
maybe J3/19-154 2019/02/14

To: J3
From: Malcolm Cohen
Subject: Macro processing facility
Date: 2019-February-14

Introduction

This document contains a draft of a possible “macro processing” subclause for the Fortran 202x standard.

Formal requirements and specifications will appear in a separate paper (not at this meeting).

There are a several issues that are not discussed in this paper, but are worthy of further consideration.

• Whether the processor should be required to be able to produce an “expanded” source code (pos-
sibly only expanding specified macros rather than all the macros in the code). There is widespread
agreement that such a capability would be useful.

• As a macro-expr is a fully general constant expression, so that it can enquire about various pro-
cessor and data type capabilities, the full macro facility really needs to be part of the processor.
However, it would be reasonable for a software tool to implement a small but useful subset of those
capabilities, and this would be useful to tide people over until the full version has been implemented
by their compiler.

• It might be useful for a macro to be able to produce a diagnostic error message directly; if the
macro can detect that there is a problem, this would allow a better error message to be produced
than the standard compiler “Syntax error”.

• Especially in the case of producing diagnostic messages, a macro operator to “stringify” a token
or token sequence would be useful. (Even if we don’t do macros but do some kind of tem-
plate/parameterisedmodule instead, such a facility could be useful.)

1

2019/02/14 maybe J3/19-154

6.5 Macro processing

6.5.1 Macro definition

A macro definition defines a macro. A defined macro shall only be referenced by a USE statement,
IMPORT statement, or macro expansion statement. A defined macro shall not be redefined.

R601 macro-definition is define-macro-stmt
[macro-declaration-stmt] ...
macro-body-block

end-macro-stmt

R602 define-macro-stmt is DEFINE MACRO [, macro-attr-list] :: macro-name
[([macro-dummy-arg-name-list])]

C601 (R602) A macro-dummy-arg-name shall not appear more than once in a macro-dummy-arg-
name-list .

R603 macro-attr is access-spec

The DEFINE MACRO statement begins the definition of the macro macro-name. Appearance of
an access-spec in the DEFINE MACRO statement explicitly gives the macro the specified attribute
(ref:“Accessibility attribute”). Each macro-dummy-arg-name is a macro dummy argument. A macro
dummy argument is a macro local variable.

R604 macro-declaration-stmt is macro-type-declaration-stmt
or macro-optional-decl-stmt
or macro-variable-decl-stmt

R605 macro-type-declaration-stmt is MACRO macro-type-spec :: macro-local-variable-name-list

R606 macro-optional-decl-stmt is MACRO OPTIONAL :: macro-dummy-arg-name-list

R607 macro-variable-decl-stmt is MACRO VARIABLE :: macro-local-variable-name-list

R608 macro-type-spec is INTEGER [([KIND=] macro-expr)]

C602 (R605, R607) A macro-local-variable-name shall not be the same as the name of a macro dummy
argument of the macro being defined.

C603 (R606) A macro-dummy-arg-name shall be the name of a macro dummy argument of the macro
being defined.

C604 (R608) If macro-expr appears, when the macro is expanded macro-expr shall be of type integer,
and have a non-negative value that specifies a representation method that exists on the processor.

A macro type declaration statement specifies that the named entities are macro local variables of the
specified type. If the kind is not specified, they are of default kind. A macro variable declaration
statement declares untyped macro local variables; the value of an untyped macro local variable is a
token sequence, and its initial value is an empty sequence (no tokens). A macro local variable that is
not a macro dummy argument shall appear in a macro type declaration statement or in a macro variable
declaration statement.

R609 macro-body-block is [macro-body-construct] ...

R610 macro-body-construct is macro-definition
or expand-stmt
or macro-body-stmt

2

maybe J3/19-154 2019/02/14

or macro-do-construct
or macro-if-construct
or macro-int-assignment-stmt
or macro-tok-assignment-stmt

C605 A statement in a macro definition that is not a macro-body-construct or macro-definition shall
not appear on a line with any other statement.

