WD 1539-1

J3/22-007r1
(Draft Fortran 2023)

22nd April 2022 16:46

This is an internal working document of INCITS/Fortran and
ISO/IEC JTC1/SC22/WGb.

NOTE: This Working Draft is only available as a PDF file.

This page intentionally left nonblank.

2022-04-22 WD 1539-1 J3/22-007r1

Contents
Foreword L e e xii
Introduction L e e xiii
1 Scope . . o e 1
2 Normative references e e e e e e e e e e 2
3 Terms and definitions L e e e e 3
4 Notation, conformance, and compatibility 24
4.1 Notation, symbols and abbreviated terms L 24
4.1.1 Syntax rules 24
4.1.2 Constraints e e e e e e 25
4.1.3 Assumed syntax ruleso 25
4.14 Syntax conventions and characteristics o000 25
4.1.5 Text conventions L L e 26
4.2 Conformance e 26
4.3 Compatibility e e 27
4.3.1 Previous Fortran standards 27
4.3.2 New intrinsic procedures 27
4.3.3 Fortran 2018 compatibility o 27
4.3.4 Fortran 2008 compatibility o 28
4.3.5 Fortran 2003 compatibilityo 29
4.3.6 Fortran 95 compatibilityo 30
4.3.7 Fortran 90 compatibility 30
4.3.8 FORTRAN 77 compatibility 30
4.4 Deleted and obsolescent featureso Lo 31
4.4.1 General 31
4.4.2 Nature of deleted features 31
4.4.3 Nature of obsolescent features 31
5 Fortran concepts oL e e 32
5.1 High level syntax e 32
5.2 Program unit conceptso 35
5.2.1 Program units and scoping units L Lo 35
5.2.2 Program 35
5.2.3 Procedure L 35
5.2.4 Module e e e 36
5.2.5 Submodule e e e 36
5.3 Execution conceptso 36
5.3.1 Statement classification Lo 36
5.3.2 Statement order L 36
5.3.3 The END statement e 37
5.3.4 Program execution 37
5.3.5 Execution sequence L e 38

13/22-007r1 i

J3/22-007r1 WD 1539-1 2022-04-22
5.3.6 Image execution states 38

5.3.7 Termination of execution 39

5.4 Data concepts 39
5.4.1 TyYPe . o o e 39

5.4.2 Data value e e 40

5.4.3 Dataentity e 40

5.4.4 Definition of objects and pointers 41

5.4.5 Reference e 42

5.4.6 Array . .. e 42

5.4.7 L0707 i 42

5.4.8 Established coarrays 43

5.4.9 Pointer e e 43
5.4.10 Allocatable variables 43
5411 SEOTageo e 43

5.5 Fundamental concepts L 44
5.5.1 Names and designators L L 44

5.5.2 Statement keyword L. e 44

5.5.3 Other keywords e 44

5.5.4 Association L. e 44

5.5.5 Intrinsic Lo 44

5.5.6 Operator o 44

5.0.7 Companion ProCesSOTS v v v v v vt e e e 45

6 Lexical tokens and source form e e e e 46
6.1 Processor character set L e e 46
6.1.1 Characters e 46

6.1.2 Letters o e e e 46

6.1.3 Digits e 46

6.1.4 Underscore oo e e 46

6.1.5 Special characters L 46

6.1.6 Other characters e 47

6.2 Low-level syntax L 47
6.2.1 Tokens e e e 47

6.2.2 Names o e e 47

6.2.3 Constants L 48

6.2.4 Operators 48

6.2.5 Statement labels L 49

6.2.6 Delimiters e e e 49

6.3 Source form e 50
6.3.1 Program units, statements, and lines oo Lo 50

6.3.2 Free source form 50

6.3.3 Fixed source form L 51

6.4 Including source text L L 52
T Types . o o o e e e 54
7.1 Characteristics of types L e 54
7.1.1 The concept of type L 54

7.1.2 Type classification Lo 54

7.1.3 Set of values L 54

7.1.4 Constants e 54

7.1.5 Operations o e e 54

7.2 Type parameters e e e e e e e e e e e 55
7.3 Types, type specifiers, and values 56
7.3.1 Relationship of types and values to objects L oL 56

7.3.2 Type specifiers and type compatibility 0oL, 56

7.3.3 Type compatibility 58

13/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1
7.4 Intrinsic types o e e e 59
7.4.1 Classification and specification 59

7.4.2 Intrinsic operations on intrinsic types oL Lo 59

7.4.3 Numeric intrinsic types Lo 59

7.4.4 Character type o e e 63

7.4.5 Logical type o . o 66

7.5 Derived types e 66
7.5.1 Derived type concepts L 66

7.5.2 Derived-type definition oL o 67

7.5.3 Derived-type parameters L L e 70

7.5.4 Components e e 72

7.5.5 Type-bound procedures L e e 79

7.5.6 Final subroutines e 81

7.5.7 Type extension L 83

7.5.8 Derived-type values L 85

7.5.9 Derived-type specifier 85
7.5.10 Construction of derived-type values 86

7.5.11 Derived-type operations and assignment oL 88

7.6 Other nonintrinsic types L 88
7.6.1 Interoperable enumerations and enum types Lo L. 88

7.6.2 Enumeration types L. 91

7.7 Binary, octal, and hexadecimal literal constants L L. 93
7.8 Construction of array values L 94
8 Attribute declarations and specifications oL L 97
8.1 Attributes of procedures and data objects L L oL o 97
8.2 Type declaration statement L 97
8.3 Automatic data objects L 99
8.4 Imitialization 99
8.5 Attributes L 99
8.5.1 Attribute specification oL Lo 99

8.5.2 Accessibility attribute L. 100

8.5.3 ALLOCATABLE attribute e 100

8.5.4 ASYNCHRONOUS attribute e 100

8.5.5 BIND attribute for data entities L Lo 101

8.5.6 CODIMENSION attribute o e 101

8.5.7 CONTIGUOUS attribute e e e 103

8.5.8 DIMENSION attribute e 104

8.5.9 EXTERNAL attribute e 108
8.5.10 INTENT attribute e 108
8.5.11 INTRINSIC attribute 110
8.5.12 OPTIONAL attribute 110
8.5.13 PARAMETER attribute e 110
8.5.14 POINTER attribute e 111
8.5.15 PROTECTED attribute 111
8.5.16 SAVE attribute 112
8.5.17 RANK clause e 112
8.5.18 TARGET attribute e 113
8.5.19 VALUE attribute e 113
8.5.20 VOLATILE attribute 113

8.6 Attribute specification statementso 114
8.6.1 Accessibility statement oL 114

8.6.2 ALLOCATABLE statement ettt 115

8.6.3 ASYNCHRONOUS statement ittt ittt et e e 115

8.6.4 BIND statement 115

8.6.5 CODIMENSION statement s 116

J3/22-007r1 v

J3/22-007r1 WD 1539-1 2022-04-22

10

vi

8.6.6 CONTIGUOUS statement e e et e e e e e 116
8.6.7 DATA statement 116
8.6.8 DIMENSION statement e 118
8.6.9 INTENT statement e 119
8.6.10 OPTIONAL statement it e e 119
8.6.11 PARAMETER statement e 119
8.6.12 POINTER statement e 119
8.6.13 PROTECTED statement i 120
8.6.14 SAVE statement 120
8.6.15 TARGET statement e 120
8.6.16 VALUE statement e 120
8.6.17 VOLATILE statement e 121
8.7 IMPLICIT statement e 121
8.8 IMPORT statement e 123
8.9 NAMELIST statement e e 126
8.10 Storage association of data objects L L 126
8.10.1 EQUIVALENCE statement 126
8.10.2 COMMON statement e 128
8.10.3 Restrictions on common and equivalence L. 129
Use of data objects e 131
9.1 Designator e 131
9.2 Variable 131
9.3 Constants e 132
9.4 Scalars L e 132
9.4.1 Substrings e 132
9.4.2 Structure components 132
9.4.3 Coindexed named objects Lo 134
9.4.4 Complex parts o e 134
9.4.5 Type parameter inquiry Lo 134
9.5 ATTAYS 135
9.5.1 Order of reference e 135
9.5.2 Whole arrays L e 135
9.5.3 Array elements and array sections L Lo 135
9.5.4 Simply contiguous array designators Lo Lo 139
9.6 Image selectors e 140
9.7 Dynamic association 141
9.7.1 ALLOCATE statement o 141
9.7.2 NULLIFY statement e e 145
9.7.3 DEALLOCATE statement i it 145
9.74 STAT=specifier 147
9.7.5 ERRMSG= specifier e 148
Expressions and assignment L L e e e e 149
10.1 EXPressions o . i e e e e e e e e e e e 149
10.1.1 Expression semanticso e e e e e 149
10.1.2 Form of an expression e 149
10.1.3 Precedence of operators. e e 153
10.1.4 Evaluation of operations e e 155
10.1.5 Intrinsic operations L e e e 156
10.1.6 Defined operations 162
10.1.7 Evaluation of operands e 164
10.1.8 Integrity of parentheses 164
10.1.9 Type, type parameters, and shape of an expression 164
10.1.10 Conformability rules for elemental operations 166
10.1.11 Specification expressiono u e e e e e e 166

13/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

10.1.12 Constant expressiono e 168

10.2 Assignment e e 169
10.2.1 Assignment statement Lo 169
10.2.2 Pointer assignmento Lo 174
10.2.3 Masked array assignment - WHERE 0oL 178
10.2.4 FORALL e 181

11 Execution control L e 184
11.1 Executable constructs containing blocks Lo 184
11.1.1 Blocks e e 184

11.1.2 Rules governing blocks L 184
11.1.3 ASSOCIATE construct e 185
11.1.4 BLOCK construct i e 186

11.1.55 CHANGE TEAM construct i it i e et e 188
11.1.6 CRITICAL construct e e e e e e e e e e 190
11.1.7 DO construct e 191
11.1.8 IF construct and statement 199
11.1.9 SELECT CASE construct ittt e e 200
11.1.10 SELECT RANK construct e e e e 203
11.1.11 SELECT TYPE construct i et e 205
11.1.12 EXIT statement e e 208

11.2 Branching e 208
11.2.1 Branch concepts L 208

11.2.2 GO TO statement e 208
11.2.3 Computed GO TO statement e 209

11.3 CONTINUE statement e e e e e e e e e e e e e 209
11.4 STOP and ERROR STOP statements 209
11.5 FAIL IMAGE statement e 210
11.6 NOTIFY WAIT statement e e e e e e 210
11.7 Image execution control. L 211
11.7.1 Image control statements Lo e 211
11.7.2 0 Segments o oL e e e 212
11.7.3 SYNC ALL statement e 213
11.7.4 SYNC IMAGES statement e 214
11.7.5 SYNC MEMORY statement e 215
11.7.6 SYNC TEAM statement e e 216
11.7.7 EVENT POST statement ittt 216
11.7.8 EVENT WAIT statement e 217
11.7.9 FORM TEAM statement 217
11.7.10 LOCK and UNLOCK statements i viiii i 218
11.7.11 STAT= and ERRMSG= specifiers in image control statements 220

12 Input/output statements 223
12.1 Input/output concepts 223
12.2 Records. e e 223
12.2.1 Definition of a record e 223
12.2.2 Formatted record e 223
12.2.3 Unformatted record e 223
12.2.4 Endfile record L e 224

12.3 External files. e e 224
12.3.1 External file concepts L 224
12.3.2 File existence L e e 224
12.3.3 Fileaccess e 225
12.3.4 File positiono 227
12.3.5 File storage units Lo 228

12.4 Internal files L e e 229

13/22-007r1 vii

J3/22-007r1 WD 1539-1 2022-04-22

13

viii

12.5 File connection 229
12.5.1 Referring toafile L 229
12.5.2 Connection modes L e e e e 230
12.5.3 Unit existence L e 231
12.5.4 Connection of afiletoaunit L oL 231
12.5.5 Preconnection e 232
12.5.6 OPEN statement e e 232
12.5.7 CLOSE statement e e e e 236
12.6 Data transfer statementso 238
12.6.1 Form of input and output statements Lo L oo 238
12.6.2 Control information list L o 238
12.6.3 Data transfer input/output list L L 243
12.6.4 Execution of a data transfer input/output statement 245
12.6.5 Termination of data transfer statements 256
12.7 Waiting on pending data transfer L Lo 256
12.7.1 Wait operation oL L e 256
12.7.2 WAIT statement 0 257
12.8 File positioning statements oL oL 257
12.8.1 Syntax L e 257
12.8.2 BACKSPACE statement 258
12.8.3 ENDFILE statement e 258
12.8.4 REWIND statement L 259
12.9 FLUSH statement e e e e e e 259
12.10 File inquiry statement Lo e 260
12.10.1 Forms of the INQUIRE statement 260
12.10.2 Inquiry specifiers L 260
12.10.3 Inquire by output listo 266
12.11 Error, end-of-record, and end-of-file conditions 267
12.11.1 Occurrence of input/output conditions Lo oL 267
12.11.2 Error conditions and the ERR= specifier 267
12.11.3 End-of-file condition and the END= specifier. 267
12.11.4 End-of-record condition and the EOR= specifier 268
12.11.5 IOSTAT= specifier e e 268
12.11.6 IOMSG=specifier e 269
12.12 Restrictions on input/output statements Lo Lo 269
Input/output editing L 271
13.1 Format specifications 271
13.2 Explicit format specification methods 271
13.2.1 FORMAT statement e 271
13.2.2 Character format specification L oL L 271
13.3 Form of a format item list L 272
13.3.1 Syntaxo 272
13.3.2 Edit descriptors 272
13.3.3 Fields o e 274
13.4 Interaction between input/output list and format 0oL 274
13.5 Positioning by format control oL L 276
13.6 Decimal symbolo 276
13.7 Data edit descriptors L e e e e e e 276
13.7.1 Purpose of data edit descriptors L 276
13.7.2 Numeric editing L 277
13.7.3 Logical editing L e 284
13.7.4 Character editing e 284
13.7.5 Generalized editing 285
13.7.6 User-defined derived-type editing Lo 286
13.8 Control edit descriptors Lo 286
13/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

14

15

13.8.1 Position edit descriptors e 286
13.8.2 Slash editingo 287
13.8.3 Colon editing L 288
13.8.4 SS,SP,and Sediting 288
13.8.5 LZS, LZP and LZ editing 288
13.8.6 Pediting 288
13.8.7 BN and BZ editing 289
13.8.8° RU, RD, RZ, RN, RC, and RP editing 289
13.8.9 DCand DP editing 289
13.9 Character string edit descriptors Lo 289
13.10 List-directed formatting 290
13.10.1 Purpose of list-directed formatting L 290
13.10.2 Values and value separators e e 290
13.10.3 List-directed input 290
13.10.4 List-directed outputo 292
13.11 Namelist formatting L 294
13.11.1 Purpose of namelist formatting 294
13.11.2 Name-value subsequences L e 294
13.11.3 Namelist input 294
13.11.4 Namelist output 297
Program units Lo 299
14.1 Main program L i e e e 299
14.2 Modules e 299
14.2.1 Module syntax and semantics Lo 299
14.2.2 The USE statement and use association. 300
14.2.3 Submodules e 303
14.3 Block data program units. L L 303
Procedures L 305
15.1 Concepts o e 305
15.2 Procedure classifications 305
15.2.1 Procedure classification by referenceo oL 305
15.2.2 Procedure classification by means of definitiono 0oL 305
15.3 CharacteriStics L e 306
15.3.1 Characteristics of procedures 306
15.3.2 Characteristics of dummy arguments L L Lo 306
15.3.3 Characteristics of function results Lo o 306
15.4 Procedure interface oL L 307
15.4.1 Interface and abstract interface L oL L 307
15.4.2 Implicit and explicit interfaces L oL 307
15.4.3 Specification of the procedure interface L. 308
15.5 Procedure reference L 317
15.5.1 Syntax of a procedure reference Lo Lo 317
15.5.2 Actual arguments, dummy arguments, and argument association 319
15.5.3 Function reference L 331
15.5.4 Subroutine reference 331
15.5.5 Resolving named procedure references Lo 331
15.5.6 Resolving type-bound procedure references oL 333
15.6 Procedure definition 334
15.6.1 Imtrinsic procedure definition oL oL 334
15.6.2 Procedures defined by subprograms L 334
15.6.3 Definition and invocation of procedures by means other than Fortran 340
15.6.4 Statement functiono 340
15.7 Pure procedureso e e 341
15.8 Simple procedureso 343

13/22-007r1 ix

J3/22-007r1 WD 1539-1 2022-04-22

16

17

18

15.9 Elemental procedures L e e e e 344
15.9.1 Elemental procedure declaration and interface 344
15.9.2 Elemental function actual arguments and results Lo 344
15.9.3 Elemental subroutine actual arguments o000 344
Intrinsic procedures and modules L e 346
16.1 Classes of intrinsic procedures 346
16.2 Arguments to intrinsic procedureso 346
16.2.1 General rules.o 346
16.2.2 The shape of array arguments 347
16.2.3 Mask arguments L Lo 347
16.2.4 DIM arguments and reduction functions 347
16.3 Bit model 348
16.3.1 General 348
16.3.2 Bit sequence compariSons Lo c e e 348
16.3.3 Bit sequences as arguments to INT and REAL 348
16.4 Numeric models L 349
16.5 Atomic subroutines L. L e 349
16.6 Collective subroutines Lo 350
16.7 Standard generic intrinsic procedures oL oL o 351
16.8 Specific names for standard intrinsic functions L L Lo 356
16.9 Specifications of the standard intrinsic procedures L. 358
16.9.1 General oL 358
16.10 Standard intrinsic moduleso L 453
16.10.1 General L 453
16.10.2 The ISO FORTRAN ENV intrinsic module 453
Exceptions and IEEE arithmetic 460
17.1 Overview of IEEE arithmetic support 460
17.2 Derived types, constants, and operators defined in the modules 461
17.3 The exceptions o L L e e e 461
17.4 The rounding modes e e e 464
17.5 Underflow mode oL 464
17.6 Halting o L o e e 465
17.7 The floating-point modes and status 465
17.8 Exceptional values. oL 465
17.9 1IEEE arithmetic e e e 465
17.10 Summary of the procedures L e 466
17.11 Specifications of the procedures L 468
17.11.1 Generalo oL e e 468
17.12 Examples o Lo 494
Interoperability with C 497
18.1 General oL 497
18.2 The ISO C BINDING intrinsic module 497
18.2.1 Summary of contents L L 497
18.2.2 Named constants and derived types in the module 497
18.2.3 Procedures in the moduleo 498
18.3 Interoperability between Fortran and C entities 506
18.3.1 Imteroperability of intrinsic types L oL 506
18.3.2 Interoperability with C pointer types 507
18.3.3 Imteroperability of enum types oL oL 507
18.3.4 Interoperability of derived types and C structure types 507
18.3.5 Interoperability of scalar variables L o 508
18.3.6 Interoperability of array variables 509
18.3.7 Interoperability of procedures and procedure interfaces 509

13/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

18.4 Cdescriptors o . v e e e 512
18.5 The source file ISO__Fortran_binding.h 512
18.5.1 Summary of contents 512

18.5.2 The CFI _dim_ t structure type 512

18.5.3 The CFI_cdesc_t structure type e 513

18.5.4 Macros and typedefs in ISO_ Fortran_ binding.h 514

18.5.5 Functions declared in ISO_ Fortran_ binding.h 516

18.6 Restrictions on C descriptors e 524
18.7 Restrictions on formal parameters 524
18.8 Restrictions on lifetimes e 524
18.9 Interoperation with C global variables. 525
18.9.1 Gemneral L 525

18.9.2 Binding labels for common blocks and variables 526

18.10 Interoperation with C functions 526
18.10.1 Definition and reference of interoperable procedures 526

18.10.2 Binding labels for procedures L 527

18.10.3 Exceptions and IEEE arithmetic procedures, 528

18.10.4 Asynchronous communication 528

19 Scope, association, and definition 529
19.1 Scopes, identifiers, and entities L 529
19.2 Global identifiers L 529
19.3 Local identifiers L e e e e e 530
19.3.1 Classes of local identifierso 530

19.3.2 Local identifiers that are the same as common block names 531

19.3.3 Function results e e 531

19.3.4 Components, type parameters, and bindings 531

19.3.5 Argument keywords L. 531

19.4 Statement and construct entities L. 532
19.5 Association e 533
19.5.1 Name association L e e 533

19.5.2 Pointer association e e e e e 537

19.5.3 Storage association 540

19.5.4 Inheritance association e e 542

19.5.5 Establishing associations L Lo 542

19.6 Definition and undefinition of variableso 543
19.6.1 Definition of objects and subobjects L L 543

19.6.2 Variables that are always defined L oL oo 543

19.6.3 Variables that are initially defined o oo oo 543

19.6.4 Variables that are initially undefined o oL 544

19.6.5 Events that cause variables to become defined 544

19.6.6 Events that cause variables to become undefined 546

19.6.7 Variable definition contexto 548

19.6.8 Pointer association context L e 549

Annex A (informative) Processor dependencies L 550
Annex B (informative) Deleted and obsolescent features o L oL 556
Annex C (informative) Extended notes 560
Index . . o 636

13/22-007r1 i

J3/22-007r1 WD 1539-1 2022-04-22

Foreword

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work.

2 The procedures used to develop this document and those intended for its further maintenance are described in
the ISO/TEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC
Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).

3 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on the ISO
list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations received
(see https://patents.iec.ch).

4 Any trade name used in this document is information given for the convenience of users and does not constitute
an endorsement.

5 For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization
(WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

6 This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcom-
mittee SC 22, Programming languages, their environments and system software interfaces.

7 This fifth edition cancels and replaces the fourth edition (ISO 1539-1:2018), which has been technically revised.

8 The main changes are as follows:
e an array can have a coarray component;
o additional forms of declaration;
o additional edit descriptors;
e additional intrinsic procedures;
o conformance with ISO/IEC 60559:2020;
e other changes listed in the Introduction.

9 A list of all parts in the ISO 1539 series can be found on the ISO website.

10 Any feedback or questions on this document should be directed to the user’s national standards body. A complete
listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-committees.

xii J3/22-007r1

www.iso.org/directives
www.iec.ch/members_experts/refdocs
www.iso.org/patents
https://patents.iec.ch
www.iso.org/iso/foreword.html
www.iso.org/members.html
www.iec.ch/national-committees

2022-04-22 WD 1539-1 J3/22-007r1

Introduction

1 This document comprises the specification of the base Fortran language, informally known as Fortran 2023.
With the limitations noted in 4.3.3, the syntax and semantics of Fortran 2018 are contained entirely within
Fortran 2023. Therefore, any standard-conforming Fortran 2018 program not affected by such limitations is a
standard-conforming Fortran 2023 program. New features of Fortran 2023 can be compatibly incorporated into
such Fortran 2018 programs, with any exceptions indicated in the text of this document.

2 Fortran 2023 contains several extensions to Fortran 2018; these are listed below.

Source form:

The maximum length of a line in free form source has been increased. The maximum length of a statement
has been increased. The limit on the number of continuation lines has been removed.

Data declaration:

A data object with a coarray component can be an array or allocatable. BIND(C) ENUM are now referred
to as interoperable enumerations, and noninteroperable enumeration types are available. An interoperable
enumeration can be given a type name. TYPEOF and CLASSOF type specifiers can be used to declare one
or more entities to have the same type and type parameters as another entity. A PUBLIC namelist group
can have a PRIVATE namelist group object. The DIMENSION attribute can be declared with a syntax
that does not depend on the rank (8.5.8, 8.5.17).

Data usage and computation:

Binary, octal, and hexadecimal literal constants can be used in additional contexts. A deferred-length
allocatable errmsg-variable is allocated by the processor to the length of the explanatory message. An
ALLOCATE statement can specify the bounds of an array allocation with array expressions. A pointer
assignment statement can specify lower bounds or rank remapping with array expressions. Arrays can be
used to specify multiple subscripts or subscript triplets (9.5.3.2). Conditional expressions provide selective
evaluation of subexpressions.

Input/output:

The AT edit descriptor provides output of character values with trailing blanks trimmed. The LEADING_ -
ZERO= specifier in the OPEN and WRITE statements, and the LZP, LZS and LZ control edit descriptors,
provide control of optional leading zeros during formatted output. A deferred-length allocatable iomsg-
variable is allocated by the processor to the length of the explanatory message. A deferred-length allocatable
io-unit in a WRITE statement is allocated by the processor to the length of the record to be written.

Execution control:

The REDUCE locality specifier for the DO CONCURRENT construct specifies reduction variables for the
loop. The NOTIFY WAIT statement, NOTIFY= specifier on an image selector, and the NOTIFY_TYPE
from the intrinsic module ISO__FORTRAN__ENYV provide one-sided data-oriented synchronization between
images.

Intrinsic procedures:

The intrinsic functions ACOSD, ASIND, ATAND, ATAN2D, COSD, SIND, and TAND are trigonometric
functions in which angles are specified in degrees. The intrinsic functions ACOSPI, ASINPI, ATANPI,
ATAN2PI, COSPI, SINPI, and TANPI are trigonometric functions in which angles are specified in half-
revolutions (that is, as multiples of 7). The intrinsic function SELECTED LOGICAL_KIND returns kind
type parameter values for type logical. The intrinsic subroutine SPLIT parses a string into tokens, one
at time. The intrinsic subroutine SYSTEM__CLOCK supports more than one system clock for an image.
The intrinsic subroutine TOKENIZE parses a string into tokens. When a deferred-length allocatable actual
argument of an intrinsic procedure is to be assigned character data, it is allocated by the processor to the
length of the data. Execution of a collective subroutine can be successful on an image even when an error
condition occurs for the corresponding execution on another image.

Intrinsic modules:

Additional named constants LOGICALS, LOGICAL16, LOGICAL32, LOGICAL64, and REAL16 have
been added to the intrinsic module ISO FORTRAN ENV. The subroutines IEEE GET ROUNDING -
MODE, IEEE_ GET_UNDERFLOW_MODE, IEEE_SET_ROUNDING_MODE, and IEEE_SET__ UN-
DERFLOW__MODE, from the intrinsic module IEEE_ARITHMETIC, are now considered to be pure
and simple. The subroutines IEEE_GET MODES, IEEE_GET STATUS, IEEE_SET MODES, and

13/22-007r1 xiii

J3/22-007r1 WD 1539-1 2022-04-22

IEEE_SET_ STATUS, from the intrinsic module IEEE_EXCEPTIONS, are now considered to be pure
and simple. The procedures C_F STRPOINTER and F_ C_ STRING have been added to the intrinsic
module ISO__C_BINDING to assist in the use of null-terminated strings. The subroutine C_F_POINTER
in the intrinsic module ISO C_BINDING has an extra optional dummy argument, LOWER, that specifies
the lower bounds for FPTR.

Changes to the intrinsic module IEEE_ ARITHMETIC for conformance with ISO/IEC 60559:2020:

The new functions IEEEMAX, IEEE_MAX MAG, IEEE_MIN, and IEEE_MIN MAG perform the op-
erations maximum, maximumMagnitude, minimum, and miminumMagnitude in ISO/TEC 60559:2020. The
functions IEEE_ MAX_NUM, IEEE_MAX_ NUM_MAG, IEEE_MIN_NUM, and IEEE_MIN_NUM__ -
MAG now conform to the operations maximumNumber, maximumMagnitudeNumber, minimumNumber
and minimumMagnitudeNumber in ISO/IEC 60559:2020; the changes affect the treatment of zeros and
NaNs.

Program units and procedures:

A procedure can be specified to be a simple procedure; a simple procedure references or defines nonlocal
variables only via its dummy arguments. Conditional arguments provide actual argument selection in a
procedure reference.

3 This document is organized in 19 clauses, dealing with 8 conceptual areas. These 8 areas, and the clauses in
which they are treated, are:

High/low level concepts Clauses 4, 5, 6
Data concepts Clauses 7, 8, 9
Computations Clauses 10, 16, 17
Execution control Clause 11
Input/output Clauses 12, 13
Program units Clauses 14, 15
Interoperability with C Clause 18
Scoping and association rules Clause 19

4 It also contains the following nonnormative material:

Xiv

Processor dependencies Annex A
Deleted and obsolescent features Annex B
Extended notes Annex C
Index Index

13/22-007r1

10
11
12
13

14
15

16

17
18
19

20
21

22
23

24

25
26

27
28
29

30
31

2022-04-22 WD 1539-1 J3/22-007r1

Information technology — Programming languages —
Fortran —

Part 1:

Base language

1 Scope

This document specifies the form and establishes the interpretation of programs expressed in the base Fortran
language. The purpose of this document is to promote portability, reliability, maintainability, and efficient
execution of Fortran programs for use on a variety of computing systems.

This document specifies
e the forms that a program written in the Fortran language can take,

e the rules for interpreting the meaning of a program and its data,
e the form of the input data to be processed by such a program, and
o the form of the output data resulting from the use of such a program.

Except where stated otherwise, requirements and prohibitions specified by this document apply to programs
rather than processors.

This document does not specify

e the mechanism by which programs are transformed for use on computing systems,
e the operations required for setup and control of the use of programs on computing systems,
e the method of transcription of programs or their input or output data to or from a storage medium,

e the program and processor behavior when this document fails to establish an interpretation except for the
processor detection and reporting requirements in items (2) to (10) of 4.2,

¢ the maximum number of images, or the size or complexity of a program and its data that will exceed the
capacity of any particular computing system or the capability of a particular processor,

¢ the mechanism for determining the number of images of a program,

o the physical properties of an image or the relationship between images and the computational elements of
a computing system,

e the physical properties of the representation of quantities and the method of rounding, approximating, or
computing numeric values on a particular processor, except by reference to ISO/IEC 60559:2020 under
conditions specified in Clause 17,

« the physical properties of input/output records, files, and units, or
e the physical properties and implementation of storage.

J3/22-007r1 1

J3/22-007r1 WD 1539-1 2022-04-22

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

ISO/IEC 646:1991 (International Reference Version), Information technology—ISO 7-bit coded character set for
information interchange

ISO/IEC 9899:2018, Programming languages—C
ISO/IEC 10646, Information technology— Universal Multiple-Octet Coded Character Set (UCS)

ISO/IEC/IEEE 60559:2020, Information technology — Microprocessor Systems — Floating-Point arithmetic

2 J3/22-007r1

10
11

12
13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

31
32
33

34
35
36
37

2022-04-22 WD 1539-1 J3/22-007r1

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://wuw.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/

3.1
actual argument
entity that determines argument association (15.5.2.3, 15.5.2.4)

Note 1 to entry: An actual-arg, consequent-arg, or variable in a defined assignment statement, are all examples
of actual arguments.

3.2
allocatable
having the ALLOCATABLE attribute (8.5.3)

3.3

array

set of scalar data, all of the same type and type parameters, whose individual elements are arranged in a
rectangular pattern (8.5.8, 9.5)

3.3.1
array element
scalar individual element of an array

3.3.2
array pointer
array with the POINTER attribute (8.5.14)

3.33
array section
array subobject designated by array-section, and which is itself an array (9.5.3.4)

3.3.4
assumed-shape array
nonallocatable nonpointer dummy argument array that takes its shape from its effective argument (8.5.8.3)

3.3.5
assumed-size array
dummy argument array whose size is assumed from that of its effective argument (8.5.8.5)

3.3.6
deferred-shape array
allocatable array or array pointer (8.5.8.4)

3.3.7

explicit-shape array

array declared with an ezplicit-shape-spec-list or explicit-shape-bounds-spec, which specifies explicit values for the
bounds in each dimension of the array (8.5.8.2)

J3/22-007r1 3

https://www.iso.org/obp
http://www.electropedia.org/

~N o o w

[ee]

10
11

12
13
14

15
16
17

18
19
20
21

22
23
24
25

26
27
28
29

30
31
32

33
34
35

36
37
38

39
40
41

42
43
44
45

J3/22-007r1 WD 1539-1 2022-04-22

3.4
ASCII character
character whose representation method corresponds to ISO/IEC 646:1991 (International Reference Version)

3.5

associate name

name of construct entity associated with a selector of an ASSOCIATE, CHANGE TEAM, SELECT RANK, or
SELECT TYPE construct (11.1.3, 11.1.5, 11.1.10, 11.1.11)

3.6

associating entity

(in a dynamically-established association) the entity that did not exist prior to the establishment of the association
(19.5.5)

3.7
association
inheritance association, name association, pointer association, or storage association.

3.7.1
argument association
association between an effective argument and a dummy argument (15.5.2)

3.7.2

construct association

association between a selector and an associate name in an ASSOCIATE, CHANGE TEAM, SELECT RANK,
or SELECT TYPE construct(11.1.3, 11.1.5, 11.1.10, 11.1.11, 19.5.1.6)

3.7.3

host association

name association, other than argument association, between entities in a submodule or contained scoping unit
and entities in its host (19.5.1.4)

3.7.4

inheritance association

association between the inherited components of an extended type and the components of its parent component
(19.5.4)

3.7.5
linkage association
association between a variable or common block with the BIND attribute and a C global variable (18.9, 19.5.1.5)

3.7.6
name association
argument association, construct association, host association, linkage association, or use association (19.5.1)

3.7.7
pointer association
association between a pointer and a procedure or a variable with the TARGET attribute (19.5.2)

3.7.8
storage association
association between storage sequences (19.5.3)

3.7.9

use association

association between entities in a module and entities in a scoping unit or construct that references that module,
as specified by a USE statement (14.2.2)

4 J3/22-007r1

10
11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26

27
28
29
30

31
32
33
34

35
36
37
38
39
40
41

2022-04-22 WD 1539-1 J3/22-007r1

3.8
assumed-rank dummy data object
dummy data object that assumes the rank, shape, and size of its effective argument (8.5.8.7)

3.9
assumed-type
declared with a TYPE(*) type specifier (7.3.2)

3.10
attribute
property of an entity that determines its uses (8.1)

3.11

automatic data object

nondummy data object with a type parameter or array bound that depends on the value of a specification-expr
that is not a constant expression (8.3)

3.12
base object
(data-ref) object designated by the leftmost part-name (9.4.2)

3.13
binding
type-bound procedure or final subroutine (7.5.5)

3.14
binding name
name given to a specific or generic type-bound procedure in the type definition (7.5.5)

3.15

binding label

default character value specifying the name by which a global entity with the BIND attribute is known to the
companion processor (18.10.2, 18.9.2)

3.16

block

sequence of executable constructs formed by the syntactic class block and which is treated as a unit by the
executable constructs described in 11.1

3.17

bound

array bound

limit of a dimension of an array (8.5.8)

3.18

branch target statement

action-stmt, associate-stmt, end-associate-stmt, if-then-stmt, end-if-stmt, select-case-stmt, end-select-stmt, select-
rank-stmt, end-select-rank-stmt, select-type-stmt, end-select-type-stmt, do-stmt, end-do-stmt, block-stmt, end-
block-stmt, critical-stmt, end-critical-stmt, forall-construct-stmt, where-construct-stmt, end-function-stmt, end-mp-
subprogram-stmt, end-program-stmt, or end-subroutine-stmt, whose statement label appears as a label in a GO TO
statement, computed GO TO statement, alt-return-spec, END= specifier, EOR= specifier, or ERR= specifier (11.2.1)

J3/22-007r1 5

A W N =

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25

26
27
28

29
30
31

32
33
34

35
36
37

38
39
40

41
42
43

13/22-007r1 WD 1539-1

3.19
C address

(variable or procedure) value of type C_PTR or C_FUNPTR from the intrinsic module ISO C_ BINDING

identifying the location

2022-04-22

’Note 1 to entry: This is the concept that ISO/IEC 9899:2018 calls the address.

3.20
C descriptor

C structure of type CFI_cdesc_t defined in the source file ISO_ Fortran_ binding.h (18.4, 18.5)

3.21
character context

within a character literal constant (7.4.4) or within a character string edit descriptor (13.3.2)

3.22
characteristics

(dummy argument) being a dummy data object, dummy procedure, or an asterisk (alternate return indicator)

3.23
characteristics
(dummy data object) properties listed in 15.3.2.2

3.24
characteristics

(dummy procedure or dummy procedure pointer) properties listed in 15.3.2.3

3.25
characteristics
(function result) properties listed in 15.3.3

3.26
characteristics
(procedure) properties listed in 15.3.1

3.27
coarray
data entity that has nonzero corank (5.4.7)

3.27.1
established coarray
coarray that is accessible using an image-selector (5.4.8)

3.28
cobound
bound (limit) of a codimension (8.5.6)

3.29
codimension
dimension of the pattern formed by a set of corresponding coarrays (8.5.6)

3.30
coindexed object
data object whose designator includes an image-selector (R926, 9.6)

3.31
collating sequence

one-to-one mapping from a character set into the nonnegative integers (7.4.4.4)

6 J3/22-007r1

10
11
12

13
14
15

16
17
18
19

20
21
22

23
24
25

26
27
28
29

30
31
32
33

34
35
36

37
38
39

40
41
42
43

2022-04-22 WD 1539-1 J3/22-007r1

3.32

common block
block of physical storage specified by a COMMON statement (8.10.2)

3.32.1
blank common

unnamed common block

3.33
companion processor
processor-dependent mechanism by which global data and procedures may be referenced or defined (5.5.7)

3.34
component
part of a derived type, or of an object of derived type, defined by a component-def-stmt (7.5.4)

3.34.1
direct component
one of the components, or one of the direct components of a nonpointer nonallocatable component (7.5.1)

3.34.2

parent component

component of an extended type whose type is that of the parent type and whose components are inheritance
associated with the inherited components of the parent type (7.5.7.2)

3.343
potential subobject component
nonpointer component, or potential subobject component of a nonpointer component (7.5.1)

3.34.4
subcomponent
(structure) direct component that is a subobject of the structure (9.4.2)

3.34.5

ultimate component

component that is of intrinsic type, a pointer, or allocatable; or an ultimate component of a nonpointer nonal-
locatable component of derived type

3.35

component order

ordering of the nonparent components of a derived type that is used for intrinsic formatted input/output and
structure constructors (where component keywords are not used) (7.5.4.7)

3.36
conformable
(of two data entities) having the same shape, or one being an array and the other being scalar

3.37
connected
relationship between a unit and a file: each is connected if and only if the unit refers to the file (12.5.4)

3.38

constant

data object that has a value and which cannot be defined, redefined, or become undefined during execution of a
program (6.2.3, 9.3)

J3/22-007r1 7

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

J3/22-007r1 WD 1539-1 2022-04-22

3.38.1
literal constant
constant that does not have a name (R605, 7.4)

3.38.2
named constant
named data object with the PARAMETER attribute (8.5.13)

3.39
construct entity
entity whose identifier has the scope of a construct (19.1, 19.4)

3.40
constant expression
expression satisfying the requirements specified in 10.1.12, thus ensuring that its value is constant

3.41
contiguous
(array) having array elements in order that are not separated by other data objects, as specified in 8.5.7

3.42
contiguous
(multi-part data object) that the parts in order are not separated by other data objects

3.43
corank
number of codimensions of a coarray (zero for objects that are not coarrays) (8.5.6)

3.44
cosubscript
(R927) scalar integer expression in an image-selector (R926)

3.45
data entity
data object, result of the evaluation of an expression, or the result of the execution of a function reference

3.46

data object

object

constant (7.1.4), variable (9), or subobject of a constant (5.4.3.2.4)

3.47

decimal symbol

character that separates the whole and fractional parts in the decimal representation of a real number in a file
(13.6)

3.48
declaration
specification of attributes for various program entities

Note 1 to entry: Often this involves specifying the type of a named data object or specifying the shape of a
named array object.

