
J3/16-018 INTERPRETATION UPDATE PAGES

To: J3

From: Malcolm Cohen

Subject: Interpretation Update Pages: Standing Document 018 (14-018)

Date: 2014/06/16

This document contains insertions for every interpretation edit that has been published as a corrigendum to
ISO/IEC 1539-1:2010.

The following pages are intended for insertion into a loose-leaf binder version of 10-007r1. This document needs
to be printed single-sided for this to work.

Most edits are followed by a “making the whole paragraph read” summary; in such summaries deleted text
appears struck-out like this and new text is wavy-underlined

:::
like

::::
this. (NB: This has not been done when it

might be more confusing than helpful.)

This version contains corrigenda 1 to 3, and draft corrigendum 4.

i

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0046, Status: Corrigendum 1.

Ref: Introduction, 2nd paragraph, 4th bullet, [xv]

At the end of the 4th bullet (beginning “Data declaration:”),
Insert the following sentence:

An array or an object with a nonconstant length type parameter can have the VALUE attribute.

Interp F08/0121, Status: Corrigendum 4.

Ref: Introduction, 2nd paragraph, 4th bullet, [xv]

In the same bullet point, immediately after the above insertion, insert another sentence:

A defined-operator can be used in a specification expression.

Interp F08/0042, Status: Corrigendum 2.

Ref: Introduction, 2nd paragraph, 5th bullet, [xv]

In the 5th bullet (beginning “Data usage and computation:”),
After the second sentence (“SOURCE= in ... an expression.”) insert the following sentence:

Multiple allocations are permitted in a single ALLOCATE statement with SOURCE=.

Interp F08/0104, Status: Corrigendum 4.

Ref: Introduction, 2nd paragraph, 5th bullet, [xv]

In the 5th bullet (beginning “Data usage and computation:”),
append two new sentences:

All transformational functions from the intrinsic modules IEEE ARITHMETIC and IEEE EXCEPTIONS
can be used in constant expressions. All transformational functions from the intrinsic modules IEEE -
ARITHMETIC, IEEE EXCEPTIONS,and ISO C BINDING can be used in specification expressions.

xv.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0131, Status: Corrigendum 4.

Ref: Introduction, 2nd paragraph, penultimate bullet, [xvi]

In the penultimate bullet (beginning “Intrinsic modules:”), before the 3rd sentence (beginning “The function
C SIZEOF”) insert the following sentence:

A contiguous array variable that is not interoperable but which has interoperable type and kind type
parameter (if any), and a scalar character variable with length > 1 and kind C CHAR, can be used as
the argument of the function C LOC in the intrinsic module ISO C BINDING, provided the variable has
POINTER or TARGET attribute.

Interp F08/0051, Status: Corrigendum 1.

Ref: Introduction, 2nd paragraph, last bullet, [xvi]

In the last bullet item (beginning “Programs and procedures”),
Before “An impure”, insert the following sentence:

An argument to a pure procedure can have default INTENT if it has the VALUE attribute.

Interp F08/0037, Status: Corrigendum 1.

Ref: Introduction, 2nd paragraph, same (last) bullet, [xvi]

Before “The FUNCTION and SUBROUTINE”, insert the following sentence:

The PROTECTED attribute can be specified by the procedure declaration statement.

NOTE: This interp also has an edit on page 287.

Interp F08/0127, Status: Corrigendum 4.

Ref: Introduction, 2nd paragraph, same (last) bullet, [xvi]

Change “line in the program is permitted to” to “free form continuation line can”, and
between “with” and “a semicolon” insert “zero or more blanks followed by”.

Interp F08/0139, Status: Corrigendum 4.

Ref: Introduction, 2nd paragraph, same (last) bullet, [xvi]

Append new sentence:

The name of an external procedure that has a binding label is a local identifier and not a global identifier.

Those four edits make the last bullet paragraph read:

• Programs and procedures:
An empty CONTAINS section is allowed. An internal procedure can be used as an actual argument
or procedure pointer target. ALLOCATABLE and POINTER attributes are used in generic resolution.
Procedureness of a dummy argument is used in generic resolution. An actual argument with the TARGET
attribute can correspond to a dummy pointer. A null pointer or unallocated allocatable can be used to denote
an absent nonallocatable nonpointer optional argument.

:::
An

:::::::::
argument

::
to

::
a
::::
pure

:::::::::
procedure

::::
can

:::::
have

::::::
default

::::::::
INTENT

::
if
::
it
::::
has

::::
the

:::::::
VALUE

::::::::::
attribute. An impure elemental procedure processes array arguments in

array element order.
::::
The

:::::::::::::
PROTECTED

:::::::::
attribute

:::
can

:::
be

::::::::
specified

:::
by

:::
the

:::::::::
procedure

::::::::::
declaration

::::::::::
statement.

The FUNCTION and SUBROUTINE keywords can be omitted from the END statement for a module or
internal subprogram. A

:::
free

:::::
form

:::::::::::
continuation line in the program is permitted to

:::
can begin with

:::
one

::
or

::::
more

:::::::
blanks

:::::::
followed

:::
by a semicolon.

:::
The

::::::
name

::
of

:::
an

:::::::
external

::::::::::
procedure

::::
that

:::
has

::
a
:::::::
binding

:::::
label

::
is

:
a
:::::
local

::::::::
identifier

::::
and

:::
not

::
a
::::::
global

:::::::::
identifier.

1.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0124, Status: Corrigendum 4.

Ref: 1.3.33.2+, [6:7+]

After the definition of parent component (1.3.33.2), insert a new term

1.3.33.2a
potential subobject component
nonpointer component, or potential subobject component of a nonpointer component

6.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0053, Status: Corrigendum 3.

Ref: 1.3.147.6, [19:15-16]

Replace the definition of extensible type as follows.

1.3.147.6
extensible type
type that has neither the BIND attribute nor the SEQUENCE attribute and which therefore may be extended
using the EXTENDS clause (4.5.7.1)

NOTE: This interp also has edits on pages 77 and 431.

19.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0120, F08/0011,0032-0033,0054-55,0141,0147, Status: Corrigenda 1, 2 and 4.

Ref: 1.6.2, 1st paragraph, 1st sentence, [24:9-10,11+]

NOTE:
• Interp F03/0120 also has edits on pages 62 and 63.

• Interp F08/0032 also has an edit on page 312.

• Interp F08/0033 also has an edit on pages 312 and 313.

• Interp F08/0054 also has an edit on page 279.

• Interp F08/0055 also has another edit on this page, and edits on pages 25 and 258.

• Interp F08/0141 also has an edit on page 311.

• Interp F08/0147 also has edits on page 157.

Change the first paragraph as show below and insert new paragraphs afterwards, making the whole subclause:

1.6.2 Fortran 2003 compatibility

1 This
::::::
Except

:::
as

:::::::::
identified

::
in

::::
this

::::::::::
subclause,

::::
this part of ISO/IEC 1539 is an upward compatible extension to

the preceding Fortran International Standard, ISO/IEC 1539-1:2004 (Fortran 2003). Any
::::::
Except

::
as

:::::::::
identified

::
in

:::
this

::::::::::
subclause,

::::
any standard-conforming Fortran 2003 program remains standard-conforming under this part of

ISO/IEC 1539.

2
:::::::
Fortran

::::
2003

::::::::::
permitted

:
a
::::::::
sequence

:::::
type

::
to

:::::
have

::::
type

:::::::::::
parameters;

:::::
that

::
is

:::
not

:::::::::
permitted

:::
by

::::
this

::::
part

:::
of

::::::::
ISO/IEC

:::::
1539.

3
:::::::
Fortran

::::
2003

::::::::
specified

:::::
that

:::::
array

::::::::::::
constructors

::::
and

::::::::
structure

::::::::::::
constructors

::
of

::::::::::
finalizable

::::
type

::::
are

::::::::
finalized.

:::::
This

::::
part

::
of

:::::::::
ISO/IEC

::::
1539

::::::::
specifies

::::
that

:::::
these

::::::::::::
constructors

:::
are

::::
not

::::::::
finalized.

4
:::
The

:::::
form

:::::::::
produced

:::
by

::::
the

::
G

::::
edit

::::::::::
descriptor

:::
for

:::::
some

::::::
values

::::
and

::::::
some

::::
I/O

::::::::
rounding

:::::::
modes

::::::
differs

:::::
from

::::
that

:::::::
specified

:::
by

:::::::
Fortran

::::::
2003.

5
:::::::
Fortran

::::
2003

::::::::
required

:::
an

:::::::
explicit

:::::::::
interface

::::
only

:::
for

::
a
::::::::::
procedure

::::
that

::::
was

::::::::
actually

:::::::::
referenced

:::
in

:::
the

::::::
scope,

::::
not

::::::
merely

::::::
passed

:::
as

:::
an

::::::
actual

:::::::::
argument.

:::::::::::::::::::::::::
This part of ISO/IEC 1539

::::::::
requires

:::
an

:::::::
explicit

::::::::
interface

:::
for

::
a
:::::::::
procedure

:::::
under

:::
the

::::::::::
conditions

:::::
listed

:::
in

::::::::
12.4.2.2,

:::::::::
regardless

::
of

::::::::
whether

:::
the

::::::::::
procedure

::
is

:::::::::
referenced

::
in

::::
the

::::::
scope.

6
:::::::
Fortran

::::
2003

::::::::::
permitted

:::
the

::::::
result

:::::::
variable

:::
of

:
a
:::::
pure

::::::::
function

::
to

:::
be

::
a

:::::::::::
polymorphic

::::::::::
allocatable

::::::::
variable,

:::
or

::
to

:::
be

:::::::::
finalizable

:::
by

::
an

:::::::
impure

:::::
final

::::::::::
subroutine.

::::::
These

:::
are

::::
not

:::::::::
permitted

:::
by

::::::::::::::::::::::::
this part of ISO/IEC 1539.

7
:::::::
Fortran

:::::
2003

:::::::::
permitted

:::
an

:::::::::
INTENT

:::::::
(OUT)

:::::::::
argument

:::
of

::
a
:::::
pure

::::::::::
subroutine

:::
to

:::
be

::::::::::::
polymorphic;

:::::
that

::
is
::::

not

:::::::::
permitted

::
by

:::::::::::::::::::::::::
this part of ISO/IEC 1539.

8
:::::::
Fortran

::::
2003

::::::::::
interpreted

::::::::::
assignment

::
to

:::
an

::::::::::
allocatable

:::::::
variable

:::::
from

:
a
::::::::::::::
nonconformable

:::::
array

:::
as

:::::::
intrinsic

:::::::::::
assignment,

::::
even

:::::
when

:::
an

:::::::::
elemental

:::::::
defined

::::::::::
assignment

::::
was

::
in

::::::
scope;

::::
this

::::
part

::
of

:::::::::
ISO/IEC

::::
1539

:::::
does

:::
not

:::::::
permit

::::::::::
assignment

::::
from

::
a

::::::::::::::
nonconformable

:::::
array

:::
in

::::
this

:::::::
context.

9
:::::::
Fortran

::::
2003

::::::::::
permitted

::
a

:::::::::
statement

::::::::
function

:::
to

:::
be

::
of

:::::::::::::
parameterized

:::::::
derived

::::::
type;

::::
this

::::
part

:::
of

::::::::
ISO/IEC

:::::
1539

::::
does

:::
not

:::::::
permit

:::::
that.

Interp F08/0055, Status: Corrigendum 2.

Ref: 1.6.3, [24:27+]

Append new bullet item to the list
• The form produced by the G edit descriptor with d equal to zero differs from that specified by Fortran 95

for some values.

NOTE: Interp F08/0055 also has another edit on this page, and edits on pages 25 and 258.

24.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0055, Status: Corrigendum 2.

Ref: 1.6.4, [25:6]

Change the last full stop in this subclause into a semi-colon, and append a new bullet item to the last, making
the entire paragraph read:

4 The following Fortran 90 features have different interpretations in this part of ISO/IEC 1539:

• the result value of the intrinsic function SIGN (when the second argument is a negative real zero);

• formatted output of negative real values (when the output value is zero);

• whether an expression is a constant expression (thus whether a variable is considered to be automatic)
:
;

•
:::
the

::
G

::::
edit

:::::::::
descriptor

:::::
with

::
d

:::::
equal

:::
to

::::
zero

:::
for

:::::
some

::::::
values.

NOTE: Interp F08/0055 also has edits on pages 24 and 258.

25.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0129, Status: Corrigendum 4.

Ref: 4.3.1.3, p1+, [52:6+]

After the 1st paragraph in this subclause,
insert a new paragraph:

Where a data entity other than a component is declared explicitly using the CLASS specifier to be of
derived type, the specified derived type shall have been defined previously. If the data entity is a function
result, the derived type may be specified in the FUNCTION statement provided the derived type is defined
within the body of the function or is accessible there by use or host association. If the derived type is
specified in the FUNCTION statement and is defined within the body of the function, it is as if the function
result variable were declared with that derived type immediately following its derived-type-def.

52.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0078, Status: Corrigendum 2.

Ref: 4.4.2.3, NOTE 4.8, [54:18+2]

Change “can distinguish” to “distinguishes”, making the whole first line of NOTE 4.8 read

On a processor that can distinguish
::
es between 0.0 and −0.0,

NOTE: Interp F08/0078 also has an edit on page 387.

54.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0120, Status: Corrigendum 2.

Ref: 4.5.2.3, constraint C436, [62:19]

After “a sequence type,” insert new condition making the whole constraint read:

C436 (R425) If SEQUENCE appears, each data component shall be declared to be of an intrinsic type or of
a sequence type,

:::
the

:::::::
derived

::::
type

:::::
shall

::::
not

::::
have

:::::
type

:::::::::::
parameters, and a type-bound-procedure-part shall

not appear.”.

NOTE: Interp F03/0120 also has edits on pages 24 and 63.

62.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0120, Status: Corrigendum 2.

Ref: 4.5.2.4, 2nd paragraph, [63:9]

Delete “type parameters and”, making the whole paragraph read:

2 Two data entities have the same type if they are declared with reference to the same derived-type definition.
Data entities also have the same type if they are declared with reference to different derived-type definitions
that specify the same type name, all have the SEQUENCE attribute or all have the BIND attribute, have no
components with PRIVATE accessibility, and have type parameters and components that agree in order, name,
and attributes. Otherwise, they are of different derived types. A data entity declared using a type with the
SEQUENCE attribute or with the BIND attribute is not of the same type as an entity of a type that has any
components that are PRIVATE.

NOTE: Interp F03/0120 also has edits on pages 24 and 62.

63.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0145, Status: Corrigendum 4.

Ref: 4.5.4.6, constraint C461, [70:3]

After “nonallocatable” insert “, noncoindexed”, making the whole constraint read:

C461 (R443) The designator shall designate a nonallocatable
:
,
::::::::::::
noncoindexed variable that has the TARGET

and SAVE attributes and does not have a vector subscript. Every subscript, section subscript, substring
starting point, and substring ending point in designator shall be a constant expression.

70.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0072, Status: Corrigendum 2.

Ref: 4.5.6.1, constraint C480, [75:10]

Before “nonpointer, nonallocatable, nonpolymorphic” insert “noncoarray,”, making the whole constraint read:

C480 (R452) A final-subroutine-name shall be the name of a module procedure with exactly one dummy
argument. That argument shall be nonoptional and shall be a

::::::::::
noncoarray, nonpointer, nonallocatable,

nonpolymorphic variable of the derived type being defined. All length type parameters of the dummy
argument shall be assumed. The dummy argument shall not have the INTENT (OUT) or VALUE
attribute.

75.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0013, Status: Corrigendum 1.

Ref: 4.5.6.3, 0th and 9th paragraphs, [76:10-,25-26]

Move paragraph 9 of the subclause and Note 4.49 to precede paragraph 1, with the following changes:

Change “the variable is”
to “if the variable is not an unallocated allocatable variable, it is”,
and append new sentence to the end of the paragraph:
“If the variable is an allocated allocatable that would be deallocated by intrinsic assignment, the finalization
occurs before the deallocation.”.

Interp F08/0013, Status: Corrigendum 1.

