module-stmt35

although it may be necessary to relax statement-ordering restrictions a little bit.36

3 June 2005 Page 1 of 12

3 June 2005 J3/05-195

2.2 Instantiation of a generic module and use of the instance — general principles1

An instance of a generic module is created by the appearance of a USE statement that refers to that2

generic module, and provides concrete values for each of the generic module’s generic parameters. These3

concrete values are called “instance parameters”. The instance parameters in the USE statement cor-4

respond to the module’s generic parameters either by position or by name, in the same way as for5

arguments in procedure references or component specifiers in structure constructors.6

The characteristics of each instance parameter shall be consistent with the corresponding generic pa-7

rameter.8

By substituting the concrete values of instance parameters for corresponding generic parameters, an9

“instance” of a generic module is created, or “instantiated”. An instance of a generic module is a10

module, but it is a local entity of the scoping unit where it is instantiated. It does not, however, access11

by host association the scoping unit where it is instantiated.12

Each local entity within an instance of a generic module is distinct from the corresponding entity in a13

different instance, even if both instances are instantiated with identical instance parameters.14

A generic module shall not be an instance parameter of an instance of itself, either directly or indirectly.15

A generic module may be instantiated and accessed in two ways:16

• By instantiating it and giving it a name, and then accessing entities from the named instance by17

use association. Named instances are created by a USE statement of the form18

USE :: named-instance-specification-list19

where a named-instance-specification is of the form instance-name => instance-specification, and20

instance-specification is of the form generic-module-name (instance-parameter-list).21

In this case, the only-list and rename-list are not permitted — since this does not access the22

created instance by use association.23

Entities are then accessed from those instances by USE statements that look like R1109:24

R1109 use-stmt is USE [[, module-nature] ::]25

module-name [, rename-list]26

or USE [[, module-nature] ::]27

module-name , ONLY : [only-list]28

but with module-name replaced by instance-name.29

• By instantiating it without giving it a name, and accessing entities from that instance within30

the same statement. In this case, the USE statement looks like use-stmt , but with module-name31

replaced by instance-specification.32

In either case, a module-nature could either be prohibited, or required with a new value such as GENERIC33

or INSTANCE.34

Alternatively, a new statement such as INSTANTIATE might be used instead of the above-described35

variations on the USE statement, at least in the named-instance case. In the anonymous-instance case36

it would be desirable to use the USE statement, to preserve functionality of rename-list and only-list37

without needing to describe them all over again for a new statement.38

2.3 Generic parameters and associated instance parameters39

A generic parameter may be a type or a data entity.40

Declarations of generic parameters may depend upon other generic parameters, but there shall not be41

a circular dependence between them, except by way of pointer or allocatable components of generic42

parameters that are types.43

3 June 2005 Page 2 of 12

3 June 2005 J3/05-195

2.3.1 Generic parameters as types1

If a generic parameter is a type, it shall be declared by a type definition having the same syntax as a2

derived type definition. The type definition may include component definitions. The types and type3

parameters of the components may themselves be specified by other generic parameters. The type4

definition may include type-bound procedures. Characteristics of these type-bound procedures may5

depend upon generic parameters.6

If the generic parameter is a type, the corresponding instance parameter shall be a type. If the generic7

parameter has components, the instance parameter shall at least have components with the same names,8

types, type parameters and ranks. If the generic parameter has type parameters, the instance parameter9

shall at least have type parameters with the same names and attributes. Type parameters of the instance10

parameter that correspond to type parameters of the generic parameter shall be specified by a colon,11

as though they were deferred in an object of the type - even if they are KIND parameters, and any12

others shall have values given by initialization expressions. If the generic parameter has type-bound13

specific procedures or type-bound generics, the corresponding instance parameter shall at least have14

type-bound specifics and generics that are consistent, except that if a specific procedure binding to the15

generic parameter has the ABSTRACT attribute the instance parameter need not have a specific binding16

of the same name because it is only used to provide an interface for a generic binding; it shall not be17

accessed within the generic module by the specific name. Instance parameters that are intrinsic types18

shall be considered to be derived types with no accessible components. Intrinsic operations and intrinsic19

functions are available in every scoping unit, so it is not necessary to assume that intrinsic operations20

