
Reference number of working document: J3/19-127

Date: 2019-01-31

Reference number of document: J3/19-127

Committee identification: ISO/IEC JTC1/SC22

Secretariat: ANSI

Information technology — Programming languages — Fortran —
Abstract subprograms

Technologies de l’information — Langages de programmation — Fortran —
Sous-programmes abstraits

0 Introduction

0.1 History

Since Fortran 2003, derived types can be parameterized by kind type parameters, and can have type-
bound procedures with generic bindings. Where a type-bound procedure is invoked, if its binding does
not have the NOPASS attribute, the object used to invoke it is associated as an actual argument. If
one has declared an object using kind type parameters such that no specific type-bound procedure has
appropriate kind type parameters for its arguments, a violation of a constraint exists.

Even if one limits attention to kind type parameters for intrinsic types defined by ISO/IEC 1539-
1:2018(E), it is tedious and sometimes difficult to ensure that all necessary type-bound procedures exist
to correspond to every possible declaration of objects of the type. It is not possible, in general, to
anticipate all kind type parameters of intrinsic types that are offered as processor extensions.

0.2 What this technical specification proposes

This technical specification proposes to extend the syntax of definition of subprograms to allow to define
an abstract subprogram. An abstract subprogram is a definition of a family of programs. An abstract
subprogram cannot be invoked. Instead, one can instantiate a member of that family by specifying
parameters by constant integer expressions. Once that member has been instantiated, that instantiation
can be invoked.

31 January 2019 Abstract procedures in Fortran J3/19-127

Information technology – Programming Languages – Fortran1

Technical Specification: Abstract subprograms2

1 General3

1.1 Scope4

This technical specification specifies an extension to the programming language Fortran. The Fortran5

language is specified by International Standard ISO/IEC 1539-1:2018(E). The extension consists of an6

extension to the syntax to allow to define an abstract subprogram, and to create an instantiation of it7

that is parameterized by a set of constant integer expressions. An instantiations of an abstract procedure8

behaves in all respects but one in exactly the same ways as a subprogram defined by International Stan-9

dard ISO/IEC 1539-1:2018(E). The single exception is that an instantiation of an abstract subprogram10

does not access the scoping unit containing its instantiation by host association; rather, it accesses the11

scoping unit containing the definition of the abstract subprogram of which it is an instantiation by host12

association.13

Clause 2 of this technical specification contains a general and informal but precise description of the14

extended functionalities. Clause 3 contains several illustrative examples. Clause 4 contains detailed15

instructions for editorial changes to ISO/IEC 1539-1:2018(E).16

1.2 Normative References17

The following referenced documents are indispensable for the application of this document. For dated18

references, only the edition cited applies. For undated references, the latest edition of the referenced19

document (including any amendments) applies.20

ISO/IEC 1539-1:2018(E) : Information technology – Programming Languages – Fortran; Part 1: Base21

Language22

No copyright 1

J3/19-127 Abstract procedures in Fortran 31 January 2019

2 Requirements1

2.1 General2

The subclauses of this clause contain a general description of the extensions to the syntax and semantics3

of the Fortran programming language to provide abstract subprograms, to instantiate them, to use them4

to specify explicit interfaces, and to invoke instantiations of them.5

2.2 Summary6

2.2.1 What is provided7

This technical specification defines a new form of subprogram definition, called an abstract subprogram.8

An abstract subprogram is a definition of a family of programs. An abstract subprogram cannot be9

invoked. Instead, one can instantiate a member of that family, or specify an explicit interface, by10

providing values for parameters using integer constant expressions.11

This technical specification defines mechanisms to cause instantiations of abstract subprograms to be12

created. An instantiation of an abstract subprogram is a subprogram that behaves in all respects but one13

in exactly the same ways as a subprogram defined by International Standard ISO/IEC 1539-1:2018(E).14

The single exception is that an instantiation of an abstract subprogram does not access the scoping15

unit containing its instantiation by host association; rather, it accesses the scoping unit containing the16

definition of the abstract subprogram of which it is an instantiation by host association.17