Ref: 4.5.6.3, 1st paragraph, [76:10]

After “it is finalized”
insert “unless it is the variable in an intrinsic assignment (7.2.1.3) or a component thereof”.

Interp F08/0081, Status: Corrigendum 2.

Ref: 4.5.6.3, 1st paragraph, [76:10]

Append new sentence “If an error condition occurs during deallocation, it is processor dependent whether final-
ization occurs.”

NOTE: Interp F08/0081 also has edits on pages 131, 459, and 460.

Interp F08/0011, Status: Corrigendum 1.

Ref: 4.5.6.3, 5th and 7th paragraphs, [76:17-18,21-22]

Delete these paragraphs.

Interp F03/0085, F08/0034, and F08/0070, Status: Corrigenda 1 and 2.

Ref: 4.5.6.3, 8th paragraph, [76:23-24]

Replace paragraph 8 with:

When a procedure is invoked, a nonpointer, nonallocatable, INTENT (OUT) dummy argument of that
procedure is finalized before it becomes undefined. The finalization caused by INTENT (OUT) is considered
to occur within the invoked procedure; so for elemental procedures, an INTENT (OUT) argument will be
finalized only if a scalar or elemental final subroutine is available, regardless of the rank of the actual
argument.

76.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0085, F08/0011, F08/0013, F08/0034, Status: Corrigendum 1.

Ref: Entire subclause 4.5.6.3

Edit subclause 4.5.6.3 as shown below. Note that the old paragraph 9 (with its NOTE) has been moved to become
paragraph 1, thus renumbering paragraphs 1-8 to become 2-9.

4.5.6.3 When finalization occurs

1 When an intrinsic assignment statement is executed,
:
if the variable

:
is
::::

not
:::
an

:::::::::::
unallocated

::::::::::
allocatable

::::::::
variable,

:
it is finalized after evaluation of expr and before the definition of the variable.

:
If
::::
the

:::::::
variable

:::
is

:::
an

::::::::
allocated

:::::::::
allocatable

:::::
that

::::::
would

::
be

:::::::::::
deallocated

:::
by

:::::::
intrinsic

:::::::::::
assignment,

::::
the

::::::::::
finalization

::::::
occurs

::::::
before

::::
the

:::::::::::
deallocation.

NOTE 4.1

If finalization is used for storage management, it often needs to be combined with defined assignment.

2 When a pointer is deallocated its target is finalized. When an allocatable entity is deallocated, it is finalized

:::::
unless

::
it

::
is

:::
the

::::::::
variable

::
in

::
an

::::::::
intrinsic

::::::::::
assignment

:::::::::
statement

::::::::
(7.2.1.3)

::
or

::
a

::::::::::
component

::::::
thereof.

:
If
:::
an

:::::
error

::::::::
condition

::::::
occurs

::::::
during

::::::::::::
deallocation,

::
it

::
is

::::::::
processor

::::::::::
dependent

::::::::
whether

::::::::::
finalization

:::::::
occurs.

3 A nonpointer, nonallocatable object that is not a dummy argument or@function result is finalized immediately
before it would become undefined due to execution of a RETURN or END statement (16.6.6, item (3)).

4 A nonpointer nonallocatable local variable of a BLOCK construct is finalized immediately before it would become
undefined due to termination of the BLOCK construct (16.6.6, item (22)).

5 If an executable construct references a function, the result is finalized after execution of the innermost executable
construct containing the reference.

6 If an executable construct references a structure constructor or array constructor, the entity created by the
constructor is finalized after execution of the innermost executable construct containing the reference.

7 If a specification expression in a scoping unit references a function, the result is finalized before execution of the
executable constructs in the scoping unit.

8 If a specification expression in a scoping unit references a structure constructor or array constructor, the entity
created by the constructor is finalized before execution of the executable constructs in the scoping unit.

9 When a procedure is invoked, a nonpointer, nonallocatable object that is an actual argument corresponding to an
INTENT (OUT) dummy argument

:
of
:::::

that
:::::::::
procedure is finalized

::::::
before

::
it
::::::::

becomes
::::::::::

undefined.
::::
The

::::::::::
finalization

::::::
caused

:::
by

::::::::
INTENT

:::::::
(OUT)

::
is

::::::::::
considered

::
to

::::::
occur

::::::
within

:::
the

:::::::
invoked

::::::::::
procedure;

:::
so

:::
for

:::::::::
elemental

::::::::::
procedures,

:::
an

::::::::::::::
INTENT(OUT)

:::::::::
argument

::::
will

::
be

::::::::
finalized

::::
only

::
if
::
a
::::::
scalar

::
or

:::::::::
elemental

::::
final

::::::::::
subroutine

::
is

:::::::::
available,

:::::::::
regardless

::
of

:::
the

::::
rank

:::
of

:::
the

::::::
actual

::::::::::
argument.

10 If an object is allocated via pointer allocation and later becomes unreachable due to all pointers associated with
that object having their pointer association status changed, it is processor dependent whether it is finalized. If it
is finalized, it is processor dependent as to when the final subroutines are called.

76.2

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0053, Status: Corrigendum 3.

Ref: 4.5.7.1, 1st paragraph, [77:3]

Modify the first paragraph of 4.5.7.1 Concepts as follows:

1 A derived type
:
,
:::::
other

:::::
than

::::
the

::::
type

::
C
:::::

PTR
:::

or
::
C
::::::::::
FUNPTR

::::
from

::::
the

::::::::
intrinsic

:::::::
module

::::
ISO

::
C
:::::::::::

BINDING, that
does not have the BIND attribute or the SEQUENCE attribute is an extensible type.

NOTE: This interp also has edits on pages 19 and 431.

77.2

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0052, Status: Corrigendum 1.

Ref: 4.5.7.3, 1st paragraph, [78:4]

Change “as a type-bound”
to “as an accessible type-bound”,
making the whole paragraph read

1 If a specific type-bound procedure specified in a type definition has the same binding name as a
:
n

:::::::::
accessible

type-bound procedure from the parent type then the binding specified in the type definition overrides the one
from the parent type.

78.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0080, Status: Corrigendum 2.

Ref: 4.8, constraint C4105, after C4106, and the 2nd and 3rd paragraphs, [109:8-9,10+,13-14,18]

Edit constraint C4105, insert new constraint C4106a, and edit paragraphs 2 and 3 as shown below (note that
C4106 and C4107 are not edited but are included in the text shown below).

C4105 (R469) If type-spec specifies a derived type, all
:::
the

:::::::
declared

:::::
type

::
of

::::
each ac-value expressions in the array-

constructor shall be of that derived type and shall have the same kind type parameter values as specified
by type-spec.

C4106 (R472) An ac-value shall not be unlimited polymorphic.

::::::
C4106a

::::::
(R472)

::::
The

::::::::
declared

::::
type

:::
of

::
an

::::::::
ac-value

:::::
shall

::::
not

::
be

:::::::::
abstract.

C4107 (R473) The ac-do-variable of an ac-implied-do that is in another ac-implied-do shall not appear as the
ac-do-variable of the containing ac-implied-do.

2 If type-spec is omitted,
:::::::::::::
corresponding

::::::
length

::::
type

:::::::::::
parameters

::
of

:::
the

::::::::
declared

:::::
type

::
of each ac-value expression in

the array constructor shall have the same
:::::
valuelength type parameters; in this case, the declared type and type

parameters of the array constructor are those of the ac-value expressions.

3 If type-spec appears, it specifies the declared type and type parameters of the array constructor. Each ac-value
expression in the array-constructor shall be compatible with intrinsic assignment to a variable of this type and
type parameters. Each value is converted to the

::::
type

::::
and type parameters of the array-constructor in accordance

with the rules of intrinsic assignment (7.2.1.3).

85.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0115, Status: Corrigendum 4.

Ref: 5.3.4, 2nd paragraph, 1st bullet, [90:15]

After “the variable” insert “is a dummy argument or”; also insert a comma after “in that scoping unit”, making
the whole paragraph read:

2 The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if

• the variable
:
is

::
a

:::::::
dummy

:::::::::
argument

::
or appears in an executable statement or specification expression in that

scoping unit, and

• any statement of the scoping unit is executed while the variable is a pending I/O storage sequence affector
(9.6.2.5).

90.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0061, Status: Corrigendum 2.

Ref: 5.3.7, 1st paragraph, [93:7-8]

Edit paragraph as shown below:

1 The CONTIGUOUS attribute specifies that an assumed-shape array can only be associated with a contiguous
effective argument

:
is
::::::::::
contiguous, or that an array pointer can only be pointer associated with a contiguous target.

93.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0040, Status: Corrigendum 2.

Ref: 5.3.10, constraint C541, [97:13]

Change “An entity” to “A dummy argument of a nonintrinsic procedure”, making the whole constraint read:

C541 An entity
::
A

:::::::
dummy

:::::::::
argument

::
of
::

a
:::::::::::
nonintrinsic

::::::::::
procedure with the INTENT (OUT) attribute shall not

be an allocatable coarray or have a subobject that is an allocatable coarray.

NOTE: Interp F08/0040 also has edits on pages 188 and 372.

97.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0122, Status: Corrigendum 4.

Ref: 5.3.19, constraints C560 and C561, [102:9,11]

In both constraints, after “for a coarray”
insert “, or a variable with a coarray ultimate component,”,
making the constraints read:

C560 The VOLATILE attribute shall not be specified for a coarray,
:::

or
::
a
::::::::
variable

::::
with

::
a
::::::::

coarray
::::::::
ultimate

::::::::::
component, that is accessed by use (11.2.2) or host (16.5.1.4) association.

C561 Within a BLOCK construct (8.1.4), the VOLATILE attribute shall not be specified for a coarray
:
,
::
or

::
a

:::::::
variable

::::
with

::
a
:::::::
coarray

::::::::
ultimate

:::::::::::
component, that is not a construct entity (16.4) of that construct.

102.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0077, Status: Corrigendum 2.

Ref: 5.4.7, constraint C566, [104:26-27]

Edit constraint as shown below.

C566 (R536) In a variable that is a data-stmt-object, each
:
A

:::::::::::::::
data-stmt-object

:::::
that

::
is
::

a
::::::::

variable
:::::
shall

:::
be

::
a

::::::::::
designator.

:::::
Each subscript, section subscript, substring starting point, and substring ending point

::
in

:::
the

:::::::
variable shall be a constant expression.

104.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0123 and F08/0015, Status: Corrigendum 1.

Ref: 5.5, 4th paragraph, [109:21-23]

Delete “The mapping may ... scoping unit.”,
change “in the outermost inclusive scope in which it appears”
to “; if the outermost inclusive scope in which it appears is not a type definition, it is declared in that scope,
otherwise it is declared in the host of that scope”,
making the whole paragraph read

4 Any data entity that is not explicitly declared by a type declaration, is not an intrinsic function, is not a
component, and is not accessed by use or host association is declared implicitly to be of the type (and type
parameters) mapped from the first letter of its name, provided the mapping is not null. The mapping for the
first letter of the data entity shall either have been established by a prior IMPLICIT statement or be the default
mapping for the letter. The mapping may be to a derived type that is inaccessible in the local scope if the derived
type is accessible in the host scoping unit. The data entity is treated as if it were declared in an explicit type
declaration in

:
;
:
if the outermost inclusive scope in which it appears

::
is
::::
not

::
a

::::
type

::::::::::
definition,

::
it

::
is

:::::::
declared

:::
in

::::
that

:::::
scope,

:::::::::
otherwise

::
it

::
is

::::::::
declared

::
in

:::
the

::::
host

:::
of

::::
that

:::::
scope. An explicit type specification in a FUNCTION statement

overrides an IMPLICIT statement for the name of the result variable of that function subprogram.

109.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0101, Status: Corrigendum 4.

Ref: 5.6, 2nd paragraph, [111:13-14]

Edit the paragraph as follows:

2 The order in which the variables are specied in the NAMELIST statement determines the order in which the
values appear on output

:::::
values

:::::::
appear

:::
on

::::::
output

:::
is

:::
the

:::::
same

:::
as

:::
the

::::::
order

::
of

::::
the

::::::::::::::::::::
namelist-group-objects

:::
in

:::
the

:::::::
namelist

::::::
group

::::::
object

::::
list;

::
if

:
a
::::::::
variable

:::::::
appears

:::::
more

:::::
than

::::
once

:::
as

:
a
::::::::::::::::::::

namelist-group-object
:::
for

:::
the

:::::
same

::::::::
namelist

::::::
group,

::
its

::::::
value

:::::::
appears

::::
once

::::
for

::::
each

::::::::::
occurrence.

Interp F08/0002 and F08/0079, Status: Corrigenda 1 and 2.

Ref: 5.6, 5th paragraph, [111:19-20]

Change “type, type parameters, and shape”
to “declared type, kind type parameters of the declared type, and rank”,
making the whole paragraph read

5 A namelist group object shall either be accessed by use or host association or shall have its
::::::::
declared type,

::::
kind type

parameters
::
of

::::
the

:::::::
declared

:::::
type, and shape

::::
rank specified by previous specification statements or the procedure

heading in the same scoping unit or by the implicit typing rules in effect for the scoping unit. If a namelist group
object is typed by the implicit typing rules, its appearance in any subsequent type declaration statement shall
confirm the implied type and type parameters.

111.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0109, Status: Corrigendum 4.

Ref: 6.4.2, constraint C617, [119:13]

Change “subcomponent”
to “potential subobject component”,
making the whole constraint read:

C617 Except as an actual argument to an intrinsic inquiry function or as the designator in a type parameter
inquiry, a data-ref shall not be a polymorphic subobject of a coindexed object and shall not be a coindexed
object that has a polymorphic allocatable subcomponent

::::::::
potential

:::::::::
subobject

::::::::::
component.

119.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0014 and F08/0016, Status: Corrigendum 1.

Ref: 6.5.3.3.2, 2nd paragraph, [124:4-7]

Replace the bullet list with “finalized by a nonelemental final subroutine.”,
making the whole paragraph read:

An array section with a vector subscript shall not be
:::::::
finalized

:::
by

::
a

::::::::::::
nonelemental

::::
final

:::::::::::
subroutine.

• argument associated with a dummy array that is defined or redefined,
• the data-target in a pointer assignment statement, or
• an internal file.

NOTE: Interp F08/0014 also has an edit on page 295.

Interp F08/0039, Status: Corrigendum 1.

Ref: 6.5.4.4.2, 3rd paragraph, [124:9]

Edit the paragraph as follows:

If a vector subscript has two or more elements with the same value, an array section with that vector
subscript shall not appear in a variable definition context (16.6.7)

:
is

::::
not

::::::::
definable

::::
and

::::
shall

::::
not

:::
be

::::::
defined

::
or

:::::::
become

:::::::::
undefined.

124.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0042, Status: Corrigendum 2.

Ref: 6.7.1.1, constraint C633, [126:31-33]

Split constraint into two constraints and edit as shown below.

C633 (R626) If
::
an allocate-object is an array, either allocate-shape-spec-list shall appear

::
in

:::
its

:::::::::
allocation, or

source-expr shall appear
::
in

:::
the

::::::::::::
ALLOCATE

:::::::::
statement and have the same rank as

:::
the allocate-object.

:::::
C633a (R626) If allocate-object is scalar, allocate-shape-spec-list shall not appear.

NOTE: Interp F08/0042 also has edits on pages xv, 127, and 128.

126.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0042, Status: Corrigendum 2.

Ref: 6.7.1.1, constraint C639, [127:5]

Replace the whole of constraint C639 with the following.

C639 (R626) If source-expr appears, the kind type parameters of each allocate-object shall have the same values
as the corresponding type parameters of source-expr.

NOTE: Interp F08/0042 also has edits on pages xv, 126, and 128.

Interp F08/0109, Status: Corrigendum 4.

Ref: 6.7.1.1, constraint C642, [127:8-9]

Change “C PTR,” to “C PTR or”,
Delete “, LOCK TYPE ... LOCK TYPE”,
And insert a new constraint afterwards, making both constraints read:

C642 The declared type of source-expr shall not be C PTR,
::
or C FUNPTR, LOCK TYPE (13.8.2.16), or have

a subcomponent of type LOCK TYPE, if an allocate-object is a coarray.