and intrinsic functions are bound to the type.21

2.3.2 Generic parameters as data objects22

If a generic parameter is a data object, it shall be declared by a type declaration statement. Its type and23

type parameters may be generic parameters. It is necessary that the actual parameter to be provided24

when the generic module is instantiated shall be an initialization expression, so the generic parameter25

shall have the KIND attribute, no matter what its type - even a type specified by another generic26

parameter.27

2.4 Instantiation of a generic module and use of the instance — fine points28

Where a module is instantiated, the only and renaming facilities of the USE statement can be used as29

well. Processors could exploit an only-list to avoid instantiating all of a module if only part of it is30

ultimately used. Suppose for example that one has a generic BLAS module from which one wants only31

a double precision L2-norm routine. One might write32

USE BLAS(kind(0.0d0)), only: DNRM2 = GNRM233

where GNRM2 is the specific name of the L2-norm routine in the generic module, and DNRM2 is the34

local name of the double precision instance of it created by instantiating the module. If only is not used,35

every entity in the module is instantiated, and all public entities are accessed from the instance by use36

association, exactly as is currently done for a USE statement without an only-list .37

If a named instance is created, access to it need not be in the same scoping unit as the instantiation; it38

is only necessary that the name of the instance be accessible. Indeed, the instance might be created in39

one module, its name accessed from that module by use association, and entities from it finally accessed40

by use association by way of that accessed name.41

3 Questions42

(1) This paper specifies that for purposes of correspondence between instance parameters and43

module parameters, intrinsic operations are considered to be generics that are type-bound44

to the intrinsic types. Thus if a type module parameter requires its corresponding instance45

parameter to have a type-bound generic < operator, an intrinsic type is sufficient. Should46

this be done differently? How?47

(2) This paper does not specify that intrinsic procedures are considered to be bound to types.48

If a type module parameter requires that its corresponding instance parameter has, for49

3 June 2005 Page 3 of 12

3 June 2005 J3/05-195

example, a type-bound ABS function, would REAL be a suitable instance parameter? What1

about something like SPREAD, that would have to be considered to be bound to every type?2

(3) Some parameterized modules might work for some spectrum of types, but not be expected3

to work for others — say for REAL and INTEGER. Would it be useful to have syntax to4

specify that an instance parameter that corresponds to a type module parameter shall be5

one of a specified list of types?6

4 Edits7

Edits refer to 04-007. Page and line numbers are displayed in the margin. Absent other instructions, a8

page and line number or line number range implies all of the indicated text is to be replaced by associated9

text, while a page and line number followed by + (-) indicates that associated text is to be inserted after10

(before) the indicated line. Remarks are noted in the margin, or appear between [and] in the text.11

[Editor: Add an item to the new-features list in the Introduction:] xiii12

(1) Module enhancements: parameterized modules (allows a module to be developed indepen-13

dently of a specific type, and then instantiated with any type that satisfies requirements14

established by the parameterized module).15

[Editor: Replace the first production for specification-part (R204):] 9:3816

R204 specification-part is global-use-association-stmt17

[Editor: Add a right-hand side at the end of those for implicit-part-stmt (R206):] 10:6+18

or other-use-stmt19

[Editor: Add right-hand sides for declaration-construct (R207), in alphabetical order:] 10:11+20

or module-param-decl21

or other-use-stmt22

[Editor: Replace Table 2.1. Notice that the erstwhile row 4 is gone — because it was wrong!] 1423

Table 2.1: Requirements on statement ordering
PROGRAM, FUNCTION, SUBROUTINE,

MODULE, or BLOCK DATA statement
Global use association statements

IMPORT statements
IMPLICIT statements

Derived-type definitions,
FORMAT interface blocks,

and Other USE statements and type declaration statements,
ENTRY PARAMETER statements DATA statements,

statements enumeration definitions,
procedure declarations,
specification statements,

and statement function statements

Executable constructs and DATA statements

CONTAINS statement
Internal subprograms or module subprograms

END statement

We don’t add parameterized modules to Table 2.2 because they don’t fit. Should they be added? Keep
in mind we need to try to shoehorn submodules, too. I’d be happy to delete Table 2.2.