3.49

default initialization

mechanism for automatically initializing pointer components to have a defined pointer association status, and
nonpointer components to have a particular value (7.5.4.6)

8 J3/22-007r1

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27
28

29
30
31
32

33
34
35
36

37
38
39
40

2022-04-22 WD 1539-1 J3/22-007r1

3.50
default-initialized
(subcomponent) subject to a default initialization specified in the type definition for that component (7.5.4.6)

3.51
definable
capable of definition and permitted to become defined

3.52
defined
(data object) has a valid value

3.53
defined
(pointer) has a pointer association status of associated or disassociated (19.5.2.2)

3.54
defined assignment
assignment defined by a procedure (10.2.1.4, 15.4.3.4.3)

3.55
defined input/output
input/output defined by a procedure and accessed via a defined-io-generic-spec (R1509, 12.6.4.8)

3.56
defined operation
operation defined by a procedure (10.1.6.1, 15.4.3.4.2)

3.57
definition
(data object) process by which the data object becomes defined (19.6.5)

3.58

definition

(derived type (7.5.2), interoperable enumeration (7.6.1), enumeration type (7.6.2), or procedure (15.6)) specific-
ation of the type, enumeration, or procedure

3.59

descendant

(module or submodule) submodule that extends that module or submodule or that extends another descendant
thereof (14.2.3)

3.60

designator

name followed by zero or more component selectors, complex part selectors, array section selectors, array element
selectors, image selectors, and substring selectors (9.1)

3.60.1

complex part designator

designator that designates the real or imaginary part of a complex data object, independently of the other part
(9.4.4)

J3/22-007r1 9

~N o o~ w

[ee]

10

11
12
13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30
31

32
33
34

35
36
37

J3/22-007r1 WD 1539-1 2022-04-22

3.60.2

object designator

data object designator
designator for a data object

Note 1 to entry: An object name is a special case of an object designator.

3.60.3
procedure designator
designator for a procedure

3.61
disassociated
(pointer association) pointer association status of not being associated with any target and not being undefined

(19.5.2.2)

3.62
disassociated
(pointer) has a pointer association status of disassociated

3.63

dummy argument

entity whose identifier appears in a dummy argument list (R1539) in a FUNCTION, SUBROUTINE, ENTRY, or
statement function statement, or whose name can be used as an argument keyword in a reference to an intrinsic
procedure or a procedure in an intrinsic module

3.63.1
dummy data object
dummy argument that is a data object

3.63.2
dummy function
dummy procedure that is a function

3.64
effective argument
entity that is argument-associated with a dummy argument (15.5.2.4)

3.65
effective item
scalar object resulting from the application of the rules in 12.6.3 to an input/output list

3.66

elemental

independent scalar application of an action or operation to elements of an array or corresponding elements of a
set of conformable arrays and scalars, or possessing the capability of elemental operation

Note 1 to entry: Combination of scalar and array operands or arguments combine the scalar operand(s) with
each element of the array operand(s).

3.66.1
elemental assignment
assignment that operates elementally

3.66.2
elemental operation
operation that operates elementally

10 J3/22-007r1

10
11
12

13
14
15
16

17
18
19

20
21
22

23
24
25

26
27
28
29

30
31
32

33
34
35
36

37
38
39

40
41
42

43
44
45

2022-04-22 WD 1539-1 J3/22-007r1

3.66.3
elemental operator
operator in an elemental operation

3.66.4
elemental procedure
elemental intrinsic procedure or procedure defined by an elemental subprogram (15.9)

3.66.5
elemental reference
reference to an elemental procedure with at least one array actual argument

3.66.6
elemental subprogram
subprogram with the ELEMENTAL prefix (15.9.1)

3.67

END statement

end-block-data-stmt, end-function-stmt, end-module-stmt, end-mp-subprogram-stmt, end-program-stmt,
end-submodule-stmt, or end-subroutine-stmt

3.68
explicit initialization
initialization of a data object by a specification statement (8.4, 8.6.7)

3.69
extent
number of elements in a single dimension of an array

3.70
external file
file that exists in a medium external to the program (12.3)

3.711

external unit

external input/output unit

entity that can be connected to an external file (12.5.3, 12.5.4)

3.72
file storage unit
unit of storage in a stream file or an unformatted record file (12.3.5)

3.73

final subroutine

subroutine whose name appears in a FINAL statement (7.5.6) in a type definition, and which can be automatically
invoked by the processor when an object of that type is finalized (7.5.6.2)

3.74
finalizable
(type) has a final subroutine or a nonpointer nonallocatable component of finalizable type

3.75
finalizable
(nonpointer data entity) of finalizable type

3.76
finalization
process of calling final subroutines when one of the events listed in 7.5.6.3 occurs

J3/22-007r1 11

10

11
12
13
14

15
16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

31
32
33

34
35
36

37
38
39

40
41
42

J3/22-007r1 WD 1539-1 2022-04-22

3.77
function
procedure that is invoked by an expression

3.78
function result
entity that returns the value of a function (15.6.2.2)

3.79

generic identifier

lexical token sequence that identifies a generic set of procedures, intrinsic operations, and/or intrinsic assignments
(15.4.3.4)

3.80

host instance

(internal procedure, or dummy procedure or procedure pointer associated with an internal procedure) instance
of the host procedure that supplies the host environment of the internal procedure (15.6.2.4)

3.81

host scoping unit

host

scoping unit immediately surrounding another scoping unit, or the scoping unit extended by a submodule

3.82
IEEE infinity
ISO/IEC/IEEE 60559:2020 conformant infinite floating-point value

3.83
IEEE NaN
ISO/IEC/IEEE 60559:2020 conformant floating-point datum that does not represent a number

3.84
image
instance of a Fortran program (5.3.4)

3.84.1
active image
image that has not failed or stopped (5.3.6)

3.84.2
failed image
image that has not initiated termination but which has ceased to participate in program execution (5.3.6)

3.84.3
stopped image
image that has initiated normal termination (5.3.6)

3.85
image index
integer value identifying an image within a team

3.86
image control statement
statement that affects the execution ordering between images (11.7)

12 J3/22-007r1

A W N =

0 N o o

10
11
12

13
14
15
16

17
18
19

20
21
22
23

24
25
26

27
28
29

30
31
32

33
34
35

36
37
38

39
40
41
42

2022-04-22

3.87
inclusive scope

WD 1539-1

13/22-007r1

nonblock scoping unit plus every block scoping unit whose host is that scoping unit or that is nested within such

a block scoping unit

Note 1 to entry: That is, inclusive scope is the scope as if BLOCK constructs were not scoping units.

3.88
inherit

(extended type) acquire entities (components, type-bound procedures, and type parameters) through type exten-

sion from the parent type (7.5.7.2)

3.89
inquiry function

intrinsic function, or function in an intrinsic module, whose result depends on the properties of one or more of

its arguments instead of their values

3.90
interface

(procedure) name, procedure characteristics, dummy argument names, binding label, and generic identifiers

(15.4.1)

3.90.1
abstract interface

set of procedure characteristics with dummy argument names (15.4.1)

3.90.2
explicit interface

interface of a procedure that includes all the characteristics of the procedure and names for its dummy arguments

except for asterisk dummy arguments (15.4.2)

3.90.3
generic interface

set of procedure interfaces identified by a generic identifier

3.90.4
implicit interface

interface of a procedure that is not an explicit interface (15.4.2, 15.4.3.8)

3.90.5
specific interface
interface identified by a nongeneric name

3.91
interface block

abstract interface block, generic interface block, or specific interface block (15.4.3.2)

3.91.1
abstract interface block

interface block with the ABSTRACT keyword; collection of interface bodies that specify named abstract interfaces

3.91.2
generic interface block

interface block with a generic-spec; collection of interface bodies and procedure statements that are to be given

that generic identifier

13/22-007r1

13

A W N =

[&]

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

31
32
33

34
35
36

37
38
39

40
41
42

J3/22-007r1 WD 1539-1 2022-04-22

3.91.3

specific interface block

interface block with no generic-spec or ABSTRACT keyword; collection of interface bodies that specify the
interfaces of procedures

3.92
interoperable
(Fortran entity) equivalent to an entity defined by or definable by the companion processor (18.3)

3.93

intrinsic

type, procedure, module, assignment, operator, or input/output operation defined in this document and accessible
without further definition or specification, or a procedure or module provided by a processor but not defined in
this document

3.93.1
standard intrinsic
(procedure or module) defined in this document (16)

3.93.2
nonstandard intrinsic
(procedure or module) provided by a processor but not defined in this document

3.94
internal file
character variable that is connected to an internal unit (12.4)

3.95
internal unit
input/output unit that is connected to an internal file (12.5.4)

3.96
ISO 10646 character
character whose representation method corresponds to UCS-4 in ISO/TEC 10646

3.97
keyword
statement keyword, argument keyword, type parameter keyword, or component keyword

3.97.1
argument keyword
word that identifies the corresponding dummy argument in an actual argument list (15.5.2.1)

3.97.2
component keyword
word that identifies a component in a structure constructor (7.5.10)

3.97.3
statement keyword
word that is part of the syntax of a statement (5.5.2)

3.97.4
type parameter keyword
word that identifies a type parameter in a type-param-spec

14 J3/22-007r1

A W N =

(&)1

10

11
12
13

14
15
16
17

18
19
20

21
22
23

24
25
26

27
28
29

30
31
32
33

34
35
36

37
38
39

40
41
42

2022-04-22

3.98
lexical token

WD 1539-1

13/22-007r1

keyword, name, literal constant other than a complex literal constant, operator, label, delimiter, comma, =, =>,

5o g, or % (6.2)

3.99
line
sequence of zero or more characters

3.100
main program

program unit that is not a subprogram, module, submodule, or block data program unit (14.1)

3.101
masked array assignment

assignment statement in a WHERE statement or WHERE construct (10.2.3)

3.102
module

program unit containing (or accessing from other modules) definitions that are to be made accessible to other

program units (14.2)

3.103
name

identifier of a program constituent, formed according to the rules given in 6.2.2

3.104
NaN

Not a Number, a symbolic floating-point datum (ISO/IEC/IEEE 60559:2020)

3.105
operand
data value that is the subject of an operator

3.106
operator

intrinsic-operator, defined-unary-op, or defined-binary-op (R608, R1004, R1024)

3.107
passed-object dummy argument

dummy argument of a type-bound procedure or procedure pointer component that becomes associated with the
object through which the procedure is invoked (7.5.4.5)

3.108
pointer
data pointer or procedure pointer

3.108.1
data pointer

data entity with the POINTER attribute (8.5.14)

3.108.2
procedure pointer
procedure with the POINTER attribute (8.5.14)

13/22-007r1

15

A W N =

o N o o

10
11

12
13
14

15
16
17

18
19
20

21
22
23

24
25
26

27
28
29

30
31
32

33
34
35

36
37
38

39
40
41
42

43
44
45

J3/22-007r1 WD 1539-1 2022-04-22

3.108.3
local procedure pointer

procedure pointer that is part of a local variable, or a named procedure pointer that is not a dummy argument

or accessed by use or host association

3.109
pointer assignment

association of a pointer with a target, by execution of a pointer assignment statement (10.2.2) or an intrinsic

assignment statement (10.2.1.2) for a derived-type object that has the pointer as a subobject

3.110
polymorphic
(data entity) able to be of differing dynamic types during program execution (7.3.2.3)

3.111
preconnected
(file or unit) connected at the beginning of execution of the program (12.5.5)

3.112
procedure
entity encapsulating an arbitrary sequence of actions that can be invoked directly during program execution

3.112.1
dummy procedure
procedure that is a dummy argument (15.2.2.3)

3.112.2
external procedure
procedure defined by an external subprogram (R503) or by means other than Fortran (15.6.3)

3.112.3
internal procedure
procedure defined by an internal subprogram (R512)

3.112.4
module procedure
procedure defined by a module subprogram, or a specific procedure provided by an intrinsic module (R1408)

3.112.5
pure procedure
procedure declared or defined to be pure (15.7)

3.112.6
simple procedure
procedure declared or defined to be simple (15.8)

3.112.7
type-bound procedure
procedure that is bound to a derived type and referenced via an object of that type (7.5.5)

3.113
processor

combination of a computing system and mechanism by which programs are transformed for use on that computing

system

3.114
processor dependent
not completely specified in this document, having methods and semantics determined by the processor

16 J3/22-007r1

A W N =

[&]

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26

27
28
29

30
31
32
33
34

35
36
37

38
39
40

41
42
43
44

2022-04-22 WD 1539-1 J3/22-007r1

3.115

program

set of Fortran program units and entities defined by means other than Fortran that includes exactly one main
program

3.116
program unit
main program, external subprogram, module, submodule, or block data program unit (5.2.1)

3.117
rank
number of array dimensions of a data entity (zero for a scalar entity)

3.118
record
sequence of values or characters in a file (12.2)

3.119
record file
file composed of a sequence of records (12.1)

3.120
reference
data object reference, procedure reference, or module reference

3.120.1
data object reference
appearance of a data object designator (9.1) in a context requiring its value at that point during execution

3.120.2

function reference

appearance of the procedure designator for a function, or operator symbol for a defined operation, in a context
requiring execution of the function during expression evaluation (15.5.3)

3.120.3
module reference
appearance of a module name in a USE statement (14.2.2)

3.120.4

procedure reference

appearance of a procedure designator, operator symbol, or assignment symbol in a context requiring execution
of the procedure at that point during execution; or occurrence of defined input/output (13.7.6) or derived-type
finalization (7.5.6.2)

3.121
saved
having the SAVE attribute (8.5.16)

3.122
scalar
data entity that can be represented by a single value of the type and that is not an array (9.5)

3.123

scoping unit

BLOCK construct, derived-type definition, interface body, program unit, or subprogram, excluding all nested
scoping units in it

J3/22-007r1 17

10
11
12

13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30

31
32
33

34
35
36

37
38
39

J3/22-007r1 WD 1539-1 2022-04-22

3.123.1
block scoping unit
scoping unit of a BLOCK construct

3.124
segment
maximal sequence of executions on an image of statements other than image control statements (11.7.2)

3.125
sequence
set of elements ordered by a one-to-one correspondence with the numbers 1, 2, to n

3.126
sequence structure
scalar data object of a sequence type (7.5.2.3)

3.127
sequence type
derived type with the SEQUENCE attribute (7.5.2.3)

3.127.1

character sequence type

sequence type with no allocatable or pointer components, and whose components are all default character or of
another character sequence type

3.127.2

numeric sequence type

sequence type with no allocatable or pointer components, and whose components are all default complex, default
integer, default logical, default real, double precision real, or of another numeric sequence type

3.128

shape

array dimensionality of a data entity, represented as a rank-one array whose size is the rank of the data entity
and whose elements are the extents of the data entity

Note 1 to entry: Thus the shape of a scalar data entity is an array with rank one and size zero.

3.129
simply contiguous
(array designator or variable) satisfying the conditions specified in 9.5.4

Note 1 to entry: These conditions are simple ones which make it clear that the designator or variable designates
a contiguous array.

3.130
size
(array) total number of elements in the array

3.131
specification expression
expression satisfying the requirements specified in 10.1.11, thus being suitable for use in specifications

3.132
specific name
name that is not a generic name

18 J3/22-007r1

A W N =

[&]

10
11
12

13
14
15

16
17
18

19
20
21
22

23
24
25

26
27
28

29
30
31

32
33
34

35
36
37
38

39
40
41

42
43
44

2022-04-22 WD 1539-1 J3/22-007r1

3.133

standard-conforming program

program that uses only those forms and relationships described in, and has an interpretation according to, this
document

3.134
statement
sequence of one or more complete or partial lines satisfying a syntax rule that ends in -stmt (6.3)

3.134.1

executable statement

end-function-stmt, end-mp-subprogram-stmt, end-program-stmt, end-subroutine-stmt, or statement that is a mem-
ber of the syntactic class executable-construct, excluding those in the block-specification-part of a BLOCK con-
struct

3.134.2
nonexecutable statement
statement that is not an executable statement

3.135
statement entity
entity whose identifier has the scope of a statement or part of a statement (19.1, 19.4)

3.136

statement label

label

unsigned positive number of up to five digits that refers to an individual statement (6.2.5)

3.137
storage sequence
contiguous sequence of storage units (19.5.3.2)

3.138
storage unit
character storage unit, numeric storage unit, file storage unit, or unspecified storage unit (19.5.3.2)

3.138.1
character storage unit
unit of storage that holds a default character value (19.5.3.2)

3.138.2
numeric storage unit
unit of storage that holds a default real, default integer, or default logical value (19.5.3.2)

3.138.3

unspecified storage unit

unit of storage that holds a value that is not default character, default real, double precision real, default logical,
or default complex (19.5.3.2)

3.139
stream file
file composed of a sequence of file storage units (12.1)

3.140
structure
scalar data object of derived type (7.5)

J3/22-007r1 19

10
11
12
13

14
15
16

17
18
19

20
21
22

23
24
25

26
27
28

29
30
31

32
33
34

35
36
37
38

39
40
41

42
43
44
45

J3/22-007r1 WD 1539-1 2022-04-22

3.140.1
structure component
component of a structure

3.140.2
structure constructor
syntax (structure-constructor, 7.5.10) that specifies a structure value or creates such a value

3.141
submodule
program unit that extends a module or another submodule (14.2.3)

3.142

subobject

portion of data object that can be referenced, and if it is a variable defined, independently of any other portion
(9.4.2)

3.143
subprogram
function-subprogram (R1532) or subroutine-subprogram (R1537)

3.143.1
external subprogram
subprogram that is not contained in a main program, module, submodule, or another subprogram

3.143.2
internal subprogram
subprogram that is contained in a main program or another subprogram

3.143.3
module subprogram
subprogram that is contained in a module or submodule but is not an internal subprogram

3.144
subroutine
procedure invoked by a CALL statement, by defined assignment, or by some operations on derived-type entities

3.144.1
atomic subroutine
intrinsic subroutine that performs an action on its ATOM argument atomically (16.5)

3.144.2
collective subroutine
intrinsic subroutine that performs a calculation on a team of images without requiring synchronization (16.6)

3.145

target

entity that is pointer associated with a pointer (19.5.2.2), entity on the right-hand-side of a pointer assignment
statement (R1034), or entity with the TARGET attribute (8.5.18)

3.146
team
ordered set of images created by execution of a FORM TEAM statement, or the initial ordered set of all images

3.146.1

current team

team specified by the most recently executed CHANGE TEAM statement of a CHANGE TEAM construct that
has not completed execution (11.1.5), or initial team if no CHANGE TEAM construct is being executed

20 J3/22-007r1

~N o o w

[ee]

10

11
12
13

14
15
16

17
18
19
20
21

22
23
24

25
26
27

28
29
30

31
32
33

34
35
36

37
38
39

40
41
42
43

2022-04-22 WD 1539-1 J3/22-007r1

3.146.2
initial team
team existing at the beginning of program execution, consisting of all images

3.146.3

parent team

(team except for initial team) current team at time of execution of the FORM TEAM statement that created the
team (11.7.9)

3.146.4
sibling teams
teams created by a single set of corresponding executions of the FORM TEAM statement (11.7.9)

3.146.5
team number
—1 which identifies the initial team, or positive integer that identifies a team among its sibling teams

3.147
transformational function
intrinsic function, or function in an intrinsic module, that is neither elemental nor an inquiry function

3.148

type

data type

named category of data characterized by a set of values, a syntax for denoting these values, and a set of operations
that interpret and manipulate the values (7.1)

3.148.1
abstract type
type with the ABSTRACT attribute (7.5.7.1)

3.148.2
declared type
type that a data entity is declared to have, either explicitly or implicitly (7.3.2, 10.1.9)

3.148.3
derived type
type defined by a derived-type definition (7.5) or by an intrinsic module

3.148.4
dynamic type
type of a data entity at a particular point during execution of a program (7.3.2.3, 10.1.9)

3.148.5
extended type
type with the EXTENDS attribute (7.5.7.1)

3.148.6
extensible type
type that may be extended using the EXTENDS clause (7.5.7.1)

3.148.7

extension type

(of one type with respect to another) is the same type or is an extended type whose parent type is an extension
type of the other type

J3/22-007r1 21

10
11
12
13

14
15
16

17
18
19

20
21
22
23

24
25
26

27
28
29

30
31
32

33
34
35

36
37
38

J3/22-007r1 WD 1539-1 2022-04-22

3.148.8
intrinsic type
type defined by this document that is always accessible (7.4)

3.148.9
numeric type
one of the types integer, real, and complex

3.148.10
parent type
(extended type) type named in the EXTENDS clause

3.148.11

type compatible

compatibility of the type of one entity with respect to another for purposes such as argument association, pointer
association, and allocation (7.3.2)

3.148.12
type parameter
value used to parameterize a type (7.2)

3.148.12.1
assumed type parameter
length type parameter that assumes the type parameter value from another entity

Note 1 to entry: The other entity is
o the selector for an associate name,
o the constant-expr for a named constant of type character, or
o the effective argument for a dummy argument.

3.148.12.2

deferred type parameter

length type parameter whose value can change during execution of a program and whose type-param-value is a
colon

3.148.12.3
kind type parameter
type parameter whose value is required to be defaulted or given by a constant expression

3.148.12.4
length type parameter
type parameter whose value is permitted to be assumed, deferred, or given by a specification expression

3.148.12.5
type parameter inquiry
syntax (type-param-inquiry) that is used to inquire the value of a type parameter of a data object (9.4.5)

3.148.12.6
type parameter order
ordering of the type parameters of a type (7.5.3.2) used for derived-type specifiers (derived-type-spec, 7.5.9)

3.149
ultimate argument
nondummy entity with which a dummy argument is associated via a chain of argument associations (15.5.2.4)

22 J3/22-007r1

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26

27
28
29

30
31
32

33
34
35

36
37
38

39
40
41

2022-04-22 WD 1539-1 J3/22-007r1

3.150
undefined
(data object) does not have a valid value

3.151
undefined
(pointer) does not have a pointer association status of associated or disassociated (19.5.2.2)

3.152

unit

input/output unit

means, specified by an io-unit, for referring to a file (12.5.1)

3.153
unlimited polymorphic
able to have any dynamic type during program execution (7.3.2.3)

3.154
unsaved
not having the SAVE attribute (8.5.16)

3.155
variable
data entity that can be defined and redefined during execution of a program

3.155.1
event variable
scalar variable of type EVENT TYPE (16.10.2.10) from the intrinsic module ISO_ FORTRAN_ENV

3.155.2

local variable

variable in a scoping unit that is not a dummy argument or part thereof, is not a global entity or part thereof,
and is not an entity or part of an entity that is accessible outside that scoping unit

3.155.3
lock variable
scalar variable of type LOCK__TYPE (16.10.2.19) from the intrinsic module ISO_ FORTRAN_ENV

3.155.4
notify variable
scalar variable of type NOTIFY_TYPE (16.10.2.22) from the intrinsic module ISO_ FORTRAN_ENV

3.155.5
team variable
scalar variable of type TEAM_TYPE (16.10.2.34) from the intrinsic module ISO_ FORTRAN_ENV

3.156
vector subscript
section-subscript that is an array (9.5.3.4.3)

3.157
whole array
array component or array name without further qualification (9.5.2)

J3/22-007r1 23

(S

© 0o N O

11

12
13
14
15
16
17
18
19

J3/22-007r1 WD 1539-1 2022-04-22

4

Notation, conformance, and compatibility

4.1 Notation, symbols and abbreviated terms

4.1.1 Syntax rules

1 Syntax rules describe the forms that Fortran lexical tokens, statements, and constructs may take. These syntax
rules are expressed in a variation of Backus-Naur form (BNF) with the following conventions.

24

o Characters from the Fortran character set (6.1) are interpreted literally as shown, except where otherwise

noted.

Lower-case italicized letters and words (often hyphenated and abbreviated) represent general syntactic
classes for which particular syntactic entities shall be substituted in actual statements.

Common abbreviations used in syntactic terms are:

arg for argument attr ~ for attribute
decl for declaration def for definition
desc for descriptor expr for expression
int for integer op for operator
spec for specifier stmt for statement

The syntactic metasymbols used are:

is introduces a syntactic class definition

or introduces a syntactic class alternative

[] encloses an optional item

[]... encloses an optionally repeated item
that may occur zero or more times

| continues a syntax rule

Each syntax rule is given a unique identifying number of the form Rsnn, where s is a one- or two-digit
clause number and nn is a two-digit sequence number within that clause. The syntax rules are distributed
as appropriate throughout the text, and are referenced by number as needed. Some rules in Clauses 5 and
6 are more fully described in later clauses; in such cases, the clause number s is the number of the later
clause where the rule is repeated.

The syntax rules are not a complete and accurate syntax description of Fortran, and cannot be used to
generate a Fortran parser automatically; where a syntax rule is incomplete, it is restricted by corresponding
constraints and text.

NOTE 1

An example of the use of the syntax rules is:
digit-string is digit [digit] ...
The following are examples of forms for a digit string allowed by the above rule:
digit
digit digit
digit digit digit digit
digit digit digit digit digit digit digit digit

Some examples of digit-string are:

13/22-007r1

10
11
12

13

14
15

16

17

18

19

20

21

22
23
24
25

26
27

28
29

30
31

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 1 (cont.)

4

67

1999
10243852

4.1.2 Constraints

Each constraint is given a unique identifying number of the form Csnn, where s is a one- or two-digit clause
number and nn is a two- or three-digit sequence number within that clause.

Often a constraint is associated with a particular syntax rule. Where that is the case, the constraint is annotated
with the syntax rule number in parentheses. A constraint that is associated with a syntax rule constitutes part of
the definition of the syntax term defined by the rule. It thus applies in all places where the syntax term appears.

Some constraints are not associated with particular syntax rules. The effect of such a constraint is similar to
that of a restriction stated in the text, except that a processor is required to have the capability to detect and
report violations of constraints (4.2). In some cases, a broad requirement is stated in text and a subset of the
same requirement is also stated as a constraint. This indicates that a standard-conforming program is required to
adhere to the broad requirement, but that a standard-conforming processor is required only to have the capability
of diagnosing violations of the constraint.

4.1.3 Assumed syntax rules

In order to minimize the number of additional syntax rules and convey appropriate constraint information, the
following rules, where the letters zyz stand for any syntactic class phrase, are assumed.

R401 wyz-list is zyz [, xyz] ..
R402 zyz-name is name
R403 scalar-zyz is xyz

C401 (R403) scalar-zyz shall be scalar.

An explicit syntax rule for a term overrides an assumed rule.

4.1.4 Syntax conventions and characteristics

Any syntactic class name ending in “-stmt” follows the source form statement rules: it shall be delimited by
end-of-line or semicolon, and may be labeled unless it forms part of another statement (such as an IF or WHERE
statement). Conversely, everything considered to be a source form statement is given a “-stmt” ending in the
syntax rules.

The rules on statement ordering are described rigorously in the definition of program-unit (R502). Expression
hierarchy is described rigorously in the definition of expr (R1023).

The suffix “-spec” is used consistently for specifiers, such as input/output statement specifiers. It also is used for
type declaration attribute specifications (for example, “array-spec” in R815), and in a few other cases.

3

Where reference is made to a type parameter, including the surrounding parentheses, the suffix “-selector” is

used. See, for example, “kind-selector” (R706) and “length-selector” (R722).

J3/22-007r1 25

10
11

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

36
37
38
39
40
41
42

43
44

J3/22-007r1 WD 1539-1 2022-04-22

4.1.5 Text conventions

In descriptive text, an equivalent English word is frequently used in place of a syntactic term. Particular state-
ments and attributes are identified in the text by an upper-case keyword, e.g., “END statement”. The descriptions
of obsolescent features appear in a smaller type size.

NOTE 1

‘ This sentence is an example of the type size used for obsolescent features.

4.2 Conformance

A program (5.2.2) is a standard-conforming program if it uses only those forms and relationships described herein
and if the program has an interpretation according to this document. A program unit (5.2.1) conforms to this
document if it can be included in a program in a manner that allows the program to be standard conforming.

2 A processor conforms to this document if:

(1) it executes any standard-conforming program in a manner that fulfills the interpretations herein,
subject to any limits that the processor may impose on the size and complexity of the program;

(2) it contains the capability to detect and report the use within a submitted program unit of a form
designated herein as obsolescent, insofar as such use can be detected by reference to the numbered
syntax rules and constraints;

(3) it contains the capability to detect and report the use within a submitted program unit of a form or
relationship that is not permitted by the numbered syntax rules or constraints, including the deleted
features described in Annex B;

(4) it contains the capability to detect and report the use within a submitted program unit of an intrinsic
type with a kind type parameter value not supported by the processor (7.4);

(5) it contains the capability to detect and report the use within a submitted program unit of source
form or characters not permitted by Clause 6;

(6) it contains the capability to detect and report the use within a submitted program of name usage
not consistent with the scope rules for names, labels, operators, and assignment symbols in Clause
19;

(7) it contains the capability to detect and report the use within a submitted program unit of a non-
standard intrinsic procedure (including one with the same name as a standard intrinsic procedure
but with different requirements);

(8) it contains the capability to detect and report the use within a submitted program unit of a non-
standard intrinsic module;

(9) it contains the capability to detect and report the use within a submitted program unit of a procedure
from a standard intrinsic module, if the procedure is not defined by this document or the procedure
has different requirements from those specified by this document; and

(10) it contains the capability to detect and report the reason for rejecting a submitted program.

3 However, in a format specification that is not part of a FORMAT statement (13.2.1), a processor need not detect

or report the use of deleted or obsolescent features, or the use of additional forms or relationships.

A standard-conforming processor may allow additional forms and relationships provided that such additions
do not conflict with the standard forms and relationships. However, a standard-conforming processor may allow
additional intrinsic procedures even though this could cause a conflict with the name of a procedure in a standard-
conforming program. If such a conflict occurs and involves the name of an external procedure, the processor is
permitted to use the intrinsic procedure unless the name has the EXTERNAL attribute (8.5.9) where it is used.
A standard-conforming program shall not use nonstandard intrinsic procedures or modules that have been added
by the processor.

Because a standard-conforming program may place demands on a processor that are not within the scope of this
document or may include standard items that are not portable, such as external procedures defined by means

26 J3/22-007r1

~

© 0 N o O«

10
11

12

13

14

15

16
17
18
19

20

21
22
23
24

25
26
27
28

29

30
31

2022-04-22 WD 1539-1 J3/22-007r1

other than Fortran, conformance to this document does not ensure that a program will execute consistently on
all or any standard-conforming processors.

The semantics of facilities that are identified as processor dependent are not completely specified in this document.
They shall be provided, with methods or semantics determined by the processor.

The processor should be accompanied by documentation that specifies the limits it imposes on the size and com-
plexity of a program and the means of reporting when these limits are exceeded, that defines the additional forms
and relationships it allows, and that defines the means of reporting the use of additional forms and relationships
and the use of deleted or obsolescent forms. In this context, the use of a deleted form is the use of an additional
form.

The processor should be accompanied by documentation that specifies the methods or semantics of processor-
dependent facilities.

4.3 Compatibility

4.3.1 Previous Fortran standards
Table 4.3 lists the previous editions of the Fortran International Standard, along with their informal names.

Table 4.3: Previous editions of the Fortran International Standard

Official designation Informal name
ISO R 1539-1972 FORTRAN 66
ISO 1539-1980 FORTRAN 77

ISO/IEC 1539:1991 Fortran 90

ISO/IEC 1539-1:1997 Fortran 95

ISO/IEC 1539-1:2004 Fortran 2003
ISO/IEC 1539-1:2010 Fortran 2008
ISO/IEC 1539-1:2018 Fortran 2018

4.3.2 New intrinsic procedures

Each Fortran International Standard since ISO 1539:1980 (FORTRAN 77), defines more intrinsic procedures than
the previous one. Therefore, a Fortran program conforming to an older standard might have a different inter-
pretation under a newer standard if it invokes an external procedure having the same name as one of the new
standard intrinsic procedures, unless that procedure is specified to have the EXTERNAL attribute.

4.3.3 Fortran 2018 compatibility

Except as identified in this subclause, this document is an upward compatible extension to the preceding Fortran
International Standard, ISO/IEC 1539-1:2018 (Fortran 2018). A standard-conforming Fortran 2018 program that
does not use any feature identified in this subclause as being no longer permitted remains standard-conforming
under this document.

Fortran 2018 allowed integer arguments to the intrinsic subroutine SYSTEM CLOCK to be of any kind. This
document requires integer arguments to SYSTEM CLOCK to have a decimal exponent range at least as large
as a default integer, and requires that all integer arguments in a reference to SYSTEM__CLOCK have the same
kind type parameter.

The following Fortran 2018 features might have a different interpretation under this document.

e After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=
clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to

J3/22-007r1 27

© 0N O b~ W N

10

11
12
13
14

15
16
17
18

19
20
21

22
23
24

25
26

27
28

29
30

31
32

33
34
35

36
37

38
39
40

41
42
43
44

10

11

12

J3/22-007r1 WD 1539-1 2022-04-22

an intrinsic subroutine, that variable might be of shorter or longer length under this document than under
Fortran 2018, since this document specifies intrinsic assignment semantics for these assignments.

e This document permits the intrinsic subroutine SYSTEM__CLOCK to use two or more clocks, with different
characteristics based on the type and kind type parameters of its arguments. A program that invokes
SYSTEM__CLOCK with different argument types or kinds in different references, could have a different
interpretation under this document.

e The result of a reference to IEEE_ MAX_NUM, IEEE_MAX_NUM_ MAG, IEEE_MIN_NUM, or IEEE_ -
MIN_NUM_MAG where one argument is a number and the other is a signaling NaN is specified to be the
number in this document. Fortran 2018 specified that the result is a NaN.

4.3.4 Fortran 2008 compatibility

Except as identified in this subclause, and except for the deleted features noted in Annex B.2, this document
is an upward compatible extension to ISO/IEC 1539-1:2010 (Fortran 2008). Any standard-conforming Fortran
2008 program that does not use any deleted features, and does not use any feature identified in this subclause as
being no longer permitted, remains standard-conforming under this document.

Fortran 2008 specifies that the IOSTAT= variable shall be set to a processor-dependent negative value if the flush
operation is not supported for the unit specified. This document specifies that the processor-dependent negative
integer value shall be different from the named constants IOSTAT EOR or IOSTAT END from the intrinsic
module ISO_ FORTRAN__ENV.

Fortran 2008 permitted a noncontiguous array that was supplied as an actual argument corresponding to a
contiguous INTENT (INOUT) dummy argument in one iteration of a DO CONCURRENT construct, without
being previously defined in that iteration, to be defined in another iteration; this document does not permit this.

Fortran 2008 permitted a pure statement function to reference a volatile variable, and permitted a local variable
of a pure subprogram or of a BLOCK construct within a pure subprogram to be volatile (provided it was not
used); this document does not permit that.

Fortran 2008 permitted a pure function to have a result that has a polymorphic allocatable ultimate component;
this document does not permit that.

Fortran 2008 permitted a PROTECTED TARGET variable accessed by use association to be used as an initial-
data-target; this document does not permit that.

Fortran 2008 permitted a named constant to have declared type LOCK_TYPE, or have a noncoarray potential
subobject component with declared type LOCK _TYPE; this document does not permit that.

Fortran 2008 permitted a polymorphic object to be finalized within a DO CONCURRENT construct; this docu-
ment does not permit that.

Fortran 2008 permitted an unallocated allocatable coarray or coindexed object to be allocated by an assignment
statement, provided it was scalar, nonpolymorphic, and had no deferred type parameters; this document does
not permit that.

Fortran 2008 permitted the processor to use a common pseudorandom number generator for all images. This
document requires separate seeds on each image for the pseudorandom number generator.

Fortran 2008 required ACOSH of a complex value to have the imaginary part nonnegative and had no requirement
on the real part. This document requires ACOSH of a complex value to have a nonnegative real part and has no
such requirement on the imaginary part.

Fortran 2008 allowed integer arguments to the intrinsic subroutine SYSTEM CLOCK to be of any kind. This
document requires integer arguments to SYSTEM CLOCK to have a decimal exponent range at least as large
as a default integer, and requires that all integer arguments in a reference to SYSTEM _CLOCK have the same
kind type parameter.