C642a
:
If
:::::::::::
SOURCE=

::::::::
appears,

::::
the

::::::::
declared

::::
type

:::
of

::::::::::
source-expr

:::::
shall

::::
not

:::
be

::::::
LOCK

::::::
TYPE

:::
or

:::::
have

:
a
:::::::::

potential

::::::::
subobject

:::::::::::
component

::
of

::::
type

:::::::
LOCK

:::::::
TYPE.

NOTE: The next edit on this page is also part of Interp F08/0109.

Interp F08/0109, Status: Corrigendum 4.

Ref: 6.7.1.1, 4th paragraph, [127:18-19]

NOTE: This edit completely replaces the edit previously made to this paragraph by F08/0042 in Corrigendum 2.

Edit the 4th paragraph as follows:

4 If
::
an

::::::::::::
ALLOCATE

:::::::::
statement

:::
has

::
a
:::::::::::
SOURCE=

:::::::
specifier

::::
and

:::
an allocate-object

::::
that is a coarray, source-expr shall

not have a dynamic type of C PTR, C FUNPTR, or LOCK TYPE, or have a subcomponent whose dynamic type
is LOCK TYPE.

NOTE: The previous edit on this page is also part of Interp F08/0109.

127.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0133, Status: Corrigendum 4.

Ref: 6.7.1.2, 4th paragraph, [128:15-17]

Edit the 4th paragraph, beginning “When an ALLOCATE statement is executed for which...”, as follows:

4 When an ALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit syn-
chronization of all images. On each image

::
If

:::
no

:::::
error

:::::::::
condition

:::::
other

:::::
than

::::::
STAT

:::::::::::
STOPPED

:::::::
IMAGE

:::::::
occurs,

execution of the segment (8.5.2) following the statement is delayed until all other
::::::::::
non-stopped images have ex-

ecuted the same statement the same number of times.
::::
The

:::::::
coarray

::::
shall

::::
not

:::::::
become

::::::::
allocated

:::
on

:::
an

:::::
image

::::::
unless

:
it
::
is
:::::::::::
successfully

:::::::::
allocated

::
on

:::
all

::::::::::::
non-stopped

:::::::
images.

NOTE: This interp also has an edit on page 131.

Interp F08/0042 and F08/0056, Status: Corrigendum 2.

Ref: 6.7.2.3, 7th paragraph, [128:24-26]

Edit paragraph 7 as follows.

7 If SOURCE= appears, source-expr shall be conformable with allocation. If the value of a nondeferred length
type parameter of allocate-object is different from the value of the corresponding type parameter of source-expr,
an error condition occurs.

:
If
:::

an
::::::::::::::

allocate-object
::
is

::::
not

:::::::::::
polymorphic

:::::
and

:::
the

:::::::::::
source-expr

:::
is

:::::::::::
polymorphic

:::::
with

:
a
::::::::
dynamic

:::::
type

::::
that

:::::::
differs

:::::
from

::
its

:::::::::
declared

:::::
type,

:::
the

::::::
value

::::::::
provided

::::
for

::::
that

:::::::::::::
allocate-object

::
is
::::

the
::::::::
ancestor

::::::::::
component

::
of

:::
the

:::::::::::
source-expr

::::
that

::::
has

:::
the

:::::
type

::
of

::::
the

:::::::::::::
allocate-object ;

::::::::::
otherwise,

:::
the

:::::
value

:::::::::
provided

::
is

:::
the

:::::
value

::
of

:::
the

:::::::::::
source-expr. On successful allocation, if allocate-object and source-expr have the same rank the value of

allocate-object becomes that of source-expr
:::
the

::::
value

::::::::
provided, otherwise the value of each element of allocate-object

becomes that of source-expr
::
the

::::::
value

::::::::
provided.

:::
The

:::::::::::
source-expr

::
is

:::::::::
evaluated

:::::::
exactly

::::
once

:::
for

:::::
each

:::::::::
execution

::
of

::
an

::::::::::::
ALLOCATE

::::::::::
statement.

NOTE: Interp F08/0042 also has edits on pages xv, 126, and 127.

128.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0133, Status: Corrigendum 4.

Ref: 6.7.1.3, 1st paragraph, [129:8]

In the middle of the second bullet in this paragraph,
before “nonallocatable dummy argument”
insert “nonoptional”.

This makes the whole paragraph, the first two lines of which are on the previous page at lines 32-33, read as
follows:

1 The allocation status of an allocatable entity is one of the following at any time.

• The status of an allocatable variable becomes “allocated” if it is allocated by an ALLOCATE statement,
if it is allocated during assignment, or if it is given that status by the intrinsic subroutine MOVE ALLOC
(13.7.118). An allocatable variable with this status may be referenced, defined, or deallocated; allocating
it causes an error condition in the ALLOCATE statement. The intrinsic function ALLOCATED (13.7.11)
returns true for such a variable.

• An allocatable variable has a status of “unallocated” if it is not allocated. The status of an allocatable
variable becomes unallocated if it is deallocated (6.7.3) or if it is given that status by the intrinsic subroutine
MOVE ALLOC (13.7.118). An allocatable variable with this status shall not be referenced or defined. It
shall not be supplied as an actual argument corresponding to a

::::::::::
nonoptional nonallocatable dummy argu-

ment, except to certain intrinsic inquiry functions. It may be allocated with the ALLOCATE statement.
Deallocating it causes an error condition in the DEALLOCATE statement. The intrinsic function ALLOC-
ATED (13.7.11) returns false for such a variable.

129.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0010, Status: Corrigendum 1.

Ref: 6.7.3.2, 1st paragraph, [130:23]

Append new sentence to the end of the paragraph:

An allocatable variable shall not be deallocated if it or any subobject of it is argument associated with a
dummy argument or construct associated with an associate name.

NOTE: This interp also has an edit on page 131.

130.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0081, Status: Corrigendum 2.

Ref: 6.7.3.2, 8th paragraph, [131:12]

Append new sentence to the end of the paragraph:

If an error condition occurs during deallocation, it is processor dependent whether an allocated allocatable
subobject is deallocated.

NOTE: Interp F08/0081 also has edits on pages 76, 459, and 460.

Interp F08/0130, Status: Corrigendum 4.

Ref: 6.7.3.2, 11th paragraph, [131:17-19]

Edit this paragraph, beginning “When a DEALLOCATE statement is executed for which”, as follows:

11 When a DEALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit
synchronization of all images. On each image

:
If

:::
no

:::::
error

:::::::::
condition

:::::
other

::::
than

::::::
STAT

:::::::::::
STOPPED

:::::::
IMAGE

:::::::
occurs,

execution of the segment (8.5.2) following the statement is delayed until all other
::::::::::
non-stopped images have executed

the same statement the same number of times. If the coarray is a dummy argument, its ultimate argument
(12.5.2.3) shall be the same coarray on every image.

:::
The

::::::::
coarray

::::
shall

::::
not

::::::::
become

::::::::::
deallocated

:::
on

:::
an

::::::
image

:::::
unless

::
it
::
is
:::::::::::
successfully

::::::::::
deallocated

:::
on

:::
all

:::::::::::
non-stopped

::::::::
images.

NOTE: This interp also has an edit on page 128.

Interp F08/0010, Status: Corrigendum 1.

Ref: 6.7.3.3, 1st paragraph, [131:27]

Append new sentence to the end of the paragraph:

A pointer shall not be deallocated if its target or any subobject thereof is argument associated with a
dummy argument or construct associated with an associate name.

NOTE: Interp F08/0010 also has an edit on page 130.

131.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0112, Status: Corrigendum 4.

Ref: 6.7.4, 1st paragraph, and 6.7.5, 1st paragraph, [132:8,22]

Append a sentence to each of the first paragraphs of those subclauses,
making the beginning of those subclauses read as follows:

6.7.4 STAT= specifier

1 The stat-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement
in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or
association status of any allocate-object in that statement.

::::
The

:::::::::::
stat-variable

:::::
shall

:::
not

:::::::
depend

:::
on

:::
the

::::::
value

::
of

:::
the

::::::::::::::
errmsg-variable.

...rest of subclause 6.7.4 remains as is...

6.7.5 ERRMSG= specifier

1 The errmsg-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement
in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or
association status of any allocate-object in that statement.

:::
The

::::::::::::::
errmsg-variable

:::::
shall

::::
not

:::::::
depend

::
on

::::
the

:::::
value

::
of

:::
the

::::::::::::
stat-variable.

132.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0104, Status: Corrigendum 4.

Ref: 7.1.11, 2nd paragraph, [150:28+]

After item (10) insert a new item as follows:

:::::
(10a) a reference to a transformational function from the intrinsic module IEEE ARITHMETIC (14),

IEEE EXCEPTIONS (14), or ISO C BINDING (15.2), where each argument is a restricted expres-
sion,

NOTE: This interp also has edits on pages 152, 418, 420, 426 and 428.

150.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0126, Status: Corrigendum 4.

Ref: 7.1.11, 8th paragraph, [151:7-8]

In this paragraph, beginning “If a specification expression includes...”,
change “or an array bound” to “, array bound, or cobound”, and
change “or array bound” to “, array bound, or cobound”,
making the whole paragraph read:

8 If a specification expression includes a specification inquiry that depends on a type parameter or an, array bound,

::
or

::::::::
cobound of an entity specified in the same specification-part, the type parameter or

:
, array bound

:
,
::
or

::::::::
cobound

shall be specified in a prior specification of the specification-part. The prior specification may be to the left of
the specification inquiry in the same statement, but shall not be within the same entity-decl. If a specification
expression includes a reference to the value of an element of an array specified in the same specification-part, the
array shall be completely specified in prior declarations.

Interp F08/0050, Status: Corrigendum 1.

Ref: 7.1.11, 9th paragraph, [151:13-15]

Edit the paragraph as follows:

9 If
::
A

:::::::
generic

::::::
entity

:::::::::
referenced

:::
in a specification expression in the specification-part of a module or submodule

includes a reference to a generic entity, that generic entity
::::::
scoping

::::
unit shall have no specific procedures defined

in the module or submodule
:::
that

:::::::
scoping

:::::
unit,

::
or

:::
its

::::
host

:::::::
scoping

:::::
unit, subsequent to the specification expression.

NOTE: This interp also has an edit on page 152.

151.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0066, Status: Corrigendum 2.

Ref: 7.1.12, 1st paragraph, [152:4,6+]

Edit list item (6) and insert new list item after item (7) as follows:

(6) a reference to a transformational standard intrinsic function other than COMMAND ARGUMENT -
COUNT, NULL, NUM IMAGES, THIS IMAGE,

::
or

::::::::::::
TRANSFER, where each argument is a constant

expression,

(7) A reference to the intrinsic function NULL that does not have an argument with a type parameter
that is assumed or is defined by an expression that is not a constant expression,

::::
(7a)

:
a
::::::::
reference

:::
to

:::
the

::::::::
intrinsic

::::::::
function

::::::::::::
TRANSFER

::::::
where

::::
each

:::::::::
argument

::
is

::
a

::::::::
constant

:::::::::
expression

::::
and

::::
each

::::::::
ultimate

:::::::
pointer

::::::::::
component

::
of

::::
the

:::::::::
SOURCE

:::::::::
argument

::
is

::::::::::::
disassociated,

NOTE: The editor fixed the grammar in item 7a by changing “A” to “a” and the final full stop to
a comma.

Interp F08/0104, Status: Corrigendum 4.

Ref: 7.1.12, 1st paragraph, [152:7-8]

In item (8), beginning “a reference to the transformational”,
before “transformational function” change “the” to “a”,
after it delete “IEEE SELECTED REAL KIND”,
after “IEEE ARITHMETIC” insert “or IEEE EXCEPTIONS”,
making the whole item read

(1) (8) a reference to the
:
a transformational function IEEE SELECTED REAL KIND from the intrinsic

module IEEE ARITHMETIC
::
or

:::::
IEEE

::::::::::::::
EXCEPTIONS (14), where each argument is a constant ex-

pression,

NOTE: This interp also has edits on pages 150, 418, 420, 426 and 428.

Interp F08/0050, Status: Corrigendum 1.

Ref: 7.1.12, 3rd paragraph, [152:26-28]

Edit the paragraph as follows:

If
::
A

::::::
generic

::::::
entity

::::::::::
referenced

::
in a constant expression in the specification-part of a module or submodule

includes a reference to a generic entity, that generic entity
:::::::
scoping

::::
unit shall have no specific procedures

defined in the module or submodule
::::
that

:::::::
scoping

::::
unit,

:::
or

::
its

:::::
host

:::::::
scoping

:::::
unit, subsequent to the constant

expression.

NOTE: This interp also has an edit on page 151.

152.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0140, Status: Corrigendum 4.

Ref: 7.2.1.2, 2nd paragraph, [153:25-28]

Edit this paragraph as follows:

2 If variable is a coindexed object, the variable

•
:::
the

:::::::
variable shall not be polymorphic,

•
:::
the

:::::::
variable shall not have an allocatable ultimate component, and

•
:
if
::::
the

:::::::
variable

::
is
:::::::::::
allocatable, each deferred length type parameter shall have the same value as the corres-

ponding type parameter of expr.

153.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0147, Status: Corrigendum 4.

Ref: 7.2.1.4, 2nd and 3rd paragraphs, [157:14,16]

In item (5)(b) of the 2nd paragraph,
change “x1 and x2 are conformable” to “x2 is scalar or has the same rank as x1”.

Append a new sentence to the 3rd paragraph as shown below.

This makes item (5) of the 2nd paragraph and the 3rd paragraph read as follows:

(5) either

(a) the rank of x1 and x2 match those of d1 and d2 or

(b) the subroutine is elemental, x1 and x2 are conformable
::
x2::

is
:::::
scalar

:::
or

:::
has

::::
the

:::::
same

::::
rank

:::
as

::
x1,

and there is no other subroutine that defines the assignment.

3 If d1 or d2 is an array, the shapes of x1 and x2 shall match the shapes of d1 and d2, respectively.
:
If

:::
the

::::::::::
subroutine

:
is
::::::::::
elemental,

:::
x2 ::::

shall
:::::
have

:::
the

:::::
same

::::::
shape

::
as

::::
x1.

157.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0060, Status: Corrigendum 2.

Ref: 7.2.2.2, constraint C729, [158:33-159:2]

Edit constraint C729 as follows.

C729 (R740) A procedure-name shall be the name of an internal, module, or dummy procedure, a procedure
pointer,

:
a

:::::::
specific

::::::::
intrinsic

::::::::
function

::::::
listed

::
in

:::::
13.6

::::
and

::::
not

:::::::
marked

:::::
with

::
a
::::::
bullet

::::
(•),

:::
or an external

procedure that is accessed by use or host association
:
, and is referenced in the scoping unit as a procedure

:
,

or that has the EXTERNAL attribute, or a specific intrinsic function listed in 13.6 and not marked with
a bullet (•).

NOTE: The effects of this edit include the first two lines of page 159.

158.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0118, Status: Corrigendum 4.

Ref: 8.1.3.1, constraint C801, [170:19]

In this constraint, beginning “If selector is not...”,
change “associate-name shall not appear”
to “neither the associate-name nor any subobject thereof shall appear”,
making the whole constraint read:

C801 (R804) If selector is not a variable or is a variable that has a vector subscript,
::::::
neither

:::
the associate-name

:::
nor

::::
any

:::::::::
subobject

:::::::
thereof shall not appear in a variable definition context (16.6.7).

NOTE: This interp also has edits on pages 171 and 184.

170.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0118, Status: Corrigendum 4.

Ref: 8.1.3.3, 2nd paragraph, [171:12]

In this paragraph, beginning “If the selector is not...”,
change “the associate name shall not appear”
to “neither the associate name nor any subobject thereof shall appear”,
making the whole paragraph read:

2 If the selector is not permitted to appear in a variable definition context (16.6.7),
:::::::
neither the associate name

:::
nor

:::
any

:::::::::
subobject

:::::::
thereof shall not appear in a variable definition context.

NOTE: This interp also has edits on pages 170 and 184.

171.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0119, Status: Corrigendum 4.