14
J3 question24

3 June 2005 Page 4 of 12

3 June 2005 J3/05-195

[Editor: Insert a constraint immediately before private-or-sequence (R432):] 45:21+1

C429a (R430) If type-name is a module-param, derived-type-def shall be a module-param-decl .2

[Editor: Insert a third constraint after sequence-stmt (R434):] 46:15+3

C433a (R429) A sequence-stmt shall not appear if type-name is a module-param.4

[Editor: Insert a constraint immediately before attr-spec (R503):] 71:17+5

C503a (R502) A module-param shall not be declared with the CLASS keyword.6

[Editor: Insert a new right-hand side for attr-spec (R503) between EXTERNAL and INTENT:] 71:22+7

or INITIALIZATION8

[Editor: Insert a new constraint immediately before object-name (R505):] 72:12+9

C504a (R504) If object-name is module-param, type-declaration-stmt shall be a module-param-decl .10

[Editor: Within the first constraint after object-name (R505) (C505), after “data object” insert “or a 72:1411

data entity module parameter. If it is a data entity module parameter it shall be a scalar, explicit-shape12

array, or a deferred-shape array”.]13

[Editor: Within the ninth constraint after null-init (R507) — the one that begins “The PARAMETER 72:3314

attribute . . . ” — insert “, a module parameter” after “function”.]15

[Editor: Immediately after the ninth constraint after null-init (R507) — the one that begins “The 72:33+16

PARAMETER attribute . . . ” — insert two constraints:]17

C514a (R501) The INITIALIZATION attribute shall be specified if and only if object-name is a module-18

param.19

C514b (R501) If the INITIALIZATION attribute is specified, the ALLOCATABLE, ASYNCHRON-20

OUS, EXTERNAL, INTRINSIC, POINTER or VOLATILE attribute shall not be specified.21

[Editor: Within the twelfth constraint after null-init (R507) — the one that begins “The SAVE at- 72:3922

tribute . . . ” — insert “, a module parameter” after “result”.]23

[Editor: Within the nineteenth constraint after null-init (R507) — the one that begins “initialization 73:1124

shall not appear . . . ” — insert “, a module parameter” after “result”.]25

[Editor: At the end of the zillionth constraint after null-init (R507) — the one that begins “If a language- 73:3126

binding-spec with a NAME= . . . ” — insert “that does not declare a module parameter” after “entity-27

decl”.]28

[Editor: At the end of the zillionth plus two constraint after null-init (R507) — the second one that 73:3429

begins “The PROTECTED attribute . . . ” — insert “and is not a module parameter” after “block”.]30

[Editor: Replace the first paragraph of 5.1.2.5.3 Deferred-shape array:] 79:2031

A deferred-shape array is an allocatable array, an array pointer, or a data entity module parameter.32

[Editor: Immediately before deferred-shape-spec (R515), insert a new paragraph:] 79:26+ New ¶33

The bounds, and hence shape, of a data entity module parameter in an instance (11.2.2) of a parameter-34

ized module are determined from the instance parameter associated with the module parameter where35

the parameterized module is instantiated.36

[Editor: Before “A module” in the first sentence of the first paragraph of 11.2 insert the following 250:337

sentences within the same paragraph:]38

A module is characterized by two independent factors. One is whether it has parameters; the other39

is whether it is provided as an inherent part of the processor. A module that has parameters is a40

parameterized module (11.2.1). The term module, where not qualified by the adjective parameterized,41

indicates a module that does not have parameters.42

[Editor: After “unit.” at the end of the first sentence of the first paragraph of 11.2 insert the following43

sentence within the same paragraph:]44

3 June 2005 Page 5 of 12

3 June 2005 J3/05-195

A parameterized module (11.2.1) is a pattern or template that can be used to create an instance1

(11.2.2) that is a module.2

[Editor: Replace module-stmt (R1105):] 250:113

R1105 module-stmt is module-name [(module-param-list)]4

[Editor: Between the last constraint and the first note in 11.2 Modules, insert a new paragraph:] 250:25+ New ¶5

If a module-param-list appears in a module-stmt , the module it introduces is a parameterized module6