R611 macro-do-construct is macro-do-stmt
macro-body-block

macro-end-do-stmt

R612 macro-do-stmt is MACRO DO macro-do-variable-name = macro-do-limit ,
macro-do-limit [, macro-do-limit]

C606 (R612) A macro-do-variable-name shall be a local variable of the macro being defined, and shall
be of type integer.

R613 macro-do-limit is macro-expr

C607 (R613) A macro-do-limit shall expand to an expression of type integer.

R614 macro-end-do-stmt is MACRO END DO

A macro DO construct iterates the expansion of its enclosed macro body block at macro expansion time.
The number of iterations is determined by the values of the expanded macro expressions in the MACRO
DO statement.

R615 macro-if-construct is macro-if-then-stmt
macro-body-block

[macro-else-if-stmt
macro-body-block] ...

[macro-else-stmt
macro-body-block]

macro-end-if-stmt

R616 macro-if-then-stmt is MACRO IF (macro-condition) THEN

R617 macro-else-if-stmt is MACRO ELSE IF (macro-condition) THEN

R618 macro-else-stmt is MACRO ELSE

R619 macro-end-if-stmt is MACRO END IF

R620 macro-condition is macro-expr

C608 (R620) A macro condition shall expand to an expression of type logical.

A macro IF construct provides conditional expansion of its enclosed macro body blocks at macro expan-
sion time. Whether the enclosed macro body blocks contribute to the macro expansion is determined by
the logical value of the expanded macro expressions in the MACRO IF and MACRO ELSE IF statements.

R621 macro-int-assignment-stmt is MACRO macro-integer-variable-name = macro-expr

C609 (R621) macro-integer-variable-name shall be the name of a macro local variable of type integer.

R622 macro-tok-assignment-stmt is MACRO macro-tok-variable-name = assignment-tok-sequence

3

2019/02/14 maybe J3/19-154

C610 (R622) macro-tok-variable-name shall be the name of an untyped macro local variable that is
not a macro dummy argument.

R623 assignment-tok-sequence is [result-token] ... [&&]

R624 macro-body-stmt is result-token [result-token] ... [&&]

C611 (R624) If the first result-token is MACRO the second result-token shall not be a keyword or
name.

C612 (R624) If the first result-token is DEFINE or END, the second result-token shall not be MACRO.

R625 result-token is token [%% token] ...

R626 token is any lexical token including labels, keywords, and semi-colon.

C613 && shall not appear in the last macro-body-stmt of a macro definition.

C614 When a macro is expanded, the last macro-body-stmt processed shall not end with &&.

R627 end-macro-stmt is END MACRO [macro-name]

C615 (R601) The macro-name in the END MACRO statement shall be the same as the macro-name
in the DEFINE MACRO statement.

R628 macro-expr is basic-token-sequence

C616 (R628) A macro-expr shall expand to a scalar constant expression.

Macro expressions are used to control the behavior of the MACRO DO and MACRO IF constructs when
a macro is being expanded. The type, type parameters, and value of a macro expression are determined
when that macro expression is expanded.

6.5.2 Macro expansion

6.5.2.1 General

Macro expansion is the conceptual replacement of the EXPAND statement with the Fortran statements
that it produces. The semantics of an EXPAND statement are those of the Fortran statements that it
produces. It is recommended that a processor be capable of displaying the results of macro expansion. It
is processor-dependent whether comments in a macro definition appear in the expansion. It is processor-
dependent whether continuations and consecutive blanks that are not part of a token are preserved.

The process of macro expansion produces Fortran statements consisting of tokens. The combined length
of the tokens for a single statement, plus inter-token spacing, shall not be greater than 1 000 000 char-
acters.

NOTE 6.1

This length is the same as the minimum limit on statement length permitted by the standard.

Note that breaking tokens across continuation lines in macro definitions and in EXPAND state-
ments does not affect macro expansion: it is as if they were joined together before replacement.

4

maybe J3/19-154 2019/02/14

R629 expand-stmt is EXPAND macro-name [(macro-actual-arg-list)]

C617 (R629) macro-name shall be the name of a previously defined macro.

C618 (R629) The macro shall expand to a sequence of zero or more complete Fortran statements.