Ref: 8.1.4, after the 3rd paragraph, [172:13+]

Immediately before NOTE 8.5, insert a new paragraph:

4
::
It

::
is

::::::::::
permissible

::
to

:::::::
branch

::
to

:::
an

::::::::::::::
end-block-stmt

::::
only

:::::
from

::::::
within

:::
its

::::::::
BLOCK

:::::::::
construct.

NOTE: This interp also has an edit on page 173.

172.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F09/0119, Status: Corrigendum 4.

Ref: 8.1.5, after the 3rd paragraph, [173:21+]

Immediately before NOTE 8.6, insert a new paragraph:

4
::
It

::
is

::::::::::
permissible

::
to

:::::::
branch

::
to

:::
an

:::::::::::::::
end-critical-stmt

:::::
only

::::
from

:::::::
within

::
its

:::::::::::
CRITICAL

:::::::::
construct.

NOTE: This interp also has an edit on page 172.

173.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0028, Status: Corrigendum 1.

Ref: 8.1.6.6.4, 1st paragraph, [177:28-29]

In the 4th bullet item,
change “Control is transferred from”
to “A branch occurs”,
making that bullet item:

• Control is transferred from
::
A

:::::::
branch

::::::
occurs within the range of a DO construct and the branch target

statement is neither the end-do nor within the range of the same DO construct.

177.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0023, Status: Corrigendum 1.

Ref: 8.1.6.7, 1st paragraph, [178:8-9]

Edit the 2nd bullet item as follows:

• A pointer that is referenced
::::
used in an iteration

::::
other

:::::
than

::
as

::::
the

:::::::
pointer

::
in

:::::::
pointer

::::::::::
assignment,

::::::::::
allocation,

::
or

:::::::::::
nullification, either shall be previously pointer associated during

:::::::::::::::
pointer-assigned,

:::::::::
allocated,

::
or

::::::::
nullified

::
in that iteration, or shall not have its pointer association changed during any iteration. A pointer that has
its pointer association changed in more than one iteration has an association status of undefined when the
construct terminates.

Interp F08/0025, Status: Corrigendum 1.

Ref: 8.1.6.7, 1st paragraph, [178:13-14]

Edit the 3rd bullet item (replacing the 2nd sentence) as follows:

• An allocatable object that is allocated in more than one iteration shall be subsequently deallocated during
the same iteration in which it was allocated. An object that is allocated or deallocated in only one iteration
shall not be deallocated, allocated, referenced, defined, or become undefined in a different iteration.

::
An

:::::::::
allocatable

:::::::
object

::::
that

::
is

::::::::::
referenced,

::::::::
defined,

:::::::::::
deallocated,

::
or

::::
has

:::
its

:::::::::
allocation

:::::::
status,

::::::::
dynamic

:::::
type,

::
or

::
a

:::::::
deferred

:::::
type

:::::::::
parameter

:::::
value

::::::::
inquired

::::::
about,

:::
in

::::
any

::::::::
iteration,

::::::
either

:::::
shall

::
be

::::::::::
previously

::::::::
allocated

:::
in

::::
that

:::::::
iteration

:::
or

:::::
shall

:::
not

:::
be

::::::::
allocated

:::
or

::::::::::
deallocated

:::
in

:::
any

::::::
other

::::::::
iteration.

Interp F08/0022, Status: Corrigendum 1.

Ref: 8.1.6.7, 1st paragraph, [178:15-16]

Edit the 4th bullet item as follows:

• An input/output statement shall not write data to a file record or position in one iteration and read from
the same record or position in a different iteration.

::
If

::::
data

::::
are

:::::::
written

::
to

::
a
::::
file

::::::
record

::
or

::::::::
position

::
in

::::
one

::::::::
iteration,

::::
that

::::::
record

:::
or

::::::::
position

::
in

::::
that

:::
file

:::::
shall

::::
not

::
be

:::::
read

:::::
from

::
or

:::::::
written

::
to

:::
in

:
a
::::::::

different
:::::::::
iteration.

Interp F08/0144, Status: Corrigendum 4.

Ref: 8.1.6.7, 1st paragraph, [178:16+]

Immediately after the bullet item beginning “An input/output statement...”,
insert a new bullet item

•
::
A

:::
DO

::::::::::::::::
CONCURRENT

:::::::::
construct

::::
shall

::::
not

:::::::
contain

:::
an

::::::::::::
input/output

::::::::::
statement

::::
that

::::
has

:::
an

::::::::::::
ADVANCE=

::::::::
specifier.

Interp F08/0022, Status: Corrigendum 1.

Ref: 8.1.6.7, 1st paragraph, [178:17-18+]

Delete the 5th bullet item (“Records written ... order.”) and make a new paragraph after the list, as follows:

• Records written by output statements in the range of the loop to a sequential access file appear in
the file in an indeterminate order.

:
If
:::::::

records
::::

are
:::::::
written

:::
to

::
a

:::
file

:::::::::
connected

::::
for

:::::::::
sequential

::::::
access

:::
by

:::::
more

:::::
than

::::
one

:::::::::
iteration,

:::
the

::::::::
ordering

:::::::
between

:::::::
records

:::::::
written

:::
by

::::::::
different

:::::::::
iterations

::
is

:::::::::::::
indeterminate.

178.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0118, Status: Corrigendum 4.

Ref: 8.1.9.1, constraint C836, [184:13]

Change “associate-name shall not appear”
to “neither the associate-name nor any subobject thereof shall appear”,
making the whole constraint read:

C836 (R847) If selector is not a variable or is a variable that has a vector subscript,
::::::
neither

:::
the associate-name

:::
nor

::::
any

:::::::::
subobject

:::::::
thereof shall not appear in a variable definition context (16.6.7).

NOTE: This interp also has edits on pages 170 and 171.

184.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0040, Status: Corrigendum 2.

Ref: 8.5.1, 2nd paragraph, [188:23+]

Insert a new bullet item before the penultimate bullet item (“STOP statement”) in the list:

• a CALL statement that invokes the intrinsic subroutine MOVE ALLOC with coarray arguments;

NOTE: Interp F08/0040 also has edits on pages 97 and 372.

188.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0134, Status: Corrigendum 4.

Ref: 8.5.3, after constraint C851, [190:5+]

Insert a new constraint:

:::::
C851a

::::::
(R859)

::
A

::::::::::::
stat-variable

::
or

::::::::::::::
errmsg-variable

:::
in

:
a
:::::::::

sync-stat
:::::
shall

:::
not

:::
be

::
a

:::::::::
coindexed

::::::
object.

Interp F08/0113, Status: Corrigendum 4.

Ref: 8.5.4, before 1st paragraph, [190:16-]

Immediately after constraint C852 insert a new paragraph:

1
:::
The

::::::
value

::
of

:::::::::
image-set

:::::
shall

:::
not

:::::::
depend

:::
on

:::
the

::::::
value

::
of

:::::::::::
stat-variable

:::
or

::::::::::::::
errmsg-variable.

NOTE: This interp also has edits on pages 194 and 195.

190.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0113, Status: Corrigendum 4.

Ref: 8.5.6, before 1st paragraph, [194:6-]

Immediately after constraint C853 insert a new paragraph:

1
:::
The

::::::::::::
lock-variable

:::::
shall

:::
not

:::::::
depend

:::
on

:::
the

::::::
value

::
of

::::::::::::
stat-variable,

:::::::::::::::
errmsg-variable,

::
or

:::
the

::::::::::::::::::::
scalar-logical-variable

::
in

:::
the

:::::::::::
ACQUIRED

:::::::::
LOCK=

::::::::
specifier.

::::
The

:::::::::::::::::::
scalar-logical-variable

:::::
shall

:::
not

:::::::
depend

:::
on

::::
the

:::::
value

::
of

:::
the

::::::::::::
lock-variable,

:::::::::::
stat-variable,

:::
or

::::::::::::::
errmsg-variable.

NOTE: This interp also has edits on pages 190 and 195.

194.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0113, Status: Corrigendum 4.

Ref: 8.5.7, before 1st paragraph, [195:2-]

At the beginning of the subclause insert a new paragraph:

1
:::
The

::::::::::::
stat-variable

::::
shall

::::
not

:::::::
depend

:::
on

:::
the

:::::
value

::
of

::::
the

::::::::::::::
errmsg-variable,

::::::::::::
lock-variable,

::
or

::::
the

:::::::::::::::::::
scalar-logical-variable

::
in

:::
the

::::::::::::
ACQUIRED

::::::::
LOCK=

:::::::::
specifier.

::::
The

:::::::::::::::
errmsg-variable

:::::
shall

:::
not

:::::::
depend

:::
on

::::
the

:::::
value

:::
of

:::
the

::::::::::::
stat-variable,

:::::::::::
lock-variable,

:::
or

:::
the

::::::::::::::::::::
scalar-logical-variable

::
in

:::
the

::::::::::::
ACQUIRED

::::::::
LOCK=

::::::::
specifier.

NOTE: This interp also has edits on pages 190 and 194.

195.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0048, Status: Corrigendum 1.

Ref: 9.6.4.8, 25th and 26th paragraphs, [227:15,17-18]

NOTE: This interp also has an edit on page 487.

In the 25th paragraph, delete “record positioning”.

In the 26th paragraph,
change “A record positioning edit descriptor, such as TL and TR,”
to “The edit descriptors T and TL”, and
change “record position” to “file position” twice,
making those two paragraphs read:

Because a child data transfer statement does not position the file prior to data transfer, the child data
transfer statement starts transferring data from where the file was positioned by the parent data trans-
fer statement’s most recently processed effective item or record positioning edit descriptor. This is not
necessarily at the beginning of a record.

A record positioning edit descriptor, such as
::::
The

::::
edit

::::::::::
descriptors TL and TR, used on unit by a child data

transfer statement shall not cause the record
:::
file position to be positioned before the record

::
file position at

the time the defined input/output procedure was invoked.

227.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0096, Status: Corrigendum 2.

Ref: 9.12, 5th paragraph, [243:3-5]

Edit the paragraph as shown below.

5 The value of a specifier in an input/output statement shall not depend on any input-item, io-implied-do do-variable,
or on the definition or evaluation of any other specifier in the io-control-spec-list or inquire-spec-list in that state-
ment.

:::
The

::::::
value

::
of

:::
an

::::::::::::::::::
internal-file-variable

:::
or

::
of

::
a

:::::::
FMT=,

:::::
ID=,

::::::::::
IOMSG=,

:::::::::
IOSTAT=

:::
or

:::::::
SIZE=

:::::::
specifier

:::::
shall

:::
not

:::::::
depend

:::
on

:::
the

::::::
values

::
of

::::
any

::::::::::
input-item

::
or

:::::::::::::
io-implied-do

::::::::::
do-variable

::
in

::::
the

:::::
same

::::::::::
statement.

243.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0030, Status: Corrigendum 1.

Ref: 10.3.1, [246:15+]

After constraint C1002, add a new constraint:

C1002A (R1005) An unlimited-format-item shall contain at least one data edit descriptor.

NOTE: This interp also has an edit on page 249.

246.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0030, Status: Corrigendum 1.

Ref: 10.4, 7th and 8th paragraphs, [249:11+,19-20]

Between the 7th and 8th paragraphs, insert a new paragraph 7a:

If format control encounters the rightmost parenthesis of an unlimited format item, format control reverts
to the leftmost parenthesis of that unlimited format item. This reversion of format control has no effect
on the changeable modes (9.5.2).

In the last sentence of the 8th paragraph, change “If ..., the” to “The”, making the whole paragraph read:

If format control encounters the rightmost parenthesis of a complete format specification and another
effective item is not specified, format control terminates. However, if another effective item is specified,
format control then reverts to the beginning of the format item terminated by the last preceding right
parenthesis that is not part of a DT edit descriptor. If there is no such preceding right parenthesis, format
control reverts to the first left parenthesis of the format specification. If any reversion occurs, the reused
portion of the format specification shall contain at least one data edit descriptor. If format control reverts
to a parenthesis that is preceded by a repeat specification, the repeat specification is reused. Reversion
of format control, of itself, has no effect on the changeable modes (9.5.2). If format control reverts to a
parenthesis that is not the beginning of an unlimited-format-item, the

::::
The file is positioned in a manner

identical to the way it is positioned when a slash edit descriptor is processed (10.8.2).

NOTE: This interp also has an edit on page 246.

249.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0100, Status: Corrigendum 3.

Ref: 10.7.2.3.2, 7th and 8th paragraphs, [252:33-34,37]

Replace the last sentence of paragraph 7 and edit paragraph 8 as follows.

7 For an internal value that is an IEEE infinity, the output field consists of blanks, if necessary, followed by a minus
sign for negative infinity or an optional plus sign otherwise, followed by the letters ’Inf’ or ’Infinity’, right justified
within the field. If w is less than 3, the field is filled with asterisks; otherwise, if w is less than 8, ’Inf’ is produced.

:::
The

:::::::::
minimum

:::::
field

::::::
width

::::::::
required

:::
for

:::::::
output

::
of

:::
the

:::::
form

:::::
’Inf’

::
is

::
3

::
if

::
no

:::::
sign

::
is

:::::::::
produced,

::::
and

::
4
::::::::::
otherwise.

::
If

::
w

::
is

::::::
greater

:::::
than

::::
zero

::::
but

::::
less

::::
than

::::
the

:::::::::
minimum

::::::::
required,

::::
the

::::
field

::
is
:::::
filled

:::::
with

::::::::
asterisks.

:::::
The

:::::::::
minimum

::::
field

:::::
width

:::
for

:::::::
output

::
of

::::
the

::::
form

:::::::::
’Infinity’

::
is

:
8
::
if
:::
no

::::
sign

::
is
:::::::::
produced

::::
and

::
9

:::::::::
otherwise.

::
If
:::

w
::
is

:::::::
greater

::::
than

:::
or

:::::
equal

::
to

:::
the

:::::::::
minimum

::::::::
required

:::
for

::::
the

:::::
form

::::::::
’Infinity’,

::::
the

:::::
form

::::::::
’Infinity’

::
is

:::::::
output.

:::
If

::
w

::
is

::::
zero

:::
or

::
w

::
is
::::
less

:::::
than

:::
the

::::::::
minimum

::::::::
required

:::
for

::::
the

:::::
form

::::::::
’Infinity’

::::
and

::::::
greater

:::::
than

:::
or

:::::
equal

::
to

::::
the

:::::::::
minimum

::::::::
required

:::
for

:::
the

:::::
form

:::::
’Inf’,

:::
the

:::::
form

::::
’Inf’

::
is

:::::::
output.

::::::::::
Otherwise,

::::
the

::::
field

::
is

:::::
filled

::::
with

:::::::::
asterisks.

8 For an internal value that is an IEEE NaN, the output field consists of blanks, if necessary, followed by the
letters ’NaN’ and optionally followed by one to w − 5 alphanumeric processor-dependent characters enclosed in
parentheses, right justified within the field. If w is

::::::
greater

:::::
than

:::::
zero

::::
and less than 3, the field is filled with

asterisks.
:
If
::
w
::
is
:::::
zero,

::::
the

::::::
output

::::
field

::
is
:::::::

’NaN’.

252.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0055, Status: Corrigendum 2.

Ref: 10.7.5.2.2, after 2nd paragraph and in the 4th paragraph, [258:13+,15-20+8]

NOTE from the editor: the line number references for this edit were wrong in the interp.

Insert new paragraph after the second paragraph and replace the 4th paragraph, including its two internal tables,
as shown below; note that the previously-3rd (now 4th) paragraph is not edited but is shown below. (No markup
for the edits as those for the previously-4th paragraph are too extensive.)

3 If d is zero, kPEw.0 or kPEw.0Ee editing is used for Gw.0 editing or Gw.0Ee editing respectively.

4 For an internal value that is an IEEE infinity or NaN, the form of the output field for the Gw.d and Gw.d Ee
edit descriptors is the same as for Fw.d, and the form of the output field for the G0 and G0.d edit descriptors is
the same as for F0.0.