28 J3/22-007r1

© 00 N O O b~ W N

10

11
12
13

14

15
16

17
18

19
20
21

22
23
24

25
26

27
28
29

30
31

32
33

34
35
36
37

38

39
40
41
42
43
44

13

10

11

12

2022-04-22 WD 1539-1 J3/22-007r1

The following Fortran 2008 features might have a different interpretation under this document.

e After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=
clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to
an intrinsic subroutine, that variable might be of shorter or longer length under this document than under
Fortran 2008, since this document specifies intrinsic assignment semantics for these assignments.

¢ This document permits the intrinsic subroutine SYSTEM__CLOCK to use two or more clocks, with different
characteristics based on the type and kind type parameters of its arguments. A program that invokes
SYSTEM__CLOCK with different argument types or kinds in different references, could have a different
interpretation under this document.

4.3.5 Fortran 2003 compatibility

Except as identified in this subclause, this document is an upward compatible extension to ISO/TEC 1539-1:2004
(Fortran 2003). Except as identified in this subclause, any standard-conforming Fortran 2003 program remains
standard-conforming under this document.

Fortran 2003 permitted a sequence type to have type parameters; that is not permitted by this document.

Fortran 2003 specified that array constructors and structure constructors of finalizable type are finalized. This
document specifies that these constructors are not finalized.

The form produced by the G edit descriptor for some values and some input/output rounding modes differs from
that specified by Fortran 2003.

Fortran 2003 required an explicit interface only for a procedure that was actually referenced in the scope, not
merely passed as an actual argument. This document requires an explicit interface for a procedure under the
conditions listed in 15.4.2.2, regardless of whether the procedure is referenced in the scope.

Fortran 2003 permitted the function result of a pure function to be a polymorphic allocatable variable, to have
a polymorphic allocatable ultimate component, or to be finalizable by an impure final subroutine. These are not
permitted by this document.

Fortran 2003 permitted an INTENT (OUT) argument of a pure subroutine to be polymorphic; that is not
permitted by this document.

Fortran 2003 interpreted assignment to an allocatable variable from a nonconformable array as intrinsic assign-
ment, even when an elemental defined assignment was in scope; this document does not permit assignment from
a nonconformable array in this context.

Fortran 2003 permitted a statement function to be of parameterized derived type; this document does not permit
that.

Fortran 2003 permitted a pure statement function to reference a volatile variable, and permitted a local variable
of a pure subprogram to be volatile (provided it was not used); this document does not permit that.

Fortran 2003 allowed integer arguments to the intrinsic subroutine SYSTEM_CLOCK to be of any kind. This
document requires integer arguments to SYSTEM_CLOCK to have a decimal exponent range at least as large
as a default integer, and requires that all integer arguments in a reference to SYSTEM CLOCK have the same
kind type parameter.

The following Fortran 2003 features might have a different interpretation under this document.

o After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=
clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to
an intrinsic subroutine, that variable might be of shorter or longer length under this document than under
Fortran 2003, since this document specifies intrinsic assignment semantics for these assignments.

e This document permits the intrinsic subroutine SYSTEM_CLOCK to use two or more clocks, with different
characteristics based on the type and kind type parameters of its arguments. A program that invokes

J3/22-007r1 29

10
11
12
13
14

15
16
17

18
19

20
21

22

23
24
25

26
27

28
29

30
31

32

33
34
35

36
37

38

39

40
41
42

J3/22-007r1 WD 1539-1 2022-04-22

SYSTEM_CLOCK with different argument types or kinds in different references, could have a different
interpretation under this document.

4.3.6 Fortran 95 compatibility

Except as identified in this subclause, this document is an upward compatible extension to ISO/IEC 1539-1:1997
(Fortran 95). Except as identified in this subclause, any standard-conforming Fortran 95 program remains
standard-conforming under this document.

Fortran 95 permitted defined assignment between character strings of the same rank and different kinds. This
document does not permit that if both of the different kinds are ASCII, ISO 10646, or default kind.

The following Fortran 95 features might have different interpretations in this document.

o Earlier Fortran standards had the concept of printing, meaning that column one of formatted output had
special meaning for a processor-dependent (possibly empty) set of external files. This could be neither
detected nor specified by a standard-specified means. The interpretation of the first column is not specified
by this document.

e This document specifies a different output format for real zero values in list-directed and namelist output.

e If the processor distinguishes between positive and negative real zero, this document requires different
returned values for ATAN2(Y,X) when X < 0 and Y is negative real zero and for LOG(X) and SQRT(X)
when X is complex with X%RE < 0 and X%IM is negative real zero.

e This document has fewer restrictions on constant expressions than Fortran 95; this affects whether a variable
is considered to be an automatic data object.

e The form produced by the G edit descriptor with d equal to zero differs from that specified by Fortran 95
for some values.

4.3.7 Fortran 90 compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this document
is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard-conforming Fortran 90
program that does not use one of the deleted features remains standard-conforming under this document.

The PAD= specifier in the INQUIRE statement in this document returns the value UNDEFINED if there is no
connection or the connection is for unformatted input/output. Fortran 90 specified YES.

Fortran 90 specified that if the second argument to MOD or MODULO was zero, the result was processor
dependent. This document specifies that the second argument shall not be zero.

Fortran 90 permitted defined assignment between character strings of the same rank and different kinds. This
document does not permit that if both of the different kinds are ASCII, ISO 10646, or default kind.

The following Fortran 90 features have different interpretations in this document:

e if the processor distinguishes between positive and negative real zero, the result value of the intrinsic function
SIGN when the second argument is a negative real zero;

o formatted output of negative real values (when the output value is zero);

o whether an expression is a constant expression (thus whether a variable is considered to be an automatic
data object);
e the G edit descriptor with d equal to zero for some values.

4.3.8 FORTRAN 77 compatibility
Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this document is an

upward compatible extension to ISO 1539:1980 (FORTRAN 77). Any standard-conforming FORTRAN 77 program
that does not use one of the deleted features noted in Annex B.1 and that does not depend on the differences

30 J3/22-007r1

g W N =

© o N o

11

12
13
14
15
16
17
18
19
20
21
22
23

24

25

26
27
28
29
30

31

32
33
34
35

36

37
38

39

40

2022-04-22 WD 1539-1 J3/22-007r1

specified here remains standard-conforming under this document. This document restricts the behavior for some
features that were processor dependent in FORTRAN 77. Therefore, a standard-conforming FORTRAN 77 program
that uses one of these processor-dependent features might have a different interpretation under this document, yet
remain a standard-conforming program. The following FORTRAN 77 features might have different interpretations
in this document.

e FORTRAN 77 permitted a processor to supply more precision derived from a default real constant than can
be represented in a default real datum when the constant is used to initialize a double precision real data
object in a DATA statement. This document does not permit a processor this option.

e If a named variable that was not in a common block was initialized in a DATA statement and did not have
the SAVE attribute specified, FORTRAN 77 left its SAVE attribute processor dependent. This document
specifies (8.6.7) that this named variable has the SAVE attribute.

e FORTRAN 77 specified that the number of characters required by the input list was to be less than or equal
to the number of characters in the record during formatted input. This document specifies (12.6.4.5.3) that
the input record is logically padded with blanks if there are not enough characters in the record, unless the
PAD= specifier with the value 'NO’ is specified in an appropriate OPEN or READ statement.

o A value of zero for an effective item in a formatted output statement will be formatted in a different form
for some G edit descriptors. In addition, this document specifies how rounding of values will affect the
output field form, but FORTRAN 77 did not address this issue. Therefore, the form produced for certain
combinations of values and G edit descriptors might differ from that produced by some FORTRAN 77
processors.

e FORTRAN 77 did not permit a processor to distinguish between positive and negative real zero; if the
processor does so distinguish, the result will differ for the intrinsic function SIGN when the second argument
is negative real zero, and formatted output of negative real zero will be different.

4.4 Deleted and obsolescent features

4.4.1 General

This document protects the users’ investment in existing software by including all but six of the language elements
of Fortran 90 that are not processor dependent. This document identifies two categories of outmoded features.
The first category, deleted features, consists of features considered to have been redundant in FORTRAN 77 and
largely unused in Fortran 90. Those in the second category, obsolescent features, are considered to have been
redundant in Fortran 90 and Fortran 95, but are still frequently used.

4.4.2 Nature of deleted features

There are two groups of deleted features. The first group contains features for which better methods existed in
FORTRAN 77; these features were not included in Fortran 95, Fortran 2003, or Fortran 2008, and are not included
in this document. The second group contains features for which better methods existed in Fortran 90; these
features were included in Fortran 2008, but are not included in this document.

4.4.3 Nature of obsolescent features

Better methods existed in Fortran 90 and Fortran 95 for each obsolescent feature. It is recommended that
programmers use these better methods in new programs and convert existing code to these methods.

The obsolescent features are identified in the text of this document by a distinguishing type font (4.1.5).

A future revision of this document might delete an obsolescent feature if its use has become insignificant.

J3/22-007r1 31

10
11

12
13
14
15
16

17
18

19
20
21
22
23

24
25
26
27
28

29
30
31
32

33
34
35
36

37
38

J3/22-007r1 WD 1539-1 2022-04-22

5 Fortran concepts

5.1 High level syntax

This subclause introduces the syntax associated with program units and other Fortran concepts above the con-
struct, statement, and expression levels and illustrates their relationships.

NOTE 1
Constraints and other information related to the rules that do not begin with R5 appear in the appropriate
clause.
R501 program is program-unit
[program-unit | ...
R502 program-unit is main-program
or external-subprogram
or module
or submodule
or block-data
R1401 main-program is [program-stmt |
[specification-part |
[execution-part |
[internal-subprogram-part |
end-program-stmt
R503 external-subprogram is function-subprogram
or subroutine-subprogram
R1532 function-subprogram is function-stmt
[specification-part |
[execution-part |
[internal-subprogram-part |
end-function-stmt
R1537 subroutine-subprogram is subroutine-stmt
[specification-part |
[execution-part |
[internal-subprogram-part |
end-subroutine-stmt
R1404 module is module-stmt
[specification-part |
[module-subprogram-part |
end-module-stmt
R1416 submodule is submodule-stmt
[specification-part |
[module-subprogram-part |
end-submodule-stmt
R1420 block-data is block-data-stmt

[specification-part]

32 J3/22-007r1

oA~ W N

)]

10
11

12
13
14
15
16

17
18
19
20
21
22
23
24
25

26
27

28
29
30
31

32
33

34
35

36
37

38
39
40

41
42
43
44
45

2022-04-22

R504

R505

R506

R507

R508

R509

R510

R511

R512

R1407

R1408

R1541

specification-part

implicit-part

implicit-part-stmt

declaration-construct

specification-construct

execution-part

execution-part-construct

internal-subprogram-part

internal-subprogram

module-subprogram-part

module-subprogram

is

is

is

or
or
or

is

or
or
or
or

is

or
or
or
or
or
or
or
or

is
is
or

or
or

is

is

or

is

is

or
or

separate-module-subprogram is

WD 1539-1

end-block-data-stmt

[use-stmt] ...
[import-stmt | ...
[implicit-part |
[declaration-construct | ...

[implicit-part-stmt | ...
implicit-stmt

implicit-stmt
parameter-stmt
format-stmt

entry-stmt

specification-construct
data-stmt
format-stmt

entry-stmt

stmit-function-stmt

derived-type-def

enum-def
enumeration-type-def
generic-stmt
interface-block
parameter-stmt
procedure-declaration-stmt
other-specification-stmt
type-declaration-stmt

executable-construct

[execution-part-construct | ...

executable-construct
format-stmt
entry-stmt

data-stmt

contains-stmt
[internal-subprogram | ...

function-subprogram
subroutine-subprogram

contains-stmt
[module-subprogram | ...

function-subprogram
subroutine-subprogram
separate-module-subprogram

mp-subprogram-stmt
[specification-part |
[execution-part |
[internal-subprogram-part |
end-mp-subprogram-stmt

13/22-007r1

13/22-007r1

33

© 00 N O O B~ W N

[S T~ e e
O W O N O O WN - O

21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

13/22-007r1

R513

R514

R515

34

other-specification-stmt

executable-construct

action-stmt

is

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

or

is

or
or
or
or
or
or
or
or
or
or
or

is

or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or

WD 1539-1

access-stmt
allocatable-stmt
asynchronous-stmt
bind-stmt
codimension-stmt
contiguous-stmt
dimension-stmt
external-stmt
intent-stmt
intrinsic-stmt
namelist-stmt
optional-stmt
pointer-stmt
protected-stmt
save-stmt
target-stmt
volatile-stmt
value-stmt
common-stmt

equivalence-stmt

action-stmt
associate-construct
block-construct
case-construct
change-team-construct
critical-construct
do-construct
if-construct
select-rank-construct
select-type-construct
where-construct

forall-construct

allocate-stmt
assignment-stmt
backspace-stmt
call-stmt
close-stmt
continue-stmt
cycle-stmt
deallocate-stmt
endfile-stmt
error-stop-stmt
event-post-stmt
event-wait-stmt
exit-stmt
fail-image-stmit
flush-stmt
form-team-stmit
goto-stmt
if-stmt
mnquire-stmt
lock-stmit
notify-wait-stmt
nullify-stmt

13/22-007r1

2022-04-22

© 00 N O O B~ W N

e e
N o Ol W N H O

18

19

20
21

22
23
24
25

26

27

28

29
30
31
32

33

34
35

36
37

2022-04-22 WD 1539-1 J3/22-007r1

or open-stmt

or pointer-assignment-stmt
or print-stmt

or read-stmt

or return-stmt

or rewind-stmt

or stop-stmt

or sync-all-stmt

or sync-images-stmt
or sync-memory-stmt
or sync-team-stmt

or unlock-stmt

or wait-stmt

or where-stmt

or write-stmt

or computed-goto-stmt
or forall-stmt

5.2 Program unit concepts

5.2.1 Program units and scoping units

Program units are the fundamental components of a Fortran program. A program unit is a main program, an
external subprogram, a module, a submodule, or a block data program unit.

A subprogram is a function subprogram or a subroutine subprogram. A module contains definitions that can be
made accessible to other program units. A submodule is an extension of a module; it may contain the definitions
of procedures declared in a module or another submodule. A block data program unit is used to specify initial values for

data objects in named common blocks.
Each type of program unit is described in Clause 14 or 15.
A program unit consists of a set of nonoverlapping scoping units.

NOTE 1

The module or submodule containing a module subprogram is the host scoping unit of the module subpro-
gram. The containing main program or subprogram is the host scoping unit of an internal subprogram.

An internal procedure is local to its host in the sense that its name is accessible within the host scoping
unit and all its other internal procedures but is not accessible elsewhere.

5.2.2 Program

A program shall consist of exactly one main program, any number (including zero) of other kinds of program units,
any number (including zero) of external procedures, and any number (including zero) of other entities defined by
means other than Fortran. The main program shall be defined by a Fortran main-program program-unit or by
means other than Fortran, but not both.

5.2.3 Procedure

A procedure is either a function or a subroutine. Invocation of a function in an expression causes a value to be
computed which is then used in evaluating the expression.

A procedure that is not pure may change the program state by changing the value of accessible data objects or
procedure pointers.

13/22-007r1 35

10
11

12

13

14

15
16

17

18

J3/22-007r1 WD 1539-1 2022-04-22

Procedures are described further in Clause 15.

5.2.4 Module

A module contains (or accesses from other modules) definitions that can be made accessible to other program units.
These definitions include data object declarations, type definitions, procedure definitions, and interface blocks.
Modules are further described in Clause 14.

5.2.5 Submodule

A submodule extends a module or another submodule.

It may provide definitions (15.6) for procedures whose interfaces are declared (15.4.3.2) in an ancestor module
or submodule. It may also contain declarations and definitions of other entities, which are accessible in its
descendants. An entity declared in a submodule is not accessible by use association unless it is a module procedure
whose interface is declared in the ancestor module. Submodules are further described in Clause 14.

NOTE 1

‘ A submodule has access to entities in its parent module or submodule by host association.

5.3 Execution concepts

5.3.1 Statement classification
Each Fortran statement is classified as either an executable statement or a nonexecutable statement.

An executable statement is an instruction to perform or control an action. Thus, the executable statements of a
program unit determine the behavior of the program unit.

Nonexecutable statements are used to configure the program environment in which actions take place.

5.3.2 Statement order

Table 5.1: Requirements on statement ordering
PROGRAM, FUNCTION, SUBROUTINE,
MODULE, SUBMODULE, or BLOCK DATA statement
USE statements
IMPORT statements

IMPLICIT NONE
PARAMETER IMPLICIT
statements statements
FORMAT
and PARAMETER Specification constructs
ENTRY and DATA and statement function statements
statements statements
DATA Executable
statements constructs

CONTAINS statement
Internal subprograms
or module subprograms
END statement

36 J3/22-007r1

0 N O g~ W N

10
11
12
13
14

15

16

17
18
19
20

21
22
23
24

25
26

2022-04-22 WD 1539-1 J3/22-007r1

The syntax rules of 5.1 specify the statement order within program units and subprograms. These rules are
illustrated in Table 5.1 and Table 5.2. Table 5.1 shows the ordering rules for statements and applies to all
program units, subprograms, and interface bodies. Vertical lines delineate varieties of statements that can be
interspersed and horizontal lines delineate varieties of statements that shall not be interspersed. Internal or
module subprograms shall follow a CONTAINS statement. Between USE and CONTAINS statements in a
subprogram, nonexecutable statements generally precede executable statements, although the ENTRY statement,
FORMAT statement, and DATA statement may appear among the executable statements. Table 5.2 shows which
statements are allowed in some kinds of scoping units.

Table 5.2: Statements allowed in scoping units

Kind of scoping unit

Main Module or | Block External Module Internal Interface
Statement type | program | submodule | data | subprogram | subprogram | subprogram body
USE Yes Yes Yes Yes Yes Yes Yes
IMPORT No Submodule No No Yes Yes Yes
ENTRY No No No Yes Yes No No
FORMAT Yes No No Yes Yes Yes No
Misc. decl.s ! Yes Yes Yes Yes Yes Yes Yes
DATA Yes Yes Yes Yes Yes Yes No
Derived-type Yes Yes Yes Yes Yes Yes Yes
Interface Yes Yes No Yes Yes Yes Yes
Executable Yes No No Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No
Statement function Yes No No Yes Yes Yes No
(1) Miscellaneous declarations are PARAMETER statements, IMPLICIT statements, type declaration
statements, enumeration definitions, procedure declaration statements, and specification statements.

5.3.3 The END statement

Each program unit, module subprogram, and internal subprogram shall have exactly one END statement. The
end-program-stmt, end-function-stmt, end-subroutine-stmt, and end-mp-subprogram-stmt statements are execut-
able, and may be branch target statements (11.2). Executing an end-program-stmt initiates normal termination.
Executing an end-function-stmt, end-subroutine-stmt, or end-mp-subprogram-stmt is equivalent to executing a
return-stmt with no scalar-int-expr.

The end-module-stmt, end-submodule-stmt, and end-block-data-stmt statements are nonexecutable.

5.3.4 Program execution

Execution of a program consists of the asynchronous execution of a fixed number (which may be one) of its images.
Each image has its own execution state, floating-point status (17.7), and set of data objects, input/output units,
and procedure pointers. The image index that identifies an image is an integer value in the range one to the
number of images in a team.

A team is an ordered set of images that is either the initial team, consisting of all images, or a subset of a parent
team formed by execution of a FORM TEAM statement. The initial team has no parent; every other team has
a unique parent team. Among its sibling teams, each team is identified by its team number; this is the integer
value that was specified in the FORM TEAM statement.

During execution, each image has a current team, which is only changed by execution of CHANGE TEAM
and END TEAM statements. Image indices, and thus coindexing of variable names with an image-selector, are

J3/22-007r1 37

1

[IS, B V)

~

10
11
12
13
14

15
16
17
18
19
20
21
22

23

24
25
26

27
28
29

30
31
32

33
34
35
36

J3/22-007r1 WD 1539-1 2022-04-22

relative to the current team unless a different team is specified. Initially, the current team is the initial team.

NOTE 1

Fortran control constructs (11.1, 11.2) control the progress of execution in each image. Image control
statements (11.7.1) affect the relative progress of execution between images. Coarrays (5.4.7) provide a
mechanism for accessing data on one image from another image.

NOTE 2

A processor might allow the number of images to be chosen at compile time, link time, or run time. It might
be the same as the number of CPUs but this is not required. Compiling for a single image might permit
the optimizer to eliminate overhead associated with parallel execution. A program that makes assumptions
about the number of images is unlikely to be portable.

5.3.5 Execution sequence

Following the creation of a fixed number of images, execution begins on each image. Image execution is a
sequence, in time, of actions. Actions take place during execution of the statement that performs them (except
when explicitly stated otherwise). Segments (11.7.2) executed by a single image are totally ordered, and segments
executed by separate images are partially ordered by image control statements (11.7.1).

If the program contains a Fortran main program, each image begins execution with the first executable construct
of the main program. The execution of a main program or subprogram involves execution of the executable
constructs within its scoping unit. When a Fortran procedure is invoked, the specification expressions within
the specification-part of the invoked procedure, if any, are evaluated in a processor dependent order. Thereafter,
execution proceeds to the first executable construct appearing within the scoping unit of the procedure after the
invoked entry point. With the following exceptions, the effect of execution is as if the executable constructs are
executed in the order in which they appear in the main program or subprogram until a STOP, ERROR STOP,
RETURN, or END statement is executed.

o Execution of a branching statement (11.2) changes the execution sequence. These statements explicitly
specify a new starting place for the execution sequence.

e DO constructs, IF constructs, SELECT CASE constructs, SELECT RANK constructs, and SELECT TYPE
constructs contain an internal statement structure and execution of these constructs involves implicit in-
ternal transfer of control. See Clause 11 for the detailed semantics of each of these constructs.

e A BLOCK construct may contain specification expressions; see 11.1.4 for detailed semantics of this construct.
e An END=, ERR=, or EOR= specifier (12.11) can result in a branch.

e An alternate return can result in a branch.

5.3.6 Image execution states

There are three image execution states: active, stopped, and failed. An image that has initiated normal termin-
ation of execution is a stopped image. An image that has ceased participating in program execution but has not
initiated termination is a failed image. All other images are active images.

A failed image remains failed for the remainder of the execution of the program. The conditions that cause an
image to fail are processor dependent. It is processor dependent whether the processor has the ability to detect
that an image has failed.

Defining a coindexed object on a failed image has no effect other than defining the stat-variable, if one appears,
with the value STAT _FAILED_IMAGE (16.10.2.28). The value of a reference to a coindexed object on a failed
image is processor dependent. Execution continues after such a reference.

When an image fails during the execution of a segment, a data object on a nonfailed image becomes undefined
if it is not a lock variable, notify variable, or event variable, and it might be defined or become undefined by
execution of a statement of the segment other than an invocation of an atomic subroutine with the object as an
actual argument corresponding to the ATOM dummy argument.

38 J3/22-007r1

0 N O o~ W N

10
11
12
13
14

15
16
17

18
19
20

21

22

23

24
25
26

27
28

29

30
31

32
33
34

2022-04-22 WD 1539-1 J3/22-007r1

5.3.7 Termination of execution

Termination of execution of a program is either normal termination or error termination. Normal termination
occurs only when all images initiate normal termination and occurs in three steps: initiation, synchronization,
and completion. In this case, all images synchronize execution at the second step so that no image starts the
completion step until all images have finished the initiation step. Error termination occurs when any image
initiates error termination. Once error termination has been initiated on an image, error termination is initiated
on all images that have not already initiated error termination. Termination of execution of the program occurs
when all images have terminated execution or failed.

Normal termination of execution of an image is initiated when a STOP statement or end-program-stmt is executed.
Normal termination of execution of an image can also be initiated during execution of a procedure defined by a
companion processor (ISO/IEC 9899:2018, 5.1.2.2.3 and 7.22.4.4). If normal termination of execution is initiated
within a Fortran program unit and the program incorporates procedures defined by a companion processor, the
process of execution termination shall include the effect of executing the C exit() function (ISO/IEC 9899:2018,
7.22.4.4) during the completion step.

Error termination of execution of an image is initiated if an ERROR STOP statement is executed or as specified
elsewhere in this document. When error termination on an image has been initiated, the processor should initiate
error termination on other images as quickly as possible.

If the processor supports the concept of a process exit status, it is recommended that error termination initiated
other than by an ERROR STOP statement supplies a processor-dependent nonzero value as the process exit
status.

NOTE 1

As well as in the circumstances specified in this document, error termination might be initiated by means
other than Fortran.

NOTE 2

If an image has initiated normal termination, its data remain available for possible reference or definition
by other images that are still executing.

5.4 Data concepts

5.4.1 Type
5.4.1.1 General

A type is a named categorization of data that, together with its type parameters, determines the set of values,
syntax for denoting these values, and the set of operations that interpret and manipulate the values. This central
concept is described in 7.1.

A type is either an intrinsic type or a nonintrinsic type. A nonintrinsic type is defined by the program or by an
intrinsic module.

5.4.1.2 Intrinsic type

The intrinsic types are integer, real, complex, character, and logical. The properties of intrinsic types are described
in 7.4.

All intrinsic types have a kind type parameter called KIND, which determines the representation method for the
specified type. The intrinsic type character also has a length type parameter called LEN, which determines the
length of the character string.

13/22-007r1 39

W N

10
11
12
13

14

15

16
17

18

19

20

21
22

23
24

25
26
27
28

29

30

31

32

33

34
35

J3/22-007r1 WD 1539-1 2022-04-22

5.4.1.3 Derived type

Derived types can be parameterized. A scalar object of derived type is a structure; assignment of structures
is defined intrinsically (10.2.1.3), but there are no intrinsic operations for structures. For each derived type, a
structure constructor is available to create values (7.5.10). In addition, objects of derived type can be used as
procedure arguments and function results, and can appear in input/output lists. If additional operations are
needed for a derived type, they can be defined by procedures (10.1.6).

Derived types are described further in 7.5.

5.4.2 Data value

Each intrinsic type has associated with it a set of values that a datum of that type can take, depending on the
values of the type parameters. The values for each intrinsic type are described in 7.4. The values that objects of
a derived type can assume are determined by the type definition, type parameter values, and the sets of values of
its components. The values that an object of a nonderived nonintrinsic type can assume are determined by the
type definition.

5.4.3 Data entity
5.4.3.1 General

A data entity has a type and type parameters; it might have a data value (an exception is an undefined variable).
Every data entity has a rank and is thus either a scalar or an array.

A data entity that is the result of the execution of a function reference is called the function result.

5.4.3.2 Data object
5.4.3.2.1 Data object classification

A data object is either a constant, variable, or a subobject of a constant. The type and type parameters of a
named data object can be specified explicitly (8.2) or implicitly (8.7).

Subobjects are portions of data objects that can be referenced and defined (variables only) independently of the
other portions.

These include portions of arrays (array elements and array sections), portions of character strings (substrings),
portions of complex objects (real and imaginary parts), and portions of structures (components). Subobjects
are themselves data objects, but subobjects are referenced only by object designators or intrinsic functions. A
subobject of a variable is a variable. Subobjects are described in Clause 9.

The following objects are referenced by a name:
e a named scalar (a scalar object);
e a named array (an array object).

The following subobjects are referenced by an object designator:
e an array element (a scalar subobject);
e an array section an array subobject);
e a complex part designator the real or imaginary part of a complex object);
e a structure component a scalar or an array subobject);
e a substring a scalar subobject).

(
(
(
(

5.4.3.2.2 Variable

A variable can have a value or be undefined; during execution of a program it can be defined, redefined, or become
undefined.

40 J3/22-007r1

10

11
12
13

14

15
16
17

18

19
20
21

22
23

24
25

2022-04-22 WD 1539-1 J3/22-007r1

A local variable of a module, submodule, main program, subprogram, or BLOCK construct is accessible only in
that scoping unit or construct and in any contained scoping units and constructs.

NOTE 1

A subobject of a local variable is also a local variable.

A local variable cannot be in COMMON or have the BIND attribute, because common blocks and variables with
the BIND attribute are global entities.

5.4.3.2.3 Constant
A constant is either a named constant or a literal constant.

Named constants are defined using the PARAMETER attribute (8.5.13, 8.6.11). The syntax of literal constants
is described in 7.4.

5.4.3.2.4 Subobject of a constant
A subobject of a constant is a portion of a constant.

In an object designator for a subobject of a constant, the portion referenced may depend on the value of a variable.

NOTE 1

For example, given:

CHARACTER (LEN
CHARACTER (LEN
INTEGER :: I

10), PARAMETER :: DIGITS = ’0123456789’
1) :: DIGIT

DIGIT = DIGITS (I:I)

DIGITS is a named constant and DIGITS (I:I) designates a subobject of the constant DIGITS.

5.4.3.3 Expression

An expression (10.1) produces a data entity when evaluated. An expression represents either a data object
reference or a computation; it is formed from operands, operators, and parentheses. The type, type parameters,
value, and rank of an expression result are determined by the rules in Clause 10.

5.4.3.4 Function reference

A function reference produces a data entity when the function is executed during expression evaluation. The
type, type parameters, and rank of a function result are determined by the interface of the function (15.3.3). The
value of a function result is determined by execution of the function.

5.4.4 Definition of objects and pointers

When an object is given a valid value during program execution, it becomes defined. This is often accomplished
by execution of an assignment or input statement. When a variable does not have a predictable value, it is
undefined.

Similarly, when a pointer is associated with a target or nullified, its pointer association status becomes defined.
When the association status of a pointer is not predictable, its pointer association status is undefined.

Clause 19 describes the ways in which variables become defined and undefined and the association status of
pointers becomes defined and undefined.

J3/22-007r1 41

10
11
12
13

14
15
16
17

18
19

20

21

22
23

24
25

26
27
28

29
30

31
32

33
34

35

J3/22-007r1 WD 1539-1 2022-04-22

5.4.5 Reference

A data object is referenced when its value is required during execution. A procedure is referenced when it is
executed.

The appearance of a data object designator or procedure designator as an actual argument does not constitute
a reference to that data object or procedure unless such a reference is necessary to complete the specification of
the actual argument.

5.4.6 Array

An array may have up to fifteen dimensions minus its corank, and any extent in any dimension. The size of an
array is the total number of elements, which is equal to the product of the extents. An array may have zero
size. The shape of an array is determined by its rank and its extent in each dimension, and is represented as
a rank-one array whose elements are the extents. All named arrays shall be declared, and the rank of a named
array is specified in its declaration. Except for an assumed-rank array, the rank of a named array, once declared,
is constant.

Any intrinsic operation defined for scalar objects may be applied to conformable objects. Such operations are
performed elementally to produce a resultant array conformable with the array operands. If an elemental operation
is intrinsically pure or is implemented by a pure elemental function (15.9), the element operations can be performed
simultaneously or in any order.

A rank-one array can be constructed from scalars and other arrays and can be reshaped into any allowable array
shape (7.8).

Arrays are described further in 9.5.

5.4.7 Coarray

A coarray is a data entity that has nonzero corank; it can be directly referenced or defined by other images. It
may be a scalar or an array.

For each coarray on an image, there is a corresponding coarray with the same type, type parameters, and bounds
on every other image of a team in which it is established (5.4.8).

The set of corresponding coarrays on all images in a team is arranged in a rectangular pattern. The dimensions of
this pattern are the codimensions; the number of codimensions is the corank. The bounds for each codimension
are the cobounds.

NOTE 1

If the total number of images is not a multiple of the product of the sizes of each but the rightmost of the
codimensions, the rectangular pattern will be incomplete.

A coarray on any image can be accessed directly by using cosubscripts. On its own image, a coarray can also be
accessed without use of cosubscripts.

A subobject of a coarray is a coarray if it does not have any cosubscripts, vector subscripts, allocatable component
selection, or pointer component selection.

For a coindexed object, its cosubscript list determines the image index (9.6) in the same way that a subscript list
determines the subscript order value for an array element (9.5.3.3).

Intrinsic procedures are provided for mapping between an image index and a list of cosubscripts.

42 J3/22-007r1

10
11
12

13

14

15

16
17

18

19
20

21

22
23

24

25
26
27

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 2

The mechanism for an image to reference and define a coarray on another image might vary according
to the hardware. On a shared-memory machine, a coarray on an image and the corresponding coarrays
on other images could be implemented as a sequence of arrays with evenly spaced starting addresses. On
a distributed-memory machine with separate physical memory for each image, a processor might store a
coarray at the same virtual address in each physical memory.

NOTE 3

Except in contexts where coindexed objects are disallowed, accessing a coarray on its own image by using
a set of cosubscripts that specify that image has the same effect as accessing it without cosubscripts. In
particular, the segment ordering rules (11.7.2) apply whether or not cosubscripts are used to access the
coarray.

5.4.8 Established coarrays
A nonallocatable coarray with the SAVE attribute is established in the initial team.

An allocated allocatable coarray is established in the team in which it was allocated. An unallocated allocatable
coarray is not established.

A coarray that is an associating entity in a coarray-association of a CHANGE TEAM statement is established
in the team of its CHANGE TEAM construct.

A nonallocatable coarray that is an associating entity in an ASSOCIATE, SELECT RANK, or SELECT TYPE
construct is established in the team in which the ASSOCIATE, SELECT RANK, or SELECT TYPE statement
is executed.

A nonallocatable coarray that is a dummy argument or host associated with a dummy argument is established
in the team in which the procedure was invoked. A coarray dummy argument is not established in any ancestor
team even if the corresponding actual argument is established in one or more of them.

5.4.9 Pointer

A pointer has an association status which is either associated, disassociated, or undefined (19.5.2.2).
A pointer that is not associated shall not be referenced or defined.

If a data pointer is an array, the rank is declared, but the bounds are determined when it is associated with a
target.

5.4.10 Allocatable variables

The allocation status of an allocatable variable is either allocated or unallocated. An allocatable variable becomes
allocated as described in 9.7.1.3. It becomes unallocated as described in 9.7.3.2.

An unallocated allocatable variable shall not be referenced or defined.

If an allocatable variable is an array, the rank is declared, but the bounds are determined when it is allocated. If
an allocatable variable is a coarray, the corank is declared, but the cobounds are determined when it is allocated.

5.4.11 Storage

Many of the facilities of this document make no assumptions about the physical storage characteristics of data
objects. However, program units that include storage association dependent features shall observe the storage
restrictions described in 19.5.3.

J3/22-007r1 43

10

11
12

13
14
15
16

17

18

19
20

21

22

23
24

25

26
27

28

29
30
31

J3/22-007r1 WD 1539-1 2022-04-22

5.5 Fundamental concepts

5.5.1 Names and designators

A name is used to identify a program constituent, such as a program unit, named variable, named constant,
dummy argument, or nonintrinsic type.

A designator is used to identify a program constituent or a part thereof.

5.5.2 Statement keyword

A statement keyword is not a reserved word; that is, a name with the same spelling is allowed. In the syntax
rules, such keywords appear literally. In descriptive text, this meaning is denoted by the term “keyword” without
any modifier. Examples of statement keywords are IF, READ, UNIT, KIND, and INTEGER.

5.5.3 Other keywords

Other keywords denote names that identify items in a list. In this case, items are identified by a preceding
keyword= rather than their position within the list.

An argument keyword is the name of a dummy argument in the interface for the procedure being referenced, and
can appear in an actual argument list. A type parameter keyword is the name of a type parameter in the type
being specified, and can appear in a type-param-spec. A component keyword is the name of a component in a
structure constructor.

R516 keyword is name

NOTE 1

Use of keywords rather than position to identify items in a list can make such lists more readable and allows
them to be reordered. This facilitates specification of a list in cases where optional items are omitted.

5.5.4 Association

Name association (19.5.1) permits an entity to be identified by different names in the same scoping unit or by
the same name or different names in different scoping units.

Pointer association (19.5.2) between a pointer and a target allows the target to be denoted by the pointer.
Storage association (19.5.3) causes different entities to use the same storage.

Inheritance association (19.5.4) occurs between components of the parent component and components inherited
by type extension.

5.5.5 Intrinsic

All intrinsic types, procedures, assignments, and operators may be used in any scoping unit without further
definition or specification. Intrinsic modules (16.10, 17, 18.2) may be accessed by use association.

5.56.6 Operator

This document specifies a number of intrinsic operators (e.g., the arithmetic operators +, —, *, /, and ** with
numeric operands and the logical operators .AND., .OR., etc. with logical operands). Additional operators can
be defined within a program (7.5.5, 15.4.3.4).

44 J3/22-007r1

g~ W N

)]

2022-04-22 WD 1539-1 J3/22-007r1

5.5.7 Companion processors

A processor has one or more companion processors. A companion processor can be a mechanism that references
and defines such entities by a means other than Fortran (15.6.3), it can be the Fortran processor itself, or it can
be another Fortran processor. If there is more than one companion processor, the means by which the Fortran
processor selects among them are processor dependent.

If a procedure is defined by means of a companion processor that is not the Fortran processor itself, this document
refers to the C function that defines the procedure, although the procedure need not be defined by means of the
C programming language.

NOTE 1

A companion processor might or might not be a mechanism that conforms to the requirements of ISO/IEC
9899:2018. If it does, 5.3.7 states that a program unit that is defined by means other than Fortran and that
initiates normal termination is required to include the effect of executing the C exit() function.

For example, a processor might allow a procedure defined by some language other than Fortran or C to be
invoked if it can be described by a C prototype as defined in ISO/TEC 9899:2018, 6.7.6.3.

J3/22-007r1 45

10
11

12
13

14

15

16

17
18
19

20

21

22

23

24

25

26

27

J3/22-007r1 WD 1539-1 2022-04-22

6 Lexical tokens and source form

6.1 Processor character set

6.1.1 Characters

The processor character set is processor dependent. Each character in a processor character set is either a control
character or a graphic character. The set of graphic characters is further divided into letters (6.1.2), digits (6.1.3),
underscore (6.1.4), special characters (6.1.5), and other characters (6.1.6).

The letters, digits, underscore, and special characters make up the Fortran character set. Together, the set of
letters, digits, and underscore define the syntax class alphanumeric-character.

