WD 1539-1

J3/07-007r2

5th June 2007 19:15

This is an internal working document of J3.

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Contents
1 Overview L o e 1
1.1 Scope . . o oo 1
1.2 Inclusions e e 1
1.3 Exclusions e e 1
1.4 Conformance e e e e e 2
1.5 Compatibility 3
1.5.1 New intrinsic procedures L o 3
1.5.2 New intrinsic data type and operator 3
1.5.3 Fortran 2003 compatibility oo 3
1.54 Fortran 95 compatibility L o 3
1.5.5 Fortran 90 compatibility o 4
1.5.6 FORTRAN 77 compatibility 4
1.6 Notation used in this part of ISO/IEC 1539 4
1.6.1 Applicability of requirements oL oL oo 4
1.6.2 Informative notes 5
1.6.3 Syntax rules 5
1.6.4 Constraints L 6
1.6.5 Assumed syntax rules Lo 6
1.6.6 Syntax conventions and characteristics 6
1.6.7 Text conventions e e 7
1.7 Deleted and obsolescent features L 7
1.7.1 General L 7
1.7.2 Nature of deleted features 7
1.7.3 Nature of obsolescent features L L oL 7
1.8 Normative references e e 7
2 Fortran terms and concepts oL L Lo e 9
2.1 Terms and definitions L 9
2.2 Highlevel syntax e 20
2.3 Program unit concepts Lo 24
23.1 Program units and scoping units oL oL oo 24
2.3.2 Program 24
2.3.3 Procedure o 24
2.3.4 Module e 25
2.3.5 Submodule e 25
2.4 Execution concepts L e 25
24.1 Statement classificationo Lo 25
2.4.2 Program execution L L L 25
2.4.3 Statement order 26
2.4.4 The END statement e 27
2.4.5 Execution sequence Lo e 27
2.5 Dataconcepts L e 29
2.5.1 Type . . o o e 29
2.5.2 Datavalue 30
2.5.3 Dataentity o 30
2.5.4 Definition of objects and pointers 31
2.5.5 Reference 31

Contents i

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

3

2.5.6 Atray ... e 32
2.5.7 Co-aITay . .« o v v e e e e 32
2.5.8 Pointer e 33
2.5.9 Allocatable variables 33
2510 Storage e e 33
2.6 Fundamental concepts L e 33
2.6.1 Names and designators L oL 33
2.6.2 Statement keyword oL 34
2.6.3 Other keywords L 34
2.6.4 Association 34
2.6.5 Intrinsic oL 34
2.6.6 Operator e 34
2.6.7 Companion ProCeSSOTS . . v . v v v v v e e e e e e e e e e e e e 34
Lexical tokens, source form, and macro processing 37
3.1 Processor character set L 37
3.1.1 Characters e e e e e 37
3.1.2 Letters o o e 37
3.1.3 Digits o 37
3.14 Underscore oL L e e 37
3.1.5 Special characters 38
3.1.6 Other characters. e 38
3.2 Low-level syntax 38
3.2.1 Tokens e 38
3.2.2 Names o . o e 38
3.2.3 Constants 39
3.2.4 Operators e 39
3.2.5 Statement labels e 40
3.2.6 Delimiters 41
3.3 Source form 41
3.3.1 Program units, statements, and lines o000 41
3.3.2 Free source form 41
3.3.3 Fixed source form 43
3.4 Including source text L 44
3.5 Macro processingl e e e 45
3.5.1 Macro definition L 45
3.5.2 Macro expansiono e e e e e e e 47
Types . . . o e e 55
4.1 The concept of type 55
4.1.1 General L e 55
4.1.2 Set of values e e e 55
4.1.3 Constants 55
4.1.4 Operations L e 55
4.2 Type parameters e 56
4.3 Relationship of types and values to objects 57
4.3.1 Type specifiers and type compatibility 57
4.4 Intrinsic types L 59
4.4.1 Classification and specificationo 0oL 59
4.4.2 Integer type oL 59
4.4.3 Real type o . o 60
4.4.4 Complex type e 62
4.4.5 Character type L e 63
4.4.6 Logical type e 67

Contents

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

4.4.7 Bits type e 67

4.5 Derived types L 69
4.5.1 Derived type concepts 69

4.5.2 Derived-type definition Lo 69

4.5.3 Derived-type parameters Lo L 73

4.5.4 Components e 74

4.5.5 Type-bound procedures 82

4.5.6 Final subroutines 84

4.5.7 Type extension Lo 86

4.5.8 Derived-type values L L 88

4.5.9 Derived-type specifier 88
4.5.10 Construction of derived-type values 89
4.5.11 Derived-type operations and assignment 92

4.6 Enumerations and enumerators e 92
4.7 Construction of array values L L 93
5 Attribute declarations and specificationso 97
5.1 General L e e e 97
5.2 Type declaration statements L o 97
5.2.1 Syntaxo 97

5.2.2 Automatic data objects L 98

5.2.3 Initialization e 99

5.2.4 Examples of type declaration statements 99

5.3 Attributes e 100
5.3.1 Constraints e 100

5.3.2 Accessibility attribute L. 100

5.3.3 ALLOCATABLE attribute 100

5.3.4 ASYNCHRONOUS attribute 100

5.3.5 BIND attribute for data entities 101

5.3.6 CONTIGUOUS attribute o e 101

5.3.7 DIMENSION attribute 102

5.3.8 EXTERNAL attribute e 107

5.3.9 INTENT attribute e 107
5.3.10 INTRINSIC attribute e e 109
5.3.11 OPTIONAL attribute 109
5.3.12 PARAMETER attribute 109
5.3.13 POINTER attribute e 110
5.3.14 PROTECTED attribute 110
5.3.15 SAVE attribute 111
5.3.16 TARGET attribute 112
5.3.17 VALUE attribute 112
5.3.18 VOLATILE attribute 112

5.4 Attribute specification statements Lo 113
5.4.1 Accessibility statement oL oL 113

5.4.2 ALLOCATABLE statement 114

5.4.3 ASYNCHRONOUS statement 114

5.4.4 BIND statement 114

5.4.5 CONTIGUOUS statement o it it et et 114

5.4.6 DATA statement e 114

5.4.7 DIMENSION statement it et 117

5.4.8 INTENT statement et et e e e 117

5.4.9 OPTIONAL statement 117
5.4.10 PARAMETER statement 118

5.4.11 POINTER statement ittt i 118

Contents iii

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

5.4.12 PROTECTED statement i 118
5.4.13 SAVE statement 118
5.4.14 TARGET statement 119
5.4.15 VALUE statement 119
5.4.16 VOLATILE statement e 119
5.5 IMPLICIT statement e 119
5.6 NAMELIST statement e 121
5.7 Storage association of data objects Lo 122
5.7.1 EQUIVALENCE statement 122
5.7.2 COMMON statement e 125
5.7.3 Restrictions on common and equivalence 0oL 127
Use of data objects e 129
6.1 Designator e 129
6.2 Variable e 129
6.3 Constants e 130
6.4 Scalars e 130
6.4.1 Substrings 130
6.4.2 Structure components oL oL 131
6.4.3 Complex partso 132
6.4.4 Type parameter inquiry Lo 132
6.5 ATTAYS e 133
6.5.1 Order of reference 133
6.5.2 Whole arrays 133
6.5.3 Array elements and array sectionso 133
6.5.4 Simply contiguous array designators 137
6.5.5 Image selectors Lo 137
6.6 Dynamic associationo 138
6.6.1 ALLOCATE statement it 138
6.6.2 NULLIFY statement it 142
6.6.3 DEALLOCATE statement 142
6.6.4 STAT=specifier e 144
6.6.5 ERRMSG= specifier 145
Expressions and assignment Lo Lo oL 147
7.1 EXPressions e e e e 147
7.1.1 General L e e e 147
7.1.2 Form of an expression 147
7.1.3 Precedence of operators oL 151
7.1.4 Evaluation of operations L 153
7.1.5 Intrinsic operations Lo 154
7.1.6 Defined operations 163
7.1.7 Evaluation of operandso 164
7.1.8 Integrity of parentheses L L 165
7.1.9 Type, type parameters, and shape of an expression 165
7.1.10 Conformability rules for elemental operations 167
7.1.11 Specification expression 167
7.1.12 Initialization expression 169
7.2 Assignment ... 171
7.2.1 Assignment statement L. Lo L 171
7.2.2 Pointer assignment oL L L 176
7.2.3 Masked array assignment - WHERE 180
7.2.4 FORALL e 183
Contents

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

8 Execution control e 191
8.1 Executable constructs containing blocks L o000 191
8.1.1 General L 191

8.1.2 Rules governing blocks L oo 191

8.1.3 ASSOCIATE construct e 192

8.1.4 BLOCK construct e e 193

8.1.5 CASE construct 194

8.1.6 CRITICAL construct e e e s e e 197

8.1.7 DO construct 198

8.1.8 IF construct and statement L. 204

8.1.9 SELECT TYPE construct i i 206
8.1.10 EXIT statement 208

8.2 Branching 209
8.2.1 Branch concepts L 209

8.2.2 GO TO statement e 209

8.2.3 Computed GO TO statement 209

8.2.4 Arithmetic IF statement 209

8.3 CONTINUE statement e e e 210
8.4 STOP and ALL STOP statements i .. 210
8.5 Image execution control. L L 210
8.5.1 Image control statements Lo L 210

8.5.2 SYNC ALL statement e 213

8.5.3 SYNC TEAM statement e 214

8.5.4 SYNC IMAGES statement 215

8.5.5 NOTIFY and QUERY statements 216

8.5.6 SYNC MEMORY statement 218

8.5.7 STAT= and ERRMSG= specifiers in image execution control statements 219

9 Input/output statements 221
9.1 Input/output concepts 221
9.2 Records. e e 221
9.2.1 General 221

9.2.2 Formatted record 221

9.2.3 Unformatted record 222

9.24 Endfile record 222

9.3 External files. e 222
9.3.1 Basic concepts L 222

9.3.2 File existence 223

9.3.3 File access 223

9.3.4 File position 225

9.3.5 File storage units 227

9.4 Imternal files e 228
9.5 File connection 228
9.5.1 Referring toafile oL o 228

9.5.2 Connection modes 229

9.5.3 Unit existence e e 229

9.5.4 Connection of a filetoaunit 230

9.5.5 Preconnection e e e e e 230

9.5.6 OPEN statemento 231

9.5.7 CLOSE statement 236

9.6 Data transfer statements L 237
9.6.1 General L e e 237

9.6.2 Control information list 238

9.6.3 Data transfer input/output list Lo oL 243

Contents v

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

10

vi

9.6.4 Execution of a data transfer input/output statement 246
9.6.5 Termination of data transfer statements 257
9.7 Waiting on pending data transfer o oL 257
9.7.1 Wait operationo 257
9.7.2 WAIT statement e 258
9.8 File positioning statements oL 259
9.8.1 Syntax . ..o e e e 259
9.8.2 BACKSPACE statement 259
9.8.3 ENDFILE statement 260
9.8.4 REWIND statement 260
9.9 FLUSH statement 260
9.10 File inquiry statement 261
9.10.1 Forms of the INQUIRE statement 261
9.10.2 Inquiry specifiers 262
9.10.3 Inquire by output list L 268
9.11 Error, end-of-record, and end-of-file conditions oL 268
9.11.1 Generalo 268
9.11.2 Error conditions and the ERR= specifier 269
9.11.3 End-of-file condition and the END= specifier. 269
9.11.4 End-of-record condition and the EOR= specifier 270
9.11.5 IOSTAT= specifier 270
9.11.6 IOMSG=specifier 271
9.12 Restrictions on input/output statements L Lo 271
Input/output editing 273
10.1 Format specifications 273
10.2 Explicit format specification methods L. 273
10.2.1 FORMAT statementt 273
10.2.2 Character format specification 0oL 273
10.3 Form of a format item listo L 274
10.3.1 Syntax 274
10.3.2 Edit descriptors L 274
10.3.3 Fields e e 276
10.4 Interaction between input/output list and format 276
10.5 Positioning by format control Lo 278
10.6 Decimal symbolo 278
10.7 Data edit descriptors L L L 278
10.7.1 General e e e 278
10.7.2 Numeric and bits editing L 279
10.7.3 Logical editing 285
10.7.4 Character editing 285
10.7.5 Generalized editing Lo 286
10.7.6 User-defined derived-type editing 288
10.8 Control edit descriptors L 288
10.8.1 Position editing e 288
10.8.2 Slash editing oL 289
10.8.3 Colon editing 290
10.8.4 SS,SP,and Sediting 290
10.8.5 Pediting 290
10.8.6 BN and BZ editing 291
10.8.7 RU, RD, RZ, RN, RC, and RP editing 291
10.8.8 DC and DP editing 291
10.9 Character string edit descriptors 291
10.10 List-directed formatting L 292
Contents

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

11

12

13

10.10.1 General oL 292
10.10.2 Values and value separators 292
10.10.3 List-directed input L 292
10.10.4 List-directed outputo 295
10.11 Namelist formatting L 296
10.11.1 General oL 296
10.11.2 Name-value subsequences Lo 296
10.11.3 Namelist input 296
10.11.4 Namelist output 300
Program unitso 303
11.1 Main programt ot e e e e 303
11.2 Modules o 304
11.2.1 General00 304
11.2.2 The USE statement and use association 305
11.2.3 Submodules 307
11.3 Block data program units. oL o 308
Procedures L e 311
12.1 Concepts o e 311
12.2 Procedure classifications 311
12.2.1 Procedure classification by reference o o000 311
12.2.2 Procedure classification by means of definition 311
12.3 CharacteriStics o o o e 312
12.3.1 Characteristics of procedures L oo 312
12.3.2 Characteristics of dummy arguments 00 312
12.3.3 Characteristics of function results L 0oL 313
12.4 Procedure interface L 313
12.4.1 Generalo e 313
12.4.2 Implicit and explicit interfaces 313
12.4.3 Specification of the procedure interface 314
12.5 Procedure reference 324
12,51 Syntaxo e 324
12.5.2 Actual arguments, dummy arguments, and argument association 327
12.5.3 Function referenceo 338
12.5.4 Subroutine reference 338
12.5.5 Resolving named procedure references. oo 338
12.5.6 Resolving type-bound procedure references 341
12.6 Procedure definition L Lo 341
12.6.1 Imtrinsic procedure definition L oo 341
12.6.2 Procedures defined by subprograms oo 341
12.6.3 Definition and invocation of procedures by means other than Fortran 348
12.6.4 Statement functiono 348
12.7 Pure procedureso e e 349
12.8 Elemental procedures oL e 351
12.8.1 Elemental procedure declaration and interface 351
12.8.2 Elemental function actual arguments and results 351
12.8.3 Elemental subroutine actual arguments o000 352
Intrinsic procedures and modules Lo L 353
13.1 Classes of intrinsic procedures 353
13.2 Arguments to intrinsic procedures 353
13.2.1 Generalrules.o 353
13.2.2 The shape of array arguments o 354

Contents vii

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

14

15

viii

13.2.3 Mask arguments 354
13.2.4 Arguments to collective subroutines 354
13.3 Bitmodel e e 354
13.4 Numeric models L 355
13.5 Standard generic intrinsic procedures o 356
13.6 Specific names for standard intrinsic functions oL 363
13.7 Specifications of the standard intrinsic procedures 365
13.7.1 General L e e e 365
13.8 Standard intrinsic moduleso L L 446
13.8.1 General oL 446
13.8.2 The ISO_FORTRAN_ENYV intrinsic module 446
Exceptions and IEEE arithmetic o 451
14.1 General oL e 451
14.2 Derived types and constants defined in the modules 452
14.3 The exceptions o o e e e 453
14.4 The rounding modes L e e e 454
14.5 Underflow mode L 455
14.6 Halting o L e 455
14.7 The floating-point status 455
14.8 Exceptional values. 456
14.9 IEEE arithmetic e e e e 456
14.10 Summary of the procedures L L 457
14.10.1 General L 457
14.10.2 Inquiry functions L 457
14.10.3 Elemental functions oL L 457
14.10.4 Kind function e e 458
14.10.5 Elemental subroutines oL 458
14.10.6 Nomelemental subroutines oL 458
14.11 Specifications of the procedures L L 459
14.11.1 General o oL 459
14.12 Examples Lo e 474
Interoperability with C 479
15.1 General oL e e 479
15.2 The ISO_C_BINDING intrinsic module 479
15.2.1 Summary of contents oL Lo 479
15.2.2 Named constants and derived types in the module 479
15.2.3 Procedures in the moduleo oo 480
15.3 Interoperability between Fortran and C entities 483
15.3.1 General e e e 483
15.3.2 Interoperability of intrinsic types L oL 484
15.3.3 Interoperability with C pointer types 486
15.3.4 Interoperability of derived types and C struct types 486
15.3.5 Interoperability of scalar variables 0oL 487
15.3.6 Interoperability of array variables 487
15.3.7 Interoperability of procedures and procedure interfaces 488
15.4 Interoperation with C global variables. 490
15.4.1 General oL 490
15.4.2 Binding labels for common blocks and variables 491
15.5 Interoperation with C functions L o 492
15.5.1 Definition and reference of interoperable procedures 492
15.5.2 Binding labels for procedures Lo 492
15.5.3 Exceptions and IEEE arithmetic procedures 493

Contents

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

16 Scope, association, and definition L
16.1 Identifiers and entities
16.2 Scope of global identifiers L o
16.3 Scope of local identifierso

16.3.1 Classes of local identifiers
16.3.2 Local identifiers that are the same as common block names
16.3.3 Function results
16.3.4 Components, type parameters, and bindings
16.3.5 Argument keywordso L
16.4 Statement and construct entities
16.5 Association L e
16.5.1 Name association e
16.5.2 Pointer association
16.5.3 Storage association
16.5.4 Inheritance association e
16.5.5 Establishing associations L L o
16.6 Definition and undefinition of variables
16.6.1 Definition of objects and subobjects L oo
16.6.2 Variables that are always defined 0oL
16.6.3 Variables that are initially defined 0oL
16.6.4 Variables that are initially undefined
16.6.5 Events that cause variables to become defined
16.6.6 Events that cause variables to become undefined
16.6.7 Variable definition context
16.6.8 Pointer association context Lo Lo Lo

Annex A (informative) Glossary of technical terms

Annex B (informative) Decremental featureso o L
B.1 Deleted features e
B.2 Obsolescent features

B.2.1 General L e e e
B.2.2 Alternate return e
B.2.3 Computed GO TO statement
B.2.4 Statement functions
B.2.5 DATA statements among executables
B.2.6 Assumed character length functions oo 0oL
B.2.7 Fixed form source e
B.2.8 CHARACTER* form of CHARACTER declaration
Annex C (informative) Extended notes L Lo
C.l Clause 2 notes o v v v e e e e e e e e
C.1.1 Normal and error termination of execution (2.4.5)
C.2 Clause 4 notes o i e e
C.2.1 Selection of the approximation methods (4.4.3)
C.2.2 Type extension and component accessibility (4.5.2.2,4.5.4)
C.2.3 Generic type-bound procedures (4.5.5) o L
C.2.4 Abstract types (4.5.7.1) oL
C.2.5 Pointers (4.5.2)
C.2.6 Structure constructors and generic names (4.5.10)
C.2.7 Final subroutines (4.5.6, 4.5.6.2, 4.5.6.3,4.5.6.4)
C.3 Clause bnotes e
C.3.1 The POINTER attribute (5.3.13)
C.3.2 The TARGET attribute (5.3.16)

Contents

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

C4

C.5

C.6

C.7

C.8

C.9

C.10

C.11

C.12

C.13

C.14

C.3.3 The VOLATILE attribute (5.3.18)
Clause 6 notes
C.4.1 Structure components (6.4.2) Lo
C.4.2 Allocation with dynamic type (6.6.1)
C.4.3 Pointer allocation and association (6.6.1, 16.5.2)
Clause 71n0tes o
C.5.1 Character assignment (7.2.1.3) L
C.5.2 Evaluation of function references (7.1.7)
C.5.3 Pointers in expressions (7.1.9.2) L L Lo
C.5.4 Pointers in variable-definition contexts (7.2.1.3, 16.6.7)
C.5.5 Example of a FORALL construct containing a WHERE construct (7.2.4)
C.5.6 Examples of FORALL statements (7.2.4.3)
Clause 8 motes
C.6.1 The CASE construct (8.1.5)
C.6.2 Loopcontrol (8.1.7)
C.6.3 Examples of DO constructs (8.1.7)
C.6.4 Examples of invalid DO constructs (8.1.7)
Clause 9 notes
C.7.1 External files (9.3)
C.7.2 Nonadvancing input/output (9.3.4.2) L ..
C.7.3 OPEN statement (9.5.6)
C.7.4 Connection properties (9.5.4) L L o
C.7.5 CLOSE statement (9.5.7) e
C.7.6 Asynchronous input/output (9.6.2.5) L L
Clause 10 notes
C.8.1 Number of records (10.4, 10.5, 10.8.2)
C.8.2 List-directed input (10.10.3) L
Clause 11 notes oo oot
C.9.1 Main program and block data program unit (11.1, 11.3)
C.9.2 Dependent compilation (11.2)
C.9.3 Examples of the use of modules (11.2.1),
C.9.4 Modules with submodules (11.2.3)
Clause 12 notes oo ot
C.10.1 Portability problems with external procedures (12.4.3.5)
C.10.2 Procedures defined by means other than Fortran (12.6.3)
C.10.3 Abstract interfaces (12.4) and procedure pointer components (4.5)
C.10.4 Pointers and targets as arguments (12.5.2.5, 12.5.2.7, 12.5.2.8)
C.10.5 Polymorphic Argument Association (12.5.2.10)
C.10.6 Rules ensuring unambiguous generics (12.4.3.4.5)
Clause 13 notes
C.11.1 Module for THIS IMAGE and IMAGE_INDEX
C.11.2 Collective co-array subroutine variations
Clause 15 notes
C.12.1 Runtime environments (15.1) Lo
C.12.2 Example of Fortran calling C (15.3)
C.12.3 Example of C calling Fortran (15.3)
C.12.4 Example of calling C functions with noninteroperable data (15.5)
C.12.5 Example of opaque communication between C and Fortran (15.3)
Clause 16 notes o oot
C.13.1 Examples of host association (16.5.1.4)
Array feature notes
C.14.1 Summary of features (2.5.6) L L
C.14.2 Examples (6.5)
C.14.3 FORmula TRANslation and array processing (6.5)

Contents

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

C.14.4 Logical queries (13.7.10, 13.7.13, 13.7.49, 13.7.117, 13.7.123 13.7.170) 600

C.14.5 Parallel computations (7.1.2) L 601

C.14.6 Example of element-by-element computation (6.5.3) 601

Annex D (informative) Processor Dependencies 603
D.1 Unspecified Items 603
D.2 Processor Dependencies 603
Annex E (informative) Syntax rules Lo o 607
E.1 Extract of all syntax rules L L 607
E.2 Syntax rule cross-reference L Lo 654
Annex F (informative) Index L 667

Contents Xi

ISO/IEC SC22/WG5/N1678

xii

WD 1539-1

Contents

13/07-007r2:2007/06 /05

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

List of Tables

2.1

2.2

3.1

6.1

7.2
7.3
7.4
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

7.14

10.1
10.2

10.3

13.1

13.2

15.1

15.2

Requirements on statement ordering Lo 26
Statements allowed in scoping units 0oL 27
Special characters 38
Subscript order valueo 134
Categories of operations and relative precedence 151
Type of operands and results for intrinsic operators 155
Interpretation of the numeric intrinsic operators 156
Interpretation of the character intrinsic operator // 158
Interpretation of the logical intrinsic operators 159
The values of operations involving logical intrinsic operators. 159
Interpretation of the bits intrinsic operators 160
The values of bits intrinsic operations other than // 160
Interpretation of the relational intrinsic operators 161
Type conformance for the intrinsic assignment statement 172
Numeric conversion and the assignment statement 174
Bits conversion and the assignment statement 00000 174
E and D exponent formso 282
EN exponent forms 282
ES exponent forms L 283
Standard generic intrinsic procedure summary 356
Characteristics of the result of NULL () 423
Names of C characters with special semantics 480
Interoperability between Fortran and C types 484

List of Tables xiii

10

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechni-
cal Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international organi-
zations, governmental and nongovernmental, in liaison with ISO and IEC, also take part in the work. In
the field of information technology, ISO and IEC have established a joint technical committee, ISO/TEC
JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part
2.

The main task of the joint technical committee is to prepare International Standards. Draft Interna-
tional Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting
a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 1539-1 was prepared by Joint Technical Committee ISO/IEC/JTC1, Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

This fifth edition cancels and replaces the fourth edition (ISO/IEC 1539-1:2004), which has been tech-
nically revised. It also incorporates the Technical Corrigenda ISO/IEC 1539-1:2004/Cor. 1:2005 and
ISO/IEC 1539-1:2004/Cor. 2:2006, and Technical Report ISO/IEC TR 19767:2004.

ISO/IEC 1539 consists of the following parts, under the general title Information technology — Pro-
gramming languages — Fortran:

— Part 1: Base language
— Part 2: Varying length character strings

— Part 8: Conditional Compilation

Xiv Foreword

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Introduction

International Standard programming language Fortran

1 This part of ISO/IEC 1539 comprises the specification of the base Fortran language, informally known
as Fortran 2008. With the limitations noted in 1.5.3, the syntax and semantics of Fortran 2003 are
contained entirely within Fortran 2008. Therefore, any standard-conforming Fortran 2003 program not
affected by such limitations is a standard-conforming Fortran 2008 program. New features of Fortran
2008 can be compatibly incorporated into such Fortran 2003 programs, with any exceptions indicated
in the text of this part of ISO/IEC 1539.

2 Fortran 2008 contains several extensions to Fortran 2003; some of these are listed below.

e The maximum rank of an array has been increased from seven to fifteen.

e Performance enhancements: The DO CONCURRENT construct, which allows loop iterations to
be executed in any order or potentially concurrently.

e Pointers can be initialized to point to a target.

e Performance enhancements: CONTIGUOUS attribute.

e The intrinsic function ATAN is extended so that ATAN (Y, X) is ATAN2 (Y,X).
e Allocatable components of recursive type.

e The MOLD= specifier has been added to the ALLOCATE statement.

e OPEN statement enhancements that allow the processor to select a unit number when opening an
external unit. Such a unit number is guaranteed not to interfere with any program-managed unit
numbers.

e The BLOCK construct (allows declarations within executable statements).

e A disassociated or deallocated actual argument can correspond to an optional nonpointer nonal-
locatable dummy argument.

e The concept of variable now includes references to pointer functions which return associated point-
ers.

e The COMPILER_VERSION and COMPILER_OPTIONS functions provide information about the
translation phase of the execution of a program.

e The real and imaginary parts of a COMPLEX variable can be selected using a component-like
syntax.

e Scoped macros which can generate whole Fortran statements and subprograms.

e The intrinsic function FINDLOC was added and a BACK= argument was also added to the
intrinsic functions MAXLOC and MINLOC.

e Parallel programming support: SPMD parallel programming, co-arrays for data exchange between
images, image control statements, and collective procedures.

e A BITS data type for non-numeric programming and enhanced handling of binary, octal, and
hexadecimal constants.

e The GO edit descriptor.

e Additional mathematical intrinsic functions for computing Bessel functions, error functions, the
Gamma function, and generalized Ly norms.

Unresolved Technical Issue 080

The laundry list needs to be redone at a later time. RAH suggests going down the list of things
in spread sheet and having a big feature and a little feature list.

3 This part of ISO/IEC 1539 is organized in 16 clauses, dealing with 8 conceptual areas. These 8 areas,
and the clauses in which they are treated, are:

Introduction XV

ISO/IEC SC22/WG5/N1678 WD 1539-1

High/low level concepts
Data concepts

Computations

Execution control
Input/output

Program units
Interoperability with C
Scoping and association rules

4 It also contains the following nonnormative material:

xvi

Glossary

Decremental features
Extended notes
Processor dependencies
Syntax rules

Index

Introduction

J3/07-007r2:2007,/06,/05

Clauses 1, 2, 3
Clauses 4, 5, 6
Clauses 7, 13, 14
Clause 8

Clauses 9, 10
Clauses 11, 12
Clause 15
Clause 16

TEHOOQ®E >

10
11
12
13
14
15

16

17

18
19
20
21

22

23

24
25
26
27
28
29
30
31
32
33
34

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Information technology — Programming languages —
Fortran —

Part 1:

Base Language

1 Overview

1.1

Scope

1 ISO/IEC 1539 is a multipart International Standard; the parts are published separately. This publi-
cation, ISO/IEC 1539-1, which is the first part, specifies the form and establishes the interpretation
of programs expressed in the base Fortran language. The purpose of this part of ISO/IEC 1539 is to
promote portability, reliability, maintainability, and efficient execution of Fortran programs for use on
a variety of computing systems. The second part, ISO/TEC 1539-2, defines additional facilities for the
manipulation of character strings of variable length; this has been largely subsumed by allocatable char-
acters with deferred length parameters. The third part, ISO/IEC 1539-3, defines a standard conditional
compilation facility for Fortran. A processor conforming to part 1 need not conform to ISO/IEC 1539-2
or ISO/IEC 1539-3; however, conformance to either assumes conformance to this part.

1.2

Inclusions

1 This part of ISO/IEC 1539 specifies

1.3

the forms that a program written in the Fortran language may take,
the rules for interpreting the meaning of a program and its data,

the form of the input data to be processed by such a program, and
the form of the output data resulting from the use of such a program.

Exclusions

1 This part of ISO/IEC 1539 does not specify

the mechanism by which programs are transformed for use on computing systems,
the operations required for setup and control of the use of programs on computing systems,
the method of transcription of programs or their input or output data to or from a storage medium,

the program and processor behavior when this part of ISO/IEC 1539 fails to establish an inter-
pretation except for the processor detection and reporting requirements in items (2) to (8) of
1.4,

the maximum number of images, or the size or complexity of a program and its data that will
exceed the capacity of any particular computing system or the capability of a particular processor,

the mechanism for determining the number of images of a program,

the physical properties of an image or the relationship between images and the computational
elements of a computing system,

Overview 1

€] AW =

© 00 N O

10

11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27
28

29

30
31

32
33
34
35
36
37
38

39
40
41
42

43
44

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

e the physical properties of the representation of quantities and the method of rounding, approxi-
mating, or computing numeric values on a particular processor,

e the physical properties of input/output records, files, and units, or
e the physical properties and implementation of storage.

1.4 Conformance

A program (2.3.2) is a standard-conforming program if it uses only those forms and relationships de-
scribed herein and if the program has an interpretation according to this part of ISO/IEC 1539. A
program unit (2.3.1) conforms to this part of ISO/TEC 1539 if it can be included in a program in a
manner that allows the program to be standard conforming.

2 A processor conforms to this part of ISO/TEC 1539 if:

(1) it executes any standard-conforming program in a manner that fulfills the interpretations
herein, subject to any limits that the processor may impose on the size and complexity of
the program;

(2) it contains the capability to detect and report the use within a submitted program unit of
a form designated herein as obsolescent, insofar as such use can be detected by reference to
the numbered syntax rules and constraints;

(3) it contains the capability to detect and report the use within a submitted program unit of
an additional form or relationship that is not permitted by the numbered syntax rules or
constraints, including the deleted features described in Annex B;

(4) it contains the capability to detect and report the use within a submitted program unit of
an intrinsic type with a kind type parameter value not supported by the processor (4.4);

(5) it contains the capability to detect and report the use within a submitted program unit of
source form or characters not permitted by Clause 3;

(6) it contains the capability to detect and report the use within a submitted program of name
usage not consistent with the scope rules for names, labels, operators, and assignment
symbols in Clause 16;

(7) it contains the capability to detect and report the use within a submitted program unit of
intrinsic procedures whose names are not defined in Clause 13; and

(8) it contains the capability to detect and report the reason for rejecting a submitted program.

However, in a format specification that is not part of a FORMAT statement (10.2.1), a processor need not
detect or report the use of deleted or obsolescent features, or the use of additional forms or relationships.

A standard-conforming processor may allow additional forms and relationships provided that such ad-
ditions do not conflict with the standard forms and relationships. However, a standard-conforming
processor may allow additional intrinsic procedures even though this could cause a conflict with the
name of a procedure in a standard-conforming program. If such a conflict occurs and involves the name
of an external procedure, the processor is permitted to use the intrinsic procedure unless the name is
given the EXTERNAL attribute (5.3.8) in the scoping unit (2.3.1). A standard-conforming program
shall not use nonstandard intrinsic procedures or modules that have been added by the processor.

Because a standard-conforming program may place demands on a processor that are not within the
scope of this part of ISO/IEC 1539 or may include standard items that are not portable, such as
external procedures defined by means other than Fortran, conformance to this part of ISO/IEC 1539
does not ensure that a program will execute consistently on all or any standard-conforming processors.

The semantics of facilities that are identified as processor dependent are not completely specified in this
part of ISO/IEC 1539. They shall be provided, with methods or semantics determined by the processor.

2 Overview 1.4

10

11
12
13

14

15
16
17
18

19

20
21
22
23
24

25
26
27
28
29
30
31
32
33

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 1.1

The processor should be accompanied by documentation that specifies the limits it imposes on the
size and complexity of a program and the means of reporting when these limits are exceeded, that
defines the additional forms and relationships it allows, and that defines the means of reporting
the use of additional forms and relationships and the use of deleted or obsolescent forms. In this
context, the use of a deleted form is the use of an additional form.

The processor should be accompanied by documentation that specifies the methods or semantics
of processor-dependent facilities.

1.5 Compatibility

1.5.1 New intrinsic procedures

Each Fortran International Standard since ISO 1539:1980 (informally referred to as FORTRAN 77), defines
more intrinsic procedures than the previous one. Therefore, a Fortran program conforming to an older
standard may have a different interpretation under a newer standard if it invokes an external procedure
having the same name as one of the new standard intrinsic procedures, unless that procedure is specified
to have the EXTERNAL attribute.

1.5.2 New intrinsic data type and operator

This part of ISO/TEC 1539 specifies a new intrinsic type, BITS, which will conflict with a derived type
of the same name.

This part of ISO/IEC 1539 specifies a new intrinsic operator, .XOR., which might conflict with a user-
defined operator of the same name, has a different precedence from that of a user-defined operator, and
a different syntax from that of a user-defined unary operator.

1.5.3 Fortran 2003 compatibility

Except as identified in this subclause, this part of ISO/IEC 1539 is an upward compatible extension
to the preceding Fortran International Standard, ISO/IEC 1539-1:2004 (Fortran 2003). Any standard-
conforming Fortran 2003 program that does not use a derived type called BITS, and does not use a
user-defined operator called .XOR., remains standard-conforming under this part of ISO/TEC 1539.

1.5.4 Fortran 95 compatibility

Except as identified in this subclause, this part of ISO/IEC 1539 is an upward compatible extension to
ISO/IEC 1539-1:1997 (Fortran 95). Any standard-conforming Fortran 95 program that does not use a
derived type called BITS or a user-defined operator called .XOR. remains standard-conforming under
this part of ISO/TEC 1539. The following Fortran 95 features may have different interpretations in this
part of ISO/IEC 1539.

e Earlier Fortran standards had the concept of printing, meaning that column one of formatted
output had special meaning for a processor-dependent (possibly empty) set of external files. This
could be neither detected nor specified by a standard-specified means. The interpretation of the
first column is not specified by this part of ISO/TEC 1539.

e This part of ISO/IEC 1539 specifies a different output format for real zero values in list-directed
and namelist output.

e If the processor can distinguish between positive and negative real zero, this part of ISO/IEC 1539
requires different returned values for ATAN2(Y,X) when X < 0 and Y is negative real zero and for
LOG(X) and SQRT(X) when X is complex with REAL(X) < 0 and negative zero imaginary part.

1.5 Overview 3

W N

o ~

10
11

12

13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

43

44
45

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

1.5.5 Fortran 90 compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this part
of ISO/IEC 1539 is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard-
conforming Fortran 90 program that does not use a derived type called BITS, a user-defined operator
called .XOR., or one of the deleted features remains standard-conforming under this part of ISO/TEC
1539.

The PAD= specifier in the INQUIRE statement in this part of ISO/IEC 1539 returns the value UNDE-
FINED if there is no connection or the connection is for unformatted input/output. Fortran 90 specified
YES.

Fortran 90 specified that if the second argument to MOD or MODULO was zero, the result was processor
dependent. this part of ISO/IEC 1539 specifies that the second argument shall not be zero.

1.5.6 FORTRAN 77 compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this part
of ISO/IEC 1539 is an upward compatible extension to ISO 1539:1980 (FORTRAN 77). Any standard-
conforming FORTRAN 77 program that does not use one of the deleted features noted in Annex B.1 and
that does not depend on the differences specified here remains standard-conforming under this part of
ISO/IEC 1539. This part of ISO/IEC 1539 restricts the behavior for some features that were processor
dependent in FORTRAN 77. Therefore, a standard-conforming FORTRAN 77 program that uses one of
these processor-dependent features may have a different interpretation under this part of ISO/IEC 1539,
yet remain a standard-conforming program. The following FORTRAN 77 features may have different
interpretations in this part of ISO/TEC 1539.

e FORTRAN 77 permitted a processor to supply more precision derived from a real constant than can
be represented in a real datum when the constant is used to initialize a data object of type double
precision real in a DATA statement. This part of ISO/IEC 1539 does not permit a processor this
option.

e If a named variable that was not in a common block was initialized in a DATA statement and did
not have the SAVE attribute specified, FORTRAN 77 left its SAVE attribute processor dependent.
This part of ISO/IEC 1539 specifies (5.4.6) that this named variable has the SAVE attribute.

e FORTRAN 77 specified that the number of characters required by the input list was to be less than
or equal to the number of characters in the record during formatted input. This part of ISO/IEC
1539 specifies (9.6.4.4.3) that the input record is logically padded with blanks if there are not
enough characters in the record, unless the PAD= specifier with the value 'NO’ is specified in an
appropriate OPEN or READ statement.

e A value of 0 for a list item in a formatted output statement will be formatted in a different form for
some G edit descriptors. In addition, this part of ISO/IEC 1539 specifies how rounding of values
will affect the output field form, but FORTRAN 77 did not address this issue. Therefore, some
FORTRAN 77 processors may produce an output form different from the output form produced by
Fortran 2003 processors for certain combinations of values and G edit descriptors.

e If the processor can distinguish between positive and negative real zero, the behavior of the intrinsic
function SIGN when the second argument is negative real zero is changed by this part of ISO/IEC
1539.

1.6 Notation used in this part of ISO/IEC 1539

1.6.1 Applicability of requirements

1 In this part of ISO/IEC 1539, “shall” is to be interpreted as a requirement; conversely, “shall not” is

to be interpreted as a prohibition. Except where stated otherwise, such requirements and prohibitions

4 Overview 1.5.5

10

11
12

13

14

15
16
17
18
19
20
21
22

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

apply to programs rather than processors.

1.6.2 Informative notes

Informative notes of explanation, rationale, examples, and other material are interspersed with the
normative body of this part of ISO/IEC 1539. The informative material is nonnormative; it is identified
by being in shaded, framed boxes that have numbered headings beginning with “NOTE.”

1.6.3 Syntax rules

Syntax rules describe the forms that Fortran lexical tokens, statements, and constructs may take. These
syntax rules are expressed in a variation of Backus-Naur form (BNF) with the following conventions.

e Characters from the Fortran character set (3.1) are interpreted literally as shown, except where
otherwise noted.

e Lower-case italicized letters and words (often hyphenated and abbreviated) represent general syn-
tactic classes for which particular syntactic entities shall be substituted in actual statements.

Common abbreviations used in syntactic terms are:

arg for argument attr ~ for attribute
decl for declaration def for definition
desc for descriptor exrpr for expression
int for integer op for operator
spec for specifier stmt for statement

e The syntactic metasymbols used are:

is introduces a syntactic class definition

or introduces a syntactic class alternative

[] encloses an optional item

[]... encloses an optionally repeated item
that may occur zero or more times

| continues a syntax rule

e Fach syntax rule is given a unique identifying number of the form Rsnn, where s is a one- or
two-digit clause number and nn is a two-digit sequence number within that clause. The syntax
rules are distributed as appropriate throughout the text, and are referenced by number as needed.
Some rules in Clauses 2 and 3 are more fully described in later clauses; in such cases, the clause
number s is the number of the later clause where the rule is repeated.

e The syntax rules are not a complete and accurate syntax description of Fortran, and cannot be
used to generate a Fortran parser automatically; where a syntax rule is incomplete, it is restricted
by corresponding constraints and text.

NOTE 1.2
An example of the use of the syntax rules is:

digit-string is digit | digit] ...

The following are examples of forms for a digit string allowed by the above rule:

digit

digit digit

digit digit digit digit

digit digit digit digit digit digit digit digit

1.6.3 Overview 5

w N

~N o O~

©

10
11
12
13

14

15
16

17

18

19

20

21
22

23

24
25
26
27

28
29

30
31
32

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 1.2 (cont.)

If particular entities are substituted for digit, actual digit strings might be:

4

67

1999
10243852

1.6.4 Constraints

Each constraint is given a unique identifying number of the form Csnn, where s is a one or two digit
clause number and nn is a two or three digit sequence number within that clause.

Often a constraint is associated with a particular syntax rule. Where that is the case, the constraint is
annotated with the syntax rule number in parentheses. A constraint that is associated with a syntax
rule constitutes part of the definition of the syntax term defined by the rule. It thus applies in all places
where the syntax term appears.

Some constraints are not associated with particular syntax rules. The effect of such a constraint is similar
to that of a restriction stated in the text, except that a processor is required to have the capability to
detect and report violations of constraints (1.4). In some cases, a broad requirement is stated in text
and a subset of the same requirement is also stated as a constraint. This indicates that a standard-
conforming program is required to adhere to the broad requirement, but that a standard-conforming
processor is required only to have the capability of diagnosing violations of the constraint.

1.6.5 Assumed syntax rules

In order to minimize the number of additional syntax rules and convey appropriate constraint informa-
tion, the following rules are assumed.

R101 zyz-list is zyz [, zyz] ...
R102 zyz-name is name
R103 scalar-zyz is zyz

C101 (R103) scalar-zyz shall be scalar.

The letters “zyz” stand for any syntactic class phrase. An explicit syntax rule for a term overrides an
assumed rule.

1.6.6 Syntax conventions and characteristics

4

Any syntactic class name ending in “-stmt” follows the source form statement rules: it shall be delimited
by end-of-line or semicolon, and may be labeled unless it forms part of another statement (such as an
IF or WHERE statement). Conversely, everything considered to be a source form statement is given a
“-stmt” ending in the syntax rules.

The rules on statement ordering are described rigorously in the definition of program-unit (R202). Ex-
pression hierarchy is described rigorously in the definition of expr (R722).

The suffix “-spec” is used consistently for specifiers, such as input/output statement specifiers. It also
is used for type declaration attribute specifications (for example, “array-spec” in R510), and in a few
other cases.

6 Overview 1.6.4

~N o g &

10
11
12
13
14
15

16

17
18

19

20
21

22
23

24
25

26

27
28
29

30

31
32

33

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Where reference is made to a type parameter, including the surrounding parentheses, the suffix “-
selector” is used. See, for example, “kind-selector” (R405) and “length-selector” (R421).

1.6.7 Text conventions

In descriptive text, an equivalent English word is frequently used in place of a syntactic term. Particular
statements and attributes are identified in the text by an upper-case keyword, e.g., “END statement”.
Boldface words are used in the text where they are first defined with a specialized meaning. The
descriptions of obsolescent features appear in a smaller type size.

NOTE 1.3

‘ This sentence is an example of the type size used for obsolescent features.

1.7 Deleted and obsolescent features

1.7.1 General

This part of ISO/TEC 1539 protects the users’ investment in existing software by including all but five
of the language elements of Fortran 90 that are not processor dependent. This part of ISO/IEC 1539
identifies two categories of outmoded features. There are five in the first category, deleted features,
which consists of features considered to have been redundant in FORTRAN 77 and largely unused in
Fortran 90. Those in the second category, obsolescent features, are considered to have been redundant
in Fortran 90 and Fortran 95, but are still frequently used.

1.7.2 Nature of deleted features

Better methods existed in FORTRAN 77 for each deleted feature. These features were not included in
Fortran 95 or Fortran 2003, and are not included in this revision of Fortran.

1.7.3 Nature of obsolescent features

Better methods existed in Fortran 90 and Fortran 95 for each obsolescent feature. It is recommended
that programmers use these better methods in new programs and convert existing code to these methods.

The obsolescent features are identified in the text of this part of ISO/IEC 1539 by a distinguishing type
font (1.6.7).

A future revision of this part of ISO/IEC 1539 might delete an obsolescent feature if its use has become

insignificant.

1.8 Normative references

The following referenced standards are indispensable for the application of this part of ISO/TEC 1539.
For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced standard (including any amendments) applies.

ISO/IEC 646:1991, Information technology—ISO 7-bit coded character set for information interchange.

ISO 8601:1988, Data elements and interchange formats—Information interchange—
Representation of dates and times.

ISO/IEC 9899:1999, Information technology—Programming languages—C.

1.6.7 Overview 7

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

ISO/IEC 10646-1:2000, Information technology— Universal multiple-octet coded character set (UCS)—
Part 1: Architecture and basic multilingual plane.

IEC 60559 (1989-01), Binary floating-point arithmetic for microprocessor systems.

ISO/IEC 646:1991 (International Reference Version) is the international equivalent of ANSI X3.4-1986,
commonly known as ASCII.

This part of ISO/IEC 1539 refers to ISO/IEC 9899:1999 as the C International Standard.

Because TEC 60559 (1989-01) was originally IEEE 754-1985, Standard for binary floating-point arith-
metic, and is widely known by this name, this part of ISO/TEC 1539 refers to it as the IEEE International
Standard.

8 Overview 1.8. NORMATIVE REFERENCES

10
11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26

27
28
29

30
31
32

33
34
35
36

37
38
39

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

2 Fortran terms and concepts

2.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

2.1.1
actual argument
entity (R1223) that appears in a procedure reference

2.1.2
allocatable
having the ALLOCATABLE attribute (5.3.3)

2.1.3

array

set of scalar data, all of the same type and type parameters, whose individual elements are arranged in
a rectangular pattern

2.1.3.1
array element
scalar individual element of an array

2.1.3.2
array pointer
array with the POINTER attribute (5.3.13)

2.1.33
array section
array subobject designated by array-section, and which is itself an array (6.5.3.3)

2.1.3.4

assumed-shape array

nonallocatable nonpointer dummy argument array that takes its shape from its effective argument
(5.3.7.3)

2.1.3.5
assumed-size array
dummy argument array whose size is assumed from that of its effective argument (5.3.7.5)

2.1.3.6
deferred-shape array
allocatable array or array pointer, declared with a deferred-shape-spec-list (5.3.7.4)

2.1.3.7

explicit-shape array

array declared with an explicit-shape-spec-list, which specifies explicit values for the bounds in each
dimension of the array (5.3.7.2)

214
associate name
name of construct entity associated with a selector of an ASSOCIATE or SELECT TYPE construct

2 Fortran terms and concepts 9

A~ W N

10
11

12
13
14
15
16

17
18
19
20

21
22
23
24

25
26
27
28

29
30
31
32
33

34
35
36

37
38
39

40
41

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

(8.1.3)

2.1.5

association

inheritance association (16.5.4), name association (16.5.1), pointer association (16.5.2), or storage asso-
ciation (16.5.3).

NOTE 2.1

Name association is further subcategorized as argument association, construct association, host
association, linkage association, or use association.

2.1.5.1
argument association
association between an effective argument and a dummy argument (12.5.2)

2.1.6
attribute
property of an entity that determines its uses (5.1)

2.1.7

automatic data object

automatic object

nondummy data object with a type parameter or array bound that depends on the value of a specification-
ezpr that is not an initialization expression

2.1.8

block

sequence of executable constructs formed by the syntactic class block and which is treated as a unit by
the executable constructs described in 8.1

2.1.9

block data program unit

program unit whose initial statement is a BLOCK DATA statement, used for providing initial values for
data objects in named common blocks (11.3)

2.1.10

bound

array bound

limit of a dimension of an array

2.1.11

C address

value identifying the location of a data object or procedure either defined by the companion processor or
which might be accessible to the companion processor; this is the same concept which the C International
Standard calls the address

2.1.12
character context
within a character literal constant (4.4.5) or within a character string edit descriptor (10.3.2)

2.1.13
co-array
data entity that can be directly referenced or defined by any image (2.5.7)

2.1.14
co-bound

10 Fortran terms and concepts 2.1

10

11
12
13

14
15
16

17
18
19

20
21
22
23

24
25
26

27
28
29

30
31
32
33

34
35
36

37
38
39

40
41

13/07-007r2:2007 /06,05

bound (limit) of a co-dimension

2.1.15
co-dimension

dimension of the pattern formed by corresponding co-arrays (R624, 6.5.5)

2.1.16
co-indexed object

WD 1539-1 ISO/IEC SC22/WG5/N1678

data object whose designator includes an image-selector

2.1.17
co-rank

number of co-dimensions of a co-array (zero for objects that are not co-arrays)

2.1.18
co-subscript

(R625) scalar integer expression in an image-selector (R624)

2.1.19
common block
block of physical storage specified

2.1.19.1
blank common
unnamed common block

2.1.20
companion processor

by a COMMON statement (5.7.2)

processor-dependent mechanism by which global data and procedures may be referenced or defined

(2.6.7)

2.1.21
component

part of a derived type, or of an object of derived type, defined by a component-def-stmt (4.5.4)

2.1.22
conformable

of two data entities, having the same shape, or one being an array and the other being scalar

2.1.23
constant

data object that has a value and which cannot be defined, redefined, or become undefined during

execution of a program (3.2.3, 6.3)

2.1.23.1
literal constant

constant that does not have a name (R306, 4.4)

2.1.23.2
named constant

named data object with the PARAMETER attribute (5.3.12)

2.1.24
data entity

2.1

Fortran terms and concepts

11

A~ W N

10
11
12

13

14
15
16
17

18

19
20
21
22

23
24
25
26

27
28
29

30
31

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

data object, result of the evaluation of an expression, or the result of the execution of a function reference

2.1.25

data object

object

constant (4.1.3), variable (6), or subobject of a constant (2.5.3.1.3)

2.1.26
declaration
specification of attributes for various program entities

NOTE 2.2

Often this involves specifying the type of a named data object or specifying the shape of a named
array object.

2.1.27
definable
being capable of definition and permitted to become defined

2.1.28
defined
either
e of a data object, the property of having a valid value,

e of a pointer, the property of having a pointer association status of associated or disassociated

2.1.29
definition
either
e the specification of derived types (4.5.2), enumerations (4.6), and procedures (12.6), or

e the process by which a data object becomes defined (16.6.5)

2.1.30

designator

name followed by zero or more component selectors, complex part selectors, array section selectors, array
element selectors, image selectors, and substring selectors (6.1)

2.1.30.1

complex part designator

designator that designates the real or imaginary part of a complex data object, independently of the
other part (6.4.3)

2.1.30.2

object designator

data object designator

designator for a data object
NOTE 2.3

An object name is a special case of an object designator.

2.1.30.3
procedure designator
designator for a procedure

2.1.31
dummy argument

12 Fortran terms and concepts 2.1

10
11
12
13

14
15
16

17
18
19

20
21
22

23
24
25

26
27
28

29
30
31

32
33
34
35

36
37
38

39
40

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

entity whose identifier appears in a dummy argument list (R1235) in an ENTRY, FUNCTION, SUB-
ROUTINE, or statement function statement, or whose name can be used as an argument keyword in a
reference to an intrinsic procedure or a procedure in an intrinsic module

2.1.31.1
dummy data object
dummy argument that is a data object

2.1.31.2
dummy function
dummy procedure that is a function

2.1.32

elemental

independent scalar application of an action or operation to elements of an array or corresponding elements
of a set of conformable arrays and scalars, or possessing the capability of elemental operation

NOTE 2.4

Combination of scalar and array operands or arguments combine the scalar operand(s) with each
element of the array operand(s).

2.1.32.1
elemental assignment
assignment that operates elementally

2.1.32.2
elemental operation
operation that operates elementally

2.1.32.3
elemental operator
operator in an elemental operation

2.1.32.4
elemental procedure
elemental intrinsic procedure or procedure defined by an elemental subprogram

2.1.32.5
elemental reference
reference to an elemental procedure with at least one array actual argument

2.1.32.6
elemental subprogram
subprogram with the ELEMENTAL prefix

2.1.33

END statement

end-program-stmt, end-function-stmt, end-subroutine-stmt, end-mp-subprogram-stmt, end-module-stmt,
end-submodule-stmt, or end-block-data-stmt

2.1.34
explicit initialization
initialization of a data object by a specification statement (5.2.3, 5.4.6)

2.1.35
extent

2.1 Fortran terms and concepts 13

~

© 0 N o O

10
11
12

13
14
15

16
17
18

19
20
21
22

23
24
25
26

27
28
29
30

31
32
33
34

35
36
37
38
39

40
41
42

43
44

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

number of elements in a single dimension of an array

2.1.36
function
procedure that is invoked by an expression

2.1.37

host scoping unit

host

the scoping unit immediately surrounding another scoping unit, or the scoping unit of the parent of a
submodule

2.1.38
image
instance of a Fortran program (2.4.2)

2.1.39
image index
integer value identifying an image

2.1.40
interface block
abstract interface block, generic interface block, or specific interface block (12.4.3.2)

2.1.40.1

abstract interface block

interface block with the ABSTRACT keyword; collection of interface bodies that specify abstract inter-
faces

2.1.40.2

generic interface block

interface block with a generic-spec; collection of interface bodies and procedure statements that are to
be given that generic identifier

2.1.40.3

specific interface block

interface block with no generic-spec or ABSTRACT keyword; collection of interface bodies that specify
the interfaces of procedures

2.1.41

interface body

scoping unit that specifies an abstract interface or the interface of a dummy procedure, external proce-
dure, procedure pointer, or separate module procedure (12.4.3.2)

2.1.42

intrinsic

type, procedure, module, assignment, or operator defined in this part of ISO/IEC 1539 and accessible
without further definition or specification, or a procedure or module provided by a processor but not
defined in this part of ISO/IEC 1539

2.1.42.1
standard intrinsic
of a procedure or module, defined in this part of ISO/IEC 1539 (13)

2.1.42.2
nonstandard intrinsic

14 Fortran terms and concepts 2.1

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26

27
28
29

30
31
32

33
34
35
36

37
38
39

40
41

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

of a procedure or module, provided by a processor but not defined in this part of ISO/IEC 1539

2.1.43
keyword
statement keyword, argument keyword, type parameter keyword, or component keyword

2.1.43.1
argument keyword
word that identifies the corresponding dummy argument in an actual argument list

2.1.43.2
component keyword
word that identifies a component in a structure constructor

2.1.43.3
statement keyword
word that is part of the syntax of a statement (2.6.2)

2.1.43.4
type parameter keyword
word that identifies a type parameter in a type parameter list

2.1.44
line
sequence of zero or more characters

2.1.45
main program
program unit that is not a subprogram, module, submodule, or block data program unit (11.1)

2.1.46

module

program unit containing (or accessing from other modules) definitions that are to be made accessible to
other program units (11.2)

2.1.47
name
identifier of a program consituent, formed according to the rules given in 3.2.2

2.1.48
operand
data value that is the subject of an operator

2.1.49

operator

either a prefix syntax specifying a computation involving one (unary operator) data value, or an infix
syntax specifying a computation involving two (binary operator) data values

2.1.50
pointer
data pointer (2.1) or procedure pointer (2.1)

2.1.50.1
data pointer

2.1 Fortran terms and concepts 15

~

0 N o o

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27
28

29
30
31
32

33
34
35
36

37
38
39

40
41
42

43
44

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

data entity with the POINTER attribute (5.3.13)

2.1.50.2
procedure pointer
procedure with the EXTERNAL and POINTER attributes (5.3.8, 5.3.13)

2.1.51

polymorphic

data entity declared with the CLASS keyword, able to be of differing dynamic types during program
execution

2.1.52

procedure

entity encapsulating an arbitrary sequence of actions that can be invoked directly during program exe-
cution

2.1.52.1
dummy procedure
procedure that is a dummy argument (12.2.2.3)

2.1.52.2
external procedure
procedure defined by an external subprogram (R203) or by means other than Fortran (12.6.3)

2.1.52.3
internal procedure
procedure defined by an internal subprogram (R211)

2.1.52.4
module procedure
procedure that is defined by a module subprogram (R1108)

2.1.53

processor

combination of a computing system and mechanism by which programs are transformed for use on that
computing system

2.1.54

processor dependent

not completely specified in this part of ISO/TEC 1539, having methods and semantics determined by
the processor

2.1.55

program

set of Fortran program units and global entities defined by means other than Fortran that includes
exactly one main program

2.1.56
program unit
main program, external subprogram, module, submodule, or block data program unit (2.3.1)

2.1.57
reference
data object reference, procedure reference, or module reference

2.1.57.1
data object reference

16 Fortran terms and concepts 2.1

A~ W N

~N o

10
11
12
13

14
15
16

17
18
19

20
21
22

23
24
25

26
27
28

29
30
31

32
33
34

35
36
37
38

39
40

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

appearance of a data object designator (6.1) in a context requiring its value at that point during execution

2.1.57.2

function reference

appearance of the procedure designator for a function, or operator symbol in a context requiring execution
of the function during expression evaluation (12.5.3)

2.1.57.3
module reference
appearance of a module name in a USE statement (11.2.2)

2.1.57.4

procedure reference

appearance of a procedure designator, operator symbol, or assignment symbol in a context requiring
execution of the procedure at that point during execution; or occurrence of user-defined derived-type
input/output (10.7.6) or derived-type finalization (4.5.6.2)

2.1.58
rank
number of array dimensions of a data entity (zero for a scalar entity)

2.1.59
result variable
variable that returns the value of a function

2.1.60
scalar
data entity that can be represented by a single value of the type and that is not an array (6.5)

2.1.61

scoping unit

either
e a program unit or subprogram, excluding any scoping units in it,
e a derived-type definition (4.5.2), or
e an interface body, excluding any scoping units in it

2.1.62
sequence
set of elements ordered by a one-to-one correspondence with the numbers 1, 2, to n

2.1.62.1
empty sequence
sequence containing no elements

2.1.63

shape

array dimensionality of a data entity, represented as a rank-one array whose size is the rank of the data
entity and whose elements are the extents of the data entity

NOTE 2.5

Thus the shape of a scalar data entity is an array with rank one and size zero.