(11.2.1).7

[Editor: Insert the following in 11.2 Modules between Note 11.6 and the paragraph that begins “If a 250:26-8

procedure declared. . . ”:]9

R1108a module-param is name10

R1108b module-param-decl is type-declaration-stmt11

or derived-type-def12

C1107a (R1105) Every module-param shall be declared by a module-param-decl .13

C1107b (R1108b) A module-param-decl shall not appear except in the specification part of a module.14

[Editor: Insert new subclauses before 11.2.1 The USE statement and use association and renumber 251:4+15

subsequent ones (TEX-o-matic):]16

11.2.1 Parameterized modules17

A parameterized module is a module that has a module-param-list in its module-stmt . It serves as a18

template or pattern for creating instances (11.2.2) by substituting entities for its parameters. Parameters19

may be data entities or types.20

The interface of a parameterized module determines how it can be instantiated. It consists of the21

names of its parameters and their characteristics as module parameters.22

The characteristics of a data entity module parameter are its type, type parameters, shape, the exact23

dependence of its type, type parameters or array bounds on other entities, whether the shape is assumed,24

and which if any of its type parameters are assumed.25

The characteristics of a type module parameter are its type parameters, its component names, the26

characteristics or its components, the interfaces of its type-bound procedures, the generic identifiers of27

its generic bindings, and which type-bound procedures are bound to each generic binding.28

Every data entity module parameter shall be declared by a type-declaration-stmt . Every type module29

parameter shall be declared by a derived-type-def .30

11.2.2 Instances of parameterized modules31

An instance of a parameterized module is a nonparameterized module that is created by a USE state-32

ment that specifies entities to be substituted for the module parameters of the parameterized module.33

It is a local entity of the scoping unit in which it is instantiated, but it does not access that scoping34

unit by host association. An entity other than a module parameter in one instance is distinct from the35

corresponding entity in a different instance. A module parameter in one instance is distinct from the cor-36

responding module parameter in a different instance if and only if the instance parameters corresponding37

to those module parameters are distinct.38

[Editor: Replace the subclause heading and the first paragraph of 11.2.1 The USE statement and use 251:5-839

association:]40

11.2.4 The USE statement41

The USE statement specifies use association or creates an instance of a parameterized module. A USE42

statement is a module reference to the module it specifies. A module shall not reference itself, either43

directly or indirectly.44

[Changing the subclause heading may entail either creating a label D11:The USE statement and use45

association or finding and changing references to that label to refer to the revised section heading.]46

3 June 2005 Page 6 of 12

3 June 2005 J3/05-195

[Editor: Replace use-stmt (R1109):] 251:18-201

R1109 global-use-association-stmt is USE [[, module-nature] ::] module-name2

module-ref-specialization3

R1109a other-use-stmt is USE [[, module-nature] ::] module-name4

[(instance-parameter-spec-list)] module-ref-specialization5

or USE [[, module-nature] ::] instance-name =>6

module-name (instance-parameter-spec-list)7

[Editor: Between module-nature (R1110) and rename (R1111) insert new syntax rules:] 251:22+8

R1110a module-ref-specialization is [, rename-list]9

or , ONLY : [only-list]10

R1110b instance-parameter-spec is [keyword =] instance-parameter11

R1110c instance-parameter is initialization-expr12

or declaration-type-spec13

[Editor: Before the third constraint after only-use-name (R1113) — the one that begins “A scoping 251:32+14

unit . . . ” — insert new constraints:]15

C1109a (R1109) The module-name shall be the name of a nonparameterized module.16

C1109b (R1109a) The module-name shall be the name of a parameterized module or the instance-17

name of an instance of a parameterized module that is accessed by host association, previously18

accessed within the same scoping unit by use association, or previously instantiated within the19

same scoping unit.20

[Editor: Before the fourth constraint after only-use-name (R1113) — the one that begins “OPERA- 251:34+21

TOR . . . ” — insert new constraints:]22

C1110b (R1109a) An instance-parameter-spec-list shall appear if and only if module-name specifies a23

parameterized module.24

C1110c (R1110b) The keyword = shall not be omitted from an instance-parameter-spec unless it is25

omitted from each preceding instance-parameter-spec in the instance-parameter-spec-list .26

C1110d (R1110b) Each keyword shall be the name of a parameter of the module specified by module-27

name.28

[Between the constraints and ordinary normative text in 11.2.1 The USE statement and use association 252:7+29