R601 alphanumeric-character is letter
or digit
or underscore

Except for the currency symbol, the graphics used for the characters shall be as given in 6.1.2, 6.1.3, 6.1.4, and
6.1.5. However, the style of any graphic is not specified.

6.1.2 Letters
The twenty-six letters are:
ABCDEFGHIJKLMNOPQRSTUVWXY?Z

The set of letters defines the syntactic class letter. The processor character set shall include lower-case and upper-
case letters. A lower-case letter is equivalent to the corresponding upper-case letter in program units except in a
character context (3.21).

NOTE 1
The following statements are equivalent:

CALL BIG_COMPLEX_OPERATION (NDATE)
call big_complex_operation (ndate)
Call Big_Complex_Operation (NDate)

6.1.3 Digits
The ten digits are:
0123456789

The ten digits define the syntactic class digit.

6.1.4 Underscore

R602 wunderscore is

6.1.5 Special characters

The special characters are shown in Table 6.1.

46 J3/22-007r1

10

11

12
13

14

15

2022-04-22 WD 1539-1 J3/22-007r1

Table 6.1: Special characters

Character Name of character Character Name of character

Blank ; Semicolon

= Equals ! Exclamation point

+ Plus " Quotation mark or quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Backslash < Less than

(Left parenthesis > Greater than

) Right parenthesis ? Question mark

[Left square bracket) Apostrophe

] Right square bracket) Grave accent

{ Left curly bracket - Circumflex accent

} Right curly bracket | Vertical line

, Comma $ Currency symbol
Decimal point or period # Number sign
Colon @) Commercial at

Some of the special characters are used for operator symbols, bracketing, and various forms of separating and
delimiting other lexical tokens.

6.1.6 Other characters

Additional characters may be representable in the processor, but shall appear only in comments (6.3.2.3, 6.3.3.2),
character constants (7.4.4), input/output records (12.2.2), and character string edit descriptors (13.3.2).

6.2 Low-level syntax

6.2.1 Tokens

The low-level syntax describes the fundamental lexical tokens of a program unit. A lexical token is a keyword,
name, literal constant other than a complex literal constant, .NIL., operator, statement label, delimiter, comma,
= =>,::13 ., 7 o %.

6.2.2 Names

Names are used for various entities such as variables, program units, dummy arguments, named constants, and
nonintrinsic types.

R603 name is letter [alphanumeric-character] ...

C601 (R603) The maximum length of a name is 63 characters.

NOTE 1
Examples of names:
Al
NAME_LENGTH (single underscore)
S PREAD O0UT (two consecutive underscores)
TRAILER_ (trailing underscore)

J3/22-007r1 47

w N

© 00 N O O b

10

11

12

13

14
15
16
17
18
19
20
21
22

23

24
25

26
27

28

29
30
31
32
33
34
35
36
37
38
39
40

13/22-007r1

NOTE 2

WD 1539-1

2022-04-22

which it is used.

The word “name” always denotes this particular syntactic form. The word “identifier” is used where entities
can be identified by other syntactic forms or by values; its particular meaning depends on the context in

6.2.3 Constants

R604 constant

R605 literal-constant

R606 mamed-constant
R607 int-constant

C602 (R607) int-constant shall be

6.2.4 Operators

R608 intrinsic-operator

R1008 power-op

R1009 mult-op

R1010 add-op

R1012 concat-op

R1014 rel-op

48

is
or

is

or
or
or
or
or

is

is

literal-constant
named-constant

int-literal-constant
real-literal-constant
complez-literal-constant
logical-literal-constant
char-literal-constant
boz-literal-constant

name

constant

of type integer.

is

or
or
or
or
or
or
or
or

is

is
or

is
or

is

is

or
or
or
or
or
or
or
or
or
or
or

power-op
mult-op
add-op
concat-op
rel-op
not-op
and-op
or-0p
equiv-op

13/22-007r1

10

11

12

13

14

15

16
17
18
19
20

21
22

23
24

25
26

27

28

29

2022-04-22 WD 1539-1 J3/22-007r1

R1019 not-op is .NOT.
R1020 and-op is .AND.
R1021 or-op is .OR.
R1022 equiv-op is .EQV.
or NEQV.
R609 defined-operator is defined-unary-op

or defined-binary-op
or extended-intrinsic-op

R1004 defined-unary-op is . letter [letter]
R1024 defined-binary-op is . letter [letter]
R610 extended-intrinsic-op is intrinsic-operator

6.2.5 Statement labels

A statement label provides a means of referring to an individual statement.
R611 label is digit [digit [digit [digit [digit]]]]
C603 (R611) At least one digit in a label shall be nonzero.

If a statement is labeled, the statement shall contain a nonblank character. The same statement label shall not
be given to more than one statement in its scope. Leading zeros are not significant in distinguishing between
statement labels. There are 99999 possible unique statement labels and a processor shall accept any of them as
a statement label. However, a processor may have a limit on the total number of unique statement labels in one
program unit.

NOTE 1
For example:

99999
10
010

are all statement labels. The last two are equivalent.

Any statement that is not part of another statement, and that is not preceded by a semicolon in fixed form, may begin
with a statement label, but the labels are used only in the following ways.

o The label on a branch target statement (11.2) is used to identify that statement as the possible destination
of a branch.

o The label on a FORMAT statement (13.2.1) is used to identify that statement as the format specification
for a data transfer statement (12.6).

e In some forms of the DO construct (11.1.7), the terminal statement of the construct is identified by a label.

6.2.6 Delimiters

1 A lexical token that is a delimiter is a (,), /, [,], (/, or /).

J3/22-007r1 49

10

11

12
13

14

15
16
17
18

19

20
21

J3/22-007r1 WD 1539-1 2022-04-22

6.3 Source form

6.3.1 Program units, statements, and lines

A Fortran program unit is a sequence of one or more lines, organized as Fortran statements, comments, and
INCLUDE lines. A line is a sequence of zero or more characters. Lines following a program unit END statement
are not part of that program unit. A Fortran statement is a sequence of one or more complete or partial lines.

A comment may contain any character that may occur in any character context.

There are two source forms. The rules in 6.3.2 apply only to free form source. The rules in 6.3.3 apply only to fixed source
form. Free form and fixed form shall not be mixed in the same program unit. The means for specifying the source form of a program

unit are processor dependent.

6.3.2 Free source form
6.3.2.1 Free form line length

In free source form there are no restrictions on where a statement (or portion of a statement) can appear within
a line. A line may contain zero characters. A line shall contain at most ten thousand characters.

6.3.2.2 Blank characters in free form

In free source form blank characters shall not appear within lexical tokens other than in a character context or in
a format specification. Blanks may be inserted freely between tokens to improve readability; for example, blanks
may occur between the tokens that form a complex literal constant. A sequence of blank characters outside of a
character context is equivalent to a single blank character.

A blank shall be used to separate names, constants, or labels from adjacent keywords, names, constants, or labels.

NOTE 1
For example, the blanks after REAL, READ, 30, and DO are required in the following:

REAL X
READ 10
30 DO K=1,3

3 One or more blanks shall be used to separate adjacent keywords except in the following cases, where blanks are

optional:

Table 6.2: Adjacent keywords where separating blanks are optional

BLOCK DATA END FILE END SUBROUTINE
DOUBLE PRECISION | END FORALL END TEAM

ELSE IF END FUNCTION END TYPE

ELSE WHERE END IF END WHERE

END ASSOCIATE END INTERFACE GO TO

END BLOCK END MODULE IN OUT

END BLOCK DATA END PROCEDURE | SELECT CASE
END CRITICAL END PROGRAM SELECT TYPE
END DO END SELECT

END ENUM END SUBMODULE

50 J3/22-007r1

W N

10
11
12

13
14
15
16

17
18

19
20
21

22

23

24
25
26
27

28

29

30

31

32

33
34

35

2022-04-22 WD 1539-1 J3/22-007r1

6.3.2.3 Free form commentary
The character “!” initiates a comment except where it appears within a character context. The comment extends
to the end of the line. If the first nonblank character on a line is an “!”, the line is a comment line. Lines
containing only blanks or containing no characters are also comment lines. Comments may appear anywhere in
a program unit and may precede the first statement of a program unit or follow the last statement of a program
unit. Comments have no effect on the interpretation of the program unit.

NOTE 1

This document does not restrict the number of consecutive comment lines.

6.3.2.4 Free form statement continuation

The character “&” is used to indicate that the statement is continued on the next line that is not a comment
line. Comment lines cannot be continued; an “&” in a comment has no effect. Comments may occur within a
continued statement. When used for continuation, the “&” is not part of the statement. No line shall contain
a single “&” as the only nonblank character or as the only nonblank character before an “!” that initiates a
comment.

If a noncharacter context is to be continued, an “&” shall be the last nonblank character on the line, or the last
nonblank character before an “!”. There shall be a later line that is not a comment; the statement is continued
on the next such line. If the first nonblank character on that line is an “&”, the statement continues at the next
character position following that “&”; otherwise, it continues with the first character position of that line.

If a lexical token is split across the end of a line, the first nonblank character on the first following noncomment
line shall be an “&” immediately followed by the successive characters of the split token.

If a character context is to be continued, an “&” shall be the last nonblank character on the line. There shall be
a later line that is not a comment; an “&” shall be the first nonblank character on the next such line and the
statement continues with the next character following that “&”.

6.3.2.5 Free form statement termination

If a statement is not continued, a comment or the end of the line terminates the statement.

@,
’

A statement may alternatively be terminated by a character that appears other than in a character context

or in a comment. The “;” is not part of the statement. After a “;” terminator, another statement may appear
on the same line, or begin on that line and be continued. A sequence consisting only of zero or more blanks and
one or more “;” terminators, in any order, is equivalent to a single “;” terminator.

6.3.2.6 Free form statements

A label may precede any statement not forming part of another statement.

NOTE 1
‘ No Fortran statement begins with a digit.

A statement shall not have more than one million characters.

6.3.3 Fixed source form

6.3.3.1 General

In fixed source form, there are restrictions on where a statement can appear within a line. If a source line contains only characters

of default kind, it shall contain exactly 72 characters; otherwise, its maximum number of characters is processor dependent.

Except in a character context, blanks are insignificant and may be used freely throughout the program.

J3/22-007r1 51

—

DO~ WN

11

12

13

14
15
16
17

18

19
20
21
22
23

24

25
26
27

28

29

30
31

32
33
34
35
36

J3/22-007r1 WD 1539-1 2022-04-22

6.3.3.2 Fixed form commentary
The character “!” initiates a comment except where it appears within a character context or in character position 6. The comment
extends to the end of the line. If the first nonblank character on a line is an “!” in any character position other than character
position 6, the line is a comment line. Lines beginning with a “C” or “*” in character position 1 and lines containing only blanks are
also comment lines. Comments may appear anywhere in a program unit and may precede the first statement of the program unit or
follow the last statement of a program unit. Comments have no effect on the interpretation of the program unit.

NOTE 1

‘ This document does not restrict the number of consecutive comment lines.

6.3.3.3 Fixed form statement continuation

Except within commentary, character position 6 is used to indicate continuation. If character position 6 contains a blank or zero, the
line is the initial line of a new statement, which begins in character position 7. If character position 6 contains any character other
than blank or zero, character positions 7-72 of the line constitute a continuation of the preceding noncomment line.

NOTE 1

An “!” or “;” in character position 6 is interpreted as a continuation indicator unless it appears within commentary indicated
by a “C” or “*” in character position 1 or by an “!” in character positions 1-5.

Comment lines cannot be continued. Comment lines may occur within a continued statement.

6.3.3.4 Fixed form statement termination

If a statement is not continued, a comment or the end of the line terminates the statement.

W

A statement may alternatively be terminated by a “;” character that appears other than in a character context, in a comment, or in
character position 6. The “;” is not part of the statement. After a “;” terminator, another statement may begin on the same line, or
begin on that line and be continued. A “;” shall not appear as the first nonblank character on an initial line. A sequence consisting

only of zero or more blanks and one or more “;” terminators, in any order, is equivalent to a single “;” terminator.

6.3.3.5 Fixed form statements

A label, if it appears, shall occur in character positions 1 through 5 of the first line of a statement; otherwise, positions 1 through

@,
)

5 shall be blank. Blanks may appear anywhere within a label. A statement following a on the same line shall not be labeled.
Character positions 1 through 5 of any continuation lines shall be blank. A statement shall not have more than one million characters.
The program unit END statement shall not be continued. A statement whose initial line appears to be a program unit END statement

shall not be continued.

6.4 Including source text

Additional text can be incorporated into the source text of a program unit during processing. This is accomplished
with the INCLUDE line, which has the form
INCLUDE char-literal-constant

The char-literal-constant shall not have a kind type parameter value that is a named-constant.
An INCLUDE line is not a Fortran statement.

An INCLUDE line shall appear on a single source line where a statement can appear; it shall be the only nonblank
text on this line other than an optional trailing comment. Thus, a statement label is not allowed.

The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE line prior
to program processing. Included text may contain any source text, including additional INCLUDE lines; such
nested INCLUDE lines are similarly replaced with the specified source text. The maximum depth of nesting of
any nested INCLUDE lines is processor dependent. Inclusion of the source text referenced by an INCLUDE line
shall not, at any level of nesting, result in inclusion of the same source text.

52 J3/22-007r1

w

2022-04-22 WD 1539-1 J3/22-007r1

6 When an INCLUDE line is resolved, the first included statement line shall not be a continuation line and the last
included statement line shall not be continued.

7 The interpretation of char-literal-constant is processor dependent. An example of a possible valid interpretation
is that char-literal-constant is the name of a file that contains the source text to be included.

NOTE 1

In some circumstances, for example where source code is maintained in an INCLUDE file for use in programs whose source

form might be either fixed or free, observing the following rules allows the code to be used with either source form.

o Confine statement labels to character positions 1 to 5 and statements to character positions 7 to 72.
e Treat blanks as being significant.
e Use only the exclamation mark (!) to indicate a comment, but do not start the comment in character position 6.

e For continued statements, place an ampersand (&) in both character position 73 of a continued line and character

position 6 of a continuation line.

13/22-007r1 53

10

11
12
13
14

15

16
17
18
19
20

21

22

23

24
25
26
27
28

29

30

31
32
33

34
35

J3/22-007r1 WD 1539-1 2022-04-22

7 Types

7.1 Characteristics of types

7.1.1 The concept of type

Fortran provides an abstract means whereby data can be categorized without relying on a particular physical
representation. This abstract means is the concept of type.

A type has a name, a set of valid values, a means to denote such values (constants), and a set of operations to
manipulate the values.

7.1.2 Type classification
A type is either an intrinsic type or a nonintrinsic type.
This document defines five intrinsic types: integer, real, complex, character, and logical.

A derived type is one that is defined by a derived-type definition (7.5.2) or by an intrinsic module. An enum
type is one that is defined by an enum type definition (7.6.1) or by an intrinsic module. An enumeration type
is one that is defined by an enumeration type definition (7.6.2) or by an intrinsic module. A nonintrinsic type
name shall be used only where it is accessible (7.5.2.2). An intrinsic type is always accessible.

7.1.3 Set of values

For each type, there is a set of valid values. The set of valid values for logical is completely determined by this
document. The sets of valid values for integer, character, and real are processor dependent. The set of valid
values for complex consists of the set of all the combinations of the values of the real and imaginary parts. The
set of valid values for a derived type is as defined in 7.5.8. The set of valid values for an enum type is as defined
in 7.6.1. The set of valid values for an enumeration type is as defined in 7.6.2.

7.1.4 Constants

The syntax for denoting a value indicates the type, type parameters, and the particular value.
The syntax for literal constants of each intrinsic type is specified in 7.4.

A structure constructor (7.5.10) that is a constant expression (10.1.12) denotes a scalar constant value of derived
type. An enum constructor (7.6.1) that is a constant expression denotes a scalar constant value of enum type.
An enumeration constructor (7.6.2) that is a constant expression denotes a scalar constant value of enumeration
type. An array constructor (7.8) that is a constant expression denotes a constant array value of intrinsic or
nonintrinsic type.

A constant value can be named (8.5.13, 8.6.11).

7.1.5 Operations

For each of the intrinsic types, a set of operations and corresponding operators is defined intrinsically. These are
described in Clause 10. The intrinsic set can be augmented with operations and operators defined by functions
with the OPERATOR interface (15.4.3.2). Operator definitions are described in Clauses 10 and 15.

For derived types, there are no intrinsic operations. Operations on derived types can be defined by the program
(7.5.11).

54 J3/22-007r1

10

11

12
13
14

15

16
17

18

19
20
21

22
23
24
25

2022-04-22 WD 1539-1 J3/22-007r1

For an enum or enumeration type, a set of intrinsic operations is defined intrinsically as described in Clause 10.
The intrinsic set can be augmented with operations and operators defined by the program.

7.2 Type parameters

If a type has type parameters, the set of values, the syntax for denoting the values, and the set of operations on
the values of the type depend on the values of the parameters.

A type parameter is either a kind type parameter or a length type parameter. All type parameters are of type
integer. A kind type parameter participates in generic resolution (15.5.5.2), but a length type parameter does
not.

Each intrinsic type has a kind type parameter named KIND. The intrinsic character type has a length type
parameter named LEN. A derived type can have type parameters.

A type parameter value can be specified by a type specification (7.4, 7.5.9).

R701 type-param-value is scalar-int-expr
or *
or

C701 (R701) The type-param-value for a kind type parameter shall be a constant expression.

C702 (R701) A colon shall not be used as a type-param-value except in the declaration of an entity that has
the POINTER or ALLOCATABLE attribute.

A colon as a type-param-value specifies a deferred type parameter.

The values of the deferred type parameters of an object are determined by successful execution of an ALLOCATE
statement (9.7.1), execution of an intrinsic assignment statement (10.2.1.3), execution of a pointer assignment
statement (10.2.2), or by argument association (15.5.2).

NOTE 1

Deferred type parameters of functions, including function procedure pointers, have no values. Instead, they
indicate that those type parameters of the function result will be determined by execution of the function,
if it returns an allocated allocatable result or an associated pointer result.

An asterisk as a type-param-value specifies that a length type parameter is an assumed type parameter. It is used
for a dummy argument to assume the type parameter value from the effective argument, for an associate name
in a SELECT TYPE construct to assume the type parameter value from the corresponding selector, and for a
named constant of type character to assume the character length from the constant-expr.

NOTE 2

The value of a kind type parameter is always known at compile time. Some parameterizations that involve
multiple representation forms need to be distinguished at compile time for practical implementation and
performance. Examples include the multiple precisions of the intrinsic real type and the possible multiple
character sets of the intrinsic character type.

The adjective “length” is used for type parameters other than kind type parameters because they often
specify a length, as for intrinsic character type. However, they can be used for other purposes. The
important difference from kind type parameters is that their values need not be known at compile time and
might change during execution.

J3/22-007r1 55

10

11

12

13

14

15
16
17
18

19

20
21
22
23
24
25
26
27
28
29

30
31

32
33

34

35

36
37

38
39

40
41

J3/22-007r1 WD 1539-1 2022-04-22

7.3 Types, type specifiers, and values

7.3.1 Relationship of types and values to objects

The name of a type serves as a type specifier and can be used to declare objects of that type. A declaration can
specify the type of a named object. A data object can be declared explicitly or implicitly. A data object has
attributes in addition to its type. Clause 8 describes the way in which a data object is declared and how its type
and other attributes are specified.

An array is formed of scalar data of an intrinsic or nonintrinsic type, and has the same type and type parameters
as its elements.

A variable is a data object. The type and type parameters of a variable determine which values that variable can
take. Assignment (10.2) provides one means of changing the value of a variable.

The type of a variable determines the operations that can be used to manipulate the variable.

7.3.2 Type specifiers and type compatibility
7.3.2.1 Type specifier syntax
A type specifier specifies a type and type parameter values. It is either a type-spec or a declaration-type-spec.

R702 type-spec is intrinsic-type-spec
or derived-type-spec
or enum-type-spec
or enumeration-type-spec

C703 (R702) The derived-type-spec shall not specify an abstract type (7.5.7).

R703 declaration-type-spec is intrinsic-type-spec
or TYPE (intrinsic-type-spec)
or TYPE (derived-type-spec)
or TYPE (enum-type-spec)
or TYPE (enumeration-type-spec)
or CLASS (derived-type-spec)
or CLASS (*)
or TYPE (*)
or TYPEOF (data-ref)
or CLASSOF (data-ref)

C704 (R703) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk shall be a
specification expression.

C705 (R703) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify an ex-
tensible type (7.5.7).

C706 (R703) TYPE(derived-type-spec) shall not specify an abstract type (7.5.7).
Ccr707 (R702) In TYPE(intrinsic-type-spec) the intrinsic-type-spec shall not end with a comma.

C708 An entity declared with the CLASS or CLASSOF keyword shall be a dummy argument or have the
ALLOCATABLE or POINTER attribute.

C709 A TYPEOF or CLASSOF specifier shall appear only in a type declaration statement or component
definition statement.

C710 The data-ref in a TYPEOF or CLASSOF specifier shall have its type and type parameters previously
declared or established by the implicit typing rules.

56 J3/22-007r1

10
11
12

13

14

15
16
17
18
19
20

21
22
23
24

25
26

27
28
29
30

31
32

2022-04-22 WD 1539-1 J3/22-007r1

C711 The data-ref in a TYPEOF specifier shall not be unlimited polymorphic or of abstract type.
C712 The data-ref in a CLASSOF specifier shall not be assumed-type or of intrinsic type.

C713 If the data-ref in a TYPEOF or CLASSOF specifier has the OPTIONAL attribute, it shall not have a
deferred or assumed type parameter.

An intrinsic-type-spec specifies the named intrinsic type and its type parameter values. A derived-type-spec
specifies the named derived type and its type parameter values. An enum-type-spec specifies the named enum
type. An enumeration-type-spec specifies the named enumeration type.

TYPEOF and CLASSOF with a data-ref that is not unlimited polymorphic specify the same type and type
parameter values as the declared type and type parameter values of data-ref, except that they specify that a type
parameter is deferred if it is deferred in data-ref. An entity declared with CLASSOF is polymorphic, and one
declared with TYPEOF is not polymorphic. If a data-ref is CLASS (*), CLASSOF (data-ref) is equivalent to a
CLASS (*) specifier.

NOTE 1

A type-spec is used in an array constructor, a SELECT TYPE construct, or an ALLOCATE statement. An
integer-type-spec is used in a DO CONCURRENT or FORALL statement. Elsewhere, a declaration-type-spec
is used.

NOTE 2

Note that TYPEOF and CLASSOF declare entities whose type parameters depend on those of the data-ref,
they are not equivalent to simply repeating the declaration of the data-ref. For example, if the data-ref has
an assumed type parameter, the entities declared have the same values for that type parameter as data-ref,
they are not assumed (even if they are dummy arguments).

7.3.2.2 TYPE type specifier
A TYPE type specifier is used to declare entities that are assumed-type, or of an intrinsic or nonintrinsic type.

A derived-type-spec, enum-type-spec, or enumeration-type-spec in a TYPE type specifier in a type declaration
statement shall specify a previously defined type. If the data entity is a function result, the type may be specified
in the FUNCTION statement provided the type is defined within the body of the function or is accessible there
by use or host association. If the type is specified in the FUNCTION statement and is defined within the body
of the function, it is as if the function result were declared with that type immediately following the definition of
the specified type.

An entity that is declared using the TYPE(*) type specifier is assumed-type and is an unlimited polymorphic
entity. It is not declared to have a type, and is not considered to have the same declared type as any other entity,
including another unlimited polymorphic entity. Its dynamic type and type parameters are assumed from its
effective argument.

C714 An assumed-type entity shall be a dummy data object that does not have the ALLOCATABLE, CODI-
MENSION, INTENT (OUT), POINTER, or VALUE attribute and is not an explicit-shape array.

C715 An assumed-type variable name shall not appear in a designator or expression except as an actual
argument corresponding to a dummy argument that is assumed-type, or as the first argument to the
intrinsic function IS CONTIGUOUS, LBOUND, PRESENT, RANK, SHAPE, SIZE, or UBOUND, or
the function C_LOC from the intrinsic module ISO_C BINDING.

C716 An assumed-type actual argument that corresponds to an assumed-rank dummy argument shall be
assumed-shape or assumed-rank.

13/22-007r1 57

w

© 00 N O O b

10

11
12
13

14
15
16
17
18
19

20

21
22
23
24
25
26

27
28
29

J3/22-007r1 WD 1539-1 2022-04-22

7.3.2.3 CLASS type specifier

The CLASS type specifier is used to declare polymorphic entities. A polymorphic entity is a data entity that is
able to be of differing dynamic types during program execution.

A derived-type-spec in a CLASS type specifier in a type declaration statement shall specify a previously defined
derived type. If the data entity is a function result, the derived type may be specified in the FUNCTION
statement provided the derived type is defined within the body of the function or is accessible there by use or
host association. If the derived type is specified in the FUNCTION statement and is defined within the body
of the function, it is as if the function result were declared with that derived type immediately following its
derived-type-def .

The declared type of a polymorphic entity is the specified type if the CLASS type specifier contains a type name.

An entity declared with the CLASS(*) specifier is an unlimited polymorphic entity. It is not declared to have
a type, and is not considered to have the same declared type as any other entity, including another unlimited
polymorphic entity.

The dynamic type of an allocated allocatable polymorphic object is the type with which it was allocated. The
dynamic type of an associated polymorphic pointer is the dynamic type of its target. The dynamic type of a
nonallocatable nonpointer polymorphic dummy argument is the dynamic type of its effective argument. The
dynamic type of an unallocated allocatable object or a disassociated pointer is the same as its declared type. The
dynamic type of an entity identified by an associate name (11.1.3) is the dynamic type of the selector with which
it is associated. The dynamic type of an object that is not polymorphic is its declared type.

7.3.3 Type compatibility

A nonpolymorphic entity is type compatible only with entities of the same declared type, except that an entity
of an enum type is also type compatible with an expression of type integer if the expression has a primary
that is an enumerator of that enum type. A polymorphic entity that is not an unlimited polymorphic entity
is type compatible with entities of the same declared type or any of its extensions. Even though an unlimited
polymorphic entity is not considered to have a declared type, it is type compatible with all entities. An entity is
type compatible with a type if it is type compatible with entities of that type.

NOTE 1

Given

TYPE TROOT
TYPE,EXTENDS (TROOT) :: TEXTENDED

CLASS(TROOT) A
CLASS (TEXTENDED) B

A is type compatible with B but B is not type compatible with A.

2 A polymorphic allocatable object may be allocated to be of any type with which it is type compatible. A

polymorphic pointer or dummy argument may, during program execution, be associated with objects with which
it is type compatible.

58 J3/22-007r1

10
11
12

13

14

15
16

17

18
19
20
21

22

23

24
25
26
27
28
29
30
31

32
33

34

35
36

37

38

39

40

2022-04-22 WD 1539-1 J3/22-007r1

7.4 Intrinsic types

7.4.1 Classification and specification

Each intrinsic type is classified as a numeric type or a nonnumeric type. The numeric types are integer, real, and
complex. The nonnumeric intrinsic types are character and logical.

FEach intrinsic type has a kind type parameter named KIND; this type parameter is of type integer with default
kind.

R704 intrinsic-type-spec is integer-type-spec
or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector |
or CHARACTER [char-selector |
or LOGICAL [kind-selector]

R705 integer-type-spec is INTEGER |[kind-selector]
R706 kind-selector is ([KIND = | scalar-int-constant-expr)

C717 (R706) The value of scalar-int-constant-expr shall be nonnegative and shall specify a representation
method that exists on the processor.

7.4.2 Intrinsic operations on intrinsic types

Intrinsic numeric operations are defined as specified in 10.1.5.2.1 for the numeric intrinsic types. Relational
intrinsic operations are defined as specified in 10.1.5.5 for numeric and character intrinsic types. The intrinsic
concatenation operation is defined as specified in 10.1.5.3 for the character type. Logical intrinsic operations are
defined as specified in 10.1.5.4 for the logical type.

7.4.3 Numeric intrinsic types
7.4.3.1 Integer type

The set of values for the integer type is a subset of the mathematical integers. The processor shall provide one or
more representation methods that define sets of values for data of type integer. Each such method is characterized
by a value for the kind type parameter KIND. The kind type parameter of a representation method is returned
by the intrinsic function KIND (16.9.118). The decimal exponent range of a representation method is returned
by the intrinsic function RANGE (16.9.170). The intrinsic function SELECTED_INT_KIND (16.9.181) returns
a kind value based on a specified decimal exponent range requirement. The integer type includes a zero value,
which is considered to be neither negative nor positive. The value of a signed integer zero is the same as the
value of an unsigned integer zero.

The processor shall provide at least one representation method with a decimal exponent range greater than or
equal to 18.

The type specifier for the integer type uses the keyword INTEGER.

The keyword INTEGER with no kind-selector specifies type integer with default kind; the kind type parameter
value is equal to KIND (0). The decimal exponent range of default integer shall be at least 5.

Any integer value can be represented as a signed-int-literal-constant.

R707 signed-int-literal-constant ~ is [sign | int-literal-constant
R708 int-literal-constant is digit-string | __ kind-param]
R709 kind-param is digit-string

13/22-007r1 59

10

11

12

13
14
15
16

17
18
19
20

21
22

23

24
25

J3/22-007r1 WD 1539-1 2022-04-22

or scalar-int-constant-name

R710 signed-digit-string is [sign | digit-string
R711 digit-string is digit [digit] ...
R712 sign is +

or —

C718 (R709) A scalar-int-constant-name shall be a named constant of type integer.
C719 (R709) The value of kind-param shall be nonnegative.
C720 (R708) The value of kind-param shall specify a representation method that exists on the processor.

The optional kind type parameter following digit-string specifies the kind type parameter of the integer constant;
if it does not appear, the constant is default integer.

An integer constant is interpreted as a decimal value.

NOTE 1

Examples of signed integer literal constants are:

473
+56

-101

21 2

21 SHORT
1976354279568241_8

where SHORT is a scalar integer named constant. A program that uses a digit-string as a kind-param is
unlikely to be portable.

7.4.3.2 Real type

The real type has values that approximate the mathematical real numbers. The processor shall provide two
or more approximation methods that define sets of values for data of type real. Each such method has a
representation method and is characterized by a value for the kind type parameter KIND. The kind type parameter
of an approximation method is returned by the intrinsic function KIND (16.9.118).

The decimal precision, decimal exponent range, and radix of an approximation method are returned by the
intrinsic functions PRECISION (16.9.162), RANGE (16.9.170), and RADIX (16.9.166). The intrinsic function
SELECTED REAL_ KIND (16.9.183) returns a kind value based on specified precision, range, and radix re-
quirements.

NOTE 1

See C.3.1 for remarks concerning selection of approximation methods.

The real type includes a zero value. Processors that distinguish between positive and negative zeros shall treat
them as mathematically equivalent

e in all intrinsic relational operations, and

¢ as actual arguments to intrinsic procedures other than those for which it is explicitly specified that negative
zero is distinguished.

60 J3/22-007r1

[BN E I N OV) N

© ~

10

11
12

13
14

15
16

17

18

19

20
21
22

23
24

25
26

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 2

On a processor that distinguishes between 0.0 and —0.0,

(X>=0.0)

evaluates to true if X = 0.0 or if X = —0.0,

(X<0.0)
evaluates to false for X = —0.0.

In order to distinguish between 0.0 and —0.0, a program can use the intrinsic function SIGN. SIGN (1.0, X)
will return —1.0 if X < 0.0 or if the processor distinguishes between 0.0 and —0.0 and X has the value —0.0.

4 The type specifier for the real type uses the keyword REAL. The keyword DOUBLE PRECISION is an alternative

specifier for one kind of real type.

If the type keyword REAL is used without a kind type parameter, the real type with default real kind is specified
and the kind value is KIND (0.0). The type specifier DOUBLE PRECISION specifies type real with double
precision kind; the kind value is KIND (0.0D0). The decimal precision of the double precision real approximation
method shall be greater than that of the default real method.

The decimal precision of double precision real shall be at least 10, and its decimal exponent range shall be at
least 37. It is recommended that the decimal precision of default real be at least 6, and that its decimal exponent
range be at least 37.

R713 signed-real-literal-constant is [sign | real-literal-constant

R714 real-literal-constant is significand | exponent-letter exponent | [_ kind-param]
or digit-string exponent-letter exponent [__ kind-param |
R715 significand is digit-string . | digit-string]
or . digit-string
R716 exponent-letter is E
or D
R717 exponent is signed-digit-string

C721 (R714) If both kind-param and exponent-letter appear, exponent-letter shall be E.
C722 (R714) The value of kind-param shall specify an approximation method that exists on the processor.

A real literal constant without a kind type parameter is a default real constant if it is without an exponent part
or has exponent letter E, and is a double precision real constant if it has exponent letter D. A real literal constant
written with a kind type parameter is a real constant with the specified kind type parameter.

The exponent represents the power of ten scaling to be applied to the significand or digit string. The meaning of
these constants is as in decimal scientific notation.

9 The significand may be written with more digits than a processor will use to approximate the value of the constant.

NOTE 3
Examples of signed real literal constants are:

-12.78
+1.6E3

13/22-007r1 61

A~ W

0 N o o

10
11

12

13
14
15

16
17
18

19

20
21
22
23
24

25
26
27
28

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 3 (cont.)

2.1
-16.E4_8
0.45D-4
10.93E7_QUAD
.123

3E4

where QUAD is a scalar integer named constant.

7.4.3.3 Complex type

The complex type has values that approximate the mathematical complex numbers. The values of a complex
type are ordered pairs of real values. The first real value is called the real part, and the second real value is called
the imaginary part.

Each approximation method used to represent data entities of type real shall be available for both the real and
imaginary parts of a data entity of type complex. The (default integer) kind type parameter KIND for a complex
entity specifies for both parts the real approximation method characterized by this kind type parameter value.
The kind type parameter of an approximation method is returned by the intrinsic function KIND (16.9.118).

The type specifier for the complex type uses the keyword COMPLEX. There is no keyword for double precision
complex. If the type keyword COMPLEX is used without a kind type parameter, the complex type with default
complex kind is specified, the kind value is KIND (0.0), and both parts are default real.

R718 complex-literal-constant is (real-part , imag-part)

R719 real-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

R720 imag-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

C723 (R718) Each named constant in a complex literal constant shall be of type integer or real.

If the real part and the imaginary part of a complex literal constant are both real, the kind type parameter value
of the complex literal constant is the kind type parameter value of the part with the greater decimal precision; if
the precisions are the same, it is the kind type parameter value of one of the parts as determined by the processor.
If a part has a kind type parameter value different from that of the complex literal constant, the part is converted
to the approximation method of the complex literal constant.

If both the real and imaginary parts are integer, they are converted to the default real approximation method
and the constant is default complex. If only one of the parts is an integer, it is converted to the approximation
method selected for the part that is real and the kind type parameter value of the complex literal constant is
that of the part that is real.

NOTE 1

Examples of complex literal constants are:

(1.0, -1.0)

(3, 3.1E6)

(4.0_4, 3.6E7_8)

(0., PI) ! where PI is a previously declared named real constant.

62 J3/22-007r1

[o) NS, B V)

© ~

10
11
12

13
14
15
16

17

18

19
20

21
22
23
24

25
26
27
28
29
30
31

32
33

34
35

36
37

38

39

40
41

42
43

2022-04-22 WD 1539-1 J3/22-007r1

7.4.4 Character type
7.4.4.1 Character sets

The character type has a set of values composed of character strings. A character string is a sequence of characters,
numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The number of characters in
the string is called the length of the string. The length is a type parameter; its kind is processor dependent and
its value is greater than or equal to zero.

The processor shall provide one or more representation methods that define sets of values for data of type
character. Each such method is characterized by a value for the (default integer) kind type parameter KIND.
The kind type parameter of a representation method is returned by the intrinsic function KIND (16.9.118). The
intrinsic function SELECTED_CHAR_ KIND (16.9.180) returns a kind value based on the name of a character
type. Any character of a particular representation method representable in the processor may occur in a character
string of that representation method.

The character set specified in ISO/IEC 646:1991 (International Reference Version) is referred to as the ASCII
character set and its corresponding representation method is ASCII character kind. The character set UCS-4 as
specified in ISO/TEC 10646 is referred to as the ISO 10646 character set and its corresponding representation
method is the ISO 10646 character kind.

7.4.4.2 Character type specifier
The type specifier for the character type uses the keyword CHARACTER.

If the type keyword CHARACTER is used without a kind type parameter, the character type with default
character kind is specified and the kind value is KIND ("A’).

The default character kind shall support a character set that includes the characters in the Fortran character
set (6.1). The processor may support additional character sets by supplying nondefault character kinds. The
characters available in nondefault character kinds are not specified by this document, except that one character
in each nondefault character set shall be designated as a blank character to be used as a padding character.

R721 char-selector is length-selector
or (LEN = type-param-value , R
B KIND = scalar-int-constant-expr)
or (type-param-value , M
B [KIND =] scalar-int-constant-expr)
or (KIND = scalar-int-constant-expr R
B [, LEN =type-param-value |)

R722 length-selector is ([LEN =] type-param-value)
or * char-length [,]

R723 char-length is (type-param-value)
or int-literal-constant

C724 (R721) The value of scalar-int-constant-expr shall be nonnegative and shall specify a representation
method that exists on the processor.

C725 (R723) The int-literal-constant shall not include a kind-param.
C726 (R721 R722 R723) A type-param-value of * shall be used only

e to declare a dummy argument,
¢ to declare a named constant,

e in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy argument of
type CHARACTER with an assumed character length,

13/22-007r1 63

10
11

12
13
14
15
16

17
18
19

20
21

22

23
24

25

26
27
28
29

30

31

32
33

34

35
36

37
38

39

40
41

42

J3/22-007r1 WD 1539-1 2022-04-22

e in the type-spec or derived-type-spec of a type guard statement (11.1.11), or

e in an external function, to declare the character length parameter of the function result.

C727 A function name shall not be declared with an asterisk type-param-value unless it is of type CHARACTER
and is the name of a dummy function or the name of the result of an external function.