2.1.64
size

2.1 Fortran terms and concepts 17

A~ W N

~N o

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

31
32
33
34

35
36
37

38
39
40

41
42

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

of an array, the total number of elements in the array

2.1.65

standard-conforming program

program that uses only those forms and relationships described in, and which has an interpretation
according to, this part of ISO/TEC 1539

2.1.66
statement
sequence of one or more complete or partial lines satisfying a syntax rule that ends in -stmit (3.3)

2.1.66.1

executable statement

statement that is a member of the syntactic class executable-construct, excluding those in the specification-
part of a BLOCK construct

2.1.66.2
nonexecutable statement
statement that is not an executable statement

2.1.67
statement label
unsigned positive number of up to five digits that refers to an individual statement (3.2.5)

2.1.68
structure
scalar data object of derived type (4.5)

2.1.69
structure component
component of a structure

2.1.70
structure constructor
syntax (structure-constructor, 4.5.10) that specifies a structure value or which creates such a value

2.1.711
submodule
program unit that extends a module or another submodule (11.2.3)

2.1.72

subobject

portion of data object that can be referenced, and if a variable defined, independently of the other
portions

2.1.73
subprogram
function-subprogram (R1227) or subroutine-subprogram (R1233)

2.1.73.1
external subprogram
subprogram that is not contained in a main program, module, submodule, or another subprogram

2.1.73.2
internal subprogram

18 Fortran terms and concepts 2.1

~

0 N o o

10
11

12
13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30
31

32
33
34

35
36
37

38
39
40
41

42
43
44

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

subprogram that is contained in a main program or another subprogram

2.1.73.3
module subprogram
subprogram that is contained in a module or submodule but which is not an internal subprogram

2.1.74

subroutine

procedure invoked by a CALL statement, by a defined assignment statement, or by some operations on
derived-type entities

2.1.75
team
set of images identified by a scalar data object of type IMAGE_TEAM (13.8.2.8)

2.1.76

type

named category of data characterized by a set of values, a syntax for denoting these values, and a set of
operations that interpret and manipulate the values (4.1)

2.1.76.1
abstract type
type with the ABSTRACT attribute (4.5.7.1)

2.1.76.2
declared type
type that a data entity is declared to have, either explicitly or implicitly (4.3.1, 7.1.9)

2.1.76.3
derived type
type defined by a type definition (4.5) or by an intrinsic module

2.1.76.4
dynamic type
type of a data entity at a particular point during execution of a program (4.3.1.3, 7.1.9)

2.1.76.5

extensible type

type that has neither the BIND attribute nor the SEQUENCE attribute and which therefore may be
extended using the EXTENDS clause

2.1.76.6
intrinsic type
type defined by this part of ISO/IEC 1539 that is always accessible (4.4)

2.1.76.7
numeric type
one of the types integer, real, and complex

2.1.76.8

type compatible

of one entity with respect to another, compatibility of the types of the entities for purposes such as
argument association, pointer association, and allocation (4.3.1

2.1.76.9
type parameter
value used to parameterize a type, further specifying the set of data values, syntax for denoting those,

2.1 Fortran terms and concepts 19

N o g b~ W N

[ee]

10
11

12
13
14

15
16
17

18
19
20

21
22
23
24

25
26
27

28

29
30

31
32
33

34
35
36
37

38

39
40

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

and the set of operations available (4.2)

2.1.76.9.1
assumed type parameter
length type parameter that assumes the type parameter value from another entity, which is

e the selector for an associate name,
e the initialization-expr for a named constant of type character, and
o the effective argument for a dummy argument

2.1.76.9.2

deferred type parameter

length type parameter whose value can change during execution of a program and whose type-param-
value is a colon

2.1.76.9.3
kind type parameter
type parameter whose value is required to be defaulted or given by an initialization expression

2.1.76.9.4
length type parameter
type parameter whose value is permitted to be assumed, deferred, or given by a specification expression

2.1.76.9.5
type parameter inquiry
syntax (type-param-inquiry) that is used to inquire the value of a type parameyet of a data object (6.4.4)

2.1.76.9.6

type parameter order

ordering of the type parameters of a type (4.5.3.2) used for derived-type specifiers (derived-type-spec,
4.5.9)

2.1.77
undefined
either

e of a data object, the property of not having a valid value, or

e of a pointer, the property of having not having a pointer association status of associated or disas-
sociated

2.1.78
variable
data entity that can be defined and redefined during execution of a program

2.1.78.1

local variable

variable in a scoping unit or BLOCK construct that is not a dummy argument or part thereof, is not a
global entity or part thereof, and is not accessible outside that scoping unit or construct

2.2 High level syntax

This subclause introduces the terms associated with program units and other Fortran concepts above
the construct, statement, and expression levels and illustrates their relationships.

20 Fortran terms and concepts 2.2

~N o o~ W N

[ee]

10
11
12

13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28

29
30
31
32

33
34
35

36
37
38
39

40
41

13/07-007r2:2007 /06,05

NOTE 2.6

WD 1539-1 ISO/IEC SC22/WG5/N1678

appropriate clause.

Constraints and other information related to the rules that do not begin with R2 appear in the

R201 program is
R202 program-unit is
or
or
or
or
R1101 main-program is
R203 external-subprogram is
or
R1227 function-subprogram is
R1233 subroutine-subprogram is
R1104 module is
R1116 submodule is
R1120 block-data is
R204 specification-part is
R205 implicit-part is

program-unit
[program-unit | ...

main-program
external-subprogram
module

submodule

block-data

[program-stmt]
[specification-part |
[execution-part |
[internal-subprogram-part |
end-program-stmt

function-subprogram
subroutine-subprogram

function-stmt
[specification-part |
[execution-part]
[internal-subprogram-part |
end-function-stmt

subroutine-stmt
[specification-part]
[execution-part |
[internal-subprogram-part |
end-subroutine-stmt

module-stmt
[specification-part |
[module-subprogram-part |
end-module-stmt

submodule-stmt
[specification-part |
[module-subprogram-part |
end-submodule-stmt

block-data-stmt
[specification-part]
end-block-data-stmt

[use-stmt | ...
[import-stmt | ...
[implicit-part]
[declaration-construct | ...

[implicit-part-stmt] ...
implicit-stmt

2.2 Fortran terms and concepts 21

A~ W N =

© 00 N O O

10
11
12
13
14
15

16
17

18
19
20
21

22
23

24
25

26
27

28
29
30

31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47

ISO/IEC SC22/WG5/N1678

R206 implicit-part-stmt

R207 declaration-construct

R208 execution-part

R209 ezecution-part-construct
R210 internal-subprogram-part
R211 internal-subprogram

R1107 module-subprogram-part
R1108 module-subprogram

R1237 separate-module-subprogram
R212 specification-stmt

22 Fortran terms and concepts

is

or
or
or

or
or
or
or
or
or
or
or
or
or

is

is

or
or
or

is

is
or

is

is
or
or

is

is

or
or
or
or
or
or
or
or
or
or
or

WD 1539-1 J3/07-007r2:2007,/06,/05

implicit-stmt
parameter-stmt
format-stmt
entry-stmt

derived-type-def
entry-stmt

enum-def

format-stmt
interface-block
macro-definition
parameter-stmt
procedure-declaration-stmt
specification-stmt
type-declaration-stmt

stmi-function-stmt

ezecutable-construct
[execution-part-construct | ...

executable-construct
format-stmt
entry-stmt

data-stmt

contains-stmt
[internal-subprogram | ...

function-subprogram
subroutine-subprogram

contains-stmt
[module-subprogram | ...

function-subprogram
subroutine-subprogram
separate-module-subprogram

mp-subprogram-stmt
[specification-part |
[execution-part]
[internal-subprogram-part |
end-mp-subprogram-stmt

access-stmt
allocatable-stmt
asynchronous-stmt
bind-stmt
common-stmt
data-stmt
dimension-stmt
equivalence-stmt
external-stmt
intent-stmt
ntrinsic-stmt
namelist-stmt

2.2

~N o o0 WN =

[ee]

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52

13/07-007r2:2007 /06,05

or
or
or
or
or
or
or

R213 executable-construct is
or
or
or
or
or
or
or
or
or

R214 action-stmt is
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

WD 1539-1 ISO/IEC SC22/WG5/N1678

optional-stmt
pointer-stmt
protected-stmt
save-stmt
target-stmt
volatile-stmt
value-stmt

action-stmt
assoctate-construct
block-construct
case-construct
critical-construct
do-construct
forall-construct
if-construct
select-type-construct
where-construct

allocate-stmt
allstop-stmt
assignment-stmt
backspace-stmt
call-stmt
close-stmt
continue-stmi
cycle-stmt
deallocate-stmit
end-function-stmt
end-mp-subprogram-stmt
end-program-stmt
end-subroutine-stmt
endfile-stmt
exit-stmt
Sflush-stmt
forall-stmit
goto-stmt

if-stmt
mquire-stmt
notify-stmt
nullify-stmt
open-stmt
pointer-assignment-stmt
print-stmt
query-stmt
read-stmt
return-stmt
rewind-stmt
stop-stmt
sync-all-stmt
sync-images-stmt
sync-memory-stmt
sync-team-stmt
wait-stmt

2.2 Fortran terms and concepts

23

A W N =

[&)]

10

11

12
13

14
15
16
17

18

19

20

21
22
23
24

25

26

27
28

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

or where-stmt

or write-stmt

or arithmetic-if-stmt
or computed-goto-stmt

C201 (R208) An ezecution-part shall not contain an end-function-stmt, end-mp-subprogram-stmt, end-
program-stmt, or end-subroutine-stmt.

Additionally, an EXPAND statement may occur anywhere that any statement may occur other than
as the first statement of a program unit. The syntax rules are applied to the program after macro
expansion, i.e. with each EXPAND statement replaced by the statements it produces.

2.3 Program unit concepts

2.3.1 Program units and scoping units

Program units are the fundamental components of a Fortran program. A program unit is a main
program, an external subprogram, a module, a submodule, or a block data program unit.

A subprogram is a function subprogram or a subroutine subprogram. A module contains definitions
that are to be made accessible to other program units. A submodule is an extension of a module; it may
contain the definitions of procedures declared in a module or another submodule. A block data program
unit is used to specify initial values for data objects in named common blocks.

Each type of program unit is described in Clause 11 or 12.
A program unit consists of a set of nonoverlapping scoping units.

NOTE 2.7
The module or submodule containing a module subprogram is the host scoping unit of the module
subprogram. The containing main program or subprogram is the host scoping unit of an internal
subprogram.

An internal procedure is local to its host in the sense that its name is accessible within the host
scoping unit and all its other internal procedures but is not accessible elsewhere.

2.3.2 Program

A program shall consist of exactly one main program, any number (including zero) of other kinds of
program units, any number (including zero) of external procedures, and any number (including zero) of
other entities defined by means other than Fortran. The main program shall be defined by a Fortran
main-program program-unit or by means other than Fortran, but not both.

NOTE 2.8

There is a restriction that there shall be no more than one unnamed block data program unit
(11.3).

2.3.3 Procedure
2.3.3.1 General

A procedure is either a function or a subroutine. Invocation of a function in an expression causes a value
to be computed which is then used in evaluating the expression.

24 Fortran terms and concepts 2.3

o N o o

10

11
12
13
14
15

16

17

18

19
20
21

22
23

24
25

26

27
28
29
30
31

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

A procedure that is not pure might change the program state by changing the value of data objects
accessible to it.

Procedures are described further in Clause 12.

2.3.4 Module

A module contains (or accesses from other modules) definitions that are to be made accessible to other
program units. These definitions include data object declarations, type definitions, procedure definitions,
and interface blocks. A scoping unit in another program unit may access the definitions in a module.
Modules are further described in Clause 11.

2.3.5 Submodule

A submodule extends a module or another submodule.

It may provide definitions (12.6) for procedures whose interfaces are declared (12.4.3.2) in an ancestor
module or submodule. It may also contain declarations and definitions of other entities, which are
accessible in its descendants. An entity declared in a submodule is not accessible by use association
unless it is a module procedure whose interface is declared in the ancestor module. Submodules are
further described in Clause 11.

NOTE 2.9

The scoping unit of a submodule accesses the scoping unit of its parent module or submodule by
host association.

2.4 Execution concepts

2.4.1 Statement classification
Each Fortran statement is classified as either an executable statement or a nonexecutable statement.

Image execution is a sequence, in time, of actions. An executable statement is an instruction to perform
or control one or more of these actions. Thus, the executable statements of a program unit determine
the behavior of the program unit.

Nonexecutable statements do not specify actions; they are used to configure the program environment
in which actions take place.

There are restrictions on the order in which statements may appear in a program unit, and not all
executable statements may appear in all contexts.

2.4.2 Program execution

Execution of a program consists of the asynchronous execution of a fixed number (which may be one) of
its images. Each image has its own execution state, floating-point status (14.7), and set of data objects
and procedure pointers. Whether an external file is available on all images or only on a subset of the
images is processor dependent. The image index that identifies an image is an integer value in the range
one to the number of images.

NOTE 2.10

The programmer controls the progress of execution in each image through explicit use of Fortran
control constructs (8.1, 8.2). Image control statements (8.5.1) affect the relative progress of exe-
cution between images. Co-arrays (2.5.7) provide a mechanism for accessing data on one image

234 Fortran terms and concepts 25

[uy

© 00 N O O~ W N

ISO/IEC SC22/WG5/N1678

NOTE 2.10 (cont.)

WD 1539-1

J3/07-007r2:2007,/06,/05

from another image. Though it is simpler to implement co-arrays on a set of identical CPUs, such
a configuration is not required.

NOTE 2.11

A processor might allow the number of images to be chosen at compile time, link time, or run
time. It might be the same as the number of CPUs but this is not required. Compiling for a
single image might permit the optimizer to eliminate overhead associated with parallel execution.
Portable programs should not make assumptions about the exact number of images. The maximum
number of images may be limited due to architectural constraints.

2.4.3 Statement order

The syntax rules of clause 2.2 specify the statement order within program units and subprograms. These
rules are illustrated in Table 2.1 and Table 2.2. Table 2.1 shows the ordering rules for statements and
applies to all program units, subprograms, and interface bodies. Vertical lines delineate varieties of
statements that may be interspersed and horizontal lines delineate varieties of statements that shall not
be interspersed. Internal or module subprogramss shall follow a CONTAINS statement. Between USE
and CONTAINS statements in a subprogram, nonexecutable statements generally precede executable
statements, although the ENTRY statement, FORMAT statement, and DATA statement may appear
among the executable statements. Table 2.2 shows which statements are allowed in a scoping unit.

Table 2.1: Requirements on statement ordering

PROGRAM, FUNCTION, SUBROUTINE,
MODULE, SUBMODULE, or BLOCK DATA statement

USE statements

IMPORT statements

FORMAT
and
ENTRY
statements

IMPLICIT NONE

PARAMETER IMPLICIT
statements statements
Derived-type definitions,
interface blocks,
PARAMETER | type declaration statements,
and DATA enumeration definitions,
statements procedure declarations,
specification statements,
and statement function statements
DATA Executable
statements constructs

CONTAINS statement

Internal subprograms
or module subprograms

END statement

26

Fortran terms and concepts

2.4.3

D O~ W N

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Table 2.2: Statements allowed in scoping units

Kind of scoping unit
Main Module or | Block | External | Module | Internal | Interface

Statement type | program | submodule | data | subprog | subprog | subprog body
USE Yes Yes Yes Yes Yes Yes Yes
IMPORT No No No No No No Yes
ENTRY No No No Yes Yes No No
FORMAT Yes No No Yes Yes Yes No
Misc. decl.s ! Yes Yes Yes Yes Yes Yes Yes
DATA Yes Yes Yes Yes Yes Yes No
Derived-type Yes Yes Yes Yes Yes Yes Yes
Interface Yes Yes No Yes Yes Yes Yes
Executable Yes No No Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No
Statement function Yes No No Yes Yes Yes No
(1) Miscellaneous declarations are PARAMETER statements, IMPLICIT statements, type
declaration statements, enumeration definitions, procedure declaration statements, and spec-
ification statements.

2.4.4 The END statement

Each program unit, module subprogram, and internal subprogram shall have exactly one END state-
ment. The end-program-stmt, end-function-stmt, end-subroutine-stmt, and end-mp-subprogram-stmt
statements are executable, and may be branch target statements (8.2). Executing an end-program-stmt
initiates normal termination of the image. Executing an end-function-stmt, end-subroutine-stmt, or
end-mp-subprogram-stmt is equivalent to executing a return-stmt with no scalar-int-expr.

The end-module-stmt, end-submodule-stmt, and end-block-data-stmt statements are nonexecutable.

2.4.5 Execution sequence

Execution of a program begins by creating a fixed number of instances of the program. If the program
contains a Fortran main program, each image begins execution with the first executable construct of the
main program. The execution of a main program or subprogram involves execution of the executable
constructs within its scoping unit. When a Fortran procedure is invoked, the specification expressions
within the specification-part of the invoked procedure, if any, are evaluated in a processor dependent
order. Thereafter, execution proceeds to the first executable construct appearing within the scoping unit
of the procedure after the invoked entry point. With the following exceptions, the effect of execution is
as if the executable constructs are executed in the order in which they appear in the main program or
subprogram until a STOP, ALL STOP, RETURN, or END statement is executed.

e Execution of a branching statement (8.2) changes the execution sequence. These statements ex-
plicitly specify a new starting place for the execution sequence.

e CASE constructs, DO constructs, IF constructs, and SELECT TYPE constructs contain an inter-
nal statement structure and execution of these constructs involves implicit internal branching. See
Clause 8 for the detailed semantics of each of these constructs.

e BLOCK constructs may contain specification expressions; see 8.1.4 for detailed semantics of this
construct.

e END=, ERR=, and EOR= specifiers may result in a branch.

2.4.4 Fortran terms and concepts 27

(S

© 00 N O

10
11
12

13
14
15
16
17
18

19

20
21
22
23
24
25
26

27

28
29

30
31

32
33

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007,/06,/05

® Alternate returns may result in a branch.

Internal subprograms may precede the END statement of a main program or a subprogram. The
execution sequence excludes all such definitions.

The relative ordering of the execution sequences of different images can be affected by image control
statements (8.5.1).

Termination of execution of an image occurs in three steps: initiation, synchronization, and completion.
All images synchronize execution at the second step so that no image starts the completion step un-
til all images have finished the initiation step. Termination of execution of an image is either normal
termination or error termination. An image that initiates normal termination also completes normal
termination. An image that initiates error termination also completes error termination. The synchro-
nization step is executed by all images. Termination of execution of the program occurs when all images
have terminated execution.

Normal termination of execution of an image is initiated if a STOP statement or end-program-stmt
is executed. Normal termination of execution of an image also may be initiated during execution of
a procedure defined by a companion processor (C International Standard 5.1.2.2.3 and 7.20.4.3). If
normal termination of execution is initiated within a Fortran program unit and the program incorporates
procedures defined by a companion processor, the process of execution termination shall include the effect
of executing the C exit() function (C International Standard 7.20.4.3) during the completion step.

Error termination of execution of an image is initiated if

e an ALL STOP statement is executed,

e an error condition occurs during execution of an ALLOCATE, DEALLOCATE, SYNC ALL, SYNC
TEAM, SYNC IMAGES, SYNC MEMORY, NOTIFY, or QUERY statement without a STAT=
specifier,

e an error occurs during execution of an OPEN, CLOSE, READ, WRITE, BACKSPACE, ENDFILE,
REWIND, FLUSH, WAIT, or INQUIRE statement without an appropriate IOSTAT=, END=, or
ERR= specifier,

Unresolved Technical Issue 117

I/0 error list inadequately specified and misleading.

The above paragraph is inadequately specified and misleading in the following ways:
— END= is irrelevant to error handling;
— EOR= is not listed but can cause error termination;

— “appropriate” is too vague.

e an error occurs during execution of a PRINT statement,

e an error occurs during execution of the intrinsic subroutine EXECUTE_COMMAND _LINE and
the optional CMDSTAT argument is not present,

e an error occurs during execution of the intrinsic subroutine FORM_TEAM and the optional STAT
argument is not present,

e an error occurs during execution of a collective intrinsic subroutine, or

e an error condition occurs by means outside Fortran.

Unresolved Technical Issue 118

Last list item meaningless and outwith the scope of the standard.

And what does it mean anyway?

28 Fortran terms and concepts 2.4.5

1

10

11
12

13
14
15

16

17
18
19
20
21

22

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Unresolved Technical Issue 118 (cont.)

If something happens by “means outside Fortran”, how can we say it initiates error termination?
What are these “error conditions”? We don’t admit to the existence of them.
List is redundant, useless as is, and contradictory anyway.

In any case, this list probably duplicates text elsewhere in the standard. Or maybe it contradicts
text elsewhere in the standard. It certainly needs forward references to the relevant subclauses. If
we keep it at all.

7 If an image initiates error termination, all other images that have not already initiated termination

initiate error termination.

NOTE 2.12

Within the performance limits of the processor’s ability to send signals to other images, the initi-
ation of error termination on other images should be immediate. Error termination is intended to
cause all images to stop execution as quickly as possible.

NOTE 2.13

If an image has initiated termination, its data remain available for possible reference or definition
by other images that are still executing.

An example illustrating normal and error termination of execution is in C.1.1

2.5 Data concepts

2.5.1 Type

A type is a named categorization of data that, together with its type parameters, determines the set
of values, syntax for denoting these values, and the set of operations that interpret and manipulate the
values. This central concept is described in 4.1.

A type is either an intrinsic type or a derived type.

2.5.1.1 Intrinsic type

The intrinsic types are integer, real, complex, character, logical, and bits. The properties of intrinsic
types are described in 4.4.

All intrinsic types have a kind type parameter called KIND, which determines the representation method
for the specified type. The intrinsic type character also has a length type parameter called LEN, which
determines the length of the character string.

2.5.1.2 Derived type

Derived types may be parameterized. A scalar object of derived type is a structure; assignment of
structures is defined intrinsically (7.2.1.3), but there are no intrinsic operations for structures. For each
derived type, a structure constructor is available to create values (4.5.10). In addition, objects of derived
type may be used as procedure arguments and function results, and may appear in input/output lists.
If additional operations are needed for a derived type, they shall be defined by procedures (7.1.6).

Derived types are described further in 4.5.

2.5 Fortran terms and concepts 29

A~ W N

10

11
12

13
14

15
16
17
18

19

20

21

22

23

24
25

26
27

28

29

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

2.5.2 Data value

Each intrinsic type has associated with it a set of values that a datum of that type may take, depending
on the values of the type parameters. The values for each intrinsic type are described in 4.4. The values
that objects of a derived type may assume are determined by the type definition, type parameter values,
and the sets of values of its components.

2.5.3 Data entity

A data entity has a type and type parameters; it may have a data value (an exception is an undefined
variable). Every data entity has a rank and is thus either a scalar or an array.

A data entity that is the result of the execution of a function reference is called the function result.

2.5.3.1 Data object

A data object is either a constant, variable, or a subobject of a constant. The type and type parameters
of a named data object may be specified explicitly (5.2) or implicitly (5.5).

Subobjects are portions of data objects that may be referenced and defined (variables only) independently
of the other portions.

These include portions of arrays (array elements and array sections), portions of character strings (sub-
strings), portions of complex objects (real and imaginary parts), and portions of structures (components).
Subobjects are themselves data objects, but subobjects are referenced only by object designators or in-
trinsic functions. A subobject of a variable is a variable. Subobjects are described in Clause 6.

The following objects are referenced by a name:
e a named scalar (a scalar object);
e a named array (an array object).

The following subobjects are referenced by an object designator:

an array element (a scalar subobject);

an array section (an array subobject);

a complex part designator (the real or imaginary part of a complex object);
a structure component (a scalar or an array subobject);

a substring (a scalar subobject).

2.5.3.1.1 \Variable

A variable can have a value or be undefined; during execution of a program it can be defined and
redefined.

A local variable of a module, submodule, main program, subprogram, or BLOCK construct is accessible
only in that scoping unit or construct and in any contained scoping units and constructs.

NOTE 2.14

A subobject of a local variable is also a local variable.

A local variable cannot be in COMMON or have the BIND attribute, because common blocks and
variables with the BIND attribute are global entities.

2.5.3.1.2 Constant

A constant is either a named constant or a literal constant.

30 Fortran terms and concepts 2.5.2

10

11

12
13
14

15

16
17
18

19
20
21

22
23

24

25
26

27
28
29

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Named constants are defined using the PARAMETER attribute (5.3.12, 5.4.10). The syntax of literal
constants is described in 4.4.

2.5.3.1.3 Subobject of a constant
A subobject of a constant is a portion of a constant.

In an object designator for a subobject of a constant, the portion referenced may depend on the value
of a variable.

NOTE 2.15

For example, given:

CHARACTER (LEN
CHARACTER (LEN
INTEGER :: I

10), PARAMETER :: DIGITS = ’0123456789’
1) :: DIGIT

DIGIT = DIGITS (I:I)

DIGITS is a named constant and DIGITS (I:I) designates a subobject of the constant DIGITS.

2.5.3.2 Expression

An expression (7.1)produces a data entity when evaluated. An expression represents either a data
object reference or a computation; it is formed from operands, operators, and parentheses. The type,
type parameters, value, and rank of an expression result are determined by the rules in Clause 7.

2.5.3.3 Function reference

A function reference produces a data entity when the function is executed during expression evaluation.
The type, type parameters, and rank of a function result are determined by the interface of the function
(12.3.3). The value of a function result is determined by execution of the function.

2.5.4 Definition of objects and pointers

When an object is given a valid value during program execution, it becomes defined. This is often
accomplished by execution of an assignment or input statement. When a variable does not have a
predictable value, it is undefined.

Similarly, when a pointer is associated with a target or nullified, its pointer association status becomes
defined. When the association status of a pointer is not predictable, its pointer association status is
undefined.

Clause 16 describes the ways in which variables become defined and undefined and the association status
of pointers becomes defined and undefined.

2.5.5 Reference

A data object is referenced when its value is required during execution. A procedure is referenced when
it is executed.

The appearance of a data object designator or procedure designator as an actual argument does not
constitute a reference to that data object or procedure unless such a reference is necessary to complete
the specification of the actual argument.

2.5.3.2 Fortran terms and concepts 31

N o o~ W N

[ee]

10
11

12

13

14
15

16
17

18
19
20

21
22

23
24

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

2.5.6 Array

An array may have up to fifteen dimensions, and any extent in any dimension. The size of an array is
the total number of elements, which is equal to the product of the extents. An array may have zero size.
The shape of an array is determined by its rank and its extent in each dimension, and is represented as
a rank-one array whose elements are the extents. All named arrays shall be declared, and the rank of a
named array is specified in its declaration. The rank of a named array, once declared, is constant; the
extents may be constant or may vary during execution.

Any intrinsic operation defined for scalar objects may be applied to conformable objects. Such operations
are performed elementally to produce a resultant array conformable with the array operands.

NOTE 2.16

If an elemental operation is intrinsically pure or is implemented by a pure elemental function (12.8),
the element operations may be performed simultaneously or in any order.

A rank-one array may be constructed from scalars and other arrays and may be reshaped into any
allowable array shape (4.7).

Arrays may be of any type and are described further in 6.5.

2.5.7 Co-array

A co-array is a data entity that has nonzero co-rank; it can be directly referenced or defined by any
image. It may be a scalar or an array.

For each co-array on an image, there is a corresponding co-array with the same type, type parameters,
and bounds on every other image.

Unresolved Technical Issue 125

Incorrect statement in co-array description.

The above paragraph does not appear to be true for dummy co-arrays. Is my understanding on
this wrong?

Rewrote complicated text - review.

I rewrote:
If a co-array is scalar, the set of corresponding co-arrays on all the images is arranged
in a rectangular pattern. If a co-array is an array, the set of corresponding co-array

elements on all the images is arranged in a rectangular pattern.

into a single sentence which says something different but which I believe is equivalent. The simpler
version allowed me to simplify the sentence after as well.

3 The set of corresponding co-arrays on all images is arranged in a rectangular pattern. The dimensions

of this pattern are the co-dimensions; the number of co-dimensions is the co-rank. The bounds for each
co-dimension are the co-bounds.

A co-array on another image can be accessed directly by using co-subscripts. On its own image, a
co-array can be accessed without use of co-subscripts.

A subobject of a co-array is a co-array if it does not have any co-subscripts, vector-valued subscripts,
non-co-array allocatable component selection, or pointer selection.

32 Fortran terms and concepts 2.5.6

10

11

12
13

14

15
16

17

18
19
20

21

22

23
24

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

For a co-indexed object, its co-subscript list determines the image index in the same way that a subscript
list determines the subscript order value for an array element (6.5.3.2).

Intrinsic procedures are provided for mapping between an image index and a list of co-subscripts.

NOTE 2.17

The mechanism for an image to reference and define a co-array on another image might vary
according to the hardware. On a shared-memory machine, a co-array on an image and the cor-
responding co-arrays on other images could be implemented as a sequence of arrays with evenly
spaced starting addresses. On a distributed-memory machine with separate physical memory for
each image, a processor might store a co-array at the same virtual address in each physical memory.

2.5.8 Pointer

A pointer has an association status which is either associated, disassociated, or undefined (16.5.2.2).
It becomes associated as described in 16.5.2.3. It becomes disassociated as described in 16.5.2.4. It
becomes undefined as described in 16.5.2.5.

A pointer that is not associated shall not be referenced or defined.

If a data pointer is an array, the rank is declared, but the bounds are determined when it is associated
with a target.

2.5.9 Allocatable variables

The allocation status of an allocatable variable is either allocated or unallocated. An allocatable variable
becomes allocated as described in 6.6.1.3. It becomes unallocated as described in 6.6.3.2.

An unallocated allocatable variable shall not be referenced or defined.

If an allocatable variable is an array, the rank is declared, but the bounds are determined when it is
allocated.

Unresolved Technical Issue 126

Missing semantics for allocatable coarrays in c02.

Should the above paragraph not also say that the co-rank is declared, but the co-bounds are
determined...?

If not, should the above paragraph (or indeed this whole subclause) not be deleted?

2.5.10 Storage

Many of the facilities of this part of ISO/IEC 1539 make no assumptions about the physical storage
characteristics of data objects. However, program units that include storage association dependent
features shall observe the storage restrictions described in 16.5.3.

2.6 Fundamental concepts

2.6.1 Names and designators

A name is used to identify a program constituent, such as a program unit, named variable, named
constant, dummy argument, or derived type.

2.5.8 Fortran terms and concepts 33

[BN & I N OV)

10
11
12
13

14

15

16
17

18

19

20
21

22

23
24
25

26

27
28
29
30

31
32
33

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

A designator is used to identify a program constituent or a part thereof.

2.6.2 Statement keyword

A statement keyword is not a reserved word; that is, a name with the same spelling is allowed. In the
syntax rules, such keywords appear literally. In descriptive text, this meaning is denoted by the term
“keyword” without any modifier. Examples of statement keywords are IF, READ, UNIT, KIND, and
INTEGER.

2.6.3 Other keywords

Other keywords denote names that identify items in a list. In this case, items are identified by a preceding
keyword= rather than their position within the list.

An argument keyword is the name of a dummy argument in the interface for the procedure being
referenced, and may appear in an actual argument list. A type parameter keyword is the name of a type
parameter in the type being specified, and may appear in a type parameter list. A component keyword
is the name of a component in a structure constructor.

R215 keyword is name

NOTE 2.18

Use of keywords rather than position to identify items in a list can make such lists more readable
and allows them to be reordered. This facilitates specification of a list in cases where optional
items are omitted.

2.6.4 Association

Association permits an entity to be identified by different names in the same scoping unit or by the same
name or different names in different scoping units.

Also, storage association causes different entities to use the same storage.

2.6.5 Intrinsic

All intrinsic types, procedures, assignments, and operators may be used in any scoping unit without
further definition or specification. Intrinsic modules (13.8, 14, 15.2) may be accessed by use association.

2.6.6 Operator

This part of ISO/IEC 1539 specifies a number of intrinsic operators (e.g., the arithmetic operators +, —,
*, /, and ** with numeric operands and the logical operators .AND., .OR., etc. with logical operands).
Additional operators may be defined within a program (4.5.5, 12.4.3.4).

2.6.7 Companion processors

A processor has one or more companion processors. A companion processor may be a mechanism that
references and defines such entities by a means other than Fortran (12.6.3), it may be the Fortran
processor itself, or it may be another Fortran processor. If there is more than one companion processor,
the means by which the Fortran processor selects among them are processor dependent.

If a procedure is defined by means of a companion processor that is not the Fortran processor itself, this
part of ISO/IEC 1539 refers to the C function that defines the procedure, although the procedure need
not be defined by means of the C programming language.

34 Fortran terms and concepts 2.6.2

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 2.19

A companion processor might or might not be a mechanism that conforms to the requirements of
the C International Standard.

For example, a processor may allow a procedure defined by some language other than Fortran or
C to be invoked if it can be described by a C prototype as defined in 6.5.5.3 of the C International
Standard.

2.6.7 Fortran terms and concepts 35

ISO/IEC SC22/WG5/N1678 WD 1539-1

36 Fortran terms and concepts

13/07-007r2:2007/06 /05

2.6.7

10
11
12

13
14

15

16

17

18
19
20

21

22

23

24

25

26

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

3 Lexical tokens, source form, and macro processing

3.1 Processor character set

3.1.1 Characters

The processor character set is processor dependent. Each character in a processor character set is either
a control character or a graphic character. The set of graphic characters is further divided into
letters (3.1.2), digits (3.1.3), underscore (3.1.4), special characters (3.1.5), and other characters (3.1.6).

The letters, digits, underscore, and special characters make up the Fortran character set.

R301 character is alphanumeric-character
or special-character

R302 alphanumeric-character is letter
or digit

or underscore

Except for the currency symbol, the graphics used for the characters shall be as given in 3.1.2, 3.1.3,
3.1.4, and 3.1.5. However, the style of any graphic is not specified.

3.1.2 Letters
The twenty-six letters are:
ABCDEFGHIJKLMNOPQRSTUVWXY?Z

The set of letters defines the syntactic class letter. The processor character set shall include lower-
case and upper-case letters. A lower-case letter is equivalent to the corresponding upper-case letter in
program units except in a character context (2.1).

NOTE 3.1
The following statements are equivalent:

CALL BIG_COMPLEX_OPERATION (NDATE)
call big_complex_operation (ndate)
Call Big_Complex_Operation (NDate)

3.1.3 Digits
The ten digits are:
0123456789

The ten digits define the syntactic class digit.

3.1.4 Underscore

R303 wunderscore is _

3 Lexical tokens, source form, and macro processing 37

1

2

w

10

11

12
13
14
15

16

17
18

19

20

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

3.1.5 Special characters

1 The special characters are shown in Table 3.1.

Table 3.1: Special characters

Character Name of character Character Name of character

Blank ; Semicolon

= Equals ! Exclamation point

+ Plus " Quotation mark or quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Backslash < Less than

(Left parenthesis > Greater than

) Right parenthesis ? Question mark

[Left square bracket ’ Apostrophe

] Right square bracket) Grave accent

{ Left curly bracket B Circumflex accent

} Right curly bracket | Vertical line

, Comma $ Currency symbol
Decimal point or period # Number sign
Colon Q@ Commercial at

2 The special characters define the syntactic class special-character. Some of the special characters are

used for operator symbols, bracketing, and various forms of separating and delimiting other lexical
tokens.

3.1.6 Other characters

Additional characters may be representable in the processor, but may appear only in comments (3.3.2.3,
3.3.3.2), character constants (4.4.5), input/output records (9.2.2), and character string edit descriptors
(10.3.2).

3.2 Low-level syntax

3.2.1 Tokens

The low-level syntax describes the fundamental lexical tokens of a program unit. Lexical tokens are
sequences of characters that constitute the building blocks of a program. They are keywords, names,
literal constants other than complex literal constants, operators, labels, delimiters, comma, =, =>, :, ::,
;, and %.

3.2.2 Names

Names are used for various entities such as variables, program units, dummy arguments, named con-
stants, and derived types.

R304 name is letter [alphanumeric-character | ...

C301 (R304) The maximum length of a name is 63 characters.

38 Lexical tokens, source form, and macro processing 3.1.6

© 0 N o G b

10

11

12

13

14

15

16
17
18
19
20
21
22
23
24

25

26
27

28
29

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 3.2

Examples of names:

Al

NAME_LENGTH (single underscore)
S_P_R_E_AD__0_U_T (two consecutive underscores)
TRAILER_ (trailing underscore)

NOTE 3.3

The word “name” always denotes this particular syntactic form. The word “identifier” is used
where entities may be identified by other syntactic forms or by values; its particular meaning
depends on the context in which it is used.

3.2.3 Constants

R305 constant is literal-constant
or named-constant

R306 literal-constant is int-literal-constant
or real-literal-constant
or complez-literal-constant
or logical-literal-constant
or char-literal-constant
or bits-literal-constant

R307 named-constant is name
R308 int-constant is constant
C302 (R308) int-constant shall be of type integer.
R309 char-constant is constant

C303 (R309) char-constant shall be of type character.

3.2.4 Operators

R310 intrinsic-operator is power-op
or mult-op
or add-op
or concat-op
or rel-op
or not-op
or and-op
or or-op
or equiv-op

R707 power-op is **

R708 mult-op is *
or /

R709 add-op is +
or —

3.2.3 Lexical tokens, source form, and macro processing 39

© 00 N O O~ W N —=

e e
w N = O

14

15

16

17

18
19

20
21
22

23

24

25

26

27

28

29

30
31
32

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

R711 concat-op is //

R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
or <=
or >
or >=

R718 not-op is .NOT.

R719 and-op is .AND.

R720 or-op is .OR.

R721 equiv-op is .EQV.
or .NEQV.
or .XOR.

R311 defined-operator is defined-unary-op

or defined-binary-op
or extended-intrinsic-op

R703 defined-unary-op is . letter [letter]
R723 defined-binary-op is . letter [letter]
R312 extended-intrinsic-op is intrinsic-operator

3.2.5 Statement labels

A statement label provides a means of referring to an individual statement.
R313 label is digit [digit | digit | digit | digit |]]]
C304 (R313) At least one digit in a label shall be nonzero.

If a statement is labeled, the statement shall contain a nonblank character. The same statement label
shall not be given to more than one statement in a scoping unit. Leading zeros are not significant in
distinguishing between statement labels.

NOTE 3.4

For example:

99999
10
010

are all statement labels. The last two are equivalent.

There are 99999 unique statement labels and a processor shall accept any of them as a statement

40 Lexical tokens, source form, and macro processing 3.2.5

[u—y

~N o a b~ W

10

11

12

13

14

15

16
17
18
19

20

21
22

23

24

25
26
27
28

29

30
31
32

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 3.4 (cont.)

label. However, a processor may have a limit on the total number of unique statement labels in
one program unit.

3 Any statement may have a statement label, but the labels are used only in the following ways.

e The label on a branch target statement (8.2) is used to identify that statement as the possible
destination of a branch.

e The label on a FORMAT statement (10.2.1) is used to identify that statement as the format
specification for a data transfer statement (9.6).

e In some forms of the DO construct (8.1.7), the range of the DO construct is identified by the label
on the last statement in that range.

3.2.6 Delimiters

Delimiters are used to enclose syntactic lists. The following pairs are delimiters:

...
/)
[]
< ... D

3.3 Source form

3.3.1 Program units, statements, and lines

A Fortran program unit is a sequence of one or more lines, organized as Fortran statements, comments,
and INCLUDE lines. A line is a sequence of zero or more characters. Lines following a program unit
END statement are not part of that program unit. A Fortran statement is a sequence of one or more
complete or partial lines.

A comment may contain any character that may occur in any character context.

There are two source forms: free and fixed. Free form and fixed form shall not be mixed in the same program unit.
The means for specifying the source form of a program unit are processor dependent.

3.3.2 Free source form
3.3.2.1 Free form line length

In free source form there are no restrictions on where a statement (or portion of a statement) may
appear within a line. A line may contain zero characters. If a line consists entirely of characters of
default kind (4.4.5), it may contain at most 132 characters. If a line contains any character that is not
of default kind, the maximum number of characters allowed on the line is processor dependent.

3.3.2.2 Blank characters in free form

In free source form, and in macro definitions in fixed source form, blank characters shall not appear
within lexical tokens other than in a character context or in a format specification. Blanks may be
inserted freely between tokens to improve readability; for example, blanks may occur between the tokens

3.2.6 Lexical tokens, source form, and macro processing 41

10
11
12
13

14

15
16
17
18
19

20

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

that form a complex literal constant. A sequence of blank characters outside of a character context is
equivalent to a single blank character.

A blank shall be used to separate names, constants, or labels from adjacent keywords, names, constants,
or labels.

NOTE 3.5
For example, the blanks after REAL, READ, 30, and DO are required in the following:

REAL X
READ 10
30 DO K=1,3

3 One or more blanks shall be used to separate adjacent keywords except in the following cases, where

blanks are optional:

Adjacent keywords where separating blanks are optional

ALL STOP END IF

BLOCK DATA END MODULE
DOUBLE PRECISION END INTERFACE
ELSE IF END PROCEDURE
ELSE WHERE END PROGRAM
END ASSOCIATE END SELECT
END BLOCK END SUBMODULE
END BLOCK DATA END SUBROUTINE
END CRITICAL END TYPE

END DO END WHERE

END ENUM GO TO

END FILE IN OUT

END FORALL SELECT CASE
END FUNCTION SELECT TYPE

3.3.2.3 Free form commentary
The character “!” initiates a comment except where it appears within a character context. The
comment extends to the end of the line. If the first nonblank character on a line is an “!”, the line
is a comment line. Lines containing only blanks or containing no characters are also comment lines.
Comments may appear anywhere in a program unit and may precede the first statement of a program
unit or may follow the last statement of a program unit. Comments have no effect on the interpretation
of the program unit.

NOTE 3.6

This part of ISO/IEC 1539 does not restrict the number of consecutive comment lines.

3.3.2.4 Free form statement continuation

The character “&” is used to indicate that the current statement is continued on the next line that is not
a comment line. Comment lines cannot be continued; an “&” in a comment has no effect. Comments may
occur within a continued statement. When used for continuation, the “&” is not part of the statement.
No line shall contain a single “&” as the only nonblank character or as the only nonblank character
before an “!” that initiates a comment.

If a noncharacter context is to be continued, an “&” shall be the last nonblank character on the line,

42 Lexical tokens, source form, and macro processing 3.3.23

A W N =

[&)]

10

11

12

13
14
15
16

17

18

19

20

21

22
23
24

25
26

27
28
29
30

32
33

34

35
36

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

“'77

or the last nonblank character before an There shall be a later line that is not a comment; the
statement is continued on the next such line. If the first nonblank character on that line is an “&”, the
statement continues at the next character position following that “&”; otherwise, it continues with the
first character position of that line.

If a lexical token is split across the end of a line, the first nonblank character on the first following
noncomment line shall be an “&” immediately followed by the successive characters of the split token.

If a character context is to be continued, an “&” shall be the last nonblank character on the line and
shall not be followed by commentary. There shall be a later line that is not a comment; an “&” shall be
the first nonblank character on the next such line and the statement continues with the next character
following that “&”.

3.3.2.5 Free form statement termination

If a statement is not continued, a comment or the end of the line terminates the statement.

“.”

A statement may alternatively be terminated by a “;” character that appears other than in a character

(134

context or in a comment. The “;” is not part of the statement. After a “;” terminator, another statement
may appear on the same line, or begin on that line and be continued. A sequence consisting only of zero
or more blanks and one or more “;” terminators, in any order, is equivalent to a single “;” terminator.

3.3.2.6 Free form statements

A label may precede any statement not forming part of another statement.

NOTE 3.7

’ No Fortran statement begins with a digit.

A statement shall not have more than 255 continuation lines.

3.3.3 Fixed source form

3.3.3.1 General

In fixed source form, there are restrictions on where a statement may appear within a line. If a source line contains only
default kind characters, it shall contain exactly 72 characters; otherwise, its maximum number of characters is processor

dependent.

Except in a macro definition or a character context, blanks are insignificant and may be used freely throughout the program.

The rules in 3.3.2.2 apply also to the appearance of blanks within and between tokens in macro definitions in fixed form.

3.3.3.2 Fixed form commentary

The character “!” initiates a comment except where it appears within a character context or in character position 6. The
comment extends to the end of the line. If the first nonblank character on a line is an “!” in any character position other
than character position 6, the line is a comment line. Lines beginning with a “C” or “*” in character position 1 and lines
containing only blanks are also comment lines. Comments may appear anywhere in a program unit and may precede the
first statement of the program unit or may follow the last statement of a program unit. Comments have no effect on the

interpretation of the program unit.

NOTE 3.8

This part of ISO/IEC 1539 does not restrict the number of consecutive comment lines.

3.3.3.3 Fixed form statement continuation

Except within commentary, character position 6 is used to indicate continuation. If character position 6 contains a blank
or zero, the line is the initial line of a new statement, which begins in character position 7. If character position 6 contains

3.3.25 Lexical tokens, source form, and macro processing 43

[y

© 0 N O

10

11

12
13
14
15
16

17

18
19

20

21

22

23
24
25

26
27
28
29
30
31

32
33

34
35

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

any character other than blank or zero, character positions 7-72 of the line constitute a continuation of the preceding
noncomment line.

NOTE 3.9

An “” or “” in character position 6 is interpreted as a continuation indicator unless it appears within commentary
indicated by a “C” or “*” in character position 1 or by an “!” in character positions 1-5.

Comment lines cannot be continued. Comment lines may occur within a continued statement.

3.3.3.4 Fixed form statement termination
If a statement is not continued, a comment or the end of the line terminates the statement.

W
)

A statement may alternatively be terminated by a character that appears other than in a character context, in a

R

comment, or in character position 6. The is not part of the statement. After a “;” terminator, another statement may

(1383}
b
begin on the same line, or begin on that line and be continued. A “” shall not appear as the first nonblank character
on an initial line. A sequence consisting only of zero or more blanks and one or more “” terminators, in any order, is

equivalent to a single “;” terminator.

3.3.3.5 Fixed form statements

A label, if it appears, shall occur in character positions 1 through 5 of the first line of a statement; otherwise, positions

1 through 5 shall be blank. Blanks may appear anywhere within a label. A statement following a on the same line

(132
)
shall not be labeled. Character positions 1 through 5 of any continuation lines shall be blank. A statement shall not have
more than 255 continuation lines. The program unit END statement shall not be continued. A statement whose initial

line appears to be a program unit END statement shall not be continued.

3.4 Including source text

Additional text may be incorporated into the source text of a program unit during processing. This is
accomplished with the INCLUDE line, which has the form

INCLUDE char-literal-constant
The char-literal-constant shall not have a kind type parameter value that is a named-constant.
An INCLUDE line is not a Fortran statement.

An INCLUDE line shall appear on a single source line where a statement may appear; it shall be the
only nonblank text on this line other than an optional trailing comment. Thus, a statement label is not
allowed.

The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE line
prior to program processing. Included text may contain any source text, including additional INCLUDE
lines; such nested INCLUDE lines are similarly replaced with the specified source text. The maximum
depth of nesting of any nested INCLUDE lines is processor dependent. Inclusion of the source text
referenced by an INCLUDE line shall not, at any level of nesting, result in inclusion of the same source
text.

When an INCLUDE line is resolved, the first included statement line shall not be a continuation line
and the last included statement line shall not be continued.

The interpretation of char-literal-constant is processor dependent. An example of a possible valid inter-
pretation is that char-literal-constant is the name of a file that contains the source text to be included.

44 Lexical tokens, source form, and macro processing 3.3.34

~

0 N o o

10

11
12

13

14
15
16
17

18
19
20

21

22

23

24

25
26

27

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 3.10

In some circumstances, for example where source code is maintained in an INCLUDE file for use in programs whose

source form might be either fixed or free, observing the following rules allows the code to be used with either source

form.

® Confine statement labels to character positions 1 to 5 and statements to character positions 7 to 72.

® Treat blanks as being significant.

® Use only the exclamation mark (!) to indicate a comment, but do not start the comment in character position
6.

e For continued statements, place an ampersand (&) in both character position 73 of a continued line and

character position 6 of a continuation line.

3.5 Macro processing

3.5.1 Macro definition

A macro definition defines a macro. A defined macro shall only be referenced by a USE statement,
IMPORT statement, or macro expansion statement. A defined macro shall not be redefined.

R314 macro-definition is define-macro-stmt
[macro-declaration-stmt | ...
macro-body-block
end-macro-stmt

R315 define-macro-stmt is DEFINE MACRO [, macro-attr-list | :: macro-name B
B [([macro-dummy-arg-name-list |)]

C305 (R315) A macro-dummy-arg-name shall not appear more than once in a macro-dummy-arg-
name-list.

R316 macro-attr is access-spec

The DEFINE MACRO statement begins the definition of the macro macro-name. Appearance of an
access-spec in the DEFINE MACRO statement explicitly gives the macro the specified attribute (5.3.2).
Each macro-dummy-arg-name is a macro dummy argument. A macro dummy argument is a macro local
variable.

R317 macro-declaration-stmt is macro-type-declaration-stmt
or macro-optional-decl-stmt
or macro-variable-decl-stmt

R318 macro-type-declaration-stmt is MACRO macro-type-spec :: macro-local-variable-name-list
R319 macro-optional-decl-stmt is MACRO OPTIONAL :: macro-dummy-arg-name-list
R320 macro-variable-decl-stmt is MACRO VARIABLE :: macro-local-variable-name-list
R321 macro-type-spec is INTEGER [([KIND= | macro-expr)]

C306 (R318, R320) A macro-local-variable-name shall not be the same as the name of a macro dummy
argument of the macro being defined.

C307 (R319) A macro-dummy-arg-name shall be the name of a macro dummy argument of the macro

3.5 Lexical tokens, source form, and macro processing 45

© 00 N O 0 b

10

11
12
13
14
15
16
17

18
19

20
21
22

23
24

25
26

27

28

29

30
31
32

33
34
35
36
37
38
39

40

41

42

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

being defined.

C308 (R321) If macro-expr appears, when the macro is expanded macro-ezpr shall be of type integer,
and have a non-negative value that specifies a representation method that exists on the processor.

A macro type declaration statement specifies that the named entities are macro local variables of the
specified type. If the kind is not specified, they are of default kind. A macro variable declaration
statement declares untyped macro local variables; the value of an untyped macro local variable is a
token sequence, and its initial value is an empty sequence (no tokens). A macro local variable that is
not a macro dummy argument shall appear in a macro type declaration statement or in a macro variable
declaration statement.

R322 macro-body-block is [macro-body-construct | ...

R323 macro-body-construct is macro-definition
or expand-stmt
or macro-body-stmt
or macro-do-construct
or macro-if-construct
or macro-int-assignment-stmt
or macro-tok-assignment-stmt

C309 A statement in a macro definition that is not a macro-body-construct or macro-definition shall
not appear on a line with any other statement.

R324 macro-do-construct is macro-do-stmt
macro-body-block
macro-end-do-stmt

R325 macro-do-stmt is MACRO DO macro-do-variable-name = macro-do-limit , &
B macro-do-limit [, macro-do-limit |

C310 (R325) A macro-do-variable-name shall be a local variable of the macro being defined, and shall
be of type integer.

R326 macro-do-limit is macro-expr
C311 (R326) A macro-do-limit shall expand to an expression of type integer.

R327 macro-end-do-stmt is MACRO END DO

A macro DO construct iterates the expansion of its enclosed macro body block at macro expansion time.
The number of iterations is determined by the values of the expanded macro expressions in the MACRO
DO statement.

R328 macro-if-construct is macro-if-then-stmt
macro-body-block
[macro-else-if-stmt
macro-body-block | ...
[macro-else-stmt
macro-body-block]
macro-end-if-stmt

R329 macro-if-then-stmt is MACRO IF (macro-condition) THEN
R330 macro-else-if-stmt is MACRO ELSE IF (macro-condition) THEN
R331 macro-else-stmt is MACRO ELSE

46 Lexical tokens, source form, and macro processing 3.5.1

10

11
12

13

14

15
16

17

18

19

20

21

22

23
24

25

26

27
28
29

30

31

32
33
34
35
36

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R332 macro-end-if-stmt is MACRO END IF
R333 macro-condition is macro-expr
C312 (R333) A macro condition shall expand to an expression of type logical.

A macro IF construct provides conditional expansion of its enclosed macro body blocks at macro expan-
sion time. Whether the enclosed macro body blocks contribute to the macro expansion is determined by
the logical value of the expanded macro expressions in the MACRO IF and MACRO ELSE IF statements.

R334 macro-int-assignment-stmt is MACRO macro-integer-variable-name = macro-expr
C313 (R334) macro-integer-variable-name shall be the name of a macro local variable of type integer.

R335 macro-tok-assignment-stmt is MACRO macro-tok-variable-name = assignment-tok-sequence

C314 (R335) macro-tok-variable-name shall be the name of an untyped macro local variable that is
not a macro dummy argument.

R336 assignment-tok-sequence is [result-token | ... [&& |
R337 macro-body-stmt is result-token [result-token | ... [&& |

C315 (R337) If the first result-token is MACRO the second result-token shall not be a keyword or

name.
C316 (R337) If the first result-token is DEFINE or END, the second result-token shall not be MACRO.
R338 result-token is token | %% token] ...

R339 token is any lexical token including labels, keywords, and semi-colon.
C317 && shall not appear in the last macro-body-stmt of a macro definition.

C318 When a macro is expanded, the last macro-body-stmt processed shall not end with &&.

R340 end-macro-stmt is END MACRO [macro-name |

C319 (R314) The macro-name in the END MACRO statement shall be the same as the macro-name
in the DEFINE MACRO statement.

R341 macro-expr is basic-token-sequence
C320 (R341) A macro-expr shall expand to a scalar initialization expression.

Macro expressions are used to control the behavior of the MACRO DO and MACRO IF constructs when
a macro is being expanded. The type, type parameters, and value of a macro expression are determined
when that macro expression is expanded.

3.5.2 Macro expansion
3.5.2.1 General

Macro expansion is the conceptual replacement of the EXPAND statement with the Fortran statements
that it produces. The semantics of an EXPAND statement are those of the Fortran statements that it
produces. It is recommended that a processor be capable of displaying the results of macro expansion. It
is processor-dependent whether comments in a macro definition appear in the expansion. It is processor-
dependent whether continuations and consecutive blanks that are not part of a token are preserved.

3.5.2 Lexical tokens, source form, and macro processing 47

A W N =

10
11

12
13

14
15
16

17
18
19

20
21

22
23

24
25

26
27

28

29
30

31
32

33
34

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

The process of macro expansion produces Fortran statements consisting of tokens. The combined length
of the tokens for a single statement, plus inter-token spacing, shall not be greater than 33280 characters.
If a statement contains any character that is not of default kind, the maximum number of characters
allowed is processor dependent.

NOTE 3.11

This length is so that the result of macro expansion can be formed into valid free form Fortran
source, consisting of an initial line and 255 continuation lines, multiplied by 130 which allows for
beginning and ending continuation characters (&) on each line.

Also, breaking tokens across continuation lines in macro definitions and in EXPAND statements
does not affect macro expansion: it is as if they were joined together before replacement.

R342
C321
C322

C323

C324

C325

C326

C327

C328

C329

C330

expand-stmt is EXPAND macro-name | (macro-actual-arg-list)]
(R342) macro-name shall be the name of a previously defined macro.
(R342) The macro shall expand to a sequence of zero or more complete Fortran statements.

(R342) The statements produced by a macro expansion shall conform to the syntax rules and
constraints as if they replaced the EXPAND statement prior to program processing.

(R342) The statements produced by a macro expansion shall not include a statement which
ends the scoping unit containing the EXPAND statement.

(R342) If a macro expansion produces a statement which begins a new scoping unit, it shall also
produce a statement which ends that scoping unit.

(R342) If the EXPAND statement appears as the action-stmt of an if-stmt, it shall expand
to exactly one action-stmt that is not an end-function-stmt, end-mp-subprogram-stmt, end-
program-stmt, end-subroutine-stmt, or if-stmt.

(R342) If the EXPAND statement appears as a do-term-action-stmt, it shall expand to exactly one action-
stmt that is not an arithmetic-if-stmt, continue-stmt, cycle-stmt, end-function-stmt, end-mp-subprogram-stmt,

end-program-stmt, end-subroutine-stmt, exit-stmt, goto-stmt, return-stmt, or stop-stmt.

(R342) If the EXPAND statement has a label, the expansion of the macro shall produce at least
one statement, and the first statement produced shall not have a label.

(R342) A macro-actual-arg shall appear corresponding to each nonoptional macro dummy ar-
gument.

(R342) At most one macro-actual-arg shall appear corresponding to each optional macro dummy
argument.

Expansion of a macro is performed by the EXPAND statement. If the EXPAND statement has a label,
the label is interpreted after expansion as belonging to the first statement of the expansion.

R343
C331

C332

C333

48

macro-actual-arg is [macro-dummy-name = | macro-actual-arg-value

(R343) macro-dummy-name shall be the name of a macro dummy argument of the macro being
expanded.

(R342) The macro-dummy-name= shall not be omitted unless it has been omitted from each
preceding macro-actual-arg in the expand-stmt.

(R343) If the first two tokens of macro-actual-arg-value are a name and an equals sign, macro-
dummy-name= shall appear.

Lexical tokens, source form, and macro processing 3.56.2.1

A~ W N

)]

10

11
12

13
14
15

16
17
18

19
20

21

22
23
24

25

26
27

28

29
30
31
32
33
34

35
36
37
38

39

40
41

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R344 macro-actual-arg-value is basic-token-sequence

R345 basic-token-sequence is basic-token
or [basic-token-sequence] nested-token-sequence B
W | basic-token-sequence |
or basic-token basic-token-sequence

R346 basic-token is any lexical token except comma, parentheses, array B
B constructor delimiters, and semi-colon.

R347 nested-token-sequence is ([arg-token | ...)

or (/[arg-token] ... /)

or lbracket | arg-token] ... rbracket
R348 arg-token is basic-token

or ,

If a macro actual argument is not preceded by macro-dummy-name it corresponds to the macro dummy
argument in the same position in the macro declaration; otherwise it corresponds to the macro dummy
argument having the specified name.

Macro expansion processes any macro declarations of the macro definition, and then expands its macro
body block. Any macro expressions in macro-type-specs are evaluated and the kinds of the macro
variables thereby declared are determined for that particular expansion.

Macro expansion of a macro body block processes each macro body construct of the macro body block
in turn, starting with the first macro body construct and ending with the last macro body construct.

Expansion of a statement within a macro body construct consists of three steps:

(1) token replacement,
(2) token concatenation, and
(3) statement-dependent processing.

3.5.2.2 Token replacement

Token replacement replaces each token of a macro body statement, assignment token sequence, or macro
expression that is a macro local variable with the value of that variable.

A macro dummy argument is present if and only if it corresponds to a macro actual argument.

In a macro expression, a reference to the intrinsic function PRESENT with a macro dummy argument
name as its actual argument is replaced by the token .TRUE. if the specified macro dummy argument
is present, and the token .FALSE. if the specified macro dummy argument is not present. Otherwise,
the value of a macro dummy argument that is present is the sequence of tokens from the corresponding
macro actual argument, and the value of a macro dummy argument that is not present is a zero-length
token sequence.

The value of an integer macro variable is its minimal-length decimal representation; if negative this
produces two tokens, a minus sign and an unsigned integer literal constant. An untyped macro local
variable expands to the sequence of tokens assigned to it, or to a zero-length token sequence if no tokens
are assigned to it.

3.5.2.3 Token concatenation

Token concatenation is performed with the %% operator, which is only permitted inside a macro defini-
tion. After expansion, each sequence of single tokens separated by %% operators is replaced by a single

3.5.2.2 Lexical tokens, source form, and macro processing 49

© 00 N O

10
11
12
13
14
15

16

17
18

19
20
21
22
23
24
25

26

27
28

29
30

31
32

33
34

35
36

37

38
39

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

token consisting of the concatenated text of the sequence of tokens. The result of a concatenation shall
be a valid Fortran token, and may be a different kind of token from one or more of the original sequence
of tokens.

(334 (R338) The result of token concatenation shall have the form of a lexical token.

NOTE 3.12

For example, the sequence

3 %% 14159 %% E %% + %% O

forms the single real literal constant 3.14159E+-0.

3.6.2.4 Macro body statements

Processing a macro body statement produces a whole or partial Fortran statement. A macro body
statement that is either the first macro body statement processed by this macro expansion or the
next macro body statement processed after a macro body statement that did not end with the macro
continuation operator &&, is an initial macro body statement. The next macro body statement processed
after a macro body statement that ends with && is a continuation macro body statement. An initial
macro body statement that does not end with && produces a whole Fortran statement consisting of
its token sequence. Each other macro body statement produces a partial Fortran statement, and the
sequence of tokens starting with those produced by the initial macro body statement and appending
the tokens produced by each subsequent continuation macro body statement form a Fortran statement.
The && operators are not included in the token sequence.

3.5.2.5 The MACRO DO construct

The MACRO DO construct specifies the repeated expansion of a macro body block. Processing the
MACRO DO statement performs the following steps in sequence.

(1) The initial parameter m, the terminal parameter mso, and the incrementation parameter
mg are of type integer with the same kind type parameter as the macro-do-variable-name.
Their values are given by the first macro-expr, the second macro-ezxpr, and the third macro-
expr of the macro-do-stmt respectively, including, if necessary, conversion to the kind type
parameter of the macro-do-variable-name according to the rules for numeric conversion
(Table 7.13). If the third macro-expr does not appear, mg has the value 1. The value of m3
shall not be zero.

(2) The MACRO DO variable becomes defined with the value of the initial parameter m;.

(3) The iteration count is established and is the value of the expression (mg — my + ms)/ms,
unless that value is negative, in which case the iteration count is 0.

After this, the following steps are performed repeatedly until processing of the MACRO DO construct
is finished.

(1) The iteration count is tested. If it is zero, the loop terminates and processing of the MACRO
DO construct is finished.

(2) If the iteration count is nonzero, the macro body block of the MACRO DO construct is
expanded.

(3) The iteration count is decremented by one. The MACRO DO variable is incremented by
the value of the incrementation parameter ms.

3.5.2.6 The MACRO IF construct

The MACRO IF construct provides conditional expansion of macro body blocks. At most one of the
macro body blocks of the MACRO IF construct is expanded. The macro conditions of the construct

50 Lexical tokens, source form, and macro processing 3.56.2.4

g~ W N =

10
11

12

13
14
15

16

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

are evaluated in order until a true value is found or a MACRO ELSE or MACRO END IF statement is
encountered. If a true value or a MACRO ELSE statement is found, the macro body block immediately
following is expanded and this completes the processing of the construct. If none of the evaluated
conditions is true and there is no MACRO ELSE statement, the processing of the construct is completed
without expanding any of the macro body blocks within the construct.