This technical specification defines mechanisms by which abstract subprograms can be used to specify18

explicit interfaces, by providing values for parameters using integer constant expressions.19

2.2.2 Abstract subprogram20

An abstract subprogram is a definition of a family of subprograms, characterized by integer parameters.21

2.2.3 Instantiation of an abstract subprogram22

An instantiation of an abstract subprogram is a member of the family of subprograms defined by the23

referenced abstract subprogram. It is characterized by integer constant expressions, and behaves in all24

respects but one in exactly the same ways as a subprogram defined by International Standard ISO/IEC25

1539-1:2018(E). The single exception is that an instantiation of an abstract subprogram does not access26

the scoping unit containing its instantiation by host association; rather, it accesses the scoping unit27

containing the definition of the abstract subprogram of which it is an instantiation by host association.28

The only case where this distinction has effect is where an abstract subprogram is defined in a module,29

and instantiated in a different scoping unit; in all other cases, instantiations of an abstract subprogram30

can only be created in the same scoping unit as the abstract subprogram.31

2.2.4 Explicit interface specified using an abstract subprogram32

An instantiation of an abstract subprogram has explicit interface. An explicit interface can be specified,33

using an abstract subprogram and values for its parameters, without instantiating it, if the name being34

declared has the POINTER attribute or is a dummy argument.35

2.3 Syntax to define an abstract subprogram36

An abstract subprogram is a subprogram defined using the facilities for subprogram definition provided37

by International Standard ISO/IEC 1539-1:2018(E), and including in addition the word ABSTRACT,38

following by a parenthesized list of names and optional default values, in the prefix of its initial statement.39

2 No copyright

31 January 2019 Abstract procedures in Fortran J3/19-127

The definition of prefix-spec is revised:1

R1526 prefix-spec is declaration-type-spec2

or ABSTRACT (parameter-spec-list)3

or ELEMENTAL4

or IMPURE5

or MODULE6

or PURE7

or RECURSIVE8

R1526a parameter-spec is parameter-name [= scalar-int-constant-expr]9

The procedure parameter definition statement is introduced:10

R1526b subprogram-param-def-stmt is INTEGER, KIND :: subprogram-param-def -list11

R1526c subprogram-param-def is parameter-name12

C1551a (R1526) Every parameter-name shall appear in a subprogram-param-def-stmt within the scoping13

unit of the abstract procedure being defined.14

C1551b (R1526b) A subprogram-param-def-stmt shall not appear except within the scoping unit of an15

abstract subprogram.16

C1551c (R1526c) The parameter-name shall be a parameter name of the abstract procedure being17

defined.18

If scalar-int-constant-expr appears, the corresponding parameter-name is optional in an instantiation,19

and scalar-int-constant-expr provides a default value.20

2.4 Syntax to instantiate an abstract subprogram21

An instantiation of an abstract subprogram is directly created by a procedure-stmt or a procedure-22

declaration-stmt. A requirement to instantiate an abstract subprogram, depending upon the declaration23

of an object, is specified by a type-bound-procedure-stmt of a final-procedure-stmt.24

The definition of type-bound-procedure-stmt is revised:25

R749 type-bound-procedure-stmt is PROCEDURE [[, binding-attr-list] ::]26

type-bound-proc-decl-list27

or PROCEDURE (interface-name),28

binding-attr-list :: binding-name-list29

or PROCEDURE (abstract-subprogram-ref),30

binding-attr-list :: binding-name31

Constraint C783 is revised:32

C783 (R752) DEFERRED shall appear if interface-name appears. DEFERRED shall not appear if33

neither interface-name nor abstract-subprogram-ref appears.34

The definition of final-procedure-stmt is revised:35

R753 final-procedure-stmt is FINAL [::] final-subprogram-name-list36

or FINAL (abstract-subprogram-ref)37

The definition of procedure-stmt is revised:38

No copyright 3

J3/19-127 Abstract procedures in Fortran 31 January 2019

R1506 procedure-stmt is [MODULE] PROCEDURE [::] procedure-name-list1

or PROCEDURE (abstract-subprogram-ref) [::]2

procedure-name3

The definition of procedure-declaration-stmt is revised:4

R1512 procedure-declaration-stmt is PROCEDURE ([proc-interface])5

[[, proc-attr-spec] . . . ::] proc-decl-list6

or PROCEDURE (abstract-subprogram-ref)7

[[, proc-attr-spec] . . . ::] proc-decl8

The definition of abstract-subprogram-ref is introduced:9

R1512a abstract-subprogram-ref is abstract-subprogram-name (parameter-spec-list)10