— before the paragraph that begins “A use-stmt without . . . ” — insert a new subclause:]30

11.2.4.1 Instantiation of parameterized modules31

A USE statement in which an instance-parameter-spec-list appears creates an instance of a parame-32

terized module by substituting entities for corresponding module parameters. The instance-parameter-33

spec-list identifies the correspondence between the instance parameters specified and the parameters of34

the module. This correspondence may be established either by keyword or by position. If an instance35

parameter keyword appears, the instance parameter corresponds to the module parameter whose name36

is the same as the instance parameter keyword. In the absence of an instance parameter keyword, the37

instance parameter corresponds to the module parameter occupying the corresponding position in the38

module parameter list; that is, the first instance parameter corresponds to the first module parameter,39

the second instance parameter corresponds to the second module parameter, etc.40

C1115a (R1109a) Every instance parameter specified in a USE statement shall correspond with a module41

parameter of the specified module, and every module parameter of the specified module shall42

have a corresponding instance parameter.43

C1115c (R1109a) An instance parameter that corresponds to a data entity module parameter shall44

be an initialization expression that has the same characteristics as the characteristics of its45

corresponding module parameter.46

C1115d (R1109a) An instance parameter that corresponds to a type module parameter shall be a type47

that at least has components that have the same names and characteristics as the public compo-48

nents of the type module parameter, and shall at least have type-bound procedures and generic49

3 June 2005 Page 7 of 12

3 June 2005 J3/05-195

bindings that have the same identifiers and characteristics as the public type-bound procedures1

and generic bindings of the type module parameter.2

NOTE 11.8 1
3

Intrinsic types do not have components.

An instance parameter that corresponds to a type module parameter may have additional components or3

type-bound procedures or generic bindings. For purposes of correspondence between instance parameters4

and module parameters, intrinsic operations are considered to be type-bound procedures of intrinsic5

types.6

NOTE 11.8 2
3

It is possible for a type module parameter to require its corresponding instance parameter to
have a generic binding with particular interfaces without requiring its type-bound procedures to
have specified names by making the generic binding of the type module parameter public and the
type-bound procedures of the generic binding private.

If the USE statement has an instance-name it creates an instance named by the instance-name but does7

not access it by use association. The created instance a module that may be accessed by use association.8

If the USE statement does not have an instance-name it creates an instance that does not have a name,9

and accesses it by use association. Since the instance does not have a name, it cannot be referenced by10

a different USE statement.11

[Editor: Then insert a subclause title for the existing normative text:]12

11.2.4.2 Use association13

[Editor: Within the second paragraph of 11.2.1 The USE statement and use association — the one14

that begins “The USE statement provides . . . ” – replace “The USE statement” at 251:9 by “Use15

association”. Then move that second paragraph (at 251:9-17) and the subsequent Note (11.7) to here.16

Then insert the following new paragraph:]17

A USE statement without an instance-parameter-spec-list specifies use association.18

[Editor: before proc-language-binding-spec (R1225) insert a new constraint:] 279:25+19

C1235a (R1224) The function-name shall not be the name of a function that has the ABSTRACT prefix.20

[Editor: Add a new right-hand side for prefix-spec (R1228) (and perhaps alphabetize the ones already 280:3+21

there):]22

or ABSTRACT23

[Editor: Before suffix (R1229) insert a new constraint:] 280:7+24

C1242a (R1227 A prefix shall not specify ABSTRACT unless it is within a function-stmt or subroutine-25

stmt that introduces an interface body within an interface block that declares the interface of a26

procedure bound to a type that is a module parameter (11.2.1).27

[Editor: Before dummy-arg (R1233) insert a new constraint:] 282:10+28

C1247a (R1232) The subroutine-name shall not be the name of a subroutine that has the ABSTRACT29

prefix.30

[Editor: Within the first item in the first numbered list in 16.2 Scope of local identifiers, insert “module 406:531

parameters,” before “dummy”.]32

[Editor: If we keep the glossary, insert the following glossary items in alphabetical order:] 430:35+33

instance of a parameterized module (11.2.2, 11.2.4.1) A module that is created by substituting34

entities for a parameterized module’s module parameters.35

interface of a parameterized module (11.2.1) : The names of the modules parameters and their 431:6+36