C728 A function name declared with an asterisk type-param-value shall not be an array, a pointer, elemental, or pure. A function

name declared with an asterisk type-param-value shall not have the RECURSIVE attribute.
C729 (R722) The optional comma in a length-selector is permitted only in a declaration-type-spec in a type-declaration-stmit.

C730 (R722) The optional comma in a length-selector is permitted only if no double-colon separator appears in the type-

declaration-stmt.

C731 (R721) The length specified for a character statement function or for a statement function dummy argument of type

character shall be a constant expression.

The char-selector in a CHARACTER intrinsic-type-spec and the * char-length in an entity-decl or in a componenit-
decl of a type definition specify character length. The * char-length in an entity-decl or a component-decl specifies
an individual length and overrides the length specified in the char-selector, if any. If a * char-length is not specified
in an entity-decl or a component-decl, the length-selector or type-param-value specified in the char-selector is the
character length. If the length is not specified in a char-selector or a * char-length, the length is 1.

If the character length parameter value evaluates to a negative value, the length of character entities declared
is zero. A character length parameter value of : indicates a deferred type parameter (7.2). A char-length type
parameter value of * has the following meanings.

e If used to declare a dummy argument of a procedure, the dummy argument assumes its length from its
effective argument.

e If used to declare a named constant, the length is that of the constant value.

o Ifused in the type-spec of an ALLOCATE statement, each allocate-object assumes its length from its effective
argument.

e Ifused in the type-spec of a type guard statement, the associating entity assumes its length from the selector.

o If used to specify the character length parameter of a function result, any scoping unit invoking the function or passing it as
an actual argument shall declare the function name with a character length parameter value other than * or access such a
definition by argument, host, or use association. When the function is invoked, the length of the function result is assumed

from the value of this type parameter.

7.4.4.3 Character literal constant
The syntax of a character literal constant is given by R724.

R724 char-literal-constant is [kind-param]’ [rep-char] ... ’
or [kind-param __ | " [rep-char | ... "

C732 (R724) The value of kind-param shall specify a representation method that exists on the processor.

The optional kind type parameter preceding the leading delimiter specifies the kind type parameter of the char-
acter constant; if it does not appear, the constant is default character.

For the type character with kind kind-param, if it appears, and for default character otherwise, a representable
character, rep-char, is defined as follows.

e In free source form, it is any graphic character in the processor-dependent character set.
e In fixed source form, it is any character in the processor-dependent character set. A processor may restrict the occurrence of

some or all of the control characters.

The delimiting apostrophes or quotation marks are not part of the value of the character literal constant.

64 J3/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

1 5 An apostrophe character within a character constant delimited by apostrophes is represented by two consecutive
2 apostrophes (without intervening blanks); in this case, the two apostrophes are counted as one character. Sim-
3 ilarly, a quotation mark character within a character constant delimited by quotation marks is represented by
4 two consecutive quotation marks (without intervening blanks) and the two quotation marks are counted as one
5 character.
6 A zero-length character literal constant is represented by two consecutive apostrophes (without intervening blanks)

7 or two consecutive quotation marks (without intervening blanks) outside of a character context.

NOTE 1

Examples of character literal constants are:

|IDON)TI|

IDONJ IT)

both of which have the value DON'T and

)0

which has the zero-length character string as its value.

NOTE 2

An example of a nondefault character literal constant, where the processor supports the corresponding

character set, is:

NIHONGO &AL TRM D TE Ay

where NTHONGO is a named constant whose value is the kind type parameter for Nihongo (Japanese)

characters. This means “Without her, nothing is possible”.
8 7.4.4.4 Collating sequence
9 1 The processor defines a collating sequence for the character set of each kind of character. The collating sequence
10 is an isomorphism between the character set and the set of integers {I : 0 < I < N}, where N is the number of
11 characters in the set. The intrinsic functions CHAR (16.9.52) and ICHAR (16.9.105) provide conversions between
12 the characters and the integers according to this mapping.

NOTE 1

For example:

ICHAR (°X’)

returns the integer value of the character X’ according to the collating sequence of the processor.

13 2 The collating sequence of the default character kind shall satisfy the following constraints.
14 o ICHAR (’A’) < ICHAR ('B’) < ... < ICHAR (’Z’) for the twenty-six upper-case letters.

19 « ICHAR
20 ICHAR

") < ICHAR
") < ICHAR

'0’) < ICHAR ('9") < ICHAR (a’) or
a’) < ICHAR ('z") < ICHAR ('0").

15 o ICHAR (’0’) < ICHAR (’1") < ... < ICHAR (’9’) for the ten digits.

16 « ICHAR (*’) < ICHAR ('0’) < ICHAR (°9’) < ICHAR ('A’) or

17 ICHAR (' *) < ICHAR ('A’) < ICHAR ('Z’) < ICHAR ('0").

18 o ICHAR (’a’) < ICHAR (’b’) < ... < ICHAR (’z’) for the twenty-six lower-case letters.
(
(

o~ o~

21 3 There are no constraints on the location of any other character in the collating sequence, nor is there any specified
22 collating sequence relationship between the upper-case and lower-case letters.

13/22-007r1 65

10
11

12

13
14

15
16

17

18
19

20

21

22
23

24
25

26
27
28

29
30

31
32
33

34
35
36

J3/22-007r1 WD 1539-1 2022-04-22

The collating sequence for the ASCII character kind is as specified in ISO/TEC 646:1991 (International Reference
Version); this collating sequence is called the ASCII collating sequence in this document. The collating sequence
for the ISO 10646 character kind is as specified in ISO/IEC 10646.

NOTE 2

The intrinsic functions ACHAR (16.9.3) and TACHAR (16.9.98) provide conversions between characters
and corresponding integer values according to the ASCII collating sequence.

The intrinsic functions LGT, LGE, LLE, and LLT (16.9.124-16.9.127) provide comparisons between strings based
on the ASCII collating sequence. International portability is guaranteed if the set of characters used is limited
to the Fortran character set (6.1).

7.4.5 Logical type
The logical type has two values, which represent true and false.

The processor shall provide one or more representation methods for data of type logical. Each such method
is characterized by a value for the (default integer) kind type parameter KIND. The kind type parameter of a
representation method is returned by the intrinsic function KIND (16.9.118).

The type specifier for the logical type uses the keyword LOGICAL.

The keyword LOGICAL with no kind-selector specifies type logical with default kind; the kind type parameter
value is equal to KIND (.FALSE.).

R725 logical-literal-constant is .TRUE. [_ kind-param |
or .FALSE. [_ kind-param |

C733 (R725) The value of kind-param shall specify a representation method that exists on the processor.

The optional kind type parameter specifies the kind type parameter of the logical constant; if it does not appear,
the constant has the default logical kind.

7.5 Derived types

7.5.1 Derived type concepts

Additional types can be derived from the intrinsic types and other derived types. A type definition defines the
name of the type and the names and attributes of its components and type-bound procedures.

A derived type can be parameterized by one or more type parameters, each of which is defined to be either a
kind or length type parameter and can have a default value.

The ultimate components of a derived type are the components that are of intrinsic type or have the ALLOC-
ATABLE or POINTER attribute, plus the ultimate components of the components that are of derived type and
have neither the ALLOCATABLE nor POINTER attribute.

The direct components of a derived type are the components of that type, plus the direct components of the
components that are of derived type and have neither the ALLOCATABLE nor POINTER attribute.

The potential subobject components of a derived type are the nonpointer components of that type together with
the potential subobject components of the nonpointer components that are of derived type. This includes all the
components that could be a subobject of an object of the type (9.4.2).

The components, direct components, potential subobject components, and ultimate components of an object of
derived type are the components, direct components, potential subobject components, and ultimate components
of its type, respectively.

66 J3/22-007r1

10
11
12
13

14
15

16
17
18
19

20
21

22

23

24

25
26

27

28

29

2022-04-22 WD 1539-1 J3/22-007r1

By default, no storage sequence is implied by the order of the component definitions. However, a storage sequence
is implied for a sequence type (7.5.2.3). If the derived type has the BIND attribute, the storage sequence is that
required by the companion processor (5.5.7, 18.3.4).

A scalar entity of derived type is a structure. If a derived type has the SEQUENCE attribute, a scalar entity of
the type is a sequence structure.

NOTE 1

The ultimate components of an object of the derived type kids defined below are oldest_child’name,
oldest_child%age, and other_kids. The direct components of such an object are oldest_child’name,
oldest_child%age, other_kids, and oldest_child.

type :: person
character(len=20) :: name
integer :: age

end type person

type :: kids
type(person) :: oldest_child
type(person), allocatable, dimension(:) :: other_kids

end type kids

7.5.2 Derived-type definition
7.5.2.1 Syntax of a derived-type definition

R726 derived-type-def is derived-type-stmt
[type-param-def-stmt] ...
[private-or-sequence | ...
[component-part |
[type-bound-procedure-part]
end-type-stmt

R727 derived-type-stmt is TYPE [[, type-attr-spec-list | :: | type-name B
B [(type-param-name-list)]
R728 type-attr-spec is ABSTRACT
or access-spec
or BIND (C)

or EXTENDS (parent-type-name)

C734 (R727) A derived type type-name shall not be DOUBLEPRECISION or the same as the name of any
intrinsic type defined in this document.

C735 (R727) The same type-altr-spec shall not appear more than once in a given derived-type-stmt.
C736 The same type-param-name shall not appear more than once in a given derived-type-stmt.
C737 (R728) A parent-type-name shall be the name of a previously defined extensible type (7.5.7).

C738 (R726) If the type definition contains or inherits (7.5.7.2) a deferred type-bound procedure (7.5.5), AB-
STRACT shall appear.

C739 (R726) If ABSTRACT appears, the type shall be extensible.
C740 (R726) If EXTENDS appears, SEQUENCE shall not appear.

C741 (R726) If EXTENDS appears and the type being defined has a coarray potential subobject component,

J3/22-007r1 67

g~ W N

)]

10
11

12

13

14
15

16
17
18

19

20

21
22
23

24
25

J3/22-007r1 WD 1539-1 2022-04-22

its parent type shall have a coarray potential subobject component.

C742 (R726) If EXTENDS appears and the type being defined has a potential subobject component of type
EVENT TYPE, LOCK_TYPE, or NOTIFY_TYPE from the intrinsic module ISO_ FORTRAN_ENV,
its parent type shall be EVENT TYPE, LOCK_ TYPE, or NOTIFY_TYPE, or have a potential sub-
object component of type EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE.

R729 private-or-sequence is private-components-stmt
or sequence-stmt

C743 (R726) The same private-or-sequence shall not appear more than once in a given derived-type-def.
R730 end-type-stmt is END TYPE [type-name]

C744 (R730) If END TYPE is followed by a type-name, the type-name shall be the same as that in the
corresponding derived-type-stmt.

Derived types with the BIND attribute are subject to additional constraints as specified in 18.3.4.

NOTE 1
An example of a derived-type definition is:
TYPE PERSON
INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:
TYPE (PERSON) :: CHAIRMAN

7.5.2.2 Accessibility

The accessibility of a type name is determined as specified in 8.5.2. The accessibility of a type name does not
affect, and is not affected by, the accessibility of its components and type-bound procedures.

If a derived type is defined in the scoping unit of a module, and its name is private in that module, then the type
name, and thus the structure constructor (7.5.10) for the type, are accessible only within that module and its
descendants.

NOTE 1
An example of a type with a private name is:
TYPE, PRIVATE :: AUXILIARY
LOGICAL :: DIAGNOSTIC

CHARACTER (LEN = 20) :: MESSAGE
END TYPE AUXILIARY

Such a type would be accessible only within the module in which it is defined, and within its descendants.

7.5.2.3 Sequence type
R731 sequence-stmt is SEQUENCE

C745 (R726) If SEQUENCE appears, the type shall have at least one component, each data component shall
be declared to be of an intrinsic type or of a sequence type, the derived type shall not have any type
parameter, and a type-bound-procedure-part shall not appear.

If the SEQUENCE statement appears, the type has the SEQUENCE attribute and is a sequence type. The order
of the component definitions in a sequence type specifies a storage sequence for objects of that type. The type

68 J3/22-007r1

A W N =

10
11
12
13

2022-04-22 WD 1539-1 J3/22-007r1

is a numeric sequence type if there are no pointer or allocatable components, and each component is default
integer, default real, double precision real, default complex, default logical, or of numeric sequence type. The
type is a character sequence type if there are no pointer or allocatable components, and each component is default
character or of character sequence type.

NOTE 1
An example of a numeric sequence type is:

TYPE NUMERIC_SEQ

SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL

LOGICAL :: LOG_VAL
END TYPE NUMERIC_SEQ

NOTE 2

A structure resolves into a sequence of components. Unless the structure includes a SEQUENCE statement,
the use of this terminology in no way implies that these components are stored in this, or any other, order.
Nor is there any requirement that contiguous storage be used. The sequence merely refers to the fact that
in writing the definitions there will necessarily be an order in which the components appear, and this will
define a sequence of components.

This order is of limited significance because a component of an object of derived type will always be accessed
by a component name except in the following contexts:

o the sequence of expressions in a derived-type value constructor,
e intrinsic assignment,
e the sequence of data values in namelist input data, and

o and the inclusion of the structure in an input/output list of a formatted data transfer, where it is
expanded to this sequence of components.

Provided the processor adheres to the defined order in these cases, it is otherwise free to organize the storage
of the components for any nonsequence structure in memory as best suited to the particular architecture.

7.5.2.4 Determination of derived types

Derived-type definitions with the same type name may appear in different scoping units, in which case they might
be independent and describe different derived types or they might describe the same type.

Two data entities have the same type if they are declared with reference to the same derived-type definition. Data
entities also have the same type if they are declared with reference to different derived-type definitions that specify
the same type name, all have the SEQUENCE attribute or all have the BIND attribute, have no components
with PRIVATE accessibility, and have components that agree in order, name, and attributes. Otherwise, they
are of different derived types. A data entity declared using a type with the SEQUENCE attribute or with the
BIND attribute is not of the same type as an entity of a type that has any components that are PRIVATE.

NOTE 1
An example of declaring two entities with reference to the same derived-type definition is:
TYPE POINT
REAL X, Y

END TYPE POINT
TYPE (POINT) :: X1
CALL SUB (X1)
CONTAINS

SUBROUTINE SUB (A)

J3/22-007r1 69

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1 (cont.)
TYPE (POINT) :: A

END SUBROUTINE SUB

The definition of derived type POINT is known in subroutine SUB by host association. Because the
declarations of X1 and A both reference the same derived-type definition, X1 and A have the same type.
X1 and A also would have the same type if the derived-type definition were in a module and both SUB and
its containing program unit accessed that derived type from the module.

NOTE 2
An example of data entities in different scoping units having the same type is:

PROGRAM PGM

TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE

TYPE (EMPLOYEE) PROGRAMMER

CALL SUB (PROGRAMMER)

END PROGRAM PGM
SUBROUTINE SUB (POSITION)
TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME
END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION

END SUBROUTINE SUB
The actual argument PROGRAMMER and the dummy argument POSITION have the same type because

they are declared with reference to a derived-type definition with the same name, the SEQUENCE attribute,
and components that agree in order, name, and attributes.

Suppose the component name ID_ NUMBER was ID__NUM in the subroutine. Because all the component
names are not identical to the component names in derived type EMPLOYEE in the main program, the
actual argument PROGRAMMER would not be of the same type as the dummy argument POSITION.
Thus, the program would not be standard-conforming.

NOTE 3

The requirement that the two types have the same name applies to the type-names in the respective derived
type definitions, not to local names introduced via renaming in USE statements.

7.5.3 Derived-type parameters
7.5.3.1 Type parameter definition statement

R732 type-param-def-stmt is integer-type-spec, type-param-attr-spec :: B
B type-param-decl-list

R733 type-param-decl is type-param-name | = scalar-int-constant-expr

C746 (R732) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the type-param-
names in the derived-type-stmt of that derived-type-def.

70 J3/22-007r1

10
11

12
13

14

15

16
17
18
19

2022-04-22 WD 1539-1 J3/22-007r1

C747 (R732) Each type-param-name in the derived-type-stmt in a derived-type-def shall appear exactly once as
a type-param-name in a type-param-def-stmt in that derived-type-def.

R734 type-param-attr-spec is KIND
or LEN

The derived type is parameterized if the derived-type-stmt has any type-param-names.

Each type parameter is itself of type integer. If its kind selector is omitted, the kind type parameter is default
integer.

The type-param-attr-spec explicitly specifies whether a type parameter is a kind parameter or a length parameter.

If a type-param-decl has a scalar-int-constant-expr, the type parameter has a default value which is specified by
the expression. If necessary, the value is converted according to the rules of intrinsic assignment (10.2.1.3) to a
value of the same kind as the type parameter.

A type parameter may be used as a primary in a specification expression (10.1.11) in the derived-type-def. A
kind type parameter may also be used as a primary in a constant expression (10.1.12) in the derived-type-def.

NOTE 1

The following example uses derived-type parameters.

TYPE humongous_matrix(k, d)
INTEGER, KIND :: k = KIND (0.0)
INTEGER (SELECTED_INT_KIND (12)), LEN :: d
I-- Specify a potentially nondefault kind for d.
REAL (k) :: element (d, d)
END TYPE

In the following example, dim is declared to be a kind parameter, allowing generic overloading of procedures
distinguished only by dim.

TYPE general_point(dim)
INTEGER, KIND :: dim
REAL :: coordinates(dim)

END TYPE

7.5.3.2 Type parameter order
Type parameter order is an ordering of the type parameters of a derived type; it is used for derived-type specifiers.

The type parameter order of a nonextended type is the order of the type-param-name-list in the derived-type
definition. The type parameter order of an extended type (7.5.7) consists of the type parameter order of its
parent type followed by any additional type parameters in the order of the type-param-name-list in the derived-
type definition.

NOTE 1

Given

TYPE :: t1 (k1, k2)
INTEGER, KIND :: k1, k2
REAL (k1) a (k2)

END TYPE

TYPE, EXTENDS(t1) :: t2 (k3)
INTEGER, KIND :: k3
LOGICAL (k3) flag

END TYPE

13/22-007r1 71

10
11
12
13

14
15
16

17
18
19

20

21
22
23

24
25

26
27

28
29
30

31
32

33
34

35
36
37
38

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1 (cont.)

the type parameter order for type t1 is k1 then k2, and the type parameter order for type t2 is k1 then k2
then k3.

7.5.4 Components

7.5.4.1 Component definition statement

R735

R736

R737

R738

R739

R740

C748

C749

C750

C751

C752

C753

C754

C755

72

component-part is [component-def-stmt] ...

component-def-stmt is data-component-def-stmt
or proc-component-def-stmt

data-component-def-stmt is declaration-type-spec [[, component-attr-spec-list | :: | B
B component-decl-list

component-attr-spec is access-spec
or ALLOCATABLE
or CODIMENSION Ilbracket coarray-spec rbracket
or CONTIGUOUS
or DIMENSION (component-array-spec)
or POINTER

component-decl is component-name [(component-array-spec) | B
B [lbracket coarray-spec rbracket |
B [* char-length | | component-initialization |

component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list

(R737) No component-attr-spec shall appear more than once in a given component-def-stmit.

(R737) If neither the POINTER nor the ALLOCATABLE attribute is specified, the declaration-type-
spec in the component-def-stmt shall specify an intrinsic type, or a previously defined derived, enum, or
enumeration type.

(R737) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec shall be
a deferred-shape-spec-list.

(R737) If a coarray-spec appears, it shall be a deferred-coshape-spec-list and the component shall have
the ALLOCATABLE attribute.

(R737) If a coarray-spec appears, the component shall not be of type C_PTR or C_FUNPTR from
the intrinsic module ISO__C_BINDING (18.2), or of type TEAM_ TYPE from the intrinsic module
ISO_FORTRAN_ENV (16.10.2).

A data component whose type has a coarray potential subobject component shall be a nonpointer non-
allocatable scalar and shall not be a coarray.

(R737) If neither the POINTER nor the ALLOCATABLE attribute is specified, each component-array-
spec shall be an explicit-shape-spec-list.

(R740) Each bound in the explicit-shape-spec shall be a specification expression in which there are no ref-
erences to specification functions or the intrinsic functions ALLOCATED, ASSOCIATED, EXTENDS_ -
TYPE_ OF, PRESENT, or SAME_TYPE AS, every specification inquiry reference is a constant ex-
pression, and the value does not depend on the value of a variable.

13/22-007r1

o N o o

10

11
12
13
14

15
16

17

18
19

20
21

22

23
24
25
26
27
28
29

30

31
32
33
34

2022-04-22 WD 1539-1 J3/22-007r1

C756 (R737) A component shall not have both the ALLOCATABLE and POINTER attributes.

C757 (R737) If the CONTIGUOUS attribute is specified, the component shall be an array with the POINTER
attribute.

C758 (R739) The * char-length option is permitted only if the component is of type character.

C759 (R736) Each type-param-value within a component-def-stmt shall be a colon or a specification expres-
sion in which there are no references to specification functions or the intrinsic functions ALLOCATED,
ASSOCIATED, EXTENDS_TYPE_OF, PRESENT, or SAME_TYPE__AS, every specification inquiry
reference is a constant expression, and the value does not depend on the value of a variable.

NOTE 1

Because a type parameter is not an object, a type-param-value or a bound in an explicit-shape-spec can
contain a type-param-name.

R741 proc-component-def-stmt is PROCEDURE ([proc-interface]) , B
W proc-component-attr-spec-list :: proc-decl-list

NOTE 2

See 15.4.3.6 for definitions of proc-interface and proc-decl.

R742 proc-component-attr-spec is access-spec
or NOPASS
or PASS [(arg-name) |
or POINTER

C760 (R741) The same proc-component-attr-spec shall not appear more than once in a given proc-component-
def-stmt.

C761 (R741) POINTER shall appear in each proc-component-attr-spec-list.

C762 (R741) If the procedure pointer component has an implicit interface or has no arguments, NOPASS shall
be specified.

C763 (R741) If PASS (arg-name) appears, the interface of the procedure pointer component shall have a dummy
argument named arg-name.

C764 (R741) PASS and NOPASS shall not both appear in the same proc-component-atir-spec-list.

The declaration-type-spec in the data-component-def-stmt specifies the type and type parameters of the com-
ponents in the component-decl-list, except that the character length parameter can be specified or overridden
for a component by the appearance of * char-length in its entity-decl. The component-attr-spec-list in the data-
component-def-stmt specifies the attributes whose keywords appear for the components in the component-decl-list,
except that the DIMENSION attribute can be specified or overridden for a component by the appearance of a
component-array-spec in its component-decl, and the CODIMENSION attribute can be specified or overridden
for a component by the appearance of a coarray-spec in its component-decl.

7.5.4.2 Array components

A data component is an array if its component-decl contains a component-array-spec or its data-component-def-
stmt contains a DIMENSION clause. If the component-decl contains a component-array-spec, it specifies the
array rank, and if the array is explicit shape (8.5.8.2), the array bounds; otherwise, the component-array-spec in
the DIMENSION clause specifies the array rank, and if the array is explicit shape, the array bounds.

J3/22-007r1 73

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1
An example of a derived type definition with an array component is:

TYPE LINE

REAL, DIMENSION (2, 2) :: COORD
COORD(:,1) has the value of [X1, Yi]
COORD(:,2) has the value of [X2, Y2]
Line width in centimeters
1 for solid, 2 for dash, 3 for dot

REAL :: WIDTH
INTEGER :: PATTERN
END TYPE LINE

An example of declaring a variable LINE_ SEGMENT to be of the type LINE is:

TYPE (LINE) :: LINE_SEGMENT

The scalar variable LINE__SEGMENT has a component that is an array. In this case, the array is a
subobject of a scalar. The double colon in the definition for COORD is required; the double colon in the
definition for WIDTH and PATTERN is optional.

NOTE 2
An example of a derived type definition with an allocatable component is:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS (:)
END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is determined by execu-
tion of an ALLOCATE statement or assignment statement, or by argument association.

NOTE 3

Default initialization of an explicit-shape array component can be specified by a constant expression con-
sisting of an array constructor (7.8), or of a single scalar that becomes the value of each array element.

7.5.4.3 Coarray components

A data component is a coarray if its component-decl contains a coarray-spec or its data-component-def-stmt
contains a CODIMENSION clause. If the component-decl contains a coarray-spec it specifies the corank; otherwise,
the coarray-spec in the CODIMENSION clause specifies the corank.

NOTE 1
An example of a derived type definition with a coarray component is:

TYPE GRID_TYPE
REAL, ALLOCATABLE, CODIMENSION [:, :, :] :: GRID (:, :, :)
END TYPE GRID_TYPE

An object of type grid_type cannot be a coarray or a pointer.

7.5.4.4 Pointer components

A data component is a data pointer (5.4.9) if its component-atir-spec-list contains the POINTER keyword. A
procedure pointer component has the POINTER keyword in its proc-component-attr-spec-list.

74 J3/22-007r1

10
11
12
13

14

15
16
17

18
19
20
21

22
23
24

25

26
27

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 1
An example of a derived type definition with a pointer component is:
TYPE REFERENCE

INTEGER :: VOLUME, YEAR, PAGE
CHARACTER (LEN = 50) :: TITLE

PROCEDURE (printer_interface), POINTER :: PRINT => NULL()
CHARACTER, DIMENSION (:), POINTER :: SYNOPSIS

END TYPE REFERENCE

Any object of type REFERENCE will have the four nonpointer components VOLUME, YEAR, PAGE, and
TITLE, the procedure pointer PRINT, which has an explicit interface the same as printer__interface, plus
a pointer to an array of characters holding SYNOPSIS. The size of this target array will be determined by
the length of the synopsis. The space for the target could be allocated (9.7.1) or the pointer component
could be associated with a target by a pointer assignment statement (10.2.2).

7.5.4.5 The passed-object dummy argument

A passed-object dummy argument is a distinguished dummy argument of a procedure pointer component or
type-bound procedure (7.5.5). It affects procedure overriding (7.5.7.3) and argument association (15.5.2.2).

If NOPASS is specified, the procedure pointer component or type-bound procedure has no passed-object dummy
argument.

If neither PASS nor NOPASS is specified or PASS is specified without arg-name, the first dummy argument of a
procedure pointer component or type-bound procedure is its passed-object dummy argument.

If PASS (arg-name) is specified, the dummy argument named arg-name is the passed-object dummy argument of
the procedure pointer component or named type-bound procedure.

C765 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data object
with the same declared type as the type being defined; all of its length type parameters shall be assumed,;
it shall be polymorphic (7.3.2.3) if and only if the type being defined is extensible (7.5.7). It shall not
have the VALUE attribute.

NOTE 1

If a procedure is bound to several types as a type-bound procedure, different dummy arguments might be
the passed-object dummy argument in different contexts.

7.5.4.6 Default initialization for components

Default initialization provides a means of automatically initializing pointer components to be disassociated or
associated with specific targets, and nonpointer nonallocatable components to have a particular value. Allocatable
components are always initialized to unallocated.

A pointer variable or component is data-pointer-initialization compatible with a target if the pointer is type
compatible with the target, they have the same rank, all nondeferred type parameters of the pointer have the
same values as the corresponding type parameters of the target, and the target is contiguous if the pointer has
the CONTIGUOUS attribute.

R743 component-initialization is = constant-expr
or => null-init
or => initial-data-target

R744 initial-data-target is designator

C766 (R737) If component-initialization appears, a double-colon separator shall appear before the component-
decl-list.

13/22-007r1 75

10
11

12
13

14
15

16
17
18

19
20
21
22
23
24
25
26
27

28
29
30

31
32

J3/22-007r1 WD 1539-1 2022-04-22

C767 (R737) If component-initialization appears, every type parameter and array bound of the component
shall be a colon or constant expression.

C768 (R737) If => appears in component-initialization, POINTER shall appear in the component-attr-spec-
list. If = appears in component-initialization, neither POINTER nor ALLOCATABLE shall appear in
the component-attr-spec-list.

C769 If initial-data-target appears in a component-initialization in a component-decl, component-name shall be
data-pointer-initialization compatible with it.

C770 A designator that is an initial-data-target shall designate a nonallocatable, noncoindexed variable that
has the TARGET and SAVE attributes and does not have a vector subscript. Every subscript, sec-
tion subscript, substring starting point, and substring ending point in designator shall be a constant
expression.

If null-init appears for a pointer component, that component in any object of the type has an initial association
status of disassociated (3.61) or becomes disassociated as specified in 19.5.2.4.

If initial-data-target appears for a data pointer component, that component in any object of the type is initially
associated with the target or becomes associated with the target as specified in 19.5.2.3.

If initial-proc-target (15.4.3.6) appears in proc-decl for a procedure pointer component, that component in any
object of the type is initially associated with the target or becomes associated with the target as specified in
19.5.2.3.

If constant-expr appears for a nonpointer component, that component in any object of the type is initially defined
(19.6.3) or becomes defined as specified in 19.6.5 with the value determined from constant-expr. If necessary,
the value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that agrees in type,
type parameters, and shape with the component. If the component is of a type for which default initialization is
specified for a component, the default initialization specified by constant-expr overrides the default initialization
specified for that component. When one initialization overrides another it is as if only the overriding initialization
were specified (see NOTE 2). Explicit initialization in a type declaration statement (8.2) overrides default
initialization (see NOTE 1). Unlike explicit initialization, default initialization does not imply that the object
has the SAVE attribute.

A subcomponent (9.4.2) is default-initialized if the type of the object of which it is a component specifies default
initialization for that component, and the subcomponent is not a subobject of an object that is default-initialized
or explicitly initialized.

A type has default initialization if component-initialization is specified for any direct component of the type. An
object has default initialization if it is of a type that has default initialization.

NOTE 1
It is not required that initialization be specified for each component of a derived type. For example:

TYPE DATE

INTEGER DAY

CHARACTER (LEN = 5) MONTH

INTEGER :: YEAR = 2008 ! Partial default initialization
END TYPE DATE

In the following example, the default initial value for the YEAR component of TODAY is overridden by
explicit initialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 2009)

NOTE 2

‘ The default initial value of a component of derived type can be overridden by default initialization specified

76 13/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 2 (cont.)
in the definition of the type. Continuing the example of NOTE 1:

TYPE SINGLE_SCORE

TYPE(DATE) :: PLAY_DAY = TODAY

INTEGER SCORE

TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL ()
END TYPE SINGLE_SCORE
TYPE(SINGLE_SCORE) SETUP

The PLAY__DAY component of SETUP receives its initial value from TODAY, overriding the initialization
for the YEAR component.

NOTE 3

Arrays of structures can be declared with elements that are partially or totally initialized by default.
Continuing the example of NOTE 2:

TYPE MEMBER (NAME_LEN)
INTEGER, LEN :: NAME_LEN
CHARACTER (LEN = NAME_LEN) :: NAME
INTEGER :: TEAM_NO, HANDICAP = O
TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL ()
END TYPE MEMBER
TYPE (MEMBER(9)) LEAGUE (36) ! Array of partially initialized elements
TYPE (MEMBER(9)) :: ORGANIZER = MEMBER (9) ("I. Manage",1,5,NULL ())

ORGANIZER is explicitly initialized, overriding the default initialization for an object of type MEMBER.

Allocated objects can also be initialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) | A partially initialized object of type
! SINGLE_SCORE is created.

NOTE 4

A pointer component of a derived type can have as its target an object of that derived type. The type
definition can specify that in objects declared to be of this type, such a pointer is default initialized to
disassociated. For example:

TYPE NODE

INTEGER :: VALUE = 0O

TYPE (NODE), POINTER :: NEXT_NODE => NULL ()
END TYPE

A type such as this can be used to construct linked lists of objects of type NODE. Linked lists can also be
constructed using allocatable components.

NOTE 5
A pointer component of a derived type can be default initialized to have an initial target.
TYPE NODE
INTEGER :: VALUE = 0
TYPE (NODE), POINTER :: NEXT_NODE => SENTINEL
END TYPE

TYPE(NODE), SAVE, TARGET :: SENTINEL

13/22-007r1 77

10
11

12
13
14
15

16
17

J3/22-007r1 WD 1539-1 2022-04-22

7.5.4.7 Component order

Component order is an ordering of the nonparent components of a derived type; it is used for intrinsic format-
ted input/output and structure constructors where component keywords are not used. Parent components are
excluded from the component order of an extended type (7.5.7).

The component order of a nonextended type is the order of the declarations of the components in the derived-type
definition. The component order of an extended type consists of the component order of its parent type followed
by any additional components in the order of their declarations in the extended derived-type definition.

NOTE 1

Given the same type definitions as in 7.5.3.2, NOTE 1, the component order of type T1 is just A (there is
only one component), and the component order of type T2 is A then FLAG. The parent component (T1)
does not participate in the component order.

7.5.4.8 Component accessibility
R745 private-components-stmt is PRIVATE

C771 (R745) A private-components-stmt is permitted only if the type definition is within the specification part
of a module.

The default accessibility for the components that are declared in a type’s component-part is private if the type
definition contains a private-components-stmt, and public otherwise. The accessibility of a component can be
explicitly declared by an access-spec; otherwise its accessibility is the default for the type definition in which it is
declared.

If a component is private, that component name is accessible only within the module containing the definition,
and within its descendants.

NOTE 1

Type parameters are not components. They are effectively always public.

NOTE 2

The accessibility of the components of a type is independent of the accessibility of the type name. It is
possible to have all four combinations of public and private type names with public and private components.

NOTE 3
An example of a public type with private components is:

TYPE, PUBLIC :: POINT
PRIVATE
REAL :: X, Y

END TYPE POINT

Such a type definition can be accessed by use association; however, the components X and Y are accessible
only within the module and its descendants.

NOTE 4
An example that uses an individual component access-spec to override the default accessibility is:
TYPE MIXED
PRIVATE
INTEGER :: I

INTEGER, PUBLIC :: J
END TYPE MIXED

78 J3/22-007r1

10

11
12

13

14

15
16

17
18

19
20

21

22
23
24

25

26
27

28
29

30
31

32
33

34
35

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 4 (cont.)

The component M%J is accessible in any scoping unit where M is accessible; M%I is accessible only within
the module containing the TYPE MIXED definition, and within its descendants.

TYPE (MIXED) :: M

7.5.5 Type-bound procedures

R746

R747

Cc772

R748

R749

R750
Cc773

C774

C775

type-bound-procedure-part — is contains-stmt
[binding-private-stmt |
[type-bound-proc-binding | ...

binding-private-stmt is PRIVATE

(R746) A binding-private-stmt is permitted only if the type definition is within the specification part of
a module.

type-bound-proc-binding is type-bound-procedure-stmt
or type-bound-generic-stmt
or final-procedure-stmt

type-bound-procedure-stmt is PROCEDURE [[, binding-attr-list | ::] type-bound-proc-decl-list
or PROCEDURE (interface-name), binding-attr-list :: binding-name-list

type-bound-proc-decl is binding-name [=> procedure-name]
(R749) If => procedure-name appears in a type-bound-proc-decl, the double-colon separator shall appear.

(R750) The procedure-name shall be the name of an accessible module procedure or an external procedure
that has an explicit interface.

A binding-name in a type-bound-proc-decl in a derived type definition shall not be the same as any other
binding-name within that derived type definition.

If => procedure-name does not appear in a type-bound-proc-decl, it is as though => procedure-name had appeared
with a procedure name the same as the binding name.

R751

C776

cTr7

C778

c779

C780

C781

C782

type-bound-generic-stmt is GENERIC [, access-spec | :: generic-spec => binding-name-list

(R751) Within the specification-part of a module, each type-bound-generic-stmt shall specify, either im-
plicitly or explicitly, the same accessibility as every other type-bound-generic-stmt with that generic-spec
in the same derived type.

(R751) Each binding-name in binding-name-list shall be the name of a specific binding of the type.

A binding-name in a type-bound GENERIC statement shall not specify a specific binding that was
inherited or specified previously for the same generic identifier in that derived type definition.

(R751) If generic-spec is not generic-name, each of its specific bindings shall have a passed-object dummy
argument (7.5.4.5).

(R751) If generic-spec is OPERATOR. (defined-operator), the interface of each binding shall be as
specified in 15.4.3.4.2.

(R751) If generic-spec is ASSIGNMENT (=), the interface of each binding shall be as specified in
15.4.3.4.3.

(R751) If generic-spec is defined-io-generic-spec, the interface of each binding shall be as specified in
12.6.4.8. The type of the dtv argument shall be type-name.

J3/22-007r1 79

g A~ W N =

10

11

12

13

14
15

16
17

18
19
20
21

22
23

24
25

26
27
28
29

30
31

32
33

34
35
36

37
38

J3/22-007r1 WD 1539-1 2022-04-22

R752 binding-attr is access-spec
or DEFERRED
or NON_OVERRIDABLE
or NOPASS
or PASS [(arg-name)]

C783 (R752) The same binding-attr shall not appear more than once in a given binding-attr-list.

C784 (R749) If the interface of the binding has no dummy argument of the type being defined, NOPASS shall
appear.

C785 (R749) If PASS (arg-name) appears, the interface of the binding shall have a dummy argument named

arg-name.
C786 (R752) PASS and NOPASS shall not both appear in the same binding-attr-list.

C787 (R752) NON_OVERRIDABLE and DEFERRED shall not both appear in the same binding-attr-list.
C788 (R752) DEFERRED shall appear if and only if interface-name appears.

C789 (R749) An overriding binding (7.5.7.3) shall have the DEFERRED attribute only if the binding it over-

rides is deferred.

C790 (R749) A binding shall not override an inherited binding (7.5.7.2) that has the NON_OVERRIDABLE
attribute.

A type-bound procedure statement declares one or more specific type-bound procedures. A specific type-bound
procedure can have a passed-object dummy argument (7.5.4.5). A type-bound procedure with the DEFERRED
attribute is a deferred type-bound procedure. The DEFERRED keyword shall appear only in the definition of
an abstract type.

A GENERIC statement declares a generic type-bound procedure, which is a type-bound generic interface for its
specific type-bound procedures.