5 Otherwise, the method of representation in the output field depends on the magnitude of the internal value being
edited. If the internal value is a zero value, let s be one. If the internal value is a number other than zero, let
N be the decimal value that is the result of converting the internal value to d significant digits according to the
I/O rounding mode and let s be the integer such that 10s−1 ≤ N < 10s. If s < 0 or s > d, kPEw.d or kPEw.dEe
editing is used for Gw.d editing or Gw.dEe editing respectively, where k is the scale factor (10.8.5). If 0 ≤ s ≤ d,
the scale factor has no effect and F(w -n).(d -s),n(’b’) editing is used where b is a blank and n is 4 for Gw.d editing
and e+2 for Gw.dEe editing.

NOTE: Interp F08/0055 also has edits on pages 24 and 25.

258.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0142, Status: Corrigendum 4.

Ref: 11.2.3, constraint C1113, [275:18]

After “shall be the name of a nonintrinsic module”,
insert “that declares a separate module procedure”,
making the whole constraint read:

C1113 (R1118) The ancestor-module-name shall be the name of a nonintrinsic module
::::
that

:::::::
declares

::
a
::::::::
separate

::::::
module

::::::::::
procedure; the parent-submodule-name shall be the name of a descendant of that module.

275.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0054, Status: Corrigendum 2.

Ref: 12.4.2.2, 1st paragraph, [279:19]

Replace the first line of this paragraph “A procedure ... referenced and” by

Within the scope of a procedure identifier, the procedure shall have an explicit interface if it is not a statement

function and

NOTE: Interp F08/0054 also has an edit on page 24.

279.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0019, Status: Corrigendum 2.

Ref: 12.4.3.2, constraint C1209, [281:11-12]

Replace the whole of constraint C1209 with the following:

C1209 (R1201) An interface-specification in a generic interface block shall not specify a procedure that is specified
previously in any accessible interface with the same generic identifier.

Interp F08/0132, Status: Corrigendum 4.

Ref: 12.4.3.2, 5th paragraph, [281:25-28]

Change “or a dummy procedure” to “dummy procedure, or procedure pointer”;
after “interface body, the procedure is a dummy procedure”,
change “; otherwise”
to “. If the procedure has the POINTER attribute, it is a procedure pointer. If it is not a dummy procedure or
procedure pointer,”,
making the whole paragraph read:

5 An interface body in a generic or specific interface block specifies the EXTERNAL attribute and an explicit
specific interface for an external procedure or a, dummy procedure

:
,
::
or

::::::::::
procedure

:::::::
pointer. If the name of the

declared procedure is that of a dummy argument in the subprogram containing the interface body, the procedure
is a dummy procedure; otherwise

:
.
::
If

::::
the

:::::::::
procedure

:::
has

::::
the

::::::::::
POINTER

:::::::::
attribute,

::
it
::
is
::
a
:::::::::
procedure

::::::::
pointer.

::
If

::
it

:
is
::::
not

::
a

:::::::
dummy

:::::::::
procedure

:::
or

:::::::::
procedure

:::::::
pointer, it is an external procedure.

281.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0100, Status: Corrigendum 4.

Ref: 12.4.3.3, 1st and 2nd paragraphs, [282:7,14]

In the first paragraph, after “imported in this manner and is”,
change “defined” to “declared”,
and in the second paragraph, after “is accessed by host association and is”,
change “defined” to “declared”,
making those paragraphs read:

1 The IMPORT statement specifies that the named entities from the host scoping unit are accessible in the interface
body by host association. An entity that is imported in this manner and is defined

::::::::
declared in the host scoping

unit shall be explicitly declared prior to the interface body. The name of an entity made accessible by an IMPORT
statement shall not appear in any of the contexts described in 16.5.1.4 that cause the host entity of that name
to be inaccessible.

2 Within an interface body, if an IMPORT statement with no import-name-list appears, each host entity not named
in an IMPORT statement also is made accessible by host association if its name does not appear in any of the
contexts described in 16.5.1.4 that cause the host entity of that name to be inaccessible. If an entity that is made
accessible by this means is accessed by host association and is defined

:::::::
declared in the host scoping unit, it shall

be explicitly declared prior to the interface body.

282.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0001, Status: Corrigendum 1.

Ref: 12.4.3.4.5, 3rd paragraph, 3rd bullet item, [286:4]

After “the other has the POINTER attribute”
insert “and not the INTENT (IN) attribute”,
making the whole paragraph (excluding the constraints that follow it) read:

Two dummy arguments are distinguishable if

• one is a procedure and the other is a data object,

• they are both data objects or known to be functions, and neither is TKR compatible with the other,

• one has the ALLOCATABLE attribute and the other has the POINTER attribute
:::
and

::::
not

:::
the

:::::::::
INTENT

::::
(IN)

::::::::
attribute, or

• one is a function with nonzero rank and the other is not known to be a function.

Interp F08/0053 and F08/0082, Status: Corrigenda 1 and 2.

Ref: 12.4.3.4.5, constraint C1214 and 5th paragraph, [286:12-13,38]

In constraint C1214, change “two ... identifier”
to “if two procedures have that generic identifier, their dtv arguments (9.6.4.8.3)”,
making the whole constraint read:

C1214 Within the scope of a defined-io-generic-spec,
::
if two procedures with

::::
have that generic identifier

:
,
:::::
their

:::
dtv

::::::::::
arguments

:::::::::
(9.6.4.8.3) shall be distinguishable.

In the 5th paragraph, change “applies to” to “is consistent with”,
making the whole paragraph read:

Within the scope of a generic name that is the same as the generic name of an intrinsic procedure, the
intrinsic procedure is not accessible by its generic name if the procedures in the interface and the intrinsic
procedure are not all functions or not all subroutines. If a generic invocation applies to

::
is

:::::::::
consistent

::::
with

both a specific procedure from an interface and an accessible intrinsic procedure, it is the specific procedure
from the interface that is referenced.

286.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0037, Status: Corrigendum 1.

Ref: 12.4.3.6, BNF rule R1213, [287:15+]

After the production “or POINTER”
insert a new production “or PROTECTED”,
making the whole rule read:

R1213 proc-attr-spec is access-spec
or proc-language-binding-spec
or INTENT (intent-spec)
or OPTIONAL
or POINTER

::
or PROTECTED
or SAVE

NOTE: This interp also has an edit on page 16.

287.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0064, Status: Corrigendum 3.

Ref: 12.4.3.6, 2nd paragraph, [288:3]

Append new sentence, making the whole paragraph read

2 If proc-interface appears and consists of interface-name, it specifies an explicit specific interface (12.4.3.2) for
the declared procedures or procedure pointers. The abstract interface (12.4) is that specified by the interface
named by interface-name.

:::
The

::::::::
interface

::::::::
specified

:::
by

::::::::::::::
interface-name

:::::
shall

:::
not

:::::::
depend

:::
on

::::
any

::::::::::::
characteristic

::
of
::

a

:::::::::
procedure

::::::::
identified

:::
by

:
a
::::::::::::::::::::
procedure-entity-name

:::
in

:::
the

::::::::::::
proc-decl-list

::
of

:::
the

:::::
same

:::::::::
procedure

::::::::::
declaration

::::::::::
statement.

288.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0068, Status: Corrigendum 2.

Ref: 12.5.2.3, 2nd paragraph, [292:16]

Edit the paragraph as shown below.

2 If a nonpointer dummy argument without the VALUE attribute corresponds to a pointer actual argument that
is pointer associated with a target,

:
•

:
if the dummy argument

::
is

::::::::::::
polymorphic,

::
it becomes argument associated with that target

:
;

:
•

:
if
::::
the

:::::::
dummy

:::::::::
argument

::
is

:::::::::::::::
nonpolymorphic,

::
it

::::::::
becomes

:::::::::
argument

:::::::::
associated

:::::
with

:::
the

::::::::
declared

:::::
type

::::
part

::
of

::::
that

::::::
target.

292.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0067, Status: Corrigendum 2.

Ref: 12.5.2.4, 2nd paragraph, [293:5]

Append new sentence to the paragraph, making the whole paragraph read:

2 The dummy argument shall be type compatible with the actual argument. If the actual argument is a polymorphic
coindexed object, the dummy argument shall not be polymorphic.

:
If
::::

the
:::::::::::::::
actual argument

::
is
::

a
::::::::::::

polymorphic

:::::::::::
assumed-size

::::::
array,

:::
the

:::::::
dummy

:::::::::
argument

:::::
shall

:::
be

::::::::::::
polymorphic.

Interp F03/0103, Status: Corrigendum 2.

Ref: 12.5.2.4, 3rd and 4th paragraphs, [293:6,10]

Edit these paragraphs as shown below.

3
:::
The

:::::
kind

:::::
type

:::::::::
parameter

::::::
values

:::
of

:::
the

::::::
actual

:::::::::
argument

:::::
shall

:::::
agree

:::::
with

::::
the

::::::::::::
corresponding

:::::
ones

::
of

::::
the

:::::::
dummy

:::::::::
argument. The

:::::
length type parameter values of the

:
a

:::::::
present actual argument shall agree with the corresponding

ones of the dummy argument that are not assumed, except for the case of the character length parameter of
a default character or character with the C character kind (15.2.2) actual argument associated with a dummy
argument that is not assumed shape.

4 If a
::::::
present scalar dummy argument is default character or of type character with the C character kind, the

length len of the dummy argument shall be less than or equal to the length of the actual argument. The dummy
argument becomes associated with the leftmost len characters of the actual argument. If an array dummy
argument is default character or of type character with the C character kind and is not assumed shape, it
becomes associated with the leftmost characters of the actual argument element sequence (12.5.2.11).

293.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0069, Status: Corrigendum 2.

Ref: 12.5.2.4, 17th paragraph, [294:40,42-295:2]

After “has INTENT (OUT), the”
change “actual argument” to “effective argument”,
and delete the last sentence “If ... undefined.”,
making the whole paragraph read:

17 If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual
:::::::
effective argument shall be definable.

If a dummy argument has INTENT (OUT), the actual argument becomes undefined at the time the association
is established, except for direct components of an object of derived type for which default initialization has been
specified. If the dummy argument is not polymorphic and the type of the effective argument is an extension type
of the type of the dummy argument, only the part of the effective argument that is of the same type as the
dummy argument becomes undefined.

294.1

J3/16-018 INTERPRETATION UPDATE PAGES

NOTE: The edit for Interp F08/0069 on page 294 also deletes lines 1-2 of this page.

Interp F08/0014 and F08/0135, Status: Corrigenda 1 and 4.

Ref: 12.5.2.4, 18th paragraph, [295:3]

Between “If” and “the actual argument is an array section having a vector subscript”,
insert “the procedure is nonelemental, the dummy argument does not have the VALUE attribute, and”,
making the paragraph (excluding the notes and constraints that follow it) read:

18 If
:::
the

::::::::::
procedure

::
is

:::::::::::::
nonelemental,

:::
the

::::::::
dummy

:::::::::
argument

:::::
does

::::
not

::::
have

::::
the

::::::::
VALUE

:::::::::
attribute,

::::
and the actual

argument is an array section having a vector subscript, the dummy argument is not definable and shall not have
the ASYNCHRONOUS, INTENT (OUT), INTENT (INOUT), or VOLATILE attributes.

(The phrase “, the dummy argument does not have the VALUE attribute,” was inserted by F08/0135.)

NOTE: Interp F08/0014 also has an edit on page 124.

Interp F08/0122, Status: Corrigendum 4.

Ref: 12.5.2.4, after the 18th paragraph, [295:4+]

Insert a new paragraph immediately before NOTE 12.24:

19
:
If
::::

the
:::::::
dummy

:::::::::
argument

::::
has

::
a
:::::::
coarray

::::::::
ultimate

:::::::::::
component,

::::
the

:::::::::::::
corresponding

::::::
actual

:::::::::
argument

:::::
shall

:::::
have

:::
the

::::::::::
VOLATILE

:::::::::
attribute

::
if

::::
and

::::
only

::
if

:::
the

:::::::
dummy

:::::::::
argument

::::
has

:::
the

:::::::::::
VOLATILE

:::::::::
attribute.

Interp F08/0136, Status: Corrigendum 4.

Ref: 12.5.2.4, constraints C1238, C1239, and C1240, [295:6,9,13]

Edit these constraints as follows:

C1238 An actual argument that is a coindexed object with the ASYNCHRONOUS or VOLATILE attribute shall
not correspond to a dummy argument that has either the ASYNCHRONOUS or VOLATILE attribute

:
,

:::::
unless

::::
the

:::::::
dummy

:::::::::
argument

:::
has

::::
the

:::::::
VALUE

:::::::::
attribute.

C1239 (R1223) If an actual argument is a nonpointer array that has the ASYNCHRONOUS or VOLATILE
attribute but is not simply contiguous (6.5.4), and the corresponding dummy argument has either the
VOLATILE or ASYNCHRONOUS attribute,

:::
but

:::::
does

::::
not

:::::
have

::::
the

::::::::
VALUE

:::::::::
attribute, that dummy

argument shall be an assumed-shape array that does not have the CONTIGUOUS attribute.

C1240 (R1223) If an actual argument is an array pointer that has the ASYNCHRONOUS or VOLATILE
attribute but does not have the CONTIGUOUS attribute, and the corresponding dummy argument
has either the VOLATILE or ASYNCHRONOUS attribute,

:::
but

:::::
does

::::
not

::::
have

::::
the

::::::::
VALUE

:::::::::
attribute,

that dummy argument shall be an array pointer or an assumed-shape array that does not have the
CONTIGUOUS attribute.

Interp F08/0059, Status: Corrigendum 2.

Ref: 12.5.2.5, 1st paragraph, [295:16-17]

Edit the paragraph as shown below:

1 The requirements in this subclause apply to
::
an actual arguments

::::
with

::::
the

:::::::::::::::
ALLOCATABLE

::
or

:::::::::::::::::::
POINTER attribute

that correspond
:
s to either allocatable or pointer

:
a dummy data objects

::::::::
argument

:::::
with

:::
the

:::::
same

:::::::::
attribute.

NOTE: Interp F08/0059 also has an edit on page 296.

295.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0059, Status: Corrigendum 2.

Ref: 12.5.2.5 4th paragraph, 12.5.2.6, 12.5.2.7, [296:4-5,12+,35]

Move the 4th paragraph of 12.5.2.5 “The values of assumed type parameters ... effective argument.”,
to follow the 3rd paragraph of 12.5.2.6 (“The corank of the actual ... dummy argument.”),
and append a copy of it to the 3rd paragraph of 12.5.2.7 (“The nondeferred ... shall agree.”).

NOTE: Interp F08/0059 also has an edit on page 295.

296.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0048, Status: Corrigendum 2.

Ref: 12.5.2.8, 2nd paragraph, [297:5]

Edit the paragraph as follows.

2 If the dummy argument is an array coarray that has the CONTIGUOUS attribute or is not of assumed shape,
the corresponding actual argument shall be simply contiguous

:::
or

:::
an

:::::::
element

::
of

::
a
::::::
simply

::::::::::
contiguous

:::::
array.

297.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0117, Status: Corrigendum 4.

Ref: 12.5.2.13, 1st paragraph, [300:14,22]

In each of items (3)(b) and (4)(b),
after “target other than” insert “a coindexed object or”,
making that whole paragraph read:

1 While an entity is associated with a dummy argument, the following restrictions hold.

(1) Action that affects the allocation status of the entity or a subobject thereof shall be taken through
the dummy argument.

(2) If the allocation status of the entity or a subobject thereof is affected through the dummy argument,
then at any time during the invocation and execution of the procedure, either before or after the
allocation or deallocation, it shall be referenced only through the dummy argument.

(3) Action that affects the value of the entity or any subobject of it shall be taken only through the
dummy argument unless

(a) the dummy argument has the POINTER attribute or

(b) the dummy argument has the TARGET attribute, the dummy argument does not have IN-
TENT (IN), the dummy argument is a scalar object or an assumed-shape array without the
CONTIGUOUS attribute, and the actual argument is a target other than

:
a

:::::::::
coindexed

::::::
object

::
or an array section with a vector subscript.

(4) If the value of the entity or any subobject of it is affected through the dummy argument, then at
any time during the invocation and execution of the procedure, either before or after the definition,
it may be referenced only through that dummy argument unless

(a) the dummy argument has the POINTER attribute or

(b) the dummy argument has the TARGET attribute, the dummy argument does not have IN-
TENT (IN), the dummy argument is a scalar object or an assumed-shape array without the
CONTIGUOUS attribute, and the actual argument is a target other than

:
a

:::::::::
coindexed

::::::
object

::
or an array section with a vector subscript.