C619 (R629) The statements produced by a macro expansion shall conform to the syntax rules and
constraints as if they replaced the EXPAND statement prior to program processing.

C620 (R629) The statements produced by a macro expansion shall not include a statement which
ends the scoping unit containing the EXPAND statement.

C621 (R629) If a macro expansion produces a statement which begins a new scoping unit, it shall also
produce a statement which ends that scoping unit.

C622 (R629) If the EXPAND statement appears as the action-stmt of an if-stmt , it shall expand
to exactly one action-stmt that is not an end-function-stmt , end-mp-subprogram-stmt , end-
program-stmt , end-subroutine-stmt , or if-stmt .

C623 (R629) If the EXPAND statement appears as a do-term-action-stmt , it shall expand to exactly one action-

stmt that is not an arithmetic-if-stmt , continue-stmt , cycle-stmt , end-function-stmt , end-mp-subprogram-stmt ,

end-program-stmt , end-subroutine-stmt , exit-stmt , goto-stmt , return-stmt , or stop-stmt .

C624 (R629) If the EXPAND statement has a label, the expansion of the macro shall produce at least
one statement, and the first statement produced shall not have a label.

C625 (R629) A macro-actual-arg shall appear corresponding to each nonoptional macro dummy ar-
gument.

C626 (R629) At most one macro-actual-arg shall appear corresponding to each optional macro dummy
argument.

Expansion of a macro is performed by the EXPAND statement. If the EXPAND statement has a label,
the label is interpreted after expansion as belonging to the first statement of the expansion.

R630 macro-actual-arg is [macro-dummy-name =] macro-actual-arg-value

C627 (R630) macro-dummy-name shall be the name of a macro dummy argument of the macro being
expanded.

C628 (R629) The macro-dummy-name= shall not be omitted unless it has been omitted from each
preceding macro-actual-arg in the expand-stmt .

C629 (R630) If the first two tokens of macro-actual-arg-value are a name and an equals sign, macro-
dummy-name= shall appear.

R631 macro-actual-arg-value is basic-token-sequence

R632 basic-token-sequence is basic-token
or [basic-token-sequence] nested-token-sequence

[basic-token-sequence]
or basic-token basic-token-sequence

R633 basic-token is any lexical token except comma, parentheses, array
constructor delimiters, and semi-colon.

R634 nested-token-sequence is ([arg-token] ...)
or (/ [arg-token] ... /)
or lbracket [arg-token] ... rbracket

5

2019/02/14 maybe J3/19-154

R635 arg-token is basic-token
or ,

If a macro actual argument is not preceded by macro-dummy-name it corresponds to the macro dummy
argument in the same position in the macro declaration; otherwise it corresponds to the macro dummy
argument having the specified name.

Macro expansion processes any macro declarations of the macro definition, and then expands its macro
body block. Any macro expressions in macro-type-specs are evaluated and the kinds of the macro
variables thereby declared are determined for that particular expansion.

Macro expansion of a macro body block processes each macro body construct of the macro body block
in turn, starting with the first macro body construct and ending with the last macro body construct.

Expansion of a statement within a macro body construct consists of three steps:

(1) token replacement,

(2) token concatenation, and

(3) statement-dependent processing.

6.5.2.2 Token replacement

Token replacement replaces each token of a macro body statement, assignment token sequence, or macro
expression that is a macro local variable with the value of that variable.

A macro dummy argument is present if and only if it corresponds to a macro actual argument.

In a macro expression, a reference to the intrinsic function PRESENT with a macro dummy argument
name as its actual argument is replaced by the token .TRUE. if the specified macro dummy argument
is present, and the token .FALSE. if the specified macro dummy argument is not present. Otherwise,
the value of a macro dummy argument that is present is the sequence of tokens from the corresponding
macro actual argument, and the value of a macro dummy argument that is not present is a zero-length
token sequence.

The value of an integer macro variable is its minimal-length decimal representation; if negative this
produces two tokens, a minus sign and an unsigned integer literal constant. An untyped macro local
variable expands to the sequence of tokens assigned to it, or to a zero-length token sequence if no tokens
are assigned to it.