A binding of a type is a type-bound procedure (specific or generic), a generic type-bound interface, or a final
subroutine. These are referred to as specific bindings, generic bindings, and final bindings respectively.

A type-bound procedure can be identified by a binding name in the scope of the type definition. This name is the
binding-name for a specific type-bound procedure, and the generic-name for a generic binding whose generic-spec
is generic-name. A final binding, or a generic binding whose generic-spec is not generic-name, has no binding
name.

The interface of a specific type-bound procedure is that of the procedure specified by procedure-name or the
interface specified by interface-name.

The same generic-spec may be used in several GENERIC statements within a single derived-type definition. Each
additional GENERIC statement with the same generic-spec extends the generic interface.

NOTE 1

Unlike the situation with generic procedure names, a generic type-bound procedure name is not permitted
to be the same as a specific type-bound procedure name in the same type (19.3).

The default accessibility for the type-bound procedures of a type is private if the type definition contains a binding-
private-stmt, and public otherwise. The accessibility of a type-bound procedure can be explicitly declared by an
access-spec; otherwise its accessibility is the default for the type definition in which it is declared.

A public type-bound procedure is accessible via any accessible object of the type. A private type-bound procedure
is accessible only within the module containing the type definition, and within its descendants.

80 J3/22-007r1

0w N o G

10
11

12
13

14
15

16
17
18

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 2

The accessibility of a type-bound procedure is not affected by a PRIVATE statement in the component-part;
the accessibility of a component is not affected by a PRIVATE statement in the type-bound-procedure-part.

NOTE 3

An example of a type and a type-bound procedure is:

TYPE POINT

REAL :: X, Y
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT LENGTH
END TYPE POINT

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_LENGTH (A, B)

CLASS (POINT), INTENT (IN) :: A, B

POINT_LENGTH = SQRT ((A%X - BY%X)**2 + (A%Y - BYLY)**2)
END FUNCTION POINT_LENGTH

7.5.6 Final subroutines
7.5.6.1 FINAL statement
R753 final-procedure-stmt is FINAL [:: | final-subroutine-name-list

C791 (R753) A final-subroutine-name shall be the name of a module procedure with exactly one dummy
argument. That argument shall be nonoptional and shall be a noncoarray, nonpointer, nonallocatable,
nonpolymorphic variable of the derived type being defined. All length type parameters of the dummy
argument shall be assumed. The dummy argument shall not have the INTENT (OUT) or VALUE
attribute.

C792 (R753) A final-subroutine-name shall not be one previously specified as a final subroutine for that type.

C793 (R753) A final subroutine shall not have a dummy argument with the same kind type parameters and
rank as the dummy argument of another final subroutine of that type.

C794 (R753) If a final subroutine has an assumed-rank dummy argument, no other final subroutine of that
type shall have a dummy argument with the same kind type parameters.

The FINAL statement specifies that each procedure it names is a final subroutine. A final subroutine might be
executed when a data entity of that type is finalized (7.5.6.2).

A derived type is finalizable if and only if it has a final subroutine or a nonpointer, nonallocatable component of
finalizable type. A nonpointer data entity is finalizable if and only if it is of finalizable type. No other entity is
finalizable.

NOTE 1

Final subroutines are effectively always “accessible”. They are called for entity finalization regardless of the
accessibility of the type, its other type-bound procedures, or the subroutine name itself.

NOTE 2

Final subroutines are not inherited through type extension and cannot be overridden. The final subroutines
of the parent type are called after any additional final subroutines of an extended type are called.

J3/22-007r1 81

N

© 0 N o 0o~ W

11
12

13
14
15

16

17
18
19
20

21
22
23

24
25

26
27

28
29

30
31

32
33
34
35

36
37
38

J3/22-007r1 WD 1539-1 2022-04-22

7.5.6.2 The finalization process

1 Only finalizable entities are finalized. When an entity is finalized, the following steps are carried out in sequence.

(1) If the dynamic type of the entity has a final subroutine whose dummy argument has the same kind
type parameters and rank as the entity being finalized, it is called with the entity as an actual
argument. Otherwise, if there is an elemental final subroutine whose dummy argument has the same
kind type parameters as the entity being finalized, or a final subroutine whose dummy argument is
assumed-rank with the same kind type parameters as the entity being finalized, it is called with the
entity as an actual argument. Otherwise, no subroutine is called at this point.

(2) All nonallocatable finalizable components that appear in the type definition are finalized in a processor-
dependent order. If the entity being finalized is an array, each finalizable component of each element
of that entity is finalized separately.

(3) If the entity is of extended type and the parent type is finalizable, the parent component is finalized.

If several entities are to be finalized as a consequence of an event specified in 7.5.6.3, the order in which they

are finalized is processor dependent. During this process, execution of a final subroutine for one of these entities
shall not reference or define any of the other entities that have already been finalized.

NOTE 1

An implementation might need to ensure that when an event causes more than one coarray to be deallocated,
they are deallocated in the same order on all images in the current team.

7.5.6.3 When finalization occurs

1 When an intrinsic assignment statement is executed (10.2.1.3), if the variable is not an unallocated allocatable
variable, it is finalized after evaluation of expr and before the definition of the variable. If the variable is an
allocated allocatable variable, or has an allocated allocatable subobject, that would be deallocated by intrinsic
assignment, the finalization occurs before the deallocation.

When a pointer is deallocated its target is finalized. When an allocatable entity is deallocated, it is finalized

unless it is the variable in an intrinsic assignment statement. If an error condition occurs during deallocation, it
is processor dependent whether finalization occurs.

A nonpointer, nonallocatable object that is not a dummy argument or function result is finalized immediately

before it would become undefined due to execution of a RETURN or END statement (19.6.6, item (3)).

A nonpointer nonallocatable local variable of a BLOCK construct is finalized immediately before it would become

undefined due to termination of the BLOCK construct (19.6.6, item (23)).

If an executable construct references a nonpointer function, the result is finalized after execution of the innermost

executable construct containing the reference.

If a specification expression in a scoping unit references a function, the result is finalized before execution of the

executable constructs in the scoping unit.

When a procedure is invoked, a nonpointer, nonallocatable, INTENT (OUT) dummy argument of that procedure

is finalized before it becomes undefined. The finalization caused by INTENT (OUT) is considered to occur within
the invoked procedure; so for elemental procedures, an INTENT (OUT) argument will be finalized only if a scalar
or elemental final subroutine is available, regardless of the rank of the actual argument.

If an object is allocated via pointer allocation and later becomes unreachable due to all pointers associated with

that object having their pointer association status changed, it is processor dependent whether it is finalized. If it
is finalized, it is processor dependent as to when the final subroutines are called.

82

NOTE 1

’ If finalization is used for storage management, it often needs to be combined with defined assignment.

13/22-007r1

10
11

12

13

14
15
16
17

2022-04-22 WD 1539-1 J3/22-007r1

7.5.6.4 Entities that are not finalized

If image execution is terminated, either by an error (e.g. an allocation failure) or by execution of a stop-stmt,
error-stop-stmt, or end-program-stmt, entities existing immediately prior to termination are not finalized.

NOTE 1

A nonpointer, nonallocatable object that has the SAVE attribute is never finalized as a direct consequence
of the execution of a RETURN or END statement.

7.5.7 Type extension
7.5.7.1 Extensible, extended, and abstract types

A derived type, other than the type C_PTR or C_FUNPTR from the intrinsic module ISO__C_ BINDING, that
does not have the BIND attribute or the SEQUENCE attribute is an extensible type.

A type with the EXTENDS attribute is an extended type; its parent type is the type named in the EXTENDS
type-attr-spec.

NOTE 1
The name of the parent type might be a local name introduced via renaming in a USE statement.

An extensible type that does not have the EXTENDS attribute is an extension type of itself only. An extended
type is an extension of itself and of all types for which its parent type is an extension.

An abstract type is a type that has the ABSTRACT attribute.

NOTE 2

The DEFERRED attribute (7.5.5) defers the implementation of a type-bound procedure to extensions of
the type; it can appear only in an abstract type. The dynamic type of an object cannot be abstract;
therefore, a deferred type-bound procedure cannot be invoked. An extension of an abstract type need not
be abstract if it has no deferred type-bound procedures. A short example of an abstract type is:

TYPE, ABSTRACT :: FILE_HANDLE
CONTAINS
PROCEDURE (OPEN_FILE) , DEFERRED, PASS(HANDLE) :: OPEN

END TYPE

For a more elaborate example see C.3.4.

7.5.7.2 Inheritance

An extended type includes all of the type parameters, all of the components, and the nonoverridden (7.5.7.3)
type-bound procedures of its parent type. These are inherited by the extended type from the parent type. They
retain all of the attributes that they had in the parent type. Additional type parameters, components, and
procedure bindings may be declared in the derived-type definition of the extended type.

NOTE 1

Inaccessible components and bindings of the parent type are also inherited, but they remain inaccessible in
the extended type. Inaccessible entities occur if the type being extended is accessed via use association and
has a private entity.

NOTE 2

An extensible derived type is not required to have any components, bindings, or parameters; an extended
type is not required to have more components, bindings, or parameters than its parent type.

13/22-007r1 83

SO~ W N

~

9

24
25

J3/22-007r1 WD 1539-1 2022-04-22

An extended type has a scalar, nonpointer, nonallocatable, parent component with the type and type parameters
of the parent type. The name of this component is the parent type name. If the extended type is defined in a
module, the parent component has the accessibility of the parent type in the module in which the parent type
was defined. Components of the parent component are inheritance associated (19.5.4) with the corresponding
components inherited from the parent type. An ancestor component of a type is the parent component of the
type or an ancestor component of the parent component.

If a generic binding specified in a type definition has the same generic-spec as an inherited binding, it extends
the generic interface and shall satisfy the requirements specified in 15.4.3.4.5.

NOTE 3

A component or type parameter declared in an extended type cannot have the same name as any accessible
component or type parameter of its parent type.

NOTE 4
For example:
TYPE POINT ! A base type
REAL :: X, Y
END TYPE POINT
TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
! Components X and Y, and component name POINT, inherited from parent
INTEGER :: COLOR
END TYPE COLOR_POINT

7.5.7.3 Type-bound procedure overriding

1 If a specific type-bound procedure specified in a type definition has the same binding name as an accessible

type-bound procedure from the parent type then the binding specified in the type definition overrides the one
from the parent type.

2 The overriding and overridden type-bound procedures shall satisfy the following conditions.

e Either both shall have a passed-object dummy argument or neither shall.

e If the overridden type-bound procedure is pure then the overriding one shall also be pure.

e If the overridden type-bound procedure is simple then the overriding one shall also be simple.
o Either both shall be elemental or neither shall.

e They shall have the same number of dummy arguments.

¢ Passed-object dummy arguments, if any, shall correspond by name and position.

e Dummy arguments that correspond by position shall have the same names and characteristics, except for
the type of the passed-object dummy arguments.

o Either both shall be subroutines or both shall be functions having the same result characteristics (15.3.3).
 If the overridden type-bound procedure is PUBLIC then the overriding one shall not be PRIVATE.

3 A binding of a type and a binding of an extension of that type correspond if the latter binding is the same binding

as the former, overrides a corresponding binding, or is an inherited corresponding binding.

NOTE 1
The following is an example of procedure overriding, expanding on the example in 7.5.5, NOTE 3.

TYPE, EXTENDS (POINT) :: POINT_3D

REAL :: Z
CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH
END TYPE POINT_3D

84 J3/22-007r1

[I E) B OV

~

10

11

12

13

14

15
16
17

18
19

20

21
22

23
24
25
26

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 1 (cont.)

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_3D_LENGTH (A, B)
CLASS (POINT_3D), INTENT (IN) :: A
CLASS (POINT), INTENT (IN) :: B
SELECT TYPE(B)
CLASS IS(POINT_3D)
POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%Y-BYY)**2 + (A%Z-B%AZ)**2)
RETURN
END SELECT
PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect.’
STOP
END FUNCTION POINT_3D_LENGTH

7.5.8 Derived-type values

The component value of

e a pointer component is its pointer association,

« an allocatable component is its allocation status and, if it is allocated, its dynamic type and type parameters,
bounds and value, and

e a nonpointer nonallocatable component is its value.

The set of values of a particular derived type consists of all possible sequences of the component values of its
components.

7.5.9 Derived-type specifier

A derived-type specifier is used in several contexts to specify a particular derived type and type parameters.
R754 derived-type-spec is type-name [(type-param-spec-list) |

R755 type-param-spec is [keyword = | type-param-value

C795 (R754) type-name shall be the name of an accessible derived type.

C796 (R754) type-param-spec-list shall appear only if the type is parameterized.

C797 (R754) There shall be at most one type-param-spec corresponding to each parameter of the type. If a
type parameter does not have a default value, there shall be a type-param-spec corresponding to that
type parameter.

C798 (R755) The keyword= shall not be omitted from a type-param-spec unless the keyword= has been omitted
from each preceding type-param-spec in the type-param-spec-list.

C799 (R755) Each keyword shall be the name of a parameter of the type.

C7100 (R755) An asterisk shall not be used as a type-param-value in a type-param-spec except in the declaration
of a dummy argument or associate name or in the allocation of a dummy argument.

Type parameter values that do not have type parameter keywords specified correspond to type parameters in type
parameter order (7.5.3.2). If a type parameter keyword appears, the value corresponds to the type parameter
named by the keyword. If necessary, the value is converted according to the rules of intrinsic assignment (10.2.1.3)
to a value of the same kind as the type parameter.

13/22-007r1 85

10

11

12

13
14

15
16
17

18
19

20

21
22

23
24
25

26
27

28

29
30
31
32
33
34
35

36
37

J3/22-007r1 WD 1539-1 2022-04-22

The value of a type parameter for which no type-param-value has been specified is its default value.

7.5.10 Construction of derived-type values

A derived-type definition implicitly defines a corresponding structure constructor that allows construction of
scalar values of that derived type. The type and type parameters of a constructed value are specified by a derived
type specifier.

R756 structure-constructor is derived-type-spec (| component-spec-list |)
R757 component-spec is [keyword =] component-data-source
R758 component-data-source is expr

or data-target
or proc-target

C7101 (R756) The derived-type-spec shall not specify an abstract type (7.5.7).
C7102 (R756) At most one component-spec shall be provided for a component.

C7103 (R756) If a component-spec is provided for an ancestor component, a component-spec shall not be provided
for any component that is inheritance associated with a subcomponent of that ancestor component.

C7104 (R756) A component-spec shall be provided for a nonallocatable component unless it has default initializ-
ation or is inheritance associated with a subcomponent of another component for which a component-spec
is provided.

C7105 (R757) The keyword= shall not be omitted from a component-spec unless the keyword= has been omitted
from each preceding component-spec in the constructor.

C7106 (R757) Each keyword shall be the name of a component of the type.

C7107 (R756) The type name and all components of the type for which a component-spec appears shall be
accessible in the scoping unit containing the structure constructor.

C7108 (R756) If derived-type-spec is a type name that is the same as a generic name, the component-spec-list
shall not be a valid actual-arg-spec-list for a function reference that is resolvable as a generic reference to
that name (15.5.5.2).

C7109 (R758) A data-target shall correspond to a data pointer component; a proc-target shall correspond to a
procedure pointer component.

C7110 (R758) A data-target shall have the same rank as its corresponding component.

NOTE 1

The form 'name(...)’ is interpreted as a generic function-reference if possible; it is interpreted as a structure-
constructor only if it cannot be interpreted as a generic function-reference.

In the absence of a component keyword, each component-data-source is assigned to the corresponding component
in component order (7.5.4.7). If a component keyword appears, the expr is assigned to the component named
by the keyword. For a nonpointer component, the declared type and type parameters of the component and
expr shall conform in the same way as for a variable and expr in an intrinsic assignment statement (10.2.1.2).
If necessary, each value of intrinsic type is converted according to the rules of intrinsic assignment (10.2.1.3) to
a value that agrees in type and type parameters with the corresponding component of the derived type. For a
nonpointer nonallocatable component, the shape of the expression shall conform with the shape of the component.

If a component with default initialization has no corresponding component-data-source, then the default initial-
ization is applied to that component. If an allocatable component has no corresponding component-data-source,

86 J3/22-007r1

N

[=) BN € I N OV)

10

11
12
13
14
15

16
17
18
19

2022-04-22 WD 1539-1 J3/22-007r1

then that component has an allocation status of unallocated.

NOTE 2

Because no parent components appear in the defined component ordering, a value for a parent component
can be specified only with a component keyword. Examples of equivalent values using types defined in
7.5.7.2, NOTE 4:

! Create values with components x = 1.0, y = 2.0, color = 3.
TYPE(POINT) :: PV = POINT(1.0, 2.0) ! Assume components of TYPE(POINT)
! are accessible here.

COLOR_POINT(point=point(1,2), color=3)
COLOR_POINT(point=PV, color=3)

! Value for parent component

! Available even if TYPE(point)

! has private components
COLOR_POINT(1, 2, 3) ! A1l components of TYPE(point)
!

! need to be accessible.

4 A structure constructor shall not appear before the referenced type is defined.

5 For a pointer component, the corresponding component-data-source shall be an allowable data-target or proc-

target for such a pointer in a pointer assignment statement (10.2.2). If the component data source is a pointer,
the association of the component is that of the pointer; otherwise, the component is pointer associated with the
component data source.

NOTE 3
For example, if the variable TEXT were declared (8.2) to be

CHARACTER, DIMENSION (1:400), TARGET :: TEXT

and BIBLIO were declared using the derived-type definition REFERENCE in 7.5.4.4, NOTE 1
TYPE (REFERENCE) :: BIBLIO
the statement

BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced &
&paper", SYNOPSIS=TEXT)

is valid and associates the pointer component SYNOPSIS of the object BIBLIO with the target object
TEXT. The keyword SYNOPSIS is required because the fifth component of the type REFERENCE is a
procedure pointer component, not a data pointer component of type character. It is not necessary to specify
a proc-target for the procedure pointer component because it has default initialization.

6 If a component of a derived type is allocatable, the corresponding constructor expression shall be a reference

to the intrinsic function NULL with no arguments, an allocatable entity of the same rank, or shall evaluate to
an entity of the same rank. If the expression is a reference to the intrinsic function NULL, the corresponding
component of the constructor has a status of unallocated.

If the component is allocatable and the expression is an allocatable entity, the corresponding component of the
constructor has the same allocation status as that allocatable entity. If it is allocated, it has the same bounds;
if a length parameter of the component is deferred, its value is the same as the corresponding parameter of the
expression. If the component is polymorphic, it has the same dynamic type and value; otherwise, it has the value
converted, if necessary, to the declared type of the component.

If the component is allocatable and the expression is not an allocatable entity, the component has an allocation
status of allocated and the same bounds as the expression; if a length parameter of the component is deferred,
its value is the same as the corresponding parameter of the expression. If the component is polymorphic, it has
the same dynamic type and value; otherwise, it has the value converted, if necessary, to the declared type of the

J3/22-007r1 87

[BN & I N OV)

10
11
12

13
14
15
16

17

18

19

20

21

22

23

24
25
26
27

28

J3/22-007r1 WD 1539-1 2022-04-22

component.

NOTE 4

This example shows a derived-type constant expression using the derived type defined in 7.5.2.1, NOTE 1:
PERSON (21, °>JOHN SMITH’)

This could also be written as

PERSON (NAME = ’>JOHN SMITH’, AGE = 21)

NOTE 5
An example constructor using the derived type GENERAL_POINT defined in 7.5.3.1, NOTE 1 is

general_point(dim=3) ([1., 2., 3. 1)

7.5.11 Derived-type operations and assignment

Intrinsic assignment of derived-type entities is described in 10.2.1. This document does not specify any intrinsic
operations on derived-type entities. Any operation on derived-type entities or defined assignment (10.2.1.4) for
derived-type entities shall be defined explicitly by a function or a subroutine, and a generic interface (7.5.5,
15.4.3.2).

7.6 Other nonintrinsic types

7.6.1 Interoperable enumerations and enum types

An interoperable enumeration is a set of interoperable enumerators, optionally together with an enum type. An
enum-def defines an interoperable enumeration. An interoperable enumerator is a named integer constant; all
the enumerators defined by a particular enum-def have the same kind. An enum type is a nonintrinsic type that
is not a derived type; it has no type parameter.

R759 enum-def is enum-def-stmt
enumerator-def-stmt
[enumerator-def-stmt | ...
end-enum-stmt

R760 enum-def-stmt is ENUM, BIND(C) [:: enum-type-name |
R761 enumerator-def-stmt is ENUMERATOR [::] enumerator-list

R762 enumerator is named-constant [= scalar-int-constant-expr |
R763 end-enum-stmt is END ENUM

C7111 (R761) If = appears in an enumerator, a double-colon separator shall appear before the enumerator-list.
R764 enum-type-spec is enum-type-name
C7112 An enum-type-name in an enum-type-spec shall be the name of a previously defined enum type.

The kind type parameter of each enumerator defined by an enum-def is the kind that is interoperable (18.3.1)
with the corresponding C enumerated type. The corresponding C enumerated type is the type that would be
declared by a C enumeration specifier (ISO/IEC 9899:2018, 6.7.2.2) that specified C enumeration constants with
the same values as those specified by the enum-def, in the same order as specified by the enum-def.

If enum-type-name appears in an enum-def, the enum-def defines the enum type with that name. An enum type

88 J3/22-007r1

10
11
12
13
14
15
16

2022-04-22 WD 1539-1 J3/22-007r1

is an interoperable type. The set of values of an enum type has a one-to-one correspondence with the set of
possible values for the integer kind of its enumerators. The internal representation of each enum type value is
the same as that of the corresponding integer.

4 An enum type specifier specifiers the type. Two data entities of enum type have the same type if they are declared
with reference to the same enum type definition.

5 The companion processor (5.5.7) shall be one that uses the same representation for the types declared by all C
enumeration specifiers that specify the same values in the same order.

NOTE 1

If a companion processor uses an unsigned type to represent a C enumerated type, the Fortran processor
will use the signed integer type of the same width for the enumeration, even though some of the values of the
C enumerators might not be representable in this signed integer type. The types of any such enumerators
will be interoperable with the type declared in the C enumeration.

NOTE 2

ISO/IEC 9899:2018 guarantees the enumeration constants fit in a C int (ISO/IEC 9899:2018, 6.7.2.2).
Therefore, the Fortran processor can evaluate all enumerator values using the integer type with kind para-
meter C_INT, and then determine the kind parameter of the integer type that is interoperable with the
corresponding C enumerated type.

NOTE 3

ISO/IEC 9899:2018 specifies that two C enumerated types are compatible only if they specify enumeration
constants with the same names and same values in the same order. This document further requires that a
C processor that is to be a companion processor of a Fortran processor use the same representation for two
C enumerated types if they both specify enumeration constants with the same values in the same order,
even if the names are different.

6 An enumerator is treated as if it were explicitly declared with the PARAMETER attribute. The enumerator is
a scalar named constant, with the value determined as follows.

(1) If scalar-int-constant-expr appears, the enumerator has the value specified by scalar-int-constant-
expr.

(2) If scalar-int-constant-expr does not appear and the enumerator is the first enumerator in enum-def,
the enumerator has the value zero.

(3) If scalar-int-constant-expr does not appear and the enumerator is not the first enumerator in enum-
def, it has the value obtained by adding one to the value of the enumerator that immediately precedes
it in the enum-def.

R765 enum-constructor is enum-type-spec (scalar-expr)
C7113 The scalar-expr in an enum-constructor shall be of type integer or be a boz-literal-constant.

7 An enum constructor produces a scalar value of the specified type, with the specified internal representation. The
value of scalar-expr shall be representable in objects of that type.

NOTE 4
Example of an interoperable enumeration definition:
ENUM, BIND(C)
ENUMERATOR :: RED = 4, BLUE = 9

ENUMERATOR YELLOW
END ENUM

The kind type parameter for this enumeration is processor dependent, but the processor is required to select

J3/22-007r1 89

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 4 (cont.)

a kind sufficient to represent the values 4, 9, and 10, which are the values of its enumerators. The following
declaration might be equivalent to the above enumeration definition.

INTEGER (SELECTED_INT_KIND (2)), PARAMETER :: RED = 4, BLUE = 9, YELLOW = 10

An entity of the same kind type parameter value can be declared using the intrinsic function KIND with
one of the enumerators as its argument, for example

INTEGER (KIND (RED)) :: X

NOTE 5

There is no difference in the effect of declaring the enumerators in multiple ENUMERATOR statements or
in a single ENUMERATOR statement. The order in which the enumerators in an enumeration definition
are declared is significant, but the number of ENUMERATOR statements is not.

NOTE 6

Here is an example of a module that defines two enum types.

Module enum_mod

Enum,Bind(C) :: myenum
Enumerator :: one=1, two, three
End Enum

Enum,Bind(C) :: flags
Enumerator :: f1 =1, f2 = 2, £f3 = 4
End Enum
Contains
Subroutine sub(a) Bind(C)
Type (myenum) ,Value :: a
Print *,a ! Prints the integer value, as if it were Print *,Int(a).
End Subroutine
End Module

Here is a simple program that uses that module and the enum constructor.

Program example
Use enum_mod

Type (myenum) :: x = one ! Assign enumerator to enum-type var.
Type(myenum) :: y = myenum(12345) ! Using the constructor.
Type (myenum) :: x2 = myenum(two) ! Constructor not needed but valid.

Call sub(x)

Call sub(three)

Call sub(myenum(-Huge (one)))
End Program

Here is an example of invalid usage.

Program invalid
Use enum_mod

Type (myenum) :: z = 12345 ! Integer expr with no enumerator.
Call sub(999) | Not type-compatible (constructor needed) .
Call sub(f1) ! Wrong enum type.

End Program

90 J3/22-007r1

S~ W

0 N o o

10

11

12

13
14

15
16
17

18
19

20

21
22

23
24

25

26
27
28

2022-04-22 WD 1539-1 J3/22-007r1

7.6.2 Enumeration types

An enumeration type is a nonintrinsic type with no type parameter. It is not a derived type and is not inter-
operable. An enumeration type definition defines the name of the type and lists all the possible values of the

type.

R766 enumeration-type-def is enumeration-type-stmt
enumeration-enumerator-stmt
[enumeration-enumerator-stmt |...
end-enumeration-type-stmt

R767 enumeration-type-stmt is ENUMERATION TYPE [[, access-spec | :: | enumeration-type-name
CT7114 An access-spec on an enumeration-type-stmt shall only appear in the specification part of a module.
R768 enumeration-enumerator-stmt is ENUMERATOR [:: | enumerator-name-list

R769 end-enumeration-type-stmt is END ENUMERATION TYPE [enumeration-type-name |

C7115 If enumeration-type-name appears on an END ENUMERATION TYPE statement, it shall be the same
as on the ENUMERATION TYPE statement.

The access-spec on an ENUMERATION TYPE statement specifies the accessibility of the enumeration-type-
name and the default accessibility of its enumerators. The accessibility of an enumerator may be confirmed or
overridden by an access-stmit.

Each enumerator in the definition is a scalar named constant of the enumeration type. The order of the enumerator
names in the definition defines the ordinal position of each enumerator.

R770 enumeration-type-spec is enumeration-type-name

C7116 The enumeration-type-name in an enumeration-type-spec shall be the name of a previously defined enu-
meration type.

An enumeration type specifier specifiers the type. Two data entities of enumeration type have the same type if
they are declared with reference to the same enumeration type definition.

R771 enumeration-constructor is enumeration-type-spec (scalar-int-expr)

An enumeration constructor produces the scalar value of the enumeration type whose ordinal position is the value
of the scalar-int-expr. The scalar-int-expr shall have a value that is positive and less than or equal to the number
of enumerators in the enumeration type’s definition.

NOTE 1

Here is an example of a module defining two enumeration types.

Module enumeration_mod
Enumeration Type :: v_value
Enumerator :: v_one, v_two, v_three
Enumerator v_four
End Enumeration Type
Enumeration Type :: w_value
Enumerator :: wl, w2, w3, w4, wb, wendsentinel
End Enumeration Type
Contains
Subroutine sub(a)
Type(v_value) ,Intent(In) :: a
Print 1,a ! Acts similarly to Print *,Int(a).
1 Format (’A has ordinal value ’,IO0)

13/22-007r1 91

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1 (cont.)

End Subroutine
Subroutine wcheck(w)
Type (w_value) ,Intent(In) :: w
Select Case(w)
Case(wl)
Print *,’wl selected’
Case (w2:wd)
Print *,’0One of w2...w4 selected’
Case (wendsentinel)
Stop ’Invalid w selected’
Case Default
Stop ’Unrecognized w selected’
End Select
End Subroutine
End Module

Here is an example of a program using that module.
Program example

Use enumeration_mod
Type(v_value) :: x = v_one

Type(v_value) :: y = v_value(2) ! Explicit constructor producing v_two.
Type(v_value) :: z,nz ! Initially undefined.

Call sub(x)

Call sub(v_three)

z = v_value(1) ! First value.

Do
If (z==Huge(x)) Write (*,’(A)’,Advance=’No’) ’ Huge:’
Call sub(z)
nz = Next(z)
If (z==nz) Exit
zZ = nz

End Do

End Program

Here is an example showing some invalid usages of enumerations.
Program invalid

Use enumeration_mod
Type(v_value) :: a, b

a=1 ! INVALID - wrong type (INTEGER).
b =wl ! INVALID - wrong enumeration type.
Print *,a ! INVALID - list-directed i/o not available.

End Program

An enumeration type can be used to declare components, for example:

Module example2
Use enumeration_mod
Type vw
Type(v_value) v
Type (w_value) w
End Type
Contains

92 J3/22-007r1

10
11

12

13
14

15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 1 (cont.)

Subroutine showme(ka)
Type(vw) ,Intent(In) :: ka
Print 1,ka
1 Format (1X,’v ordinal is ’,I0,’, w ordinal is ’,IO0)
End Subroutine
End Module

7.7 Binary, octal, and hexadecimal literal constants

A binary, octal, or hexadecimal constant (boz-literal-constant) is a sequence of digits that represents an ordered
sequence of bits. Such a constant has no type.

R772 boz-literal-constant is binary-constant
or octal-constant
or hex-constant

R773 binary-constant is B’ digit | digit] ...’
or B digit [digit] ... "

C7117 (R773) digit shall have one of the values 0 or 1.

R774 octal-constant is O’ digit [digit] ... °
or O " digit [digit] ... "

C7118 (R774) digit shall have one of the values 0 through 7.

R775 hex-constant is 7’ hex-digit | hex-digit] ... ?
or 7" hex-digit | hex-digit | ... "

R776 hex-digit is digit
or A
or B
or C
or D
or E
or F

The hez-digits A through F represent the numbers ten through fifteen, respectively; they may be represented
by their lower-case equivalents. Each digit of a boz-literal-constant represents a sequence of bits, according to
its numerical interpretation, using the model of 16.3, with z equal to one for binary constants, three for octal
constants or four for hexadecimal constants. A boz-literal-constant represents a sequence of bits that consists of
the concatenation of the sequences of bits represented by its digits, in the order the digits are specified. The
positions of bits in the sequence are numbered from right to left, with the position of the rightmost bit being zero.
The length of a sequence of bits is the number of bits in the sequence. The processor shall allow the position
of the leftmost nonzero bit to be at least z — 1, where z is the maximum value that could result from invoking
the intrinsic function STORAGE_SIZE (16.9.200) with an argument that is a real or integer scalar of any kind
supported by the processor.

C7119 (R772) A boz-literal-constant shall appear only as a data-stmt-constant in a DATA statement, as the
initialization for a named constant or variable of type integer or real, as the ezpr in an intrinsic assignment
whose wvariable is of type integer or real, as an ac-value in an array constructor with a type-spec that
specifies type integer or real, as the scalar-expr in an enum constructor, or where explicitly allowed in
16.9 as an actual argument of an intrinsic procedure.

13/22-007r1 93

10
11

12

13
14

15

16
17

18
19
20

21
22
23

24

25

26

27

28
29

30
31

32
33
34

35
36
37
38

39

J3/22-007r1 WD 1539-1 2022-04-22

7.8

Construction of array values

An array constructor constructs a rank-one array value from a sequence of scalar values, array values, and implied

DO loops.
R777 array-constructor is (/ ac-spec /)
or Ibracket ac-spec rbracket
R778 ac-spec is type-spec ::
or [type-spec ::] ac-value-list
R779 lbracket is |
R780 rbracket is]
R781 ac-value is expr
or ac-implied-do
R782 ac-implied-do is (ac-value-list , ac-implied-do-control)
R783 ac-implied-do-control is [integer-type-spec :: | ac-do-variable = scalar-int-expr ,
B scalar-int-expr [, scalar-int-expr |
R784 ac-do-variable is do-variable
C7120 (R778) If type-spec is omitted, each ac-value expression in the array-constructor shall have the same

Cr121

C7122

C7123
C7124
C7125
C7126

C7127

C7128

declared type and kind type parameters.

(R778) If type-spec specifies an intrinsic type or enum type, each ac-value expression in the array-
constructor shall be of a type that is in type conformance with a variable of type type-spec as specified
in Table 10.8, or be a boz-literal-constant.

(R778) If type-spec specifies a derived type, the declared type of each ac-value expression in the array-
constructor shall be that derived type and shall have the same kind type parameter values as specified

by type-spec.

(R778) If type-spec specifies an enumeration type, each ac-value shall be of that type.

(R781) An ac-value shall not be unlimited polymorphic.

(R781) The declared type of an ac-value shall not be abstract.

If an ac-value is a boz-literal-constant, type-spec shall appear and shall specify type integer or real.

If an ac-value is a boz-literal-constant and type-spec specifies type real, the boz-literal-constant shall be a
valid internal representation for the specified kind of real.

(R782) The ac-do-variable of an ac-implied-do that is in another ac-implied-do shall not appear as the
ac-do-variable of the containing ac-implied-do.

If type-spec is omitted, corresponding length type parameters of the declared type of each ac-value expression
shall have the same value; in this case, the declared type and type parameters of the array constructor are those
of the ac-value expressions.

If type-spec appears, it specifies the declared type and type parameters of the array constructor. Each ac-value
expression in the array-constructor shall be compatible with intrinsic assignment to a variable of this type and
type parameters. Each value is converted to the type and type parameters of the array-constructor in accordance
with the rules of intrinsic assignment (10.2.1.3).

The dynamic type of an array constructor is the same as its declared type.

94

13/22-007r1

[o) IS, B V)

~

2022-04-22 WD 1539-1 J3/22-007r1

The character length of an ac-value in an ac-implied-do whose iteration count is zero shall not depend on the
value of the ac-do-variable and shall not depend on the value of an expression that is not a constant expression.

If an ac-value is a scalar expression, its value specifies an element of the array constructor. If an ac-value is
an array expression, the values of the elements of the expression, in array element order (9.5.3.3), specify the
corresponding sequence of elements of the array constructor. If an ac-value is an ac-implied-do, it is expanded to
form a sequence of elements under the control of the ac-do-variable, as in the DO construct (11.1.7.4).

For an ac-implied-do, the loop initialization and execution is the same as for a DO construct. The scope and
attributes of an ac-do-variable are described in 19.4.

An empty sequence forms a zero-sized array.

NOTE 1

A one-dimensional array can be reshaped into any allowable array shape using the intrinsic function RE-
SHAPE (16.9.175). An example is:

X=(/ 3.2, 4.01, 6.5 /)
Y = RESHAPE (SOURCE = [2.0, [4.5, 4.5], X], SHAPE=[3, 2 1)

This results in Y having the 3 x 2 array of values:

2.0 3.2

4.5 4.01

4.5 6.5
NOTE 2

Examples of array constructors containing an implied DO are:
(/ (1, T =1, 1075) /)

and

[3.6, (3.6 /I, I=1,0N)]

NOTE 3

Using the type definition for PERSON in 7.5.2.1, NOTE 1, an example of the construction of a derived-type
array value is:

[PERSON (40, ’SMITH’), PERSON (20, ’JONES’) 1]

NOTE 4

Using the type definition for LINE in 7.5.4.2, NOTE 1, an example of the construction of a derived-type
scalar value with a rank-two array component is:

LINE (RESHAPE ([0.0, 0.0, 1.0, 2.01, [2, 21), 0.1, 1)

The intrinsic function RESHAPE is used to construct a value that represents a solid line from (0, 0) to (1,
2) of width 0.1 centimeters.

NOTE 5

Examples of zero-size array constructors are:

[INTEGER ::]
[(I,I=1,0]1

13/22-007r1 95

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 6
An example of an array constructor that specifies a length type parameter:

[CHARACTER(LEN=7) :: ’Takata’, ’Tanaka’, ’Hayashi’]

In this constructor, without the type specification, it would have been necessary to specify all of the constants
with the same character length.

96 J3/22-007r1

~N o o A~ W

[ee]

10
11

12

13

14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

38
39

40

2022-04-22 WD 1539-1 J3/22-007r1

8 Attribute declarations and specifications

8.1 Attributes of procedures and data objects

Every data object has a type and rank and can have type parameters and other properties that determine the
uses of the object. Collectively, these properties are the attributes of the object. The declared type of a named
data object is either specified explicitly in a type declaration statement or determined implicitly by the first letter
of its name (8.7). The attributes listed in 8.5 can be specified in a type declaration statement or individually in
separate specification statements.

A function has a type and rank and can have type parameters and other attributes that determine the uses of
the function. The type, rank, and type parameters are the same as those of the function result.

A subroutine does not have a type, rank, or type parameters, but can have other attributes that determine the
uses of the subroutine.

8.2 Type declaration statement

R801 type-declaration-stmt is declaration-type-spec [[, attr-spec | ... :: | entity-decl-list

The type declaration statement specifies the declared type of the entities in the entity declaration list. The type
and type parameters are those specified by declaration-type-spec, except that the character length type parameter
can be overridden for an entity by the appearance of * char-length in its entity-decl.