The definition of parameter-spec is introduced:11

R1512b parameter-spec is [parameter-name =] scalar-int-constant-expr12

C1515a (R1512a) The abstract-subprogram-name shall be the name of an abstract subprogram.13

C1515b (R1512b) The parameter-name = may be omitted from a parameter-spec only if the parameter-14

name = has been omitted from each preceding parameter-spec in the parameter-spec-list.15

C1515c (R1512b) Each parameter-name shall appear in the parameter-name-list of the abstract sub-16

program.17

C1515d (R1512a) A parameter-spec shall be provided for each parameter-name of the abstract subpro-18

gram for which a default value is not specified.19

2.5 Syntax to use an abstract subprogram to specify an explicit interface20

An abstract subprogram definition can be used to specify an explicit interface by including values for21

its parameters.22

The definition of proc-component-def-stmt is revised:23

R741 proc-component-def-stmt is PROCEDURE ([proc-interface]) ,24

proc-component-attr-spec-list :: proc-decl-list25

or PROCEDURE (abstract-subprogram-ref)26

proc-component-attr-spec-list :: proc-decl27

If the procedure-entity-name in a proc-decl in a procedure-declaration-stmt has the POINTER attribute,28

or if the procedure-entity-name is the name of a dummy procedure, the abstract-subprogram-ref specifies29

an explicit interface for the procedure-entity-name.30

If the binding-name in a type-bound-procedure-stmt has the DEFERRED attribute, the abstract-subprog-31

ram-ref specifies an explicit interface for the binding-name.32

2.6 Definition of an abstract subprogram33

An abstract subprogram is defined within the specification-part of a main program, module, external34

subprogram, or module subprogram, by a function-subprogram or subroutine-subprogram that has AB-35

STRACT (parameter-name-list) as a prefix-spec in its initial statement.36

An abstract subprogram shall not contain an ENTRY statement.37

4 No copyright

31 January 2019 Abstract procedures in Fortran J3/19-127

2.7 Instantiation of an abstract subprogram1

Direct instantiation of an abstract subprogram occurs where a procedure-stmt appears with abstract-2

subprogram-ref, provided the procedure-name is not the name of a dummy procedure. The name of the3

instantiation is procedure-name.4

Direct instantiation of an abstract subprogram occurs where a procedure-declaration-stmt appears with5

abstract-subprogram-ref and the declared procedure-entity-name is not the name of a dummy procedure6

and does not have the POINTER attribute. The name of the instantiation is procedure-entity-name.7

Indirect instantiation of an abstract subprogram occurs where an object of a derived type is declared,8

providing it is not a dummy argument, and the definition of the type of the object includes a type-9

bound-procedure-stmt with abstract-subprogram-ref and without the DEFERRED attribute, or a final-10

procedure-stmt with abstract-subprogram-ref. An indirect instantiation does not have a name, but is11

bound to the binding-name in the case of a type-bound-procedure-stmt.12

Instantiation of an abstract subprogram causes each appearance of a parameter-name within the abstract13

subprogram to be replaced in the instantiation by the value of the corresponding scalar-int-constant-expr14

in the abstract-subprogram-ref, if one appears, or by the scalar-int-constant-expr immediately following15

parameter-name = in the prefix-spec otherwise. Each parameter-spec in an abstract-subprogram-ref16

that does not include parameter-name corresponds to the parameter-name in the same position in the17

parameter-name-list of the abstract subprogram. Each parameter-spec that includes parameter-name18

corresponds to the parameter-name in the parameter-name-list that has the same parameter-name.19