6.5.2.3 Token concatenation

Token concatenation is performed with the %% operator, which is only permitted inside a macro defini-
tion. After expansion, each sequence of single tokens separated by %% operators is replaced by a single
token consisting of the concatenated text of the sequence of tokens. The result of a concatenation shall
be a valid Fortran token, and may be a different kind of token from one or more of the original sequence
of tokens.

C630 (R625) The result of token concatenation shall have the form of a lexical token.

NOTE 6.2

For example, the sequence

3 %% .14159 %% E %% + %% 0

forms the single real literal constant 3.14159E+0.

6

maybe J3/19-154 2019/02/14

6.5.2.4 Macro body statements

Processing a macro body statement produces a whole or partial Fortran statement. A macro body
statement that is either the first macro body statement processed by this macro expansion or the
next macro body statement processed after a macro body statement that did not end with the macro
continuation operator &&, is an initial macro body statement. The next macro body statement processed
after a macro body statement that ends with && is a continuation macro body statement. An initial
macro body statement that does not end with && produces a whole Fortran statement consisting of
its token sequence. Each other macro body statement produces a partial Fortran statement, and the
sequence of tokens starting with those produced by the initial macro body statement and appending
the tokens produced by each subsequent continuation macro body statement form a Fortran statement.
The && operators are not included in the token sequence.

6.5.2.5 The MACRO DO construct

The MACRO DO construct specifies the repeated expansion of a macro body block. Processing the
MACRO DO statement performs the following steps in sequence.

(1) The initial parameter m1, the terminal parameter m2, and the incrementation parameter
m3 are of type integer with the same kind type parameter as the macro-do-variable-name.
Their values are given by the first macro-expr , the second macro-expr , and the third macro-
expr of the macro-do-stmt respectively, including, if necessary, conversion to the kind type
parameter of the macro-do-variable-name according to the rules for numeric conversion
(Table ref:Numeric conversion and the assignment statement). If the third macro-expr does
not appear, m3 has the value 1. The value of m3 shall not be zero.

(2) The MACRO DO variable becomes defined with the value of the initial parameter m1.

(3) The iteration count is established and is the value of the expression (m2 −m1 + m3)/m3,
unless that value is negative, in which case the iteration count is 0.

After this, the following steps are performed repeatedly until processing of the MACRO DO construct
is finished.

(1) The iteration count is tested. If it is zero, the loop terminates and processing of the MACRO
DO construct is finished.

(2) If the iteration count is nonzero, the macro body block of the MACRO DO construct is
expanded.

(3) The iteration count is decremented by one. The MACRO DO variable is incremented by
the value of the incrementation parameter m3.

6.5.2.6 The MACRO IF construct

The MACRO IF construct provides conditional expansion of macro body blocks. At most one of the
macro body blocks of the MACRO IF construct is expanded. The macro conditions of the construct
are evaluated in order until a true value is found or a MACRO ELSE or MACRO END IF statement is
encountered. If a true value or a MACRO ELSE statement is found, the macro body block immediately
following is expanded and this completes the processing of the construct. If none of the evaluated
conditions is true and there is no MACRO ELSE statement, the processing of the construct is completed
without expanding any of the macro body blocks within the construct.

6.5.2.7 Macro assignment

Processing a macro integer assignment statement sets the macro local variable value to that of the macro
expression.

Processing a macro token assignment statement sets the macro local variable value to be the sequence

7

2019/02/14 maybe J3/19-154

of tokens following the equals sign. If no tokens appear after the equals sign, the macro local variable is
set to the zero-length token sequence.

6.5.2.8 Macro definitions

Processing a macro definition defines a new macro. If a macro definition is produced by a macro expan-
sion, all of the statements of the produced macro definition have token replacement and concatenation
applied to them before the new macro is defined.

6.5.2.9 Examples

NOTE 6.3

This is a macro which loops over an array of any rank and processes each array element.