300.1

INTERPRETATION UPDATE PAGES J3/16-018

2 Interp F08/0058, Status: Corrigendum 2.

3 Ref: 12.6.2.6, 8th and 9th paragraphs, [310:20,23]

4 Append new sentences to the ends of these paragraphs as shown below.

8 In a subprogram, a dummy argument specified in an ENTRY statement shall not appear in an executable statement preceding that

ENTRY statement, unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the executable

statement.
:
A
:::::

name
::::
that

::::::
appears

:::
as

:
a
::::::::::
result-name

::
in

:::
an

:::::::
ENTRY

::::::::
statement

::::
shall

:::
not

::::::
appear

::
in

::::
any

::::::::
executable

::::::::
statement

::::
that

::::::
precedes

:::
the

::::
first

:::::::
RESULT

:::::
clause

::::
with

::::
that

:::::
name.

9 In a subprogram, a name that appears as a dummy argument in an ENTRY statement shall not appear in the expression of a statement

function unless the name is also a dummy argument of the statement function, appears in a FUNCTION or SUBROUTINE statement,

or appears in an ENTRY statement that precedes the statement function statement.
:
A
:::::

name
::::
that

::::::
appears

:::
as

:
a
::::::::::
result-name

::
in

::
an

::::::
ENTRY

::::::::
statement

::::
shall

::::
not

:::::
appear

:::
in

:::
the

::::::::
expression

::
of
::
a
::::::::
statement

:::::::
function

::::
that

:::::::
precedes

:::
the

:::
first

::::::::
RESULT

:::::
clause

::::
with

::::
that

::::
name

:::::
unless

:::
the

:::::
name

::
is

:::
also

::
a

::::::
dummy

::::::::
argument

::
of

:::
that

::::::::
statement

::::::::
function.

310.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0141, Status: Corrigendum 4.

Ref: 12.6.4, 1st paragraph, [311:34+]

After constraint C1275 insert a new constraint:

::::::
C1275a

:
A
::::::::::
statement

::::::::
function

::::
shall

::::
not

::
be

:::
of

:
a
:::::::::::::
parameterized

:::::::
derived

:::::
type.

311.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0065, Status: Corrigendum 2.

Ref: 12.7, 1st paragraph, [312:12+]

Insert new bullet item after the first one in the list:

• a module procedure in an intrinsic module, if it is specified to be pure,

NOTE: Interp F08/0065 also has an edit on page 397.

Interp F08/0032, Status: Corrigendum 2.

Ref: 12.7, after constraint C1276, [312:19+]

Insert new constraints:

C1276a The result variable of a pure function shall not be such that finalization of a reference to the function
would reference an impure procedure.

C1276b A pure function shall not have a polymorphic allocatable result variable.

NOTE: Interp F08/0032 also has an edit on page 24.

Interp F08/0031, Status: Corrigendum 2.

Ref: 12.7, after constraint C1277, [312:21+]

Insert new constraint:

C1277a An INTENT (OUT) argument of a pure procedure shall not be such that finalization of the actual
argument would reference an impure procedure.

Interp F08/0033 and F08/0143, Status: Corrigenda 1 and 4.

Ref: 12.7, after Note 12.47, [312:23+]

Insert new constraint

::::::
C1278a

::
An

:::::::::
INTENT

::::::
(OUT)

:::::::
dummy

:::::::::
argument

::
of

::
a

::::
pure

:::::::::
procedure

:::::
shall

:::
not

::
be

::::::::::::
polymorphic

::
or

::::
have

::
a

:::::::::::
polymorphic

:::::::::
allocatable

::::::::
ultimate

:::::::::::
component.

(The text “or have a polymorphic allocatable ultimate component” was added by F08/0143.)

NOTE: Interp F08/0033 also has edits on pages 24 and 313.

Interp F08/0148, Status: Corrigendum 4.

Ref: 12.7, constraint C1283,[312:34]

Edit item (3) in constraint C1283 as shown below:

(3) as the expr corresponding to a component with the POINTER attribute in a structure-constructor

:
if
::::
the

::::::::::
component

:::
has

::::
the

::::::::::
POINTER

::::::::
attribute

::
or

::::
has

:
a
:::::::
pointer

::::::::::
component

:::
at

:::
any

:::::
level

::
of

::::::::::
component

:::::::
selection,

312.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0033, Status: Corrigendum 1.

Ref: 12.7, after constraint C1284, [313:4+]

Insert new constraint and new note:

C1284a A statement that might result in the deallocation of a polymorphic entity is not permitted in a pure
procedure.

NOTE 12.48x

Apart from the DEALLOCATE statement, this includes intrinsic assignment if the variable has a poly-
morphic allocatable component at any level of component selection that does not involve a pointer com-
ponent but which might involve one or more allocatable components.

NOTE: This interp also has edits on pages 24 and 312.

313.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0049, Status: Corrigendum 1.

Ref: 12.8.1, constraint C1290, [314:4-5]

In C1290, delete “, and shall not ... expression”, making the whole constraint read:

C1290 The result variable of an elemental function shall be scalar,
:::
and shall not have the POINTER or AL-

LOCATABLE attribute, and shall not have a type parameter that is defined by an expression that is not
a constant expression.

NOTE: The editor fixed the grammar in the preceding by changing a comma to “and”.

Interp F08/0024 and F08/0049, Status: Corrigendum 1.

Ref: 12.8.1, after constraint C1290, [314:5+]

Insert new constraints as follows.

C1290a The specification-part of an elemental subprogram shall specify the intents of all of its dummy arguments
that do not have the VALUE attribute.

C1290b In the specification-expr that specifies a type parameter value of the result of an elemental function, an
object designator with a dummy argument of the function as the base object shall appear only as the
subject of a specification inquiry, and that specification inquiry shall not depend on a property that is
deferred.

Interp F08/0018, Status: Corrigendum 1.

Ref: 12.8.1, 12.8.2, 12.8.3

Insert new paragraph at the end of 12.8.1 [314:5+]:

In a reference to an elemental procedure, if any argument is an array, all actual arguments that correspond
to INTENT (OUT) or INTENT (INOUT) dummy arguments shall be arrays. All actual arguments shall
be conformable.

In 12.8.2 [314:9-10], delete the sentence beginning “For those elemental,
making the whole paragraph read:

If a generic name or a specific name is used to reference an elemental function, the shape of the result is the
same as the shape of the actual argument with the greatest rank. If there are no actual arguments or the
actual arguments are all scalar, the result is scalar. For those elemental functions that have more than one
argument, all actual arguments shall be conformable. In the array case, the values of the elements, if any,
of the result are the same as would have been obtained if the scalar function had been applied separately,
in array element order, to corresponding elements of each array actual argument.

In 12.8.3 [314:14-17] delete the sentence beginning “In a reference”,
making the whole paragraph read:

An elemental subroutine has only scalar dummy arguments, but may have array actual arguments. In a
reference to an elemental subroutine, either all actual arguments shall be scalar, or all actual arguments
corresponding to INTENT (OUT) and INTENT (INOUT) dummy arguments shall be arrays of the same
shape and the remaining actual arguments shall be conformable with them. In the case that the actual
arguments corresponding to INTENT (OUT) and INTENT (INOUT) dummy arguments are arrays, the
values of the elements, if any, of the results are the same as would be obtained if the subroutine had been
applied separately, in array element order, to corresponding elements of each array actual argument.

314.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.2.4, 1st sentence, 2nd sentence, [316:24-25]

Change “an optional” to “a”,
and change “, if present, specifies” to “specify”,
making the whole paragraph read:

Some array intrinsic functions are “reduction” functions; that is, they reduce the rank of an array by
collapsing one dimension (or all dimensions, usually producing a scalar result). These functions have an
optional

:
a DIM argument that, if present,

:::
can specifies the dimension to be reduced. The DIM argument

of a reduction function is not permitted to be an optional dummy argument.

NOTE: This interp also has edits on pages 319, 322, 323, 328, 329, 338, 360, 374, 377, 392, 394 and 395.

316.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.5, Table 13.1, [319]

In the table lines for ALL and ANY,
change “(MASK [, DIM])” to “(MASK) or (MASK, DIM)”,
making those lines of the table read:

Table 13.1: Standard generic intrinsic procedure summary

Procedure Arguments Class Description
...
ALL (MASK) or (MASK, DIM) T Reduce logical array by AND operation.
...
ANY (MASK) or (MASK, DIM) T Reduce logical array with OR operation.
...

NOTE: This interp also has edits on pages 316, 322, 323, 328, 329, 338, 360, 374, 377, 392, 394 and 395.

319.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.5, Table 13.1, [322]

In the table line for NORM2,
change “(X [, DIM])” to “(X) or (X, DIM)”,
and in the table line for PARITY,
change “(MASK [, DIM])” to “(MASK) or (MASK, DIM)”,
making those lines of the table read:

Table 13.1: Standard generic intrinsic procedure summary

Procedure Arguments Class Description
...
NORM2 (X) or (X, DIM) T L2 norm of an array.
...
PARITY (MASK) or (MASK, DIM) T Reduce array with .NEQV. operation.
...

NOTE: This interp also has edits on pages 316, 319, 323, 328, 329, 338, 360, 374, 377, 392, 394 and 395.

322.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.5, Table 13.1, [323]

In the second table line for THIS IMAGE,
change “(COARRAY [, DIM])” to “(COARRAY) or (COARRAY, DIM)”,
making the line of the table for that function read:

Table 13.1: Standard generic intrinsic procedure summary

Procedure Arguments Class Description
...
THIS IMAGE () T Index of the invoking image.
THIS IMAGE (COARRAY) or

(COARRAY, DIM)
T Cosubscript(s) for this image.

...

NOTE: This interp also has edits on pages 316, 319, 322, 328, 329, 338, 360, 374, 377, 392, 394 and 395.

323.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0008, Status: Corrigendum 2.

Ref: 13.7.1, 2nd paragraph, [325:7-12]

Break the paragraph in two and edit as shown below.

2 The types and type parameters of standard intrinsic procedure arguments and function results are determined by
these specifications. The “Argument(s)” paragraphs specify requirements on the actual arguments of the proced-
ures. The result characteristics are sometimes specified in terms of the characteristics of dummy arguments. A
program is prohibited from invoking

::::
shall

:::
not

::::::
invoke an intrinsic procedure under circumstances where a value to be

returned in
:::::::
assigned

::
to a subroutine argument or

:::::::
returned

:::
as

:
a function result is outside the range of values

:::
not rep-

resentable by objects of the specified type and type parameters, unless the intrinsic module IEEE ARITHMETIC
(clause 14) is accessible and there is support for an infinite or a NaN result, as appropriate. If an infinite result
is returned

3
:
If
:::
an

::::::
IEEE

:::::::
infinity

::
is

:::::::
assigned

:::
or

::::::::
returned

:::
by

:::
an

:::::::
intrinsic

::::::::::
procedure,

::::
the

:::::::
intrinsic

::::::::
module

:::::
IEEE

::::::::::::::
ARITHMETIC

:
is
::::::::::
accessible,

::::
and

:::
the

::::::
actual

::::::::::
arguments

::::
were

:::::
finite

::::::::
numbers, the flag IEEE OVERFLOW or IEEE DIVIDE BY -

ZERO shall signal; if a NaN result is returned
:
.
::
If

:::
an

::::::
IEEE

::::
NaN

::
is
::::::::

assigned
:::

or
:::::::::
returned,

:::
the

::::::
actual

::::::::::
arguments

::::
were

:::::
finite

:::::::::
numbers,

:::
the

::::::::
intrinsic

:::::::
module

:::::
IEEE

:::::::::::::::
ARITHMETIC

::
is

:::::::::
accessible,

::::
and

::::
the

::::::::
exception

::::::
IEEE

:::::::::
INVALID

:
is
::::::::::
supported, the flag IEEE INVALID shall signal. Otherwise

:
If
:::
no

::::::
IEEE

::::::
infinity

:::
or

::::
NaN

::
is
::::::::
assigned

:::
or

::::::::
returned,

these flags shall have the same status as when the intrinsic procedure was invoked.

325.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.7.10, [328:2,7,10]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 329, 338, 360, 374, 377, 392, 394 and 395.

Change the subclause heading to “ALL (MASK, DIM) or ALL (MASK)”,
in paragraph 3, DIM argument, delete “(optional)”,
in paragraph 4, change “is absent” to “does not appear”,
making the whole subclause read:

13.7.10 ALL (MASK, DIM) or ALL (MASK)

1 Description. Reduce logical array by AND operation.

2 Class. Transformational function.

3 Arguments.

MASK shall be a logical array.

DIM shall be an integer scalar with value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK. The
corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM does not appear or n = 1; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1,
. . . , dn] where [d1, d2, . . . , dn] is the shape of MASK.

5 Result Value.

Case (i): The result of ALL (MASK) has the value true if all elements of MASK are true or if MASK has
size zero, and the result has value false if any element of MASK is false.

Case (ii): If MASK has rank one, ALL (MASK, DIM) is equal to ALL (MASK). Otherwise, the value of
element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of ALL (MASK, DIM) is equal to ALL (MASK (s1,
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of ALL ([.TRUE., .FALSE., .TRUE.]) is false.

Case (ii): If B is the array

[
1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ALL (B /= C, DIM = 1) is

[true, false, false] and ALL (B /= C, DIM = 2) is [false, false].

328.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.7.13, [329:6,11,14]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 338, 360, 374, 377, 392, 394 and 395.

Change the subclause heading to “ANY (MASK, DIM) or ANY (MASK)”,
in paragraph 3, DIM argument, delete “(optional)”,
in paragraph 4, change “is absent” to “does not appear”,
making the whole subclause read:

13.7.13 ANY (MASK, DIM) or ANY (MASK)

1 Description. Reduce logical array with OR operation.

2 Class. Transformational function.

3 Arguments.

MASK shall a logical array.

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.
The corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM does not appear or n = 1; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1,
. . . , dn] where [d1, d2, . . . , dn] is the shape of MASK.

5 Result Value.

Case (i): The result of ANY (MASK) has the value true if any element of MASK is true and has the value
false if no elements are true or if MASK has size zero.

Case (ii): If MASK has rank one, ANY (MASK, DIM) is equal to ANY (MASK). Otherwise, the value of
element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of ANY (MASK, DIM) is equal to ANY (MASK (s1,
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of ANY ([.TRUE., .FALSE., .TRUE.]) is true.

Case (ii): If B is the array

[
1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ANY (B /= C, DIM = 1) is

[true, false, true] and ANY (B /= C, DIM = 2) is [true, true].

329.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0103, Status: Corrigendum 4.

Ref: 13.7.16, 5th (Result Value) paragraph, [330:20,22]

In Case (ii), after “with TARGET”,
insert “and, if TARGET is an internal procedure, they have the same host instance”,
in Case (iii), after ”same procedure”,
insert “and, if the procedure is an internal procedure, they have the same host instance”,
making that whole paragraph read:

5 Result Value.

Case (i): If TARGET is absent, the result is true if and only if POINTER is associated with a target.

Case (ii): If TARGET is present and is a procedure, the result is true if and only if POINTER is associated
with TARGET

:::::
and,

:
if
::::::::::
TARGET

::
is

::
an

::::::::
internal

::::::::::
procedure,

::::
they

:::::
have

:::
the

:::::
same

:::::
host

:::::::
instance.

Case (iii): If TARGET is present and is a procedure pointer, the result is true if and only if POINTER and
TARGET are associated with the same procedure

:::::
and,

::
if

:::
the

::::::::::
procedure

::
is

:::
an

:::::::
internal

::::::::::
procedure,

::::
they

::::
have

::::
the

:::::
same

::::
host

::::::::
instance.

Case (iv): If TARGET is present and is a scalar target, the result is true if and only if TARGET is not a zero-
sized storage sequence and POINTER is associated with a target that occupies the same storage
units as TARGET.

Case (v): If TARGET is present and is an array target, the result is true if and only if POINTER is associated
with a target that has the same shape as TARGET, is neither of size zero nor an array whose elements
are zero-sized storage sequences, and occupies the same storage units as TARGET in array element
order.