There shall not be more than one parameter-spec corresponding to each parameter-name. There shall20

be a parameter-spec corresponding to each parameter-name for which a default value is not specified.21

An abstract subprogram shall not be instantiated, directly or indirectly, within the inclusive scoping22

unit of an internal subprogram. If it is instantiated within the inclusive scoping unit of a main program,23

external subprogram, or module subprogram, including within a BLOCK construct, the instantiation is24

an internal subprogram of that inclusive scoping unit, but it does not access that inclusive scoping unit25

by host association. If it is instantiated within a BLOCK construct, the name of the instantiation has a26

scope of the construct. If it is instantiated within a module, the instantiation is a module subprogram.27

2.8 Invoking an instantiation of an abstract subprogram28

An instantiation of an abstract subprogram is invoked by a function-reference or call-stmt. If it is a29

direct instantiation, the name specified in the instantiation is used as the procedure-designator. If it is30

an indirect instantiation, its binding name is used as the procedure-designator. If an instantiation is a31

final procedure, it is invoked according to the rules in subclause 4.5.6.2 of ISO/IEC 1539-1:2018(E).32

2.9 Constant expression33

The definition of constant expression is expanded to encompass the use within it of a parameter-name34

within an abstract subprogram.35

Item (9a) is added to the list of primaries allowed in a constant expression:36

(9a) a previously-declared parameter-name of the abstract subprogram being defined,37

2.10 Scoping units and host association38

An abstract subprogram is a scoping unit. It accesses the scoping unit in which it is defined by host39

association. An instantiation of it does not access, by host association, the scoping unit in which it is40

instantiated. The only case where this distinction has effect is where the definition appears in a module.41

No copyright 5

J3/19-127 Abstract procedures in Fortran 31 January 2019

In the cases of the definition appearing in a main program, external subprogram, or module subprogram,1

instantiation cannot occur in any other inclusive scoping unit.2

6 No copyright

31 January 2019 Abstract procedures in Fortran J3/19-127

3 Examples1

3.1 Definition of an abstract subprogram2

pure abstract (RK) function Planck (Frequency, Temperature)3

integer, kind :: RK4

real(rk) :: Planck5

real(rk), intent(in) :: Frequency ! MHz6

real(rk), intent(in) :: Temperature ! Kelvin7

real(rk), parameter :: H = 6.62606947e-34_rk ! J s, +/- 29e-42 NIST 20108

real(rk), parameter :: K = 1.3806488e-23_rk ! J/K, +/- 13e-30 NIST 20109

real(rk), parameter :: H_OVER_K = H / K * 1.0e6_rk ! nu in MHz10

real(rk) :: A, R, HXF11

hxf = h_over_k * frequency12

r = hxf / temperature13

a = exp(r) - 1.014

planck = hxf / a15

end function Planck16

3.2 Direct instantiation of an abstract subprogram17

interface Planck18

procedure(Planck(kind(0.0e0))) :: Planck_single19

procedure(Planck(kind(0.0d0))) :: Planck_double20

end interface Planck21

3.3 Indirect instantiation of an abstract subprogram22

type :: Rad_Tran (RK)23

integer, kind :: RK24

real(rk) :: Radiance25

contains26

procedure(Planck(rk))27

end type Rad_Tran28

29

integer, parameter :: Q = selected_real_kind(30)30

31

type(Rad_Tran(q)) :: Rad_Q32

3.4 Reference to directly instantiated abstract subprogram33

print *, Planck (1.42857d+4, 2.30d0) ! MHz, Kelvin34

3.5 Reference to indirectly instantiated abstract subprogram35

rad_q%radiance = rad_q%planck (1.42857e+4_q, 2.30e0_q) ! MHz, Kelvin36

No copyright 7

J3/19-127 Abstract procedures in Fortran 31 January 2019

4 Required editorial changes to ISO/IEC 1539-1:2018(E)1

To be provided in due course.2

8 No copyright