3 June 2005 Page 8 of 12

3 June 2005 J3/05-195

characteristics as module parameters.1

parameterized module (11.2.1) : A module whose initial statement has a module-param-list . It serves 433:3+2

as a template for creating instances by substituting entities for its parameters.3

[Editor: Insert the following subclauses before C.9 Section 12 notes:] 477:29+4

C.8.4 Parameterized modules (11.2.1)5

A parameterized module is a template that may be used to create specific instances by substituting6

entities for its module parameters.7

C.8.4.1 Examples of definition of parameterized modules8

C.8.4.1.1 Sort module with < intrinsic or type bound9

This is an example of the beginning of a generic sort module in which the < operator with an appropriate10

interface is intrinsic or is bound to the type of its operands. In general, the processor cannot check that11

one with an appropriate interface is accessible until the module is instantiated. There is no requirement12

on the parameters of the type module parameter MyType. The quality of message announced in the13

event MyType does not have a suitable < operator is less than would be the case if the < operator were14

required to be bound to the type of a type module parameter.15

module Sorting (MyType)16

type :: MyType17

end type MyType18

....19

C.8.4.1.2 Sort module with < specified by type-bound generic interface20

This illustrates a module parameter that is a type that is required to have a particular type-bound21

generic identifier. The type shall have a type-bound generic identifier with a particular interface, but if22

entities are declared by reference to the name MyType or a local name for it after it is accessed from an23

instance, the specific type-bound procedure cannot be invoked by name; it can only be accessed by way24

of the type-bound generic. The private attribute does this.25

module SortingTBP (MyType)26

type :: MyType27

contains28

procedure(less), private :: Less ! Can’t do "foobar%less". "Less" is only29

! a handle for the interface for the "operator(<)" generic30

generic operator(<) => Less ! Type shall have this generic operator31

end type MyType32

abstract interface33

logical function Less (A, B)34

type(myType), intent(in) :: A, B35

end function Less36

end interface37

....38

C.8.4.1.3 Module with type module parameter having at least a specified component39

module LinkedLists (MyType)40

type :: MyType41

type(myType), pointer :: Next! "next" component is required.42

! Type is allowed to have other components, and TBPs.43

end type MyType44

....45

C.8.4.1.4 Module with type module parameter having separately-specified kind parameter46

3 June 2005 Page 9 of 12

3 June 2005 J3/05-195

module LinkedLists (MyType, ItsKind)1

type :: MyType(itsKind)2

integer, kind :: itsKind3

end type MyType4

integer, initialization :: ItsKind5

....6

C.8.4.1.5 BLAS definition used in instantiation examples in C.8.4.27

module BLAS (KIND)8

integer, initialization :: KIND9

interface NRM2; module procedure GNRM2; end interface NRM210

....11

contains12

pure real(kind) function GNRM2 (Vec)13

....14

C.8.4.2 Examples of instantiation of parameterized modules15

The following subclauses illustrate how to instantiate a parameterized module.16

C.8.4.2.1 Instantiating a parameterized module17

Instantiate a parameterized module BLAS with kind(0.0d0) and access every public entity from the18

instance:19

use BLAS(kind(0.0d0))20

Instantiate a parameterized module BLAS with kind(0.0d0) and access only the GNRM2 function from21

the instance:22

use BLAS(kind(0.0d0)), only: GNRM223

Instantiate a parameterized module BLAS with kind(0.0d0) and access only the GNRM2 function from24

the instance, with local name DNRM2:25

use BLAS(kind(0.0d0)), only: DNRM2 => GNRM226

C.8.4.2.2 Instantiate within a module, and then use from that module27

This is the way to get only one single-precision and only one double-precision instance of BLAS; instan-28

tiating them wherever they are needed results in multiple instances. This also illustrates two ways to29

make generic interfaces using specific procedures in parameterized modules. The first one creates the30

generic interface from specific procedures accessed from the instances:31

module DBLAS32

use BLAS(kind(0.0d0))33

end module DBLAS34

module SBLAS35

use BLAS(kind(0.0e0))36

end module SBLAS37

module B38

use DBLAS, only: DNRM2 => GNRM239

use SBLAS, only: SNRM2 => GNRM240

interface NRM241

module procedure DNRM2, SNRM242

end interface43

end module B44

3 June 2005 Page 10 of 12

3 June 2005 J3/05-195

In the second one the parameterized module has the generic interface named NRM2 that includes the1