DEFINE MACRO loop_over(array,rank,traceinfo)

MACRO INTEGER :: i

BLOCK

MACRO DO i=1,rank

INTEGER loop_over_temp_%%i

MACRO END DO

MACRO DO i=1,rank

DO loop_over_temp_%%i=1,size(array,i)

MACRO END DO

CALL impure_scalar_procedure(array(loop_over_temp_%%1 &&

MACRO DO i=2,rank

,loop_over_temp_%%i &&

MACRO END DO

),traceinfo)

MACRO DO i=1,rank

END DO

MACRO END DO

END BLOCK

END MACRO

NOTE 6.4

One can effectively pass macro names as macro arguments, since expansion of arguments occurs
before analysis of each macro body statement. For example:

DEFINE MACRO :: iterator(count,operation)

MACRO DO i=1,count

EXPAND operation(i)

MACRO END DO

END MACRO

DEFINE MACRO :: process_element(j)

READ *,a(j)

result(j) = process(a(j))

IF (j>1) PRINT *,’difference =’,result(j)-result(j-1)

END MACRO

EXPAND iterator(17,process_element)

This expands into 17 sets of 3 statements:

8

maybe J3/19-154 2019/02/14

NOTE 6.4 (cont.)

READ *,a(1)

result(1) = process(a(1))

IF (1>1) PRINT *,’difference =’,result(1)-result(1-1)

READ *,a(2)

result(2) = process(a(2))

IF (2>1) PRINT *,’difference =’,result(2)-result(2-1)

...

READ *,a(17)

result(17) = process(a(17))

IF (17>1) PRINT *,’difference =’,result(17)-result(17-1)

NOTE 6.5

Using the ability to evaluate constant expressions under macro control and the kind value arrays
from ISO FORTRAN ENV, one can create interfaces and procedures for all kinds of a type, for
example:

DEFINE MACRO :: i_square_procs()

MACRO INTEGER i, thiskind

MACRO DO i=1, size(INTEGER_KINDS)

MACRO thiskind = INTEGER_KINDS(i)

FUNCTION i_square_kind_%%thiskind (a) RESULT(r)

INTEGER(thiskind) a,r

r = a**2

END FUNCTION

MACRO END DO

END MACRO

NOTE 6.6

Macros can be used to define other macros on expansion. For example,

! Macro that defines a macro which assigns a value to an array element

DEFINE MACRO :: assign_shortcut(rank)

DEFINE MACRO assign_%%rank(array,indices,value)

MACRO INTEGER :: i

array(indices(1)&&

MACRO DO i=2,rank

,indices(i)&&

MACRO END DO

)=value

END MACRO assign_%%rank

END MACRO assign_shortcut

! Create assignment macros for all ranks

MACRO DO i=1,15

EXPAND assign_shortcut(i)

MACRO END DO

! Now use the rank-3 assignment macro:

REAL :: A(10,10,10)

INTEGER :: indices(3)=[1,5,6]

EXPAND assign_3(A,indices,5.0)

9

2019/02/14 maybe J3/19-154

NOTE 6.6 (cont.)

! Expands to:

! A(indices(1),indices(2),indices(3))=5.0

NOTE 6.7

This example demonstrates the use of MACRO IF to generate an interface for subroutines acting
on single, double, and (if it exists) quad precision real.

DEFINE MACRO my_generic_interface(typename,array_of_kinds)

MACRO INTEGER :: i, kind

INTERFACE my_generic_procedure

MACRO DO i=1, SIZE(array_of_kinds)

! Necessary in order to evaluate kind to an integer:

MACRO kind = array_of_kinds(i)

MACRO IF (kind>0) THEN

SUBROUTINE MySpecificProcedure_%%kind(X)

typename(kind), INTENT(IN) :: X

END SUBROUTINE

MACRO END IF

MACRO END DO

END INTERFACE

END MACRO my_generic_interface

Use of the macro:

INTEGER,PARAMETER :: rkinds(3) = [KIND(0.0),KIND(0d0), &

SELECTED_REAL_KIND(P=PRECISION(0d0)*2)]

EXPAND my_generic_interface(REAL,rkinds)

10

	Macro processing
	Macro definition
	Macro expansion