3.5.2.7 Macro assignment

Processing a macro integer assignment statement sets the macro local variable value to that of the macro
expression.

Processing a macro token assignment statement sets the macro local variable value to be the sequence
of tokens following the equals sign. If no tokens appear after the equals sign, the macro local variable is
set to the zero-length token sequence.

3.5.2.8 Macro definitions

Processing a macro definition defines a new macro. If a macro definition is produced by a macro expan-
sion, all of the statements of the produced macro definition have token replacement and concatenation
applied to them before the new macro is defined.

3.5.2.9 Examples

NOTE 3.13

This is a macro which loops over an array of any rank and processes each array element.

DEFINE MACRO loop_over(array,rank,traceinfo)
MACRO INTEGER :: i
BLOCK
MACRO DO i=1,rank
INTEGER loop_over_temp_%%i
MACRO END DO
MACRO DO i=1,rank
DO loop_over_temp_%hi=1,size(array,i)
MACRO END DO
CALL impure_scalar_procedure(array(loop_over_temp_%hl &&
MACRO DO i=2,rank
,loop_over_temp_%%i &&
MACRO END DO
) ,traceinfo)
MACRO DO i=1,rank
END DO
MACRO END DO
END BLOCK
END MACRO

NOTE 3.14

One can effectively pass macro names as macro arguments, since expansion of arguments occurs
before analysis of each macro body statement. For example:

DEFINE MACRO :: iterator(count,operation)
MACRO DO i=1,count
EXPAND operation(i)
MACRO END DO

3.5.2.7 Lexical tokens, source form, and macro processing 51

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

52

NOTE 3.14 (cont.)

END MACRO

DEFINE MACRO :: process_element(j)

READ *,a(j)

result(j) = process(a(j))

IF (j>1) PRINT #,’difference =’,result(j)-result(j-1)
END MACRO

EXPAND iterator(17,process_element)

This expands into 17 sets of 3 statements:

READ *,a(1)

result(1l) = process(a(1))

IF (1>1) PRINT *,’difference =’,result(l)-result(1-1)
READ *,a(2)

result(2) = process(a(2))

IF (2>1) PRINT *,’difference =’,result(2)-result(2-1)

READ *,a(17)
result(17) = process(a(17))
IF (17>1) PRINT *,’difference =’,result(17)-result(17-1)

NOTE 3.15

Using the ability to evaluate initialization expressions under macro control and the kind value
arrays from ISO_FORTRAN_ENV, one can create interfaces and procedures for all kinds of a type,
for example:

DEFINE MACRO :: i_square_procs()
MACRO INTEGER i, thiskind
MACRO DO i=1, size (INTEGER_KINDS)
MACRO thiskind = INTEGER_KINDS (i)
FUNCTION i_square_kind_%%thiskind (a) RESULT(r)
INTEGER (thiskind) a,r
r = ax**2
END FUNCTION
MACRO END DO
END MACRO

NOTE 3.16

Macros can be used to define other macros on expansion. For example,

! Macro that defines a macro which assigns a value to an array element
DEFINE MACRO :: assign_shortcut(rank)
DEFINE MACRO assign_¥%Jrank(array,indices,value)
MACRO INTEGER :: i
array(indices(1)&&
MACRO DO i=2,rank
,indices(i)&&
MACRO END DO
)=value

Lexical tokens, source form, and macro processing 3.5.2.9

13/07-007r2:2007/06 /05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 3.16 (cont.)

END MACRO assign_%jrank
END MACRO assign_shortcut

! Create assignment macros for all ranks
MACRO DO i=1,15

EXPAND assign_shortcut(i)
MACRO END DO

! Now use the rank-3 assignment macro:
REAL :: A(10,10,10)

INTEGER :: indices(3)=[1,5,6]

EXPAND assign_3(A,indices,5.0)

! Expands to:

! A(indices(1),indices(2),indices(3))=5.0

NOTE 3.17

This example demonstrates the use of MACRO IF to generate an interface for subroutines acting
on single, double, and (if it exists) quad precision real.

DEFINE MACRO my_generic_interface(typename,array_of_kinds)
MACRO INTEGER :: i, kind
INTERFACE my_generic_procedure
MACRO DO i=1, SIZE(array_of_kinds)
! Necessary in order to evaluate kind to an integer:
MACRO kind = array_of_kinds(i)
MACRO IF (kind>0) THEN
SUBROUTINE MySpecificProcedure_%%kind (X)
typename (kind) , INTENT(IN) :: X
END SUBROUTINE
MACRO END IF
MACRO END DO
END INTERFACE
END MACRO my_generic_interface

Use of the macro:

INTEGER,PARAMETER :: rkinds(3) = [KIND(0.0),KIND(04O), &
SELECTED_REAL_KIND (P=PRECISION(0d0)*2)]

EXPAND my_generic_interface(REAL,rkinds)

3.5.2.9 Lexical tokens, source form, and macro processing 53

ISO/IEC SC22/WG5/N1678 WD 1539-1

54

Lexical tokens, source form, and macro processing

13/07-007r2:2007/06 /05

3.5.2.9

10
11

12

13
14
15
16

17

18

19

20
21
22

23

24

25
26
27
28

29
30

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

4 Types

4.1 The concept of type

4.1.1 General

Fortran provides an abstract means whereby data can be categorized without relying on a particular
physical representation. This abstract means is the concept of type.

A type has a name, a set of valid values, a means to denote such values (constants), and a set of
operations to manipulate the values.

A type is either an intrinsic type or a derived type.
This part of ISO/TEC 1539 defines six intrinsic types: integer, real, complex, character, logical, and bits.

A derived type is one that is defined by a derived-type definition (4.5.2) or by an intrinsic module. It
shall be used only where it is accessible (4.5.2.2). An intrinsic type is always accessible.

4.1.2 Set of values

For each type, there is a set of valid values. The sets of valid values for logical and bits are completely
determined by this part of ISO/IEC 1539. The sets of valid values for integer, character, and real are
processor dependent. The set of valid values for complex consists of the set of all the combinations of
the values of the individual components. The set of valid values for a derived type is as defined in 4.5.8.

4.1.3 Constants

The syntax for denoting a value indicates the type, type parameters, and the particular value.
The syntax for literal constants of each intrinsic type is specified in 4.4.

A structure constructor (4.5.10) that is an initialization expression (7.1.12) denotes a scalar constant
value of derived type. An array constructor (4.7) that is an initialization expression denotes a constant
array value of intrinsic or derived type.

A constant value can be named (5.3.12, 5.4.10).

4.1.4 Operations

For each of the intrinsic types, a set of operations and corresponding operators is defined intrinsically.
These are described in Clause 7. The intrinsic set can be augmented with operations and operators
defined by functions with the OPERATOR interface (12.4.3.2). Operator definitions are described in
Clauses 7 and 12.

For derived types, there are no intrinsic operations. Operations on derived types can be defined by the
program (4.5.11).

4 Types 55

10

11
12
13

14

15
16
17

18

19
20

21

22
23
24

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

4.2 Type parameters

A type might be parameterized. In this case, the set of values, the syntax for denoting the values, and
the set of operations on the values of the type depend on the values of the parameters.

The intrinsic types are all parameterized. Derived types may be defined to be parameterized.

A type parameter is either a kind type parameter or a length type parameter. All type parameters are
of type integer.

A kind type parameter may be used in initialization and specification expressions within the derived-type
definition (4.5.2) for the type; it participates in generic resolution (12.5.5.2). Each of the intrinsic types
has a kind type parameter named KIND, which is used to distinguish multiple representations of the
intrinsic type.

NOTE 4.1

The value of a kind type parameter is always known at compile time. Some parameterizations
that involve multiple representation forms need to be distinguished at compile time for practical
implementation and performance. Examples include the multiple precisions of the intrinsic real
type and the possible multiple character sets of the intrinsic character type.

A type parameter of a derived type may be specified to be a kind type parameter in order to
allow generic resolution based on the parameter; that is to allow a single generic to include two
specific procedures that have interfaces distinguished only by the value of a kind type parameter
of a dummy argument. All generic references are resolvable at compile time.

A length type parameter may be used in specification expressions within the derived-type definition for
the type, but it shall not be used in initialization expressions. The intrinsic character type has a length
type parameter named LEN, which is the length of the string.

NOTE 4.2

The adjective “length” is used for type parameters other than kind type parameters because they
often specify a length, as for intrinsic character type. However, they may be used for other
purposes. The important difference from kind type parameters is that their values need not be
known at compile time and might change during execution.

A type parameter value may be specified by a type specification (4.4, 4.5.9).
R401 type-param-value is scalar-int-expr

or *

or

C401 (R401) The type-param-value for a kind type parameter shall be an initialization expression.

C402 (R401) A colon shall not be used as a type-param-value except in the declaration of an entity or
component that has the POINTER or ALLOCATABLE attribute.

A colon as a type-param-value specifies a deferred type parameter.

The values of the deferred type parameters of an object are determined by successful execution of an
ALLOCATE statement (6.6.1), execution of an intrinsic assignment statement (7.2.1.3), execution of a
pointer assignment statement (7.2.2), or by argument association (12.5.2).

56 Types 4.2

oA W N =

10

11
12
13

14
15
16

17

18

19

20
21

22
23

24

25
26
27
28

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 4.3

Deferred type parameters of functions, including function procedure pointers, have no values.
Instead, they indicate that those type parameters of the function result will be determined by
execution of the function, if it returns an allocated allocatable result or an associated pointer
result.

An asterisk as a type-param-value specifies that a length type parameter is an assumed type parameter.
It is used for a dummy argument to assume the type parameter value from the effective argument,
for an associate name in a SELECT TYPE construct to assume the type parameter value from the
corresponding selector, and for a named constant of type character to assume the character length from
the initialization-expr.

4.3 Relationship of types and values to objects

The name of a type serves as a type specifier and may be used to declare objects of that type. A
declaration specifies the type of a named object. A data object may be declared explicitly or implicitly.
A data object has attributes in addition to its type. Clause 5 describes the way in which a data object
is declared and how its type and other attributes are specified.

Scalar data of any intrinsic or derived type may be shaped in a rectangular pattern to compose an array
of the same type and type parameters. An array object has a type and type parameters just as a scalar
object does.

A variable is a data object. The type and type parameters of a variable determine which values that
variable may take. Assignment (7.2) provides one means of defining or redefining the value of a variable
of any type.

The type of a variable determines the operations that may be used to manipulate the variable.

4.3.1 Type specifiers and type compatibility
4.3.1.1 Type specifier syntax

A type specifier specifies a type and type parameter values. It is either a type-spec or a declaration-type-
spec.

R402 type-spec is intrinsic-type-spec
or derived-type-spec

C403 (R402) The derived-type-spec shall not specify an abstract type (4.5.7).

R403 declaration-type-spec is intrinsic-type-spec
or TYPE (intrinsic-type-spec)
or TYPE (derived-type-spec)
or CLASS (derived-type-spec)

4.3 Types 57

10

11

12

13
14
15
16
17
18
19

20

21
22

23
24

25
26
27

28
29
30
31
32

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

or CLASS (*)

C404 (R403) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk shall
be a specification-expr.

C405 (R403) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify
an extensible type (4.5.7).

C406 (R403) TYPE(derived-type-spec) shall not specify an abstract type (4.5.7).

C407 An entity declared with the CLASS keyword shall be a dummy argument or have the ALLO-
CATABLE or POINTER attribute. It shall not have the VALUE attribute.

An intrinsic-type-spec specifies the named intrinsic type and its type parameter values. A derived-type-
spec specifies the named derived type and its type parameter values.

NOTE 4.4

A type-spec is used in an array constructor, a SELECT TYPE construct, or an ALLOCATE
statement. Elsewhere, a declaration-type-spec is used.

43.1.2 TYPE

A TYPE type specifier is used to declare entities of an intrinsic or derived type.

Where a data entity is declared explicitly using the TYPE type specifier to be of derived type, the
specified derived type shall have been defined previously in the scoping unit or be accessible there by
use or host association. If the data entity is a function result, the derived type may be specified in
the FUNCTION statement provided the derived type is defined within the body of the function or is
accessible there by use or host association. If the derived type is specified in the FUNCTION statement
and is defined within the body of the function, it is as if the function result variable was declared with
that derived type immediately following the derived-type-def of the specified derived type.

4.3.1.3 CLASS

The CLASS type specifier is used to declare polymorphic entities. A polymorphic entity is a data entity
that is able to be of differing dynamic types during program execution.

The declared type of a polymorphic entity is the specified type if the CLASS type specifier contains a
type name.

An entity declared with the CLASS(*) specifier is an unlimited polymorphic entity. An unlimited
polymorphic entity is not declared to have a type. It is not considered to have the same declared type
as any other entity, including another unlimited polymorphic entity.

A nonpolymorphic entity is type compatible only with entities of the same declared type. A polymorphic
entity that is not an unlimited polymorphic entity is type compatible with entities of the same declared
type or any of its extensions. Even though an unlimited polymorphic entity is not considered to have a
declared type, it is type compatible with all entities. An entity is type compatible with a type if it is
type compatible with entities of that type.

NOTE 4.5

Given

TYPE TROOT

TYPE,EXTENDS (TROOT) :: TEXTENDED

58 Types 4.3.1.2

[y

w

© 0o N O O

10

11

12

13
14

15
16
17

18
19
20
21
22
23
24

25

26
27

28

29
30
31
32
33
34
35
36

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 4.5 (cont.)

CLASS(TROOT) A
CLASS (TEXTENDED) B

A is type compatible with B but B is not type compatible with A.

5 A polymorphic allocatable object may be allocated to be of any type with which it is type compatible.

A polymorphic pointer or dummy argument may, during program execution, be associated with objects
with which it is type compatible.

The dynamic type of an allocated allocatable polymorphic object is the type with which it was allocated.
The dynamic type of an associated polymorphic pointer is the dynamic type of its target. The dynamic
type of a nonallocatable nonpointer polymorphic dummy argument is the dynamic type of its effective
argument. The dynamic type of an unallocated allocatable object or a disassociated pointer is the same
as its declared type. The dynamic type of an entity identified by an associate name (8.1.3) is the dynamic
type of the selector with which it is associated. The dynamic type of an object that is not polymorphic
is its declared type.

4.4 Intrinsic types

4.4.1 Classification and specification

Each intrinsic type is classified as a numeric type or a nonnumeric type. The numeric types are integer,
real, and complex. The nonnumeric intrinsic types are character, logical, and bits.

The numeric types are provided for numerical computation. The normal operations of arithmetic,
addition (4), subtraction (-), multiplication (*), division (/), exponentiation (**), identity (unary +),
and negation (unary —), are defined intrinsically for the numeric types.

R404 intrinsic-type-spec is INTEGER [kind-selector |
or REAL [kind-selector |
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector |
or LOGICAL [kind-selector]
or BITS [kind-selector |

R405 kind-selector is ([KIND =] scalar-int-initialization-expr)

C408 (R405) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a rep-
resentation method that exists on the processor.

4.4.2 Integer type

The set of values for the integer type is a subset of the mathematical integers. The processor shall
provide one or more representation methods that define sets of values for data of type integer. Each
such method is characterized by a value for a type parameter called the kind type parameter; this
kind type parameter is of type default integer. The kind type parameter of a representation method
is returned by the intrinsic function KIND(13.7.98). The decimal exponent range of a representation
method is returned by the intrinsic function RANGE(13.7.145). TheifuncrefSELECTED_INT_KIND
returns a kind value based on a specified decimal range requirement. The integer type includes a zero
value, which is considered to be neither negative nor positive. The value of a signed integer zero is the

4.4 Types 59

10
11

12

13

14
15

16

17

18
19

20
21

22

23

24
25
26
27
28

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

same as the value of an unsigned integer zero.

The processor shall provide at least one representation method with a decimal exponent range greater
than or equal to 18.

The type specifier for the integer type uses the keyword INTEGER.

If the kind type parameter is not specified, the default kind value is KIND (0) and the type specified is
default integer. The decimal exponent range of default integer shall be at least 5.

Any integer value may be represented as a signed-int-literal-constant.

R406 signed-int-literal-constant is [sign | int-literal-constant

R407 int-literal-constant is digit-string [_ kind-param |
R408 kind-param is digit-string

or scalar-int-constant-name
R409 signed-digit-string is [sign | digit-string
R410 digit-string is digit [digit | ...
R411 sign is +

or —

C409 (R408) A scalar-int-constant-name shall be a named constant of type integer.
C410 (R408) The value of kind-param shall be nonnegative.

C411 (R407) The value of kind-param shall specify a representation method that exists on the pro-
Cessor.

The optional kind type parameter following digit-string specifies the kind type parameter of the integer
constant; if it is does not appear, the constant is of type default integer.

An integer constant is interpreted as a decimal value.

NOTE 4.6

Examples of signed integer literal constants are:

473

+56

-101

21_2

21_SHORT
1976354279568241_8

where SHORT is a scalar integer named constant.

4.4.3 Real type

The real type has values that approximate the mathematical real numbers. The processor shall provide
two or more approximation methods that define sets of values for data of type real. Each such method
has a representation method and is characterized by a value for a type parameter called the kind
type parameter; this kind type parameter is of type default integer. The kind type parameter of an
approximation method is returned by the intrinsic function KIND(13.7.98).

60 Types 4.4.3

A W N =

10

11
12

13
14
15
16
17

18
19
20

21

22
23

24

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

The decimal precision, decimal exponent range, and radix of an approximation method are returned by
the intrinsic functions PRECISION(13.7.139), RADIX(13.7.142) and RANGE(13.7.145). The intrinsic
function SELECTED _REAL_KIND(13.7.156) returns a kind value based on specified precision, range,
and radix requirements.

NOTE 4.7

See C.2.1 for remarks concerning selection of approximation methods.

The real type includes a zero value. Processors that distinguish between positive and negative zeros
shall treat them as mathematically equivalent
e in all relational operations,

e as actual arguments to intrinsic procedures other than those for which it is explicitly specified that
negative zero is distinguished, and

® as the scalar-numeric-expr in an arithmetic IF.

NOTE 4.8

On a processor that can distinguish between 0.0 and —0.0,

(X > 0.0)

evaluates to true if X = 0.0 or if X = —0.0,

(X<0.0)

evaluates to false for X = —0.0, and

IF (X) 1,2,3

causes a transfer of control to the branch target statement with the statement label “2” for both X = 0.0 and X =
—0.0.

In order to distinguish between 0.0 and —0.0, a program should use the SIGN function.
SIGN(1.0,X) will return —1.0 if X < 0.0 or if the processor distinguishes between 0.0 and —0.0
and X has the value —0.0.

4 The type specifier for the real type uses the keyword REAL. The keyword DOUBLE PRECISION is an

alternative specifier for one kind of real type.

If the type keyword REAL is specified and the kind type parameter is not specified, the default kind
value is KIND (0.0) and the type specified is default real. If the type keyword DOUBLE PRECISION
is specified, the kind value is KIND (0.0D0) and the type specified is double precision real. The
decimal precision of the double precision real approximation method shall be greater than that of the
default real method.

The decimal precision of double precision real shall be at least 10, and its decimal exponent range shall
be at least 37. It is recommended that the decimal precision of default real be at least 6, and that its
decimal exponent range be at least 37.

R412 signed-real-literal-constant is [sign | real-literal-constant

R413 real-literal-constant is significand | exponent-letter exponent | [_ kind-param]
or digit-string exponent-letter exponent | - kind-param |

R414 significand is digit-string . | digit-string |

4.4.3 Types 61

10
11

12
13

14
15

16

17
18
19

20
21
22
23
24

25
26
27
28

29

30

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

or . digit-string

R415 exponent-letter is E
or D
R416 exponent is signed-digit-string

C412 (R413) If both kind-param and exponent-letter appear, exponent-letter shall be E.

C413 (R413) The value of kind-param shall specify an approximation method that exists on the
processor.

A real literal constant without a kind type parameter is a default real constant if it is without an
exponent part or has exponent letter E, and is a double precision real constant if it has exponent letter
D. A real literal constant written with a kind type parameter is a real constant with the specified kind
type parameter.

The exponent represents the power of ten scaling to be applied to the significand or digit string. The
meaning of these constants is as in decimal scientific notation.

The significand may be written with more digits than a processor will use to approximate the value of
the constant.

NOTE 4.9

Examples of signed real literal constants are:

-12.78
+1.6E3

2.1

-16.E4_8
0.45D-4
10.93E7_QUAD
.123

3E4

where QUAD is a scalar integer named constant.

4.4.4 Complex type

The complex type has values that approximate the mathematical complex numbers. The values of a
complex type are ordered pairs of real values. The first real value is called the real part, and the second
real value is called the imaginary part.

Each approximation method used to represent data entities of type real shall be available for both the
real and imaginary parts of a data entity of type complex. A kind type parameter may be specified for
a complex entity and selects for both parts the real approximation method characterized by this kind
type parameter value; this kind type parameter is of type default integer. The kind type parameter of
an approximation method is returned by the intrinsic function KIND(13.7.98).

The type specifier for the complex type uses the keyword COMPLEX. There is no keyword for double
precision complex. If the type keyword COMPLEX is specified and the kind type parameter is not
specified, the default kind value is the same as that for default real, the type of both parts is default
real, and the type specified is default complex.

R417 complez-literal-constant is (real-part , imag-part)

R418 real-part is signed-int-literal-constant

62 Types 4.4.4

10
11
12

13
14
15
16

17

18

19
20
21
22

23
24
25
26
27
28
29

30
31
32
33

34

35

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

or signed-real-literal-constant
or named-constant

R419 imag-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

C414 (R417) Each named constant in a complex literal constant shall be of type integer or real.

If the real part and the imaginary part of a complex literal constant are both real, the kind type
parameter value of the complex literal constant is the kind type parameter value of the part with the
greater decimal precision; if the precisions are the same, it is the kind type parameter value of one of the
parts as determined by the processor. If a part has a kind type parameter value different from that of
the complex literal constant, the part is converted to the approximation method of the complex literal
constant.

If both the real and imaginary parts are integer, they are converted to the default real approximation
method and the constant is of type default complex. If only one of the parts is an integer, it is converted
to the approximation method selected for the part that is real and the kind type parameter value of the
complex literal constant is that of the part that is real.

NOTE 4.10

Examples of complex literal constants are:

(1.0, -1.0)

(3, 3.1E6)
(4.0_4, 3.6E7_8)
(0., PI)

where PI is a previously declared named real constant.

4.4.5 Character type
4.4.5.1 Character sets

The character type has a set of values composed of character strings. A character string is a sequence
of characters, numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The
number of characters in the string is called the length of the string. The length is a type parameter; its
kind is processor-dependent and its value is greater than or equal to zero.

The processor shall provide one or more representation methods that define sets of values for data
of type character. Each such method is characterized by a value for a type parameter called the kind
type parameter; this kind type parameter is of type default integer. The kind type parameter of a
representation method is returned by the intrinsic function KIND(13.7.98). The intrinsic function SE-
LECTED_CHAR_KIND(13.7.154) returns a kind value based on the name of a character type. Any
character of a particular representation method representable in the processor may occur in a character
string of that representation method.

The character set defined by ISO/IEC 646:1991 (International Reference Version) is referred to as the
ASCII character set and its corresponding representation method is the ASCII character type.
The character set defined by ISO/TEC 10646-1:2000 UCS-4 is referred to as the ISO 10646 character
set and its corresponding representation method is the ISO 10646 character type.

4.4.5.2 Character type specifier

The type specifier for the character type uses the keyword CHARACTER.

4.4.5 Types 63

N o o~ W N

[ee]

10
11
12
13
14

15
16

17
18

19
20

21

22

23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41
42

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

If the kind type parameter is not specified, the default kind value is KIND (’A’) and the type specified
is default character.

The default character kind shall support a character set that includes the Fortran character set. By
supplying nondefault character kinds, the processor may support additional character sets. The charac-
ters available in nondefault character kinds are not specified by this part of ISO/IEC 1539, except that
one character in each nondefault character set shall be designated as a blank character to be used as a
padding character.

R420 char-selector is length-selector
or (LEN = type-param-value , ®
B KIND = scalar-int-initialization-expr)
or (type-param-value , M
B [KIND = | scalar-int-initialization-expr)
or (KIND = scalar-int-initialization-expr
B [, LEN =type-param-value |)

R421 length-selector is ([LEN =] type-param-value)
or * char-length [,]

R422 char-length is (type-param-value)
or int-literal-constant

C415 (R420) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a rep-
resentation method that exists on the processor.

C416 (R422) The int-literal-constant shall not include a kind-param.
C417 (R422) A type-param-value in a char-length shall be a colon, asterisk, or specification-expr.

C418 (R420 R421 R422) A type-param-value of * shall be used only

e to declare a dummy argument,
e to declare a named constant,

e in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy argument
of type CHARACTER with an assumed character length,

e in the type-spec or derived-type-spec of a type guard statement (8.1.9), or

® in an external function, to declare the character length parameter of the function result.
C419 A function name shall not be declared with an asterisk type-param-value unless it is of type CHAR-
ACTER and is the name of the result of an external function or the name of a dummy function.

C420 A function name declared with an asterisk type-param-value shall not be an array, a pointer, elemental, recursive,

or pure.

C421 (R421) The optional comma in a length-selector is permitted only in a declaration-type-spec in a type-declaration-

stmt.

C422 (R421) The optional comma in a length-selector is permitted only if no double-colon separator appears in the

type-declaration-stmt.

C423 (R420) The length specified for a character statement function or for a statement function dummy argument of

type character shall be an initialization expression.

The char-selector in a CHARACTER intrinsic-type-spec and the * char-length in an entity-decl or in
a component-decl of a type definition specify character length. The * char-length in an entity-decl or
a component-decl specifies an individual length and overrides the length specified in the char-selector,

64 Types 4.4.5.2

10
11

12
13
14
15
16
17

18

19
20

21
22

23
24

25
26

27
28

29

30
31

32

33
34

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

if any. If a * char-length is not specified in an entity-decl or a component-decl, the length-selector or

type-param-value specified in the char-selector is the character length. If the length is not specified in a
char-selector or a * char-length, the length is 1.

If the character length parameter value evaluates to a negative value, the length of character entities
declared is zero. A character length parameter value of : indicates a deferred type parameter (4.2). A
char-length type parameter value of * has the following meanings.

e If used to declare a dummy argument of a procedure, the dummy argument assumes the length of
the effective argument.

e If used to declare a named constant, the length is that of the constant value.

e If used in the type-spec of an ALLOCATE statement, each allocate-object assumes its length from
the effective argument.

e If used in the type-spec of a type guard statement, the associating entity assumes its length from
the selector.

® If used to specify the character length parameter of a function result, any scoping unit invoking the function shall
declare the function name with a character length parameter value other than * or access such a definition by host
or use association. When the function is invoked, the length of the result variable in the function is assumed from

the value of this type parameter.

4.4.5.3 Character literal constant

A character literal constant is written as a sequence of characters, delimited by either apostrophes
or quotation marks.

R423 char-literal-constant is [kind-param _ |’ [rep-char] ... ’
or [kind-param _] " [rep-char] .. "

C424 (R423) The value of kind-param shall specify a representation method that exists on the pro-
Cessor.

The optional kind type parameter preceding the leading delimiter specifies the kind type parameter of
the character constant; if it does not appear, the constant is of type default character.

For the type character with kind kind-param, if it appears, and for type default character otherwise, a
representable character, rep-char, is defined as follows.

e In free source form, it is any graphic character in the processor-dependent character set.

® In fixed source form, it is any character in the processor-dependent character set. A processor may restrict the

occurrence of some or all of the control characters.

NOTE 4.11

FORTRAN 77 allowed any character to occur in a character context. This part of ISO/IEC 1539
allows a source program to contain characters of more than one kind. Some processors may identify
characters of nondefault kinds by control characters (called “escape” or “shift” characters). It is
difficult, if not impossible, to process, edit, and print files where some occurences of control char-
acters have their intended meaning and some occurrences might not. Almost all control characters
have uses or effects that effectively preclude their use in character contexts and this is why free
source form allows only graphic characters as representable characters. Nevertheless, for compatibility

with FORTRAN 77, control characters remain permitted in principle in fixed source form.

4 The delimiting apostrophes or quotation marks are not part of the value of the character literal constant.

5 An apostrophe character within a character constant delimited by apostrophes is represented by two

consecutive apostrophes (without intervening blanks); in this case, the two apostrophes are counted as

4.4.53 Types 65

10
11

12

13
14
15
16
17
18
19

20

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

one character. Similarly, a quotation mark character within a character constant delimited by quotation
marks is represented by two consecutive quotation marks (without intervening blanks) and the two
quotation marks are counted as one character.

A zero-length character literal constant is represented by two consecutive apostrophes (without inter-
vening blanks) or two consecutive quotation marks (without intervening blanks) outside of a character
context.

NOTE 4.12

Examples of character literal constants are:

IlDUN?TlI
7DON7 7T7

both of which have the value DON’T and

which has the zero-length character string as its value.

NOTE 4.13

An example of a nondefault character literal constant, where the processor supports the corre-
sponding character set, is:

NIHONGO_ ¥ Zc A LTl d TE A vy

where NIHONGO is a named constant whose value is the kind type parameter for Nihongo
(Japanese) characters. This means “Without her, nothing is possible”.

4.4.5.4 Collating sequence

The processor defines a collating sequence for the character set of each kind of character. A collat-
ing sequence is a one-to-one mapping of the characters into the nonnegative integers such that each
character corresponds to a different nonnegative integer. The intrinsic functions CHAR(13.7.31) and
ICHAR(13.7.86) provide conversions between the characters and the integers according to this mapping.

NOTE 4.14

For example:

ICHAR (°X’)

returns the integer value of the character "X’ according to the collating sequence of the processor.

2 The collating sequence of the default character type shall satisfy the following constraints.

e ICHAR (’A’) < ICHAR (’ ") < ... < ICHAR (’Z’) for the twenty-six upper-case letters.
e ICHAR (’0’) < ICHAR (’1’) < ... < ICHAR (’9’) for the ten digits.
e ICHAR (") < ICHAR (0") < ICHAR ('9") < ICHAR ('A") or

ICHAR (*’) < ICHAR ('A’) < ICHAR ('Z") < ICHAR (0.
e ICHAR (’a’) < ICHAR (’b’) < ... < ICHAR (’z’) for the twenty-six lower-case letters.
« ICHAR (") < ICHAR (0°) < ICHAR ('9') < ICHAR ('a’) or

ICHAR (") < ICHAR (’a") < ICHAR ('z") < ICHAR (°0").

AA,—\/—\

)

—~ S S
—~ o~

3 Except for blank, there are no constraints on the location of the special characters and underscore in

66 Types 4.4.5.4

[IS B V)

10

11

12
13
14
15

16

17
18

19
20

21
22

23
24

25
26
27
28
29

30

31
32
33
34
35
36

37

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

the collating sequence, nor is there any specified collating sequence relationship between the upper-case
and lower-case letters.

The collating sequence for the ASCII character type is as defined by ISO/IEC 646:1991 (International
Reference Version); this collating sequence is called the ASCII collating sequence in this part of
ISO/IEC 1539. The collating sequence for the ISO 10646 character type is as defined by ISO/IEC
10646-1:2000.

NOTE 4.15

The intrinsic functions ACHAR(13.7.3) and TACHAR(13.7.79) provide conversions between char-
acters and corresponding integer values according to the ASCII collating sequence.

The intrinsic functions LGT, LGE, LLE, and LLT (13.7.103-13.7.106) provide comparisons between
strings based on the ASCII collating sequence. International portability is guaranteed if the set of
characters used is limited to the letters, digits, underscore, and special characters.

4.4.6 Logical type
The logical type has two values, which represent true and false.

The processor shall provide one or more representation methods for data of type logical. Each such
method is characterized by a value for a type parameter called the kind type parameter; this kind type
parameter is of type default integer. The kind type parameter of a representation method is returned
by the intrinsic function KIND(13.7.98).

The type specifier for the logical type uses the keyword LOGICAL.

If the kind type parameter is not specified, the default kind value is KIND (.FALSE.) and the type
specified is default logical.

R424 logical-literal-constant is .TRUE. [- kind-param |
or .FALSE. | _ kind-param |

C425 (R424) The value of kind-param shall specify a representation method that exists on the pro-
CessOor.

The optional kind type parameter specifies the kind type parameter of the logical constant; if it does
not appear, the constant is of type default logical.

The intrinsic operations defined for data entities of logical type are negation (.NOT.), conjunction
(\AND.), inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence (NEQV.,
.XOR.) as described in 7.1.5.4. There is also a set of intrinsically defined relational operators that
compare the values of data entities of other types and yield a value of type default logical. These
operations are described in 7.1.5.6.

4.4.7 Bits type

The bits type has a set of values composed of ordered sequences of bits. The number of bits in the
sequence is specified by the kind type parameter; this kind type parameter is of type default integer.
The processor shall provide representation methods with kind type parameter values equal to every
nonnegative integer less than or equal to a processor-determined limit. This limit shall be at least as
large as the storage size, expressed in bits, of every supported kind of type integer, real, complex, and
logical. Additional representation methods may be provided.

The type specifier for the bits type uses the keyword BITS.

4.4.6 Types 67

10

11

12
13

14
15
16
17
18
19
20

21
22

23
24
25
26
27

28
29
30

31
32
33
34
35

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

If the kind type parameter is not specified for a bits variable, the default kind value is the size of a
numeric storage unit expressed in bits, and the type specified is default bits.

R425 bits-literal-constant is binary-constant | _ kind-param]
or octal-constant | _ kind-param]
or hex-constant | - kind-param |

R426 binary-constant is B’ digit [digit] ...’
or B " digit [digit] ... "

C426 (R426) digit shall have one of the values 0 or 1.

R427 octal-constant is O’ digit [digit] ... ?
or O " digit [digit] ... "

C427 (R427) digit shall have one of the values 0 through 7.

R428 hezx-constant is Z° hex-digit | hex-digit] ... ?
or 7" hex-digit | hex-digit] ... "

R429 hez-digit is digit
or A
or B
or C
or D
or E
or F

The hex-digits A through F represent the numbers ten through fifteen, respectively; they may be repre-
sented by their lower-case equivalents.

If the optional kind type parameter is not specified for a bits literal constant, the kind value is assumed
from the form of the constant. If the constant is a binary-constant the kind value is the number
of digit characters. If the constant is an octal-constant the kind value is three times the number of
digit characters. If the constant is a hez-constant the kind value is four times the number of hex-digit
characters.

NOTE 4.16

Even if a bits value is too large to fit into a single statement as a literal constant, it can be
constructed by concatenation of bits named constants.

Each digit of an octal constant represents three bits, and each hex digit of a hex constant represents
four bits, according to their numerical representations as binary integers, with leading zero bits where
needed.

If a kind-param is specified for a bits literal constant and has a value greater than the number of bits
specified by its digits, the constant is padded on the left (13.3) with enough zero bits to create a constant
of kind kind-param. If the kind-param specified has a value smaller the number of bits specified by its
digits, only the rightmost kind-param bits are used to determine the value of the constant and the
remaining bits shall be zero.

NOTE 4.17

Though the processor is required to provide bit kinds only up to four times the size of a numeric
storage unit, or up to the maximum intrinsic type size (whichever is larger), it is expected that the
actual size limit will be much larger, based on system capacity constraints. Use of BITS objects
with KIND values equal to small integer multiples of NUMERIC_STORAGE_SIZE should result

68 Types 4.4.7

10

11
12
13

14

15
16
17

18
19

20

21

2
23
24

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 4.17 (cont.)

‘ in more efficient execution.

4.5 Derived types

4.5.1 Derived type concepts

Additional types may be derived from the intrinsic types and other derived types. A type definition is
required to define the name of the type and the names and attributes of its components and type-bound
procedures.

A derived type may be parameterized by multiple type parameters, each of which is defined to be either
a kind or length type parameter and may have a default value.

The ultimate components of a derived type are the components that are of intrinsic type or have the
ALLOCATABLE or POINTER attribute, plus the ultimate components of the components that are of
derived type and have neither the ALLOCATABLE nor POINTER attribute.

The direct componentss of a derived type are the components of that object, plus the direct compo-
nents of the components that are of derived type and have neither the ALLOCATABLE nor POINTER
attribute.

The components of an object of derived type are the components of its type.

By default, no storage sequence is implied by the order of the component definitions. However, a storage
order is implied for a sequence type (4.5.2.3). If the derived type has the BIND attribute, the storage
sequence is that required by the companion processor (2.6.7, 15.3.4).

A scalar entity of derived type is a structure. If a derived type has the SEQUENCE attribute, a scalar
entity of the type is a sequence structure.

NOTE 4.18

The ultimate components of an object of the derived type kids defined below are name, age, and
other_kids. The direct components of such an object are name, age, other_kids, and oldest_-
child.

type :: person
character(len=20) :: name
integer :: age

end type person

type :: kids
type(person) :: oldest_child
type(person), allocatable, dimension(:) :: other_kids

end type kids

4.5.2 Derived-type definition
4.5.2.1 Syntax
R430 derived-type-def is derived-type-stmt

[type-param-def-stmt | ...
[private-or-sequence | ...

4.5 Types 69

(S8

© 0 N O

10
11

12

13

14
15

16

17

18
19

20
21

22
23

24

25
26

27

28

29
30

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

[component-part |
[type-bound-procedure-part |
end-type-stmt

R431 derived-type-stmit is TYPE [[, type-attr-spec-list | :: | type-name B
W [(type-param-name-list) |
R432 type-attr-spec is ABSTRACT
or access-spec
or BIND (C)

or EXTENDS (parent-type-name)

C428 (R431) A derived type type-name shall not be DOUBLEPRECISION or the same as the name
of any intrinsic type defined in this part of ISO/TEC 1539.

C429 (R431) The same type-attr-spec shall not appear more than once in a given derived-type-stmt.
C430 (R432) A parent-type-name shall be the name of a previously defined extensible type (4.5.7).

C431 (R430) If the type definition contains or inherits (4.5.7.2) a deferred binding (4.5.5), ABSTRACT
shall appear.

C432 (R430) If ABSTRACT appears, the type shall be extensible.
C433 (R430) If EXTENDS appears, SEQUENCE shall not appear.

C434 (R430) If EXTENDS appears and the type being defined has a co-array ultimate component,
its parent type shall have a co-array ultimate component.

R433 private-or-sequence is private-components-stmt
or sequence-stmt

C435 (R430) The same private-or-sequence shall not appear more than once in a given derived-type-
def .

R434 end-type-stmt is END TYPE [type-name |

C436 (R434) If END TYPE is followed by a type-name, the type-name shall be the same as that in
the corresponding derived-type-stmdt.

Derived types with the BIND attribute are subject to additional constraints as specified in 15.3.4.
NOTE 4.19

An example of a derived-type definition is:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:

TYPE (PERSON) :: CHAIRMAN

4.5.2.2 Accessibility

Types that are defined in a module or accessible in that module by use association have either the
PUBLIC or PRIVATE attribute. Types for which an access-spec is not explicitly specified in that

70 Types 45.2.2

10
11

12
13
14
15
16
17
18

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

module have the default accessibility attribute for that module. The default accessibility attribute for a
module is PUBLIC unless it has been changed by a PRIVATE statement (5.4.1). Ounly types that have
the PUBLIC attribute in that module are available to be accessed from that module by use association.

The accessibility of a type does not affect, and is not affected by, the accessibility of its components and
bindings.

If a type definition is private, then the type name, and thus the structure constructor (4.5.10) for the
type, are accessible only within the module containing the definition, and within its descendants.

NOTE 4.20

An example of a type with a private name is:

TYPE, PRIVATE :: AUXILIARY
LOGICAL :: DIAGNOSTIC
CHARACTER (LEN = 20) :: MESSAGE
END TYPE AUXILIARY

Such a type would be accessible only within the module in which it is defined, and within its
descendants.

4.5.2.3 Sequence type
R435 sequence-stmt is SEQUENCE

C437 (R430) If SEQUENCE appears, each data component shall be declared to be of an intrinsic type
or of a sequence type, and a type-bound-procedure-part shall not appear.

If the SEQUENCE statement appears, the type has the SEQUENCE attribute and is a sequence type.
The order of the component definitions in a sequence type specifies a storage sequence for objects of that
type. The type is a numeric sequence type if there are no type parameters, no pointer or allocatable
components, and each component is of type default integer, default real, double precision real, default
complex, default logical, default bits, or a numeric sequence type. The type is a character sequence
type if there are no type parameters, no pointer or allocatable components, and each component is of
type default character or a character sequence type.

NOTE 4.21

An example of a numeric sequence type is:

TYPE NUMERIC_SEQ

SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL

LOGICAL :: LOG_VAL
END TYPE NUMERIC_SEQ

NOTE 4.22

A structure resolves into a sequence of components. Unless the structure includes a SEQUENCE
statement, the use of this terminology in no way implies that these components are stored in
this, or any other, order. Nor is there any requirement that contiguous storage be used. The
sequence merely refers to the fact that in writing the definitions there will necessarily be an order
in which the components appear, and this will define a sequence of components. This order is of
limited significance because a component of an object of derived type will always be accessed by
a component name except in the following contexts: the sequence of expressions in a derived-type

45.2.3 Types 71

w

© 0o N O g

10
11

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 4.22 (cont.)

value constructor, intrinsic assignment, the data values in namelist input data, and the inclusion
of the structure in an input/output list of a formatted data transfer, where it is expanded to this
sequence of components. Provided the processor adheres to the defined order in these cases, it is
otherwise free to organize the storage of the components for any nonsequence structure in memory
as best suited to the particular architecture.

4.5.2.4 Determination of derived types

Derived-type definitions with the same type name may appear in different scoping units, in which case
they may be independent and describe different derived types or they may describe the same type.

Two data entities have the same type if they are declared with reference to the same derived-type
definition. The definition may be accessed from a module or from a host scoping unit. Data entities in
different scoping units also have the same type if they are declared with reference to different derived-type
definitions that specify the same type name, all have the SEQUENCE attribute or all have the BIND
attribute, have no components with PRIVATE accessibility, and have type parameters and components
that agree in order, name, and attributes. Otherwise, they are of different derived types. A data entity
declared using a type with the SEQUENCE attribute or with the BIND attribute is not of the same
type as an entity of a type declared to be PRIVATE or that has any components that are PRIVATE.

72

NOTE 4.23

An example of declaring two entities with reference to the same derived-type definition is:

TYPE POINT
REAL X, Y
END TYPE POINT
TYPE (POINT) :: X1
CALL SUB (X1)
CONTAINS
SUBROUTINE SUB (A)
TYPE (POINT) :: A

END SUBROUTINE SUB

The definition of derived type POINT is known in subroutine SUB by host association. Because
the declarations of X1 and A both reference the same derived-type definition, X1 and A have the
same type. X1 and A also would have the same type if the derived-type definition were in a module
and both SUB and its containing program unit referenced the module.

NOTE 4.24

An example of data entities in different scoping units having the same type is:

PROGRAM PGM

TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE

TYPE (EMPLOYEE) PROGRAMMER

CALL SUB (PROGRAMMER)

Types 45.2.4

10
11

12

13
14

15
16

17
18
19

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 4.24 (cont.)

END PROGRAM PGM
SUBROUTINE SUB (POSITION)
TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME
END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION

END SUBROUTINE SUB

The actual argument PROGRAMMER and the dummy argument POSITION have the same type
because they are declared with reference to a derived-type definition with the same name, the
SEQUENCE attribute, and components that agree in order, name, and attributes.

Suppose the component name ID_NUMBER was ID_NUM in the subroutine. Because all the
component names are not identical to the component names in derived type EMPLOYEE in the
main program, the actual argument PROGRAMMER would not be of the same type as the dummy
argument POSITION. Thus, the program would not be standard-conforming.

NOTE 4.25

The requirement that the two types have the same name applies to the type-names of the respective
derived-type-stmts, not to local names introduced via renaming in USE statements.

4.5.3 Derived-type parameters
4.5.3.1 Type parameter definition statement

R436 type-param-def-stmt is INTEGER [kind-selector | , type-param-attr-spec :: R
B type-param-decl-list

R437 type-param-decl is type-param-name | = scalar-int-initialization-expr |

C438 (R436) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the
type-param-names in the derived-type-stmt of that derived-type-def.

C439 (R436) Each type-param-name in the derived-type-stmt in a derived-type-def shall appear as a
type-param-name in a type-param-def-stmt in that derived-type-def.

R438 type-param-attr-spec is KIND
or LEN

The derived type is parameterized if the derived-type-stmt has any type-param-names.

Each type parameter is itself of type integer. If its kind selector is omitted, the kind type parameter is
of type default integer.

The type-param-atir-spec explicitly specifies whether a type parameter is a kind parameter or a length
parameter.

If a type-param-decl has a scalar-int-initialization-expr, the type parameter has a default value which
is specified by the expression. If necessary, the value is converted according to the rules of intrinsic
assignment (7.2.1.3) to a value of the same kind as the type parameter.

4.5.3 Types 73

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

1 5 A type parameter may be used as a primary in a specification expression (7.1.11) in the derived-type-

2 def. A kind type parameter may also be used as a primary in an initialization expression (7.1.12) in the
3 derived-type-def .
NOTE 4.26

The following example uses derived-type parameters.

TYPE humongous_matrix(k, d)
INTEGER, KIND :: k = kind(0.0)
INTEGER (selected_int_kind(12)), LEN :: d
!-— Specify a nondefault kind for 4.
REAL(k) :: element(d,d)
END TYPE

In the following example, dim is declared to be a kind parameter, allowing generic overloading of
procedures distinguished only by dim.

TYPE general_point(dim)
INTEGER, KIND :: dim
REAL :: coordinates(dim)

END TYPE

4 4.5.3.2 Type parameter order

5 1 Type parameter order is an ordering of the type parameters of a derived type; it is used for derived-type
6 specifiers.

7 2 The type parameter order of a nonextended type is the order of the type parameter list in the derived-

8 type definition. The type parameter order of an extended type (4.5.7) consists of the type parameter
9 order of its parent type followed by any additional type parameters in the order of the type parameter
10 list in the derived-type definition.

NOTE 4.27

Given

TYPE :: t1(k1,k2)
INTEGER,KIND :: ki1,k2
REAL (k1) a(k2)

END TYPE

TYPE,EXTENDS(t1) :: t2(k3)
INTEGER,KIND :: k3
LOGICAL(k3) flag

END TYPE

the type parameter order for type T1 is K1 then K2, and the type parameter order for type T2 is
K1 then K2 then K3.

11 4.5.4 Components

12 4.5.4.1 Component definition statement

13 R439 component-part is [component-def-stmt | ...
14 R440 component-def-stmt is data-component-def-stmt
15 or proc-component-def-stmt

74 Types 4.5.3.2

N

© 00 N O OB~ W

10
11
12

13
14
15

16

17
18
19

20
21

22
23

24
25

26
27

28
29

30
31
32
33

34

35
36

37

38
39
40
41
42

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R441

R442

R443

R444

C440

C441

C442

C443

C444

C445

C446

C447

C448

C449

C450

C451

data-component-def-stmt ~ is declaration-type-spec | [, component-attr-spec-list | :: | W
B component-decl-list

component-attr-spec is access-spec
or ALLOCATABLE
or DIMENSION (component-array-spec)
or DIMENSION [(deferred-shape-spec-list) | B
W [bracket co-array-spec rbracket
or CONTIGUOUS
or POINTER

component-decl is component-name [(component-array-spec) | &
W [lbracket co-array-spec rbracket | M
B [* char-length | [component-initialization]

component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list

(R441) No component-attr-spec shall appear more than once in a given component-def-stmt.

(R441) If neither the POINTER nor the ALLOCATABLE attribute is specified, the declaration-
type-spec in the component-def-stmt shall specify an intrinsic type or a previously defined derived

type.

(R441) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec
shall be a deferred-shape-spec-list.

(R441) If a co-array-spec appears, it shall be a deferred-co-shape-spec-list and the component
shall have the ALLOCATABLE attribute.

(R441) If a co-array-spec appears, the component shall not be of type C_PTR or C_FUNPTR
(15.3.3).

A data component whose type has a co-array ultimate component shall be a nonpointer nonal-
locatable scalar and shall not be a co-array.

(R441) If neither the POINTER nor the ALLOCATABLE attribute is specified, each component-
array-spec shall be an explicit-shape-spec-list.

(R444) Each bound in the explicit-shape-spec shall be a specification expression in which there are
no references to specification functions or the intrinsic functions ALLOCATED, ASSOCIATED,
EXTENDS_TYPE_OF, PRESENT, or SAME_TYPE_AS, every specification inquiry reference
is an initialization expression, and the value does not depend on the value of a variable..

(R441) A component shall not have both the ALLOCATABLE and POINTER attributes.

(R441) If the CONTIGUOUS attribute is specified, the component shall be an array with the
POINTER attribute.

(R443) The * char-length option is permitted only if the component is of type character.

(R440) Each type-param-value within a component-def-stmt shall be a colon or a specification
expression in which there are no references to specification functions or the intrinsic functions
ALLOCATED, ASSOCIATED, EXTENDS_TYPE_OF, PRESENT, or SAME_TYPE_AS, every
specification inquiry reference is an initialization expression, and the value does not depend on
the value of a variable..

454.1 Types 75

[N, B V)

~

10
11

12
13

14

15

16
17
18
19
20

21
22
23

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 4.28

Because a type parameter is not an object, a type-param-value or a bound in an explicit-shape-spec
may contain a type-param-name.

R445

proc-component-def-stm¢ is PROCEDURE ([proc-interface]) , R
W proc-component-attr-spec-list :: proc-decl-list

NOTE 4.29

See 12.4.3.6 for definitions of proc-interface and proc-decl.

R446

C452

C453

C454

C455

C456

proc-component-attr-spec is POINTER
or PASS [(arg-name) |
or NOPASS

or access-spec

(R445) The same proc-component-attr-spec shall not appear more than once in a given proc-
component-def-stmt.

(R445) POINTER shall appear in each proc-component-attr-spec-list.

(R445) If the procedure pointer component has an implicit interface or has no arguments,
NOPASS shall be specified.

(R445) If PASS (arg-name) appears, the interface shall have a dummy argument named arg-
name.

(R445) PASS and NOPASS shall not both appear in the same proc-component-attr-spec-list.

4.5.4.2 Array components

A data component is an array if its component-decl contains a component-array-spec or its data-compo-
nent-def-stmt contains the DIMENSION clause with a component-array-spec. If the component-decl
contains a component-array-spec, it specifies the array rank, and if the array is explicit shape (5.3.7.2),
the array bounds; otherwise, the component-array-spec in the DIMENSION clause specifies the array
rank, and if the array is explicit shape, the array bounds.

A data component is a co-array if its component-decl contains a co-array-spec or its data-component-def-
stmt contains a DIMENSION clause with a co-array-spec. If the component-decl contains a co-array-spec
it specifies the co-rank; otherwise, the co-array-spec in the DIMENSION clause specifies the co-rank.

NOTE 4.30

An example of a derived type definition with an array component is:

TYPE LINE

END TYPE LINE

An example of declaring a variable LINE_SEGMENT to be of the type LINE is:

TYPE (LINE) :: LINE_SEGMENT

REAL, DIMENSION (2, 2) :: COORD
COORD(:,1) has the value of [X1, Y1]
COORD(:,2) has the value of [X2, Y2I
Line width in centimeters

1 for solid, 2 for dash, 3 for dot

REAL :: WIDTH
INTEGER :: PATTERN

76

Types 4.5.4.2

1

10

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 4.30 (cont.)

The scalar variable LINE_.SEGMENT has a component that is an array. In this case, the array
is a subobject of a scalar. The double colon in the definition for COORD is required; the double
colon in the definition for WIDTH and PATTERN is optional.

NOTE 4.31

An example of a derived type definition with an allocatable component is:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS (:)
END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is determined
by execution of an ALLOCATE statement or assignment statement, or by argument association.

NOTE 4.32

Default initialization of an explicit-shape array component may be specified by an initialization
expression consisting of an array constructor (4.7), or of a single scalar that becomes the value of
each array element.

4.5.4.3 Pointer components

1 A component is a pointer (2.5.8) if its component-attr-spec-list contains the POINTER attribute. A
pointer component may be a data pointer or a procedure pointer.

NOTE 4.33

An example of a derived type definition with a pointer component is:

TYPE REFERENCE

INTEGER :: VOLUME, YEAR, PAGE
CHARACTER (LEN = 50) :: TITLE

PROCEDURE (printer_interface), POINTER :: PRINT => NULL()
CHARACTER, DIMENSION (:), POINTER :: SYNOPSIS

END TYPE REFERENCE

Any object of type REFERENCE will have the four nonpointer components VOLUME, YEAR,
PAGE, and TITLE, the procedure pointer PRINT, which has an explicit interface the same as
printer_interface, plus a pointer to an array of characters holding SYNOPSIS. The size of this
target array will be determined by the length of the abstract. The space for the target may be
allocated (6.6.1) or the pointer component may be associated with a target by a pointer assignment
statement (7.2.2).

4.5.4.4 The passed-object dummy argument

1 A passed-object dummy argument is a distinguished dummy argument of a procedure pointer
component or type-bound procedure. It affects procedure overriding (4.5.7.3) and argument association
(12.5.2.2).

2 If NOPASS is specified, the procedure pointer component or type-bound procedure has no passed-object
dummy argument.

3 If neither PASS nor NOPASS is specified or PASS is specified without arg-name, the first dummy argu-

4543 Types 77

~N o O~

10
11

12
13
14
15

16
17
18

19

20
21

22
23

24
25
26

27
28

29
30
31
32

33
34

35
36

37
38

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

ment of a procedure pointer component or type-bound procedure is its passed-object dummy argument.

If PASS (arg-name) is specified, the dummy argument named arg-name is the passed-object dummy
argument of the procedure pointer component or named type-bound procedure.

C457 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data
object with the same declared type as the type being defined; all of its length type parameters
shall be assumed; it shall be polymorphic (4.3.1.3) if and only if the type being defined is
extensible (4.5.7). It shall not have the VALUE attribute.

NOTE 4.34

If a procedure is bound to several types as a type-bound procedure, different dummy arguments
might be the passed-object dummy argument in different contexts.

4.5.4.5 Default initialization for components

Default initialization provides a means of automatically initializing pointer components to be disassoci-
ated or associated with specific targets, and nonpointer nonallocatable components to have a particular
value. Allocatable components are always initialized to unallocated.

A pointer variable or component is data-pointer-initialization compatible with a target if the pointer
is type compatible with the target, they have the same rank, all nondeferred type parameters of the
pointer have the same values as the corresponding type parameters of the target, and the target is
contiguous if the pointer has the CONTIGUOUS attribute.

R447 component-initialization is = initialization-expr
or => null-init
or => initial-data-target

R448 initial-data-target is designator

C458 (R441) If component-initialization appears, a double-colon separator shall appear before the
component-decl-list.

C459 (R441) If component-initialization appears, every type parameter and array bound of the com-
ponent shall be a colon or initialization expression.

C460 (R441) If => appears in component-initialization, POINTER, shall appear in the component-
attr-spec-list. If = appears in component-initialization, neither POINTER nor ALLOCATABLE
shall appear in the component-attr-spec-list.

C461 (R447) If initial-data-target appears, component-name shall be data-pointer-initialization com-
patible with it.

C462 (R448) The designator shall designate a nonallocatable variable that has the TARGET and
SAVE attributes and does not have a vector subscript. Every subscript, section subscript,
substring starting point, and substring ending point in designator shall be an initialization
expression.

If null-init appears for a pointer component, that component in any object of the type has an initial
association status of disassociated (16.5.2.2) or becomes disassociated as specified in 16.5.2.4.

If initial-data-target appears for a data pointer component, that component in any object of the type is
initially associated with the target or becomes associated with the target as specified in 16.5.2.3.

If initial-proc-target (12.4.3.6) appears in proc-decl for a procedure pointer component, that component
in any object of the type is initially associated with the target or becomes associated with the target as

78 Types 4545

© 00 N O O &~ W N —=

=
= O

12
13
14

15
16

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

specified in 16.5.2.3.

If initialization-expr appears for a nonpointer component, that component in any object of the type
is initially defined (16.6.3) or becomes defined as specified in 16.6.5 with the value determined from
initialization-expr. If necessary, the value is converted according to the rules of intrinsic assignment
(7.2.1.3) to a value that agrees in type, type parameters, and shape with the component. If the compo-
nent is of a type for which default initialization is specified for a component, the default initialization
specified by initialization-expr overrides the default initialization specified for that component. When
one initialization overrides another it is as if only the overriding initialization were specified (see Note
4.36). Explicit initialization in a type declaration statement (5.2) overrides default initialization (see
Note 4.35). Unlike explicit initialization, default initialization does not imply that the object has the
SAVE attribute.

A subcomponent (6.4.2) is default-initialized if the type of the object of which it is a component
specifies default initialization for that component, and the subcomponent is not a subobject of an object
that is default-initialized or explicitly initialized.

A type has default initialization if component-initialization is specified for any direct component of the
type. An object has default initialization if it is of a type that has default initialization.

NOTE 4.35

It is not required that initialization be specified for each component of a derived type. For example:

TYPE DATE

INTEGER DAY

CHARACTER (LEN = 5) MONTH

INTEGER :: YEAR = 1994 ! Partial default initialization
END TYPE DATE

In the following example, the default initial value for the YEAR component of TODAY is overridden
by explicit initialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 1995)

NOTE 4.36

The default initial value of a component of derived type may be overridden by default initialization
specified in the definition of the type. Continuing the example of Note 4.35:

TYPE SINGLE_SCORE

TYPE(DATE) :: PLAY_DAY = TODAY

INTEGER SCORE

TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL ()
END TYPE SINGLE_SCORE
TYPE(SINGLE_SCORE) SETUP

The PLAY_DAY component of SETUP receives its initial value from TODAY, overriding the
initialization for the YEAR component.

NOTE 4.37

Arrays of structures may be declared with elements that are partially or totally initialized by
default. Continuing the example of Note 4.36 :

TYPE MEMBER (NAME_LEN)
INTEGER, LEN :: NAME_LEN

4.5.4.5 Types 79

A~ WN

0 N o o

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 4.37 (cont.)

CHARACTER (LEN = NAME_LEN) NAME = ’°

INTEGER :: TEAM_NO, HANDICAP = O

TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL ()
END TYPE MEMBER
TYPE (MEMBER(9)) LEAGUE (36) ! Array of partially initialized elements
TYPE (MEMBER(9)) :: ORGANIZER = MEMBER ("I. Manage",1,5,NULL ())

ORGANIZER is explicitly initialized, overriding the default initialization for an object of type
MEMBER.

Allocated objects may also be initialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) ! A partially initialized object of type
! SINGLE_SCORE is created.

NOTE 4.38

A pointer component of a derived type may have as its target an object of that derived type. The
type definition may specify that in objects declared to be of this type, such a pointer is default
initialized to disassociated. For example:

TYPE NODE

INTEGER :: VALUE = 0

TYPE (NODE), POINTER :: NEXT_NODE => NULL ()
END TYPE

A type such as this may be used to construct linked lists of objects of type NODE. See C.2.5 for
an example. Linked lists can also be constructed using allocatable components.

NOTE 4.39

A pointer component of a derived type may be default initialized to have an initial target.

TYPE NODE

INTEGER :: VALUE = 0

TYPE (NODE), POINTER :: NEXT_NODE => SENTINEL
END TYPE

TYPE(NODE), SAVE, TARGET :: SENTINEL

4.5.4.6 Component order

Component order is an ordering of the nonparent components of a derived type; it is used for intrinsic
formatted input/output and structure constructors (where component keywords are not used). Parent
components are excluded from the component order of an extended type (4.5.7).

The component order of a nonextended type is the order of the declarations of the components in the
derived-type definition. The component order of an extended type consists of the component order of
its parent type followed by any additional components in the order of their declarations in the extended
derived-type definition.

NOTE 4.40

Given the same type definitions as in Note 4.27, the component order of type T1 is just A (there is
only one component), and the component order of type T2 is A then FLAG. The parent component

80 Types 4.5.4.6

~

o N o o

10

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 4.40 (cont.)

‘ (T1) does not participate in the component order. ‘

4.5.4.7 Component accessibility

R449 private-components-stmt is PRIVATE

C463 (R449) A private-components-stmt is permitted only if the type definition is within the specifi-
cation part of a module.

The default accessibility for the components that are declared in a type’s component-part is private
if the type definition contains a private-components-stmt, and public otherwise. The accessibility of a
component may be explicitly declared by an access-spec; otherwise its accessibility is the default for the
type definition in which it is declared.

If a component is private, that component name is accessible only within the module containing the
definition, and within its descendants.