Case (vi): If TARGET is present and is a scalar pointer, the result is true if and only if POINTER and
TARGET are associated, the targets are not zero-sized storage sequences, and they occupy the
same storage units.

Case (vii): If TARGET is present and is an array pointer, the result is true if and only if POINTER and
TARGET are both associated, have the same shape, are neither of size zero nor arrays whose
elements are zero-sized storage sequences, and occupy the same storage units in array element
order.

Interp F08/0004, Status: Corrigendum 2.

Ref: 13.7.16, after the 5th paragraph, [330:36+]

Insert a new note:

NOTE 13.8a

The references to TARGET in the above cases are referring to properties that might be possessed by the
actual argument, so the case of TARGET being a disassociated pointer will be covered by case (iii), (vi),
or (vii).

330.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0027, Status: Corrigendum 1.

Ref: 13.7.21, 4th paragraph, [332:25]

Change “CALL ATOMIC REF (I [3], VAL)”
to “CALL ATOMIC REF (VAL, I [3])”,
making the whole paragraph read:

Example. CALL ATOMIC REF (VAL, I [3]) causes VAL to become defined with the value of I on image 3.

332.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0019, Status: Corrigendum 1.

Ref: 13.7.24, 3rd paragraph, [333:12-14]

NOTE: This interp also has an edit on page 334.

For the arguments N1 and N2,
change “ot type integer and nonnegative” to “an integer scalar with a nonnegative value”,
and for argument X,
after “real” insert “; if the function is transformational, X shall be scalar”,
making the whole paragraph read:

Arguments.

N shall be of type integer and nonnegative.

N1 shall be of type
::
an integer

:::::
scalar

::::
with

::
a and nonnegative

:::::
value.

N2 shall be of type
::
an integer

:::::
scalar

::::
with

::
a and nonnegative

:::::
value.

X shall be of type real
:
;
::
if

:::
the

::::::::
function

::
is

::::::::::::::::
transformational,

::
X

:::::
shall

::
be

::::::
scalar.

333.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0019, Status: Corrigendum 1.

Ref: 13.7.27, 3rd paragraph, [334:12-14]

NOTE: This interp also has an edit on page 333.

For the arguments N1 and N2,
change “ot type integer and nonnegative” to “an integer scalar with a nonnegative value”,
and for argument X,
after “real” insert “; if the function is transformational, X shall be scalar”,
making the whole paragraph read:

Arguments.

N shall be of type integer and nonnegative.

N1 shall be of type
::
an integer

:::::
scalar

::::
with

::
a and nonnegative

:::::
value.

N2 shall be of type
::
an integer

:::::
scalar

::::
with

::
a and nonnegative

:::::
value.

X shall be of type real
:
;
::
if

:::
the

::::::::
function

::
is

::::::::::::::::
transformational,

::
X

:::::
shall

::
be

::::::
scalar.

334.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.7.41, 3rd paragraph, DIM argument, [338:31]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 360, 374, 377, 392, 394 and 395.

After “dummy argument” insert “, a disassociated pointer, or an unallocated allocatable”,
making the whole paragraph read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.
The corresponding actual argument shall not be an optional dummy argument,

::
a
::::::::::::
disassociated

:::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

338.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0020, Status: Corrigendum 1.

Ref: 13.7.61, 3rd paragraph, VALUE argument, [347:31-32]

Change “relational ... 7.1.5.5.2)” to “the operator == or the operator .EQV.”,
making the whole paragraph read:

VALUE shall be scalar and in type conformance with ARRAY, as specified in Table 7.2 for relational intrinsic
operations (7.1.5.5.2)

:::
the

::::::::
operator

::::
==

::
or

::::
the

::::::::
operator

::::::
.EQV..

347.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0064, Status: Corrigendum 2.

Ref: 13.7.67, 3rd paragraph, [351:18]

In the STATUS argument,
after “either has no value” change “or” to a comma,
after “assigned to VALUE,” insert “or the VALUE argument is not present,”,
making the description of that argument read:

STATUS (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. If the environment
variable exists and either has no value or,

:
its value is successfully assigned to VALUE,

::
or

:::
the

:::::::
VALUE

::::::::
argument

::
is
::::
not

:::::::
present, STATUS is set to zero. STATUS is set to −1 if the VALUE argument is

present and has a length less than the significant length of the environment variable. It is assigned
the value 1 if the specified environment variable does not exist, or 2 if the processor does not support
environment variables. Processor-dependent values greater than 2 may be returned for other error
conditions.

351.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0003, Status: Corrigendum 1.

Ref: 13.7.90 and 13.7.91, 3rd paragraph of each, DIM argument, [360:4,25]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 374, 377, 392, 394 and 395.

In both subclauses,
after “dummy argument” insert “, a disassociated pointer, or an unallocated allocatable”,
this makes the paragraph in 13.7.90 read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.
The corresponding actual argument shall not be an optional dummy argument,

::
a
::::::::::::
disassociated

:::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

and makes the paragraph in 13.7.91 read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of
COARRAY. The corresponding actual argument shall not be an optional dummy argument,

::
a

:::::::::::
disassociated

::::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

360.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0102, Status: Corrigendum 4.

Ref: 13.7.10, 4th (Result Characteristics) paragraph, [368:26]

Edit the paragraph as follows:

4 Result Characteristics. Same
::::
type

::::
and

:::::
type

::::::::::
parameters as TSOURCE.

:::::::
Because

:::::::::::
TSOURCE

::::
and

::::::::::
FSOURCE

:::
are

:::::::
required

:::
to

::::
have

::::
the

:::::
same

::::
type

::::
and

:::::
type

::::::::::
parameters

::::
(for

::::
both

::::
the

::::::::
declared

::::
and

::::::::
dynamic

::::::
types),

::::
the

:::::
result

::
is

:::::::::::
polymorphic

::
if

::::
and

::::
only

::
if

:::::
both

::::::::::
TSOURCE

::::
and

::::::::::
FSOURCE

::::
are

::::::::::::
polymorphic.

368.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0040 and F08/0106, Status: Corrigenda 2 and 4.

Ref: 13.7.118, 3rd paragraph and after the 6th paragraph, [372:18,19,29+]

In the description of the FROM argument,
change “type and rank” to “type, rank, and corank”,
and after “It shall be allocatable” insert “and shall not be a coindexed object”.
In the description of the TO argument,
after “same rank” insert “and corank”,
and after “It shall be allocatable” insert “and shall not be a coindexed object”.
This makes the whole paragraph read

3 Arguments.

FROM may be of any type and
:
,
:

rank,
::::
and

:::::::
corank. It shall be allocatable

::::
and

:::::
shall

:::
not

:::
be

::
a
:::::::::
coindexed

:::::
object. It is an INTENT (INOUT) argument.

TO shall be type compatible (4.3.1.3) with FROM and have the same rank
::::

and
:::::::

corank. It shall be
allocatable

::::
and

:::::
shall

::::
not

::
be

::
a
:::::::::
coindexed

::::::
object. It shall be polymorphic if FROM is polymorphic.

It is an INTENT (OUT) argument. Each nondeferred parameter of the declared type of TO shall
have the same value as the corresponding parameter of the declared type of FROM.

(The text “and shall not be a coindexed object” was inserted by F08/0106, twice.)

Insert new paragraph after the 6th paragraph:

7
:::::
When

::
a

::::::::
reference

:::
to

::::::
MOVE

::::::::
ALLOC

::
is

::::::::
executed

:::
for

::::::
which

:::
the

:::::::
FROM

:::::::::
argument

::
is

::
a

:::::::
coarray,

:::::
there

::
is

:::
an

:::::::
implicit

::::::::::::::
synchronization

::
of

:::
all

:::::::
images.

:::
On

:::::
each

::::::
image,

:::::::::
execution

::
of
::::
the

::::::::
segment

::::::
(8.5.2)

::::::::
following

::::
the

::::::
CALL

:::::::::
statement

::
is

:::::::
delayed

::::
until

:::
all

:::::
other

:::::::
images

::::
have

:::::::::
executed

:::
the

:::::
same

:::::::::
statement

::::
the

:::::
same

:::::::
number

::
of
::::::

times.

NOTE: Interp F08/0040 also has edits on pages 97 and 188.

372.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.123, heading and 3rd and 4th paragraphs, [374:24,29,31]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 377, 392, 394 and 395.

Change “NORM2 (X [, DIM])” to “NORM2 (X, DIM) or NORM2 (X)”,
in paragraph 3, DIM argument, delete “(optional)”,
in paragraph 4, change “is absent” to “does not appear”,
making the whole subclause read:

13.7.123 NORM2 (X, DIM) or NORM2 (X)

1 Description. L2 norm of an array.

2 Class. Transformational function.

3 Arguments.

X shall be a real array.

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of X. The
corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of the same type and type parameters as X. It is scalar if DIM does not
appear; otherwise the result has rank n− 1 and shape [d1, d2, . . . , dDIM-1, dDIM+1, . . . , dn], where n is the rank
of X and [d1, d2, . . . , dn] is the shape of X.

5 Result Value.

Case (i): The result of NORM2 (X) has a value equal to a processor-dependent approximation to the gener-
alized L2 norm of X, which is the square root of the sum of the squares of the elements of X.

Case (ii): The result of NORM2 (X, DIM=DIM) has a value equal to that of NORM2 (X) if X has rank
one. Otherwise, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . sn) of the result is equal to
NORM2 (X(s1, s2, . . . , sDIM−1, :, sDIM+1, . . . sn)).

6 It is recommended that the processor compute the result without undue overflow or underflow.

7 Example. The value of NORM2 ([3.0, 4.0]) is 5.0 (approximately). If X has the value

[
1.0 2.0
3.0 4.0

]
then the

value of NORM2 (X, DIM=1) is [3.162, 4.472] (approximately) and the value of NORM2 (X, DIM=2) is [2.236,
5.0] (approximately).

374.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.128, heading and 3rd and 4th paragraphs, [377:20,25,28]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 374, 392, 394 and 395.

Change “PARITY (MASK [, DIM])” to “PARITY (MASK, DIM) or PARITY (MASK)”,
in paragraph 3, DIM argument, delete “(optional)”,
in paragraph 4, change “is absent” to “does not appear”,
making the whole subclause read:

13.7.128 PARITY (MASK, DIM) or PARITY (MASK)

1 Description. Reduce array with .NEQV. operation.

2 Class. Transformational function.

3 Arguments.

MASK shall be a logical array.

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.
The corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn]
where [d1, d2, . . . , dn] is the shape of MASK.

5 Result Value.

Case (i): The result of PARITY (MASK) has the value true if an odd number of the elements of MASK are
true, and false otherwise.

Case (ii): If MASK has rank one, PARITY (MASK, DIM) is equal to PARITY (MASK). Otherwise, the
value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of PARITY (MASK, DIM) is equal to
PARITY (MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of PARITY ([T, T, T, F]) is true if T has the value true and F has the value false.

Case (ii): If B is the array

[
T T F
T T T

]
, where T has the value true and F has the value false, then

PARITY (B, DIM=1) has the value [F, F, T] and PARITY (B, DIM=2) has the value [F, T].

377.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0078, Status: Corrigendum 2.

Ref: 13.7.153, 5th paragraph, [387:32]

In case (iv), change “cannot” to “does not”,
making the whole paragraph read:

5 Result Value.

Case (i): If B > 0, the value of the result is |A|.
Case (ii): If B < 0, the value of the result is -|A|.
Case (iii): If B is of type integer and B=0, the value of the result is |A|.
Case (iv): If B is of type real and is zero, then:

• if the processor cannot
::::
does

:::
not distinguish between positive and negative real zero, or if B is

positive real zero, the value of the result is |A|;
• if B is negative real zero, the value of the result is -|A|.

NOTE: Interp F08/0078 also has an edit on page 54.

387.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0123, Status: Corrigendum 4.

Ref: 13.7.157, 5th (Result Value) paragraph, [389:4-5]

Change “max(e− p,emin − 1)” to “e− p”,
after “that of X”,
change “; if” to “provided this result is representable; otherwise the result is the same as that of TINY (X)”,
change “such values” to “extended model values equally near to X,”,
making the whole paragraph read:

5 Result Value. If X does not have the value zero and is not an IEEE infinity or NaN, the result has the value
bmax(e−p,emin−1)

:::
be−p, where b, e, and p are as defined in 13.4 for the value nearest to X in the model for real values

whose kind type parameter is that of X
:
,
::::::::
provided

::::
this

::::::
result

::
is

::::::::::::
representable;

:::::::::
otherwise

::::
the

:::::
result

::
is
::::
the

:::::
same

::
as

::::
that

::
of

::::::
TINY

:::
(X); if.

::
If there are two such

::::::::
extended

::::::
model values

::::::
equally

:::::
near

::
to

:::
X, the value of greater absolute

value is taken. If X has the value zero, the result is the same as that of TINY (X). If X is an IEEE infinity, the
result is an IEEE NaN. If X is an IEEE NaN, the result is that NaN.

389.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0021, Status: Corrigendum 1.

Ref: 13.7.160, 3rd paragraph, [390:6]

Around “has any deferred type parameters” insert “is unlimited polymorphic or” and a comma,
making the whole paragraph read:

Arguments.

A shall be a scalar or array of any type. If it is polymorphic it shall not be an undefined pointer.
If it

:
is
:::::::::::::::::::::

unlimited polymorphic
:::
or has any deferred type parameters, it shall not be an unallocated

allocatable variable or a disassociated or undefined pointer.

KIND (optional) shall be a scalar integer constant expression.

390.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.165, heading and 3rd paragraph, [392:6,11]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 374, 377, 394 and 395.

Change “THIS IMAGE (COARRAY [, DIM])”
to “THIS IMAGE (COARRAY) or THIS IMAGE(COARRAY, DIM)”,
in paragraph 3, DIM argument, delete “(optional)”,
the result is shown below; the editor has made additional changes:
— deleted the mistaken paragraph 7 marker, — added commas to the heading.

13.7.165 THIS IMAGE (), THIS IMAGE (COARRAY), or
THIS IMAGE (COARRAY, DIM)

1 Description. Cosubscript(s) for this image.

2 Class. Transformational function.

3 Arguments.

COARRAY shall be a coarray of any type. If it is allocatable it shall be allocated.

DIM shall be a default integer scalar. Its value shall be in the range 1 ≤ DIM ≤ n, where n is the corank
of COARRAY. The corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. Default integer. It is scalar if COARRAY does not appear or DIM is present; otherwise,
the result has rank one and its size is equal to the corank of COARRAY.

5 Result Value.

Case (i): The result of THIS IMAGE () is a scalar with a value equal to the index of the invoking image.

Case (ii): The result of THIS IMAGE (COARRAY) is the sequence of cosubscript values for COARRAY that
would specify the invoking image.

Case (iii): The result of THIS IMAGE (COARRAY, DIM) is the value of cosubscript DIM in the sequence of
cosubscript values for COARRAY that would specify the invoking image.

6 Examples. If A is declared by the statement
REAL A (10, 20) [10, 0:9, 0:*]

then on image 5, THIS IMAGE () has the value 5 and THIS IMAGE (A) has the value [5, 0, 0]. For the same
coarray on image 213, THIS IMAGE (A) has the value [3, 1, 2].

The following code uses image 1 to read data. The other images then copy the data.

IF (THIS_IMAGE()==1) READ (*,*) P

SYNC ALL

P = P[1]

NOTE 13.2

For an example of a module that implements a function similar to the intrinsic function THIS IMAGE, see
subclause C.10.1.

392.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0137, Status: Corrigendum 4.

Ref: 13.7.168, 3rd (Arguments) paragraph, [393:18]

Append a sentence to the definition of the MOLD argument,
making that paragraph read:

3 Arguments.

SOURCE shall be a scalar or array of any type.

MOLD shall be a scalar or array of any type. If it is a variable, it need not be defined.
:
If
::::
the

::::::
storage

::::
size

::
of

::::::::
SOURCE

::
is
:::::::

greater
:::::
than

::::
zero

::::
and

:::::::
MOLD

::
is

:::
an

:::::
array,

::
a
::::::
scalar

::::
with

::::
the

::::
type

::::
and

:::::
type

::::::::::
parameters

::
of

::::::
MOLD

:::::
shall

::::
not

::::
have

::
a
:::::::
storage

::::
size

:::::
equal

::
to

:::::
zero.