GNRM2 specific:2

module DBLAS3

use BLAS(kind(0.0d0))4

end module DBLAS5

module SBLAS6

use BLAS(kind(0.0e0))7

end module SBLAS8

module B9

use DBLAS, only: NRM2 ! Generic; GNRM2 specific not accessed10

use SBLAS, only: NRM2, & ! Generic11

& SNRM2 => GNRM2 ! Specific12

end module B13

C.8.4.2.3 Instantiate and access twice in one scoping unit, augmenting generic interface14

module B15

use BLAS(kind(0.0d0)), only: NRM2 ! Generic; GNRM2 specific not accessed16

use BLAS(kind(0.0e0)), only: NRM2, & ! Generic NRM2 grows here17

& SNRM2 => GNRM2 ! Specific18

end module B19

The method in C.8.4.2.2 above might be desirable so as not accidentally to have multiple identical20

instances of BLAS in different scoping units.21

C.8.4.2.4 Instantiate and give the instance a name, then access from it22

! Instantiate BLAS with kind(0.0d0) and call the instance DBLAS, which is23

! a local module.24

use :: DBLAS => BLAS(kind(0.0d0))25

! Access GNRM2 from the instance DBLAS and call it DNRM2 here26

use DBLAS, only: DNRM2 => GNRM227

C.8.4.2.5 Instantiate two named instances in one module, then use one elsewhere28

module BlasInstances29

! Instantiate instances but do not access from them by use association30

use :: DBLAS => BLAS(kind(0.0d0)), SBLAS => BLAS(kind(0.0d0))31

end module BlasInstances32

module NeedsSBlasNRM233

use BlasInstances, only: SBLAS ! gets the SBLAS instance module, not its contents34

use SBLAS, only: SNRM2 => GNRM2 ! Accesses GNRM2 from SBLAS35

end module NeedsSBlasNRM236

C.8.4.2.6 Instantiate sort module with type-bound Less procedure37

use SortingTBP(real(kind(0.0d0))), only: DoubleQuicksort => Quicksort38

Notice that this depends on < being a “type-bound generic” that is bound to the intrinsic double39

precision type. Here’s one with a user-defined type that has a user-defined type-bound < operator.40

type MyType41

! My components here42

3 June 2005 Page 11 of 12

3 June 2005 J3/05-195

contains1

procedure, private :: MyLess => Less2

generic operator (<) => myLess3

end type MyType4

5

use SortingTBP(myType), only: MyTypeQuicksort => Quicksort6

The interface for less is given in C.8.4.1.2. The name of the specific type-bound procedure bound to <7

need not be less.8

Notice that the USE statement comes after the type definition and the TBP’s function definition.9

C.8.4.2.7 Example of consistent type and type-bound procedure10

This example illustrates how to create a type with type-and-kind consistent type-bound procedures, for11

any kind. This cannot be guaranteed by using parameterized types.12

module SparseMatrices (Kind)13

integer, initialization :: Kind14

type Matrix15

! Stuff to find nonzero elements...16

real(kind) :: Element17

contains18

procedure :: FrobeniusNorm19

....20

end type21

22

contains23

subroutine FrobeniusNorm (TheMatrix, TheNorm)24

type(matrix), intent(in) :: TheMatrix25

real(kind), intent(out) :: TheNorm26

....27

end subroutine FrobeniusNorm28

....29

end module SparseMatrices30

31

....32

33

use SparseMatrices(selected_real_kind(28,300)), & ! Quad precision34

& only: QuadMatrix_T => Matrix, QuadFrobenius => Frobenius, &35

& QuadKind => Kind ! Access instance parameter by way of generic parameter36

37

....38

39

type(quadMatrix_t) :: QuadMatrix40

real(quadKind) :: TheNorm41

42

....43

44

call quadFrobenius (quadMatix, theNorm)45

3 June 2005 Page 12 of 12