NOTE 4.41
Type parameters are not components. They are effectively always public.

NOTE 4.42

The accessibility of the components of a type is independent of the accessibility of the type name.
It is possible to have all four combinations: a public type name with a public component, a private
type name with a private component, a public type name with a private component, and a private
type name with a public component.

NOTE 4.43

An example of a type with private components is:

TYPE POINT
PRIVATE
REAL :: X, Y

END TYPE POINT

Such a type definition is accessible in any scoping unit accessing the module via a USE state-
ment; however, the components X and Y are accessible only within the module, and within its
descendants.

NOTE 4.44

The following example illustrates the use of an individual component access-spec to override the
default accessibility:

TYPE MIXED
PRIVATE
INTEGER :: I
INTEGER, PUBLIC :: J
END TYPE MIXED

TYPE (MIXED) :: M

The component M%J is accessible in any scoping unit where M is accessible; M%I is accessible
only within the module containing the TYPE MIXED definition, and within its descendants.

4.5.4.7 Types 81

10

11
12
13
14

15

16
17

18
19

20
21

22
23
24

25
26

27
28

29
30

31
32

33
34

35
36
37
38

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

4.5.5 Type-bound procedures

R450 type-bound-procedure-part is contains-stmt
[binding-private-stmt |
[type-bound-proc-binding | ...

R451 binding-private-stmt is PRIVATE

C464 (R450) A binding-private-stmt is permitted only if the type definition is within the specification
part of a module.

R452 type-bound-proc-binding is type-bound-procedure-stmt
or type-bound-generic-stmt
or final-procedure-stmt

R453 type-bound-procedure-stmt is PROCEDURE | [, binding-attr-list] :: | B
B binding-name | => procedure-name |
or PROCEDURE (interface-name) B
B | binding-attr-list :: binding-name

C465 (R453) If => procedure-name appears, the double-colon separator shall appear.

C466 (R453) The procedure-name shall be the name of an accessible module procedure or an external
procedure that has an explicit interface.

If neither => procedure-name nor interface-name appears, it is as though => procedure-name had
appeared with a procedure name the same as the binding name.

R454 type-bound-generic-stmt is GENERIC m
B [, access-spec | i generic-spec => binding-name-list

C467 (R454) Within the specification-part of a module, each type-bound-generic-stmt shall specify,
either implicitly or explicitly, the same accessibility as every other type-bound-generic-stmt with
that generic-spec in the same derived type.

C468 (R454) Each binding-name in binding-name-list shall be the name of a specific binding of the
type.

C469 (R454) If generic-spec is not generic-name, each of its specific bindings shall have a passed-object
dummy argument (4.5.4.4).

C470 (R454) If generic-spec is OPERATOR (defined-operator), the interface of each binding shall
be as specified in 12.4.3.4.2.

C471 (R454) If generic-spec is ASSIGNMENT (=), the interface of each binding shall be as specified
in 12.4.3.4.3.

C472 (R454) If generic-spec is dtio-generic-spec, the interface of each binding shall be as specified in
9.6.4.7. The type of the dtv argument shall be type-name.

R455 binding-attr is PASS [(arg-name) |
or NOPASS
or NON_OVERRIDABLE
or DEFERRED

82 Types 4.5.5

10

11
12

13
14

15
16
17
18

19

20
21

22
23
24
25

26
27

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

or access-spec
C473 (R455) The same binding-attr shall not appear more than once in a given binding-attr-list.

C474 (R453) If the interface of the binding has no dummy argument of the type being defined,
NOPASS shall appear.

C475 (R453) If PASS (arg-name) appears, the interface of the binding shall have a dummy argument
named arg-name.

C476 (R455) PASS and NOPASS shall not both appear in the same binding-attr-list.

C477 (R455) NON_.OVERRIDABLE and DEFERRED shall not both appear in the same binding-
attr-list.

C478 (R455) DEFERRED shall appear if and only if interface-name appears.

C479 (R453) An overriding binding (4.5.7.3) shall have the DEFERRED attribute only if the binding
it overrides is deferred.

C480 (R453) A binding shall not override an inherited binding (4.5.7.2) that has the NON_OVER-
RIDABLE.

A type-bound procedure statement declares a specific type-bound procedure. A specific type-
bound procedure may have a passed-object dummy argument (4.5.4.4). A binding that specifies the
DEFERRED attribute is a deferred binding. A deferred binding shall appear only in the definition
of an abstract type.

A GENERIC statement declares a type-bound generic interface for its specific type-bound procedures.

A binding of a type is a specific type-bound procedure, a generic type-bound interface, or a final
subroutine. These are referred to as specific bindings, generic bindings, and final bindings respectively.

A type-bound procedure may be identified by a binding name in the scope of the type definition.
This name is the binding-name for a specific binding, and the generic-name for a generic binding whose
generic-spec is generic-name. A final binding, or a generic binding whose generic-spec is not generic-
name, has no binding name.

The interface of a specific binding is that of the procedure specified by procedure-name or the interface
specified by interface-name.

NOTE 4.45

An example of a type and a type-bound procedure is:

TYPE POINT

REAL :: X, Y
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_LENGTH
END TYPE POINT

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_LENGTH (A, B)

CLASS (POINT), INTENT (IN) :: A, B

POINT_LENGTH = SQRT ((A%X - BY%X)**2 + (A%Y - BYUY)**2)
END FUNCTION POINT_LENGTH

4.5.5 Types 83

[IS, B V)

~

10

11

12
13
14
15

16
17

18
19

20
21

22
23

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

The same generic-spec may be used in several GENERIC statements within a single derived-type defi-
nition. Each additional GENERIC statement with the same generic-spec extends the generic interface.

NOTE 4.46

Unlike the situation with generic procedure names, a generic type-bound procedure name is not
permitted to be the same as a specific type-bound procedure name in the same type (16.3).

The default accessibility for the procedure bindings of a type is private if the type definition contains a
binding-private-stmt, and public otherwise. The accessibility of a procedure binding may be explicitly
declared by an access-spec; otherwise its accessibility is the default for the type definition in which it is
declared.

A public type-bound procedure is accessible via any accessible object of the type. A private type-bound
procedure is accessible only within the module containing the type definition, and within its descendants.

NOTE 4.47

The accessibility of a type-bound procedure is not affected by a PRIVATE statement in the
component-part; the accessibility of a data component is not affected by a PRIVATE statement in
the type-bound-procedure-part.

4.5.6 Final subroutines
4.5.6.1 Declaration
R456 final-procedure-stmt is FINAL [::] final-subroutine-name-list

C481 (R456) A final-subroutine-name shall be the name of a module procedure with exactly one
dummy argument. That argument shall be nonoptional and shall be a nonpointer, nonallocat-
able, nonpolymorphic variable of the derived type being defined. All length type parameters of
the dummy argument shall be assumed. The dummy argument shall not have INTENT(OUT).

C482 (R456) A final-subroutine-name shall not be one previously specified as a final subroutine for
that type.

(483 (R456) A final subroutine shall not have a dummy argument with the same kind type parameters
and rank as the dummy argument of another final subroutine of that type.

The FINAL statement specifies that each procedure it names is a final subroutine. A final subroutine
might be executed when a data entity of that type is finalized (4.5.6.2).

A derived type is finalizable if it has any final subroutines or if it has any nonpointer, nonallocatable
component whose type is finalizable. A nonpointer data entity is finalizable if its type is finalizable.

NOTE 4.48

Final subroutines are effectively always “accessible”. They are called for entity finalization re-
gardless of the accessibility of the type, its other type-bound procedures, or the subroutine name
itself.

NOTE 4.49

Final subroutines are not inherited through type extension and cannot be overridden. The final
subroutines of the parent type are called after any additional final subroutines of an extended type
are called.

84 Types 4.5.6

w N

© 0 N o o &

10
11
12
13

14
15
16

17

18

19
20

21
22
23

24
25

26
27

28
29

30
31

32
33
34

35
36

37
38

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

4.5.6.2 The finalization process

Only finalizable entities are finalized. When an entity is finalized, the following steps are carried out
in sequence.

(1) If the dynamic type of the entity has a final subroutine whose dummy argument has the
same kind type parameters and rank as the entity being finalized, it is called with the entity
as an actual argument. Otherwise, if there is an elemental final subroutine whose dummy
argument has the same kind type parameters as the entity being finalized, it is called with
the entity as an actual argument. Otherwise, no subroutine is called at this point.

(2) All finalizable components that appear in the type definition are finalized in a processor-
dependent and image-independent order. If the entity being finalized is an array, each
finalizable component of each element of that entity is finalized separately.

(3) If the entity is of extended type and the parent type is finalizable, the parent component is
finalized.

If several entities are to be finalized as a consequence of an event specified in 4.5.6.3, the order in which
they are finalized is processor-dependent and image-independent. A final subroutine shall not reference
or define an object that has already been finalized.

If an object is not finalized, it retains its definition status and does not become undefined.

4.5.6.3 When finalization occurs

When a pointer is deallocated its target is finalized. When an allocatable entity is deallocated, it is
finalized.

A nonpointer, nonallocatable object that is not a dummy argument or function result is finalized im-
mediately before it would become undefined due to execution of a RETURN or END statement (16.6.6,
item (3)).

A nonpointer nonallocatable local variable of a BLOCK construct is finalized immediately before it
would become undefined due to termination of the BLOCK construct (16.6.6, item (23)).

If an executable construct references a function, the result is finalized after execution of the innermost
executable construct containing the reference.

If an executable construct references a structure constructor or array constructor, the entity created by
the constructor is finalized after execution of the innermost executable construct containing the reference.

If a specification expression in a scoping unit references a function, the result is finalized before execution
of the executable constructs in the scoping unit.

If a specification expression in a scoping unit references a structure constructor or array constructor, the
entity created by the constructor is finalized before execution of the executable constructs in the scoping
unit.

When a procedure is invoked, a nonpointer, nonallocatable object that is an actual argument corre-
sponding to an INTENT (OUT) dummy argument is finalized.

When an intrinsic assignment statement is executed, the variable is finalized after evaluation of expr
and before the definition of the variable.

NOTE 4.50

If finalization is used for storage management, it often needs to be combined with defined assign-
ment.

4.5.6.2 Types 85

10
11

12
13

14
15
16

17

18

19
20

10

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

If an object is allocated via pointer allocation and later becomes unreachable due to all pointers associated
with that object having their pointer association status changed, it is processor dependent whether it is
finalized. If it is finalized, it is processor dependent as to when the final subroutines are called.

4.5.6.4 Entities that are not finalized

If image execution is terminated, either by an error (e.g. an allocation failure) or by execution of a
STOP, ALL STOP, or END PROGRAM statement, entities existing immediately prior to termination
are not finalized.

NOTE 4.51

A nonpointer, nonallocatable object that has the SAVE attribute is never finalized as a direct
consequence of the execution of a RETURN or END statement.

A variable in a module or submodule is not finalized if it retains its definition status and value,
even when there is no active procedure referencing the module or submodule.

4.5.7 Type extension
4.5.7.1 Concepts

A derived type that does not have the BIND attribute or the SEQUENCE attribute is an extensible
type.

A type that has the EXTENDS attribute is an extended type. The parent type of an extended type
is the type named in the EXTENDS type-attr-spec.

NOTE 4.52

The name of the parent type might be a local name introduced via renaming in a USE statement.

An extensible type that does not have the EXTENDS attribute is a base type; it is an extension type
of itself only. An extended type is an extension of itself and of all types for which its parent type is an
extension.

An abstract type is a type that has the ABSTRACT attribute.

NOTE 4.53

A deferred binding (4.5.5) defers the implementation of a type-bound procedure to extensions of
the type; it may appear only in an abstract type. The dynamic type of an object cannot be
abstract; therefore, a deferred binding cannot be invoked. An extension of an abstract type need
not be abstract if it has no deferred bindings. A short example of an abstract type is:

TYPE, ABSTRACT :: FILE_HANDLE
CONTAINS
PROCEDURE (OPEN_FILE) , DEFERRED, PASS(HANDLE) :: OPEN

END TYPE

For a more elaborate example see C.2.4.

4.5.7.2 Inheritance

An extended type includes all of the type parameters, all of the components, and the nonoverridden
(4.5.7.3) nonfinal procedure bindings of its parent type. These are inherited by the extended type from

86 Types 4.5.6.4

0 N o o s

9

10
11

12

13
14
15
16
17

18
19

20
21

22

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

the parent type. They retain all of the attributes that they had in the parent type. Additional type
parameters, components, and procedure bindings may be declared in the derived-type definition of the
extended type.

NOTE 4.54

Inaccessible components and bindings of the parent type are also inherited, but they remain inac-
cessible in the extended type. Inaccessible entities occur if the type being extended is accessed via
use association and has a private entity.

NOTE 4.55

A base type is not required to have any components, bindings, or parameters; an extended type is
not required to have more components, bindings, or parameters than its parent type.

An extended type has a scalar, nonpointer, nonallocatable, parent component with the type and
type parameters of the parent type. The name of this component is the parent type name. It has the
accessibility of the parent type. Components of the parent component are inheritance associated
(16.5.4) with the corresponding components inherited from the parent type. An ancestor component
of a type is the parent component of the type or an ancestor component of the parent component.

NOTE 4.56

A component or type parameter declared in an extended type shall not have the same name as
any accessible component or type parameter of its parent type.

NOTE 4.57

Examples:

TYPE POINT ! A base type
REAL :: X, Y
END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
! Components X and Y, and component name POINT, inherited from parent
INTEGER :: COLOR

END TYPE COLOR_POINT

4.5.7.3 Type-bound procedure overriding

1 If a nongeneric binding specified in a type definition has the same binding name as a binding from the

parent type then the binding specified in the type definition overrides the one from the parent type.

2 The overriding binding and the overridden binding shall satisfy the following conditions.

e Either both shall have a passed-object dummy argument or neither shall.

e If the overridden binding is pure then the overriding binding shall also be pure.
e Either both shall be elemental or neither shall.

e They shall have the same number of dummy arguments.

e Passed-object dummy arguments, if any, shall correspond by name and position.

e Dummy arguments that correspond by position shall have the same names and characteristics,
except for the type of the passed-object dummy arguments.

e Either both shall be subroutines or both shall be functions having the same result characteristics
(12.3.3).
e If the overridden binding is PUBLIC then the overriding binding shall not be PRIVATE.

4.5.7.3 Types 87

10

11
12

13

14
15

16

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 4.58
The following is an example of procedure overriding, expanding on the example in Note 4.45.

TYPE, EXTENDS (POINT) :: POINT_3D

REAL :: Z
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH
END TYPE POINT_3D

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_3D_LENGTH (A, B)
CLASS (POINT_3D), INTENT (IN) :: A
CLASS (POINT), INTENT (IN) :: B
SELECT TYPE(B)
CLASS IS(POINT_3D)
POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%Y-BYY)*x2 + (AYZ-B%Z)**2)
RETURN
END SELECT
PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect.’
STOP
END FUNCTION POINT_3D_LENGTH

If a generic binding specified in a type definition has the same generic-spec as an inherited binding, it
extends the generic interface and shall satisfy the requirements specified in 12.4.3.4.5.

A binding of a type and a binding of an extension of that type correspond if the latter binding is the
same binding as the former, overrides a corresponding binding, or is an inherited corresponding binding.

4.5.8 Derived-type values

The component value of

e a pointer component is its pointer association,

e an allocatable component is its allocation status and, if it is allocated, its dynamic type and type
parameters, bounds and value, and

e a nonpointer nonallocatable component is its value.

The set of values of a particular derived type consists of all possible sequences of the component values
of its components.

4.5.9 Derived-type specifier

A derived-type specifier is used in several contexts to specify a particular derived type and type param-
eters.

R457 derived-type-spec is type-name | (type-param-spec-list) |

88 Types 4.5.8

10
11

12
13
14
15

16

17

18
19
20

21

22

23
24
25

26

27

28
29
30

31
32

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R458 type-param-spec is [keyword =] type-param-value
C484 (R457) type-name shall be the name of an accessible derived type.
C485 (R457) type-param-spec-list shall appear only if the type is parameterized.

C486 (R457) There shall be at most one type-param-spec corresponding to each parameter of the type.
If a type parameter does not have a default value, there shall be a type-param-spec corresponding
to that type parameter.

C487 (R458) The keyword= may be omitted from a type-param-spec only if the keyword= has been
omitted from each preceding type-param-spec in the type-param-spec-list.

(488 (R458) Each keyword shall be the name of a parameter of the type.

C489 (R458) An asterisk may be used as a type-param-value in a type-param-spec only in the decla-
ration of a dummy argument or associate name or in the allocation of a dummy argument.

Type parameter values that do not have type parameter keywords specified correspond to type param-
eters in type parameter order (4.5.3.2). If a type parameter keyword appears, the value is assigned to
the type parameter named by the keyword. If necessary, the value is converted according to the rules of
intrinsic assignment (7.2.1.3) to a value of the same kind as the type parameter.

The value of a type parameter for which no type-param-value has been specified is its default value.
4.5.10 Construction of derived-type values
A derived-type definition implicitly defines a corresponding structure constructor that allows construc-

tion of scalar values of that derived type. The type and type parameters of a constructed value are
specified by a derived type specifier.

R459 structure-constructor is derived-type-spec (| component-spec-list])
R460 component-spec is [keyword =] component-data-source
R461 component-data-source is expr

or data-target
or proc-target

C490 (R459) The derived-type-spec shall not specify an abstract type (4.5.7).
C491 (R459) At most one component-spec shall be provided for a component.

C492 (R459) If a component-spec is provided for an ancestor component, a component-spec shall not
be provided for any component that is inheritance associated with a subcomponent of that
ancestor component.

C493 (R459) A component-spec shall be provided for a nonallocatable component unless it has default
initialization or is inheritance associated with a subcomponent of another component for which

4.5.10 Types 89

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

1 a component-spec is provided.

2 C494 (R460) The keyword= may be omitted from a component-spec only if the keyword= has been
3 omitted from each preceding component-spec in the constructor.

4 C495 (R460) Each keyword shall be the name of a component of the type.

5 C496 (R459) The type name and all components of the type for which a component-spec appears shall
6 be accessible in the scoping unit containing the structure constructor.

7 C497 (R459) If derived-type-spec is a type name that is the same as a generic name, the component-
8 spec-list shall not be a valid actual-arg-spec-list for a function reference that is resolvable as a
9 generic reference to that name (12.5.5.2).

10 C498 (R461) A data-target shall correspond to a data pointer component; a proc-target shall corre-
11 spond to a procedure pointer component.

12 C499 (R461) A data-target shall have the same rank as its corresponding component.

NOTE 4.59

The form 'name(...)" is interpreted as a generic function-reference if possible; it is interpreted as
a structure-constructor only if it cannot be interpreted as a generic function-reference.

13 2 In the absence of a component keyword, each component-data-source is assigned to the corresponding

14 component in component order (4.5.4.6). If a component keyword appears, the expr is assigned to the
15 component named by the keyword. For a nonpointer component, the declared type and type parameters
16 of the component and ezpr shall conform in the same way as for a variable and expr in an intrinsic
17 assignment statement (7.2.1.2), as specified in Table 7.12. If necessary, each value of intrinsic type is
18 converted according to the rules of intrinsic assignment (7.2.1.3) to a value that agrees in type and type
19 parameters with the corresponding component of the derived type. For a nonpointer nonallocatable
20 component, the shape of the expression shall conform with the shape of the component.

21 3 If a component with default initialization has no corresponding component-data-source, then the default

22 initialization is applied to that component. If an allocatable component has no corresponding component-
23 data-source, then that component has an allocation status of unallocated.
NOTE 4.60

Because no parent components appear in the defined component ordering, a value for a parent
component can be specified only with a component keyword. Examples of equivalent values using
types defined in Note 4.57:

! Create values with components x = 1.0, y = 2.0, color = 3.
TYPE(POINT) :: PV = POINT(1.0, 2.0) ! Assume components of TYPE(POINT)
! are accessible here.

COLOR_POINT(point=point(1,2), color=3)
COLOR_POINT(point=PV, color=3)

! Value for parent component

! Available even if TYPE(point)

! has private components
COLOR_POINT(1, 2, 3) ! A1l components of TYPE(point)
]

! need to be accessible.

24 4 A structure constructor shall not appear before the referenced type is defined.

90 Types 4.5.10

AW N =

© 0 N o O«

10
11
12
13

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 4.61

This example illustrates a derived-type constant expression using a derived type defined in Note
4.19:

PERSON (21, ’JOHN SMITH’)

This could also be written as

PERSON (NAME = ’JOHN SMITH’, AGE = 21)

NOTE 4.62
An example constructor using the derived type GENERAL_POINT defined in Note 4.26 is

general _point(dim=3) ([1., 2., 3. 1)

5 For a pointer component, the corresponding component-data-source shall be an allowable data-target or

proc-target for such a pointer in a pointer assignment statement (7.2.2). If the component data source is
a pointer, the association of the component is that of the pointer; otherwise, the component is pointer
associated with the component data source.

NOTE 4.63
For example, if the variable TEXT were declared (5.2) to be

CHARACTER, DIMENSION (1:400), TARGET :: TEXT

and BIBLIO were declared using the derived-type definition REFERENCE in Note 4.33

TYPE (REFERENCE) :: BIBLIO

the statement

BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced &
&paper", SYNOPSIS=TEXT)

is valid and associates the pointer component SYNOPSIS of the object BIBLIO with the target
object TEXT. The keyword SYNOPSIS is required because the fifth component of the type REF-
ERENCE is a procedure pointer component, not a data pointer component of type character. It is
not necessary to specify a proc-target for the procedure pointer component because it has default
initialization.

6 If a component of a derived type is allocatable, the corresponding constructor expression shall either be

a reference to the intrinsic function NULL with no arguments, an allocatable entity of the same rank,
or shall evaluate to an entity of the same rank. If the expression is a reference to the intrinsic function
NULL, the corresponding component of the constructor has a status of unallocated. If the expression
is an allocatable entity, the corresponding component of the constructor has the same allocation status
as that allocatable entity and, if it is allocated, the same dynamic type, bounds, and value; if a length
parameter of the component is deferred, its value is the same as the corresponding parameter of the
expression. Otherwise the corresponding component of the constructor has an allocation status of
allocated and has the same bounds and value as the expression.

NOTE 4.64

When the constructor is an actual argument, the allocation status of the allocatable component is
available through the associated dummy argument.

4.5.10 Types 91

A~ W N

10
11
12

13

14

15

16

17
18

19
20
21
22
23

24
25

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

4.5.11 Derived-type operations and assignment

Intrinsic assignment of derived-type entities is described in 7.2.1. This part of ISO/IEC 1539 does
not specify any intrinsic operations on derived-type entities. Any operation on derived-type entities
or defined assignment (7.2.1.4) for derived-type entities shall be defined explicitly by a function or a
subroutine, and a generic interface (4.5.2, 12.4.3.2).

4.6 Enumerations and enumerators

An enumeration is a set of enumerators. An enumerator is a named integer constant. An enumeration
definition specifies the enumeration and its set of enumerators of the corresponding integer kind.

R462 enum-def is enum-def-stmt
enumerator-def-stmt
[enumerator-def-stmt | ...
end-enum-stmt

R463 enum-def-stmt is ENUM, BIND(C)

R464 enumerator-def-stmt is ENUMERATOR [:: | enumerator-list

R465 enumerator is named-constant | = scalar-int-initialization-expr |
R466 end-enum-stmt is END ENUM

C4100 (R464) If = appears in an enumerator, a double-colon separator shall appear before the enu-
merator-list.

For an enumeration, the kind is selected such that an integer type with that kind is interoperable (15.3.2)
with the corresponding C enumeration type. The corresponding C enumeration type is the type that
would be declared by a C enumeration specifier (6.7.2.2 of the C International Standard) that specified
C enumeration constants with the same values as those specified by the enum-def, in the same order as
specified by the enum-def.

The companion processor (2.6.7) shall be one that uses the same representation for the types declared
by all C enumeration specifiers that specify the same values in the same order.

NOTE 4.65

If a companion processor uses an unsigned type to represent a given enumeration type, the Fortran
processor will use the signed integer type of the same width for the enumeration, even though some
of the values of the enumerators cannot be represented in this signed integer type. The types of
any such enumerators will be interoperable with the type declared in the C enumeration.

NOTE 4.66

The C International Standard guarantees the enumeration constants fit in a C int (6.7.2.2 of the
C International Standard). Therefore, the Fortran processor can evaluate all enumerator values
using the integer type with kind parameter C_INT, and then determine the kind parameter of the
integer type that is interoperable with the corresponding C enumerated type.

NOTE 4.67

The C International Standard specifies that two enumeration types are compatible only if they
specify enumeration constants with the same names and same values in the same order. This
part of ISO/IEC 1539 further requires that a C processor that is to be a companion processor of

92 Types 4.5.11

w N

© o N o o b

10

11

12
13

14
15

16
17

18

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 4.67 (cont.)

a Fortran processor use the same representation for two enumeration types if they both specify
enumeration constants with the same values in the same order, even if the names are different.

4 An enumerator is treated as if it were explicitly declared with the PARAMETER attribute. The enu-
merator is defined in accordance with the rules of intrinsic assignment (7.2) with the value determined
as follows.

(1) If scalar-int-initialization-expr is specified, the value of the enumerator is the result of
scalar-int-initialization-expr.

(2) If scalar-int-initialization-expr is not specified and the enumerator is the first enumerator
in enum-def, the enumerator has the value 0.

(3) If scalar-int-initialization-expr is not specified and the enumerator is not the first enumer-
ator in enum-def, its value is the result of adding 1 to the value of the enumerator that
immediately precedes it in the enum-def.

NOTE 4.68

Example of an enumeration definition:

ENUM, BIND(C)
ENUMERATOR :: RED = 4, BLUE = 9
ENUMERATOR YELLOW

END ENUM

The kind type parameter for this enumeration is processor dependent, but the processor is required
to select a kind sufficient to represent the values 4, 9, and 10, which are the values of its enumerators.
The following declaration might be equivalent to the above enumeration definition.

INTEGER (SELECTED_INT_KIND(2)), PARAMETER :: RED = 4, BLUE = 9, YELLOW = 10

An entity of the same kind type parameter value can be declared using the intrinsic function KIND
with one of the enumerators as its argument, for example

INTEGER(KIND(RED)) :: X

NOTE 4.69

There is no difference in the effect of declaring the enumerators in multiple ENUMERATOR
statements or in a single ENUMERATOR statement. The order in which the enumerators in an
enumeration definition are declared is significant, but the number of ENUMERATOR statements
is not.

4.7 Construction of array values

1 An array constructor is defined as a sequence of scalar values and is interpreted as a rank-one array
where the element values are those specified in the sequence.

R467 array-constructor is (/ ac-spec /)
or [bracket ac-spec rbracket
R468 ac-spec is type-spec :
or [type-spec ::] ac-value-list
R469 [bracket is |
4.7 Types 93

10
11
12

13
14
15

16
17

18
19
20

21
22
23
24

25
26
27

28
29
30
31
32

33

34

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

RA470 rbracket is]

R471 ac-value is expr
or ac-implied-do

R472 ac-implied-do is (ac-value-list , ac-implied-do-control)

R473 ac-implied-do-control is ac-do-variable = scalar-int-expr , scalar-int-expr M
W [, scalar-int-expr |

R474 ac-do-variable is do-variable

C4101 (R468) If type-spec is omitted, each ac-value expression in the array-constructor shall have the
same type and kind type parameters.

C4102 (R468) If type-spec specifies an intrinsic type, each ac-value expression in the array-constructor
shall be of an intrinsic type that is in type conformance with a variable of type type-spec as
specified in Table 7.12.

C4103 (R468) If type-spec specifies a derived type, all ac-value expressions in the array-constructor
shall be of that derived type and shall have the same kind type parameter values as specified by

type-spec.

C4104 (R472) The ac-do-variable of an ac-implied-do that is in another ac-implied-do shall not appear
as the ac-do-variable of the containing ac-implied-do.

If type-spec is omitted, each ac-value expression in the array constructor shall have the same length type
parameters; in this case, the type and type parameters of the array constructor are those of the ac-value
expressions.

If type-spec appears, it specifies the type and type parameters of the array constructor. Each ac-value
expression in the array-constructor shall be compatible with intrinsic assignment to a variable of this
type and type parameters. Each value is converted to the type parameters of the array-constructor in
accordance with the rules of intrinsic assignment (7.2.1.3).

The character length of an ac-value in an ac-implied-do whose iteration count is zero shall not depend
on the value of the ac-do-variable and shall not depend on the value of an expression that is not an
initialization expression.

If an ac-value is a scalar expression, its value specifies an element of the array constructor. If an ac-
value is an array expression, the values of the elements of the expression, in array element order (6.5.3.2),
specify the corresponding sequence of elements of the array constructor. If an ac-value is an ac-implied-
do, it is expanded to form a sequence of elements under the control of the ac-do-variable, as in the DO
construct (8.1.7.6).

For an ac-implied-do, the loop initialization and execution is the same as for a DO construct.
An empty sequence forms a zero-sized array.

NOTE 4.70

A one-dimensional array may be reshaped into any allowable array shape using the intrinsic func-
tion RESHAPE(13.7.148). An example is:

X
Y

(/ 3.2, 4.01, 6.5 /)
RESHAPE (SOURCE = [2.0, [4.5, 4.5], X1, SHAPE = [3, 2 1)

This results in Y having the 3 x 2 array of values:

94 Types 4.7

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

4.7

NOTE 4.70 (cont.)

2.0 3.2
4.5 4.01
4.5 6.5
NOTE 4.71

Examples of array constructors containing an implied DO are:

(/ (I, T =1, 1075) /)

and

[3.6, 3.6/ I, I=1,N)]1]

NOTE 4.72

Using the type definition for PERSON in Note 4.19, an example of the construction of a derived-
type array value is:

[PERSON (40, °SMITH’), PERSON (20, ’JONES’)]

NOTE 4.73

Using the type definition for LINE in Note 4.30, an example of the construction of a derived-type
scalar value with a rank-2 array component is:

LINE (RESHAPE ([0.0, 0.0, 1.0, 2.01, [2, 21), 0.1, 1)

The intrinsic function RESHAPE is used to construct a value that represents a solid line from (0,
0) to (1, 2) of width 0.1 centimeters.

NOTE 4.74

Examples of zero-size array constructors are:

[INTEGER ::]
[(I,I=1,0]1

NOTE 4.75

An example of an array constructor that specifies a length type parameter:

[CHARACTER(LEN=7) :: ’Takata’, ’Tanaka’, ’Hayashi’]

In this constructor, without the type specification, it would have been necessary to specify all of
the constants with the same character length.

Types 95

ISO/IEC SC22/WG5/N1678

96

WD 1539-1

Types

13/07-007r2:2007/06 /05

4.7

~N o o A~ Ww

[ee]

10
11

12

13

14

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

37
38

39

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

5 Attribute declarations and specifications

5.1 General

Every data object has a type and rank and may have type parameters and other properties that determine
the uses of the object. Collectively, these properties are the attributes of the object. The type of a named
data object is either specified explicitly in a type declaration statement or determined implicitly by the
first letter of its name (5.5). All of its attributes may be specified in a type declaration statement or
individually in separate specification statements.

A function has a type and rank and may have type parameters and other attributes that determine the
uses of the function. The type, rank, and type parameters are the same as those of its result variable.

A subroutine does not have a type, rank, or type parameters, but may have other attributes that
determine the uses of the subroutine.

5.2 Type declaration statements

5.2.1 Syntax

R501 type-declaration-stmt is declaration-type-spec [[, attr-spec] ... ::] entity-decl-list

The type declaration statement specifies the type of the entities in the entity declaration list. The type
and type parameters are those specified by declaration-type-spec, except that the character length type
parameter may be overridden for an entity by the appearance of * char-length in its entity-decl.

R502 attr-spec is access-spec
or ALLOCATABLE
or ASYNCHRONOUS
or CONTIGUOUS
or dimension-spec
or EXTERNAL
or INTENT (intent-spec)
or INTRINSIC
or language-binding-spec
or OPTIONAL
or PARAMETER
or POINTER
or PROTECTED
or SAVE
or TARGET
or VALUE
or VOLATILE

C501 (R501) The same attr-spec shall not appear more than once in a given type-declaration-stmit.

C502 (R501) If a language-binding-spec with a NAME= specifier appears, the entity-decl-list shall
consist of a single entity-decl.

C503 (R501) If a language-binding-spec is specified, the entity-decl-list shall not contain any procedure

5 Attribute declarations and specifications 97

A~ W

0 N o o

10

11
12
13
14

15

16
17

18

19

20
21
22

23

24
25

26
27

28
29

30
31
32
33

34

35
36

37

38
39

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

names.

The type declaration statement also specifies the attributes whose keywords appear in the attr-spec,
except that the DIMENSION attribute may be specified or overridden for an entity by the appearance
of array-spec in its entity-decl.

R503 entity-decl is object-name [(array-spec)] B
W [lbracket co-array-spec rbracket | M
W [* char-length] [initialization |
or function-name [* char-length |

C504 (R503) If the entity is not of type character, * char-length shall not appear.
C505 (R501) If initialization appears, a double-colon separator shall appear before the entity-decl-list.

C506 (R503) An initialization shall not appear if object-name is a dummy argument, a function result,
an object in a named common block unless the type declaration is in a block data program unit,
an object in blank common, an allocatable variable, an external function, an intrinsic function,
or an automatic object.

C507 (R503) An initialization shall appear if the entity is a named constant (5.3.12).

C508 (R503) The function-name shall be the name of an external function, an intrinsic function, a
dummy function, a procedure pointer, or a statement function.

R504 object-name is name
C509 (R504) The object-name shall be the name of a data object.
R505 initialization is = initialization-expr

or => null-init

or => initial-data-target
R506 null-init is function-reference

C510 (R503) If => appears in initialization, the entity shall have the POINTER attribute. If =
appears in initialization, the entity shall not have the POINTER attribute.

C511 (R503) If initial-data-target appears, object-name shall be data-pointer-initialization compatible
with it (4.5.4.5).

C512 (R506) The function-reference shall be a reference to the intrinsic function NULL with no
arguments.

A name that identifies a specific intrinsic function in a scoping unit has a type as specified in 13.6. An
explicit type declaration statement is not required; however, it is permitted. Specifying a type for a
generic intrinsic function name in a type declaration statement is not sufficient, by itself, to remove the
generic properties from that function.

5.2.2 Automatic data objects

An automatic data object is a nondummy data object with a type parameter or array bound that
depends on the value of a specification-expr that is not an initialization expression.

C513 An automatic object shall not have the SAVE attribute.

If a type parameter in a declaration-type-spec or in a char-length in an entity-decl is defined by an
expression that is not an initialization expression, the type parameter value is established on entry to

98 Attribute declarations and specifications 5.2.2

© 0 N o G b

10
11
12

13
14

15
16

17

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

the procedure or BLOCK construct and is not affected by any redefinition or undefinition of the variables
in the expression during execution of the procedure or BLOCK construct.

5.2.3 Initialization

The appearance of initialization in an entity-decl for an entity without the PARAMETER attribute
specifies that the entity is a variable with explicit initialization. Explicit initialization alternatively may
be specified in a DATA statement unless the variable is of a derived type for which default initialization is
specified. If initialization is =initialization-expr, the variable is initially defined with the value specified
by the initialization-expr; if necessary, the value is converted according to the rules of intrinsic assignment
(7.2.1.3) to a value that agrees in type, type parameters, and shape with the variable. A variable, or
part of a variable, shall not be explicitly initialized more than once in a program. If the variable is an
array, it shall have its shape specified in either the type declaration statement or a previous attribute
specification statement in the same scoping unit.

If null-init appears, the initial association status of the object is disassociated. If initial-data-target
appears, the object is initially associated with the target.

Explicit initialization of a variable that is not in a common block implies the SAVE attribute, which
may be confirmed by explicit specification.

5.2.4 Examples of type declaration statements

NOTE 5.1

REAL A (10)

LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2

COMPLEX :: CUBE_ROOT = (-0.5, 0.866)

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)
INTEGER (SHORT) K ! Range at least -9999 to 9999.
REAL (KIND (0.0DO)) A

REAL (KIND = 2) B

COMPLEX (KIND = KIND (0.0D0O)) :: C

CHARACTER (LEN = 10, KIND = 2) A

CHARACTER B, C *20

TYPE (PERSON) :: CHAIRMAN

TYPE(NODE) , POINTER :: HEAD => NULL ()

TYPE (humongous_matrix (k=8, d4=1000)) :: mat

(The last line above uses a type definition from Note 4.26.)

5.2.3 Attribute declarations and specifications 99

10

11

12
13

14

15
16
17
18
19
20

21

22
23

24

25
26

27

28
29

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

5.3 Attributes

5.3.1 Constraints

An attribute may be explicitly specified by an attr-spec in a type declaration statement or by an attribute
specification statement (5.4). The following constraints apply to attributes.

C514 An entity shall not be explicitly given any attribute more than once in a scoping unit.

C515 An array-spec for a function result that does not have the ALLOCATABLE or POINTER
attribute shall be an explicit-shape-spec-list.

C516 The ALLOCATABLE, POINTER, or OPTIONAL attribute shall not be specified for a dummy
argument of a procedure that has a proc-language-binding-spec.

5.3.2 Accessibility attribute
The accessibility attribute specifies the accessibility of an entity via a particular identifier.

R507 access-spec is PUBLIC
or PRIVATE

C517 (R507) An access-spec shall appear only in the specification-part of a module.

Identifiers that are specified in a module or accessible in that module by use association have either the
PUBLIC attribute or PRIVATE attribute. Identifiers for which an access-spec is not explicitly specified
in that module have the default accessibility attribute for that module. The default accessibility attribute
for a module is PUBLIC attribute unless it has been changed by a PRIVATE statement (5.4.1). Only
identifiers that have the PUBLIC attribute in that module are available to be accessed from that module
by use association.

NOTE 5.2

In order for an identifier to be accessed by use association, it must have the PUBLIC attribute in
the module from which it is accessed. It can nonetheless have the PRIVATE attribute in a module
in which it is accessed by use association, and therefore not be available for use association from
that module.

NOTE 5.3

An example of an accessibility specification is:

REAL, PRIVATE :: X, Y, Z

5.3.3 ALLOCATABLE attribute

An entity with the ALLOCATABLE attribute is a variable for which space is allocated by an ALLOCATE
statement (6.6.1) or by an intrinsic assignment statement (7.2.1.3).

5.3.4 ASYNCHRONOUS attribute

An entity with the ASYNCHRONOUS attribute is a variable that may be subject to asynchronous
input/output.

The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if

e the variable appears in an executable statement or specification expression in that scoping unit
and

100 Attribute declarations and specifications 5.3

10

11

12

13

14

15

16

17
18

19
20

21

22
23

24
25
26

27

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

e any statement of the scoping unit is executed while the variable is a pending I/0 storage sequence
affector (9.6.2.5).

Use of a variable in an asynchronous input /output statement can imply the ASYNCHRONOUS attribute;
see subclause 9.6.2.5.

An object may have the ASYNCHRONOUS attribute in a particular scoping unit without necessarily
having it in other scoping units (11.2.2, 16.5.1.4). If an object has the ASYNCHRONOUS attribute,
then all of its subobjects also have the ASYNCHRONOUS attribute.

NOTE 5.4

The ASYNCHRONOUS attribute specifies the variables that might be associated with a pending
input/output storage sequence (the actual memory locations on which asynchronous input/output
is being performed) while the scoping unit is in execution. This information could be used by the
compiler to disable certain code motion optimizations.

5.3.5 BIND attribute for data entities

The BIND attribute for a variable or common block specifies that it is capable of interoperating with a
C variable that has external linkage (15.4).

R508 language-binding-spec is BIND (C [, NAME = scalar-char-initialization-expr |)
C518 An entity with the BIND attribute shall be a common block, variable, type, or procedure.
C519 A variable with the BIND attribute shall be declared in the specification part of a module.
C520 A variable with the BIND attribute shall be interoperable (15.3).

C521 Each variable of a common block with the BIND attribute shall be interoperable.

C522 (R508) The scalar-char-initialization-expr shall be of default character kind.

If the value of the scalar-char-initialization-expr after discarding leading and trailing blanks has nonzero
length, it shall be valid as an identifier on the companion processor.

NOTE 5.5

The C International Standard provides a facility for creating C identifiers whose characters are not
restricted to the C basic character set. Such a C identifier is referred to as a universal character
name (6.4.3 of the C International Standard). The name of such a C identifier might include
characters that are not part of the representation method used by the processor for type default
character. If so, the C entity cannot be referenced from Fortran.

The BIND attribute for a variable or common block implies the SAVE attribute, which may be confirmed
by explicit specification.

5.3.6 CONTIGUOUS attribute

C523 An entity with the CONTIGUOUS attribute shall be an array pointer or an assumed-shape
array.

The CONTIGUOUS attribute specifies that an assumed-shape array can only be argument associated
with a contiguous effective argument, or that an array pointer can only be pointer associated with a
contiguous target.

An object is contiguous if it is

5.3.5 Attribute declarations and specifications 101

© 0 N O o0 »~» W N =

—_
o

=
N =

=
W

15

16

17
18

19

20
21

22

23

24

25
26

27
28

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

(1) an object with the CONTIGUOUS attribute,

(2) a nonpointer whole array that is not assumed-shape,

(3) an assumed-shape array that is argument associated with an array that is contiguous,
(4) an array allocated by an ALLOCATE statement,

(5) a pointer associated with a contiguous target, or

(6) a nonzero-sized array section (6.5.3) provided that

(a) its base object is contiguous,
(b) it does not have a vector subscript,

(¢) the elements of the section, in array element order, are a subset of the base object
elements that are consecutive in array element order,

(d) if the array is of type character and a substring-range appears, the substring-range
specifies all of the characters of the parent-string (6.4.1),

(e) only its final part-ref has nonzero rank, and
(f) it is not the real or imaginary part (6.4.3) of an array of type complex.

3 An object is not contiguous if it is an array subobject, and

e the object has two or more elements,

e the elements of the object in array element order are not consecutive in the elements of the base
object,

e the object is not of type character with length zero, and

e the object is not of a derived type that has no ultimate components other than zero-sized arrays
and characters with length zero.

4 1t is processor-dependent whether any other object is contiguous.

NOTE 5.6

If a derived type has only one component that is not zero-sized, it is processor-dependent whether
a structure component of a contiguous array of that type is contiguous. That is, the derived type
might contain padding on some processors.

NOTE 5.7

The CONTIGUOUS attribute makes it easier for a processor to enable optimizations that de-
pend on the memory layout of the object occupying a contiguous block of memory. Examples of
CONTIGUOUS attribute specifications are:

REAL, POINTER, CONTIGUQUS :: SPTR(:)
REAL, CONTIGUOUS, DIMENSION(:,:) :: D

5.3.7 DIMENSION attribute
5.3.7.1 General

1 The DIMENSION attribute specifies that an entity is an array, a co-array, or both. If an array-spec
appears, it is an array. If a co-array-spec appears, it is a co-array.

2 For an array, its array-spec specifies its rank or rank and shape. For a co-array, its co-array-spec specifies
its co-rank or co-rank and co-bounds.

102 Attribute declarations and specifications 5.3.7

10

11
12
13
14
15

16
17

18

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 5.8
Unless it is a dummy argument, a co-array has the same bounds and co-bounds on every image.

See Note 12.31 for further discussion of the bounds and co-bounds of dummy co-arrays.

R509 dimension-spec is DIMENSION (array-spec)
or DIMENSION [(array-spec)] lbracket co-array-spec rbracket

C524 (R501) A co-array with the ALLOCATABLE attribute shall be specified with a co-array-spec
that is a deferred-co-shape-spec-list.

C525 A co-array shall be a component or a variable that is not a function result.
C526 A co-array shall not be of type C_.PTR or C_FUNPTR (15.3.3).

C527 An entity whose type has a co-array ultimate component shall be a nonpointer nonallocatable
scalar, shall not be a co-array, and shall not be a function result.

NOTE 5.9

A co-array is permitted to be of a derived type with pointer or allocatable components. The target
of such a pointer component is always on the same image.

Ch28 A co-array or an object with a co-array ultimate component shall be a dummy argument or
have the ALLOCATABLE or SAVE attribute.

NOTE 5.10

This requirement for the SAVE attribute has the effect that automatic co-arrays are not permitted;
for example, the co-array WORK in the following code fragment is not valid.

SUBROUTINE SOLVE3(N,A,B)

INTEGER :: N
REAL po AQD [x], B(N)
REAL :: WORK(N) [*] ! Not permitted

If this were permitted, it would require an implicit synchronization on entry to the procedure.

Explicit-shape co-arrays that are declared in a subprogram and are not dummy arguments are
required to have the SAVE attribute because otherwise they might be implemented as if they were
automatic co-arrays.

R510 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec
or implied-shape-spec-list

Rb511 co-array-spec is deferred-co-shape-spec-list
or explicit-co-shape-spec

C529 The sum of the rank and co-rank of an entity shall not exceed fifteen.

NOTE 5.11
Examples of DIMENSION attribute specifications are:

SUBROUTINE EX (N, A, B)

5.3.7.1 Attribute declarations and specifications 103

10
11

12
13
14
15
16
17
18

19

20
21

22

23

24
25
26
27

28

29
30

31

32
33

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 5.11 (cont.)

REAL, DIMENSION (N, 10) :: W

REAL A (:), B (0:)

REAL, POINTER :: D (:, :)

REAL, DIMENSION (:), POINTER :: P
REAL, ALLOCATABLE, DIMENSION (:) :: E
REAL, PARAMETER :: V(0:*) = [0.1, 1.1]

Automatic explicit-shape array
Assumed-shape arrays

Array pointer

Array pointer

Allocatable array
Implied-shape array

5.3.7.2 Explicit-shape array

R512 explicit-shape-spec is [lower-bound : | upper-bound
R513 lower-bound is specification-expr
R514 upper-bound is specification-expr

C530 (R512) An explicit-shape-spec whose bounds are not initialization expressions shall appear only
in a subprogram, derived type definition, or interface body.

An explicit-shape array that is a named local variable of a subprogram or BLOCK construct may have
bounds that are not initialization expressions. The bounds, and hence shape, are determined at entry
to a procedure defined by the subprogram, or on execution of the BLOCK statement, by evaluating the
bounds’ expressions. The bounds of such an array are unaffected by the redefinition or undefinition of
any variable during execution of the procedure or BLOCK construct.

The values of each lower-bound and upper-bound determine the bounds of the array along a particular
dimension and hence the extent of the array in that dimension. If lower-bound appears it specifies the
lower bound; otherwise the lower bound is 1. The value of a lower bound or an upper bound may be
positive, negative, or zero. The subscript range of the array in that dimension is the set of integer values
between and including the lower and upper bounds, provided the upper bound is not less than the lower
bound. If the upper bound is less than the lower bound, the range is empty, the extent in that dimension
is zero, and the array is of zero size. The rank is equal to the number of explicit-shape-specs.

5.3.7.3 Assumed-shape array

An assumed-shape array is a nonallocatable nonpointer dummy argument array that takes its shape
from its effective argument.

R515 assumed-shape-spec is [lower-bound | :
The rank is equal to the number of colons in the assumed-shape-spec-list.

The extent of a dimension of an assumed-shape array dummy argument is the extent of the corresponding
dimension of its effective argument. If the lower bound value is d and the extent of the corresponding
dimension of its effective argument is s, then the value of the upper bound is s +d — 1. If lower-bound
appears it specifies the lower bound; otherwise the lower bound is 1.

5.3.7.4 Deferred-shape array

A deferred-shape array is an allocatable array or an array pointer. (An allocatable array has the
ALLOCATABLE attribute; an array pointer has the POINTER attribute.)

R516 deferred-shape-spec is

C531 An array with the POINTER or ALLOCATABLE attribute shall have an array-spec that is a
deferred-shape-spec-list.

104 Attribute declarations and specifications 5.3.7.2

10

11
12

13
14

15

16
17
18
19

20

21
22

23
24
25

26

27
28
29
30
31
32
33
34
35
36
37
38

39

40
41

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

The rank is equal to the number of colons in the deferred-shape-spec-list.

The size, bounds, and shape of an unallocated allocatable array or a disassociated array pointer are
undefined. No part of such an array shall be referenced or defined; however, the array may appear as an
argument to an intrinsic inquiry function as specified in 13.1.

The bounds of each dimension of an allocated allocatable array are those specified when the array is
allocated or, if it is a dummy argument, when it is argument associated with an allocated effective
argument.

The bounds of each dimension of an associated array pointer, and hence its shape, may be specified

e in an ALLOCATE statement (6.6.1) when the target is allocated,
e by pointer assignment (7.2.2), or

e if it is a dummy argument, by argument association with a nonpointer actual argument or an
associated pointer effective argument.

The bounds of an array pointer or allocatable array are unaffected by any subsequent redefinition or
undefinition of variables on which the bounds’ expressions depend.

5.3.7.5 Assumed-size array

An assumed-size array is a dummy argument array whose size is assumed from that of its effective
argument. The rank and extents may differ for the effective and dummy arguments; only the size of
the effective argument is assumed by the dummy argument. An assumed-size array is declared with an
assumed-size-spec.

R517 assumed-size-spec is [explicit-shape-spec ,]... [lower-bound :] *

Cb32 An assumed-size-spec shall not appear except as the declaration of the array bounds of a dummy
data object.

(533 An assumed-size array with the INTENT (OUT) attribute shall not be polymorphic, of a final-
izable type, of a type with an allocatable ultimate component, or of a type for which default
initialization is specified.

The size of an assumed-size array is determined as follows.

e If the effective argument associated with the assumed-size dummy array is an array of any type
other than default character, the size is that of the effective argument.

e If the actual argument corresponding to the assumed-size dummy array is an array element of any
type other than default character with a subscript order value of (6.5.3.2) in an array of size z,
the size of the dummy array is ¢ — r + 1.

e If the actual argument is a default character array, default character array element, or a default
character array element substring (6.4.1), and if it begins at character storage unit ¢ of an array
with ¢ character storage units, the size of the dummy array is MAX (INT ((¢c—t+1)/e), 0), where
e is the length of an element in the dummy character array.

e If the actual argument is of type default character and is a scalar that is not an array element or
array element substring designator, the size of the dummy array is MAX (INT (I/e), 0), where e is
the length of an element in the dummy character array and [is the length of the actual argument.

The rank is equal to one plus the number of ezplicit-shape-specs.

An assumed-size array has no upper bound in its last dimension and therefore has no extent in its last
dimension and no shape. An assumed-size array shall not appear in a context that requires its shape.

5.3.7.5 Attribute declarations and specifications 105

A~ W N =

[o) BN

10

11

12

13

14
15
16

17

18
19

20

21
22

23

24
25
26

27

28
29

30

31
32

33
34

35
36

37

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

If a list of explicit-shape-specs appears, it specifies the bounds of the first rank—1 dimensions. If lower-
bound appears it specifies the lower bound of the last dimension; otherwise that lower bound is 1. An
assumed-size array may be subscripted or sectioned (6.5.3.3). The upper bound shall not be omitted
from a subscript triplet in the last dimension.

If an assumed-size array has bounds that are not initialization expressions, the bounds are determined
at entry to the procedure. The bounds of such an array are unaffected by the redefinition or undefinition
of any variable during execution of the procedure.

5.3.7.6 Implied-shape array

An implied-shape array is a named constant that takes its shape from the initialization-expr in its
declaration. An implied-shape array is declared with an implied-shape-spec-list.

R518 implied-shape-spec is [lower-bound :] *
C534 An implied-shape array shall be a named constant.
The rank of an implied-shape array is the number of implied-shape-specs in the implied-shape-spec-list.

The extent of each dimension of an implied-shape array is the same as the extent of the corresponding
dimension of the initialization-expr. The lower bound of each dimension is lower-bound, if it appears,
and 1 otherwise; the upper bound is one less than the sum of the lower bound and the extent.

5.3.7.7 Allocatable co-array

A co-array with the ALLOCATABLE attribute has a specified co-rank, but its co-bounds are determined
by allocation or argument association.

R519 deferred-co-shape-spec is

Cb35 A co-array with the ALLOCATABLE attribute shall have a co-array-spec that is a deferred-co-
shape-spec-list.

The co-rank of an allocatable co-array is equal to the number of colons in its deferred-co-shape-spec-list.

The co-bounds of an unallocated allocatable co-array are undefined. No part of such a co-array shall be
referenced or defined; however, the co-array may appear as an argument to an intrinsic inquiry function
as specified in 13.1.

The co-bounds of an allocated allocatable co-array are those specified when the co-array is allocated.

The co-bounds of an allocatable co-array are unaffected by any subsequent redefinition or undefinition
of the variables on which the co-bounds’ expressions depend.

5.3.7.8 Explicit-co-shape co-array

An explicit-co-shape co-array is a named co-array that has its co-rank and co-bounds declared by
an explicit-co-shape-spec.

R520 ewplicit-co-shape-spec is [[lower-co-bound : | upper-co-bound,]... B
W [lower-co-bound : | *

Cb36 A co-array that does not have the ALLOCATABLE attribute shall have a co-array-spec that is
an explicit-co-shape-spec.

The co-rank is equal to one plus the number of upper-co-bounds.

106 Attribute declarations and specifications 5.3.7.6

&~ W

0w N o o

10
11
12

13

14
15

16

17
18

19
20

21

22

23
24
25
26

27
28
29

30
31

32
33

34
35

36
37
38
39

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R521 lower-co-bound is specification-expr
R522 upper-co-bound is specification-expr

C537 (R520) A lower-co-bound or upper-co-bound that is not an initialization expression shall appear
only in a subprogram, derived type definition, or interface body.

If an explicit-co-shape co-array has co-bounds that are not initialization expressions, the co-bounds are
determined at entry to the procedure by evaluating the co-bounds expressions. The co-bounds of such
a co-array are unaffected by the redefinition or undefinition of any variable during execution of the
procedure.

The values of each lower-co-bound and upper-co-bound determine the co-bounds of the co-array along a
particular co-dimension. The co-subscript range of the co-array in that co-dimension is the set of integer
values between and including the lower and upper co-bounds. If the lower co-bound is omitted, the
default value is 1. The upper co-bound shall not be less than the lower co-bound.

5.3.8 EXTERNAL attribute

The EXTERNAL attribute specifies that an entity is an external procedure, dummy procedure, proce-
dure pointer, or block data subprogram.

C538 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.

C539 In an external subprogram, the EXTERNAL attribute shall not be specified for a procedure
defined by the subprogram.

If an external procedure or dummy procedure is used as an actual argument or is the target of a procedure
pointer assignment, it shall be declared to have the EXTERNAL attribute.

A procedure that has both the EXTERNAL and POINTER attributes is a procedure pointer.

5.3.9 INTENT attribute

The INTENT attribute specifies the intended use of a dummy argument. An INTENT (IN) dummy
argument is suitable for receiving data from the invoking scoping unit, an INTENT (OUT) dummy
argument is suitable for returning data to the invoking scoping unit, and an INTENT (INOUT) dummy
argument is suitable for use both to receive data from and to return data to the invoking scoping unit.

Rb523 intent-spec is IN
or OUT
or INOUT

C540 An entity with the INTENT attribute shall be a dummy data object or a dummy procedure
pointer.

C541 (R523) A nonpointer object with the INTENT (IN) attribute shall not appear in a variable
definition context (16.6.7).

C542 A pointer with the INTENT (IN) attribute shall not appear in a pointer association context
(16.6.8).

The INTENT (IN) attribute for a nonpointer dummy argument specifies that it shall neither be defined
nor become undefined during the execution of the procedure. The INTENT (IN) attribute for a pointer
dummy argument specifies that during the execution of the procedure its association shall not be changed
except that it may become undefined if the target is deallocated other than through the pointer (16.5.2.5).

5.3.8 Attribute declarations and specifications 107

DO~ W N

o ~

10

11
12

13

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

The INTENT (OUT) attribute for a nonpointer dummy argument specifies that the dummy argument
becomes undefined on invocation of the procedure, except for any subcomponents that are default-
initialized (4.5.4.5). Any actual argument that corresponds to such a dummy argument shall be de-
finable. The INTENT (OUT) attribute for a pointer dummy argument specifies that on invocation of
the procedure the pointer association status of the dummy argument becomes undefined. Any actual
argument that corresponds to such a pointer dummy shall be a pointer variable.

The INTENT (INOUT) attribute for a nonpointer dummy argument specifies that any actual argument
that corresponds to the dummy argument shall be definable. The INTENT (INOUT) attribute for a
pointer dummy argument specifies that any actual argument that corresponds to the dummy argument
shall be a pointer variable.

NOTE 5.12

The INTENT attribute for an allocatable dummy argument applies to both the allocation status
and the definition status. An actual argument that corresponds to an INTENT (OUT) allocatable
dummy argument is deallocated on procedure invocation (6.6.3.2).

If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of its
effective argument (12.5.2).

NOTE 5.13
An example of INTENT specification is:

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

6 If an object has an INTENT attribute, then all of its subobjects have the same INTENT attribute.

NOTE 5.14

If a dummy argument is a derived-type object with a pointer component, then the pointer as a
pointer is a subobject of the dummy argument, but the target of the pointer is not. Therefore,
the restrictions on subobjects of the dummy argument apply to the pointer in contexts where it is
used as a pointer, but not in contexts where it is dereferenced to indicate its target. For example,
if X is a dummy argument of derived type with an integer pointer component P, and X is INTENT
(IN), then the statement

X%P => NEW_TARGET

is prohibited, but

XWP =0

is allowed (provided that X%P is associated with a definable target).

Similarly, the INTENT restrictions on pointer dummy arguments apply only to the association of
the dummy argument; they do not restrict the operations allowed on its target.

NOTE 5.15

Argument intent specifications serve several purposes in addition to documenting the intended use
of dummy arguments. A processor can check whether an INTENT (IN) dummy argument is used
in a way that could redefine it. A slightly more sophisticated processor could check to see whether

108 Attribute declarations and specifications 5.3.9

10
11

12

13
14

15

16

17
18
19

20

21

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 5.15 (cont.)

an INTENT (OUT) dummy argument could possibly be referenced before it is defined. If the
procedure’s interface is explicit, the processor can also verify that actual arguments corresponding
to INTENT (OUT) or INTENT (INOUT) dummy arguments are definable. A more sophisticated
processor could use this information to optimize the translation of the referencing scoping unit
by taking advantage of the fact that actual arguments corresponding to INTENT (IN) dummy
arguments will not be changed and that any prior value of an actual argument corresponding to
an INTENT (OUT) dummy argument will not be referenced and could thus be discarded.

INTENT (OUT) means that the value of the argument after invoking the procedure is entirely
the result of executing that procedure. If an argument should retain its current value rather than

being redefined, INTENT (INOUT) should be used rather than INTENT (OUT), even if there is
no explicit reference to the value of the dummy argument.

INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The actual argument
corresponding to an INTENT (INOUT) dummy argument is always required to be definable,
while an actual argument corresponding to a dummy argument without an INTENT attribute
need be definable only if the dummy argument is actually redefined.

5.3.10 INTRINSIC attribute

The INTRINSIC attribute specifies that the entity is an intrinsic procedure. The procedure name may
be a generic name (13.5), a specific name (13.6), or both.

If the specific name of an intrinsic procedure (13.6) is used as an actual argument, the name shall be
explicitly specified to have the INTRINSIC attribute. An intrinsic procedure whose specific name is
marked with a bullet (o) in 13.6 shall not be used as an actual argument.

Ch43 If the generic name of an intrinsic procedure is explicitly declared to have the INTRINSIC
attribute, and it is also the generic name of one or more generic interfaces (12.4.3.2) accessible in
the same scoping unit, the procedures in the interfaces and the specific intrinsic procedures shall
all be functions or all be subroutines, and the characteristics of the specific intrinsic procedures
and the procedures in the interfaces shall differ as specified in 12.4.3.4.5.

5.3.11 OPTIONAL attribute

The OPTIONAL attribute specifies that the dummy argument need not have a corresponding actual
argument in a reference to the procedure (12.5.2.13).

C544 An entity with the OPTIONAL attribute shall be a dummy argument.

NOTE 5.16

The intrinsic function PRESENT(13.7.140) can be used to determine whether an optional dummy
argument has a corresponding actual argument.

5.3.12 PARAMETER attribute

The PARAMETER attribute specifies that an entity is a named constant. The entity has the value
specified by its initialization-expr, converted, if necessary, to the type, type parameters and shape of the
entity.

C545 An entity with the PARAMETER attribute shall not be a variable, a co-array, or a procedure.

A named constant shall not be referenced unless it has been defined previously in the same statement,

5.3.10 Attribute declarations and specifications 109

10

11
12

13

14

15

16

17

18

19
20
21

22
23

24
25

26

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

defined in a prior statement, or made accessible by use or host association.