R802 attr-spec is access-spec
or ALLOCATABLE
or ASYNCHRONOUS
or CODIMENSION Ilbracket coarray-spec rbracket
or CONTIGUOUS
or DIMENSION (array-spec)
or EXTERNAL
or INTENT (intent-spec)
or INTRINSIC
or language-binding-spec
or OPTIONAL
or PARAMETER
or POINTER
or PROTECTED
or rank-clause
or SAVE
or TARGET
or VALUE
or VOLATILE

C801 (R801) The same attr-spec shall not appear more than once in a given type-declaration-stmdt.

C802 (R801) If a language-binding-spec with a NAME= specifier appears, the entity-decl-list shall consist of a
single entity-decl.

C803 (R801) If a language-binding-spec is specified, the entity-decl-list shall not contain any procedure names.

J3/22-007r1 97

A W N =

o N o o

20
21
22

23

24
25

26
27

28

29
30
31

32
33
34

35
36

J3/22-007r1 WD 1539-1 2022-04-22

2 The type declaration statement also specifies the attributes whose keywords appear in the atir-spec, except that
the DIMENSION attribute can be specified or overridden for an entity by the appearance of array-spec in its
entity-decl, and the CODIMENSION attribute can be specified or overridden for an entity by the appearance of
coarray-spec in its entity-decl.

R803

C804
C805
C806
C807

C808

C809

R804
C810
R805

R806

C811

C812

C813

entity-decl is object-name [(array-spec) | M
W [lbracket coarray-spec rbracket | M
B [* char-length | | initialization |
or function-name [* char-length |

(R803) If the entity is not of type character, * char-length shall not appear.

A type-param-value in a char-length in an entity-decl shall be a colon, asterisk, or specification expression.
(R801) If initialization appears, a double-colon separator shall appear before the entity-decl-list.

(R801) If the PARAMETER keyword appears, initialization shall appear in each entity-decl.

(R803) An initialization shall not appear if object-name is a dummy argument, a function result, an object
in a named common block unless the type declaration is in a block data program unit, an object in blank common, an
allocatable variable, or an automatic data object.

(R803) The function-name shall be the name of an external function, an intrinsic function, a dummy
function, a procedure pointer, or a statement function.

object-name is name
(R804) The object-name shall be the name of a data object.
initialization is = constant-expr

or => null-init

or => initial-data-target
null-init is function-reference

(R803) If => appears in initialization, the entity shall have the POINTER attribute. If = appears in
initialization, the entity shall not have the POINTER attribute.

(R803) If initial-data-target appears, object-name shall be data-pointer-initialization compatible with it
(7.5.4.6).

(R806) The function-reference shall be a reference to the intrinsic function NULL with no arguments.

3 A name that identifies a specific intrinsic function has a type as specified in 16.8. An explicit type declaration statement is not
required; however, it is permitted. Specifying a type for a generic intrinsic function name in a type declaration
statement has no effect.

4 If initialization appears for a nonpointer entity,

o its type and type parameters shall conform as specified for intrinsic assignment (10.2.1.2);

e if the entity has implied shape, the rank of initialization shall be the same as the rank of the entity;

o if the entity does not have implied shape, initialization shall either be scalar or have the same shape as the

entity.

NOTE 1

Examples of type declaration statements:

REAL A (10)
LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2
COMPLEX :: CUBE_ROOT = (-0.5, 0.866)

98

13/22-007r1

© 00 N o o

10

11
12
13
14
15
16
17
18

19
20

21
22

23

24

25
26

27

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 1 (cont.)

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)

INTEGER (SHORT) K ! Range at least -9999 to 9999.

TYPEOF (K) K_TMP ! Also has range at least -9999 to 9999.
REAL (KIND (0.0D0)) B1

REAL (KIND = 2) B2

COMPLEX (KIND = KIND (0.0D0O)) :: C

CHARACTER (LEN = 10, KIND = 2) TEXT2

CHARACTER CHAR, STRING *20

TYPE (PERSON) :: CHAIRMAN

TYPE(NODE) , POINTER :: HEAD => NULL ()

TYPE (humongous_matrix (k=8, d=1000)) :: MAT

CLASSOF (MAT), POINTER :: MAT_REF ! Same declared type and type parameters as MAT.

(The last line above uses a type definition from 7.5.3.1, NOTE 1.)

8.3 Automatic data objects

An automatic data object is a nondummy data object with a type parameter or array bound that depends on
the value of a specification-expr that is not a constant expression.

C814 An automatic data object shall not have the SAVE attribute.

If a type parameter in a declaration-type-spec or in a char-length in an entity-decl for a local variable of a
subprogram or BLOCK construct is defined by an expression that is not a constant expression, the type parameter
value is established on entry to a procedure defined by the subprogram, or on execution of the BLOCK statement,
and is not affected by any redefinition or undefinition of the variables in the expression during execution of the
procedure or BLOCK construct.

8.4 Initialization

The appearance of initialization in an entity-decl for an entity without the PARAMETER attribute specifies that
the entity is a variable with explicit initialization. Explicit initialization alternatively may be specified in a DATA
statement unless the variable is of a derived type for which default initialization is specified. If initialization is
= constant-expr, the variable is initially defined with the value specified by the constant-expr; if necessary, the
value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that agrees in type, type
parameters, and shape with the variable. A variable, or part of a variable, shall not be explicitly initialized more
than once in a program. If the variable is an array, it shall have its shape specified in either the type declaration
statement or a previous attribute specification statement in the same scoping unit.

If null-init appears, the initial association status of the object is disassociated. If initial-data-target appears, the
object is initially associated with the target.

Explicit initialization of a variable that is not in a common block implies the SAVE attribute, which may be confirmed
by explicit specification.

8.5 Attributes

8.5.1 Attribute specification

An attribute may be explicitly specified by an attr-spec in a type declaration statement or by an attribute
specification statement (8.6). The following constraints apply to attributes.

C815 An entity shall not be explicitly given any attribute more than once in a scoping unit.

13/22-007r1 99

10

11
12
13

14
15
16

17

18

19

20
21

22
23
24

25
26

27
28

J3/22-007r1 WD 1539-1 2022-04-22

C816 An array-spec for a nonallocatable nonpointer function result shall be an explicit-shape-spec-list.

8.5.2 Accessibility attribute
The accessibility attribute specifies the accessibility of an entity via a particular identifier.

R807 access-spec is PUBLIC
or PRIVATE

C817 An access-spec shall appear only in the specification-part of a module.

An access-spec in a type declaration statement specifies the accessibility of the names of all the entities declared
by that statement. An access-spec in a derived-type-stmt specifies the accessibility of the derived type name. An
access-spec in an enumeration-type-stmt specifies the accessibility of the enumeration type name, and the default
accessibility of its enumerators. Accessibility can also be specified by an access-stmt.

An identifier that is specified in a module or is accessible in a module by use association has either the PUB-
LIC attribute or PRIVATE attribute. An identifier whose accessibility is not explicitly specified has default
accessibility (8.6.1).

The default accessibility attribute for a module is PUBLIC unless it has been changed by a PRIVATE statement.
Only an identifier that has the PUBLIC attribute in that module is available to be accessed from that module
by use association.

NOTE 1

An identifier can only be accessed by use association if it has the PUBLIC attribute in the module from
which it is accessed. It can nonetheless have the PRIVATE attribute in a module in which it is accessed by
use association, and therefore not be available by use association from that module.

NOTE 2
An example of an accessibility specification is:

REAL, PRIVATE :: X, Y, Z

8.5.3 ALLOCATABLE attribute

A variable with the ALLOCATABLE attribute is a variable for which space is allocated during execution.

NOTE 1

Only variables and components can have the ALLOCATABLE attribute. The result of referencing a func-
tion whose result variable has the ALLOCATABLE attribute is a value that does not itself have the
ALLOCATABLE attribute.

8.5.4 ASYNCHRONOUS attribute

An entity with the ASYNCHRONOUS attribute is a variable, and may be subject to asynchronous input/output
or asynchronous communication.

The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if

e the variable is a dummy argument or appears in an executable statement or specification expression in that
scoping unit, and

o any statement of the scoping unit is executed while the variable is a pending input/output storage sequence
affector (12.6.2.5) or a pending communication affector (18.10.4).

Use of a variable in an asynchronous data transfer statement can imply the ASYNCHRONOUS attribute; see
12.6.2.5.

100 J3/22-007r1

SO~ W N

10

11

12

13

14

15
16

17

18

19

20
21

22
23

24

25

26
27

28
29

2022-04-22 WD 1539-1 J3/22-007r1

An object with the ASYNCHRONOUS attribute may be associated with an object that does not have the
ASYNCHRONOUS attribute, including by use (14.2.2) or host association (19.5.1.4). If an object that is not a
local variable of a BLOCK construct is specified to have the ASYNCHRONOUS attribute in the specification-
part of the construct, the object has the attribute within the construct even if it does not have the attribute
outside the construct. If an object has the ASYNCHRONOUS attribute, then all of its subobjects also have the
ASYNCHRONOUS attribute.

NOTE 1

The ASYNCHRONOUS attribute specifies the variables that might be associated with a pending in-
put/output storage sequence (the actual memory locations on which asynchronous input/output is being
performed) while the scoping unit is in execution. This information could be used by the compiler to disable
certain code motion optimizations.

8.5.5 BIND attribute for data entities

The BIND attribute for a variable or common block specifies that it is capable of interoperating with a C variable
whose name has external linkage (18.9).

R808 language-binding-spec is BIND (C [, NAME = scalar-default-char-constant-expr)
C818 An entity with the BIND attribute shall be a common block, variable, type, or procedure.
C819 A variable with the BIND attribute shall be declared in the specification part of a module.
C820 A variable with the BIND attribute shall be interoperable (18.3).

C821 Each variable of a common block with the BIND attribute shall be interoperable.

If the value of the scalar-default-char-constant-expr after discarding leading and trailing blanks has nonzero
length, it shall be valid as an identifier on the companion processor.

NOTE 1

ISO/IEC 9899:2018 provides a facility for creating C identifiers whose characters are not restricted to the
C basic character set. Such a C identifier is referred to as a universal character name (ISO/IEC 9899:2018,
6.4.3). The name of such a C identifier might include characters that are not part of the representation
method used by the processor for default character. If so, the C entity cannot be referenced from Fortran.

The BIND attribute for a common block implies the SAVE attribute, which may be confirmed by explicit specification.

8.5.6 CODIMENSION attribute
8.5.6.1 General

The CODIMENSION attribute specifies that an entity is a coarray. The coarray-spec specifies its corank or
corank and cobounds.

R809 coarray-spec is deferred-coshape-spec-list
or explicit-coshape-spec

(C822 The sum of the rank and corank of an entity shall not exceed fifteen.
C823 A coarray shall be a component or a variable that is not a function result.

(C824 A coarray shall not be of type C_PTR or C_FUNPTR from the intrinsic module ISO__C_BINDING
(18.3.2), or of type TEAM_TYPE from the intrinsic module ISO_ FORTRAN ENV (16.10.2.34).

C825 An entity whose type has a coarray potential subobject component shall not be a pointer, shall not be a
coarray, and shall not be a function result.

J3/22-007r1 101

1

10
11

12

13
14

15

16
17

18
19

20

J3/22-007r1 WD 1539-1 2022-04-22

C826 A coarray or an object with a coarray potential subobject component shall be an associate name, a
dummy argument, or have the ALLOCATABLE or SAVE attribute.

NOTE 1

A coarray is permitted to be of a derived type with pointer or allocatable components. The target of such
a pointer component is always on the same image as the pointer.

NOTE 2

This requirement for the SAVE attribute has the effect that automatic coarrays are not permitted; for
example, the coarray WORK in the following code fragment is not valid.

SUBROUTINE SOLVE3(N,A,B)

INTEGER :: N
REAL : AN [x], B
REAL 11 WORK(N) [*] ! Not permitted

If this were permitted, it would require an implicit synchronization on entry to the procedure.

Explicit-shape coarrays that are declared in a subprogram and are not dummy arguments are required to
have the SAVE attribute because otherwise they might be implemented as if they were automatic coarrays.

NOTE 3

Examples of CODIMENSION attribute specifications are:
REAL W(100,100) [0:2,%] ! Explicit-shape coarray
REAL, CODIMENSION[*] :: X ! Scalar coarray
REAL, CODIMENSION[3,*] :: Y(:) ! Assumed-shape coarray
REAL, CODIMENSION[:],ALLOCATABLE :: Z(:,:) ! Allocatable coarray

8.5.6.2 Allocatable coarray

A coarray with the ALLOCATABLE attribute has a specified corank, but its cobounds are determined by
allocation or argument association.

R810 deferred-coshape-spec is

C827 A coarray with the ALLOCATABLE attribute shall have a coarray-spec that is a deferred-coshape-spec-
list.

The corank of an allocatable coarray is equal to the number of colons in its deferred-coshape-spec-list.

The cobounds of an unallocated allocatable coarray are undefined. No part of such a coarray shall be referenced
or defined; however, the coarray may appear as an argument to an intrinsic inquiry function as specified in 16.1.

The cobounds of an allocated allocatable coarray are those specified when the coarray is allocated.

The cobounds of an allocatable coarray are unaffected by any subsequent redefinition or undefinition of the
variables on which the cobounds’ expressions depend.

8.5.6.3 Explicit-coshape coarray

An explicit-coshape coarray is a named coarray that has its corank and cobounds declared by an explicit-coshape-
spec.

R811 explicit-coshape-spec is [[lower-cobound : | upper-cobound, ... &
W [lower-cobound : | *

C828 A nonallocatable coarray shall have a coarray-spec that is an explicit-coshape-spec.

102 J3/22-007r1

(S

© 0 N O

11
12
13
14

15

16
17

18
19

20

21
22
23
24
25
26
27
28
29

30
31

32
33
34

35
36

37
38

39

40
41
42

43
44

2022-04-22 WD 1539-1 J3/22-007r1

The corank is equal to one plus the number of upper-cobounds.
R812 lower-cobound is specification-expr
R813 wupper-cobound is specification-expr

C829 (R811) A lower-cobound or upper-cobound that is not a constant expression shall appear only in a sub-
program, BLOCK construct, or interface body.

If an explicit-coshape coarray is a local variable of a subprogram or BLOCK construct and has cobounds that are
not constant expressions, the cobounds are determined on entry to a procedure defined by the subprogram, or
on execution of the BLOCK statement, by evaluating the cobounds expressions. The cobounds of such a coarray
are unaffected by the redefinition or undefinition of any variable during execution of the procedure or BLOCK
construct.

The values of each lower-cobound and upper-cobound determine the cobounds of the coarray along a particular
codimension. The cosubscript range of the coarray in that codimension is the set of integer values between and
including the lower and upper cobounds. If the lower cobound is omitted, the default value is 1. The upper
cobound shall not be less than the lower cobound.

8.5.7 CONTIGUOUS attribute

C830 An entity with the CONTIGUOUS attribute shall be an array pointer, an assumed-shape array, or an
assumed-rank dummy data object.

The CONTIGUOUS attribute specifies that an assumed-shape array is contiguous, that an array pointer can
only be pointer associated with a contiguous target, or that an assumed-rank dummy data object is contiguous.

2 An object is contiguous if it is

(1) an object with the CONTIGUOUS attribute,

2 a nonpointer whole array that is not assumed-shape,

w

an assumed-shape array that is argument associated with an array that is contiguous,
an assumed-rank dummy data object whose effective argument is contiguous,

an array allocated by an ALLOCATE statement,

a pointer associated with a contiguous target, or

N N N N TN/
U
oo o=

a nonzero-sized array section (9.5.3) provided that
(a) its base object is contiguous,
(b) it does not have a vector subscript,

(¢) the array element ordering of the elements of the section is the same as the array element
ordering of those elements of the base object,

(d) in the array element ordering of the base object, every element of the base object that is not
an element of the section either precedes every element of the section or follows every element
of the section,

(e) if the array is of type character and a substring-range appears, the substring-range specifies all
of the characters of the parent-string (9.4.1),

(f) only its final part-ref has nonzero rank, and
(g) it is not the real or imaginary part (9.4.4) of an array of type complex.

3 An object is not contiguous if it is an array subobject, and

o the object has two or more elements,
o the elements of the object in array element order are not consecutive in the elements of the base object,
o the object is not of type character with length zero, and

o the object is not of a derived type that has no ultimate components other than zero-sized arrays and
characters with length zero.

J3/22-007r1 103

1

10
11
12
13
14
15
16

J3/22-007r1 WD 1539-1 2022-04-22

4 Tt is processor dependent whether any other object is contiguous.

NOTE 1

If a derived type has only one component that is not zero-sized, it is processor dependent whether a structure
component of a contiguous array of that type is contiguous. That is, the derived type might contain padding
on Some Processors.

NOTE 2

The CONTIGUOUS attribute makes it easier for a processor to enable optimizations that depend on
the memory layout of the object occupying a contiguous block of memory. Examples of CONTIGUOUS
attribute specifications are:

REAL, POINTER, CONTIGUOUS :: SPTR(:)
REAL, CONTIGUOUS, DIMENSION(:,:) :: D

NOTE 3

If an assumed-shape or assumed-rank dummy argument has the CONTIGUOUS attribute, there is no
requirement for the actual argument to be contiguous. This is the same as for dummy arguments that have
explicit shape or assumed size. The dummy argument will be contiguous even when the actual argument
is not.

8.5.8 DIMENSION attribute
8.5.8.1 General

1 The DIMENSION attribute specifies that an entity is scalar, assumed-rank, or an array. An assumed-rank
dummy data object has the rank, shape, and size of its effective argument; otherwise, the rank or rank and shape
is specified by its RANK clause or its array-spec.

R814 dimension-spec is DIMENSION (array-spec)

R815 array-spec is explicit-shape-spec-list
or explicit-shape-bounds-spec
or assumed-shape-spec-list
or assumed-shape-bounds-spec
or deferred-shape-spec-list
or assumed-size-spec
or implied-shape-spec
or implied-shape-or-assumed-size-spec
or assumed-rank-spec

NOTE 1
The maximum rank of an entity is fifteen minus the corank.

NOTE 2
Examples of DIMENSION attribute specifications are:

SUBROUTINE EX (N, A, B)
REAL, DIMENSION (N, 10) :: W
REAL, DIMENSION (SHAPE (W)) :: X
REAL, DIMENSION ([1, 2, 3] :: 10) :: Y
REAL, DIMENSION (LBARRAY:UBARRAY) :: Z
REAL :: ZZ (LBARRAY+2:UBARRAY+2)
REAL A (:), B (0:)
REAL C (LBARRAY:)

Automatic explicit-shape array

Array with the same shape as W

Same as DIMENSION (1:10, 2:10, 3:10)
Upper/lower bounds provided by arrays
Upper/lower bounds provided by arrays
Assumed-shape arrays

Specified lower bounds, assumed shape

104 J3/22-007r1

10

11

12
13

14
15
16

17
18

19
20
21
22

23
24
25
26

27
28
29
30
31

32

33
34

35

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 2 (cont.)

REAL, POINTER :: D (:, :)

REAL, DIMENSION (:), POINTER :: P
REAL, ALLOCATABLE, DIMENSION (:) :: E
REAL, PARAMETER :: V(0:%) = [0.1, 1.1]

Array pointer

Array pointer
Allocatable array
Implied-shape array

8.5.8.2 Explicit-shape array

R816 explicit-shape-spec is [lower-bound : | upper-bound
R817 lower-bound is specification-expr
R818 upper-bound is specification-expr

R819 explicit-shape-bounds-spec is [explicit-bounds-expr : | explicit-bounds-expr
or lower-bound : explicit-bounds-expr
or explicit-bounds-expr : upper-bound

R820 explicit-bounds-expr is int-expr

C831 An explicit-shape-spec or explicit-shape-bounds-spec whose bounds are not constant expressions shall
appear only in a subprogram, derived type definition, BLOCK construct, or interface body.

C832 If an explicit-shape-bounds-spec has two explicit-bounds-exprs, they shall have the same size.

C833 An explicit-bounds-expr shall be a restricted expression that is a rank one integer array with constant
size.

The rank of an entity declared with an explicit-shape-spec-list is equal to the number of ezplicit-shape-specs; the
rank of an entity declared with an explicit-shape-bounds-spec is equal to the size of one of the explicit-bounds-exprs.
If the rank of such an entity is nonzero, the entity is an explicit-shape array; otherwise, it is scalar.

The values of each lower-bound and upper-bound in an explicit-shape-spec determine the bounds along a particular
dimension and hence the extent in that dimension. If lower-bound is omitted, the lower bound is equal to one.

An explicit-bounds-expr that appears immediately before a colon specifies the lower bounds; otherwise, it specifies
the upper bounds. The first element specifies the bound for the first dimension, and so on. A lower-bound or
upper-bound in an explicit-shape-bounds-spec specifies the bound for every dimension of the entity. If no lower
bound is specified in an explicit-shape-bounds-spec, all the lower bounds are equal to one.

The value of a lower bound or an upper bound may be positive, negative, or zero. The subscript range of the
array in that dimension is the set of integer values between and including the lower and upper bounds, provided
the upper bound is not less than the lower bound. If the upper bound is less than the lower bound, the range is
empty, the extent in that dimension is zero, and the array is of zero size.

An explicit-shape array that is a named local variable of a subprogram or BLOCK construct may have bounds
that are not constant expressions. The bounds, and hence shape, are determined on entry to a procedure defined
by the subprogram, or on execution of the BLOCK statement, by evaluating the bounds’ expressions. The
bounds of such an array are unaffected by the redefinition or undefinition of any variable during execution of the
procedure or BLOCK construct.

8.56.8.3 Assumed-shape array

An assumed-shape array is a nonallocatable nonpointer dummy argument array that takes its shape from its
effective argument.

R821 assumed-shape-spec is [lower-bound | :

J3/22-007r1 105

10

11
12

13

14
15

16

17
18
19

20
21

22

23
24

25
26

27
28

29

30
31
32
33
34

35

36

37

38
39

J3/22-007r1 WD 1539-1 2022-04-22

R822 assumed-shape-bounds-spec is explicit-bounds-expr :

If the rank is not specified by a rank-clause, it is equal to the number of colons in the assumed-shape-spec-list,
or the size of the explicit-bounds-expr in the assumed-shape-bounds-spec. If the rank is nonzero, the entity is an
assumed-shape array; otherwise, it is scalar.

If explicit-bounds-expr appears it specifies the lower bounds for every dimension; otherwise, if lower-bound appears
it specifies the lower bound for that dimension; otherwise the lower bound is equal to one.

The extent of a dimension of an assumed-shape array dummy argument is the extent of the corresponding
dimension of its effective argument. If the lower bound value is d and the extent of the corresponding dimension
of its effective argument is s, then the value of the upper bound is s + d — 1.

8.5.8.4 Deferred-shape array

A deferred-shape array is an allocatable array or an array pointer. (An allocatable array has the ALLOCATABLE
attribute; an array pointer has the POINTER attribute.)

R823 deferred-shape-spec is

C834 An array with the POINTER or ALLOCATABLE attribute shall be declared with a rank-clause or have
an array-spec that is a deferred-shape-spec-list.

If the rank is not specified by a rank-clause, it is equal to the number of colons in the deferred-shape-spec-list.

The size, bounds, and shape of an unallocated allocatable array or a disassociated array pointer are undefined.
No part of such an array shall be referenced or defined; however, the array may appear as an argument to an
intrinsic inquiry function as specified in 16.1.

The bounds of each dimension of an allocated allocatable array are those specified when the array is allocated
or, if it is a dummy argument, when it is argument associated with an allocated effective argument.

The bounds of each dimension of an associated array pointer, and hence its shape, may be specified

o in an ALLOCATE statement (9.7.1) when the target is allocated,
o by pointer assignment (10.2.2), or

e if it is a dummy argument, by argument association with a nonpointer actual argument or an associated
pointer effective argument.

The bounds of an array pointer or allocatable array are unaffected by any subsequent redefinition or undefinition
of variables on which the bounds’ expressions depend.

8.5.8.5 Assumed-size array

An assumed-size array is a dummy argument array whose size is assumed from that of its effective argument, or
the associate name of a RANK (*) block in a SELECT RANK construct. The rank and extents may differ for
the effective and dummy arguments; only the size of the effective argument is assumed by the dummy argument.
A dummy argument is declared to be an assumed-size array by an assumed-size-spec or an implied-shape-or-
assumed-size-spec.

R824 assumed-implied-spec is [lower-bound :] *
R825 assumed-size-spec is explicit-shape-spec-list, assumed-implied-spec
(C835 An object whose array bounds are specified by an assumed-size-spec shall be a dummy data object.

C836 An assumed-size array with the INTENT (OUT) attribute shall not be polymorphic, finalizable, of a
type with an allocatable ultimate component, or of a type for which default initialization is specified.

106 J3/22-007r1

© 0o N o o

11
12
13
14
15
16

17

18
19

20
21
22

23
24
25

26

27
28
29

30

31

32

33
34
35

36

37
38
39
40

41

2022-04-22 WD 1539-1 J3/22-007r1

R826 implied-shape-or-assumed-size-spec is assumed-implied-spec

C837 An object whose array bounds are specified by an implied-shape-or-assumed-size-spec shall be a dummy
data object or a named constant.

The size of an assumed-size array is determined as follows.

e If the effective argument associated with the assumed-size dummy array is an array of any type other than
default character, the size is that of the effective argument.

e If the actual argument corresponding to the assumed-size dummy array is an array element of any type
other than default character with a subscript order value of r (9.5.3.3) in an array of size z, the size of the
dummy array is —r + 1.

o If the actual argument is a default character array, default character array element, or a default character
array element substring (9.4.1), and if it begins at character storage unit ¢ of an array with ¢ character
storage units, the size of the dummy array is MAX (INT ((¢ —t + 1)/e), 0), where e is the length of an
element in the dummy character array.

e If the actual argument is a default character scalar that is not an array element or array element substring
designator, the size of the dummy array is MAX (INT (I/e), 0), where e is the length of an element in the
dummy character array and [is the length of the actual argument.

The rank is equal to one plus the number of ezplicit-shape-specs.

An assumed-size array has no upper bound in its last dimension and therefore has no extent in its last dimension
and no shape. An assumed-size array shall not appear in a context that requires its shape.

If a list of explicit-shape-specs appears, it specifies the bounds of the first rank—1 dimensions. If lower-bound
appears it specifies the lower bound of the last dimension; otherwise that lower bound is 1. An assumed-size
array can be subscripted or sectioned (9.5.3).

If an assumed-size array has bounds that are not constant expressions, the bounds are determined on entry to
the procedure. The bounds of such an array are unaffected by the redefinition or undefinition of any variable
during execution of the procedure.

8.5.8.6 Implied-shape array

An implied-shape array is a named constant that takes its shape from the constant-expr in its declaration. A
named constant is declared to be an implied-shape array with an array-spec that is an implied-shape-or-assumed-
size-spec or an implied-shape-spec.

R827 implied-shape-spec is assumed-implied-spec, assumed-implied-spec-list
C838 An implied-shape array shall be a named constant.
The rank of an implied-shape array is the number of assumed-implied-specs in its array-spec.

The extent of each dimension of an implied-shape array is the same as the extent of the corresponding dimension
of the constant-expr. The lower bound of each dimension is lower-bound, if it appears, and 1 otherwise; the upper
bound is one less than the sum of the lower bound and the extent.

8.5.8.7 Assumed-rank entity

An assumed-rank entity is a dummy data object whose rank is assumed from its effective argument, or the
associate name of a RANK DEFAULT block in a SELECT RANK construct; this rank can be zero. The bounds
and shape of an assumed-rank entity with the ALLOCATABLE or POINTER attribute are determined as specified
in 8.5.8.4. An assumed-rank entity is declared with an array-spec that is an assumed-rank-spec.

R828 assumed-rank-spec is

J3/22-007r1 107

[o) IS B V)

~

10

11

12
13

14

15
16

17
18

19
20

21

22
23
24
25

26
27
28

29

30
31

32

33
34

35
36
37

J3/22-007r1 WD 1539-1 2022-04-22

C839

C840

C841

An assumed-rank entity shall be an associate name or a dummy data object that does not have the
CODIMENSION or VALUE attribute.

An assumed-rank variable name shall not appear in a designator or expression except as an actual
argument that corresponds to a dummy argument that is assumed-rank, the argument of the function
C_LOC or C_SIZEOF from the intrinsic module ISO__C_BINDING (18.2), the first dummy argument
of an intrinsic inquiry function, or the selector of a SELECT RANK statement.

If an assumed-size or nonallocatable nonpointer assumed-rank array is an actual argument that corres-
ponds to a dummy argument that is an INTENT (OUT) assumed-rank array, it shall not be polymorphic,
finalizable, of a type with an allocatable ultimate component, or of a type for which default initialization
is specified.

8.5.9 EXTERNAL attribute

The EXTERNAL attribute specifies that an entity is an external procedure, dummy procedure, procedure pointer,

or block data program unit.

C842

C843

C844

An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.

In an external subprogram, the EXTERNAL attribute shall not be specified for a procedure defined by
the subprogram.

In an interface body, the EXTERNAL attribute shall not be specified for the procedure declared by the
interface body.

If an external procedure or dummy procedure is used as an actual argument or is the target of a procedure pointer
assignment, it shall be declared to have the EXTERNAL attribute.

NOTE 1

The EXTERNAL attribute can be specified in a type declaration statement, by an interface body (15.4.3.2),
by an EXTERNAL statement (15.4.3.5), or by a procedure declaration statement (15.4.3.6).

8.5.10

INTENT attribute

The INTENT attribute specifies the intended use of a dummy argument. An INTENT (IN) dummy argument
is suitable for receiving data from the invoking scoping unit, an INTENT (OUT) dummy argument is suitable
for returning data to the invoking scoping unit, and an INTENT (INOUT) dummy argument is suitable for use
both to receive data from and to return data to the invoking scoping unit.

R829

C845

C846

Cc847

848

C849

108

intent-spec is IN
or OUT
or INOUT

An entity with the INTENT attribute shall be a dummy data object or a dummy procedure pointer.

(R829) A nonpointer object with the INTENT (IN) attribute shall not appear in a variable definition
context (19.6.7).

A pointer with the INTENT (IN) attribute shall not appear in a pointer association context (19.6.8).

An INTENT (OUT) dummy argument of a nonintrinsic procedure shall not be an allocatable coarray or
have a subobject that is an allocatable coarray.

An entity with the INTENT (OUT) attribute shall not be of, or have a subcomponent of, type EVENT_ -
TYPE (16.10.2.10), LOCK_TYPE (16.10.2.19), or NOTIFY__TYPE (16.10.2.22) from the intrinsic mod-
ule ISO_ FORTRAN_ENV.

13/22-007r1

g A~ W N =

© 0 N O

11
12
13

14
15
16
17

18
19

20

2022-04-22 WD 1539-1 J3/22-007r1

The INTENT (IN) attribute for a nonpointer dummy argument specifies that it shall neither be defined nor
become undefined during the invocation and execution of the procedure. The INTENT (IN) attribute for a
pointer dummy argument specifies that during the invocation and execution of the procedure its association shall
not be changed except that it may become undefined if the target is deallocated other than through the pointer
(19.5.2.5).

The INTENT (OUT) attribute for a nonpointer dummy argument specifies that the dummy argument becomes
undefined on invocation of the procedure, except for any subcomponents that are default-initialized (7.5.4.6). Any
actual argument that corresponds to such a dummy argument shall be definable. The INTENT (OUT) attribute
for a pointer dummy argument specifies that on invocation of the procedure the pointer association status of
the dummy argument becomes undefined. Any actual argument that corresponds to such a pointer dummy shall
be a pointer variable or a procedure pointer that is not the result of a function reference. Any undefinition or
definition implied by association of an actual argument with an INTENT (OUT) dummy argument shall not
affect any other entity within the statement that invokes the procedure.

The INTENT (INOUT) attribute for a nonpointer dummy argument specifies that any actual argument that
corresponds to the dummy argument shall be definable. The INTENT (INOUT) attribute for a pointer dummy
argument specifies that any actual argument that corresponds to the dummy argument shall be a pointer variable
or a procedure pointer that is not the result of a function reference.

NOTE 1

The INTENT attribute for an allocatable dummy argument applies to both the allocation status and the
definition status. An actual argument that corresponds to an INTENT (OUT) allocatable dummy argument
is deallocated on procedure invocation (9.7.3.2). To avoid this deallocation for coarrays, INTENT (OUT) is
not allowed for a dummy argument that is an allocatable coarray or has a subobject that is an allocatable
coarray.

5 If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of its effective

argument (15.5.2).

6 If a nonpointer object has an INTENT attribute, then all of its subobjects have the same INTENT attribute.

NOTE 2
An example of INTENT specification is:
SUBROUTINE MOVE (FROM, TO)

TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

NOTE 3

If a dummy argument is a nonpointer derived-type object with a pointer component, then the pointer as
a pointer is a subobject of the dummy argument, but the target of the pointer is not. Therefore, the
restrictions on subobjects of the dummy argument apply to the pointer in contexts where it is used as a
pointer, but not in contexts where it is dereferenced to indicate its target. For example, if X is a nonpointer
dummy argument of derived type with an integer pointer component P, and X is INTENT (IN), then the
statement

X%P => NEW_TARGET
is prohibited, but
XWP = 0
is allowed (provided that X%P is associated with a definable target).

Similarly, the INTENT restrictions on pointer dummy arguments apply only to the association of the
dummy argument; they do not restrict the operations allowed on its target.

J3/22-007r1 109

10

11

12
13

14

15

16
17

18

19

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 4

Argument intent specifications serve several purposes in addition to documenting the intended use of dummy
arguments. A processor can check whether an INTENT (IN) dummy argument is used in a way that could
redefine it. A slightly more sophisticated processor could check to see whether an INTENT (OUT) dummy
argument could possibly be referenced before it is defined. If the procedure’s interface is explicit, the
processor can also verify that actual arguments corresponding to INTENT (OUT) or INTENT (INOUT)
dummy arguments are definable. A more sophisticated processor could use this information to optimize
the translation of the referencing scoping unit by taking advantage of the fact that actual arguments
corresponding to INTENT (IN) dummy arguments will not be changed and that any prior value of an
actual argument corresponding to an INTENT (OUT) dummy argument will not be referenced and could
thus be discarded.

INTENT (OUT) means that the value of the argument after invoking the procedure is entirely the result
of executing that procedure. If an argument might not be redefined and it is desired to have the argument
retain its value in that case, INTENT (OUT) cannot be used because it would cause the argument to
become undefined; however, INTENT (INOUT) can be used, even if there is no explicit reference to the
value of the dummy argument.

INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The actual argument corresponding
to an INTENT (INOUT) dummy argument is always required to be definable, while an actual argument
corresponding to a dummy argument without an INTENT attribute need be definable only if the dummy
argument is actually redefined.

8.5.

The

11 INTRINSIC attribute

INTRINSIC attribute specifies that the entity is an intrinsic procedure. The procedure name may be a

generic name (16.7), a specific name (16.8), or both.

If the specific name of an intrinsic procedure (16.8) is used as an actual argument, the name shall be explicitly specified to have the

INTRINSIC attribute. Note that a specific intrinsic procedure listed in Table 16.3 is not permitted to be used as an actual argument
(C1534).

C850 If the generic name of an intrinsic procedure is explicitly declared to have the INTRINSIC attribute,

8.5.

and it is also the generic name of one or more generic interfaces (15.4.3.2) accessible in the same scoping
unit, the procedures in the interfaces and the generic intrinsic procedure shall all be functions or all be
subroutines.

12 OPTIONAL attribute

The OPTIONAL attribute specifies that the dummy argument need not have an effective argument in a reference
to the procedure (15.5.2.13).

C851 An entity with the OPTIONAL attribute shall be a dummy argument.

NOTE 1

The intrinsic function PRESENT (16.9.163) can be used to determine whether an optional dummy argument
has an associated effective argument.

8.5.

13 PARAMETER attribute

The PARAMETER attribute specifies that an entity is a named constant. The entity has the value specified by
its constant-expr, converted, if necessary, to the type, type parameters and shape of the entity.

C852 An entity with the PARAMETER attribute shall not be a variable, a coarray, or a procedure.

C853 An expression that specifies a length type parameter or array bound of a named constant shall be a

110

13/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

1 constant expression.

2 2 A named constant shall not be referenced unless it has been defined previously; it may be defined previously in
3 the same statement.

NOTE 1
Examples of declarations with a PARAMETER attribute are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /)
TYPE(NODE) , PARAMETER :: DEFAULT = NODE(O, NULL ())

4 8.5.14 POINTER attribute

5 1 Entities with the POINTER attribute can be associated with different data objects or procedures during execution

6 of a program. A pointer is either a data pointer or a procedure pointer.

7 C854 An entity with the POINTER attribute shall not have the ALLOCATABLE, INTRINSIC, or TARGET
8 attribute, and shall not be a coarray.

9 C855 A named procedure with the POINTER attribute shall have the EXTERNAL attribute.

10 2 A data pointer shall not be referenced unless it is pointer associated with a target object that is defined. A data
11 pointer shall not be defined unless it is pointer associated with a target object that is definable.

12 3 If a data pointer is associated, the values of its deferred type parameters are the same as the values of the
13 corresponding type parameters of its target.

14 4 A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.

NOTE 1
Examples of POINTER attribute specifications are:

TYPE (NODE), POINTER :: CURRENT, TAIL
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

15 8.5.15 PROTECTED attribute

16 1 The PROTECTED attribute imposes limitations on the usage of module entities.

17 C856 The PROTECTED attribute shall be specified only in the specification part of a module.

18 C857 An entity with the PROTECTED attribute shall be a procedure pointer or variable.

19 C858 An entity with the PROTECTED attribute shall not be in a common block.

20 C859 A nonpointer object that has the PROTECTED attribute and is accessed by use association shall not
21 appear in a variable definition context (19.6.7) or as a data-target or initial-data-target.

22 C860 A pointer that has the PROTECTED attribute and is accessed by use association shall not appear in a
23 pointer association context (19.6.8).