SIZE (optional) shall be an integer scalar. The corresponding actual argument shall not be an optional dummy
argument.

393.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.171, 3rd paragraph, DIM argument, [394:27]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 374, 377, 392 and 395.

After “dummy argument” insert “, a disassociated pointer, or an unallocated allocatable”,
making the whole paragraph read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.
The corresponding actual argument shall not be an optional dummy argument,

::
a
::::::::::::
disassociated

:::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

394.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0003, Status: Corrigendum 1.

Ref: 13.7.172, 3rd paragraph, DIM argument, [395:11]

NOTE: This interp also has edits on pages 316, 319, 322, 323, 328, 329, 338, 360, 374, 377, 392 and 394.

After “dummy argument” insert “, a disassociated pointer, or an unallocated allocatable”,
making the whole paragraph read:

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the corank
of COARRAY. The corresponding actual argument shall not be an optional dummy argument

:
,
:
a

:::::::::::
disassociated

::::::::
pointer,

::
or

:::
an

:::::::::::
unallocated

::::::::::
allocatable.

395.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0065, Status: Corrigendum 2.

Ref: 13.8.2.1, 2nd paragraph, [397:7]

Append sentence to paragraph, making the whole paragraph read:

2 The processor shall provide the named constants, derived type, and procedures described in subclause 13.8.2. In
the detailed descriptions below, procedure names are generic and not specific.

:::
The

:::::::
module

::::::::::
procedures

:::::::::
described

::
in

:::::
13.8.2

::::
are

:::::
pure.

NOTE: Interp F08/0065 also has an edit on page 312.

397.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0109, Status: Corrigendum 4.

Ref: 13.8.2.16, constraint C1302, [399:17]

Change “variable of type LOCK TYPE”
to “variable with declared type LOCK TYPE”,
making that constraint read:

C1302 A named variable of
:::
with

:::::::::
declared type LOCK TYPE shall be a coarray. A named variable with a

noncoarray subcomponent of type LOCK TYPE shall be a coarray.

399.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0030, Status: Corrigendum 3.

Ref: 14.3, 1st paragraph, [403:7-9,10-11]

Replace the first and second bullet points, making the whole paragraph read as follows:

1 The exceptions are the following.

• IEEE OVERFLOW occurs when the result for an intrinsic real operation or assignment has an absolute
value greater than a processor-dependent limit, or the real or imaginary part of the result for an intrinsic
complex operation has an absolute value greater than a processor-dependent limit.

•
:::::
IEEE

::::::::::::
OVERFLOW

:::::::
occurs

::
in

:::
an

:::::::
intrinsic

::::
real

:::::::::
addition,

:::::::::::
subtraction,

:::::::::::::
multiplication,

::::::::
division,

::
or

::::::::::
conversion

::
by

::::
the

::::::::
intrinsic

::::::::
function

::::::
REAL,

:::
as

::::::::
specified

:::
by

:::::
IEC

::::::::::
60559:1989

::
if

:::::
IEEE

:::::::::::
SUPPORT

::::::::::::
DATATYPE

::
is

::::
true

::
for

::::
the

:::::::::
operands

::
of

:::
the

:::::::::
operation

:::
or

::::::::::
conversion,

::::
and

:::
as

::::::::::
determined

:::
by

::::
the

:::::::::
processor

:::::::::
otherwise.

:::
It

::::::
occurs

::
in

:::
an

:::::::
intrinsic

:::::
real

:::::::::::::
exponentiation

:::
as

::::::::::
determined

:::
by

::::
the

:::::::::
processor.

:::
It

:::::::
occurs

::
in

::
a
::::::::
complex

::::::::::
operation,

::
or

:::::::::
conversion

:::
by

:::
the

::::::::
intrinsic

::::::::
function

::::::::
CMPLX,

::
if
::
it

::
is

::::::
caused

:::
by

::::
the

::::::::::
calculation

::
of

:::
the

::::
real

:::
or

:::::::::
imaginary

::::
part

::
of

:::
the

::::::
result.

• IEEE DIVIDE BY ZERO occurs when a real or complex division has a nonzero numerator and a zero
denominator.

•
:::::
IEEE

::::::::
DIVIDE

::::
BY

::::::
ZERO

::::::
occurs

:::
in

::
a

::::
real

:::::::
division

:::
as

::::::::
specified

:::
by

::::
IEC

:::::::::::
60559:1989

::
if

:::::
IEEE

:::::::::::
SUPPORT

:
-

:::::::::::
DATATYPE

::
is
::::
true

::::
for

:::
the

:::::::::
operands

::
of

::::
the

::::::::
division,

::::
and

::
as

:::::::::::
determined

:::
by

:::
the

:::::::::
processor

:::::::::
otherwise.

:::
It

::
is

::::::::::::::::::
processor-dependent

::::::::
whether

::
it

::::::
occurs

::
in

::
a
::::
real

::::::::::::::
exponentiation

:::::
with

::
a

::::::::
negative

:::::::::
exponent.

:::
It

::::::
occurs

::
in

::
a

:::::::
complex

::::::::
division

:
if
::
it
::
is
:::::::
caused

:::
by

:::
the

::::::::::
calculation

::
of
::::

the
::::
real

::
or

::::::::::
imaginary

::::
part

::
of

::::
the

::::::
result.

• IEEE INVALID occurs when a real or complex operation or assignment is invalid; possible examples are
SQRT (X) when X is real and has a nonzero negative value, and conversion to an integer (by assignment,
an intrinsic procedure, or a procedure defined in an intrinsic module) when the result is too large to be
representable.

• IEEE UNDERFLOW occurs when the result for an intrinsic real operation or assignment has an absolute
value less than a processor-dependent limit and loss of accuracy is detected, or the real or imaginary part
of the result for an intrinsic complex operation or assignment has an absolute value less than a processor-
dependent limit and loss of accuracy is detected.

• IEEE INEXACT occurs when the result of a real or complex operation or assignment is not exact.

NOTE: This interp also has an edit on page 462.

403.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0009, Status: Corrigendum 1.

Ref: 14.9, 1st paragraph, [406:15+]

Add a new item after the second item of the bulleted list,
making the whole paragraph read:

The inquiry function IEEE SUPPORT DATATYPE can be used to inquire whether IEEE arithmetic is supported
for a particular kind of real. Complete conformance with IEC 60559:1989 is not required, but

• the normal numbers shall be exactly those of an IEC 60559:1989 floating-point format,

• for at least one rounding mode, the intrinsic operations of addition, subtraction and multiplication shall
conform whenever the operands and result specified by IEC 60559:1989 are normal numbers,

•
:::
the

:::::
IEEE

::::::::
function

::::
abs

::::
shall

:::
be

::::::::
provided

:::
by

::::::::::::::::::::::::
the intrinsic function ABS,

• the IEEE operation rem shall be provided by the function IEEE REM, and

• the IEEE functions copysign, scalb, logb, nextafter, and unordered shall be provided by the functions IEEE -
COPY SIGN, IEEE SCALB, IEEE LOGB, IEEE NEXT AFTER, and IEEE UNORDERED, respectively,

for that kind of real.

406.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0104, Status: Corrigendum 4.

Ref: 14.10, Tables 14.1 and 14.2, [408:1-]

In the entries for IEEE SUPPORT ROUNDING,IEEE SUPPORT FLAG, and IEEE SUPPORT HALTING,
change the Class from “I” to “T” (thrice).

NOTE: This interp also has edits on pages 150, 418, 420, 426 and 428.

408.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0104, Status: Corrigendum 4.

Ref: 14.11.27 and 14.11.28, 2nd (Class) paragraph, [418:16,32]

Change the class of IEEE SUPPORT FLAG from “Inquiry function” to “Transformational function”.

Change the class of IEEE SUPPORT HALTING from “Inquiry function” to “Transformational function”.

NOTE: This interp also has edits on pages 150, 408, 420, 426 and 428.

418.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0104, Status: Corrigendum 4.

Ref: 14.11.32, 2nd (Class) paragraph, [420:4]

Change the class of IEEE SUPPORT ROUNDING from “Inquiry function” to “Transformational function”.

NOTE: This interp also has edits on pages 150, 408, 418, 426 and 428.

420.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0104, Status: Corrigendum 4.

Ref: 15.2.3.2, 2nd (Class) paragraph, [426:19]

Change the class of C ASSOCIATED from “Inquiry function” to “Transformational function”.

NOTE: This interp also has edits on pages 150, 408, 418, 420 and 428.

426.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0104, Status: Corrigendum 4.

Ref: 15.2.3.5 and 15.2.3.6, 2nd (Class) paragraph, [428:9,21]

Change the class of C FUNLOC from “Inquiry function” to “Transformational function”.

Change the class of C LOC from “Inquiry function” to “Transformational function”.

NOTE: This interp also has edits on pages 150, 408, 418, 420 and 426.

428.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0053, Status: Corrigendum 3.

Ref: 15.3.4, 1st paragraph, [431:6]

Replace the first sentence as follows, making the whole paragraph

1 A Fortran derived type is interoperable if it has the BIND attribute.
::::::::::::::
Interoperability

:::::::
between

:::::::
derived

::::::
types

::
in

:::::::
Fortran

:::
and

::::::
struct

::::::
types

::
in

::
C

::
is

::::::::
provided

:::
by

:::
the

::::::
BIND

:::::::::
attribute

:::
on

:::
the

:::::::
Fortran

:::::
type.

Interp F08/0057, Status: Corrigendum 2.

Ref: 15.3.4, after constraint C1504, [431:10+]

Insert new constraint

C1504a (R425) A derived type with the BIND attribute shall have at least one component.

Interp F03/0053, Status: Corrigendum 3.

Ref: 15.3.4, NOTE 15.11, [431:12+2]

Insert “with a C struct type” after “is interoperable”, making the whole note read:

NOTE 15.11

The syntax rules and their constraints required that a derived type that is interoperable
::::
with

::
a
::
C

::::::
struct

::::
type have components that are all data entities that are interoperable. No component is permitted to be
allocatable or a pointer, but the value of a component of type C FUNPTR or C PTR may be the C address
of such an entity.

Interp F03/0053, Status: Corrigendum 3.

Ref: 15.3.4, 2nd paragraph, [431:13-18]

Change all “Fortran derived type” and “Fortran type” to “derived type”, making the whole paragraph read

2 A Fortran derived type is interoperable with a C struct type if and only if the Fortran
::::::
derived type has the BIND

attribute (4.5.2), the Fortran derived type and the C struct type have the same number of components, and the
components of the Fortran derived type would interoperate with corresponding components of the C struct type
as described in 15.3.5 and 15.3.6 if the components were variables. A component of a Fortran derived type and
a component of a C struct type correspond if they are declared in the same relative position in their respective
type definitions.

NOTE: Interp F03/0053 also has edits on pages 19 and 77.

431.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0116, Status: Corrigendum 4.

Ref: 15.5.1, 1st and 2nd paragraphs, [436:15,16-19]

Edit these paragraphs as follows:

1 A procedure that is interoperable may be defined either by means other than Fortran or by means of a Fortran
subprogram, but not both.

::
A

::
C

:::::::
function

:::::
that

:::
has

:::
an

:::::
inline

:::::::::
definition

::::
and

:::
no

:::::::
external

:::::::::
definition

::
is

:::
not

::::::::::
considered

::
to

:::
be

::::::
defined

:::
in

::::
this

:::::
sense.

2 If the procedure is defined by means other than Fortran, it shall

•
:
it
:::::
shall be describable by a C prototype that is interoperable with the interface,

:::
and

•
:
if
::
it
::
is
::::::::
accessed

:::::
using

:::
its

:::::::
binding

::::::
label,

::
it

::::
shall

– have a name that has external linkage as defined by 6.2.2 of ISO/IEC 9899:1999, and

– have the same binding label as the interface.

436.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0120, Status: Corrigendum 4.

Ref: 16.3.1, 1st paragraph, item (1), [440:4]

After “named constants,”
insert “named procedure pointers,”,
making the whole paragraph read:

1 Identifiers of entities in the classes

(1) except for statement or construct entities (16.4), named variables, named constants,
::::::
named

:::::::::
procedure

::::::::
pointers, named constructs, statement functions, internal procedures, module procedures, dummy
procedures, intrinsic procedures, external procedures that have binding labels, intrinsic modules,
abstract interfaces, generic interfaces, derived types, namelist groups, external procedures accessed
via USE, and statement labels,

(2) type parameters, components, and type-bound procedure bindings, in a separate class for each type,

(3) argument keywords, in a separate class for each procedure with an explicit interface, and

(4) common blocks that have binding labels

2 are local identifiers.

440.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0124, Status: Corrigendum 1.

Ref: 16.6.6, 1st paragraph, [455:4-10]

Replace the entire item (1) by:

(1) When a scalar variable of intrinsic type becomes defined, all totally associated variables of different
type become undefined. When a double precision scalar variable becomes defined, all partially
associated scalar variables become undefined. When a scalar variable becomes defined, all partially
associated double precision scalar variables become undefined.

455.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0081, Status: Corrigendum 2.

Ref: A.2, [459:36+]

After bullet item “whether and when an object is finalized ... (4.5.6.3);”,
insert new bullet item:

:
•

:::::::
whether

:::
an

::::::
object

::
is

::::::::
finalized

:::
by

:
a
:::::::::::
deallocation

:::
in

:::::
which

:::
an

:::::
error

:::::::::
condition

::::::
occurs

::::::::
(4.5.6.3);

NOTE: Interp F08/0081 also has edits on pages 76, 131, and 460.

459.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F08/0081, Status: Corrigendum 2.

Ref: A.2, [460:5+]

After bullet item “the order ... event described in 6.7.3.2;”,
insert new bullet item:

:
•

:::::::
whether

:::
an

::::::::
allocated

::::::::::
allocatable

:::::::::
subobject

::
is

::::::::::
deallocated

:::::
when

:::
an

:::::
error

::::::::
condition

:::::::
occurs

::
in

:::
the

:::::::::::
deallocation

::
of

::
an

::::::
object

:::::::::
(6.7.3.2);

NOTE: Interp F08/0081 also has edits on pages 76, 131, and 459.

460.1

INTERPRETATION UPDATE PAGES J3/16-018

Interp F03/0030, Status: Corrigendum 3.

Ref: A.2, after “supports IEEE arithmetic (14), [462:24+]

Insert new bullet points as follows:

• the conditions under which IEEE OVERFLOW is raised in a calculation involving non-IEC 60559:1989
floating-point data;

• the conditions under which IEEE OVERFLOW and IEEE DIVIDE BY ZERO are raised in a floating-point
exponentiation operation;

• the conditions under which IEEE DIVIDE BY ZERO is raised in a calculation involving non-IEC 60559:1989
floating-point data;

NOTE: This interp also has an edit on page 403.

462.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F03/0048, Status: Corrigendum 1.

Ref: C.6.2, 1st paragraph, [487:28]

NOTE: This interp also has an edit on page 227.

Delete “record positioning”, making the whole paragraph read:

Data transfer statements affect the positioning of an external file. In Fortran 77, if no error or end-of-file
condition exists, the file is positioned after the record just read or written and that record becomes the preceding
record. This part of ISO/IEC 1539 contains the record positioning ADVANCE= specifier in a data transfer
statement that provides the capability of maintaining a position within the current record from one formatted
data transfer statement to the next data transfer statement. The value NO provides this capability. The value
YES positions the file after the record just read or written. The default is YES.

487.1

J3/16-018 INTERPRETATION UPDATE PAGES

Interp F08/0036, Status: Corrigendum 1.

Ref: C.13.3.6, 3rd paragraph, [527:18]

Insert a superscript “2” to square the absolute value of Xi,
making the whole paragraph read:

The L2-norm of vector X, defined as
√∑n

i=1 |Xi|2, can be formed using the Fortran expression NORM2 (X).

527.1

	Fortran 2003 compatibility
	STAT= specifier
	ERRMSG= specifier