NOTE 5.17
Examples of declarations with a PARAMETER attribute are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /)
TYPE(NODE) , PARAMETER :: DEFAULT = NODE(O, NULL ())

5.3.13 POINTER attribute

Entities with the POINTER attribute can be associated with different data objects or procedures during
execution of a program. A pointer is either a data pointer or a procedure pointer. Procedure pointers
are described in 12.4.3.6.

C546 An entity with the POINTER attribute shall not have the ALLOCATABLE, INTRINSIC, or
TARGET attribute, and shall not be a co-array.

C547 A procedure with the POINTER attribute shall have the EXTERNAL attribute.

A data pointer shall not be referenced unless it is pointer associated with a target object that is defined.
A data pointer shall not be defined unless it is pointer associated with a target object that is definable.

If a data pointer is associated, the values of its deferred type parameters are the same as the values of
the corresponding type parameters of its target.

A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.

NOTE 5.18
Examples of POINTER attribute specifications are:

TYPE (NODE), POINTER :: CURRENT, TAIL
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

For a more elaborate example see C.3.1.

5.3.14 PROTECTED attribute

The PROTECTED attribute imposes limitations on the usage of module entities.

C548 The PROTECTED attribute shall be specified only in the specification part of a module.
C549 An entity with the PROTECTED attribute shall be a procedure pointer or variable.
C550 An entity with the PROTECTED attribute shall not be in a common block.

C551 A nonpointer object that has the PROTECTED attribute and is accessed by use association
shall not appear in a variable definition context (16.6.7) or as the data-target or proc-target in
a pointer-assignment-stmt.

C552 A pointer that has the PROTECTED attribute and is accessed by use association shall not
appear in a pointer association context (16.6.8).

Other than within the module in which an entity is given the PROTECTED attribute, or within any of
its descendants,

e if it is a nonpointer object, it is not definable, and

110 Attribute declarations and specifications 5.3.13

w

© 00 N O

10
11
12
13

14

15

16
17

18
19

20
21
22
23

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

e if it is a pointer, its association status shall not be changed except that it may become undefined if
its target is deallocated other than through the pointer (16.5.2.5) or if its target becomes undefined
by execution of a RETURN or END statement.

3 If an object has the PROTECTED attribute, all of its subobjects have the PROTECTED attribute.

NOTE 5.19
An example of the PROTECTED attribute:

MODULE temperature
REAL, PROTECTED :: temp_c, temp_f
CONTAINS
SUBROUTINE set_temperature_c(c)
REAL, INTENT(IN) :: c
temp_c = c
temp_f = temp_c*x(9.0/5.0) + 32
END SUBROUTINE
END MODULE

The PROTECTED attribute ensures that the variables temp_c and temp_f cannot be modified
other than via the set_temperature_c procedure, thus keeping them consistent with each other.

5.3.15 SAVE attribute

The SAVE attribute specifies that a local variable of a program unit or subprogram retains its asso-
ciation status, allocation status, definition status, and value after execution of a RETURN or END
statement unless it is a pointer and its target becomes undefined (16.5.2.5(5)). If it is a local variable of
a subprogram it is shared by all instances (12.6.2.4) of the subprogram.

The SAVE attribute specifies that a local variable of a BLOCK construct retains its association status,
allocation status, definition status, and value after termination of the construct unless it is a pointer and
its target becomes undefined (16.5.2.5(6)). If the BLOCK construct is within a subprogram the variable
is shared by all instances (12.6.2.4) of the subprogram.

Giving a common block the SAVE attribute confers the attribute on all entities in the common block.
C553 An entity with the SAVE attribute shall be a common block, variable, or procedure pointer.

C554 The SAVE attribute shall not be specified for a dummy argument, a function result, an automatic
data object, or an object that is in a common block.

A saved entity is an entity that has the SAVE attribute. An unsaved entity is an entity that does not
have the SAVE attribute.

A variable, common block, or procedure pointer declared in the scoping unit of a main program, module,
or submodule implicitly has the SAVE attribute, which may be confirmed by explicit specification. If
a common block has the SAVE attribute in any other kind of scoping unit, it shall have the SAVE
attribute in every scoping unit that is not a main program, module, or submodule.

5.3.15 Attribute declarations and specifications 111

10

11
12

13
14

15

16
17

18
19

20
21
22

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

5.3.16 TARGET attribute

The TARGET attribute specifies that a data object may have a pointer associated with it (7.2.2). An
object without the TARGET attribute shall not have a pointer associated with it.

C555 An entity with the TARGET attribute shall be a variable.
C556 An entity with the TARGET attribute shall not have the POINTER attribute.

NOTE 5.20

In addition to variables explicitly declared to have the TARGET attribute, the objects created by
allocation of pointers (6.6.1.4) have the TARGET attribute.

If an object has the TARGET attribute, then all of its nonpointer subobjects also have the TARGET
attribute.

NOTE 5.21
Examples of TARGET attribute specifications are:

TYPE (NODE), TARGET :: HEAD
REAL, DIMENSION (1000, 1000), TARGET :: A, B

For a more elaborate example see C.3.2.

NOTE 5.22

Every object designator that starts from a target object will have either the TARGET or POINTER
attribute. If pointers are involved, the designator might not necessarily be a subobject of the
original target object, but because pointers may point only to targets, there is no way to end up
at a nonpointer that is not a target.

5.3.17 VALUE attribute
The VALUE attribute specifies a type of argument association (12.5.2.5) for a dummy argument.
C557 An entity with the VALUE attribute shall be a scalar dummy data object.

C558 An entity with the VALUE attribute shall not have the ALLOCATABLE, INTENT (INOUT),
INTENT (OUT), POINTER, or VOLATILE attributes.

C559 If an entity has the VALUE attribute, any length type parameter value in its declaration shall
be omitted or specified by an initialization expression.

5.3.18 VOLATILE attribute

The VOLATILE attribute specifies that an object may be referenced, defined, or become undefined, by
means not specified by the program, or by another image without synchronization.

C560 An entity with the VOLATILE attribute shall be a variable that is not an INTENT (IN) dummy
argument.

An object may have the VOLATILE attribute in a particular scoping unit without having it in other
scoping units (11.2.2; 16.5.1.4). If an object has the VOLATILE attribute, then all of its subobjects also
have the VOLATILE attribute.

112 Attribute declarations and specifications 5.3.17

w

10
11
12

13
14

15
16
17

18

19

20

21
22

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 5.23

The Fortran processor should use the most recent definition of a volatile object when a value
is required. Likewise, it should make the most recent Fortran definition available. It is the
programmer’s responsibility to manage any interaction with non-Fortran processes.

3 A pointer with the VOLATILE attribute may additionally have its association status, dynamic type and

type parameters, and array bounds changed by means not specified by the program.

NOTE 5.24

If the target of a pointer is referenced, defined, or becomes undefined, by means not specified
by the program, while the pointer is associated with the target, then the pointer shall have the
VOLATILE attribute. Usually a pointer should have the VOLATILE attribute if its target has
the VOLATILE attribute. Similarly, all members of an EQUIVALENCE group should have the
VOLATILE attribute if one member has the VOLATILE attribute.

4 An allocatable object with the VOLATILE attribute may additionally have its allocation status, dynamic

type and type parameters, and array bounds changed by means not specified by the program.

5.4 Attribute specification statements

5.4.1 Accessibility statement
R524 access-stmt is access-spec [| ::] access-id-list |

R525 access-id is wuse-name
or generic-spec

C561 (R524) An access-stmt shall appear only in the specification-part of a module. Only one ac-
cessibility statement with an omitted access-id-list is permitted in the specification-part of a
module.

C562 (R525) Each use-name shall be the name of a named variable, procedure, derived type, named
constant, namelist group, or macro.

An access-stmt with an access-id-list specifies the accessibility attribute, PUBLIC or PRIVATE, of each
access-id in the list. An access-stmt without an access-id list specifies the default accessibility that
applies to all potentially accessible identifiers in the specification-part of the module. The statement

PUBLIC
specifies a default of public accessibility. The statement
PRIVATE

specifies a default of private accessibility. If no such statement appears in a module, the default is public
accessibility.

NOTE 5.25

Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+)

5.4 Attribute declarations and specifications 113

10

11
12

13
14

15

16

17

18

19

20

21

22

23
24
25
26

27
28

29

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

5.4.2 ALLOCATABLE statement
R526 allocatable-stmt is ALLOCATABLE | :: | allocatable-decl-list

R527 allocatable-decl is object-name [(array-spec) | A
W [lbracket co-array-spec rbracket]

The ALLOCATABLE statement specifies the ALLOCATABLE attribute (5.3.3) for a list of objects.

NOTE 5.26
An example of an ALLOCATABLE statement is:

REAL A, B (:), SCALAR
ALLOCATABLE :: A (:, :), B, SCALAR

5.4.3 ASYNCHRONOUS statement
R528 asynchronous-stmt is ASYNCHRONOUS [:: | object-name-list

The ASYNCHRONOUS statement specifies the ASYNCHRONOUS attribute (5.3.4) for a list of objects.

5.4.4 BIND statement
R529 bind-stmt is language-binding-spec | :: | bind-entity-list

R530 bind-entity is entity-name
or / common-block-name /

C563 (R529) If the language-binding-spec has a NAME= specifier, the bind-entity-list shall consist of
a single bind-entity.

The BIND statement specifies the BIND attribute for a list of variables and common blocks.

5.4.5 CONTIGUOUS statement
R531 contiguous-stmt is CONTIGUOUS | :: | object-name-list

The CONTIGUOUS statement specifies the CONTIGUOUS attribute (5.3.6) for a list of objects.

5.4.6 DATA statement

R532 data-stmt is DATA data-stmt-set [[,] data-stmt-set | ...

The DATA statement specifies explicit initialization (5.2.3).

If a nonpointer object has default initialization, it shall not appear in a data-stmt-object-list.

A variable that appears in a DATA statement and has not been typed previously may appear in a
subsequent type declaration only if that declaration confirms the implicit typing. An array name,
array section, or array element that appears in a DATA statement shall have had its array properties
established by a previous specification statement.

Except for variables in named common blocks, a named variable has the SAVE attribute if any part of
it is initialized in a DATA statement, and this may be confirmed by explicit specification.

R533 data-stmi-set is data-stmt-object-list / data-stmi-value-list /

114 Attribute declarations and specifications 5.4.2

[IS, B V) N

~

10

11

12
13

14
15
16
17

18
19

20

21

22
23

24
25
26
27

28

29
30

31
32
33

34
35
36
37
38
39
40

41
42

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R534

R535

R536

R537
C564
C565

C566

C567

C568
ChH69

C570

C571

R538

R539

C572

R540

C573

5.4.6

data-stmt-object is wariable
or data-implied-do

data-implied-do is (data-i-do-object-list , data-i-do-variable = R
B scalar-int-initialization-expr , A
B scalar-int-initialization-expr A
W [, scalar-int-initialization-expr |)

data-i-do-object is array-element
or scalar-structure-component
or data-implied-do

data-i-do-variable is do-variable
A data-stmt-object or data-i-do-object shall not be a co-indexed variable.

(R534) In a wariable that is a data-stmt-object, each subscript, section subscript, substring
starting point, and substring ending point shall be an initialization expression.

(R534) A variable whose designator appears as a data-stmi-object or a data-i-do-object shall not
be a dummy argument, accessed by use association or host association, in a named common
block unless the DATA statement is in a block data program unit, in blank common, a function
name, a function result name, an automatic object, or an allocatable variable.

(R534) A data-i-do-object or a variable that appears as a data-stmt-object shall not be an object
designator in which a pointer appears other than as the entire rightmost part-ref.

(R536) The array-element shall be a variable.
(R536) The scalar-structure-component shall be a variable.

(R536) The scalar-structure-component shall contain at least one part-ref that contains a sub-
script-list.

(R536) In an array-element or scalar-structure-component that is a data-i-do-object, any sub-
script shall be an initialization expression, and any primary within that subscript that is a
data-i-do-variable shall be a DO variable of this data-implied-do or of a containing data-implied-
do.

data-stmt-value is [data-stmt-repeat * | data-stmt-constant

data-stmt-repeat is scalar-int-constant
or scalar-int-constant-subobject

(R539) The data-stmt-repeat shall be positive or zero. If the data-stmi-repeat is a named con-
stant, it shall have been declared previously in the scoping unit or made accessible by use
association or host association.

data-stmt-constant is scalar-constant
or scalar-constant-subobject
or signed-int-literal-constant
or signed-real-literal-constant
or null-init
or initial-data-target
or structure-constructor

(R540) If a DATA statement constant value is a named constant or a structure constructor,
the named constant or derived type shall have been declared previously in the scoping unit or

Attribute declarations and specifications 115

10
11
12
13
14

15
16
17

18
19
20
21

22
23
24

25
26
27
28
29

30
31
32
33
34

10

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

accessed by use or host association.
C574 (R540) If a data-stmt-constant is a structure-constructor, it shall be an initialization expression.
R541 int-constant-subobject is constant-subobject
C575 (Rb41) int-constant-subobject shall be of type integer.
R542 constant-subobject is designator
C576 (R542) constant-subobject shall be a subobject of a constant.

C577 (R542) Any subscript, substring starting point, or substring ending point shall be an initializa-
tion expression.

The data-stmit-object-list is expanded to form a sequence of pointers and scalar variables, referred to
as “sequence of variables” in subsequent text. A nonpointer array whose unqualified name appears
as a data-stmt-object or data-i-do-object is equivalent to a complete sequence of its array elements in
array element order (6.5.3.2). An array section is equivalent to the sequence of its array elements in
array element order. A data-implied-do is expanded to form a sequence of array elements and structure
components, under the control of the data-i-do-variable, as in the DO construct (8.1.7.6).

The data-stmt-value-list is expanded to form a sequence of data-stmt-constants. A data-stmi-repeat
indicates the number of times the following data-stmt-constant is to be included in the sequence; omission
of a data-stmt-repeat has the effect of a repeat factor of 1.

A zero-sized array or a data-implied-do with an iteration count of zero contributes no variables to the
expanded sequence of variables, but a zero-length scalar character variable does contribute a variable
to the expanded sequence. A data-stmt-constant with a repeat factor of zero contributes no data-stmt-
constants to the expanded sequence of scalar data-stmt-constants.

The expanded sequences of variables and data-stmt-constants are in one-to-one correspondence. Each
data-stmt-constant specifies the initial value, initial data target, or null-init for the corresponding vari-
able. The lengths of the two expanded sequences shall be the same.

A data-stmt-constant shall be null-init or initial-data-target if and only if the corresponding data-stmt-
object has the POINTER attribute. If data-stmt-constant is null-init, the initial association status of
the corresponding data statement object is disassociated. If data-stmt-constant is initial-data-target the
corresponding data statement object shall be data-pointer-initialization compatible with the initial data
target; the data statement object is initially associated with the target.

A data-stmt-constant other than null-init or initial-data-target shall be compatible with its corresponding
variable according to the rules of intrinsic assignment (7.2.1.2). The variable is initially defined with
the value specified by the data-stmt-constant; if necessary, the value is converted according to the rules
of intrinsic assignment (7.2.1.3) to a value that agrees in type, type parameters, and shape with the
variable.

NOTE 5.27
Examples of DATA statements are:

CHARACTER (LEN = 10) NAME

INTEGER, DIMENSION (0:9) :: MILES

REAL, DIMENSION (100, 100) :: SKEW

TYPE (NODE), POINTER :: HEAD_QF_LIST

TYPE (PERSON) MYNAME, YOURNAME

DATA NAME / ’JOHN DOE’ /, MILES / 10 * O /

DATA ((SKEW (X, J), J =1, K), K =1, 100) / 5050 * 0.0 /

116 Attribute declarations and specifications 5.4.6

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 5.27 (cont.)

DATA ((SKEW (K, J), J =K + 1, 100), K =1, 99) / 4950 * 1.0 /
DATA HEAD_QF_LIST / NULL(Q) /

DATA MYNAME / PERSON (21, ’JOHN SMITH’) /

DATA YOURNAME % AGE, YOURNAME % NAME / 35, ’FRED BROWN’ /

The character variable NAME is initialized with the value JOHN DOE with padding on the right
because the length of the constant is less than the length of the variable. All ten elements of
the integer array MILES are initialized to zero. The two-dimensional array SKEW is initialized
so that the lower triangle of SKEW is zero and the strict upper triangle is one. The structures
MYNAME and YOURNAME are declared using the derived type PERSON from Note 4.19. The
pointer HEAD_OF _LIST is declared using the derived type NODE from Note 4.38; it is initially
disassociated. MYNAME is initialized by a structure constructor. YOURNAME is initialized by
supplying a separate value for each component.

5.4.7 DIMENSION statement
R543 dimension-stmt is DIMENSION [:: | dimension-decl-list

R544 dimension-decl is array-name (array-spec)
or co-name [(array-spec) | lbracket co-array-spec rbracket

The DIMENSION statement specifies the DIMENSION attribute (5.3.7) for a list of objects.

NOTE 5.28
An example of a DIMENSION statement is:

DIMENSION A (10), B (10, 70), C (:)

5.4.8 INTENT statement
R545 intent-stmt is INTENT (intent-spec) [:: | dummy-arg-name-list
The INTENT statement specifies the INTENT attribute (5.3.9) for the dummy arguments in the list.

NOTE 5.29
An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B

5.4.9 OPTIONAL statement
R546 optional-stmt is OPTIONAL [::] dummy-arg-name-list

The OPTIONAL statement specifies the OPTIONAL attribute (5.3.11) for the dummy arguments in
the list.

NOTE 5.30
An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: B

5.4.7 Attribute declarations and specifications 117

© 00 N O

10
11
12

13

14

15
16

17

18

19

20

21

22

23
24
25

26

27
28

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

5.4.10 PARAMETER statement

The PARAMETER statement specifies the PARAMETER attribute (5.3.12) and the values for the
named constants in the list.

R547 parameter-stmt is PARAMETER (named-constant-def -list)
R548 mamed-constant-def is named-constant = initialization-expr

If a named constant is defined by a PARAMETER statement, it shall not be subsequently declared to
have a type or type parameter value that differs from the type and type parameters it would have if
declared implicitly (5.5). A named array constant defined by a PARAMETER statement shall have its
shape specified in a prior specification statement.

The value of each named constant is that specified by the corresponding initialization expression; if
necessary, the value is converted according to the rules of intrinsic assignment (7.2.1.3) to a value that
agrees in type, type parameters, and shape with the named constant.

NOTE 5.31
An example of a PARAMETER statement is:

PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100)

5.4.11 POINTER statement
R549 pointer-stmt is POINTER [:: | pointer-decl-list

R550 pointer-decl is object-name | (deferred-shape-spec-list)]
or proc-entity-name

The POINTER statement specifies the POINTER attribute (5.3.13) for a list of entities.

NOTE 5.32
An example of a POINTER statement is:

TYPE (NODE) :: CURRENT
POINTER :: CURRENT, A (:, :)

5.4.12 PROTECTED statement
R551 protected-stmt is PROTECTED [:: | entity-name-list

The PROTECTED statement specifies the PROTECTED attribute (5.3.14) for a list of entities.

5.4.13 SAVE statement
R552 save-stmt is SAVE [|] saved-entity-list]

R553 saved-entity is object-name
or proc-pointer-name
or / common-block-name /

Rb554 proc-pointer-name is name

C578 (Rb52) If a SAVE statement with an omitted saved entity list appears in a scoping unit, no
other appearance of the SAVE attr-spec or SAVE statement is permitted in that scoping unit.

118 Attribute declarations and specifications 5.4.10

10

11

12

13

14

15

16
17
18

19
20

21

22

23
24
25

26
27

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

A SAVE statement with a saved entity list specifies the SAVE attribute (5.3.15) for a list of entities. A
SAVE statement without a saved entity list is treated as though it contained the names of all allowed
items in the same scoping unit.

NOTE 5.33

An example of a SAVE statement is:

SAVE A, B, C, / BLOCKA /, D

5.4.14 TARGET statement

R555 target-stmt is TARGET [::] target-decl-list
R556 target-decl is object-name [(array-spec) | M

B [lbracket co-array-spec rbracket]
The TARGET statement specifies the TARGET attribute (5.3.16) for a list of objects.

NOTE 5.34
An example of a TARGET statement is:

TARGET :: A (1000, 1000), B

5.4.15 VALUE statement
R557 wvalue-stmt is VALUE [:: | dummy-arg-name-list

The VALUE statement specifies the VALUE attribute (5.3.17) for a list of dummy arguments.

5.4.16 VOLATILE statement
R558 wolatile-stmt is VOLATILE [:: | object-name-list

The VOLATILE statement specifies the VOLATILE attribute (5.3.18) for a list of objects.

5.5 IMPLICIT statement

In a scoping unit, an IMPLICIT statement specifies a type, and possibly type parameters, for all im-
plicitly typed data entities whose names begin with one of the letters specified in the statement. Alter-
natively, it may indicate that no implicit typing rules are to apply in a particular scoping unit.

R559 implicit-stmt is IMPLICIT implicit-spec-list

or IMPLICIT NONE
R560 implicit-spec is declaration-type-spec (letter-spec-list)
R561 letter-spec is letter | — letter |

C579 (R559) If IMPLICIT NONE is specified in a scoping unit, it shall precede any PARAMETER
statements that appear in the scoping unit and there shall be no other IMPLICIT statements
in the scoping unit.

C580 (R561) If the minus and second letter appear, the second letter shall follow the first letter
alphabetically.

5.4.14 Attribute declarations and specifications 119

A W N =

© 00 N O O

10

11
12
13
14
15
16
17
18
19

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

A letter-spec consisting of two letters separated by a minus is equivalent to writing a list containing all
of the letters in alphabetical order in the alphabetic sequence from the first letter through the second
letter. For example, A—C is equivalent to A, B, C. The same letter shall not appear as a single letter, or
be included in a range of letters, more than once in all of the IMPLICIT statements in a scoping unit.

In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z
and a type (and type parameters). An IMPLICIT statement specifies the mapping for the letters in
its letter-spec-list. IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is not
specified for a letter, the default for a program unit or an interface body is default integer if the letter
is I, J, ..., or N and default real otherwise, and the default for an internal or module procedure is the
mapping in the host scoping unit.

Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic
function, and is not accessed by use association or host association is declared implicitly to be of the
type (and type parameters) mapped from the first letter of its name, provided the mapping is not
null. The mapping for the first letter of the data entity shall either have been established by a prior
IMPLICIT statement or be the default mapping for the letter. The mapping may be to a derived type
that is inaccessible in the local scope if the derived type is accessible in the host scoping unit. The data
entity is treated as if it were declared in an explicit type declaration in the outermost scoping unit in
which it appears. An explicit type specification in a FUNCTION statement overrides an IMPLICIT
statement for the name of the result variable of that function subprogram.

NOTE 5.35
The following are examples of the use of IMPLICIT statements:

MODULE EXAMPLE_MODULE
IMPLICIT NONE

INTERFACE

FUNCTION FUN (I) ! Not all data entities need to
INTEGER FUN ! be declared explicitly

END FUNCTION FUN
END INTERFACE

CONTAINS
FUNCTION JFUN (J) ! A1l data entities need to
INTEGER JFUN, J ! be declared explicitly.

END FUNCTION JFUN
END MODULE EXAMPLE_MODULE
SUBROUTINE SUB
IMPLICIT COMPLEX (C)
C = (3.0, 2.0) ! C is implicitly declared COMPLEX
CONTAINS
SUBROUTINE SUB1
IMPLICIT INTEGER (A, C)
C = (0.0, 0.0) C is host associated and of

!
! type complex

0 ! Z is implicitly declared REAL
!
!

Z=1.
A=2 A is implicitly declared INTEGER
cC =1 CC is implicitly declared INTEGER

END SUBROUTINE SUB1
SUBROUTINE SUB2

120 Attribute declarations and specifications 5.5

~N o g~

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 5.35 (cont.)

Z=2.0 ! Z is implicitly declared REAL and
! is different from the variable of
! the same name in SUB1

END SUBROUTINE SUB2
SUBROUTINE SUB3
USE EXAMPLE_MODULE Accesses integer function FUN
by use association
Q is implicitly declared REAL and

K is implicitly declared INTEGER

Q = FUN (K)

END SUBROUTINE SUB3
END SUBROUTINE SUB

NOTE 5.36
The following is an example of a mapping to a derived type that is inaccessible in the local scope:

PROGRAM MAIN
IMPLICIT TYPE(BLOB) (4)
TYPE BLOB
INTEGER :: I
END TYPE BLOB
TYPE(BLOB) :: B
CALL STEVE
CONTAINS
SUBROUTINE STEVE
INTEGER :: BLOB

AA =B
END SUBROUTINE STEVE
END PROGRAM MAIN

In the subroutine STEVE, it is not possible to explicitly declare a variable to be of type BLOB
because BLOB has been given a different meaning, but implicit mapping for the letter A still maps
to type BLOB, so AA is of type BLOB.

5.6 NAMELIST statement

A NAMELIST statement specifies a group of named data objects, which may be referred to by a
single name for the purpose of data transfer (9.6, 10.11).

R562 namelist-stmt is NAMELIST m
B / namelist-group-name | namelist-group-object-list B
W [[,]/ namelist-group-name /A
B namelist-group-object-list | ...

C581 (R562) The namelist-group-name shall not be a name accessed by use association.

5.6 Attribute declarations and specifications 121

10

11
12
13
14
15

16

17

18

19
20

21
22
23

24

25

26
27
28

29
30
31
32
33

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

R563 namelist-group-object is wariable-name
C582 (R563) A namelist-group-object shall not be an assumed-size array.

C583 (R562) A namelist-group-object shall not have the PRIVATE attribute if the namelist-group-
name has the PUBLIC attribute.

The order in which the variables are specified in the NAMELIST statement determines the order in
which the values appear on output.

Any namelist-group-name may occur more than once in the NAMELIST statements in a scoping unit.
The namelist-group-object-list following each successive appearance of the same namelist-group-name in
a scoping unit is treated as a continuation of the list for that namelist-group-name.

A namelist group object may be a member of more than one namelist group.

A namelist group object shall either be accessed by use or host association or shall have its type, type
parameters, and shape specified by previous specification statements or the procedure heading in the
same scoping unit or by the implicit typing rules in effect for the scoping unit. If a namelist group object
is typed by the implicit typing rules, its appearance in any subsequent type declaration statement shall
confirm the implied type and type parameters.

NOTE 5.37
An example of a NAMELIST statement is:

NAMELIST /NLIST/ A, B, C

5.7 Storage association of data objects

5.7.1 EQUIVALENCE statement
5.7.1.1 General

An EQUIVALENCE statement is used to specify the sharing of storage units by two or more objects
in a scoping unit. This causes storage association (16.5.3) of the objects that share the storage units.

If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement does
not cause type conversion or imply mathematical equivalence. If a scalar and an array are equivalenced,
the scalar does not have array properties and the array does not have the properties of a scalar.

R564 equivalence-stmt is EQUIVALENCE equivalence-set-list
R565 equivalence-set is (equivalence-object , equivalence-object-list)
R566 equivalence-object is wariable-name

or array-element
or substring

C584 (R566) An equivalence-object shall not be a designator with a base object that is a dummy
argument, a pointer, an allocatable variable, a derived-type object that has an allocatable ulti-
mate component, an object of a nonsequence derived type, an object of a derived type that has
a pointer at any level of component selection, an automatic object, a function name, an entry
name, a result name, a variable with the BIND attribute, a variable in a common block that

122 Attribute declarations and specifications 5.7

10
11

12
13
14

15
16
17

18
19

20

21

C585
ChH86
Ch87

C588

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

has the BIND attribute, or a named constant.
(R566) An equivalence-object shall not be a designator that has more than one part-ref.
(R566) An equivalence-object shall not be a co-array or a subobject thereof.
(R566) An equivalence-object shall not have the TARGET attribute.

(R566) Each subscript or substring range expression in an equivalence-object shall be an integer
initialization expression (7.1.12).

C589 (R565) If an equivalence-object is of type default integer, default real, double precision real,

default complex, default logical, default bits, or numeric sequence type, all of the objects in the
equivalence set shall be of these types.

C590 (R565) If an equivalence-object is of type default character or character sequence type, all of the

objects in the equivalence set shall be of these types.

C591 (R565) If an equivalence-object is of a sequence type that is not a numeric sequence or character

sequence type, all of the objects in the equivalence set shall be of the same type with the same
type parameter values.

C592 (R565) If an equivalence-object is of an intrinsic type other than default integer, default real,

double precision real, default complex, default logical, or default character, all of the objects in
the equivalence set shall be of the same type with the same kind type parameter value.

C593 (R566) If an equivalence-object has the PROTECTED attribute, all of the objects in the equiv-

alence set shall have the PROTECTED attribute.

C594 (R566) The name of an equivalence-object shall not be a name made accessible by use association.

C595 (R566) A substring shall not have length zero.

NOTE 5.38

The EQUIVALENCE statement allows the equivalencing of sequence structures and the equiv-
alencing of objects of intrinsic type with nondefault type parameters, but there are strict rules
regarding the appearance of these objects in an EQUIVALENCE statement.

A structure that appears in an EQUIVALENCE statement shall be a sequence structure. If a
sequence structure is not of numeric sequence type or of character sequence type, it shall be
equivalenced only to objects of the same type with the same type parameter values.

A structure of a numeric sequence type shall be equivalenced only to another structure of a numeric
sequence type, an object of default integer type, default real type, double precision real type, default
complex type, default logical type, or default bits such that components of the structure ultimately
become associated only with objects of these types.

A structure of a character sequence type shall be equivalenced only to an object of default character
type or another structure of a character sequence type.

An object of intrinsic type with nondefault kind type parameters shall not be equivalenced to
objects of different type or kind type parameters.

Further rules on the interaction of EQUIVALENCE statements and default initialization are given
in 16.5.3.4.

5.7.1.2 Attribute declarations and specifications 123

N o o~ W N

10
11

12
13
14
15
16
17

18

19
20
21

22

23
24

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

5.7.1.2 Equivalence association

An EQUIVALENCE statement specifies that the storage sequences (16.5.3.2) of the data objects specified
in an equivalence-set are storage associated. All of the nonzero-sized sequences in the equivalence-set, if
any, have the same first storage unit, and all of the zero-sized sequences in the equivalence-set, if any,
are storage associated with one another and with the first storage unit of any nonzero-sized sequences.
This causes the storage association of the data objects in the equivalence-set and may cause storage
association of other data objects.

5.7.1.3 Equivalence of default character objects

A data object of type default character shall not be equivalenced to an object that is not of type default
character and not of a character sequence type. The lengths of equivalenced default character objects
need not be the same.

An EQUIVALENCE statement specifies that the storage sequences of all the default character data
objects specified in an equivalence-set are storage associated. All of the nonzero-sized sequences in the
equivalence-set, if any, have the same first character storage unit, and all of the zero-sized sequences in
the equivalence-set, if any, are storage associated with one another and with the first character storage
unit of any nonzero-sized sequences. This causes the storage association of the data objects in the
equivalence-set and may cause storage association of other data objects.

NOTE 5.39
For example, using the declarations:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

the association of A, B, and C can be illustrated graphically as:

5.7.1.4 Array names and array element designators

For a nonzero-sized array, the use of the array name unqualified by a subscript list as an equivalence-
object has the same effect as using an array element designator that identifies the first element of the
array.

5.7.1.5 Restrictions on EQUIVALENCE statements

An EQUIVALENCE statement shall not specify that the same storage unit is to occur more than once
in a storage sequence.

NOTE 5.40
For example:

REAL, DIMENSION (2) :: A
REAL :: B
EQUIVALENCE (A (1), B), (A (2), B) ! Not standard-conforming

is prohibited, because it would specify the same storage unit for A (1) and A (2).

124 Attribute declarations and specifications 5.7.1.3

1

10
11

12
13

14

15
16

17
18
19

20
21

22
23

24
25
26
27
28
29

30
31
32
33
34

35

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

2 An EQUIVALENCE statement shall not specify that consecutive storage units are to be nonconsecutive.

NOTE 5.41
For example, the following is prohibited:

REAL A (2)
DOUBLE PRECISION D (2)
EQUIVALENCE (A (1), D (1)), (A (2), D (2)) ! Not standard-conforming

5.7.2 COMMON statement
5.7.2.1 General

The COMMON statement specifies blocks of physical storage, called common blocks, that can be
accessed by any of the scoping units in a program. Thus, the COMMON statement provides a global
data facility based on storage association (16.5.3).

A common block that does not have a name is called blank common.

R567 common-stmt is COMMON m
B [/ [common-block-name | /] common-block-object-list B
W [[,]/ [common-block-name] /M

B common-block-object-list | ...

R568 common-block-object is wariable-name [(array-spec)]
or proc-pointer-name

C596 (R568) An array-spec in a common-block-object shall be an explicit-shape-spec-list.

C597 (R568) Only one appearance of a given variable-name or proc-pointer-name is permitted in all
common-block-object-lists within a scoping unit.

C598 (R568) A common-block-object shall not be a dummy argument, an allocatable variable, a
derived-type object with an ultimate component that is allocatable, an automatic object, a
function name, an entry name, a variable with the BIND attribute, a co-array, or a result name.

C599 (R568) If a common-block-object is of a derived type, the type shall have the BIND attribute or
the SEQUENCE attribute and it shall have no default initialization.

C5100 (R568) A wariable-name or proc-pointer-name shall not be a name made accessible by use
association.

In each COMMON statement, the data objects whose names appear in a common block object list
following a common block name are declared to be in that common block. If the first common block
name is omitted, all data objects whose names appear in the first common block object list are specified to
be in blank common. Alternatively, the appearance of two slashes with no common block name between
them declares the data objects whose names appear in the common block object list that follows to be
in blank common.

Any common block name or an omitted common block name for blank common may occur more than
once in one or more COMMON statements in a scoping unit. The common block list following each
successive appearance of the same common block name in a scoping unit is treated as a continuation of
the list for that common block name. Similarly, each blank common block object list in a scoping unit
is treated as a continuation of blank common.

The form variable-name (array-spec) specifies the DIMENSION attribute for that variable.

5.7.2 Attribute declarations and specifications 125

© 00 N o O«

10
11
12

13
14

15

16
17

18

19
20
21
22
23
24
25
26

27
28
29

30
31

32
33

34
35
36

37

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

If derived-type objects of numeric sequence type (4.5.2) or character sequence type (4.5.2) appear in
common, it is as if the individual components were enumerated directly in the common list.

NOTE 5.42
Examples of COMMON statements are:

COMMON /BLOCKA/ A, B, D (10, 30)
COMMON I, J, K

5.7.2.2 Common block storage sequence

For each common block in a scoping unit, a common block storage sequence is formed as follows:

(1) A storage sequence is formed consisting of the sequence of storage units in the storage
sequences (16.5.3.2) of all data objects in the common block object lists for the common
block. The order of the storage sequences is the same as the order of the appearance of the
common block object lists in the scoping unit.

(2) The storage sequence formed in (1) is extended to include all storage units of any storage
sequence associated with it by equivalence association. The sequence shall be extended only
by adding storage units beyond the last storage unit. Data objects associated with an entity
in a common block are considered to be in that common block.

Only COMMON statements and EQUIVALENCE statements appearing in the scoping unit contribute
to common block storage sequences formed in that scoping unit.

5.7.2.3 Size of a common block

The size of a common block is the size of its common block storage sequence, including any extensions
of the sequence resulting from equivalence association.

5.7.2.4 Common association

Within a program, the common block storage sequences of all nonzero-sized common blocks with the
same name have the same first storage unit, and the common block storage sequences of all zero-sized
common blocks with the same name are storage associated with one another. Within a program, the
common block storage sequences of all nonzero-sized blank common blocks have the same first storage
unit and the storage sequences of all zero-sized blank common blocks are associated with one another and
with the first storage unit of any nonzero-sized blank common blocks. This results in the association of
objects in different scoping units. Use association or host association may cause these associated objects
to be accessible in the same scoping unit.

A nonpointer object of default integer type, default real type, double precision real type, default complex
type, default logical type, or numeric sequence type shall be associated only with nonpointer objects of
these types.

A nonpointer object of type default character or character sequence type shall be associated only with
nonpointer objects of these types.

A nonpointer object of a derived type that is not a numeric sequence or character sequence type shall
be associated only with nonpointer objects of the same type with the same type parameter values.

A nonpointer object of intrinsic type other than default integer, default real, double precision real,
default complex, default logical, or default character shall be associated only with nonpointer objects of
the same type and type parameters.

A data pointer shall be storage associated only with data pointers of the same type and rank. Data

126 Attribute declarations and specifications 5.7.2.2

g~ W N =

10
11
12
13
14
15
16
17

18

19
20

21
22

23
24
25

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

pointers that are storage associated shall have deferred the same type parameters; corresponding non-
deferred type parameters shall have the same value. A procedure pointer shall be storage associated
only with another procedure pointer; either both interfaces shall be explicit or both interfaces shall be
implicit. If the interfaces are explicit, the characteristics shall be the same. If the interfaces are implicit,
either both shall be subroutines or both shall be functions with the same type and type parameters.

An object with the TARGET attribute shall be storage associated only with another object that has
the TARGET attribute and the same type and type parameters.

NOTE 5.43

A common block is permitted to contain sequences of different storage units, provided each scoping
unit that accesses the common block specifies an identical sequence of storage units for the common
block. For example, this allows a single common block to contain both numeric and character
storage units.

Association in different scoping units between objects of default type, objects of double precision
real type, and sequence structures is permitted according to the rules for equivalence objects
(5.7.1).

5.7.2.5 Differences between named common and blank common

1 A blank common block has the same properties as a named common block, except for the following.

e Execution of a RETURN or END statement might cause data objects in a named common block
to become undefined unless the common block has the SAVE attribute, but never causes data
objects in blank common to become undefined (16.6.6).

e Named common blocks of the same name shall be of the same size in all scoping units of a program
in which they appear, but blank common blocks may be of different sizes.

e A data object in a named common block may be initially defined by means of a DATA statement
or type declaration statement in a block data program unit (11.3), but objects in blank common
shall not be initially defined.

5.7.3 Restrictions on common and equivalence

An EQUIVALENCE statement shall not cause the storage sequences of two different common blocks to
be associated.

Equivalence association shall not cause a derived-type object with default initialization to be associated
with an object in a common block.

Equivalence association shall not cause a common block storage sequence to be extended by adding
storage units preceding the first storage unit of the first object specified in a COMMON statement for
the common block.

NOTE 5.44

For example, the following is not permitted:

COMMON /X/ A
REAL B (2)
EQUIVALENCE (A, B (2)) ! Not standard-conforming

5.7.2.5 Attribute declarations and specifications 127

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

128 Attribute declarations and specifications 5.7.3

0 N o o~ W

10

11
12

13

14

15

16
17
18

19

20

21

22

23

24

25

26

27

28

29

30

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

6 Use of data objects

6.1 Designator

R601 designator is object-name
or array-element
or array-section
or complex-part-designator
or structure-component
or substring

The appearance of a data object designator in a context that requires its value is termed a reference.

6.2 Variable

R602 wariable is designator
or expr

C601 (R602) designator shall not be a constant or a subobject of a constant.
C602 (R602) expr shall be a reference to a function that has a pointer result.

A variable is either the data object denoted by designator or the target of expr.

A reference is permitted only if the variable is defined. A reference to a data pointer is permitted only
if the pointer is associated with a target object that is defined. A data object becomes defined with a

value when events described in 16.6.5 occur.

R603 wariable-name is name

C603 (R603) variable-name shall be the name of a variable.

R604 logical-variable is wariable

C604 (R604) logical-variable shall be of type logical.

R605 default-logical-variable is wariable

C605 (R605) default-logical-variable shall be of type default logical.
R606 char-variable is wariable

C606 (R606) char-variable shall be of type character.

R607 default-char-variable is wariable

C607 (R607) default-char-variable shall be of type default character.
R608 int-variable is wariable

C608 (R608) int-variable shall be of type integer.

6 Use of data objects 129

g~ W N

10
11
12
13

14

15

16
17
18

19
20
21
22
23
24

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 6.1
For example, given the declarations:

CHARACTER (10) A, B (10)
TYPE (PERSON) P ! See Note 4.19

then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables.

6.3 Constants

A constant (3.2.3) is a literal constant or a named constant. A literal constant is a scalar denoted by a
syntactic form, which indicates its type, type parameters, and value. A named constant is a constant
that has a name; the name has the PARAMETER attribute (5.3.12, 5.4.10). A reference to a constant
is always permitted; redefinition of a constant is never permitted.

6.4 Scalars

6.4.1 Substrings

A substring is a contiguous portion of a character string (4.4.5).
R609 substring is parent-string (substring-range)

R610 parent-string is scalar-variable-name
or array-element
or scalar-structure-component
or scalar-constant

R611 substring-range is [scalar-int-expr | : [scalar-int-expr |
C609 (R610) parent-string shall be of type character.

The value of the first scalar-int-expr in substring-range is called the starting point and the value of
the second one is called the ending point. The length of a substring is the number of characters in the
substring and is MAX (I — f 4+ 1, 0), where f and [are the starting and ending points, respectively.

Let the characters in the parent string be numbered 1, 2, 3, ..., n, where n is the length of the parent
string. Then the characters in the substring are those from the parent string from the starting point and
proceeding in sequence up to and including the ending point. Both the starting point and the ending
point shall be within the range 1, 2, ..., n unless the starting point exceeds the ending point, in which
case the substring has length zero. If the starting point is not specified, the default value is 1. If the
ending point is not specified, the default value is n.

NOTE 6.2
Examples of character substrings are:

B(1)(1:5) array element as parent string
PYNAME(1:1) structure component as parent string
ID(4:9) scalar variable name as parent string
70123456789 (N:N) character constant as parent string

130 Use of data objects 6.3

10

11
12

13
14

15

16

17
18

19
20

21
22

23

24
25
26
27

28

29
30

31
32

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

6.4.2 Structure components

A structure component is part of an object of derived type; it may be referenced by an object designator.
A structure component may be a scalar or an array.

R612 data-ref is part-ref | % part-ref] ...
R613 part-ref is part-name [(section-subscript-list) | [image-selector |
C610 (R612) Each part-name except the rightmost shall be of derived type.

C611 (R612) Each part-name except the leftmost shall be the name of a component of the declared
type of the preceding part-name.

C612 (R612) If the rightmost part-name is of abstract type, data-ref shall be polymorphic.
C613 (R612) The leftmost part-name shall be the name of a data object.

C614 (R613) If a section-subscript-list appears, the number of section-subscripts shall equal the rank
of part-name.

C615 (R613) If image-selector appears, the number of co-subscripts shall be equal to the co-rank of
part-name.

C616 (R613) If image-selector appears and part-name is an array, section-subscript-list shall appear.
C617 (R612) If image-selector appears, data-ref shall not be of type C_.PTR or C_FUNPTR (15.3.3).

The rank of a part-ref of the form part-name is the rank of part-name. The rank of a part-ref that has
a section subscript list is the number of subscript triplets and vector subscripts in the list.

C618 (R612) There shall not be more than one part-ref with nonzero rank. A part-name to the right
of a part-ref with nonzero rank shall not have the ALLOCATABLE or POINTER attribute.

The rank of a data-ref is the rank of the part-ref with nonzero rank, if any; otherwise, the rank is zero.
The base object of a data-ref is the data object whose name is the leftmost part name.

The type and type parameters, if any, of a data-ref are those of the rightmost part name.

A data-ref with more than one part-ref is a subobject of its base object if none of the part-names,
except for possibly the rightmost, are pointers. If the rightmost part-name is the only pointer, then the
data-ref is a subobject of its base object in contexts that pertain to its pointer association status but
not in any other contexts.

NOTE 6.3

If X is an object of derived type with a pointer component P, then the pointer X%P is a subobject
of X when considered as a pointer — that is in contexts where it is not dereferenced.

However the target of X%P is not a subobject of X. Thus, in contexts where X%P is dereferenced
to refer to the target, it is not a subobject of X.

R614 structure-component is data-ref

C619 (R614) There shall be more than one part-ref and the rightmost part-ref shall be of the form
part-name.

A structure component shall be neither referenced nor defined before the declaration of the base object.
A structure component is a pointer only if the rightmost part name is defined to have the POINTER

6.4.2 Use of data objects 131

1

N

10

11

12
13

14

15
16

17
18

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

attribute.

NOTE 6.4

Examples of structure components are:

SCALAR_PARENTY,SCALAR_FIELD scalar component of scalar parent
ARRAY_PARENT (J) % SCALAR_FIELD component of array element parent
ARRAY_PARENT(1:N)%SCALAR_FIELD component of array section parent

For a more elaborate example see C.4.1.

NOTE 6.5

The syntax rules are structured such that a data-ref that ends in a component name without a
following subscript list is a structure component, even when other component names in the data-
ref are followed by a subscript list. A data-ref that ends in a component name with a following
subscript list is either an array element or an array section. A data-ref of nonzero rank that ends
with a substring-range is an array section. A data-ref of zero rank that ends with a substring-range
is a substring.

7 A subcomponent of an object of derived type is a component of that object or of a subobject of that

object.

6.4.3 Complex parts

R615 complex-part-designator is designator % RE
or designator % IM

C620 (R615) The designator shall be of complex type.

If complex-part-designator is designator %RE it designates the real part of designator. If it is designa-
tor%IM it designates the imaginary part of designator. The type of a complez-part-designator is real,
and its kind and shape are those of the designator.

NOTE 6.6
The following are examples of complex part designators:

impedancelre !-- Same value as REAL(impedance)
fftim !-— Same value as AIMAG(fft)
x%im = 0.0 !-- Sets the imaginary part of X to zero

6.4.4 Type parameter inquiry

A type parameter inquiry is used to inquire about a type parameter of a data object. It applies to both
intrinsic and derived types.

R616 type-param-inquiry is designator % type-param-name

C621 (R616) The type-param-name shall be the name of a type parameter of the declared type of the
object designated by the designator.

A deferred type parameter of a pointer that is not associated or of an unallocated allocatable variable
shall not be inquired about.

132 Use of data objects 6.4.3

10
11
12

13

14

15

16

17
18

19
20
21

22

23

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 6.7

A type-param-inquiry has a syntax like that of a structure component reference, but it does not
have the same semantics. It is not a variable and thus can never be assigned to. It may be used
only as a primary in an expression. It is scalar even if designator is an array.

The intrinsic type parameters can also be inquired about by using the intrinsic functions KIND
and LEN.

NOTE 6.8
The following are examples of type parameter inquiries:

a%kind !-- A is real. Same value as KIND(a).
s/len !-- S is character. Same value as LEN(s).
b(10)%kind !-- Inquiry about an array element.

phdim !-— P is of the derived type general_point.

See Note 4.26 for the definition of the general_point type used in the last example above.

6.5 Arrays

6.5.1 Order of reference

No order of reference to the elements of an array is indicated by the appearance of the array designator,
except where array element ordering (6.5.3.2) is specified.

6.5.2 Whole arrays

A whole array is a named array, which may be either a named constant (5.3.12, 5.4.10) or a variable;
no subscript list is appended to the name.

The appearance of a whole array variable in an executable construct specifies all the elements of the
array (2.5.6). The appearance of a whole array name in a nonexecutable statement specifies the entire
array except for the appearance of a whole array name in an equivalence set (5.7.1.4). An assumed-size
array is permitted to appear as a whole array in an executable construct or specification expression only
as an actual argument in a procedure reference that does not require the shape.

6.5.3 Array elements and array sections

6.5.3.1 Syntax

R617 array-element is data-ref

C622 (R617) Every part-ref shall have rank zero and the last part-ref shall contain a subscript-list.

R618 array-section is data-ref [(substring-range) |
or complex-part-designator

C623 (R618) Exactly one part-ref shall have nonzero rank, and either the final part-ref shall have
a section-subscript-list with nonzero rank, another part-ref shall have nonzero rank, or the
complex-part-designator shall be an array.

C624 (R618) If a substring-range appears, the rightmost part-name shall be of type character.

R619 subscript is scalar-int-expr

6.5 Use of data objects 133

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

1 R620 section-subscript is subscript

2 or subscript-triplet

3 or wvector-subscript

4 R621 subscript-triplet is [subscript] : [subscript] [: stride]

5 R622 stride is scalar-int-expr

6 R623 wector-subscript is int-expr

7 C625 (R623) A vector-subscript shall be an integer array expression of rank one.

8 C626 (R621) The second subscript shall not be omitted from a subscript-triplet in the last dimension
9 of an assumed-size array.

10 1 An array element is a scalar. An array section is an array. If a substring-range appears in an array-
11 section, each element is the designated substring of the corresponding element of the array section.

12 2 The value of a subscript in an array element shall be within the bounds for its dimension.

NOTE 6.9

For example, with the declarations:

REAL A (10, 10)
CHARACTER (LEN = 10) B (5, 5, 5)

A (1, 2) is an array element, A (1:N:2, M) is a rank-one array section, and B (:, :, :) (2:3) is an
array of shape (5, 5, 5) whose elements are substrings of length 2 of the corresponding elements of
B.

NOTE 6.10

Unless otherwise specified, an array element or array section does not have an attribute of the
whole array. In particular, an array element or an array section does not have the POINTER or
ALLOCATABLE attribute.

NOTE 6.11
Examples of array elements and array sections are:

ARRAY_A(1:N:2)%ARRAY_B(I, J)%STRING(K) (:) array section
SCALAR_PARENT%ARRAY_FIELD(J) array element
SCALAR_PARENTY%ARRAY_FIELD(1:N) array section

SCALAR_PARENTY%ARRAY_FIELD(1:N)%SCALAR_FIELD array section

13 6.5.3.2 Array element order

14 1 The elements of an array form a sequence known as the array element order. The position of an array
15 element in this sequence is determined by the subscript order value of the subscript list designating the
16 element. The subscript order value is computed from the formulas in Table 6.1.

Table 6.1: Subscript order value

Rank Subscript bounds Subscript list Subscript order value
1 jllkl S1 1 + (81 — j1)

. . 1+ (81 — j1)
2 :k1,72:k 81,8 .

J1:R1,J2:R2 1,52 +(s2 — ja) X dy

134 Use of data objects 6.5.3.2

S O W N

~

10
11
12

13

14
15
16
17
18

19

20
21
22
23

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Subscript order value (cont.)
Rank Subscript bounds Subscript list Subscript order value
1T+ (s1—J1)
3 Jiiki, jo:ka, jaiks 51,82, 83 +(s2 = j2) X dy

(53 — j3) X dp x dy

1+ (s1—J1)

+(s52 = j2) X d1
+(s3 — Jj3) X da x dy
+...

+(s15 — j15) X d1a
Xdlg X ... X d1

15 jllkl,...7j15:k15 S1,-..,9515

Notes for Table 6.1:
1) d; = max (k; —j; +1, 0) is the size of the ith dimension.
2) If the size of the array is nonzero, j; < s; < k; for all
i=1,2, .. 15.

6.5.3.3 Array sections

In an array-section having a section-subscript-list, each subscript-triplet and wvector-subscript in the
section subscript list indicates a sequence of subscripts, which may be empty. Each subscript in such a
sequence shall be within the bounds for its dimension unless the sequence is empty. The array section is
the set of elements from the array determined by all possible subscript lists obtainable from the single
subscripts or sequences of subscripts specified by each section subscript.

In an array-section with no section-subscript-list, the rank and shape of the array is the rank and shape
of the part-ref with nonzero rank; otherwise, the rank of the array section is the number of subscript
triplets and vector subscripts in the section subscript list. The shape is the rank-one array whose ith
element is the number of integer values in the sequence indicated by the ith subscript triplet or vector
subscript. If any of these sequences is empty, the array section has size zero. The subscript order of the
elements of an array section is that of the array data object that the array section represents.

6.5.3.3.1 Subscript triplet

A subscript triplet designates a regular sequence of subscripts consisting of zero or more subscript values.
The third expression in the subscript triplet is the increment between the subscript values and is called
the stride. The subscripts and stride of a subscript triplet are optional. An omitted first subscript in a
subscript triplet is equivalent to a subscript whose value is the lower bound for the array and an omitted
second subscript is equivalent to the upper bound. An omitted stride is equivalent to a stride of 1.

The stride shall not be zero.

When the stride is positive, the subscripts specified by a triplet form a regularly spaced sequence of
integers beginning with the first subscript and proceeding in increments of the stride to the largest such
integer not greater than the second subscript; the sequence is empty if the first subscript is greater than
the second.

NOTE 6.12

For example, suppose an array is declared as A (5, 4, 3). The section A (3 : 5,2, 1 : 2) is the array
of shape (3, 2):

6.5.3.3 Use of data objects 135

1

10

11

ISO

JIEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 6.12 (cont.)

A (3, 2, 1) A (3, 2, 2)
A (4, 2, 1) A (4, 2, 2)
A (5, 2, 1) A (5, 2, 2)

4 When the stride is negative, the sequence begins with the first subscript and proceeds in increments of
the stride down to the smallest such integer equal to or greater than the second subscript; the sequence
is empty if the second subscript is greater than the first.

NOTE 6.13

For example, if an array is declared B (10), the section B (9 : 1 : —2) is the array of shape (5)
whose elements are B (9), B (7), B (5), B (3), and B (1), in that order.

NOTE 6.14

A subscript in a subscript triplet need not be within the declared bounds for that dimension if all
values used in selecting the array elements are within the declared bounds.

For example, if an array is declared as B (10), the array section B (3 : 11 : 7) is the array of shape
(2) consisting of the elements B (3) and B (10), in that order.

6.5.3.3.2 Vector subscript

1 A vector subscript designates a sequence of subscripts corresponding to the values of the elements
of the expression. Each element of the expression shall be defined. A many-one array section is an
array section with a vector subscript having two or more elements with the same value.

2 An array section with a vector subscript shall not be argument associated with a dummy array that

is de

fined or redefined. An array section with a vector subscript shall not be the target in a pointer

assignment statement. An array section with a vector subscript shall not be an internal file.

3 A many-one array section shall not appear in a variable definition context (16.6.7).

NOTE 6.15

For example, suppose Z is a two-dimensional array of shape [5, 7] and U and V are one-dimensional
arrays of shape (3) and (4), respectively. Assume the values of U and V are:

u=1[1,3,2]
V=[2: 1’ 1,3]

Then Z (3, V) consists of elements from the third row of Z in the order:
Z (3,2 zZ@,1 Z(@,1) 1z, 3

and Z (U, 2) consists of the column elements:

Z (1, 2) Z (3, 2) zZ (2, 2)

and Z (U, V) consists of the elements:

Z (1, 2) Z (1, 1 Z (1, 1 Z (1, 3)

z2@,2 z@G 1 z@ 1 Z@G, 3
z (2,2 z@@, 1) Z@, 1 z(@2,3

Because Z (3, V) and Z (U, V) contain duplicate elements from Z, the sections Z (3, V) and

136

Use of data objects 6.5.3.3

N

10
11

12
13
14
15

16
17

18
19

20
21

22

23

24

25

26
27
28

13/07-007r2:2007 /06,05

NOTE 6.15 (cont.)

WD 1539-1 ISO/IEC SC22/WG5/N1678

‘ Z (U, V) shall not be redefined as sections. ‘

6.5.4 Simply contiguous array designators

1 A section-subscript-list specifies a simply contiguous section if and only if it does not have a vector

subscript and

e all but the last subscript-triplet is a colon,

e the last subscript-triplet does not have a stride, and

e no subscript-triplet is preceded by a section-subscript that is a subscript.

2 An array designator is simply contiguous if and only if it is

e an object-name that has the CONTIGUOUS attribute,
e an object-name that is not a pointer or assumed-shape,

e a structure-component whose final part-name is an array and that either has the CONTIGUOUS
attribute or is not a pointer, or

e an array section

— that is not a complex-part-designator,

— that does not have a substring-range,

— whose final part-ref has nonzero rank,
— whose rightmost part-name has the CONTIGUOUS attribute or is neither assumed-shape

nor a pointer, and

— which either does not have a section-subscript-list, or has a section-subscript-list which spec-
ifies a simply contiguous section.

3 An array wariable is simply contiguous if and only if it is a simply contiguous array designator or a
reference to a function that returns a pointer with the CONTIGUOUS attribute.

NOTE 6.16

ARRAY1 (10:20, 3)

!
X3D (:, i:j, 2) !
!
!

YSD (:, :, :, :, T)

Array sections that are simply contiguous include column, plane, cube, and hypercube subobjects
of a simply contiguous base object, for example:

All simply contiguous designators designate contiguous objects.

passes part of the third column of ARRAY1.

passes part of the second plane of X3D (or the whole
plane if i==LBOUND(X3D,2) and j==UBOUND(X3D,2).
passes the seventh hypercube of Y5D.

6.5.5 Image selectors

1 An image selector specifies the image index for co-array data.

R624 image-selector

R625 co-subscript

is Ibracket co-subscript-list rbracket

is scalar-int-expr

2 The number of co-subscripts shall be equal to the co-rank of the object. The value of a co-subscript in
an image selector shall be within the co-bounds for its co-dimension. Taking account of the co-bounds,
the co-subscript list in an image selector determines the image index in the same way that a subscript

6.5.4

Use of data objects 137

10
11
12

13

14

15

16
17

18
19

20

21

22

23

ISO/IEC SC22/WG5/N1678

WD 1539-1

J3/07-007r2:2007,/06,/05

list in an array element determines the subscript order value (6.5.3.2), taking account of the bounds. An

image selector shall specify an image index value that is not greater than the number of images.

NOTE 6.17

REAL :: A(10) [5,%*]

For example, if there are 16 images and the co-array A is declared

A(:)[1,4] is valid because it specifies image 16, but A(:)[2,4] is invalid because it specifies image 17.

6.6 Dynamic association

6.6.1 ALLOCATE statement

6.6.1.1 Syntax

The ALLOCATE statement dynamically creates pointer targets and allocatable variables.

R626

R627

R628
R629
R630

R631

R632

R633
R634
R635

R636

138

allocate-stmt

alloc-opt

stat-variable
errmsg-variable
source-expr

allocation

allocate-object

allocate-shape-spec
lower-bound-expr
upper-bound-expr

allocate-co-array-spec

is

is

or
or
or

is
is
is
is
is
or
is
is
is

is

ALLOCATE ([type-spec :: | allocation-list B
W |, alloc-opt-list])

ERRMSG = errmsg-variable
MOLD = source-expr
SOURCE = source-expr
STAT = stat-variable

scalar-int-variable
scalar-default-char-variable
expr

allocate-object | (allocate-shape-spec-list) | M
B [lbracket allocate-co-array-spec rbracket |

variable-name
structure-component

[lower-bound-expr : | upper-bound-expr
scalar-int-expr

scalar-int-expr

[allocate-co-shape-spec-list , | [lower-bound-expr :

Use of data objects

6.6

10

11
12
13

14

15
16
17

18

19

20
21

22
23

24

25
26

27
28

29

30

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R637 allocate-co-shape-spec is [lower-bound-expr : | upper-bound-expr

C627 (R632) Each allocate-object shall be a nonprocedure pointer or an allocatable variable.

C628 (R626) If any allocate-object has a deferred type parameter, is unlimited polymorphic, or is of
abstract type, either type-spec or source-expr shall appear.

C629 (R626) If type-spec appears, it shall specify a type with which each allocate-object is type com-
patible.

C630 (R626) A type-param-value in a type-spec shall be an asterisk if and only if each allocate-object
is a dummy argument for which the corresponding type parameter is assumed.

C631 (R626) If type-spec appears, the kind type parameter values of each allocate-object shall be the
same as the corresponding type parameter values of the type-spec.

C632 (R631) If allocate-object is an array either allocate-shape-spec-list shall appear or source-expr
shall appear and have the same rank as allocate-object. If allocate-object is scalar, allocate-
shape-spec-list shall not appear.

€633 (R631) An allocate-co-array-spec shall appear if and only if the allocate-object is a co-array.

C634 (R631) The number of allocate-shape-specs in an allocate-shape-spec-list shall be the same as the
rank of the allocate-object. The number of allocate-co-shape-specs in an allocate-co-array-spec
shall be one less than the co-rank of the allocate-object.

C635 (R627) No alloc-opt shall appear more than once in a given alloc-opt-list.

C636 (R626) At most one of source-expr and type-spec shall appear.

C637 (R626) Each allocate-object shall be type compatible (4.3.1.3) with source-ezpr. If SOURCE=
appears, source-expr shall be a scalar or have the same rank as each allocate-object.

C638 (R626) Corresponding kind type parameters of allocate-object and source-expr shall have the
same values.

C639 (R626) type-spec shall not specify a type that has a co-array ultimate component.

C640 (R626) type-spec shall not specify the type C_PTR or C_FUNPTR if an allocate-object is a
co-array.

C641 (R626) The declared type of source-expr shall not be C_ PTR or C_FUNPTR if an allocate-object
is a co-array.

C642 (R630) The declared type of source-expr shall not have a co-array ultimate component.

C643 (R632) An allocate-object shall not be a co-indexed object.

NOTE 6.18

If a co-array is of a derived type that has an allocatable component, the component shall be
allocated by its own image:

TYPE(SOMETHING) , ALLOCATABLE :: T[:]

ALLOCATE(T[*]) !
ALLOCATE(T%AAC(N)) ! Allowed - allocated by its own image
ALLOCATE(T[Q]%AAC(N)) !

!

Allowed - implies synchronization

Not allowed, because it is not
necessarily executed on image Q.

6.6.1.1 Use of data objects 139

10

11
12
13
14

15
16
17

18

19
20
21
22
23

24
25
26
27

28
29
30
31

32
33
34

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

An allocate-object or a bound or type parameter of an allocate-object shall not depend on the value of
stat-variable, the value of errmsg-variable, or on the value, bounds, length type parameters, allocation
status, or association status of any allocate-object in the same ALLOCATE statement.

source-expr shall not be allocated within the ALLOCATE statement in which it appears; nor shall it
depend on the value, bounds, deferred type parameters, allocation status, or association status of any
allocate-object in that statement.

If type-spec is specified, each allocate-object is allocated with the specified dynamic type and type pa-
rameter values; if source-expr is specified, each allocate-object is allocated with the dynamic type and
type parameter values of source-expr; otherwise, each allocate-object is allocated with its dynamic type
the same as its declared type.

If type-spec appears and the value of a type parameter it specifies differs from the value of the corre-
sponding nondeferred type parameter specified in the declaration of any allocate-object, an error condition
occurs. If the value of a nondeferred length type parameter of an allocate-object differs from the value
of the corresponding type parameter of source-expr, an error condition occurs.

If a type-param-value in a type-spec in an ALLOCATE statement is an asterisk, it denotes the current
value of that assumed type parameter. If it is an expression, subsequent redefinition or undefinition of
any entity in the expression does not affect the type parameter value.

NOTE 6.19
An example of an ALLOCATE statement is:

ALLOCATE (X (N), B (-3 : M, 0:9), STAT = IERR_ALLOC)

6.6.1.2 Execution of an ALLOCATE statement

When an ALLOCATE statement is executed for an array for which allocate-shape-spec-list is specified,
the values of the lower bound and upper bound expressions determine the bounds of the array. Subse-
quent redefinition or undefinition of any entities in the bound expressions do not affect the array bounds.
If the lower bound is omitted, the default value is 1. If the upper bound is less than the lower bound,
the extent in that dimension is zero and the array has zero size.

When an ALLOCATE statement is executed for a co-array, the values of the lower co-bound and upper
co-bound expressions determine the co-bounds of the co-array. Subsequent redefinition or undefinition
of any entities in the co-bound expressions do not affect the co-bounds. If the lower co-bound is omitted,
the default value is 1. The upper co-bound shall not be less than the lower co-bound.

If an allocation specifies a co-array, its dynamic type and the values of corresponding type parameters
shall be the same on each image. The values of corresponding bounds and corresponding co-bounds
shall be the same on each image. If the co-array is a dummy argument, its ultimate argument (12.5.2.3)
shall be the same co-array on every image.

There is implicit synchronization of all images in association with each ALLOCATE statement that
allocates one or more co-arrays. On each image, execution of the segment (8.5.1) following the statement
is delayed until all other images have executed the same statement the same number of times.

NOTE 6.20

When an image executes an ALLOCATE statement, communication is not necessarily involved
apart from any required for synchronization. The image allocates its co-array and records how
the corresponding co-arrays on other images are to be addressed. The processor is not required
to detect violations of the rule that the bounds are the same on all images, nor is it responsible
for detecting or resolving deadlock problems (such as two images waiting on different ALLOCATE

140 Use of data objects 6.6.1.2

[&)]

© 0 N O

10

11

12

13
14

15

16

17

18
19
20
21
22
23
24
25
26
27
28
29

30

31
32
33

34
35
36

37
38

10

11

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 6.20 (cont.)

‘ statements). ‘

If source-expr is a pointer, it shall be associated with a target. If source-expr is allocatable, it shall be
allocated.

When an ALLOCATE statement is executed for an array with no allocate-shape-spec-list, the bounds
of source-expr determine the bounds of the array. Subsequent changes to the bounds of source-expr do
not affect the array bounds.

If SOURCE= appears, source-expr shall be conformable (2.5.6) with allocation. If the value of a non-
deferred length type parameter of allocate-object is different from the value of the corresponding type
parameter of source-expr, an error condition occurs. On successful allocation, if allocate-object and
source-expr have the same rank the value of allocate-object becomes that of source-expr, otherwise the
value of each element of allocate-object becomes that of source-expr.

If MOLD= appears and source-expr is a variable, its value need not be defined.
The STAT= specifier is described in 6.6.4.

If an error condition occurs during execution of an ALLOCATE statement that does not contain the
STAT= specifier, error termination is initiated.

The ERRMSG= specifier is described in 6.6.5.

6.6.1.3 Allocation of allocatable variables

The allocation status of an allocatable entity is one of the following at any time.

e The status of an allocatable variable becomes allocated if it is allocated by an ALLOCATE
statement, if it is allocated during assignment, or if it is given that status by the intrinsic subroutine
MOVE_ALLOC(13.7.126). An allocatable variable with this status may be referenced, defined, or
deallocated; allocating it causes an error condition in the ALLOCATE statement. The intrinsic
function ALLOCATED(13.7.11) returns true for such a variable.

e An allocatable variable has a status of unallocated if it is not allocated. The status of an al-
locatable variable becomes unallocated if it is deallocated (6.6.3) or if it is given that status by
the allocation transfer procedure. An allocatable variable with this status shall not be referenced
or defined. It shall not be supplied as an actual argument corresponding to a nonallocatable
dummy argument, except to certain intrinsic inquiry functions. It may be allocated with the AL-
LOCATE statement. Deallocating it causes an error condition in the DEALLOCATE statement.
The intrinsic function ALLOCATED(13.7.11) returns false for such a variable.

At the beginning of execution of a program, allocatable variables are unallocated.

When the allocation status of an allocatable variable changes, the allocation status of any associated
allocatable variable changes accordingly. Allocation of an allocatable variable establishes values for the
deferred type parameters of all associated allocatable variables.

An unsaved allocatable local variable of a procedure has a status of unallocated at the beginning of each
invocation of the procedure. An unsaved local variable of a construct has a status of unallocated at the
beginning of each execution of the construct.

When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate
components have an allocation status of unallocated.

6.6.1.3 Use of data objects 141

[y

© 00 N O O &~ W N

—
= O

= e
A~ N

15

16

17

18
19
20

21

22
23

24

25

26
27

28

29

30
31

32

33
34
35

36

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

6.6.1.4 Allocation of pointer targets

Allocation of a pointer creates an object that implicitly has the TARGET attribute. Following successful
execution of an ALLOCATE statement for a pointer, the pointer is associated with the target and may
be used to reference or define the target. Additional pointers may become associated with the pointer
target or a part of the pointer target by pointer assignment. It is not an error to allocate a pointer
that is already associated with a target. In this case, a new pointer target is created as required by the
attributes of the pointer and any array bounds, type, and type parameters specified by the ALLOCATE
statement. The pointer is then associated with this new target. Any previous association of the pointer
with a target is broken. If the previous target had been created by allocation, it becomes inaccessible
unless other pointers are associated with it. The intrinsic function ASSOCIATED(13.7.16) may be used
to determine whether a pointer that does not have undefined association status is associated.

At the beginning of execution of a function whose result is a pointer, the association status of the result
pointer is undefined. Before such a function returns, it shall either associate a target with this pointer
or cause the association status of this pointer to become disassociated.

6.6.2 NULLIFY statement
The NULLIFY statement causes pointers to be disassociated.
R638 nullify-stmt is NULLIFY (pointer-object-list)

R639 pointer-object is wariable-name
or structure-component
or proc-pointer-name

C644 (R639) Each pointer-object shall have the POINTER attribute.

A pointer-object shall not depend on the value, bounds, or association status of another pointer-object
in the same NULLIFY statement.

NOTE 6.21

When a NULLIFY statement is applied to a polymorphic pointer (4.3.1.3), its dynamic type
becomes the declared type.

6.6.3 DEALLOCATE statement
6.6.3.1 Syntax

The DEALLOCATE statement causes allocatable variables to be deallocated; it causes pointer targets
to be deallocated and the pointers to be disassociated.

R640 deallocate-stmit is DEALLOCATE (allocate-object-list | , dealloc-opt-list |)
C645 (R640) Each allocate-object shall be a nonprocedure pointer or an allocatable variable.

R641 dealloc-opt is STAT = stat-variable
or ERRMSG = errmsg-variable

C646 (R641) No dealloc-opt shall appear more than once in a given dealloc-opt-list.

An allocate-object shall not depend on the value, bounds, allocation status, or association status of
another allocate-object in the same DEALLOCATE statement; it also shall not depend on the value of
the stat-variable or errmsg-variable in the same DEALLOCATE statement.

The STAT= specifier is described in 6.6.4.

142 Use of data objects 6.6.2

10

11
12

13
14
15
16

17
18
19
20

21
22
23
24

25
26

27

28
29

30
31

10

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

If an error condition occurs during execution of a DEALLOCATE statement that does not contain the
STAT= specifier, error termination is initiated.

The ERRMSG= specifier is described in 6.6.5.

NOTE 6.22
An example of a DEALLOCATE statement is:

DEALLOCATE (X, B)

6.6.3.2 Deallocation of allocatable variables

Deallocating an unallocated allocatable variable causes an error condition in the DEALLOCATE state-
ment. Deallocating an allocatable variable with the TARGET attribute causes the pointer association
status of any pointer associated with it to become undefined.

When the execution of a procedure is terminated by execution of a RETURN or END statement, an
unsaved allocatable local variable of the procedure retains its allocation and definition status if it is a
function result variable or a subobject thereof; otherwise, it is deallocated.

When a BLOCK construct terminates, an unsaved allocatable local variable of the construct is deallo-
cated.

NOTE 6.23

The intrinsic function ALLOCATED may be used to determine whether a variable is allocated or
unallocated.

If an executable construct references a function whose result is either allocatable or a structure with
a subobject that is allocatable, and the function reference is executed, an allocatable result and any
subobject that is an allocated allocatable entity in the result returned by the function is deallocated
after execution of the innermost executable construct containing the reference.

If a function whose result is either allocatable or a structure with an allocatable subobject is referenced
in the specification part of a scoping unit or BLOCK construct, and the function reference is executed,
an allocatable result and any subobject that is an allocated allocatable entity in the result returned by
the function is deallocated before execution of the executable constructs of the scoping unit or block.

When a procedure is invoked, any allocated allocatable object that is an actual argument corresponding
to an INTENT (OUT) allocatable dummy argument is deallocated; any allocated allocatable object
that is a subobject of an actual argument corresponding to an INTENT (OUT) dummy argument is
deallocated.

When an intrinsic assignment statement (7.2.1.3) is executed, any non-co-array allocated allocatable
subobject of the variable is deallocated before the assignment takes place.

When a variable of derived type is deallocated, any allocated allocatable subobject is deallocated.

If an allocatable component is a subobject of a finalizable object, that object is finalized before the
component is automatically deallocated.

The effect of automatic deallocation is the same as that of a DEALLOCATE statement without a
dealloc-opt-list.

NOTE 6.24

‘ In the following example: ‘

6.6.3.2 Use of data objects 143

g~ W N =

~N o

10
11
12
13

14
15
16

17

18
19
20

21
22

23
24
25
26
27
28
29

30
31
32
33
34
35

11

12

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 6.24 (cont.)

SUBROUTINE PROCESS
REAL, ALLOCATABLE :: TEMP(:)
REAL, ALLOCATABLE, SAVE :: X(:)

END SUBROUTINE PROCESS

on return from subroutine PROCESS, the allocation status of X is preserved because X has the
SAVE attribute. TEMP does not have the SAVE attribute, so it will be deallocated if it was allo-
cated. On the next invocation of PROCESS, TEMP will have an allocation status of unallocated.

There is implicit synchronization of all images in association with each DEALLOCATE statement that
deallocates one or more co-arrays. On each image, execution of the segment (8.5.1) following the state-
ment is delayed until all other images have executed the same statement the same number of times. If
the co-array is a dummy argument, its ultimate argument (12.5.2.3) shall be the same co-array on every
image.

There is also an implicit synchronization of all images in association with the deallocation of a co-array
or co-array subcomponent caused by the execution of a RETURN or END statement or the termination
of a BLOCK construct.

6.6.3.3 Deallocation of pointer targets

If a pointer appears in a DEALLOCATE statement, its association status shall be defined. Deallocating
a pointer that is disassociated or whose target was not created by an ALLOCATE statement causes an
error condition in the DEALLOCATE statement. If a pointer is associated with an allocatable entity,
the pointer shall not be deallocated.

If a pointer appears in a DEALLOCATE statement, it shall be associated with the whole of an object
that was created by allocation. Deallocating a pointer target causes the pointer association status of
any other pointer that is associated with the target or a portion of the target to become undefined.

6.6.4 STAT= specifier

The stat-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE state-
ment in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation
status, or association status of any allocate-object in that statement.

If the STAT= specifier appears, successful execution of the ALLOCATE or DEALLOCATE statement
causes the stat-variable to become defined with a value of zero.

If an ALLOCATE or DEALLOCATE statement with a co-array allocate-object is executed when one or
more images has initiated termination of execution, the stat-variable becomes defined with the processor-
dependent positive integer value of the constant STAT_STOPPED_IMAGE from the ISO_FORTRAN_-
ENV intrinsic module (13.8.2). If any other error condition occurs during execution of the ALLOCATE or
DEALLOCATE statement, the stat-variable becomes defined with a processor-dependent positive integer
value different from STAT_STOPPED_IMAGE. In either case, each allocate-object has a processor-
dependent status:

e each allocate-object that was successfully allocated shall have an allocation status of allocated or
a pointer association status of associated;

e each allocate-object that was successfully deallocated shall have an allocation status of unallocated
or a pointer association status of disassociated;

e each allocate-object that was not successfully allocated or deallocated shall retain its previous
allocation status or pointer association status.

144 Use of data objects 6.6.3.3

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 6.25

The status of objects that were not successfully allocated or deallocated can be individually checked
with the intrinsic functions ALLOCATED or ASSOCIATED.

6.6.5 ERRMSG= specifier

The errmsg-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE
statement in which it appears; nor shall it depend on the value, bounds, deferred type parameters,
allocation status, or association status of any allocate-object in that statement.

If an error condition occurs during execution of an ALLOCATE or DEALLOCATE statement, the
processor shall assign an explanatory message to errmsg-variable. If no such condition occurs, the
processor shall not change the value of errmsg-variable.

6.6.5 Use of data objects 145

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

146 Use of data objects 6.6.5

10

11

12
13

14
15

16

17
18
19
20
21
22
23
24

25

26

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

7 Expressions and assignment

7.1 Expressions

7.1.1 General

An expression represents either a data reference or a computation, and its value is either a scalar or
an array. An expression is formed from operands, operators, and parentheses.

An operand is either a scalar or an array. An operation is either intrinsic (7.1.5) or defined (7.1.6). More
complicated expressions can be formed using operands which are themselves expressions.

Evaluation of an expression produces a value, which has a type, type parameters (if appropriate), and a
shape (7.1.9). The co-rank of an expression that is not a variable is zero.

7.1.2 Form of an expression
7.1.2.1 Expression categories

An expression is defined in terms of several categories: primary, level-1 expression, level-2 expression,
level-3 expression, level-4 expression, and level-5 expression.

These categories are related to the different operator precedence levels and, in general, are defined in
terms of other categories. The simplest form of each expression category is a primary.

7.1.2.2 Primary

R701 primary is constant
or designator
or array-constructor
or structure-constructor
or function-reference
or type-param-inquiry
or type-param-name
or (expr)

C701 (R701) The type-param-name shall be the name of a type parameter.

C702 (R701) The designator shall not be a whole assumed-size array.

NOTE 7.1

Examples of a primary are:
Example Syntactic class
1.0 constant
> ABCDEFGHIJKLMNOPQRSTUVWXYZ’> (I:I) designator
[1.0, 2.0 1] array-constructor
PERSON (12, ’Jones’) structure-constructor
F X, V) function-reference
X%KIND type-param-inquiry

7 Expressions and assignment 147

10

11

12

13

14

15
16

17
18

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 7.1 (cont.)

KIND type-param-name
8+ 1 (expr)

7.1.2.3 Level-1 expressions

Defined unary operators have the highest operator precedence (Table 7.2). Level-1 expressions are
primaries optionally operated on by defined unary operators:

R702 level-1-expr is [defined-unary-op | primary
R703 defined-unary-op is . letter [letter]

C703 (R703) A defined-unary-op shall not contain more than 63 letters and shall not be the same as
any intrinsic-operator or logical-literal-constant.

NOTE 7.2

Simple examples of a level-1 expression are:
Example Syntactic class
A primary (R701)
.INVERSE. B level-1-expr (R702)

A more complicated example of a level-1 expression is:

.INVERSE. (A + B)

7.1.2.4 Level-2 expressions

Level-2 expressions are level-1 expressions optionally involving the numeric operators power-op, mult-op,
and add-op.

R704 mult-operand is level-1-expr | power-op mult-operand |
R705 add-operand is [add-operand mult-op | mult-operand
R706 level-2-expr is [[level-2-expr | add-op | add-operand
R707 power-op is F¥
R708 mult-op is *

or /
R709 add-op is +

or —

NOTE 7.3

Simple examples of a level-2 expression are:

Example Syntactic class Remarks

A level-1-expr A is a primary. (R702)

B *x C mult-operand B is a level-1-expr, ** is a power-op,
and C is a mult-operand. (R704)

D * E add-operand D is an add-operand, * is a mult-op,

and E is a mult-operand. (R705)

148 Expressions and assignment 7.1.2.3

10
11
12
13
14
15
16
17
18
19
20

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.3 (cont.)

+1 level-2-expr + is an add-op
and 1 is an add-operand. (R706)
F-1I level-2-expr F is a level-2-expr, — is an add-op,

and I is an add-operand. (R706)

A more complicated example of a level-2 expression is:

- A+D*E+B *C

7.1.2.5 Level-3 expressions

Level-3 expressions are level-2 expressions optionally involving the character operator and bits concate-
nation operator concat-op.

R710 level-3-expr is [level-3-expr concat-op | level-2-expr
R711 concat-op is //
NOTE 7.4
Simple examples of a level-3 expression are:
Example Syntactic class
A level-2-expr (R706)
B//C level-3-expr (R710)

A more complicated example of a level-3 expression is:

X // Y // ’ABCD’

7.1.2.6 Level-4 expressions

Level-4 expressions are level-3 expressions optionally involving the relational operators rel-op.

R712 level-4-expr is [level-3-expr rel-op | level-3-expr

R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
or <=
or >
or >=

NOTE 7.5

Simple examples of a level-4 expression are:

7.1.2.5 Expressions and assignment 149

10

11
12
13

14

15
16

17

ISO/IEC SC22/WG5/N1678

NOTE 7.5 (cont.)

WD 1539-1 J3/07-007r2:2007,/06,/05

Example
A

B == C
D E

A more complicated example of a level-4 expression is:

(A+B) /=C

Syntactic class

level-3-expr (R710)
level-4-expr (R712)
level-4-expr (R712)

7.1.2.7 Level-5 expressions

1 Level-5 expressions are level-4 expressions optionally involving the logical and bits operators not-op,
and-op, or-op, and equiv-op.

[not-op | level-4-expr

[or-operand and-op | and-operand

[equiv-operand or-op | or-operand

[level-5-expr equiv-op | equiv-operand
.NOT.

AND.

.OR.

EQV.
NEQV.
XOR.

R714 and-operand is
R715 or-operand is
R716 equiv-operand is
R717 level-5-expr is
R718 not-op is
R719 and-op is
R720 or-op is
R721 equiv-op is
or
or
NOTE 7.6
Simple examples of a level-5 expression are:
Example
A
.NOT. B
C .AND. D
E .OR. F
G .EQV. H
S .NEQV. T

A

A more complicated example of a level-5 expression is:

.AND. B .EQV. .NOT. C

Syntactic class
level-4-expr (R712)
and-operand (R714)
or-operand (R715)
equiv-operand (R716)
level-5-expr (R717)
level-5-expr (R717)

7.1.2.8 General form of an expression

1 Expressions are level-5 expressions optionally involving defined binary operators. Defined binary oper-
ators have the lowest operator precedence (Table 7.2).

R722

150

expr

is

[expr defined-binary-op | level-5-expr

Expressions and assignment 7.1.2.7

13/07-007r2:2007 /06,05

WD 1539-1 ISO/IEC SC22/WG5/N1678

1 R723 defined-binary-op is . letter [letter |
2 C704 (R723) A defined-binary-op shall not contain more than 63 letters and shall not be the same as
3 any intrinsic-operator or logical-literal-constant.
NOTE 7.7
Simple examples of an expression are:
Example Syntactic class
A level-5-expr (R717)
B.UNION.C expr (R722)

More complicated examples of an expression are:

(B .INTERSECT. C) .UNION. (X - Y)

A+B==C=x*xD

.INVERSE. (A + B)

A +B .AND. C * D

E // G==H (1:10)
4 7.1.3 Precedence of operators
5 1 There is a precedence among the intrinsic and extension operations corresponding to the form of expres-
6 sions specified in 7.1.2, which determines the order in which the operands are combined unless the order
7 is changed by the use of parentheses. This precedence order is summarized in Table 7.2.

Table 7.2: Categories of operations and relative precedence

Category of operation Operators Precedence
Extension defined-unary-op Highest
Numeric o
Numeric */

Numeric unary 4+, —
Numeric binary 4+, —
Character //
Relational .EQ., .NE., .LT., .LE., .GT., .GE.,
==, /=, <, <=, >, >=
Logical, Bits .NOT.
Logical, Bits AND.
Logical, Bits .OR.
Logical, Bits .EQV., NEQV., . XOR. .
Extension defined-binary-op Lowest

8 2 The precedence of a defined operation is that of its operator.

NOTE 7.8

For example, in the expression

—A k% 2

interpretation of the expression

the exponentiation operator (**) has precedence over the negation operator (—); therefore, the
operands of the exponentiation operator are combined to form an expression that is used as the
operand of the negation operator. The interpretation of the above expression is the same as the

7.1.3

Expressions and assignment

151

ISO

JIEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 7.8 (cont.)

- (A **x 2)

3 The

general form of an expression (7.1.2) also establishes a precedence among operators in the same

syntactic class. This precedence determines the order in which the operands are to be combined in
determining the interpretation of the expression unless the order is changed by the use of parentheses.

NOTE 7.9

In interpreting a level-2-expr containing two or more binary operators + or —, each operand (add-
operand) is combined from left to right. Similarly, the same left-to-right interpretation for a mult-
operand in add-operand, as well as for other kinds of expressions, is a consequence of the general
form. However, for interpreting a mult-operand expression when two or more exponentiation
operators ** combine level-1-expr operands, each level-1-expr is combined from right to left.

For example, the expressions

2.1 +3.4+4.9
2.1 x 3.4 x 4.9
2.1/ 3.4/ 4.9
2 %% 3 xx 4

7AB) //)CDJ // JEF)
have the same interpretations as the expressions

(2.1 + 3.
(2.1 * 3.
(2.1 / 3.4
2 xx (3 *x*x 4)

(’AB’ // °CD’) // ’EF’

4) + 4.9
4) % 4.9
) / 4.9

As a consequence of the general form (7.1.2), only the first add-operand of a level-2-expr may
be preceded by the identity (+) or negation (—) operator. These formation rules do not permit
expressions containing two consecutive numeric operators, such as A ** —-B or A + —B. However,
expressions such as A ** (-B) and A + (-B) are permitted. The rules do allow a binary operator
or an intrinsic unary operator to be followed by a defined unary operator, such as:

A x _INVERSE. B
- .INVERSE. (B)

As another example, in the expression

A .OR. B .AND. C

the general form implies a higher precedence for the .AND. operator than for the .OR. opera-
tor; therefore, the interpretation of the above expression is the same as the interpretation of the
expression

A .OR. (B .AND. C)

NOTE 7.10

An expression may contain more than one category of operator. The logical expression

L .OR. A+ B> C

152

Expressions and assignment 7.1.3

0 N o o~ W

9
10

11
12
13

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.10 (cont.)

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a relational
operator, and a logical operator. This expression would be interpreted the same as the expression

L .0R. ((A +B) >=0C)

NOTE 7.11
If

the operator ** is extended to type logical,
the operator .STARSTAR. is defined to duplicate the function of ** on type real,
.MINUS. is defined to duplicate the unary operator —, and

L1 and L2 are type logical and X and Y are type real,

then in precedence: L1 ** 1.2 is higher than X * Y; X * Y is higher than X .STARSTAR. Y; and
.MINUS. X is higher than —X.

7.1.4 Evaluation of operations
An intrinsic operation requires the values of its operands.

The evaluation of a function reference shall neither affect nor be affected by the evaluation of any other
entity within the statement. If a function reference causes definition or undefinition of an actual argument
of the function, that argument or any associated entities shall not appear elsewhere in the same statement.
However, execution of a function reference in the logical expression in an IF statement (8.1.8.4), the mask
expression in a WHERE statement (7.2.3.1), or the subscripts and strides in a FORALL statement (7.2.4)
is permitted to define variables in the statement that is conditionally executed.

NOTE 7.12

For example, the statements

A (I

F (I
Y) +

) =)
G X X

are prohibited if the reference to F defines or undefines I or the reference to G defines or undefines
X.

However, in the statements

IF (F (X)) A =X
WHERE (G (X)) B = X

F or G may define X.

3 The appearance of an array constructor requires the evaluation of each scalar-int-expr of the ac-implied-

do-control in any ac-implied-do it may contain.

When an elemental binary operation is applied to a scalar and an array or to two arrays of the same
shape, the operation is performed element-by-element on corresponding array elements of the array
operands.

7.1.4 Expressions and assignment 153

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26
27
28
29
30

31

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 7.13

For example, the array expression

A+ B

produces an array of the same shape as A and B. The individual array elements of the result have
the values of the first element of A added to the first element of B, the second element of A added
to the second element of B, etc.

When an elemental unary operator operates on an array operand, the operation is performed element-
by-element, and the result is the same shape as the operand.

NOTE 7.14

If an elemental operation is intrinsically pure or is implemented by a pure elemental function (12.8),
the element operations may be performed simultaneously or in any order.

7.1.5 Intrinsic operations

7.1.5.1 Definitions

An intrinsic operation is either an intrinsic unary operation or an intrinsic binary operation. An
intrinsic unary operation is an operation of the form intrinsic-operator xo where x5 is of an intrinsic
type (4.4) listed in Table 7.3 for the unary intrinsic operator.

An intrinsic binary operation is an operation of the form x; intrinsic-operator xo where x; and
xo are of the intrinsic types (4.4) listed in Table 7.3 for the binary intrinsic operator and are in shape
conformance (7.1.10).

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric
operator (4, —, *, /, or **). A numeric intrinsic operator is the operator in a numeric intrinsic
operation.

The character intrinsic operation is the intrinsic operation for which the intrinsic-operator is (//)
and both operands are of type character. The operands shall have the same kind type parameter. The
character intrinsic operator is the operator in a character intrinsic operation.

A logical intrinsic operation is an intrinsic operation for which the intrinsic-operator is .AND., .OR.,
XOR., .NOT., .EQV., or NEQV. and both operands are of type logical. A logical intrinsic operator
is the operator in a logical intrinsic operation.

A bits intrinsic operation is an intrinsic operation for which the intrinsic-operator is //, .AND., .OR.,
XOR., .NOT., .EQV., or NEQV. and at least one operand is of type bits. A bits intrinsic operator
is the operator in a bits intrinsic operation.

A relational intrinsic operator is an intrinsic-operator that is .EQ., .NE., .GT., .GE., .LT., .LE.,
==, /=, >, >=, <, or <=. A relational intrinsic operation is an intrinsic operation for which the
intrinsic-operator is a relational intrinsic operator. A mumeric relational intrinsic operation is a
relational intrinsic operation for which both operands are of numeric type. A character relational
intrinsic operation is a relational intrinsic operation for which both operands are of type character.
The kind type parameters of the operands of a character relational intrinsic operation shall be the same.
A bits relational intrinsic operation is a relational intrinsic operation for which at least one of the
operands is of type bits.

The interpretations defined in subclause 7.1.5 apply to both scalars and arrays; the interpretation for

154 Expressions and assignment 7.1.5

© 00 N O O b

10
11
12

13
14

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

arrays is obtained by applying the interpretation for scalars element by element.

NOTE 7.15

For example, if X is of type real, J is of type integer, and INT is the real-to-integer intrinsic
conversion function, the expression INT (X + J) is an integer expression and X + J is a real
expression.

Table 7.3: Type of operands and results for intrinsic operators

Intrinsic operator Type of Type of Type of
op T T2 [21] op w2
Unary +, — LR, Z LR, Z
I LR, Z ILR,Z
Binary +, —, *, /, ** R LR, 7Z R, R, Z
Z LR, Z 7,7,7
// C C C
B B B
I ILR,Z,B L,L,L, L
EQ., .NE., R ILR,Z,B L,L,L, L
==, /= Z ILR,Z,B L,L,L, L
B ILR,Z,B L,L,L, L
C C L
I LR,B L,L, L
.GT., .GE., .LT., .LE. R ILR,B L,L, L
> >=, <, <= B ILR,B L,L, L
C C L
.NOT. L, B L, B
L L L
AND., .OR., .EQV., .NEQV., . XOR. B B,1 B
I B B

Note: The symbols I, R, Z, C, L, and B stand for the types integer, real, complex,
character, logical, and bits, respectively. Where more than one type for x4
is given, the type of the result of the operation is given in the same relative
position in the next column.

7.1.5.2 Numeric intrinsic operations
7.1.5.2.1 Interpretation of numeric intrinsic operations

The two operands of numeric intrinsic binary operations may be of different numeric types or different
kind type parameters. Except for a value raised to an integer power, if the operands have different types
or kind type parameters, the effect is as if each operand that differs in type or kind type parameter from
those of the result is converted to the type and kind type parameter of the result before the operation
is performed. When a value of type real or complex is raised to an integer power, the integer operand
need not be converted.

A numeric operation is used to express a numeric computation. Evaluation of a numeric operation
produces a numeric value. The permitted data types for operands of the numeric intrinsic operations
are specified in 7.1.5.1.

The numeric operators and their interpretation in an expression are given in Table 7.4, where x; denotes
the operand to the left of the operator and xo denotes the operand to the right of the operator.

7.1.5.2 Expressions and assignment 155

N

© 00 N O O

10

11
12

13

14
15

16
17
18

5 If x; and x5 are of type integer and x5 has a negative value, the interpretation of x;

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

Table 7.4: Interpretation of the numeric intrinsic operators

Operator Representing Use of operator Interpretation
ok Exponentiation 1 ** 2y Raise x; to the power xo
/ Division 1/ o Divide x1 by x4
* Multiplication 1 ¥ 19 Multiply z1 by x5
- Subtraction T1 - To Subtract zo from 7
- Negation - X Negate o
+ Addition r1 + To Add z; and -
+ Identity + 29 Same as z9

4 The interpretation of a division operation depends on the types of the operands (7.1.5.2.2).

** 19 is the same

as the interpretation of 1/(z1 ** ABS (z2)), which is subject to the rules of integer division (7.1.5.2.2).

NOTE 7.16
For example, 2 ** (=3) has the value of 1/(2 ** 3), which is zero. ‘

7.1.5.2.2 Integer division

One operand of type integer may be divided by another operand of type integer. Although the math-
ematical quotient of two integers is not necessarily an integer, Table 7.3 specifies that an expression
involving the division operator with two operands of type integer is interpreted as an expression of type
integer. The result of such an operation is the integer closest to the mathematical quotient and between
zero and the mathematical quotient inclusively.

NOTE 7.17
For example, the expression (—8) / 3 has the value (-2).

7.1.5.2.3 Complex exponentiation

In the case of a complex value raised to a complex power, the value of the operation x; ** x5 is the
principal value of x72.

7.1.5.2.4 Evaluation of numeric intrinsic operations

Once the interpretation of a numeric intrinsic operation is established, the processor may evaluate any
mathematically equivalent expression, provided that the integrity of parentheses is not violated.

Two expressions of a numeric type are mathematically equivalent if, for all possible values of their
primaries, their mathematical values are equal. However, mathematically equivalent expressions of
numeric type may produce different computational results.

NOTE 7.18

Any difference between the values of the expressions (1./3.)*3. and 1. is a computational difference,
not a mathematical difference. The difference between the values of the expressions 5/2 and 5./2.
is a mathematical difference, not a computational difference.

The mathematical definition of integer division is given in 7.1.5.2.2.

156 Expressions and assignment 7.1.5.2

1

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.19

The following are examples of expressions with allowable alternative forms that may be used by the
processor in the evaluation of those expressions. A, B, and C represent arbitrary real or complex
operands; I and J represent arbitrary integer operands; and X, Y, and Z represent arbitrary
operands of numeric type.

Expression Allowable alternative form
X+Y Y+ X

X*Y Y * X

-X+Y Y-X

X+Y+7Z X+ (Y +72)

X-Y+ 7 X-(Y-2)

X*A/Z X *(A/7)
X*Y-X*7Z X*(Y-12)

A/B/C A/ (B*C)

A /50 0.2 * A

The following are examples of expressions with forbidden alternative forms that shall not be used
by a processor in the evaluation of those expressions.

Expression Forbidden alternative form
I/2 0.5 *1

X*1/1J X*T/J)

1/J/A I/(J*A)

X+Y)+7 X+ (Y + 272)

(X*Y)- (X*7Z) X*(Y-2)

X*(Y-7) X*Y-X*Z

3 The execution of any numeric operation whose result is not defined by the arithmetic used by the
processor is prohibited. Raising a negative-valued primary of type real to a real power is prohibited.

NOTE 7.20

In addition to the parentheses required to establish the desired interpretation, parentheses may be
included to restrict the alternative forms that may be used by the processor in the actual evaluation
of the expression. This is useful for controlling the magnitude and accuracy of intermediate values
developed during the evaluation of an expression.

For example, in the expression
A+ (B -0
the parenthesized expression (B — C) shall be evaluated and then added to A.

The inclusion of parentheses may change the mathematical value of an expression. For example,
the two expressions

AxI/J
Ax(I/ D)

may have different mathematical values if I and J are of type integer.

7.1.5.2 Expressions and assignment 157

10

11

12
13

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 7.21

Each operand in a numeric intrinsic operation has a type that may depend on the order of evaluation
used by the processor.

For example, in the evaluation of the expression

Z+R+1

where Z, R, and I represent data objects of complex, real, and integer type, respectively, the type of
the operand that is added to I may be either complex or real, depending on which pair of operands
(Z and R, R and I, or Z and I) is added first.

7.1.5.3 Character intrinsic operation
7.1.5.3.1 Interpretation of the character intrinsic operation

The character intrinsic operator // is used to concatenate two operands of type character with the same
kind type parameter. Evaluation of the character intrinsic operation produces a result of type character.

The interpretation of the character intrinsic operator // when used to form an expression is given in
Table 7.6, where x1 denotes the operand to the left of the operator and x5 denotes the operand to the
right of the operator.

Table 7.6: Interpretation of the character intrinsic operator //

Operator Representing Use of operator Interpretation

// Concatenation x1 /] xo Concatenate 1 with

The result of the character intrinsic operation // is a character string whose value is the value of 1
concatenated on the right with the value of x5 and whose length is the sum of the lengths of x; and zs.
Parentheses used to specify the order of evaluation have no effect on the value of a character expression.

NOTE 7.22

For example, the value of CAB’ // ’CDE’) // 'F’ is the string ’ABCDEF’. Also, the value of
'AB’ // CCDE’ // 'F’) is the string ’ABCDEF".

7.1.5.3.2 Evaluation of the character intrinsic operation

A processor is only required to evaluate as much of the character intrinsic operation as is required by
the context in which the expression appears.

NOTE 7.23

For example, the statements

CHARACTER (LEN = 2) C1, C2, C3, CF
Cl1 =C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to determine
the value of C1 because C1 and C2 both have a length of 2.

158 Expressions and assignment 7.1.5.4

9

10

11
12
13

14
15

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

7.1.5.4 Logical intrinsic operations
7.1.5.4.1 Interpretation of logical intrinsic operations

A logical operation is used to express a logical computation. Evaluation of a logical operation produces
a result of type logical. The permitted types for operands of the logical intrinsic operations are specified
in 7.1.5.1.

The logical operators and their interpretation when used to form an expression are given in Table 7.7,
where z; denotes the operand to the left of the operator and x5 denotes the operand to the right of the
operator.

Table 7.7: Interpretation of the logical intrinsic operators

Operator Representing Use of operator Interpretation

.NOT. Logical negation .NOT. x4 True if x4 is false

AND. Logical conjunction z1 .AND. x4 True if 1 and x5 are both true
.OR. Logical inclusive disjunction 1 .OR. x4 True if 1 and/or x5 is true

True if both 21 and x5 are true or

EQV. Logical equivalence z1 .EQV. z9 both are false

. . True if either x; or x5 is true, but
.NEQV. Logical nonequivalence x1 .NEQV. x4 ot both

. . True if either x; or x5 is true, but
.XOR. Logical nonequivalence r1 . XOR. x4 1ot both

3 The values of the logical intrinsic operations are shown in Table 7.8.

Table 7.8: The values of operations involving logical intrinsic operators

X1 X9 NOT. xro X1 AND. To X .OR. To X1 EQV To X NEQV To X1 .XOR. To
true true false true true true false false
true false true false true false true true
false true false false true false true true
false false true false false true false false

7.1.5.4.2 Evaluation of logical intrinsic operations

1 Once the interpretation of a logical intrinsic operation is established, the processor may evaluate any

other expression that is logically equivalent, provided that the integrity of parentheses in any expression
is not violated.

NOTE 7.24

For example, for the variables L1, 1.2, and L3 of type logical, the processor may choose to evaluate
the expression

L1 .AND. L2 .AND. L3

as

L1 .AND. (L2 .AND. L3)

2 Two expressions of type logical are logically equivalent if their values are equal for all possible values of

their primaries.

7.1.5.5 Expressions and assignment 159

[NS, B V)

© ~

10
11
12

13
14

15
16
17

18

19
20
21

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

7.1.5.5 Bits intrinsic operations
7.1.5.5.1 Interpretation of bits intrinsic operations

For bits intrinsic operations other than concatenation (//), the two operands may be of different types
or different kind type parameters. The effect is as if each operand that differs in type or kind type
parameter from those of the result is converted to the type and kind type parameter of the result before
the operation is performed.

Bit operations are used to express bitwise operations on sequences of bits, or to concatenate such
sequences. Evaluation of a bits operation produces a result of type bits. The permitted types of
operands of the bits intrinsic operations are specified in 7.1.5.1.

The bits operators and their interpretation when used to form an expression are given in Table 7.9,
where x; denotes the operand of type bits to the left of the operator and x5 denotes the operand of type
bits to the right of the operator.

Table 7.9: Interpretation of the bits intrinsic operators

Operator Representing Use of operator Interpretation
(/) Concatenation x1 /] ®2 Concatenation of z; and 9

.NOT. Bitwise NOT NOT. x4 Bitwise NOT of x5

AND. Bitwise AND z1 .AND. x4 Bitwise AND of z; and x5

.OR. Bitwise inclusive OR r1 .OR. 25 Bitwise OR of 21 and x4

EQV. Bitwise equivalence r1 .EQV. 24 Bitwise equivalence of z; and x»
.NEQV. Bitwise nonequivalence 7 .NEQV. zo Bitwise nonequivalence of z; and x5

.XOR. Bitwise exclusive OR r1 . XOR. 2o Bitwise exclusive OR of z1 and x5

The leftmost KIND(z1) bits of the result of the bits concatenation operation are the value of x; and the
rightmost KIND(x2) bits of the result are the value of xs.

For a bits intrinsic operation other than //, the result value is computed separately for each pair of bits
at corresponding positions in each operand. The values of the bits intrinsic operations, for bits denoted
b, and by, are shown in Table 7.10.

Table 7.10: The values of bits intrinsic operations other than //

by bs .NOT.by by .AND. by b .OR. by b .EQV. b2 b NEQV. by b .XOR. bo
1 1 0 1 1 1 0 0
1 0 1 0 1 0 1 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 0

7.1.5.5.2 Evaluation of bits intrinsic operations

Once the interpretation of a bits operation is established, the processor may evaluate any other expression
that is computationally equivalent, provided that the integrity of parentheses in any expression is not
violated.

NOTE 7.25

For example, for the variables B1, B2, and B3 of type bits, the processor may choose to evaluate
the expression

Bl1 .XOR. B2 .XOR. B3

160 Expressions and assignment 7.1.5.5

10
11
12
13
14

15

16
17

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.25 (cont.)
as

B1 .XOR. (B2 .XOR. B3)

Two expressions of type bits are computationally equivalent if their values are equal for all possible
values of their primaries.

7.1.5.6 Relational intrinsic operations
7.1.5.6.1 Interpretation of relational intrinsic operations

A relational intrinsic operation is used to compare values of two operands using the relational intrinsic
operators .LT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted types for
operands of the relational intrinsic operators are specified in 7.1.5.1.

The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT.,
LE., .GT., .GE., .EQ., and .NE., respectively.

If both operands of a bits relational operation are of type bits and do not have the same kind type
parameter, the operand with the smaller kind type parameter is converted to the same kind as the other
operand. If one operand of a bits relational operation is not of type bits, it is converted to type bits with
the same kind type parameter as the other operand. Any conversion takes place before the operation is
evaluated.

NOTE 7.26

As shown in Table 7.3, a relational intrinsic operator cannot be used to compare the value of an
expression of a numeric type with one of type character or logical. Also, two operands of type
logical cannot be compared, a complex operand may be compared with another numeric operand
only when the operator is .EQ., .NE., ==, or /=, and two character operands cannot be compared
unless they have the same kind type parameter value.

A relational intrinsic operator can be used to compare the value of an expression of a numeric
type with one of type bits. Such comparisons can be used to compare, for example, an IEEE
real valued expression with a hexadecimal constant corresponding to a known exact value. Com-
parisons between numeric and bits values are nonnumeric comparisons and, thus, may produce
nonmathematical results. For example, a negative numerical value may compare as larger than
the bits representation of a positive value of the same type and kind.

4 Evaluation of a relational intrinsic operation produces a result of type default logical.

5 The interpretation of the relational intrinsic operators is given in Table 7.11, where z; denotes the

operand to the left of the operator and x5 denotes the operand to the right of the operator.

Table 7.11: Interpretation of the relational intrinsic operators

Operator Representing Use of operator Interpretation

LT. Less than zq LT. 29 1 less than zo

< Less than r1 < X9 1 less than xo
.LE. Less than or equal to z1 .LE. 2o x1 less than or equal to xo
<= Less than or equal to T <= Ta x1 less than or equal to x5
.GT. Greater than r1 .GT. 25 x1 greater than zo

> Greater than T1 > X2 x1 greater than zo
.GE. Greater than or equal to r1 .GE. 29 x1 greater than or equal to xs
>= Greater than or equal to T >= To x1 greater than or equal to x5

7.1.5.6 Expressions and assignment 161

10
11
12
13
14
15
16
17

18
19

20
21
22

23

24
25
26

27
28

10

11

12

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

Interpretation of the relational intrinsic operators (cont.)
Operator Representing Use of operator Interpretation
EQ. Equal to r1 .EQ. 22 r1 equal to x5
== Equal to T1 == Tg 1 equal to xo
.NE. Not equal to z1 .NE. 29 1 not equal to x4
/= Not equal to 1 /= X9 21 not equal to x

A numeric relational intrinsic operation is interpreted as having the logical value true if and only if the
values of the operands satisfy the relation specified by the operator.

In the numeric relational operation
x1 rel-op xo

if the types or kind type parameters of 1 and x, differ, their values are converted to the type and kind
type parameter of the expression x1 + xo before evaluation.

A character relational intrinsic operation is interpreted as having the logical value true if and only if the
values of the operands satisfy the relation specified by the operator.

For a character relational intrinsic operation, the operands are compared one character at a time in
order, beginning with the first character of each character operand. If the operands are of unequal
length, the shorter operand is treated as if it were extended on the right with blanks to the length of
the longer operand. If both x; and x5 are of zero length, x; is equal to xs; if every character of z; is
the same as the character in the corresponding position in zg, x; is equal to x5. Otherwise, at the first
position where the character operands differ, the character operand z; is considered to be less than o
if the character value of x; at this position precedes the value of x5 in the collating sequence (4.4.5.4);
x1 is greater than xs if the character value of z; at this position follows the value of x5 in the collating
sequence.

NOTE 7.27
The collating sequence depends partially on the processor; however, the result of the use of the
operators .EQ., .NE., ==, and /= does not depend on the collating sequence.

For nondefault character types, the blank padding character is processor dependent.

A bits relational intrinsic operation is interpreted as having the logical value true if and only if the values
of the operands satisfy the relation specified by the operator.

For a bits relational intrinsic operation, x; and zs are equal if and only if each corresponding bit has
the same value. If 1 and x5 are not equal, and the leftmost unequal corresponding bit of z; is 1 and
9 is 0 then x; is greater than zo; otherwise x; is less than xs.

7.1.5.6.2 Evaluation of relational intrinsic operations

Once the interpretation of a relational intrinsic operation is established, the processor may evaluate
any other expression that is relationally equivalent, provided that the integrity of parentheses in any
expression is not violated.

Two relational intrinsic operations are relationally equivalent if their logical values are equal for all
possible values of their primaries.

162 Expressions and assignment 7.1.6

10
11

12
13
14
15
16
17
18
19

20

21
22

23

24
25

26
27
28
29
30
31
32

33
34

35
36

37
38

39

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

7.1.6 Defined operations

7.1.6.1 Definitions

1 A defined operation is either a defined unary operation or a defined binary operation. A defined
unary operation is an operation that has the form defined-unary-op xo or intrinsic-operator rs and
that is defined by a function and a generic interface (4.5.2, 12.4.3.4).

2 A function defines the unary operation op xo if

(1)
(2)

—~
= w
—

—
(@3
=

the function is specified with a FUNCTION (12.6.2.2) or ENTRY (12.6.2.6) statement that
specifies one dummy argument do,

either

(a) a generic interface (12.4.3.2) provides the function with a generic-spec of OPERA-
TOR (op), or

(b) there is a generic binding (4.5.2) in the declared type of xo with a generic-spec of
OPERATOR (o0p) and there is a corresponding binding to the function in the dynamic
type of xo,

the type of ds is compatible with the dynamic type of 2,

the type parameters, if any, of do match the corresponding type parameters of x5, and

either

(a) the rank of x5 matches that of dy or

(b) the function is elemental and there is no other function that defines the operation.

3 If dy is an array, the shape of x5 shall match the shape of ds.

4 A defined binary operation is an operation that has the form x1 defined-binary-op xo or x1 intrinsic-
operator xo and that is defined by a function and a generic interface.

5 A function defines the binary operation z1 op xs if

(1)
(2)

the function is specified with a FUNCTION (12.6.2.2) or ENTRY (12.6.2.6) statement that
specifies two dummy arguments, d; and ds,

either

(a) a generic interface (12.4.3.2) provides the function with a generic-spec of OPERA-
TOR (op), or

(b) there is a generic binding (4.5.2) in the declared type of x; or xo with a generic-
spec of OPERATOR, (op) and there is a corresponding binding to the function in the
dynamic type of z; or zo, respectively,

the types of d; and ds are compatible with the dynamic types of z; and xo, respectively,

the type parameters, if any, of d; and do match the corresponding type parameters of x;
and xo, respectively, and

either
(a) the ranks of z; and x5 match those of d; and dy or

(b) the function is elemental, z; and zo are conformable, and there is no other function
that defines the operation.

6 If dy or ds is an array, the shapes of x; and x5 shall match the shapes of d; and ds, respectively.

NOTE 7.28

An intrinsic operator may be used as the operator in a defined operation. In such a case, the
generic properties of the operator are extended.

7.1.6.1

Expressions and assignment 163

A W N =

10
11

12
13

14

15
16

17
18
19

20
21
22

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

An extension operation is a defined operation in which the operator is of the form defined-unary-op
or defined-binary-op. Such an operator is called an extension operator. The operator used in an
extension operation may be such that a generic interface for the operator may specify more than one
function.

7.1.6.2 Interpretation of a defined operation
The interpretation of a defined operation is provided by the function that defines the operation.

The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT.,
.LE., .GT., .GE., .EQ., and .NE., respectively.

7.1.6.3 Evaluation of a defined operation

Once the interpretation of a defined operation is established, the processor may evaluate any other
expression that is equivalent, provided that the integrity of parentheses is not violated.

Two expressions of derived type are equivalent if their values are equal for all possible values of their
primaries.

7.1.7 Evaluation of operands

It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate entirely
each operand, if the value of the expression can be determined otherwise.

NOTE 7.29

This principle is most often applicable to logical expressions, zero-sized arrays, and zero-length
strings, but it applies to all expressions.

For example, in evaluating the expression

X>Y .0R. L (2)

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need
not be evaluated if X is greater than Y. Similarly, in the array expression

W (Z) + A

where A is of size zero and W is a function, the function reference W (Z) need not be evaluated.

2 If a statement contains a function reference in a part of an expression that need not be evaluated, all

entities that would have become defined in the execution of that reference become undefined at the
completion of evaluation of the expression containing the function reference.

NOTE 7.30

In the examples in Note 7.29, if L or W defines its argument, evaluation of the expressions under
the specified conditions causes Z to become undefined, no matter whether or not L(Z) or W(Z) is
evaluated.

If a statement contains a function reference in a part of an expression that need not be evaluated, no
invocation of that function in that part of the expression shall execute an image control statement other
than CRITICAL or END CRITICAL.

164 Expressions and assignment 7.1.6.2

o~ W N

10
11

12
13
14
15

16

17

18

19

20

21

22

23

24

25

26

27
28
29
30
31

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.31
‘ This restriction is intended to avoid inadvertant deadlock caused by optimization. ‘

7.1.8 Integrity of parentheses

The rules for evaluation specified in subclause 7.1.5 state certain conditions under which a processor
may evaluate an expression that is different from the one specified by applying the rules given in 7.1.2
and rules for interpretation specified in subclause 7.1.5. However, any expression in parentheses shall be
treated as a data entity.

NOTE 7.32

For example, in evaluating the expression A + (B — C) where A, B, and C are of numeric types, the
difference of B and C shall be evaluated before the addition operation is performed; the processor
shall not evaluate the mathematically equivalent expression (A + B) — C.

7.1.9 Type, type parameters, and shape of an expression
7.1.9.1 General

The type, type parameters, and shape of an expression depend on the operators and on the types, type
parameters, and shapes of the primaries used in the expression, and are determined recursively from
the syntactic form of the expression. The type of an expression is one of the intrinsic types (4.4) or a
derived type (4.5).

If an expression is a polymorphic primary or defined operation, the type parameters and the declared and
dynamic types of the expression are the same as those of the primary or defined operation. Otherwise
the type parameters and dynamic type of the expression are the same as its declared type and type
parameters; they are referred to simply as the type and type parameters of the expression.

R724 logical-expr is expr

C705 (R724) logical-expr shall be of type logical.

R725 char-expr is expr

C706 (R725) char-expr shall be of type character.

R726 default-char-expr is expr

C707 (R726) default-char-expr shall be of type default character.
R727 int-expr is expr

C708 (R727) int-expr shall be of type integer.

R728 numeric-expr is expr

C709 (R728) numeric-expr shall be of type integer, real, or complex.

7.1.9.2 Type, type parameters, and shape of a primary

The type, type parameters, and shape of a primary are determined according to whether the primary is a
constant, variable, array constructor, structure constructor, function reference, type parameter inquiry,
type parameter name, or parenthesized expression. If a primary is a constant, its type, type parameters,
and shape are those of the constant. If it is a structure constructor, it is scalar and its type and type
parameters are as described in 4.5.10. If it is an array constructor, its type, type parameters, and shape

7.1.8 Expressions and assignment 165

DO~ W N

~

10
11
12

13
14
15
16

17
18
19

20

21
22
23

24
25

26
27

28

29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

are as described in 4.7. If it is a variable or function reference, its type, type parameters, and shape are
those of the variable (5.2, 5.3) or the function reference (12.5.3), respectively. If the function reference
is generic (12.4.3.2, 13.5) then its type, type parameters, and shape are those of the specific function
referenced, which is determined by the types, type parameters, and ranks of its actual arguments as
specified in 12.5.5.2. If it is a type parameter inquiry or type parameter name, it is a scalar integer with
the kind of the type parameter.

If a primary is a parenthesized expression, its type, type parameters, and shape are those of the expres-
sion.

The associated target object is referenced if a pointer appears as

e a primary in an intrinsic or defined operation,
e the expr of a parenthesized primary, or
e the only primary on the right-hand side of an intrinsic assignment statement.

The type, type parameters, and shape of the primary are those of the current target. If the pointer is
not associated with a target, it may appear as a primary only as an actual argument in a reference to
a procedure whose corresponding dummy argument is declared to be a pointer, or as the target in a
pointer assignment statement.

A disassociated array pointer or an unallocated allocatable array has no shape but does have rank.
The type, type parameters, and rank of the result of the intrinsic function NULL(13.7.133) depend on
context.

7.1.9.3 Type, type parameters, and shape of the result of an operation

The type of the result of an intrinsic operation [x1] op 3 is specified by Table 7.3. The shape of the
result of an intrinsic operation is the shape of x5 if op is unary or if x; is scalar, and is the shape of
otherwise.

The type, type parameters, and shape of the result of a defined operation [x1] op x2 are specified by the
function defining the operation (7.1.6).

An expression of an intrinsic type has a kind type parameter. An expression of type character also has
a character length parameter.

The type parameters of the result of an intrinsic operation are as follows.

e For an expression z; // xo where // is the character intrinsic operator and x; and xo are of
type character, the character length parameter is the sum of the lengths of the operands and the
kind type parameter is the kind type parameter of x;, which shall be the same as the kind type
parameter of xs.

e For an expression op xo where op is an intrinsic unary operator and xo is of type integer, real,
complex, logical, or bits, the kind type parameter of the expression is that of the operand.

e For an expression x; op x5 where op is a numeric intrinsic binary operator with one operand of
type integer and the other of type real or complex, the kind type parameter of the expression is
that of the real or complex operand.

e For an expression x1 op xo where op is a numeric intrinsic binary operator with both operands of
the same type and kind type parameters, or with one real and one complex with the same kind
type parameters, the kind type parameter of the expression is identical to that of each operand.
In the case where both operands are integer with different kind type parameters, the kind type
parameter of the expression is that of the operand with the greater decimal exponent range if
the decimal exponent ranges are different; if the decimal exponent ranges are the same, the kind
type parameter of the expression is processor dependent, but it is the same as that of one of the

166 Expressions and assignment 7.1.9.3

© 00 N O O~ W N -

e e T
o AW NN HE O

17
18

19

20
21
22

23
24
25

26

27
28
29
30
31

32

33

34

35

36
37

38
39
40
41
42
43
44

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

operands. In the case where both operands are any of type real or complex with different kind
type parameters, the kind type parameter of the expression is that of the operand with the greater
decimal precision if the decimal precisions are different; if the decimal precisions are the same, the
kind type parameter of the expression is processor dependent, but it is the same as that of one of
the operands.

e For an expression x1 op xo where op is a logical intrinsic binary operator with both operands of the
same kind type parameter, the kind type parameter of the expression is identical to that of each
operand. In the case where both operands are of type logical with different kind type parameters,
the kind type parameter of the expression is processor dependent, but it is the same as that of one
of the operands.

e For an expression x; // x2 where both operands are of type bits, the kind type parameter of the
expression is the sum of the kind type parameters of the operands.

e For an expression x; op xe where op is a bits intrinsic binary operator other than //, the kind
type parameter of the expression is the maximum of the kind type parameters of x; and xs.

e For an expression 1 op x2 where op is a relational intrinsic operator, the expression has the default
logical kind type parameter.

C710 The kind type parameter of the result of a bits concatenation operation expression shall be a
bits kind type parameter value supported by the processor.

7.1.10 Conformability rules for elemental operations

An elemental operation is an intrinsic operation or a defined operation for which the function is elemental
(12.8). Two entities are in shape conformance if both are arrays of the same shape, or one or both
are scalars.

For all elemental binary operations, the two operands shall be in shape conformance. In the case where
one is a scalar and the other an array, the scalar is treated as if it were an array of the same shape as
the array operand with every element, if any, of the array equal to the value of the scalar.

7.1.11 Specification expression

A specification expression is an expression with limitations that make it suitable for use in specifica-
tions such as length type parameters (C404) and array bounds (R513, R514). A specification-ezpr shall
be an initialization expression unless it is in an interface body (12.4.3.2), the specification part of a sub-
program or BLOCK construct, a derived type definition, or the declaration-type-spec of a FUNCTION
statement (12.6.2.2).

R729 specification-expr is scalar-int-expr

C711 (R729) The scalar-int-ezpr shall be a restricted expression.

2 A restricted expression is an expression in which each operation is intrinsic and each primary is

(1) a constant or subobject of a constant,

(2) an object designator with a base object that is a dummy argument that has neither the
OPTIONAL nor the INTENT (OUT) attribute,

(3) an object designator with a base object that is in a common block,

(4) an object designator with a base object that is made accessible by use association or host
association,

(5) an object designator with a base object that is a local variable of the procedure containing
the BLOCK construct in which the restricted expression appears,

(6) an object designator with a base object that is a local variable of an outer BLOCK construct
containing the BLOCK construct in which the restricted expression appears,

7.1.10 Expressions and assignment 167

© 0 N OO g A~ W N =

10
11

12
13

14
15

16

17
18

19

20
21
22

23
24
25

26
27

ISO/IEC SC22/WG5/N1678 WD 1539-1

(14)

J3/07-007r2:2007,/06,/05

an array constructor where each element and each scalar-int-expr of each ac-implied-do-
control is a restricted expression,

a structure constructor where each component is a restricted expression,

a specification inquiry where each designator or function argument is

(a) a restricted expression or

(b) a variable whose properties inquired about are not
(i) dependent on the upper bound of the last dimension of an assumed-size array,
(ii) deferred, or

(iii) defined by an expression that is not a restricted expression,

a reference to any other standard intrinsic function where each argument is a restricted
expression,

a reference to a specification function where each argument is a restricted expression,
a type parameter of the derived type being defined,

an ac-do-variable within an array constructor where each scalar-int-expr of the correspond-
ing ac-tmplied-do-control is a restricted expression, or

a restricted expression enclosed in parentheses,

3 where each subscript, section subscript, substring starting point, substring ending point, and type pa-
rameter value is a restricted expression, and where any final subroutine that is invoked is pure.

4 A specification inquiry is a reference to

(1)

w N

~ o~~~
U
NSNS AN/

one of the intrinsic inquiry functions BIT_SIZE, BITS_KIND, CO_.LBOUND, CO_UBOUND,
DIGITS, EPSILON, HUGE, KIND, LBOUND, LEN, MAXEXPONENT, MINEXPONENT,
NEW_LINE, PRECISION, RADIX, RANGE, SHAPE, SIZE, TINY, or UBOUND,

a type parameter inquiry (6.4.4),
an IEEE inquiry function (14.10.2),
the function C_SIZEOF from the intrinsic module ISO_C_BINDING (15.2.3.7) , or

the COMPILER_VERSION or COMPILER_OPTIONS inquiry functions from the intrinsic
module ISO_.FORTRAN_ENV (13.8.2.4, 13.8.2.5).

Unresolved Technical Issue 122

168

Inconsistent rules on inquiry functions in specification expressions.

Why can one not use ALLOCATED and ASSOCIATED in a specification expression?

One can write

PURE FUNCTION MY_ALLOCATED_REAL_1DIM(x) RESULT(r)
REAL ,ALLOCATABLE :: x(:)
r = ALLOCATED(x)

END FUNCTION

This is tedious (one has to do it for every type and rank in use) but shows that the restriction is
purposeless.

Similarly for COMMAND_ARGUMENT _COUNT, EXTENDS_TYPE_OF, IMAGE_INDEX, IS -
CONTIGUOUS, NUM_IMAGES, PRESENT, SAME_TYPE_AS, STORAGE_SIZE, and THIS -
IMAGE; we’ve defined them all to be an inquiry functions, so they are pure and usable in a
specification function, again it is pointless restricting them.

It’s not like the things these inquire about are terribly special - we allow inquiring on the dynamic

Expressions and assignment 7.1.11

© 00 N o O

10
11
12
13
14
15

16
17
18

19

20
21
22

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Unresolved Technical Issue 122 (cont.)

shape and length type parameters!

STORAGE_SIZE definitely seems like an obvious oversight, but the whole thing has “we wrote
this list in F95 and never looked at it again” written all over it.

Without these pointless restrictions, we could just say “an intrinsic inquiry function” and not list
a subset because it would be all of them.

5 A function is a specification function if it is a pure function, is not a standard intrinsic function, is

not an internal function, is not a statement function, and does not have a dummy procedure argument.

Evaluation of a specification expression shall not directly or indirectly cause a procedure defined by the
subprogram in which it appears to be invoked.

NOTE 7.33

Specification functions are nonintrinsic functions that may be used in specification expressions to
determine the attributes of data objects. The requirement that they be pure ensures that they
cannot have side effects that could affect other objects being declared in the same specification-part.
The requirement that they not be internal ensures that they cannot inquire, via host association,
about other objects being declared in the same specification-part. The prohibition against recursion
avoids the creation of a new instance of a procedure while construction of one is in progress.

A variable in a specification expression shall have its type and type parameters, if any, specified by a
previous declaration in the same scoping unit, by the implicit typing rules in effect for the scoping unit,
or by host or use association. If a variable in a specification expression is typed by the implicit typing
rules, its appearance in any subsequent type declaration statement shall confirm the implied type and
type parameters.

If a specification expression includes a specification inquiry that depends on a type parameter or an
array bound of an entity specified in the same specification-part, the type parameter or array bound
shall be specified in a prior specification of the specification-part. The prior specification may be to the
left of the specification inquiry in the same statement, but shall not be within the same entity-decl. If a
specification expression includes a reference to the value of an element of an array specified in the same
specification-part, the array shall be completely specified in prior declarations.

If a specification expression in the specification-part of a module or submodule includes a reference to a
generic entity, that generic entity shall have no specific procedures defined in the module or submodule
subsequent to the specification expression.

NOTE 7.34
The following are examples of specification expressions:

LBOUND (B, 1) + 5
M + LEN (C)
2 * PRECISION (A)

B is an assumed-shape dummy array

M and C are dummy arguments

A is a real variable made accessible
by a USE statement

7.1.12 Initialization expression

An initialization expression is an expression with limitations that make it suitable for use as a kind
type parameter, initializer, or named constant. It is an expression in which each operation is intrinsic,
and each primary is

7.1.12 Expressions and assignment 169

0 N g A~ W N =

10
11
12
13
14

15
16

17
18

19
20
21

22
23
24

25
26

27
28

29

30
31

32

33

34

35

36

37

38

39

40
41
42
43

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

(1) a constant or subobject of a constant,

(2) an array constructor where each element and each scalar-int-expr of each ac-implied-do-
control is an initialization expression,

(3) a structure constructor where each component-spec corresponding to
(a) an allocatable component is a reference to the intrinsic function NULL,

(b) a pointer component is an initialization target or a reference to the intrinsic function

NULL, and

(¢) any other component is an initialization expression,

(4) a specification inquiry where each designator or function argument is
(a) an initialization expression or
(b) a variable whose properties inquired about are not
(i) assumed,
(ii) deferred, or

(iii) defined by an expression that is not an initialization expression,

(5) a reference to an elemental standard intrinsic function, where each argument is an initial-
ization expression,

(6) a reference to a transformational standard intrinsic function other than NULL, where each
argument is an initialization expression,

(7) A reference to the intrinsic function NULL that does not have an argument with a type
parameter that is assumed or is defined by an expression that is not an initialization ex-
pression,

(8) a reference to the transformational function IEEE_SELECTED_REAL_KIND from the in-
trinsic module IEEE_ARITHMETIC (14.11.18), where each argument is an initialization
expression,

(9) a kind type parameter of the derived type being defined,

(10) a data-i-do-variable within a data-implied-do,

(11) an ac-do-variable within an array constructor where each scalar-int-ezpr of the correspond-
ing ac-implied-do-control is an initialization expression, or

(12) an initialization expression enclosed in parentheses,

2 and where each subscript, section subscript, substring starting point, substring ending point, and type

parameter value is an initialization expression.

R730 initialization-expr is expr

C712 (R730) initialization-expr shall be an initialization expression.

R731 char-initialization-expr is char-expr

C713 (R731) char-initialization-expr shall be an initialization expression.
R732 int-initialization-expr is int-expr

C714 (R732) int-initialization-expr shall be an initialization expression.
R733 logical-initialization-expr is logical-expr

C715 (R733) logical-initialization-expr shall be an initialization expression.

If an initialization expression includes a specification inquiry that depends on a type parameter or an
array bound of an entity specified in the same specification-part, the type parameter or array bound
shall be specified in a prior specification of the specification-part. The prior specification may be to the
left of the specification inquiry in the same statement, but shall not be within the same entity-decl.

170 Expressions and assignment 7.1.12

1

10

11

12
13

14

15
16

17
18
19
20
21
22
23

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

4 If an initialization expression in the specification-part of a module or submodule includes a reference to a
generic entity, that generic entity shall have no specific procedures defined in the module or submodule
subsequent to the initialization expression.

NOTE 7.35

The following are examples of initialization expressions:

3

-3 + 4

)AB)

JAB? // 'CD?

(’AB’ // °CD’) // ’EF’

SIZE (A)

DIGITS (X) + 4

4.0 * atan(1.0)

ceiling (number_of_decimal_digits / loglO(radix(0.0)))

where A is an explicit-shape array with constant bounds and X is of type default real.

7.2 Assignment

7.2.1 Assignment statement

7.2.1.1 General form

R734 assignment-stmt is wariable = expr
C716 (R734) The variable shall not be a whole assumed-size array.
NOTE 7.36

Examples of an assignment statement are:

A
I

3.5+ X %Y
INT (A)

1 An assignment-stmt shall meet the requirements of either a defined assignment statement or an intrinsic
assignment statement.

7.2.1.2

Intrinsic assignment statement

1 An intrinsic assignment statement is an assignment statement that is not a defined assignment
statement (7.2.1.4). In an intrinsic assignment statement,

7.2

(1)
(2)

(3)
(4)

—~
ot
~

if the variable is polymorphic it shall be allocatable,
if variable is a co-indexed object, it shall not be of a type that has an allocatable ultimate
component,

if expr is an array then the variable shall also be an array,

the shapes of the variable and expr shall conform unless the variable is an allocatable array
that has the same rank as expr and is neither a co-array nor a co-indexed object,

if the variable is an allocatable co-array or co-indexed object, it shall not be polymorphic,

if the variable is polymorphic it shall be type compatible with ezpr and have the same rank;
otherwise the declared types of the variable and expr shall conform as specified in Table
7.12,

Expressions and assignment 171

oA W N

10
11
12
13

14
15

16
17

18

19
20
21
22
23
24
25

26

27
28
29
30
31
32
33

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

(7) if the variable is of derived type each kind type parameter of the variable shall have the
same value as the corresponding type parameter of expr, and

(8) if the variable is of derived type each length type parameter of the variable shall have the
same value as the corresponding type parameter of expr unless the variable is allocatable,
is not a co-array or co-indexed object, and its corresponding type parameter is deferred.

Table 7.12: Type conformance for the intrinsic assignment statement

Type of the variable Type of expr

integer integer, real, complex, bits

real integer, real, complex, bits

complex integer, real, complex, bits

ISO 10646, ASCII, or default character ISO 10646, ASCII, or default character
other character character of the same kind type parameter as the variable

logical logical, bits

bits integer, real, complex, bits

derived type same derived type as the variable

A numeric intrinsic assignment statement is an intrinsic assignment statement for which the vari-
able and ezpr are of numeric type. A character intrinsic assignment statement is an intrinsic
assignment statement for which the variable and expr are of type character. A logical intrinsic as-
signment statement is an intrinsic assignment statement for which the variable and expr are of type
logical. A bits intrinsic assignment statement is an intrinsic assignment statement for which either
the variable or expr is of type bits. A derived-type intrinsic assignment statement is an intrinsic
assignment statement for which the variable and expr are of derived type.

An array intrinsic assignment statement is an intrinsic assignment statement for which the variable
is an array. The variable shall not be a many-one array section (6.5.3.3.2).

If the variable is a pointer, it shall be associated with a definable target such that the type, type
parameters, and shape of the target and expr conform.

7.2.1.3 Interpretation of intrinsic assignments

Execution of an intrinsic assignment causes, in effect, the evaluation of the expression ezpr and all
expressions within variable (7.1), the possible conversion of ezpr to the type and type parameters of the
variable (Table 7.13), and the definition of the variable with the resulting value. The execution of the
assignment shall have the same effect as if the evaluation of expr and the evaluation of all expressions
in variable occurred before any portion of the variable is defined by the assignment. The evaluation of
expressions within variable shall neither affect nor be affected by the evaluation of expr. No value is
assigned to the variable if it is of type character and zero length, or is an array of size zero.

If the variable is a pointer, the value of expr is assigned to the target of the variable.

If the variable is an allocated allocatable variable, it is deallocated if expr is an array of different shape,
any of the corresponding length type parameter values of the variable and expr differ, or the variable
is polymorphic and the dynamic type of the variable and expr differ. If the variable is or becomes an
unallocated allocatable variable, then it is allocated with each deferred type parameter equal to the
corresponding type parameter of expr, with the shape of expr, with each lower bound equal to the
corresponding element of LBOUND (expr), and if the variable is polymorphic, with the same dynamic
type as expr.

NOTE 7.37
’ For example, given the declaration ‘

172 Expressions and assignment 7.2.1.3

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.37 (cont.)
CHARACTER(:) ,ALLOCATABLE :: NAME

then after the assignment statement

NAME = ’Dr. ’//FIRST_NAME//’ °’//SURNAME

NAME will have the length LEN(FIRST_.NAME)+LEN(SURNAME)-+5, even if it had previously
been unallocated, or allocated with a different length. However, for the assignment statement

NAME(:) = ’Dr. ’//FIRST_NAME//’ ’//SURNAME

NAME must already be allocated at the time of the assignment; the assigned value is truncated
or blank padded to the previously allocated length of NAME.

4 Both variable and expr may contain references to any portion of the variable.

NOTE 7.38

For example, in the character intrinsic assignment statement:

STRING (2:5) = STRING (1:4)

the assignment of the first character of STRING to the second character does not affect the
evaluation of STRING (1:4). If the value of STRING prior to the assignment was ’ABCDEF’, the
value following the assignment is ’AABCDEF’.

5 If expr is a scalar and the variable is an array, the expr is treated as if it were an array of the same
shape as the variable with every element of the array equal to the scalar value of expr.

6 If the variable is an array, the assignment is performed element-by-element on corresponding array
elements of the variable and expr.

NOTE 7.39
For example, if A and B are arrays of the same shape, the array intrinsic assignment

A =B

assigns the corresponding elements of B to those of A; that is, the first element of B is assigned to
the first element of A, the second element of B is assigned to the second element of A, etc.

If C is an allocatable array of rank 1, then

C = PACK(ARRAY,ARRAY>0)

will cause C to contain all the positive elements of ARRAY in array element order; if C is not
allocated or is allocated with the wrong size, it will be re-allocated to be of the correct size to hold
the result of PACK.

7 The processor may perform the element-by-element assignment in any order.

NOTE 7.40

For example, the following program segment results in the values of the elements of array X being
reversed:

7.2.1.3 Expressions and assignment 173

10
11

12
13

14
15
16

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 7.40 (cont.)
REAL X (10)

X (i;iO) =X (10:1:-1)

8 For a numeric intrinsic assignment statement, the variable and expr may have different numeric types
or different kind type parameters, in which case the value of ezpr is converted to the type and kind type
parameter of the variable according to the rules of Table 7.13.

Table 7.13: Numeric conversion and the assignment statement
Type of the variable Value Assigned

integer INT (expr, KIND = KIND (variable))
real REAL (ezpr, KIND = KIND (variable))
complex CMPLX (expr, KIND = KIND (variable))

Note: INT, REAL, CMPLX, and KIND are the generic names of
functions defined in 13.7

9 For a logical intrinsic assignment statement, the variable and expr may have different kind type param-
eters, in which case the value of expr is converted to the kind type parameter of the variable.

10 For a character intrinsic assignment statement, the variable and ezpr may have different character length
parameters in which case the conversion of expr to the length of the variable is as follows.

(1) If the length of the variable is less than that of expr, the value of expr is truncated from
the right until it is the same length as the variable.

(2) If the length of the variable is greater than that of ezpr, the value of expr is extended on
the right with blanks until it is the same length as the variable.

11 If the variable and expr have different kind type parameters, each character ¢ in expr is converted to
the kind type parameter of the variable by ACHAR(IACHAR(¢),KIND(variable)).

NOTE 7.41

For nondefault character types, the blank padding character is processor dependent. When assign-
ing a character expression to a variable of a different kind, each character of the expression that is
not representable in the kind of the variable is replaced by a processor-dependent character.

12 For a bits intrinsic assignment statement, the variable and expr may have different types or different
kind type parameters, in which case the value of ezpr is converted to the type and kind type parameter
of the variable according to the rules of Table 7.14.

Table 7.14: Bits conversion and the assignment statement

Type of the variable Value Assigned

integer INT (expr, KIND = KIND (variable))

real REAL (expr, KIND = KIND (variable))
complex CMPLX (ezpr, KIND = KIND (variable))
logical LOGICAL (expr, KIND = KIND (variable))
bits BITS (expr, KIND = KIND (variable))

Note: BITS, INT, REAL, CMPLX, LOGICAL, and KIND are
the generic names of functions defined in 13.7.

174 Expressions and assignment 7.2.1.3

1
2

© 00 N O OB~ W

10
11
12
13
14
15
16
17

18
19

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.42

Bits assignment is not always the same as the result of the intrinsic function TRANSFER, because:

e bits assignment operates elementally, whereas TRANSFER does not preserve array element
boundaries;

e for scalars, if the source is larger TRANSFER uses those bits which occur first in memory
whereas bits assignment always uses the “rightmost” bits (according to the model for bits
values), independent of the endianness of the processor’s memory addressing;

e if the source is smaller, TRANSFER uses it for the part of the result which occurs first in
memory address order and leaves the rest of the result processor-dependent, whereas bits
assignment copies the source to the rightmost bits and makes the remaining bits all zero.

13 For an intrinsic assignment of the type C_PTR or C_FUNPTR, the variable becomes undefined if the
variable and expr are not on the same image.

NOTE 7.43

An intrinsic assignment statement for a variable of type C_PTR or C_.FUNPTR is not permitted
to involve a co-indexed object, see C615, which prevents inappropriate copying from one image
to another. However, such copying may occur as an intrinsic assignment for a component in a
derived-type assignment, in which case the copy is regarded as undefined.

14 A derived-type intrinsic assignment is performed as if each component of the variable were assigned
from the corresponding component of ezpr using pointer assignment (7.2.2) for each pointer component,
defined assignment for each nonpointer nonallocatable component of a type that has a type-bound defined
assignment consistent with the component, intrinsic assignment for each other nonpointer nonallocatable
component, and intrinsic assignment for each allocated co-array component. For unallocated co-array
components, the corresponding component of the variable shall be unallocated. For a non-co-array
allocatable component the following sequence of operations is applied.

(1) If the component of the variable is allocated, it is deallocated.

(2) If the component of the value of expr is allocated, the corresponding component of the
variable is allocated with the same dynamic type and type parameters as the component
of the value of expr. If it is an array, it is allocated with the same bounds. The value of
the component of the value of expr is then assigned to the corresponding component of the
variable using defined assignment if the declared type of the component has a type-bound
defined assignment consistent with the component, and intrinsic assignment for the dynamic
type of that component otherwise.

15 The processor may perform the component-by-component assignment in any order or by any means that
has the same effect.

NOTE 7.44

For an example of a derived-type intrinsic assignment statement, if C and D are of the same
derived type with a pointer component P and nonpointer components S, T, U, and V of type
integer, logical, character, and another derived type, respectively, the intrinsic

C=0D

pointer assigns D%P to C%P. It assigns D%S to C%S, D%T to C%T, and D%U to C%U using
intrinsic assignment. It assigns D%V to C%V using defined assignment if objects of that type have
a compatible type-bound defined assignment, and intrinsic assignment otherwise.

7.2.1.3 Expressions and assignment 175

o

© 0 N o

10
11
12
13
14

15
16

17
18

19
20

21

22

23

24
25
26
27

28

29

30
31
32

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 7.45

If an allocatable component of ezpr is unallocated, the corresponding component of the variable
has an allocation status of unallocated after execution of the assignment.

7.2.1.4 Defined assignment statement

A defined assignment statement is an assignment statement that is defined by a subroutine and a
generic interface (4.5.2, 12.4.3.4.3) that specifies ASSIGNMENT (=). A defined elemental assign-
ment statement is a defined assignment statement for which the subroutine is elemental (12.8).

2 A subroutine defines the defined assignment 1 = xo if

(1) the subroutine is specified with a SUBROUTINE (12.6.2.3) or ENTRY (12.6.2.6) statement
that specifies two dummy arguments, d; and da,

(2) either
(a) a generic interface (12.4.3.2) provides the subroutine with a generic-spec of ASSIGN-
MENT (=), or
(b) there is a generic binding (4.5.2) in the declared type of z; or zo with a generic-spec
of ASSIGNMENT (=) and there is a corresponding binding to the subroutine in the
dynamic type of z1 or xo, respectively,

(3) the types of d; and dy are compatible with the dynamic types of x1 and 9, respectively,

(4) the type parameters, if any, of d; and dy match the corresponding type parameters of
and xs, respectively, and

(5) either
(a) the ranks of z; and x5 match those of d; and dy or

(b) the subroutine is elemental, 1 and x5 are conformable, and there is no other subrou-
tine that defines the assignment.

3 If dy or ds is an array, the shapes of x1 and x5 shall match the shapes of d; and ds, respectively.

7.2.1.5 Interpretation of defined assignment statements

The interpretation of a defined assignment is provided by the subroutine that defines it.

If the defined assignment is an elemental assignment and the variable in the assignment is an array,
the defined assignment is performed element-by-element, on corresponding elements of the variable and
expr. If expr is a scalar, it is treated as if it were an array of the same shape as the variable with every
element of the array equal to the scalar value of expr.

NOTE 7.46

The rules of defined assignment (12.4.3.4.3), procedure references (12.5), subroutine references
(12.5.4), and elemental subroutine arguments (12.8.3) ensure that the defined assignment has the
same effect as if the evaluation of all operations in zo and z; occurs before any portion of x
is defined. If an elemental assignment is defined by a pure elemental subroutine, the element
assignments may be performed simultaneously or in any order.

7.2.2 Pointer assignment

7.2.2.1 General

Pointer assignment causes a pointer to become associated with a target or causes its pointer association
status to become disassociated or undefined. Any previous association between the pointer and a target
is broken.

176 Expressions and assignment 7.2.1.4

10

11
12

13
14

15
16

17
18

19

20

21
22

23

24

25

26
27

28
29

30

31

32

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

Pointer assignment for a pointer component of a structure may also take place by execution of a derived-
type intrinsic assignment statement (7.2.1.3).

7.2.2.2 Syntax

R735 pointer-assignment-stmt is data-pointer-object | (bounds-spec-list) | => data-target
or data-pointer-object (bounds-remapping-list) => data-target
or proc-pointer-object => proc-target
R736 data-pointer-object is wariable-name
or scalar-variable % data-pointer-component-name
C717 (R735) If data-target is not unlimited polymorphic, data-pointer-object shall be type compatible
(4.3.1.3) with it and the corresponding kind type parameters shall be equal.
C718 (R735) If data-target is unlimited polymorphic, data-pointer-object shall be unlimited polymor-
phic, or of a type with the BIND attribute or the SEQUENCE attribute.
C719 (R735) If bounds-spec-list is specified, the number of bounds-specs shall equal the rank of data-
pointer-object.
C720 (R735) If bounds-remapping-list is specified, the number of bounds-remappings shall equal the
rank of data-pointer-object.
C721 (R735) If bounds-remapping-list is not specified, the ranks of data-pointer-object and data-target
shall be the same.
C722 (R736) A variable-name shall have the POINTER attribute.
C723 (R736) A scalar-variable shall be a data-ref.
C724 (R736) A data-pointer-component-name shall be the name of a component of scalar-variable
that is a data pointer.
C725 (R736) A data-pointer-object shall not be a co-indexed object.
R737 bounds-spec is lower-bound-expr :
R738 bounds-remapping is lower-bound-expr : upper-bound-expr
R739 data-target is wariable
or expr
C726 (R739) A variable shall have either the TARGET or POINTER attribute, and shall not be an
array section with a vector subscript.
C727 (R739) A data-target shall not be a co-indexed object.
NOTE 7.47

A data pointer and its target are always on the same image. A co-array may be of a derived
type with pointer or allocatable subcomponents. For example, if PTR is a pointer component,
Z[P]%PTR is a reference to the target of component PTR of Z on image P. This target is on
image P and its association with Z[P]%PTR must have been established by the execution of an
ALLOCATE statement or a pointer assignment on image P.

C728

R740

(R739) An expr shall be a reference to a function whose result is a data pointer.

proc-pointer-object is proc-pointer-name

7.2.2.2 Expressions and assignment 177

10
11
12

13

14

15
16
17

18
19
20
21
22

23
24
25

26
27
28

29
30

31
32

33

34
35

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

or proc-component-ref
R741 proc-component-ref is scalar-variable % procedure-component-name
C729 (R741) The scalar-variable shall be a data-ref.

C730 (R741) The procedure-component-name shall be the name of a procedure pointer component of
the declared type of scalar-variable.

R742 proc-target is expr
or procedure-name
or proc-component-ref

C731 (R742) An expr shall be a reference to a function whose result is a procedure pointer.

C732 (R742) A procedure-name shall be the name of an external, internal, module, or dummy proce-
dure, a procedure pointer, or a specific intrinsic function listed in 13.6 and not marked with a
bullet (e).

C733 (R742) The proc-target shall not be a nonintrinsic elemental procedure.

7.2.2.3 Data pointer assignment

If data-pointer-object is not polymorphic (4.3.1.3) and data-target is polymorphic with dynamic type
that differs from its declared type, the assignment target is the ancestor component of data-target that
has the type of data-pointer-object. Otherwise, the assignment target is data-target.

If data-target is not a pointer, data-pointer-object becomes pointer associated with the assignment target;
if data-target is a pointer with a target that is not on the same image, the pointer association status of
data-pointer-object becomes undefined. Otherwise, the pointer association status of data-pointer-object
becomes that of data-target; if data-target is associated with an object, data-pointer-object becomes
associated with the assignment target. If data-target is allocatable, it shall be allocated.

NOTE 7.48

A pointer assignment statement is not permitted to involve a co-indexed pointer or target, see C725
and C727. This prevents this statement associating a pointer with a target on another image. If
such an association would otherwise be implied, such as for a pointer component in a derived-type
intrinsic assignment, the association status of the pointer becomes undefined.

If data-pointer-object is polymorphic, it assumes the dynamic type of data-target. If data-pointer-object
is of a type with the BIND attribute or the SEQUENCE attribute, the dynamic type of data-target shall
be that type.

If data-target is a disassociated pointer, all nondeferred type parameters of the declared type of data-
pointer-object that correspond to nondeferred type parameters of data-target shall have the same values
as the corresponding type parameters of data-target.

Otherwise, all nondeferred type parameters of the declared type of data-pointer-object shall have the
same values as the corresponding type parameters of data-target.

If data-pointer-object has nondeferred type parameters that correspond to deferred type parameters of
data-target, data-target shall not be a pointer with undefined association status.

If data-pointer-object has the CONTIGUOUS attribute, data-target shall be contiguous.

If bounds-remapping-list is specified, data-target shall be simply contiguous (6.5.4) or of rank one. It
shall not be a disassociated or undefined pointer, and the size of data-target shall not be less than the

178 Expressions and assignment 7.2.2.3

N o o~ W

10
11

12
13
14
15

16
17
18

19
20

21
22
23

24
25

26
27

28

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

size of data-pointer-object. The elements of the target of data-pointer-object, in array element order
(6.5.3.2), are the first SIZE(data-pointer-object) elements of data-target.

If no bounds-remapping-list is specified, the extent of a dimension of data-pointer-object is the extent of
the corresponding dimension of data-target. If bounds-spec-list appears, it specifies the lower bounds;
otherwise, the lower bound of each dimension is the result of the intrinsic function LBOUND(13.7.99)
applied to the corresponding dimension of data-target. The upper bound of each dimension is one less
than the sum of the lower bound and the extent.

7.2.2.4 Procedure pointer assignment

If the proc-target is not a pointer, proc-pointer-object becomes pointer associated with proc-target. Other-
wise, the pointer association status of proc-pointer-object becomes that of proc-target; if proc-target is
associated with a procedure, proc-pointer-object becomes associated with the same procedure.

If proc-target is the name of an internal procedure the host instance of proc-pointer-object becomes
the innermost currently executing instance of the host procedure. Otherwise if proc-target has a host
instance the host instance of proc-pointer-object becomes that instance. Otherwise proc-pointer-object
has no host instance.

If proc-pointer-object has an explicit interface, its characteristics shall be the same as proc-target except
that proc-target may be pure even if proc-pointer-object is not pure and proc-target may be an elemental
intrinsic procedure even if proc-pointer-object is not elemental.

If the characteristics of proc-pointer-object or proc-target are such that an explicit interface is required,
both proc-pointer-object and proc-target shall have an explicit interface.

If proc-pointer-object has an implicit interface and is explicitly typed or referenced as a function, proc-
target shall be a function. If proc-pointer-object has an implicit interface and is referenced as a subroutine,
proc-target shall be a subroutine.

If proc-target and proc-pointer-object are functions, they shall have the same type; corresponding type
parameters shall either both be deferred or both have the same value.

If procedure-name is a specific procedure name that is also a generic name, only the specific procedure
is associated with pointer-object.

7.2.2.5 Examples

NOTE 7.49

The following are examples of pointer assignment statements. (See Note 12.15 for declarations of
P and BESSEL.)

NEW_NODE % LEFT => CURRENT_NODE

SIMPLE_NAME => TARGET_STRUCTURE 7 SUBSTRUCT % COMPONENT
PTR => NULL ()

ROW => MAT2D (N, :)

WINDOW => MAT2D (I-1:I+1, J-1:J+1)

POINTER_OBJECT => POINTER_FUNCTION (ARG_1, ARG_2)
EVERY_OTHER => VECTOR (1:N:2)

WINDOW2 (O:, 0:) => MAT2D (ML:MU, NL:NU)

! P is a procedure pointer and BESSEL is a procedure with a
! compatible interface.

P => BESSEL

7.2.2.4 Expressions and assignment 179

10
11
12
13

14

15
16
17

18

19

20

ISO/IEC SC22/WG5/N1678 WD 1539-1

J3/07-007r2:2007,/06,/05

NOTE 7.49 (cont.)

! Likewise for a structure component.
STRUCT % COMPONENT => BESSEL

NOTE 7.50

It is possible to obtain different-rank views of parts of an object by specifying upper bounds in
pointer assignment statements. This requires that the object be either rank one or contiguous.
Consider the following example, in which a matrix is under consideration. The matrix is stored
as a rank-one object in MYDATA because its diagonal is needed for some reason — the diagonal
cannot be gotten as a single object from a rank-two representation. The matrix is represented as

a rank-two view of MYDATA.

real, target :: MYDATA (NR*NC) ! An automatic array

real, pointer :: MATRIX (:, :) ! A rank-two view of MYDATA
real, pointer :: VIEW_DIAG (:)

MATRIX(1:NR, 1:NC) => MYDATA ! The MATRIX view of the data
VIEW_DIAG => MYDATA(1::NR+1) ! The diagonal of MATRIX

Rows, columns, or blocks of the matrix can be accessed as sections of MATRIX.

Rank remapping can be applied to CONTIGUOUS arrays, for example:

REAL, CONTIGUOUS, POINTER :: A(:)
REAL, CONTIGUOUS, TARGET :: B(:,:) ! Dummy argument

A(1:SIZE(B)) => B

! Linear view of a rank-2 array

7.2.3 Masked array assignment — WHERE

7.2.3.1 General form of the masked array assignment

A masked array assignment is either a WHERE statement or a WHERE construct. It is used to
mask the evaluation of expressions and assignment of values in array assignment statements, according
to the value of a logical array expression.

R743 where-stmt is WHERE (mask-expr) where-assignment-stmt
R744 where-construct is where-construct-stmt
[where-body-construct | ...
[masked-elsewhere-stmt
[where-body-construct] ...] ...
[elsewhere-stmt
[where-body-construct | ... |
end-where-stmt
R745 where-construct-stmt is [where-construct-name:] WHERE (mask-ezpr)
R746 where-body-construct is where-assignment-stmt
or where-stmt
or where-construct
R747 where-assignment-stmt is assignment-stmt
R748 mask-expr is logical-expr
R749 masked-elsewhere-stmt is ELSEWHERE (mask-expr) [where-construct-name]
180 Expressions and assignment 7.2.3

© 0o N O g

10

11
12
13

14

15
16
17
18
19
20

21

22

23
24
25

26

27
28

29
30
31
32

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R750 elsewhere-stmt is ELSEWHERE [where-construct-name]
R751 end-where-stmt is END WHERE [where-construct-name]
C734 (R747) A where-assignment-stmt that is a defined assignment shall be elemental.

C735 (R744) If the where-construct-stmt is identified by a where-construct-name, the corresponding
end-where-stmt shall specify the same where-construct-name. 1If the where-construct-stmt is
not identified by a where-construct-name, the corresponding end-where-stmt shall not specify
a where-construct-name. If an elsewhere-stmt or a masked-elsewhere-stmt is identified by a
where-construct-name, the corresponding where-construct-stmt shall specify the same where-
construct-name.

C736 (R746) A statement that is part of a where-body-construct shall not be a branch target statement.

If a where-construct contains a where-stmt, a masked-elsewhere-stmt, or another where-construct then
each mask-expr within the where-construct shall have the same shape. In each where-assignment-stmt,
the mask-expr and the variable being defined shall be arrays of the same shape.

NOTE 7.51

Examples of a masked array assignment are:

WHERE (TEMP > 100.0) TEMP = TEMP - REDUCE_TEMP
WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP - 5.0
ELSEWHERE
RAINING = .TRUE.
END WHERE

7.2.3.2 Interpretation of masked array assignments

When a WHERE statement or a where-construct-stmt is executed, a control mask is established. In
addition, when a WHERE construct statement is executed, a pending control mask is established. If
the statement does not appear as part of a where-body-construct, the mask-expr of the statement is
evaluated, and the control mask is established to be the value of mask-expr. The pending control mask
is established to have the value .NOT. mask-expr upon execution of a WHERE construct statement that
does not appear as part of a where-body-construct. The mask-expr is evaluated only once.

Each statement in a WHERE construct is executed in sequence.

Upon execution of a masked-elsewhere-stmt, the following actions take place in sequence.

(1) The control mask m, is established to have the value of the pending control mask.
(2) The pending control mask is established to have the value m, .AND. (NOT. mask-expr).
(3) The control mask m,. is established to have the value m. .AND. mask-expr.

The mask-expr is evaluated at most once.

Upon execution of an ELSEWHERE statement, the control mask is established to have the value of the
pending control mask. No new pending control mask value is established.

Upon execution of an ENDWHERE statement, the control mask and pending control mask are es-
tablished to have the values they had prior to the execution of the corresponding WHERE construct
statement. Following the execution of a WHERE statement that appears as a where-body-construct, the
control mask is established to have the value it had prior to the execution of the WHERE statement.

7.2.3.2 Expressions and assignment 181

o

© 0 N O

10

11
12
13
14

15
16
17

18
19

20
21
22
23
24

10

11

12

13

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 7.52
The establishment of control masks and the pending control mask is illustrated with the following
example:

WHERE (cond1) ! Statement 1

ELSEWHERE (cond?2) ! Statement 2

ELSEWHERE ! Statement 3

END WHERE

Following execution of statement 1, the control mask has the value condl and the pending
control mask has the value .NOT. condl. Following execution of statement 2, the control
mask has the value (.NOT. condl) .AND. cond2 and the pending control mask has the value
(.NOT. condl) .AND. (.NOT. cond2). Following execution of statement 3, the control mask has
the value ((NOT. condl) .AND. (.NOT. cond2). The false condition values are propagated through
the execution of the masked ELSEWHERE statement.

Upon execution of a WHERE construct statement that is part of a where-body-construct, the pending
control mask is established to have the value m. .AND. (NOT. mask-ezpr). The control mask is then
established to have the value m. .AND. mask-expr. The mask-expr is evaluated at most once.

Upon execution of a WHERE statement that is part of a where-body-construct, the control mask is
established to have the value m. .AND. mask-expr. The pending control mask is not altered.

If a nonelemental function reference occurs in the expr or variable of a where-assignment-stmt or in a
mask-expr, the function is evaluated without any masked control; that is, all of its argument expressions
are fully evaluated and the function is fully evaluated. If the result is an array and the reference is not
within the argument list of a nonelemental function, elements corresponding to true values in the control
mask are selected for use in evaluating the expr, variable or mask-expr.

If an elemental operation or function reference occurs in the expr or variable of a where-assignment-stmt
or in a mask-expr, and is not within the argument list of a nonelemental function reference, the operation
is performed or the function is evaluated only for the elements corresponding to true values of the control
mask.

If an array constructor appears in a where-assignment-stmt or in a mask-expr, the array constructor is
evaluated without any masked control and then the where-assignment-stmt is executed or the mask-expr
is evaluated.

When a where-assignment-stmt is executed, the values of expr that correspond to true values of the
control mask are assigned to the corresponding elements of the variable.

The value of the control mask is established by the execution of a WHERE statement, a WHERE con-
struct statement, an ELSEWHERE statement, a masked ELSEWHERE statement, or an ENDWHERE
statement. Subsequent changes to the value of entities in a mask-expr have no effect on the value of the
control mask. The execution of a function reference in the mask expression of a WHERE statement is
permitted to affect entities in the assignment statement.

NOTE 7.53

Examples of function references in masked array assignments are:

WHERE (A > 0.0)
A = LOG (A ! LOG is invoked only for positive elements.

182 Expressions and assignment 7.2.3.2

10

11

12

13

14
15
16
17
18

19
20

21

22
23

13/07-007r2:2007 /06,05

NOTE 7.53 (cont.)

WD 1539-1 ISO/IEC SC22/WG5/N1678

A=A/ SUM (LOG (A)) ! LOG is invoked for all elements
! because SUM is transformational.

END WHERE

7.2.4

FORALL

7.2.4.1 Form of the FORALL Construct

The FORALL construct allows multiple assignments, masked array (WHERE) assignments, and nested
FORALL constructs and statements to be controlled by a single forall-triplet-spec-list and scalar-mask-

expr.

R752

R753
R754
R755
R619
R622

R756

R757

R758

C737

7.2.4

forall-construct is

forall-construct-stmt is
forall-header is
forall-triplet-spec is
subscript is
stride is
forall-body-construct is
or
or
or
or
forall-assignment-stmit is
or
end-forall-stmt is

forall-construct-stmt
[forall-body-construct | ...
end-forall-stmt

[forall-construct-name :] FORALL forall-header

([type-spec :: | forall-triplet-spec-list |, scalar-mask-expr])
index-name = subscript : subscript | : stride]
scalar-int-expr

scalar-int-expr

forall-assignment-stmt

where-stmt

where-construct

forall-construct
forall-stmit

assignment-stmt
pointer-assignment-stmt

END FORALL [forall-construct-name |

(R758) If the forall-construct-stmt has a forall-construct-name, the end-forall-stmt shall have

the same forall-construct-name.

If the end-forall-stmt has a forall-construct-name, the forall-

Expressions and assignment 183

10

11
12

13

ISO

JIEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

construct-stmt shall have the same forall-construct-name.

C738 (R754) type-spec shall specify type integer.

C739 (R754) The scalar-mask-expr shall be scalar and of type logical.

C740 (R754) Any procedure referenced in the scalar-mask-expr, including one referenced by a defined

C741

operation, shall be a pure procedure (12.7).

(R755) The index-name shall be a named scalar variable of type integer.

C742 (R755) A subscript or stride in a forall-triplet-spec shall not contain a reference to any indez-

name in the forall-triplet-spec-list in which it appears.

C743 (R756) A statement in a forall-body-construct shall not define an indez-name of the forall-

construct.

C744 (R756) Any procedure referenced in a forall-body-construct, including one referenced by a defined

operation, assignment, or finalization, shall be a pure procedure.

C745 (R756) A forall-body-construct shall not be a branch target.

NOTE 7.54

An example of a FORALL construct is:
REAL :: A(10, 10), B(10, 10) = 1.0

FORALL (I = 1:10, J = 1:10, B(I, J) /= 0.0)

ACI, J) = REAL (I + J - 2)
B(I, J) = A(I, J) + B(I, J) * REAL (I * J)
END FORALL
NOTE 7.55

An assignment statement that is a FORALL body construct may be a scalar or array assignment
statement, or a defined assignment statement. The variable being defined will normally use each
index name in the forall-triplet-spec-list. For example

)

FORALL (I = 1:N, J = 1:N
=1.0 / REAL(I + J - 1)

A(:! I) :’ J)
END FORALL

broadcasts scalar values to rank-two subarrays of A.

NOTE 7.56

An example of a FORALL construct containing a pointer assignment statement is:

TYPE ELEMENT
REAL ELEMENT_WT
CHARACTER (32), POINTER :: NAME
END TYPE ELEMENT
TYPE (ELEMENT) CHART (200)
REAL WEIGHTS (1000)
CHARACTER (32), TARGET :: NAMES (1000)

FORALL (I = 1:200, WEIGHTS (I + N - 1) > .5)

184

Expressions and assignment 7.2.4.1

A W N =

10

11

12
13
14

15
16
17
18

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.56 (cont.)

CHART(I) % ELEMENT_WT = WEIGHTS (I + N - 1)
CHART(I) % NAME => NAMES (I + N - 1)
END FORALL

The results of this FORALL construct cannot be achieved with a WHERE construct because a
pointer assignment statement is not permitted in a WHERE construct.

2 An indez-name in a forall-construct has a scope of the construct (16.4). It is a scalar variable. If type-

spec appears, the variable has the specified type and type parameters; otherwise it has the type and
type parameters that it would have if it were the name of a variable in the scoping unit that includes
the FORALL, and this type shall be integer type; it has no other attributes.

NOTE 7.57

The use of index-name variables in a FORALL construct does not affect variables of the same
name, for example:

INTEGER :: X = -1
REAL A(5, 4)
J = 100
FORALL (X =
A X, D)
END FORALL

1:5, J = 1:4) ! Note that X and J are local to the FORALL.
=7

After execution of the FORALL, the variables X and J have the values -1 and 100 and A has the
value

N ==
NN DNDNDDN
W wwww
B N L

7.2.4.2 Execution of the FORALL construct
7.2.4.2.1 Execution stages

There are three stages in the execution of a FORALL construct:

(1) determination of the values for index-name variables,
(2) evaluation of the scalar-mask-expr, and
(3) execution of the FORALL body constructs.

7.2.4.2.2 Determination of the values for index variables

The subscript and stride expressions in the forall-triplet-spec-list are evaluated. These expressions may
be evaluated in any order. The set of values that a particular indez-name variable assumes is determined
as follows.

(1) The lower bound m1, the upper bound mg, and the stride mg are of type integer with the
same kind type parameter as the index-name. Their values are established by evaluating
the first subscript, the second subscript, and the stride expressions, respectively, including,
if necessary, conversion to the kind type parameter of the indez-name according to the rules

7.2.4.2 Expressions and assignment 185

oA W N =

)]

10
11

12
13

14

15
16

17
18
19
20

21
22
23
24
25
26

27
28

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

for numeric conversion (Table 7.13). If a stride does not appear, ms has the value 1. The
value mg shall not be zero.

(2) Let the value of maz be (mg —my+ms)/ms. If maz< 0 for some indez-name, the execution
of the construct is complete. Otherwise, the set of values for the indez-name is

my+ (k—1) x m3 where k =1, 2, ..., max.

The set of combinations of index-name values is the Cartesian product of the sets defined by each triplet
specification. An index-name becomes defined when this set is evaluated.

7.2.4.2.3 Evaluation of the mask expression

The scalar-mask-expr, if any, is evaluated for each combination of indezr-name values. If there is no
scalar-mask-expr, it is as if it appeared with the value true. The index-name variables may be primaries
in the scalar-mask-expr.

The active combination of indez-name values is defined to be the subset of all possible combinations
(7.2.4.2.2) for which the scalar-mask-ezpr has the value true.

NOTE 7.58
The indez-name variables may appear in the mask, for example

FORALL (I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)

7.2.4.2.4 Execution of the FORALL body constructs

The forall-body-constructs are executed in the order in which they appear. Each construct is executed
for all active combinations of the index-name values with the following interpretation:

Execution of a forall-assignment-stmt that is an assignment-stmt causes the evaluation of expr and all
expressions within variable for all active combinations of index-name values. These evaluations may be
done in any order. After all these evaluations have been performed, each expr value is assigned to the
corresponding variable. The assignments may occur in any order.

Execution of a forall-assignment-stmt that is a pointer-assignment-stmt causes the evaluation of all
expressions within data-target and data-pointer-object or proc-target and proc-pointer-object, the de-
termination of any pointers within data-pointer-object or proc-pointer-object, and the determination of
the target for all active combinations of index-name values. These evaluations may be done in any
order. After all these evaluations have been performed, each data-pointer-object or proc-pointer-object
is associated with the corresponding target. These associations may occur in any order.

In a forall-assignment-stmt, a defined assignment subroutine shall not reference any wvariable that be-
comes defined by the statement.

NOTE 7.59

The following FORALL construct contains two assignment statements. The assignment to array
B uses the values of array A computed in the previous statement, not the values A had prior to
execution of the FORALL.

FORALL (I = 2:N-1, J = 2:N-1)

A (I, J) = A(T, J-1) + A(T, J+1) + A(I-1, J) + A(I+1, J)
B (I, J) =1.0/ AT, J)
END FORALL

Computations that would otherwise cause error conditions can be avoided by using an appropriate

186 Expressions and assignment 7.2.4.2

D OB~ W N =

10
11
12
13
14

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.59 (cont.)

scalar-mask-expr that limits the active combinations of the index-name values. For example:

FORALL (I = 1:N, Y(I) /= 0.0)
X(I) =1.0 / Y(I)
END FORALL

5 Each statement in a where-construct (7.2.3) within a forall-construct is executed in sequence. When

a where-stmt, where-construct-stmt or masked-elsewhere-stmt is executed, the statement’s mask-expr is
evaluated for all active combinations of indez-name values as determined by the outer forall-constructs,
masked by any control mask corresponding to outer where-constructs. Any where-assignment-stmt is
executed for all active combinations of indez-name values, masked by the control mask in effect for the
where-assignment-stmt.

NOTE 7.60
This FORALL construct contains a WHERE statement and an assignment statement.

INTEGER A(5,4), B(5,4)

FORALL (I = 1:5)
WHERE (A(I,:) == 0) A(I,:) =1
B (I,:) =1/ A(I,:)

END FORALL

When executed with the input array

=

]
O~ N+~ O
O O N+~ O
O N O = O
O W N OO

the results will be

=

]
a = N = =
a s N e
aON W~ =
g W NN

o

]
i S O I
e S
= N RN
e e

For an example of a FORALL construct containing a WHERE construct with an ELSEWHERE
statement, see C.5.5.

6 Execution of a forall-stmt or forall-construct causes the evaluation of the subscript and stride expressions

in the forall-triplet-spec-list for all active combinations of the indez-name values of the outer FORALL
construct. The set of combinations of index-name values for the inner FORALL is the union of the
sets defined by these bounds and strides for each active combination of the outer indez-name values; it
also includes the outer indez-name values. The scalar-mask-expr is then evaluated for all combinations
of the index-name values of the inner construct to produce a set of active combinations for the inner
construct. If there is no scalar-mask-expr, it is as if it appeared with the value true. Each statement in
the inner FORALL is then executed for each active combination of the indez-name values.

NOTE 7.61
’This FORALL construct contains a nested FORALL construct. It assigns the transpose of the‘

7.2.4.2 Expressions and assignment 187

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 7.61 (cont.)

strict lower triangle of array A (the section below the main diagonal) to the strict upper triangle
of A.

INTEGER A (3, 3)
FORALL (I = 1:N-1)
FORALL (J=I+1:N)
A(T,J) = AQJ,D)
END FORALL
END FORALL

If prior to execution N = 3 and

=

]
N = O
a > w
0 N O

then after execution

=
I
N~ O
(S TSN
0 0N

7.2.4.3 The FORALL statement

1 The FORALL statement allows a single assignment statement or pointer assignment to be controlled by
a set of index values and an optional mask expression.

R759 forall-stmt is FORALL forall-header forall-assignment-stmt

2 A FORALL statement is equivalent to a FORALL construct containing a single forall-body-construct
that is a forall-assignment-stmdt.

3 The scope of an indez-name in a forall-stmt is the statement itself (16.4).

NOTE 7.62
Examples of FORALL statements are:

FORALL (I=1:N) A(I,I) = X(I)

This statement assigns the elements of vector X to the elements of the main diagonal of matrix A.

FORALL (I = 1:N, J = 1:N) X(I,J) = 1.0 / REAL (I+J-1)

Array element X(I,J) is assigned the value (1.0 / REAL (I4J-1)) for values of I and J between 1
and N, inclusive.

FORALL (I=1:N, J=1:N, Y(I,J) /=0 .AND. I /=1J) X(I,J) =1.0/ Y(I,D)

This statement takes the reciprocal of each nonzero off-diagonal element of array Y(1:N, 1:N)
and assigns it to the corresponding element of array X. Elements of Y that are zero or on the
diagonal do not participate, and no assignments are made to the corresponding elements of X. The
results from the execution of the example in Note 7.61 could be obtained with a single FORALL
statement:

188 Expressions and assignment 7.2.43

D 0O~ W N

7

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 7.62 (cont.)
FORALL (I = 1:N-1, J=1:N, J > I) A(I,J) = AQJ,D)

For more examples of FORALL statements, see C.5.6.

7.2.4.4 Restrictions on FORALL constructs and statements

1 A many-to-one assignment is more than one assignment to the same object, or association of more
than one target with the same pointer, whether the object is referenced directly or indirectly through a
pointer. A many-to-one assignment shall not occur within a single statement in a FORALL construct or
statement. It is possible to assign or pointer assign to the same object in different assignment statements
in a FORALL construct.

NOTE 7.63

The appearance of each index-name in the identification of the left-hand side of an assignment
statement is helpful in eliminating many-to-one assignments, but it is not sufficient to guarantee
there will be none. For example, the following is allowed

FORALL (I = 1:10)
A (INDEX (I)) = B(I)
END FORALL

if and only if INDEX(1:10) contains no repeated values.

2 Within the scope of a FORALL construct, a nested FORALL statement or FORALL construct shall
not have the same index-name. The forall-header expressions within a nested FORALL may depend on
the values of outer indez-name variables.

7.2.4.4 Expressions and assignment 189

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

190 Expressions and assignment 7.2.4.4

© 0 N o O

10

11

12

13

14
15
16
17

18

19

20
21

22

23

24
25

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

8 Execution control

8.1 Executable constructs containing blocks

8.1.1 General

The following are executable constructs that contain blocks:

ASSOCIATE construct;
BLOCK construct;

e CASE construct;
CRITICAL construct;
e DO construct;

IF construct;
SELECT TYPE construct.

There is also a nonblock form of the DO construct.
R801 block is [execution-part-construct | ...

Executable constructs may be used to control which blocks of a program are executed or how many times
a block is executed. Blocks are always bounded by statements that are particular to the construct in
which they are embedded; however, in some forms of the DO construct, a sequence of executable constructs without

a terminating boundary statement shall obey all other rules governing blocks (8.1.2).

NOTE 8.1
A block need not contain any executable constructs. Execution of such a block has no effect.

NOTE 8.2

An example of a construct containing a block is:

IF (A > 0.0) THEN
B = SQRT (A) ! These two statements
C = LOG (A) ! form a block.

END IF

8.1.2 Rules governing blocks
8.1.2.1 Control flow in blocks

Transfer of control to the interior of a block from outside the block is prohibited. Transfers within a
block and transfers from the interior of a block to outside the block may occur.

Subroutine and function references (12.5.3, 12.5.4) may appear in a block.

8.1.2.2 Execution of a block

Execution of a block begins with the execution of the first executable construct in the block. Execution
of the block is completed when the last executable construct in the sequence is executed, when a branch

8 Execution control 191

10
11

12
13

14

15
16

17
18

19
20

21

22

23

24
25
26
27

28

29
30
31
32
33

34

35

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

(8.2) within the block that has a branch target outside the block occurs, when a RETURN statement
within the block is executed, or when an EXIT or CYCLE statement that belongs to a construct that
contains the block is executed.

NOTE 8.3

The action that takes place at the terminal boundary depends on the particular construct and on
the block within that construct.

8.1.3 ASSOCIATE construct
8.1.3.1 Purpose and form of the ASSOCIATE construct

The ASSOCIATE construct associates named entities with expressions or variables during the exe-
cution of its block. These named construct entities (16.4) are associating entities (16.5.1.6). The names
are associate names.

R802 associate-construct is associate-stmt
block

end-associate-stmt

R803 associate-stmt is [associate-construct-name : | ASSOCIATE ®
B (association-list)

R804 association is associate-name => selector

R805 selector is expr
or wvariable

C801 (R804) If selector is not a wvariable or is a variable that has a vector subscript, associate-name
shall not appear in a variable definition context (16.6.7).

C802 (R804) An associate-name shall not be the same as another associate-name in the same associate-
stmt.

C803 (R805) wariable shall not be a co-indexed object.
C804 (R805) expr shall not be a variable.
R806 end-associate-stmt is END ASSOCIATE | associate-construct-name |

C805 (R806) If the associate-stmt of an associate-construct specifies an associate-construct-name,
the corresponding end-associate-stmt shall specify the same associate-construct-name. If the
associate-stmt of an associate-construct does not specify an associate-construct-name, the cor-
responding end-associate-stmt shall not specify an associate-construct-name.

8.1.3.2 Execution of the ASSOCIATE construct

Execution of an ASSOCIATE construct causes evaluation of every expression within every selector that
is a variable designator and evaluation of every other selector, followed by execution of its block. During
execution of that block each associate name identifies an entity which is associated (16.5.1.6) with the
corresponding selector. The associating entity assumes the declared type and type parameters of the
selector. If and only if the selector is polymorphic, the associating entity is polymorphic.

The other attributes of the associating entity are described in 8.1.3.3.

It is permissible to branch to an end-associate-stmt only from within its ASSOCIATE construct.

192 Execution control 8.1.3

© 00 N O O &~ W N —=

—
= O

=
w N

i
>

15

16

17
18
19
20

21

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

8.1.3.3 Attributes of associate names

Within an ASSOCIATE or SELECT TYPE construct, each associating entity has the same rank and
co-rank as its associated selector. The lower bound of each dimension is the result of the intrinsic
function LBOUND(13.7.99) applied to the corresponding dimension of selector. The upper bound of
each dimension is one less than the sum of the lower bound and the extent. The co-bounds of each
co-dimension of the associating entity are the same as those of the selector. The associating entity has
the ASYNCHRONOUS or VOLATILE attribute if and only if the selector is a variable and has the
attribute. The associating entity has the TARGET attribute if and only if the selector is a variable and
has either the TARGET or POINTER attribute. If the associating entity is polymorphic, it assumes the
dynamic type and type parameter values of the selector. If the selector has the OPTIONAL attribute,
it shall be present. The associating entity is contiguous if and only if the selector is contiguous.

If the selector (8.1.3.1) is not permitted to appear in a variable definition context (16.6.7), the associate
name shall not appear in a variable definition context.

8.1.3.4 Examples of the ASSOCIATE construct

NOTE 8.4

The following example illustrates an association with an expression.

ASSOCIATE (Z => EXP(-(X**2+Y#x2)) * COS(THETA))
PRINT *, A+Z, A-Z
END ASSOCIATE

The following example illustrates an association with a derived-type variable.

ASSOCIATE (XC => AXVB(I,X%C)
XC%DV = XC)DV + PRODUCT(XCLEV(1:N))
END ASSOCIATE

The following example illustrates association with an array section.

ASSOCIATE (ARRAY => AXY%B(I,:)%C)
ARRAY(N)%EV = ARRAY(N-1)J%EV
END ASSOCIATE

The following example illustrates multiple associations.

ASSOCIATE (W => RESULT(I,J)%W, ZX => AX}B(I,J)%D, ZY => AY/B(I,J)%D)
W = ZX*X + ZYxY
END ASSOCIATE

8.1.4 BLOCK construct

1 The BLOCK construct is an executable construct which may contain declarations.

R807 block-construct is block-stmt
[specification-part |
block
end-block-stmt

R808 block-stmt is [block-construct-name : | BLOCK

8.1.3.4 Execution control 193

(&)]

© 0 N O

10
11

12
13

14

15

16
17

18
19
20
21

22

23

24

25
26
27
28
29

30
31
32

33
34

35

36
37
38
39

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

R809 end-block-stmt is END BLOCK [block-construct-name |

C806 (R807) The specification-part of a BLOCK construct shall not contain a COMMON, EQUIVA-
LENCE, IMPLICIT, INTENT, NAMELIST, or OPTIONAL statement.

C807 (R807) A SAVE statement in a BLOCK construct shall contain a saved-entity-list that does not
specify a common-block-name.

C808 (R807) If the block-stmt of a block-construct specifies a block-construct-name, the corresponding
end-block-stmt shall specify the same block-construct-name. If the block-stmt does not specify
a block-construct-name, the corresponding end-block-stmt shall not specify a block-construct-
name.

Except for the ASYNCHRONOUS and VOLATILE statements, specifications in a BLOCK construct
declare construct entities whose scope is that of the BLOCK construct (16.4).

Execution of a BLOCK construct causes evaluation of the specification expressions within its specification
part in a processor-dependent order, followed by execution of its block.

8.1.5 CASE construct
8.1.5.1 Purpose and form of the CASE construct

The CASE construct selects for execution at most one of its constituent blocks. The selection is based
on the value of an expression.

R810 case-construct is select-case-stmt
[case-stmt
block] ...
end-select-stmt
R811 select-case-stmt is [case-construct-name : | SELECT CASE (case-expr)
R812 case-stmt is CASE case-selector [case-construct-name]
R813 end-select-stmt is END SELECT [case-construct-name |

C809 (R810) If the select-case-stmt of a case-construct specifies a case-construct-name, the corre-
sponding end-select-stmt shall specify the same case-construct-name. If the select-case-stmt
of a case-construct does not specify a case-construct-name, the corresponding end-select-stmt
shall not specify a case-construct-name. If a case-stmt specifies a case-construct-name, the
corresponding select-case-stmt shall specify the same case-construct-name.

R814 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr

R815 case-selector is (case-value-range-list)
or DEFAULT

C810 (R810) No more than one of the selectors of one of the CASE statements shall be DEFAULT.

R816 case-value-range is case-value
or case-value :
or : case-value
or case-value : case-value

194 Execution control 8.1.5

10

11
12
13

14
15
16

17
18

19

20
21

22
23

24
25

26

27

13/07-

R817

C811

C812

C813

8.1.5.2

007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

case-value is scalar-int-initialization-expr
or scalar-char-initialization-expr
or scalar-logical-initialization-expr

(R810) For a given case-construct, each case-value shall be of the same type as case-expr. For
character type, the kind type parameters shall be the same; character length differences are
allowed.

(R810) A case-value-range using a colon shall not be used if case-expr is of type logical.

(R810) For a given case-construct, there shall be no possible value of the case-ezpr that matches
more than one case-value-range.

Execution of a CASE construct

The execution of the SELECT CASE statement causes the case expression to be evaluated. The resulting
value is called the case index. For a case value range list, a match occurs if the case index matches any
of the case value ranges in the list. For a case index with a value of ¢, a match is determined as follows.

) If the case value range contains a single value v without a colon, a match occurs for type
logical if the expression ¢ .EQV. v is true, and a match occurs for type integer or character
if the expression ¢ == v is true.

) If the case value range is of the form low : high, a match occurs if the expression low <= ¢
AND. ¢ <= high is true.

If the case value range is of the form low :, a match occurs if the expression low <= c is true.

If the case value range is of the form : high, a match occurs if the expression ¢ <= high is
true.

) If no other selector matches and a DEFAULT selector appears, it matches the case index.
) If no other selector matches and the DEFAULT selector does not appear, there is no match.

The block following the CASE statement containing the matching selector, if any, is executed. This
completes execution of the construct.

It is permissible to branch to an end-select-stmt only from within its CASE construct.

8.1.5.3

Examples of CASE constructs

NOTE 8.5

An

INTEGER FUNCTION SIGNUM (N)
SELECT CASE (N)

CASE (:-1)

CASE (0)

CASE (1:)

END SELECT
END

integer signum function:

SIGNUM = -1

SIGNUM

]
o

]
[y

SIGNUM

NOTE 8.6

’ A code fragment to check for balanced parentheses: ‘

8.1.5.2 Execution control 195

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.6 (cont.)
CHARACTER (80) :: LINE

LEVEL = 0
SCAN_LINE: DO I =1, 80
CHECK_PARENS: SELECT CASE (LINE (I:I))
CASE (°(*)
LEVEL = LEVEL + 1
CASE (’)”)
LEVEL = LEVEL - 1
IF (LEVEL < 0) THEN
PRINT *, ’UNEXPECTED RIGHT PARENTHESIS’
EXIT SCAN_LINE
END IF
CASE DEFAULT
! Ignore all other characters
END SELECT CHECK_PARENS
END DO SCAN_LINE
IF (LEVEL > 0) THEN
PRINT *, ’MISSING RIGHT PARENTHESIS’
END IF

NOTE 8.7

The following three fragments are equivalent:

IF (SILLY == 1) THEN
CALL THIS
ELSE
CALL THAT
END IF
SELECT CASE (SILLY == 1)
CASE (.TRUE.)
CALL THIS
CASE (.FALSE.)
CALL THAT
END SELECT
SELECT CASE (SILLY)
CASE DEFAULT
CALL THAT
CASE (1)
CALL THIS
END SELECT

NOTE 8.8

A code fragment showing several selections of one block:

SELECT CASE (N)

CASE (1, 3:5, 8) ! Selects 1, 3, 4, 5, 8
CALL SUB

CASE DEFAULT
CALL OTHER

END SELECT

196 Execution control 8.1.5.3

10
11

12

13

14
15
16
17
18

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

8.1.6 CRITICAL construct

A CRITICAL construct limits execution of a block to one image at a time.

R818 critical-construct is critical-stmt

block

end-critical-stmt
R819 critical-stmt is [critical-construct-name : | CRITICAL
R820 end-critical-stmt is END CRITICAL | critical-construct-name |

C814 (R818) If the critical-stmt of a critical-construct specifies a critical-construct-name, the corre-

C815

sponding end-critical-stmt shall specify the same critical-construct-name. If the critical-stmt of a
critical-construct does not specify a critical-construct-name, the corresponding end-critical-stmt
shall not specify a critical-construct-name.

(R818) The block of a critical-construct shall not contain an image control statement.

Execution of the CRITICAL construct is completed when execution of its block is completed.

The processor shall ensure that once an image has commenced executing block, no other image shall
commence executing block until this image has completed executing block. The image shall not execute
an image control statement during the execution of block. The sequence of executed statements is
therefore a segment (8.5.1). If image T is the next to execute the construct after image M, the segment
on image M precedes the segment on image T.

NOTE 8.9

If more than one image executes the block of a CRITICAL construct, its execution by one image
always either precedes or succeeds its execution by another image. Typically no other statement
ordering is needed. Consider the following example:

CRITICAL
GLOBAL_COUNTER[1] = GLOBAL_COUNTER[1] + 1
END CRITICAL

The definition of GLOBAL_.COUNTER]J1] by a particular image will always precede the reference
to the same variable by the next image to execute the block.

NOTE 8.10

The following example permits a large number of jobs to be shared among the images:

INTEGER :: NUM_JOBS[*], JOB

IF (THIS_IMAGE() == 1) READ(*,*) NUM_JOBS
SYNC ALL
DO
CRITICAL
JOB = NUM_JOBS[1]
NUM_JOBS[1] = JOB - 1
END CRITICAL
IF (JOB > 0) THEN
! Work on JOB
ELSE
EXIT

8.1.6 Execution control 197

~

0w N o o

10

11
12

13

14
15

16

17
18
19

20
21

22

23

24
25
26
27

28

29

30

31
32

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.10 (cont.)

END IF
END DO
SYNC ALL

8.1.7 DO construct
8.1.7.1 Purpose and form of the DO construct

The DO construct specifies the repeated execution of a sequence of executable constructs. Such a
repeated sequence is called a loop.

The number of iterations of a loop may be determined at the beginning of execution of the DO construct,
or may be left indefinite (“DO forever” or DO WHILE). Except in the case of a DO CONCURRENT
construct, the loop can be terminated immediately (8.1.7.6.4). The current iteration of the loop may be
curtailed by executing a CYCLE statement (8.1.7.6.3).

There are three phases in the execution of a DO construct: initiation of the loop, execution of the loop
range, and termination of the loop.

The DO CONCURRENT construct is a DO construct whose DO statement contains the CON-
CURRENT keyword.

The DO construct may be written in either a block form or a nonblock form.

R821 do-construct is block-do-construct

or nonblock-do-construct

8.1.7.2 Form of the block DO construct

R822 block-do-construct is do-stmt

do-block

end-do
R823 do-stmt is label-do-stmt

or nonlabel-do-stmt

R824 label-do-stmt is [do-construct-name :] DO label [loop-control |
R825 nonlabel-do-stmt is [do-construct-name :] DO [loop-control |
R826 loop-control is [,] do-variable = scalar-int-expr, scalar-int-expr M

[
B [, scalar-int-expr |
[
[

or [,] WHILE (scalar-logical-expr)
or [,] CONCURRENT forall-header
R827 do-variable is scalar-int-variable-name

C816 (R827) The do-variable shall be a variable of type integer.
R828 do-block is block

R829 end-do is end-do-stmt
or continue-stmt

198 Execution control 8.1.7

A~ W N

10

12
13
14
15
16
17
19

20
21

22
23
24

25
26

27
28
29
30

31
32

33

35
36

37
38

39

40
41
42
43

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

R830 end-do-stmt is END DO [do-construct-name |

C817 (R822) If the do-stmt of a block-do-construct specifies a do-construct-name, the corresponding
end-do shall be an end-do-stmt specifying the same do-construct-name. If the do-stmt of a
block-do-construct does not specify a do-construct-name, the corresponding end-do shall not
specify a do-construct-name.

C818 (R822) If the do-stmt is a nonlabel-do-stmt, the corresponding end-do shall be an end-do-stmt.

C819 (R822) If the do-stmt is a label-do-stmt, the corresponding end-do shall be identified with the
same label.

8.1.7.3 Form of the nonblock DO construct

R831 nonblock-do-construct is action-term-do-construct
or outer-shared-do-construct
R832 action-term-do-construct is label-do-stmt
do-body
do-term-action-stmt
R&33 do-body is [execution-part-construct | ...
R&34 do-term-action-stmt is action-stmt
C820 (R834) A do-term-action-stmt shall not be an arithmetic-if-stmt, continue-stmt, cycle-stmt, end-function-stmt,
end-mp-subprogram-stmt, end-program-stmt, end-subroutine-stmt, exit-stmt, goto-stmt, return-stmt, or stop-
stmt.

C821 (R831) The do-term-action-stmt shall be identified with a label and the corresponding label-do-stmt shall refer

to the same label.

R835 outer-shared-do-construct is label-do-stmt

do-body

shared-term-do-construct
R&36 shared-term-do-construct is outer-shared-do-construct

or inner-shared-do-construct

R&37 inner-shared-do-construct is label-do-stmt

do-body

do-term-shared-stmt
R838 do-term-shared-stmt is action-stmt

C822 (R838) A do-term-shared-stmt shall not be an arithmetic-if-stmt, cycle-stmt, end-function-stmt, end-program-
stmt, end-mp-subprogram-stmt, end-subroutine-stmt, exit-stmt, goto-stmt, return-stmt, or stop-stmt.

C823 (R836) The do-term-shared-stmt shall be identified with a label and all of the label-do-stmts of the inner-shared-
do-construct and outer-shared-do-construct shall refer to the same label.

The do-term-action-stmt, do-term-shared-stmt, or shared-term-do-construct following the do-body of a nonblock DO con-
struct is called the DO termination of that construct.

Within a scoping unit, all DO constructs whose DO statements refer to the same label are nonblock DO constructs, and
share the statement identified by that label.

8.1.7.4 Range of the DO construct

The range of a block DO construct is the do-block, which shall satisfy the rules for blocks (8.1.2). In
particular, transfer of control to the interior of such a block from outside the block is prohibited. It
is permitted to branch to the end-do of a block DO construct only from within the range of that DO
construct.

8.1.7.3 Execution control 199

g W N =

10

11

12

13

14

15
16
17
18
19
20

21

22
23

24
25
26
27

28

29
30

31
32
33

34

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

The range of a nonblock DO construct consists of the do-body and the following DO termination. The end of such a
range is not bounded by a particular statement as for the other executable constructs (e.g., END IF); nevertheless, the
range satisfies the rules for blocks (8.1.2). Transfer of control into the do-body or to the DO termination from outside the
range is prohibited; in particular, it is permitted to branch to a do-term-shared-stmt only from within the range of the

corresponding inner-shared-do-construct.

8.1.7.5 Active and inactive DO constructs

A DO construct is either active or inactive. Initially inactive, a DO construct becomes active only
when its DO statement is executed.

Once active, the DO construct becomes inactive only when it terminates (8.1.7.6.4).

8.1.7.6 Execution of a DO construct

8.1.7.6.1 Loop initiation

When the DO statement is executed, the DO construct becomes active. If loop-control is
[,] do-variable = scalar-int-expry , scalar-int-exprs [, scalar-int-exprs]

the following steps are performed in sequence.

(1) The initial parameter mj, the terminal parameter msy, and the incrementation parameter
mg are of type integer with the same kind type parameter as the do-variable. Their values
are established by evaluating scalar-int-expry, scalar-int-exprs, and scalar-int-exprs, re-
spectively, including, if necessary, conversion to the kind type parameter of the do-variable
according to the rules for numeric conversion (Table 7.13). If scalar-int-exprs does not
appear, ms has the value 1. The value of m3 shall not be zero.

(2) The DO variable becomes defined with the value of the initial parameter m;.

(3) The iteration count is established and is the value of the expression (mg — my + ms)/ms,
unless that value is negative, in which case the iteration count is 0.

NOTE 8.11
The iteration count is zero whenever:

my > mg and ms > 0, or
mq < mo and mg < 0.

If loop-control is omitted, no iteration count is calculated. The effect is as if a large positive iteration
count, impossible to decrement to zero, were established. If loop-control is [, | WHILE (scalar-logical-
expr), the effect is as if loop-control were omitted and the following statement inserted as the first
statement of the do-block:

IF (.NOT. (scalar-logical-ezpr)) EXIT

For a DO CONCURRENT construct, the values of the index variables for the iterations of the construct
are determined by the rules for the index variables of the FORALL construct (7.2.4.2.2 and 7.2.4.2.3).

An indez-name in a DO CONCURRENT construct has a scope of the construct (16.4). It is a scalar
variable that has the type and type parameters that it would have if it were the name of a variable in the
scoping unit that includes the construct, and this type shall be integer type; it has no other attributes.

At the completion of the execution of the DO statement, the execution cycle begins.

200 Execution control 8.1.7.5

w N

© 0 N o G b

10
11

12
13

14
15

16
17

18

19
20

21

22
23

24
25

26
27
28

29
30
31
32

33
34

35
36
37
38

39

40
41

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

8.1.7.6.2 The execution cycle

The execution cycle of a DO construct that is not a DO CONCURRENT construct consists of the
following steps performed in sequence repeatedly until termination.

(1) The iteration count, if any, is tested. If it is zero, the loop terminates and the DO construct
becomes inactive. If loop-control is [,]| WHILE (scalar-logical-expr), the scalar-logical-expr
is evaluated; if the value of this expression is false, the loop terminates and the DO construct
becomes inactive. If, as a result, all of the DO constructs sharing the do-term-shared-stmt are inactive,
the execution of all of these constructs is complete. However, if some of the DO constructs sharing the
do-term-shared-stmt are active, execution continues with step (3) of the execution cycle of the active DO

construct whose DO statement was most recently executed.
(2) The range of the loop is executed.

(3) The iteration count, if any, is decremented by one. The DO variable, if any, is incremented
by the value of the incrementation parameter ms.

Except for the incrementation of the DO variable that occurs in step (3), the DO variable shall neither
be redefined nor become undefined while the DO construct is active.

The range of a DO CONCURRENT construct is executed for all of the active combinations of the
indez-name values. Fach execution of the range is an iteration. The executions may occur in any order.

8.1.7.6.3 CYCLE statement

Execution of the range of the loop may be curtailed by executing a CYCLE statement from within the
range of the loop.

R839 cycle-stmt is CYCLE [do-construct-name |

C824 (R839) If a do-construct-name appears, the CYCLE statement shall be within the range of that
do-construct; otherwise, it shall be within the range of at least one do-construct.

C825 (R839) A cycle-stmt shall not appear within the range of a DO CONCURRENT construct if it
belongs to an outer construct.

A CYCLE statement belongs to a particular DO construct. If the CYCLE statement contains a DO
construct name, it belongs to that DO construct; otherwise, it belongs to the innermost DO construct
in which it appears.

Execution of a CYCLE statement that belongs to a DO construct that is not a DO CONCURRENT
construct causes immediate progression to step (3) of the current execution cycle of the DO construct
to which it belongs. If this construct is a nonblock DO construct, the do-term-action-stmt or do-term-shared-stmt is
not executed.

Execution of a CYCLE statement that belongs to a DO CONCURRENT construct completes execution
of that iteration of the construct.

In a block DO construct, a transfer of control to the end-do has the same effect as execution of a CYCLE
statement belonging to that construct. In a nonblock DO construct, transfer of control to the do-term-action-stmt
or do-term-shared-stmt causes that statement to be executed. Unless a further transfer of control results, step (3) of the

current execution cycle of the DO construct is then executed.

8.1.7.6.4 Loop termination

For a DO construct that is not a DO CONCURRENT construct, the loop terminates, and the DO
construct becomes inactive, when any of the following occurs.

8.1.7.6 Execution control 201

0 N O b~ W N

10

11
12

13

14

15
16

17

18
19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

The iteration count is determined to be zero or the scalar-logical-expr is false, when tested during
step (1) of the above execution cycle.

An EXIT statement that belongs to the DO construct is executed.

An EXIT or CYCLE statement that belongs to an outer construct and is within the range of the
DO construct is executed.

Control is transferred from a statement within the range of a DO construct to a statement that is
neither the end-do nor within the range of the same DO construct.

A RETURN statement within the range of the DO construct is executed.

2 For a DO CONCURRENT construct, the loop terminates, and the DO construct becomes inactive when
all of the iterations have completed execution.

3 When a DO construct becomes inactive, the DO variable, if any, of the DO construct retains its last
defined value.

8.1.7.7 Restrictions on DO CONCURRENT constructs

C826

A RETURN statement shall not appear within a DO CONCURRENT construct.

C827 A branch (8.2) within a DO CONCURRENT construct shall not have a branch target that is

C828

outside the construct.

A reference to a nonpure procedure shall not appear within a DO CONCURRENT construct.

C829 A reference to the procedure IEEE_GET_FLAG, IEEE_SET_HALTING_MODE, or IEEE_GET -

HALTING_MODE from the intrinsic module IEEE_EXCEPTIONS, shall not appear within a
DO CONCURRENT construct.

1 The following additional restrictions apply to DO CONCURRENT constructs.

A variable that is referenced in an iteration shall either be previously defined during that iteration,
or shall not be defined or become undefined during any other iteration of the current execution of
the construct. A variable that is defined or becomes undefined by more than one iteration of the
current, execution of the construct becomes undefined when the current execution of the construct
terminates.

A pointer that is referenced in an iteration either shall be previously pointer associated during
that iteration, or shall not have its pointer association changed during any iteration. A pointer
that has its pointer association changed in more than one iteration has an association status of
undefined when the construct terminates.

An allocatable object that is allocated in more than one iteration shall be subsequently deallocated
during the same iteration in which it was allocated. An object that is allocated or deallocated in
only one iteration shall not be deallocated, allocated, referenced, defined, or become undefined in
a different iteration.

An input/output statement shall not write data to a file record or position in one iteration and
read from the same record or position in a different iteration of the same execution of the construct.
Records written by output statements in the loop range to a sequential access file appear in the
file in an indeterminate order.

NOTE 8.12

The restrictions on referencing variables defined in an iteration of a DO CONCURRENT construct
apply to any procedure invoked within the loop.

202

Execution control 8.1.7.7

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 8.13

The restrictions on the statements in the loop range of a DO CONCURRENT construct are
designed to ensure there are no data dependencies between iterations of the loop. This permits
code optimizations that might otherwise be difficult or impossible because they would depend on
characteristics of the program not visible to the compiler.

1 8.1.7.8 Examples of DO constructs

NOTE 8.14

The following program fragment computes a tensor product of two arrays:

= DOT_PRODUCT (A (I, J, :), B(:, I, J))

NOTE 8.15

The following program fragment contains a DO construct that uses the WHILE form of loop-
control. The loop will continue to execute until an end-of-file or input/output error is encountered,
at which point the DO statement terminates the loop. When a negative value of X is read, the
program skips immediately to the next READ statement, bypassing most of the range of the loop.

READ (IUN, ’(1X, G14.7)’, IOSTAT = I0S) X
DO WHILE (I0S == 0)
IF (X >= 0.) THEN
CALL SUBA (X)
CALL SUBB (X)

CALL SUBZ (X)
ENDIF
READ (IUN, ’(1X, G14.7)’, IOSTAT = IO0S) X
END DO

NOTE 8.16

The following example behaves exactly the same as the one in Note 8.15. However, the READ
statement has been moved to the interior of the range, so that only one READ statement is needed.
Also, a CYCLE statement has been used to avoid an extra level of IF nesting.

DO ! A "DO WHILE + 1/2" loop
READ (IUN, °’(1X, G14.7)°, IOSTAT = I0S) X
IF (I0S /= 0) EXIT
IF (X < 0.) CYCLE
CALL SUBA (X)
CALL SUBB (X)

CALL SUBZ (X)
END DO

8.1.7.8 Execution control 203

I

© 0 N o o

10
11

12

13

14

15

16
17
18
19
20

21

22
23
24
25
26
27
28
29

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.17

The following example represents a case in which the user knows that there are no repeated values
in the index array IND. The DO CONCURRENT construct makes it easier for the processor to
generate vector gather/scatter code, unroll the loop, or parallelize the code for this loop, potentially
improving performance.

INTEGER :: A(N),IND(N)

DO CONCURRENT (I=1:M)
ACIND(I)) =1
END DO

NOTE 8.18
’Additional examples of DO constructs are in C.6.3.

8.1.8 IF construct and statement
8.1.8.1 Purpose and form of the IF construct

The IF construct selects for execution at most one of its constituent blocks. The selection is based on
a sequence of logical expressions.

R840 if-construct is if-then-stmt
block
[else-if-stmt
block | ...
[else-stmt
block |
end-if-stmt
R841 if-then-stmt is [if-construct-name : | IF (scalar-logical-expr) THEN
R842 else-if-stmt is ELSE IF (scalar-logical-expr) THEN [if-construct-name]
R843 else-stmt is ELSE [if-construct-name]
R844 end-if-stmt is END IF [if-construct-name]

C830 (R840) If the if-then-stmt of an if-construct specifies an if-construct-name, the corresponding
end-if-stmt shall specify the same if-construct-name. If the if-then-stmt of an if-construct does
not specify an if-construct-name, the corresponding end-if-stmt shall not specify an if-construct-
name. If an else-if-stmt or else-stmt specifies an if-construct-name, the corresponding if-then-
stmt shall specify the same if-construct-name.

8.1.8.2 Execution of an IF construct

At most one of the blocks in the IF construct is executed. If there is an ELSE statement in the construct,
exactly one of the blocks in the construct is executed. The scalar logical expressions are evaluated in
the order of their appearance in the construct until a true value is found or an ELSE statement or END
IF statement is encountered. If a true value or an ELSE statement is found, the block immediately
following is executed and this completes the execution of the construct. The scalar logical expressions
in any remaining ELSE IF statements of the IF construct are not evaluated. If none of the evaluated
expressions is true and there is no ELSE statement, the execution of the construct is completed without
the execution of any block within the construct.

204 Execution control 8.1.8

13/07-007r2:2007/06 /05

WD 1539-1

ISO/IEC SC22/WG5/N1678

1 2 It is permissible to branch to an END IF statement only from within its IF construct. Execution of an

2 END IF statement has no effect.
3 8.1.8.3 Examples of IF constructs
NOTE 8.19
IF (CVAR == ’RESET’) THEN
I =0; J=0; K=0
END IF

PROOF_DONE: IF (PROP) THEN
WRITE (3, ’(’’QED’’)’)
STOP

ELSE
PROP = NEXTPROP

END IF PROOF_DONE

IF (A > 0) THEN

B = C/A
IF (B > 0) THEN
D=1.0

END IF

ELSE IF (C > 0) THEN
B = A/C
D=-1.0

ELSE
B = ABS (MAX (A, ©))
D=0

END IF

4 8.1.8.4 IF statement

5 1 TheIF statement controls the execution of a single action statement based on a single logical expression.

6 R845 if-stmt is IF (scalar-logical-expr) action-stmt
7 C831 (R845) The action-stmt in the if-stmt shall not be an end-function-stmt, end-mp-subprogram-
8 stmt, end-program-stmt, end-subroutine-stmt, or if-stmt.

9 2 Execution of an IF statement causes evaluation of the scalar logical expression.

If the value of the

10 expression is true, the action statement is executed. If the value is false, the action statement is not

11 executed and execution continues.

12 3 The execution of a function reference in the scalar logical expression may affect entities in the action

13 statement.

NOTE 8.20

An example of an IF statement is:

IF (A > 0.0) A = L0OG (A)

8.1.8.3

Execution control

205

[&)]

© 0 N O

10
11

12

13
14

15

16
17
18

19
20

21
22

23
24

25
26
27

28
29

30

31
32
33
34
35
36

37
38

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

8.1.9 SELECT TYPE construct
8.1.9.1 Purpose and form of the SELECT TYPE construct

The SELECT TYPE construct selects for execution at most one of its constituent blocks. The
selection is based on the dynamic type of an expression. A name is associated with the expression or
variable (16.4, 16.5.1.6), in the same way as for the ASSOCIATE construct.

R846 select-type-construct is select-type-stmt
[type-guard-stmt
block | ...
end-select-type-stmt

R847 select-type-stmt is [select-construct-name : | SELECT TYPE B
B ([associate-name => | selector)

C832 (R847) If selector is not a named wvariable, associate-name => shall appear.

C833 (R847) If selector is not a wvariable or is a wvariable that has a vector subscript, associate-name
shall not appear in a variable definition context (16.6.7).

(834 (R847) The selector in a select-type-stmt shall be polymorphic.

R848 type-guard-stmt is TYPE IS (type-spec) | select-construct-name]
or CLASS IS (derived-type-spec) [select-construct-name |
or CLASS DEFAULT [select-construct-name |

(835 (R848) The type-spec or derived-type-spec shall specify that each length type parameter is as-
sumed.

(836 (R848) The type-spec or derived-type-spec shall not specify a type with the BIND attribute or
the SEQUENCE attribute.

C837 (R848) If selector is not unlimited polymorphic, the type-spec or derived-type-spec shall specify
an extension of the declared type of selector.

C838 (R848) For a given select-type-construct, the same type and kind type parameter values shall
not be specified in more than one TYPE IS type-guard-stmt and shall not be specified in more
than one CLASS IS type-guard-stmt.

C839 (R848) For a given select-type-construct, there shall be at most one CLASS DEFAULT type-
guard-stmt.

R849 end-select-type-stmt is END SELECT [select-construct-name]

C840 (R846) If the select-type-stmt of a select-type-construct specifies a select-construct-name, the
corresponding end-select-type-stmt shall specify the same select-construct-name. If the select-
type-stmt of a select-type-construct does not specify a select-construct-name, the corresponding
end-select-type-stmt shall not specify a select-construct-name. If a type-guard-stmt specifies a
select-construct-name, the corresponding select-type-stmt shall specify the same select-construct-
name.

The associate name of a SELECT TYPE construct is the associate-name if specified; otherwise it is the
name that constitutes the selector.

206 Execution control 8.1.9.1

o

© 0o N o

10

11

12
13
14
15
16
17
18
19
20
21

22
23
24

25
26
27

28
29
30

31

32

33

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

8.1.9.2 Execution of the SELECT TYPE construct

Execution of a SELECT TYPE construct causes evaluation of every expression within a selector that is
a variable designator, or evaluation of a selector that is not a variable designator.

A SELECT TYPE construct selects at most one block to be executed. During execution of that block,
the associate name identifies an entity which is associated (16.5.1.6) with the selector.

A TYPE IS type guard statement matches the selector if the dynamic type and kind type parameter
values of the selector are the same as those specified by the statement. A CLASS IS type guard
statement matches the selector if the dynamic type of the selector is an extension of the type specified
by the statement and the kind type parameter values specified by the statement are the same as the
corresponding type parameter values of the dynamic type of the selector.

The block to be executed is selected as follows.

(1) Ifa TYPEIS type guard statement matches the selector, the block following that statement
is executed.

(2) Otherwise, if exactly one CLASS IS type guard statement matches the selector, the block
following that statement is executed.

(3) Otherwise, if several CLASS IS type guard statements match the selector, one of these
statements must specify a type that is an extension of all the types specified in the others;
the block following that statement is executed.

(4) Otherwise, if there is a CLASS DEFAULT type guard statement, the block following that
statement is executed.

(5) Otherwise, no block is executed.

NOTE 8.21

This algorithm does not examine the type guard statements in source text order when it looks for
a match; it selects the most particular type guard when there are several potential matches.

5 Within the block following a TYPE IS type guard statement, the associating entity (16.5.5) is not

polymorphic (4.3.1.3), has the type named in the type guard statement, and has the type parameter
values of the selector.

Within the block following a CLASS IS type guard statement, the associating entity is polymorphic and
has the declared type named in the type guard statement. The type parameter values of the associating
entity are the corresponding type parameter values of the selector.

Within the block following a CLASS DEFAULT type guard statement, the associating entity is poly-
morphic and has the same declared type as the selector. The type parameter values of the associating
entity are those of the declared type of the selector.

NOTE 8.22

If the declared type of the selector is T, specifying CLASS DEFAULT has the same effect as
specifying CLASS IS (T).

The other attributes of the associating entity are described in 8.1.3.3.

It is permissible to branch to an end-select-type-stmt only from within its SELECT TYPE construct.

8.1.9.3 Examples of the SELECT TYPE construct

8.1.9.3 Execution control 207

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.23

TYPE POINT
REAL :: X, Y

END TYPE POINT

TYPE, EXTENDS(POINT) :: POINT_3D
REAL :: Z

END TYPE POINT_3D

TYPE, EXTENDS(POINT) :: COLOR_POINT
INTEGER :: COLOR

END TYPE COLOR_POINT

TYPE(POINT), TARGET :: P
TYPE(POINT_3D), TARGET :: P3
TYPE(COLOR_POINT), TARGET :: C
CLASS(POINT), POINTER :: P_OR_C
P_OR_C => C
SELECT TYPE (A => P_OR_C)
CLASS IS (POINT)
! "CLASS (POINT) :: A" implied here
PRINT *, A%X, A%Y ! This block gets executed
TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: A" implied here
PRINT *, A%X, A%Y, AYZ
END SELECT

NOTE 8.24

The following example illustrates the omission of associate-name. It uses the declarations from
Note 8.23.

P_OR_C => P3
SELECT TYPE (P_OR_C)
CLASS IS (POINT)
! "CLASS (POINT) :: P_OR_C" implied here
PRINT *, P_OR_CJ%X, P_OR_C}%Y
TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: P_OR_C" implied here
PRINT *, P_OR_C%X, P_OR_C%Y, P_OR_C%Z ! This block gets executed
END SELECT

8.1.10 EXIT statement
The EXIT statement provides one way of terminating a construct.
R850 ewit-stmt is EXIT [construct-name |

C841 If a construct-name appears, the EXIT statement shall be within that construct; otherwise, it
shall be within the range of at least one do-construct.

An EXIT statement belongs to a particular construct. If a construct name appears, the EXIT statement
belongs to that construct; otherwise, it belongs to the innermost DO construct in which it appears.

C842 An exit-stmt shall not belong to a DO CONCURRENT construct, nor shall it appear within
the range of a DO CONCURRENT construct if it belongs to a construct that contains that DO

208 Execution control 8.1.10

A~ W N

10
11
12
13
14
15
16

17

18

19
20

21

22

23

24

25
26

27
28
29
30
31
32

33
34

35

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

CONCURRENT construct.

When an EXIT statement that belongs to a DO construct is executed, it terminates the loop (8.1.7.6.4)
and any active loops contained within the terminated loop. When an EXIT statement that belongs to
a non-DO construct is executed, it terminates any active loops contained within that construct, and
completes execution of that construct.

8.2 Branching

8.2.1 Branch concepts

Branching is used to alter the normal execution sequence. A branch causes a transfer of control from
one statement in a scoping unit to a labeled branch target statement in the same scoping unit. Branching
may be caused by a GOTO statement, a computed GOTO statement, an arithmetic IF statement, a
CALL statement that has an alt-return-spec, or an input/output statement that has an END= or ERR=
specifier. Although procedure references and control constructs can cause transfer of control, they are
not branches. A branch target statement is an action-stmt, an associate-stmt, an end-associate-
stmt, an if-then-stmt, an end-if-stmt, a select-case-stmt, an end-select-stmt, a select-type-stmt, an end-
select-type-stmt, a do-stmt, an end-do-stmt, block-stmt, end-block-stmt, critical-stmt, end-critical-stmt,
a forall-construct-stmt, a do-term-action-stmt, a do-term-shared-stmt, or a where-construct-stmt.

8.2.2 GO TO statement
R851 goto-stmt is GO TO label

(843 (R851) The label shall be the statement label of a branch target statement that appears in the
same scoping unit as the goto-stmt.

Execution of a GO TO statement causes a transfer of control so that the branch target statement
identified by the label is executed next.

8.2.3 Computed GO TO statement

R&52 computed-goto-stmt is GO TO (label-list) [,]| scalar-int-expr

C844 (R852 Each label in label-list shall be the statement label of a branch target statement that appears in the same
scoping unit as the computed-goto-stmt.

NOTE 8.25

‘ The same statement label may appear more than once in a label list.

Execution of a computed GO TO statement causes evaluation of the scalar integer expression. If this value is ¢ such
that 1 <4 < n where n is the number of labels in label-list, a transfer of control occurs so that the next statement executed
is the one identified by the ith label in the list of labels. If ¢ is less than 1 or greater than n, the execution sequence
continues as though a CONTINUE statement were executed.

8.2.4 Arithmetic IF statement

R853 arithmetic-if-stmt is IF (scalar-numeric-expr) label , label , label

C845 (R853) Each label shall be the label of a branch target statement that appears in the same scoping unit as the
arithmetic-if-stmt.

C846 (R853) The scalar-numeric-expr shall not be of type complex.

8.2 Execution control 209

10
11

12

13

14
15

16
17
18
19
20

21

22

23

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.26

The same label may appear more than once in one arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of the numeric expression followed by a transfer of control.
The branch target statement identified by the first label, the second label, or the third label is executed next depending

on whether the value of the numeric expression is less than zero, equal to zero, or greater than zero, respectively.

8.3 CONTINUE statement

Execution of a CONTINUE statement has no effect.

R854 continue-stmit is CONTINUE

8.4 STOP and ALL STOP statements

R855 stop-stmt is STOP [stop-code |
R856 allstop-stmt is ALL STOP [stop-code]
R857 stop-code is scalar-char-initialization-expr

or scalar-int-initialization-expr
C847 (R857) The scalar-char-initialization-expr shall be of default kind.
C848 (R857) The scalar-int-initialization-expr shall be of default kind.

Execution of a STOP statement initiates normal termination of execution. Execution of an ALL
STOP statement initiates error termination of execution.

When an image is terminated by a STOP or ALL STOP statement, its stop code, if any, is made available
in a processor-dependent manner. If any exception (14) is signaling on that image, the processor shall
issue a warning indicating which exceptions are signaling; this warning shall be on the unit identified by
the named constant ERROR_UNIT (13.8.2.6). It is recommended that the stop code is made available
by formatted output to the same unit.

NOTE 8.27

When normal termination occurs on more than one image, it is expected that a processor-dependent
summary of any stop codes and signaling exceptions will be made available.

NOTE 8.28

If the stop-code is an integer, it is recommended that the value also be used as the process exit
status, if the processor supports that concept. If the integer stop-code is used as the process exit
status, the processor might be able to interpret only values within a limited range, or only a limited
portion of the integer value (for example, only the least-significant 8 bits).

If the stop-code is of type character or does not appear, or if an END PROGRAM statement
is executed, it is recommended that the value zero be supplied as the process exit status, if the
processor supports that concept.

8.5 Image execution control

8.5.1 Image control statements

1 The execution sequence on each image is as specified in 2.4.5.

210 Execution control 8.3

N

© 0 N o 0 b~ W

10
11
12
13
14
15

16
17
18

19
20
21
22

23
24
25
26
27

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

2 An image control statement affects the execution ordering between images. Each of the following is

an image control statement:

e SYNC ALL statement;

e SYNC TEAM statement;

e SYNC IMAGES statement;

e SYNC MEMORY statement;

e NOTIFY statement;

e QUERY statement;

e ALLOCATE or DEALLOCATE statement that allocates or deallocates a co-array;

e CRITICAL or END CRITICAL statement (8.1.6);

e OPEN statement with a TEAM= specifier;

e CLOSE statement for a file that is open with a TEAM= specifier;

e END, END BLOCK, or RETURN statement that involves an implicit deallocation of a co-array;
e END PROGRAM or STOP statement;

e CALL statement for a collective subroutine (13.1) or the intrinsic subroutine FORM_TEAM(13.7.71).

Unresolved Technical Issue 112

Image control statement problems with OPEN.

It looks to me that OPEN on a multiple-image-team-connected unit with a different file will close
that unit (that’s what OPEN does); surely this will involve exactly the same synchronisation as
an explicit CLOSE?

Furthermore, since OPEN with a single-image TEAM has the same effect of leaving TEAM= off
altogether, surely the former should not be an image control statement?

There is another glitch, and that is that OPEN (with no TEAM=) does an implicit team
synchronization — yes, that’s what it says. Presumably that should be only if the connect team
consists of more than one image?

ASIDE: T am less sanguine than some about allowing CLOSE in CRITICAL. Having the user’s
program deadlock or crash is not an improvement over getting a compile-time error message. Why
is this so essential?

3 During an execution of a statement that invokes more than one procedure, at most one invocation shall

cause execution of an image control statement other than CRITICAL, END CRITICAL, or CLOSE for
a file with a connect team of only one image.

On each image, the sequence of statements executed before the first image control statement, between
the execution of two image control statements, or after the last image control statement is a segment.
The segment executed immediately before the execution of an image control statement includes the
evaluation of all expressions within the statement.

By execution of image control statements or user-defined ordering (8.5.6), the program can ensure that
the execution of the i*"* segment on image P, P;, either precedes or succeeds the execution of the j**
segment on another image Q, @;. If the program does not ensure this, segments P; and); are unordered;
depending on the relative execution speeds of the images, some or all of the execution of the segment P;
may take place at the same time as some or all of the execution of the segment @);.

8.5.1 Execution control 211

w N

© 0 N o O

10
11

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.29

The set of all segments on all images is partially ordered: the segment P; precedes segment Q; if
and only if there is a sequence of segments starting with P; and ending with @; such that each
segment of the sequence precedes the next either because they are on the same image or because
of the execution of image control statements.

Unresolved Technical Issue 121

Serious disagreement over purported meaning of VOLATILE licence.

The paragraph below this UTT used to say “A scalar ...”. T've taken “scalar” out, because it has
no effect.

Can I remind the people concerned that arrays and structures are comprised of scalar subobjects.

I wrote lots more here but since then various subgroup members have posted contradictory things,
so I've deleted most of it. Maybe they have converged by now. Maybe not. The one thing that
does seem clear to me from the post-meeting email shambles is that there is a real technical issue
here, it is not just a simple wording mistake.

Allegedly some “compromise” was hammered out in subgroup. (That doesn’t seem to be the
convergence of the post-meeting email though.) In any case, just because something was hammered
out in subgroup doesn’t mean that it is workable or technically feasible.

SOAPBOX: Maybe we ought not to be attempting to put such low-level junk into what was
supposed to be a high-level parallel programming paradigm.

6 A co-array that is of type default integer, default logical, default real, or default bits, and has the
VOLATILE attribute may be referenced during the execution of a segment that is unordered relative to
the execution of a segment in which the co-array is defined. Otherwise,

e if a co-array is defined on an image in a segment, it shall not be referenced, defined, or become

undefined in a segment on another image unless the segments are ordered,

if the allocation of an allocatable subobject of a co-array or the pointer association of a pointer
subobject of a co-array is changed on an image in a segment, that subobject shall not be referenced
or defined in a segment on another image unless the segments are ordered, and

if a procedure invocation on image P is in execution in segments P;, P;i1, ..., P, and defines a
non-co-array dummy argument, the effective argument shall not be referenced, defined, or become
undefined on another image Q in a segment @); unless Q); precedes P; or succeeds F.

NOTE 8.30

Apart from the effects of volatile variables, the processor may optimize the execution of a segment
as if it were the only image in execution.

NOTE 8.31

The model upon which the interpretation of a program is based is that there is a permanent
memory location for each co-array and that all images can access it. In practice, an image may
make a copy of a non-volatile co-array (in cache or a register, for example) and, as an optimization,
defer copying a changed value back to the permanent location while it is still being used. Since
the variable is not volatile, it is safe to defer this transfer until the end of the current segment
and thereafter to reload from permanent memory any co-array that was not defined within the
segment. It would not be safe to defer these actions beyond the end of the current segment since
another image might reference the variable then.

212

Execution control 8.5.1

w N

~N o o N

10
11

12

13

14
15
16
17
18

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

If an image P writes a record during the execution of P; to a file that is opened for direct access with a
TEAM= specifier, no other image Q shall read or write the record during execution of a segment that
is unordered with P;. Furthermore, it shall not read the record in a segment that succeeds P; unless

e after image P writes the record, it executes a FLUSH statement (9.9) for the file during the
execution of a segment Py, where k >= ¢, and

e before image Q reads the record, it executes a FLUSH statement for the file during the execution
of a segment @); that succeeds Pj.

NOTE 8.32

The incorrect sequencing of image control statements can halt execution indefinitely. For example,
one image might be executing a SYNC ALL statement while another is executing an ALLOCATE
statement for a co-array; or one image might be executing a blocking QUERY statement for which
an image in its image set never executes the corresponding NOTIFY statement.

8.5.2 SYNC ALL statement
R858 sync-all-stmt is SYNC ALL [([sync-stat-list])]

R859 sync-stat is STAT = stat-variable
or ERRMSG = errmsg-variable

C849 No specifier shall appear more than once in a given sync-stat-list.
The STAT= and ERRMSG= specifiers for image execution control statements are described in 8.5.7.

Execution of a SYNC ALL statement performs a synchronization of all images. Execution on an image,
M, of the segment following the SYNC ALL statement is delayed until each other image has executed a
SYNC ALL statement as many times as has image M. The segments that executed before the SYNC ALL
statement on an image precede the segments that execute after the SYNC ALL statement on another
image.

NOTE 8.33

If synchronization is required when the images commence statement execution, a SYNC ALL
statement should be the first executable statement of the main program. This is necessary if the
code relies on the initialization of a co-array on another image.

Unresolved Technical Issue 120

Initial values of coarrays.

According to the standard, an initialized variable is initially defined. Unless the coarray folk have
changed the meaning of “initially”, that means the above statement (about the necessity of SYNC

ALL) is false.

I don’t see any normative text saying “a coarray on another image shall not be referenced before
a synchronization with that image”.

Or possibly the above sentence is trying to say something else?

NOTE 8.34

The processor might have special hardware or employ an optimized algorithm to make the SYNC
ALL statement execute efficiently.

Here is a simple example of its use. Image 1 reads data and broadcasts it to other images:

8.5.2 Execution control 213

[&)]

© 0 N O

10
11
12
13

14
15
16
17
18
19

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.34 (cont.)
REAL :: P[x]

SYNC ALL

IF (THIS_IMAGE()==1) THEN
READ (x,%) P
DO I = 2, NUM_IMAGES()

P[I] =P

END DO

END IF

SYNC ALL

8.5.3 SYNC TEAM statement
R860 sync-team-stmt is SYNC TEAM (image-team [, sync-stat-list])
R861 image-team is scalar-variable

C850 The image-team shall be a scalar variable of type IMAGE_TEAM from the intrinsic module
ISO_.FORTRAN_ENV.

Execution of a SYNC TEAM statement performs a team synchronization, which is a synchronization
of the images in a team. The team is specified by the value of image-team and shall include the executing
image. All images of the team shall execute a SYNC TEAM statement with a value of image-team that
was constructed by corresponding invocations of the intrinsic subroutine FORM_TEAM for the team.
They do not commence executing subsequent statements until all images in the team have executed a
SYNC TEAM statement for the team an equal number of times since FORM_TEAM was invoked for
the team. If images M and T are any two members of the team, the segments that execute before the
statement on image M precede the segments that execute after the statement on image T.

Execution of an OPEN statement with a TEAM= specifier, a CLOSE statement for a unit whose connect
team consists of more than one image, or a CALL statement for a collective subroutine is interpreted
as if an execution of a SYNC TEAM statement for the team occurred at the beginning and end of
execution of the statement. The team is identified by the value of image-team in the statement, is the
set of all images for a collective subroutine with no TEAM argument, or is the connect team for the
CLOSE statement.

NOTE 8.35

Execution of the intrinsic subroutine FORM_TEAM also performs a team synchronization.

NOTE 8.36

In this example the images are divided into two teams, one for an ocean calculation and one for
an atmosphere calculation.

USE, INTRINSIC :: ISO_FORTRAN_ENV
TYPE(IMAGE_TEAM) :: TEAM

INTEGER :: N2, STEP, NSTEPS
LOGICAL :: OCEAN

N2 = NUM_IMAGES()/2
OCEAN = (THIS_IMAGE()<=N2)
IF (OCEAN) THEN
CALL FORM_TEAM (TEAM, [(I, I=1,N2) 1)

214 Execution control 8.5.3

10
11
12
13
14
15

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 8.36 (cont.)

ELSE
CALL FORM_TEAM (TEAM, [(I, I=N2+1,NUM_IMAGES()) 1)
END IF
! Tnitial calculation
SYNC ALL
DO STEP = 1, NSTEPS
IF (OCEAN) THEN
DO

! Ocean calculation
SYNC TEAM (TEAM)

IF (...) EXIT ! Ready to swap data
END DO
ELSE
DO
! Atmosphere calculation
SYNC TEAM (TEAM)
IF (...) EXIT ! Ready to swap data
END DO
END IF
SYNC ALL
! Swap data
END DO

In the inner loops, each set of images first works entirely with its own data and each image
synchronizes with the rest of its team. The number of synchronizations for the ocean team might
differ from the number for the atmosphere team. The SYNC ALL statement that follows is needed
to ensure that both teams have done their calculations before data are swapped.

8.5.4 SYNC IMAGES statement

R862 sync-images-stmt is SYNC IMAGES (image-set [, sync-stat-list])
R863 image-set is int-expr
or *

C851 An image-set that is an int-expr shall be scalar or of rank one.

If image-set is an array expression, the value of each element shall be positive and not greater than the
number of images, and there shall be no repeated values.

If image-set is a scalar expression, its value shall be positive and not greater than the number of images.
An image-set that is an asterisk specifies all images.

Execution of a SYNC IMAGES statement performs a synchronization of the image with each of the other
images in the image-set. Executions of SYNC IMAGES statements on images M and T correspond if
the number of times image M has executed a SYNC IMAGES statement with T in its image set is the
same as the number of times image T has executed a SYNC IMAGES statement with M in its image set.
The segments that executed before the SYNC IMAGES statement on either image precede the segments
that execute after the corresponding SYNC IMAGES statement on the other image.

NOTE 8.37

A SYNC IMAGES statement that specifies the single image value THIS IMAGE() in its image set
is allowed. This simplifies writing programs for an arbitrary number of images by allowing correct

8.5.4 Execution control 215

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.37 (cont.)

execution in the limiting case of the number of images being equal to one.

NOTE 8.38

Execution of SYNC IMAGES (*) on all images has the same effect as execution of SYNC ALL on
all images, but SYNC ALL might have better performance. SYNC IMAGES statements are not
required to specify the entire image set, or even the same image set, on all images participating in
the synchronization.

In the following example, image 1 will wait for each of the other images to complete its use of the
data. The other images wait for image 1 to set up the data, but do not wait on any of the other
images.

IF (THIS_IMAGE() == 1) then
! Set up co-array data needed by all other images
SYNC IMAGES(*)
ELSE
SYNC IMAGES(1)
! Use the data set up by image 1
END IF

NOTE 8.39

Execution of a SYNC TEAM statement causes all the images of the team to wait for each other.
There might, however, be situations where this is not efficient. In the following example, each
image synchronizes with its neighbor.

INTEGER :: ME, NE, STEP, NSTEPS
NE = NUM_IMAGES()
ME = THIS_IMAGE()
! Tnitial calculation

SYNC ALL
DO STEP = 1, NSTEPS

IF (ME > 1) SYNC IMAGES(ME-1)

! Perform calculation

IF (ME < NE) SYNC IMAGES(ME+1)
END DO
SYNC ALL

The calculation starts on image 1 since all the others will be waiting on SYNC IMAGES(ME-
1). When this is done, image 2 can start and image 1 can perform its second calculation. This
continues until they are all executing different steps at the same time. Eventually, image 1 will
finish and then the others will finish one by one.

The SYNC IMAGES syntax involves image-set rather than image-team to allow the set of images
to vary from image to image.

8.5.5 NOTIFY and QUERY statements

R864 notify-stmt is NOTIFY (image-set [, sync-stat-list |)
R865 query-stmt is QUERY (image-set [, query-spec-list |)
R866 query-spec is READY = scalar-logical-variable

216 Execution control 8.5.5

10

11
12
13

14
15

16
17
18

19
20

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

or sync-stat
C852 (R865) No specifier shall appear more than once in a given query-spec-list.

Execution on image M of a NOTIFY statement with a different image T in its image-set increments by
1 a record of the number of times, Ny;_p, image M executed such a NOTIFY statement.

A QUERY statement is blocking if and only if it has no READY= specifier. A QUERY statement is
satisfied on completion of its execution if and only if it is a blocking QUERY statement or it set the
variable specified by its READY= specifier to true.

Let Qpr—71 denote the number of times image M has completed the execution of a satisfied QUERY
statement with a different image T in its image set. Completion of execution on image M of a blocking
QUERY statement is delayed until, for each different T in its image set, Ny > Qpr—7-

Execution of a non-blocking QUERY statement on image M causes the scalar-logical-variable of its
READY= specifier to be assigned the value false if, for a different image T in the image set, Np_ s <
Qnr—1; otherwise, true is assigned.

A NOTIFY statement execution on image T and a satisfied QUERY statement execution on image M
correspond if and only if

e the NOTIFY statement’s image set includes image M,
e the QUERY statement’s image set includes image T, and
e after execution of both statements has completed, Ny = Q-

Segments on an image executed before the execution of a NOTIFY statement precede the segments on
other images that follow execution of its corresponding QUERY statements.

NOTE 8.40

The NOTIFY and QUERY statements can be used to order statement executions between a
producer and consumer image.

INTEGER,PARAMETER :: PRODUCER = 1, CONSUMER = 2
INTEGER :: VALUE[*]
LOGICAL :: READY

SELECT CASE (THIS_IMAGEQ))
CASE (PRODUCER)
VALUE [CONSUMER] = 3
NOTIFY (CONSUMER)
CASE (CONSUMER)
WaitLoop: DO
QUERY (PRODUCER,READY=READY)
IF (READY) EXIT WaitLoop
| Statements neither referencing VALUE[CONSUMER], nor causing it to
! become defined or undefined
END DO WaitLoop
! references to VALUE
CASE DEFAULT
! Statements neither referencing VALUE[CONSUMER], nor causing it to
! become defined or undefined
END SELECT

Unlike SYNC IMAGES statements, the number of notifications and corresponding queries may be

8.5.5 Execution control 217

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

NOTE 8.40 (cont.)

’unequal. A program can complete with an excess number of notifies.

NOTE 8.41

NOTIFY/QUERY pairs can be used in place of SYNC ALL and SYNC IMAGES to achieve better
load balancing and allow one image to proceed with calculations while another image is catching
up. For example,

IF (THIS_IMAGE()==1) THEN
DO I=1,100
caa ! Primary processing of column I
NOTIFY(2) ! Done with column I
END DO
SYNC IMAGES(2)
ELSE IF (THIS_IMAGE()==2) THEN
DO I=1,100
QUERY(1) ! Wait until image 1 is done with column I
500 ! Secondary processing of column I
END DO

SYNC IMAGES(1)
END IF

1 8.5.6 SYNC MEMORY statement

2 1 The SYNC MEMORY statement provides a means of dividing a segment on an image into two segments,

3 each of which can be ordered by a user-defined way with respect to segments on other images.
4 R867 sync-memory-stmt is SYNC MEMORY [([sync-stat-list |)]
NOTE 8.42

SYNC MEMORY usually suppresses compiler optimizations that might reorder memory operations
across the segment boundary defined by the SYNC MEMORY statement and ensures that all
memory operations initiated in the preceding segments in its image complete before any memory
operations in the subsequent segment in its image are initiated. It needs to do this unless it can
establish that failure to do so could not alter processing on another image.

5 2 All of the other image control statements include the effect of executing a SYNC MEMORY statement.

6 In addition, the other image control statements cause some form of cooperation with other images for
7 the purpose of ordering execution between images.
NOTE 8.43
A common example of user-written code that can be used in conjunction with SYNC MEMORY
to implement specialized schemes for segment ordering is the spin-wait loop. For example:
LOGICAL,VOLATILE :: LOCKED[*] = .TRUE.
INTEGER :: IAM, P, Q
IAM = THIS_IMAGE()
IF (IAM == P) THEN
! Preceding segment
SYNC MEMORY 1A
LOCKED[Q] = .FALSE. | segment P;

218 Execution control 8.5.6

0 N o g, WN

J3/07-007r2:2007/06/05 WD 1539-1 ISO/IEC SC22/WG5/N1678

NOTE 8.43 (cont.)

SYNC MEMORY ! B
ELSE IF (IAM == Q) THEN
DO WHILE (LOCKED); END DO ! segment Q);
SYNC MEMORY e
! Subsequent segment
END IF

Here, image Q does not complete the segment); until image P executes segment P;. This ensures
that executions of segments before P; on image P precede executions of segments on image Q after

Qj.

The first SYNC MEMORY statement (A) ensures that the compiler does not reorder the following
statement (locking) with the previous statements, since the lock should be freed only after the
work has been completed.

The definition of LOCKED[Q] might be deferred to the end of segment P;. The second SYNC
MEMORY statement (B) ends that segment immediately after the definition, minimizing any delay
in releasing the lock in segment @);.

The third SYNC MEMORY statement (C) marks the beginning of a new segment, informing the
compiler that the values of co-arrays referenced in that segment might have been changed by other
images in preceding segments, so need to be loaded from memory.

NOTE 8.44

As a second example, the user might have access to an external procedure that performs synchro-
nization between images. That library procedure might not be aware of the mechanisms used by the
processor to manage remote data references and definitions, and therefore not, by itself, be able to
ensure the correct memory state before and after its reference. The SYNC MEMORY statement
provides the needed memory ordering that enables the safe use of the external synchronization
routine. For example:

INTEGER :: IAM
REAL c X[x]

IAM = THIS_IMAGE()

IF (IAM ==1) X =1.0

SYNC MEMORY

CALL EXTERNAL_SYNC(Q)

SYNC MEMORY

IF (IAM == 2) WRITE(*,*) X[1]

where executing the subroutine EXTERNAL_SYNC has an image synchronization effect similar
to executing a SYNC ALL statement.

8.5.7 STAT= and ERRMSG= specifiers in image execution control statements

If the STAT= specifier appears, successful execution of the SYNC ALL, SYNC TEAM, SYNC IMAGES,
SYNC MEMORY, NOTIFY, or QUERY statement causes the specified variable to become defined with
the value zero. If execution of one of these statements involves synchronization with an image that has
initiated termination, the variable becomes defined with the value of the constant STAT_STOPPED_-
IMAGE (13.8.2) in the ISO_.FORTRAN_ENYV intrinsic module, and the effect of executing the statement
is otherwise the same as that of executing the SYNC MEMORY statement. If any other error occurs
during execution of one of these statements, the variable becomes defined with a processor-dependent

8.5.7 Execution control 219

A W N =

o N O o

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

positive integer value that is different from the value of STAT _STOPPED_IMAGE. If an error condition
occurs during execution of a SYNC ALL, SYNC TEAM, SYNC IMAGES, SYNC MEMORY, NOTIFY,
or QUERY statement that does not contain the STAT= specifier, error termination of execution is
initiated.

If the ERRMSG= specifier appears and an error condition occurs during execution of the SYNC ALL,
SYNC TEAM, SYNC IMAGES, SYNC MEMORY, NOTIFY, or QUERY statement, the processor shall
assign an explanatory message to the specified variable. If no such condition occurs, the processor shall
not change the value of the variable.

NOTE 8.45

Except for detection of images that have initiated termination, which errors, if any, are diagnosed
is processor dependent. The processor might check that a valid set of images has been provided,
with no out-of-range or repeated values. It might test for network time-outs. While the overall
program would probably not be able to recover from a synchronization error, it could perhaps
provide information on what failed and be able to save some of the program state to a file.

220 Execution control 8.5.7

~N o o A~ W

[ee]

10

11
12

13
14
15
16

17
18
19
20
21

22

23

24

25
26
27

28
29
30

31

32
33

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

9 Input/output statements

9.1 Input/output concepts

Input statements provide the means of transferring data from external media to internal storage or
from an internal file to internal storage. This process is called reading. Output statements provide
the means of transferring data from internal storage to external media or from internal storage to an
internal file. This process is called writing. Some input/output statements specify that editing of the
data is to be performed.

In addition to the statements that transfer data, there are auxiliary input/output statements to ma-
nipulate the external medium, or to describe or inquire about the properties of the connection to the
external medium.

The input/output statements are the OPEN, CLOSE, READ, WRITE, PRINT, BACKSPACE, END-
FILE, REWIND, FLUSH, WAIT, and INQUIRE statements.

The READ statement is a data transfer input statement. The WRITE statement and the PRINT
statement are data transfer output statements. The OPEN statement and the CLOSE state-
ment are file connection statements. The INQUIRE statement is a file inquiry statement. The
BACKSPACE, ENDFILE, and REWIND statements are file positioning statements.

A file is composed of either a sequence of file storage units (9.3.5) or a sequence of records, which
provide an extra level of organization to the file. A file composed of records is called a record file. A
file composed of file storage units is called a stream file. A processor may allow a file to be viewed
both as a record file and as a stream file; in this case the relationship between the file storage units when
viewed as a stream file and the records when viewed as a record file is processor dependent.

A file is either an external file (9.3) or an internal file (9.4).

0.2 Records

9.2.1 General

A record is a sequence of values or a sequence of characters. For example, a line on a terminal is usually
considered to be a record. However, a record does not necessarily correspond to a physical entity. There
are three kinds of records:

(1) formatted;

(2) unformatted;
(3) endfile.

NOTE 9.1

What is called a “record” in Fortran is commonly called a “logical record”. There is no concept
in Fortran of a “physical record.”

9.2.2 Formatted record

A formatted record consists of a sequence of characters that are representable in the processor;
however, a processor may prohibit some control characters (3.1) from appearing in a formatted record.

9 Input/output statements 221

A W N =

10
11

12

13
14
15
16

17

18
19
20

21
22

23

24

25

26
27
28

29
30

ISO/IEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

The length of a formatted record is measured in characters and depends primarily on the number of
characters put into the record when it is written. However, it may depend on the processor and the
external medium. The length may be zero. Formatted records may be read or written only by formatted
input/output statements.

Formatted records may be prepared by means other than Fortran.

9.2.3 Unformatted record

An unformatted record consists of a sequence of values in a processor-dependent form and may contain
data of any type or may contain no data. The length of an unformatted record is measured in file storage
units (9.3.5) and depends on the output list (9.6.3) used when it is written, as well as on the processor
and the external medium. The length may be zero. Unformatted records may be read or written only
by unformatted input/output statements.

9.2.4 Endfile record

An endfile record is written explicitly by the ENDFILE statement; the file shall be connected for
sequential access. An endfile record is written implicitly to a file connected for sequential access when
the most recent data transfer statement referring to the file is a data transfer output statement, no
intervening file positioning statement referring to the file has been executed, and

e a REWIND or BACKSPACE statement references the unit to which the file is connected, or

e the unit is closed, either explicitly by a CLOSE statement, implicitly by termination of image
execution not caused by an error condition, or implicitly by another OPEN statement for the same
unit.

An endfile record may occur only as the last record of a file. An endfile record does not have a length
property.

NOTE 9.2

An endfile record does not necessarily have any physical embodiment. The processor may use a
record count or other means to register the position of the file at the time an ENDFILE statement
is executed, so that it can take appropriate action when that position is reached again during
a read operation. The endfile record, however it is implemented, is considered to exist for the
BACKSPACE statement (9.8.2).

0.3 External files

9.3.1 Basic concepts
An external file is any file that exists in a medium external to the program.

At any given time, there is a processor-dependent set of allowed access methods, a processor-dependent
set of allowed forms, a processor-dependent set of allowed actions, and a processor-dependent set of
allowed record lengths for a file.

NOTE 9.3

For example, the processor-dependent set of allowed actions for a printer would likely include the
write action, but not the read action.

A file may have a name; a file that has a name is called a named file. The name of a named file is
represented by a character string value. The set of allowable names for a file is processor dependent. A

222 Input/output statements 9.2.3

10
11
12
13

14

15

16
17

18
19

20

21

22

23
24
25
26

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

named file that is opened with the TEAM= specifier (9.5.6.19) has the same name on each image of the
team. Apart from this, whether a named file on one image is the same as a file with the same name on
another image is processor dependent.

NOTE 9.4

For code portability, if different files are needed on each image, different file names should be used.
One technique is to incorporate the image index as part of the name.

An external file that is connected to a unit has a position property (9.3.4).

NOTE 9.5

‘ For more explanatory information on external files, see C.7.1.

9.3.2 File existence

At any given time, there is a processor-dependent set of external files that exist for a program. A file
may be known to the processor, yet not exist for a program at a particular time.

NOTE 9.6

Security reasons may prevent a file from existing for a program. A newly created file may exist
but contain no records.

To create a file means to cause a file to exist that did not exist previously. To delete a file means to
terminate the existence of the file.

All input/output statements may refer to files that exist. An INQUIRE, OPEN, CLOSE, WRITE,
PRINT, REWIND, FLUSH, or ENDFILE statement also may refer to a file that does not exist. Execu-
tion of a WRITE, PRINT, or ENDFILE statement referring to a preconnected file that does not exist
creates the file.

9.3.3 File access
9.3.3.1 File access methods

There are three methods of accessing the data of an external file: sequential, direct, and stream. Some
files may have more than one allowed access method; other files may be restricted to one access method.

NOTE 9.7

For example, a processor may allow only sequential access to a file on magnetic tape. Thus, the
set of allowed access methods depends on the file and the processor.

The method of accessing a file is determined when the file is connected to a unit (9.5.4) or when the file
is created if the file is preconnected (9.5.5).

9.3.3.2 Sequential access
Sequential access is a method of accessing the records of an external record file in order.

When connected for sequential access, an external file has the following properties.

e The order of the records is the order in which they were written if the direct access method is
not a member of the set of allowed access methods for the file. If the direct access method is also
a member of the set of allowed access methods for the file, the order of the records is the same
as that specified for direct access. In this case, the first record accessible by sequential access is

9.3.2 Input/output statements 223

© 0 N O a0 W N

—
o

12

13

14
15
16
17

18
19
20
21
22

23
24

25
26
27
28
29

30
31

32

33

34
35

36

37
38
39
40
41

ISO

JIEC SC22/WG5/N1678 WD 1539-1 J3/07-007r2:2007/06/05

the record whose record number is 1 for direct access. The second record accessible by sequential
access is the record whose record number is 2 for direct access, etc. A record that has not been
written since the file was created shall not be read.

The records of the file are either all formatted or all unformatted, except that the last record of the
file may be an endfile record. Unless the previous reference to the file was a data transfer output
statement, the last record, if any, of the file shall be an endfile record.

The records of the file shall be read or written only by sequential access input/output statements.
Each record shall be read or written by a single image. The processor shall ensure that once an
image commences transferring the data of a record to the file, no other image transfers data to the
file until the whole record has been transferred.

9.3.3.3 Direct access

1 Direct access is a method of accessing the records of an external record file in arbitrary order.

2 When connected for direct access, an external file has the following properties.

Each record of the file is uniquely identified by a positive integer called the record number. The
record number of a record is specified when the record is written. Once established, the record
number of a record can never be changed. The order of the records is the order of their record
numbers.

The records of the file are either all formatted or all unformatted. If the sequential access method
is also a member of the set of allowed access methods for the file, its endfile record, if any, is not
considered to be part of the file while it is connected for direct access. If the sequential access
method is not a member of the set of allowed access methods for the file, the file shall not contain
an endfile record.

The records of the file shall be read or written only by direct access input/output statements.
All records of the file have the same length.

Records need not be read or written in the order of their record numbers. Any record may be
written into the file while it is connected to a unit. For example, it is permissible to write record
3, even though records 1 and 2 have not been written. Any record may be read from the file while
it is connected to a unit, provided that the record has been written since the file was created, and
if a READ statement for this connection is permitted.

The records of the file shall not be read or written using list-directed formatting (10.10), namelist
formatting (10.11), or a nonadvancing input/output statement (9.3.4.2).

NOTE 9.8

A record cannot be deleted; however, a record may be rewritten. ‘

9.3.3.4 Stream access

1 Stream access is a method of accessing the file storage units (9.3.5) of an external stream file.

2 The properties of an external file connected for stream access depend on whether the connection is for
unformatted or formatted access.

3 When connected for unformatted stream access, an external file has the following properties.

224

The file storage units of the file shall be read or written only by stream access input/output
statements.

Each file storage unit in the file is uniquely identified by a positive integer called the position. The
first file storage unit in the file is at position 1. The position of each subsequent file storage unit
is one greater than that of its preceding file storage unit.

Input/output statements 9.3.3.3

g~ W N =

10
11
12
13
14
15
16
17
18

19

20

21

22
23

24
25
26

27
28

29
30
31
32

33
34

13/07-007r2:2007 /06,05 WD 1539-1 ISO/IEC SC22/WG5/N1678

e If it is possible to position the file, the file storage units need not be read or written in order of
their position. For example, it might be permissible to write the file storage unit at position 3,
even though the file storage units at positions 1 and 2 have not been written. Any file storage unit
may be read from the file while it is connected to a unit, provided that the file storage unit has
been written since the file was created, and if a READ statement for this connection is permitted.

4 When connected for formatted stream access, an external file has the following properties.

e Some file storage units of the file may contain record markers; this imposes a record structure on
the file in addition to its stream structure. There might or might not be a record marker at the
end of the file. If there is no record marker at the end of the file, the final record is incomplete.

e No maximum length (9.5.6.15) is applicable to these records.
e Writing an empty record with no record marker has no effect.

e The file storage units of the file shall be read or written only by formatted stream access in-
put/output statements.

e Each file storage unit in the file is uniquely identified by a positive integer called the position. The
first file storage unit in the file is at position 1. The relationship between positions of successive file
storage units is processor dependent; not all positive integers need correspond to valid positions.

e If it is possible to position the file, the file position can be set to a position that was previously
identified by the POS= specifier in an INQUIRE statement.

e A processor may prohibit some control characters (3.1) from appearing in a formatted stream file.

NOTE 9.9

Because the record structure is determined from the record markers that are stored in the file
itself, an incomplete record at the end of the file is necessarily not empty.

NOTE 9.10

There may be some character positions in t