24 2 Other than within the module in which an entity is given the PROTECTED attribute, or within any of its
25 descendants,

26 o if it is a nonpointer object, it is not definable, and

27 « if it is a pointer, its association status shall not be changed except that it may become undefined if its target
28 is deallocated other than through the pointer (19.5.2.5), or if its target becomes undefined by completing
29 execution of a BLOCK construct or by execution of a RETURN or END statement.

J3/22-007r1 111

1

b~ W

10

11

12

13
14

15
16
17
18

19

20

21

22
23

24
25

26
27
28

J3/22-007r1 WD 1539-1 2022-04-22

3 If an object has the PROTECTED attribute, all of its subobjects have the PROTECTED attribute.

NOTE 1
An example of the PROTECTED attribute:

MODULE temperature
REAL, PROTECTED :: temp_c, temp_f
CONTAINS
SUBROUTINE set_temperature_c(c)
REAL, INTENT(IN) :: c
temp_c = ¢
temp_f = temp_c*(9.0/5.0) + 32
END SUBROUTINE
END MODULE

The PROTECTED attribute ensures that the variables temp_c and temp_f cannot be modified other than
via the set_temperature_c procedure, thus keeping them consistent with each other.

8.5.16 SAVE attribute

The SAVE attribute specifies that a local variable of a program unit or subprogram retains its association status,
allocation status, definition status, and value after execution of a RETURN or END statement unless it is a
pointer and its target becomes undefined (19.5.2.5(6)). If it is a local variable of a subprogram it is shared by all
instances (15.6.2.4) of the subprogram.

The SAVE attribute specifies that a local variable of a BLOCK construct retains its association status, allocation
status, definition status, and value after termination of the construct unless it is a pointer and its target becomes
undefined (19.5.2.5(7)). If the BLOCK construct is within a subprogram the variable is shared by all instances
(15.6.2.4) of the subprogram.

Giving a common block the SAVE attribute confers the attribute on all entities in the common block.
C861 An entity with the SAVE attribute shall be a common block, variable, or procedure pointer.

C862 The SAVE attribute shall not be specified for a dummy argument, a function result, an automatic data

object, or an object that is in a common block.

A variable, common block, or procedure pointer declared in the scoping unit of a main program, module, or
submodule implicitly has the SAVE attribute, which may be confirmed by explicit specification. If a common block
has the SAVE attribute in any other kind of scoping unit, it shall have the SAVE attribute in every scoping unit that is not of a

main program, module, or submodule.

8.5.17 RANK clause
The RANK clause specifies the DIMENSION attribute.
R830 rank-clause is RANK (scalar-int-constant-expr)

C863 The scalar-int-constant-expr in a rank-clause shall be nonnegative with a value less than or equal to the
maximum array rank supported by the processor.

C864 An entity declared with a rank-clause shall be a dummy data object or have the ALLOCATABLE or
POINTER attribute.

An entity declared with a RANK clause has the specified rank. If the rank is zero the entity is scalar; otherwise,
if it has the ALLOCATABLE or POINTER attribute, it specifies that it is a deferred-shape array; otherwise, it
specifies that it is an assumed-shape array with all the lower bounds equal to one.

112 J3/22-007r1

10

11
12

13
14

15

16
17
18
19
20

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 1
Examples of RANK specifications are:

INTEGER :: X0(10,10,10)

LOGICAL, RANK(RANK(X0)), ALLOCATABLE :: X1
COMPLEX, RANK(2), POINTER :: X2

LOGICAL, RANK(RANK(X0) :: X3

REAL, RANK(0) :: X4

Rank 3, deferred shape

Rank 2, deferred-shape

Rank 3, assumed-shape (dummy)
Scalar dummy

8.5.18 TARGET attribute

The TARGET attribute specifies that a data object may have a pointer associated with it (10.2.2). An object
without the TARGET attribute shall not have a pointer associated with it.

C865 An entity with the TARGET attribute shall be a variable.

C866 An entity with the TARGET attribute shall not have the POINTER attribute.

2 If an object has the TARGET attribute, then all of its nonpointer subobjects also have the TARGET attribute.

NOTE 1

In addition to variables explicitly declared to have the TARGET attribute, the objects created by allocation
of pointers (9.7.1.4) have the TARGET attribute.

NOTE 2
Examples of TARGET attribute specifications are:

TYPE (NODE), TARGET :: HEAD
REAL, DIMENSION (1000, 1000), TARGET :: A, B

NOTE 3

Every object designator that starts from an object with the TARGET attribute will have either the TARGET
or POINTER attribute. If pointers are involved, the designator might not necessarily be a subobject of the
original object, but because a pointer can point only to an entity with the TARGET attribute, there is no
way to end up at a nonpointer that does not have the TARGET attribute.

8.5.19 VALUE attribute
The VALUE attribute specifies a type of argument association (15.5.2.5) for a dummy argument.

C867 An entity with the VALUE attribute shall be a dummy data object. It shall not be an assumed-size
array, a coarray, or a variable with a coarray potential subobject component.

C868 An entity with the VALUE attribute shall not have the ALLOCATABLE, INTENT (INOUT), INTENT
(OUT), POINTER, or VOLATILE attributes.

C869 A dummy argument of a procedure with the BIND attribute shall not have both the OPTIONAL and
VALUE attributes.

8.5.20 VOLATILE attribute

The VOLATILE attribute specifies that an object may be referenced, defined, or become undefined, by means
not specified by the program. A pointer with the VOLATILE attribute may additionally have its association
status, dynamic type and type parameters, and array bounds changed by means not specified by the program.
An allocatable object with the VOLATILE attribute may additionally have its allocation status, dynamic type
and type parameters, and array bounds changed by means not specified by the program.

J3/22-007r1 113

10
11
12
13
14

15
16
17
18

19

20
21
22

23

24

25

26
27

28
29

30
31

32
33

34

35
36
37
38
39
40
41
42
43

J3/22-007r1 WD 1539-1 2022-04-22

C870 An entity with the VOLATILE attribute shall be a variable that is not an INTENT (IN) dummy argu-
ment.

C871 The VOLATILE attribute shall not be specified for a coarray, or a variable with a coarray potential
subobject component, that is accessed by use (14.2.2) or host (19.5.1.4) association.

C872 Within a BLOCK construct (11.1.4), the VOLATILE attribute shall not be specified for a coarray, or
a variable with a coarray potential subobject component, that is not a construct entity (19.4) of that
construct.

A noncoarray object that has the VOLATILE attribute may be associated with an object that does not have
the VOLATILE attribute, including by use (14.2.2) or host association (19.5.1.4). If an object that is not a
local variable of a BLOCK construct is specified to have the VOLATILE attribute in the specification-part of
the construct, the object has the attribute within the construct even if it does not have the attribute outside the
construct. The relationship between coarrays, the VOLATILE attribute, and argument association is described
in 15.5.2.9. The relationship between between coarrays, the VOLATILE attribute, and pointer association is
described in 10.2.2.3.

A pointer should have the VOLATILE attribute if its target has the VOLATILE attribute. If, by means not
specified by the program, the target is referenced, defined, or becomes undefined, the pointer shall have the
VOLATILE attribute. All members of an EQUIVALENCE group should have the VOLATILE attribute if any member has the
VOLATILE attribute.

If an object has the VOLATILE attribute, then all of its subobjects also have the VOLATILE attribute.

The Fortran processor should use the most recent definition of a volatile object each time its value is required.
When a volatile object is defined by means of Fortran, it should make that definition available to the non-Fortran
parts of the program as soon as possible.

8.6 Attribute specification statements

8.6.1 Accessibility statement
R831 access-stmt is access-spec [| 1] access-id-list]

R832 access-id is access-name
or generic-spec

C873 (R831) An access-stmt shall appear only in the specification-part of a module. Only one accessibility
statement with an omitted access-id-list is permitted in the specification-part of a module.

C874 (R832) Each access-name shall be the name of a module, variable, procedure, nonintrinsic type, named
constant, or namelist group.

C875 A module whose name appears in an access-stmt shall be referenced by a USE statement in the scoping
unit that contains the access-stmit.

C876 The name of a module shall appear at most once in all of the access-stmts in a module.

An access-stmt with an access-id-list specifies the accessibility attribute, PUBLIC or PRIVATE, of each access-id
in the list that is not a module name. An access-stmt without an access-id list specifies the default accessibility
of the identifiers of entities declared in the module, and of entities accessed from a module whose name does
not appear in any access-stmt in the module. If an identifier is accessed from another module and also declared
locally, it has the default accessibility of a locally declared identifier. The statement

PUBLIC
specifies a default of public accessibility. The statement

PRIVATE
specifies a default of private accessibility. If no such statement appears in a module, the default is public

114 J3/22-007r1

g~ W N

10

11

12

13

14

15

16
17

18
19

20

2022-04-22 WD 1539-1 J3/22-007r1

accessibility.

If an identifier is accessed by use association and not declared in the module, and the name of every module
from which it is accessed appears in an access-stmt in the scoping unit, its default accessibility is PRIVATE if
the access-spec in every such access-stmt is PRIVATE, or PUBLIC if the access-spec in any such access-stmt is

PUBLIC.

NOTE 1

Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+)

NOTE 2

The following is an example of using an accessibility statement on a module name.

MODULE m2
USE mil
! We want to use the types and procedures in ml, but we only want to
! re-export m_type from ml, and export our own procedures.
PRIVATE mil
PUBLIC m_type
... definitions for our own entities and module procedures.
END MODULE

8.6.2 ALLOCATABLE statement
R833 allocatable-stmt is ALLOCATABLE | :: | allocatable-decl-list

R834 allocatable-decl is object-name [(array-spec) | W
W [lbracket coarray-spec rbracket]

The ALLOCATABLE statement specifies the ALLOCATABLE attribute (8.5.3) for a list of objects.

NOTE 1

An example of an ALLOCATABLE statement is:

REAL A, B (:), SCALAR
ALLOCATABLE :: A (:, :), B, SCALAR

8.6.3 ASYNCHRONOUS statement

R835 asynchronous-stmt is ASYNCHRONOUS [:: | object-name-list

The ASYNCHRONOUS statement specifies the ASYNCHRONOUS attribute (8.5.4) for a list of objects.

8.6.4 BIND statement

R836 bind-stmt is language-binding-spec | :: | bind-entity-list

R837 bind-entity is entity-name

or / common-block-name /

C877 (R836) If the language-binding-spec has a NAME= specifier, the bind-entity-list shall consist of a single

bind-entity.

1 The BIND statement specifies the BIND attribute for a list of variables and common blocks.

13/22-007r1

115

10

11

12
13
14
15

16
17

18

19
20

21
22
23
24

25
26
27

28

29

30
31

32
33
34
35

J3/22-007r1 WD 1539-1 2022-04-22

8.6.5 CODIMENSION statement

R838 codimension-stmt is CODIMENSION [:: | codimension-decl-list

R839 codimension-decl is coarray-name lbracket coarray-spec rbracket

The CODIMENSION statement specifies the CODIMENSION attribute (8.5.6) for a list of objects.

NOTE 1
An example of a CODIMENSION statement is:
CODIMENSION al[*], b[3,*], c[:]

8.6.6 CONTIGUOUS statement
R840 contiguous-stmt is CONTIGUOUS [:: | object-name-list

The CONTIGUOUS statement specifies the CONTIGUOUS attribute (8.5.7) for a list of objects.

8.6.7 DATA statement

R841 data-stmt is DATA data-stmt-set [[,] data-stmt-set | ...

The DATA statement specifies explicit initialization (8.4).

If a nonpointer variable has default initialization, it shall not appear in a data-stmt-object-list.

A variable that appears in a DATA statement and has not been typed previously shall not appear in a sub-
sequent type declaration unless that declaration confirms the implicit typing. An array name, array section, or
array element that appears in a DATA statement shall have had its array properties established by a previous
specification statement.

Except for variables in named common blocks, a named variable has the SAVE attribute if any part of it is initialized
in a DATA statement, and this may be confirmed by explicit specification.

R842 data-stmt-set is data-stmt-object-list | data-stmt-value-list /

R843 data-stmt-object is wariable
or data-implied-do

R844 data-implied-do is (data-i-do-object-list , [integer-type-spec :: | data-i-do-variable = R
B scalar-int-constant-expr , A
B scalar-int-constant-expr A
B [, scalar-int-constant-expr |)

R845 data-i-do-object is array-element
or scalar-structure-component
or data-implied-do

R846 data-i-do-variable is do-variable
C878 A data-stmt-object or data-i-do-object shall not be a coindexed variable.

C879 (R843) A data-stmt-object that is a wvariable shall be a designator. Each subscript, section subscript,
substring starting point, and substring ending point in the variable shall be a constant expression.

C880 (R843) A variable whose designator appears as a data-stmt-object or a data-i-do-object shall not be a
dummy argument, accessed by use or host association, in a named common block unless the DATA statement is
in a block data program unit, in blank common, a function name, a function result name, an automatic data
object, or an allocatable variable.

116 J3/22-007r1

10
11

12
13

14
15
16
17
18
19
20
21
22

23
24

25
26

27

28

29

30

31

32
33
34
35
36
37
38

39
40
41

42

2022-04-22 WD 1539-1 J3/22-007r1

C881 (R843) A data-i-do-object or a variable that appears as a data-stmi-object shall not be an object designator
in which a pointer appears other than as the entire rightmost part-ref.

C882 (R845) The array-element shall be a variable.

(
C883 (R845) The scalar-structure-component shall be a variable.
C884 (R845) The scalar-structure-component shall contain at least one part-ref that contains a subscript-list.

C885 (R845) In an array-element or scalar-structure-component that is a data-i-do-object, any subscript shall
be a constant expression, and any primary within that subscript that is a data-i-do-variable shall be a
DO variable of this data-implied-do or of a containing data-implied-do.

R847 data-stmt-value is [data-stmt-repeat * | data-stmt-constant

R848 data-stmt-repeat is scalar-int-constant
or scalar-int-constant-subobject

C886 (R848) The data-stmt-repeat shall be positive or zero. If the data-stmt-repeat is a named constant, it
shall have been defined previously.

R849 data-stmit-constant is scalar-constant
or scalar-constant-subobject
or signed-int-literal-constant
or signed-real-literal-constant
or null-init
or initial-data-target
or structure-constructor
or enum-constructor
or enumeration-constructor

C887 (R849) If a DATA statement constant value is a named constant, structure constructor, enum constructor,
or enumeration constructor, the named constant or type shall have been defined previously.

C888 (R849) If a data-stmt-constant is a structure-constructor, enum-constructor, or enumeration-constructor,
it shall be a constant expression.

R850 int-constant-subobject is constant-subobject

C889 (R&50) int-constant-subobject shall be of type integer.

R851 constant-subobject is designator

C890 (R851) constant-subobject shall be a subobject of a constant.

C891 (R851) Any subscript, substring starting point, or substring ending point shall be a constant expression.

The data-stmt-object-list is expanded to form a sequence of pointers and scalar variables, referred to as “sequence
of variables” in subsequent text. A nonpointer array whose unqualified name appears as a data-stmt-object or
data-i-do-object is equivalent to a complete sequence of its array elements in array element order (9.5.3.3). An
array section is equivalent to the sequence of its array elements in array element order. A data-implied-do is
expanded to form a sequence of array elements and structure components, under the control of the data-i-do-
variable, as in the DO construct (11.1.7.4). The scope and attributes of a data-i-do-variable are described in
19.4.

The data-stmit-value-list is expanded to form a sequence of data-stmt-constants. A data-stmt-repeat indicates the
number of times the following data-stmt-constant is to be included in the sequence; omission of a data-stmit-repeat
has the effect of a repeat factor of 1.

7 A zero-sized array or a data-implied-do with an iteration count of zero contributes no variables to the expanded

J3/22-007r1 117

10
11

12
13
14
15

16
17
18

20
21

22

10

11

1

J3/22-007r1 WD 1539-1 2022-04-22

sequence of variables, but a zero-length scalar character variable does contribute a variable to the expanded
sequence. A data-stmt-constant with a repeat factor of zero contributes no data-stmit-constants to the expanded
sequence of scalar data-stmt-constants.

The expanded sequences of variables and data-stmt-constants are in one-to-one correspondence. Each data-stmit-
constant specifies the initial value, initial data target, or null-init for the corresponding variable. The lengths of
the two expanded sequences shall be the same.

A data-stmt-constant shall be null-init or initial-data-target if and only if the corresponding data-stmt-object has
the POINTER attribute. If data-stmt-constant is null-init, the initial association status of the corresponding data
statement object is disassociated. If data-stmt-constant is initial-data-target the corresponding data statement
object shall be data-pointer-initialization compatible (7.5.4.6) with the initial data target; the data statement
object is initially associated with the target.

A data-stmit-constant other than boz-literal-constant, null-init, or initial-data-target shall be compatible with its
corresponding variable according to the rules of intrinsic assignment (10.2.1.2). The variable is initially defined
with the value specified by the data-stmt-constant; if necessary, the value is converted according to the rules of
intrinsic assignment (10.2.1.3) to a value that agrees in type, type parameters, and shape with the variable.

If a data-stmi-constant is a boz-literal-constant, the corresponding variable shall be of type integer. The boz-
literal-constant is treated as if it were converted by the intrinsic function INT (16.9.110) to type integer with the
kind type parameter of the variable.

NOTE 1
Examples of DATA statements are:

CHARACTER (LEN = 10) NAME

INTEGER, DIMENSION (0:9) :: MILES

REAL, DIMENSION (100, 100) :: SKEW

TYPE (NODE), POINTER :: HEAD OF_LIST

TYPE (PERSON) MYNAME, YOURNAME

DATA NAME / ’JOHN DOE’ /, MILES / 10 * 0 /

DATA ((SKEW (K, J), J =1, K), K =1, 100) / 5050 * 0.0 /
DATA ((SKEW (K, J), J =K + 1, 100), K =1, 99) / 4950 * 1.0 /
DATA HEAD OF_LIST / NULL() /

DATA MYNAME / PERSON (21, ’JOHN SMITH’) /

DATA YOURNAME % AGE, YOURNAME 9% NAME / 35, ’FRED BROWN’ /

The character variable NAME is initialized with the value JOHN DOE with padding on the right because
the length of the constant is less than the length of the variable. All ten elements of the integer array
MILES are initialized to zero. The two-dimensional array SKEW is initialized so that the lower triangle
of SKEW is zero and the strict upper triangle is one. The structures MYNAME and YOURNAME are
declared using the derived type PERSON from 7.5.2.1, NOTE 1. The pointer HEAD_ OF_ LIST is declared
using the derived type NODE from 7.5.4.6, NOTE 4; it is initially disassociated. MYNAME is initialized
by a structure constructor. YOURNAME is initialized by supplying a separate value for each component.

8.6.8 DIMENSION statement

R852 dimension-stmt is DIMENSION [:: | array-name (array-spec) B
B [, array-name (array-spec) | ...

The DIMENSION statement specifies the DIMENSION attribute (8.5.8) for a list of objects.

NOTE 1
An example of a DIMENSION statement is:
DIMENSION A (10), B (10, 70), C (:)

118 J3/22-007r1

10

11

12
13
14
15

16
17
18
19

20
21
22

23

24

25
26

2022-04-22 WD 1539-1 J3/22-007r1

8.6.9 INTENT statement
R853 intent-stmt is INTENT (intent-spec) [::] dummy-arg-name-list
The INTENT statement specifies the INTENT attribute (8.5.10) for the dummy arguments in the list.

NOTE 1
An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B

8.6.10 OPTIONAL statement
R854 optional-stmt is OPTIONAL [:: | dummy-arg-name-list
The OPTIONAL statement specifies the OPTIONAL attribute (8.5.12) for the dummy arguments in the list.

NOTE 1
An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: B

8.6.11 PARAMETER statement

The PARAMETER statement specifies the PARAMETER attribute (8.5.13) and the values for the named con-
stants in the list.

R855 parameter-stmt is PARAMETER (named-constant-def-list)
R856 mamed-constant-def is mamed-constant = constant-expr

If a named constant is defined by a PARAMETER statement, it shall not be subsequently declared to have a
type or type parameter value that differs from the type and type parameters it would have if declared implicitly
(8.7). A named array constant defined by a PARAMETER statement shall have its rank specified in a prior
specification statement.

The constant expression that corresponds to a named constant shall have type and type parameters that conform
with the named constant as specified for intrinsic assignment (10.2.1.2). If the named constant has implied shape,
the expression shall have the same rank as the named constant; otherwise, the expression shall either be scalar
or have the same shape as the named constant.

The value of each named constant is that specified by the corresponding constant expression; if necessary, the
value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that agrees in type, type
parameters, and shape with the named constant.

NOTE 1
An example of a PARAMETER statement is:
PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100)

8.6.12 POINTER statement
R857 pointer-stmt is POINTER [:: | pointer-decl-list

R858 pointer-decl is object-name [(deferred-shape-spec-list) |
or proc-entity-name

J3/22-007r1 119

10

11

12
13

14

15
16
17

18

19

20
21

22

23

24

25

J3/22-007r1 WD 1539-1 2022-04-22

C892 A proc-entity-name shall have the EXTERNAL attribute.
The POINTER statement specifies the POINTER attribute (8.5.14) for a list of entities.

NOTE 1
An example of a POINTER statement is:

TYPE (NODE) :: CURRENT
POINTER :: CURRENT, A (:, :)

8.6.13 PROTECTED statement
R859 protected-stmt is PROTECTED [:: | entity-name-list

The PROTECTED statement specifies the PROTECTED attribute (8.5.15) for a list of entities.

8.6.14 SAVE statement
R860 save-stmt is SAVE [[::] saved-entity-list]

R861 saved-entity is object-name
or proc-pointer-name

or / common-block-name /
R862 proc-pointer-name is name

C893 (R860) If a SAVE statement with an omitted saved entity list appears in a scoping unit, no other
appearance of the SAVE attr-spec or SAVE statement is permitted in that scoping unit.

C894 A proc-pointer-name shall be the name of a procedure pointer.

A SAVE statement with a saved entity list specifies the SAVE attribute (8.5.16) for a list of entities. A SAVE
statement without a saved entity list is treated as though it contained the names of all allowed items in the same
scoping unit.

NOTE 1
An example of a SAVE statement is:
SAVE A, B, C, / BLOCKA /, D

8.6.15 TARGET statement
R863 target-stmt is TARGET [:: | target-decl-list

R864 target-decl is object-name [(array-spec) | B
B | [bracket coarray-spec rbracket |
The TARGET statement specifies the TARGET attribute (8.5.18) for a list of objects.
NOTE 1

An example of a TARGET statement is:
TARGET :: A (1000, 1000), B

8.6.16 VALUE statement
R865 wvalue-stmt is VALUE [:: | dummy-arg-name-list

The VALUE statement specifies the VALUE attribute (8.5.19) for a list of dummy arguments.

120 J3/22-007r1

o N o o

10

11

12

13
14

15
16
17

18

19
20

21

22
23
24

25
26
27
28

29
30
31
32
33
34

35
36
37
38
39
40

2022-04-22 WD 1539-1 J3/22-007r1

8.6.17 VOLATILE statement
R866 wolatile-stmt is VOLATILE | ::]| object-name-list

The VOLATILE statement specifies the VOLATILE attribute (8.5.20) for a list of objects.

8.7 IMPLICIT statement

In a scoping unit, an IMPLICIT statement specifies a type, and possibly type parameters, for all implicitly
typed data entities whose names begin with one of the letters specified in the statement. An IMPLICIT NONE
statement can indicate that no implicit typing rules are to apply in a particular scoping unit, or that external
and dummy procedures need to be explicitly given the EXTERNAL attribute.

R867 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE [([implicit-none-spec-list |) |
R868 implicit-spec is declaration-type-spec (letter-spec-list)
R869 letter-spec is letter [— letter]
R870 implicit-none-spec is EXTERNAL
or TYPE

C895 (R867) If an IMPLICIT NONE statement appears in a scoping unit, it shall precede any PARAMETER
statements that appear in the scoping unit. No more than one IMPLICIT NONE statement shall appear
in a scoping unit.

C896 The same implicit-none-spec shall not appear more than once in a given implicit-stmdt.

C897 If an IMPLICIT NONE statement in a scoping unit has an implicit-none-spec of TYPE or has no implicit-
none-spec-list, there shall be no other IMPLICIT statements in the scoping unit.

C898 (R869) If the minus and second letter appear, the second letter shall follow the first letter alphabetically.

C899 If IMPLICIT NONE with an implicit-none-spec of EXTERNAL appears within a scoping unit, the
name of an external or dummy procedure in that scoping unit or in a contained subprogram or BLOCK
construct shall have an explicit interface or be explicitly declared to have the EXTERNAL attribute.

A letter-spec consisting of two letters separated by a minus is equivalent to writing a list containing all of the letters
in alphabetical order in the alphabetic sequence from the first letter through the second letter. For example, A—C
is equivalent to A, B, C. The same letter shall not appear as a single letter, or be included in a range of letters,
more than once in all of the IMPLICIT statements in a scoping unit.

In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z and a
type (and type parameters). An IMPLICIT statement specifies the mapping for the letters in its letter-spec-
list. IMPLICIT NONE with an implicit-none-spec of TYPE or with no implicit-none-spec-list specifies the null
mapping for all the letters. If a mapping is not specified for a letter, the default for a program unit or an interface
body is default integer if the letter is I, J, ..., or N and default real otherwise, and the default for a BLOCK
construct, internal subprogram, or module subprogram is the mapping in the host scoping unit.

Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic function, is
not a component, and is not accessed by use or host association is declared implicitly to be of the type (and
type parameters) mapped from the first letter of its name, provided the mapping is not null. The mapping for
the first letter of the data entity shall either have been established by a prior IMPLICIT statement or be the
default mapping for the letter. An explicit type specification in a FUNCTION statement overrides an IMPLICIT
statement for the result of that function.

J3/22-007r1 121

13/22-007r1

NOTE 1

WD 1539-1 2022-04-22

The following are examples of the use of IMPLICIT statements:

MODULE EXAMPLE_MODULE
IMPLICIT NONE

INTERFACE

FUNCTION FUN (I) !
INTEGER FUN !

END FUNCTION FUN

END INTERFACE

CONTAINS

FUNCTION JFUN (J) !

INTEGER JFUN, J !

END FUNCTION JFUN
END MODULE EXAMPLE_MODULE
SUBROUTINE SUB

IMPLICIT COMPLEX (C)

C = (3.0, 2.0) !

CONTAINS
SUBROUTINE SUB1
IMPLICIT INTEGER (A,

C = (0.0, 0.0) !

!
Z=1.0 !
A =2 !
cC =1 !

END SUBROUTINE SUB1
SUBROUTINE SUB2
Z=2.0 !

END SUBROUTINE SUB2
SUBROUTINE SUB3
USE EXAMPLE_MODULE !
!
Q = FUN (X) !
.. !
END SUBROUTINE SUB3
END SUBROUTINE SUB

Not all data entities need to
be declared explicitly

All data entities need to
be declared explicitly.

C is

C)

C is
type
Z is
A is

CC is implicitly declared INTEGER

Z is

is different from the variable of
the same name in SUB1

Accesses integer function FUN
by use association

Q is

K is implicitly declared INTEGER

implicitly declared COMPLEX

host associated and of
complex

implicitly declared REAL
implicitly declared INTEGER

implicitly declared REAL and

implicitly declared REAL and

NOTE 2

The following is an example of a mapping to a derived type that is inaccessible in the local scope:

PROGRAM MAIN
IMPLICIT TYPE(BLOB) (A)
TYPE BLOB
INTEGER :: I
END TYPE BLOB
TYPE(BLOB) :: B
CALL STEVE
CONTAINS

122

13/22-007r1

g~ W N

[e)}

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 2 (cont.)

SUBROUTINE STEVE
INTEGER :: BLOB

AA =B
END SUBROUTINE STEVE

END PROGRAM MAIN

In the subroutine STEVE;, it is not possible to explicitly declare a variable to be of type BLOB because
BLOB has been given a different meaning, but implicit mapping for the letter A still maps to type BLOB,
so AA is of type BLOB.

NOTE 3

Implicit typing is not affected by BLOCK constructs. For example, in
SUBROUTINE S(N)

IF (N>0) THEN
BLOCK
NSQP = CEILING (SQRT (DBLE (N)))
END BLOCK
END IF

IF (N>0) THEN
BLOCK
PRINT *,NSQP
END BLOCK
END IF
END SUBROUTINE

even if the only two appearances of NSQP are within the BLOCK constructs, the scope of NSQP is the whole
subroutine S.

NOTE 4

In the subprogram

SUBROUTINE EXAMPLE (X, Y)
IMPLICIT NONE (EXTERNAL)
REAL, EXTERNAL :: G

REAL :: X, Y
X =TF (Y) ! Invalid: F lacks the EXTERNAL attribute.
X =G (V) ! Valid: G has the EXTERNAL attribute.

END SUBROUTINE
the referenced function F needs to have the EXTERNAL attribute (8.5.9).

8.8

IMPORT statement

R871 import-stmt is IMPORT [[:: | import-name-list |

or IMPORT, ONLY : import-name-list
or IMPORT, NONE
or IMPORT, ALL

C8100 (R871) An IMPORT statement shall not appear in the scoping unit of a main-program, external-

subprogram, module, or block-data.

J3/22-007r1 123

10
11

12
13
14
15
16

17
18
19
20

21
22

23
24
25
26

27
28

J3/22-007r1 WD 1539-1 2022-04-22

C8101 (R871) Each import-name shall be the name of an entity in the host scoping unit.

C8102 If any IMPORT statement in a scoping unit has an ONLY specifier, all IMPORT statements in that
scoping unit shall have an ONLY specifier.

C8103 IMPORT, NONE shall not appear in the scoping unit of a submodule.

C8104 If an IMPORT, NONE or IMPORT, ALL statement appears in a scoping unit, no other IMPORT
statement shall appear in that scoping unit.

C8105 Within an interface body, an entity that is accessed by host association shall be accessible by host or use
association within the host scoping unit, or explicitly declared prior to the interface body.

C8106 An entity whose name appears as an i¢mport-name or which is made accessible by an IMPORT, ALL
statement shall not appear in any context described in 19.5.1.4 that would cause the host entity of that
name to be inaccessible.

If the ONLY specifier appears on an IMPORT statement in a scoping unit other than a BLOCK construct,
an entity is only accessible by host association if its name appears as an import-name in that scoping unit. If
a BLOCK construct contains one or more IMPORT statements with ONLY specifiers, identifiers of local and
construct entities in the host scoping unit that are not in the import-name-list of at least one of the IMPORT
statements are inaccessible in the BLOCK construct.

An IMPORT, NONE statement in a scoping unit specifies that no entities in the host scoping unit are accessible
by host association in that scoping unit. This is the default for an interface body that is not a module procedure
interface body. An IMPORT, NONE statement in a BLOCK construct specifies that the identifiers of local and
construct entities in the host scoping unit are inaccessible in the BLOCK construct.

An IMPORT, ALL statement in a scoping unit specifies that all entities from the host scoping unit are accessible
in that scoping unit.

If an IMPORT statement with no specifier and no import-name-list appears in a scoping unit, every entity in
the host scoping unit is accessible unless its name appears in a context described in 19.5.1.4 that causes it to be
inaccessible. This is the default for a derived-type definition, internal subprogram, module procedure interface
body, module subprogram, or submodule.

If an IMPORT statement with an import-name-list appears in a scoping unit other than a BLOCK construct,
each entity named in the list is accessible.

NOTE 1
The IMPORT, NONE statement can be used to prevent accidental host association:

SUBROUTINE s(x,n)
IMPLICIT NONE
IMPORT, NONE

DO i=1,n ! Forces I to be locally declared.

NOTE 2
The IMPORT, ALL statement can be used to prevent accidental “shadowing” of host entities:

SUBROUTINE outer
REAL x

CONTAINS
SUBROUTINE inner
IMPORT, ALL

124 J3/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 2 (cont.)

x =x + 1 ! There is a host X, so this must be the host X. ‘

NOTE 3
The IMPORT, ONLY statement can be used to document deliberate access via host association whilst
blocking accidental access:

SUBROUTINE sub
IMPORT,ONLY : x, y

x =y + z ! Only X and Y are imported, so Z is local.

NOTE 4
The program

PROGRAM MAIN
BLOCK
IMPORT, NONE
ITMPORT, ONLY: X
X=1.0
END BLOCK
END

is not conformant. The variable X is implicitly declared in the scoping unit of the main program. The
statement IMPORT, NONE makes X inaccessible in the BLOCK construct. If the IMPORT, NONE
statement is replaced with the IMPORT statement in the comment, the program is conformant.

NOTE 5

The IMPORT statement can be used to allow module procedures to have dummy arguments that are
procedures with assumed-shape arguments of an opaque type. For example:

MODULE M
TYPE T
PRIVATE ! T is an opaque type

END TYPE
CONTAINS
SUBROUTINE PROCESS(X,Y,RESULT,MONITOR)
TYPE(T) , INTENT(IN) :: X(:,:),Y(:,:)
TYPE(T) ,INTENT(OUT) :: RESULT(:,:)
INTERFACE
SUBROUTINE MONITOR(ITERATION_NUMBER,CURRENT _ESTIMATE)
IMPORT T
INTEGER,INTENT(IN) :: ITERATION_NUMBER
TYPE(T) , INTENT(IN) :: CURRENT_ESTIMATE(:,:)
END SUBROUTINE
END INTERFACE

END SUBROUTINE
END MODULE

The MONITOR dummy procedure requires an explicit interface because it has an assumed-shape array
argument, but TYPE(T) would not be available inside the interface body without the IMPORT statement.

J3/22-007r1 125

w

~N o o~

10

11
12

13
14
15

16
17
18

19

20
21
22
23
24

25

26

27

28
29

30
31
32
33
34
35

36
37

J3/22-007r1 WD 1539-1 2022-04-22

8.9 NAMELIST statement

A NAMELIST statement specifies a group of named data objects, which can be referred to by a single name for
the purpose of data transfer (12.6, 13.11).

R872 namelist-stmt is NAMELIST m
B / namelist-group-name |/ namelist-group-object-list &
B [[,]/ namelist-group-name / A
B namelist-group-object-list | ...

C8107 (R&72) The namelist-group-name shall not be a name accessed by use association.
R873 namelist-group-object is wariable-name
C8108 (R873) A namelist-group-object shall not be an assumed-size array.

C8109 A namelist-group-object shall not be of enumeration type, or have a direct component that is of enumer-
ation type.

The order in which the values appear on output is the same as the order of the namelist-group-objects in the
namelist group object list; if a variable appears more than once as a namelist-group-object for the same namelist
group, its value appears once for each occurrence.

Any namelist-group-name may occur more than once in the NAMELIST statements in a scoping unit. The
namelist-group-object-list following each successive appearance of the same namelist-group-name in a scoping
unit is treated as a continuation of the list for that namelist-group-name.

A namelist group object may be a member of more than one namelist group.

A namelist group object shall either be accessed by use or host association or shall have its declared type, kind
type parameters of the declared type, and rank specified by previous specification statements or the procedure
heading in the same scoping unit or by the implicit typing rules in effect for the scoping unit. If a namelist group
object is typed by the implicit typing rules, its appearance in any subsequent type declaration statement shall
confirm the implied type and type parameters.

NOTE 1
An example of a NAMELIST statement is:
NAMELIST /NLIST/ A, B, C

8.10 Storage association of data objects

8.10.1 EQUIVALENCE statement

8.10.1.1 General

An EQUIVALENCE statement is used to specify the sharing of storage units by two or more objects in a scoping unit. This causes
storage association (19.5.3) of the objects that share the storage units.

If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement does not cause type conversion or
imply mathematical equivalence. If a scalar and an array are equivalenced, the scalar does not have array properties and the array
does not have the properties of a scalar.

R874 equivalence-stmt is EQUIVALENCE equivalence-set-list
R875 equivalence-set is (equivalence-object , equivalence-object-list)
R876 equivalence-object is wariable-name

or array-element
or substring

126 J3/22-007r1

A WN R

11
12

13
14

15
16
17

18
19

20

21

22

23

25
26
27

28
29

30

31
32

33
34
35
36
37

2022-04-22 WD 1539-1 J3/22-007r1

C8110 (R876) An equivalence-object shall not be a designator with a base object that is a dummy argument, a function result, a
pointer, an allocatable variable, a derived-type object that has an allocatable or pointer ultimate component, an object of
a nonsequence derived type, an object of enumeration type, an automatic data object, a coarray, a variable with the BIND
attribute, a variable in a common block that has the BIND attribute, or a named constant.

C8111 (R876) An equivalence-object shall not be a designator that has more than one part-ref.
C8112 (R876) An equivalence-object shall not have the TARGET attribute.

(8113 (R876) Each subscript or substring range expression in an equivalence-object shall be an integer constant expression
(10.1.12).

C8114 (R875) If an equivalence-object is default integer, default real, double precision real, default complex, default logical, or of
numeric sequence type, all of the objects in the equivalence set shall be of these types and kinds.

C8115 (R&75) If an equivalence-object is default character or of character sequence type, all of the objects in the equivalence set
shall be of these types and kinds.

C8116 (R875) If an equivalence-object is of a sequence type that is not a numeric sequence or character sequence type, all of the
objects in the equivalence set shall be of that type.

C8117 (R875H) If an equivalence-object is of an intrinsic type but is not default integer, default real, double precision real, default
complex, default logical, or default character, all of the objects in the equivalence set shall be of the same type with the
same kind type parameter value.

C8118 (R876) If an equivalence-object has the PROTECTED attribute, all of the objects in the equivalence set shall have the
PROTECTED attribute.

C8119 (R876) The name of an equivalence-object shall not be a name made accessible by use association.

C8120 (R876) A substring shall not have length zero.

NOTE 1

The EQUIVALENCE statement allows the equivalencing of sequence structures and the equivalencing of objects of intrinsic
type with nondefault type parameters, but there are strict rules regarding the appearance of these objects in an EQUIVAL-
ENCE statement.

In addition to the above constraints, further rules on the interaction of EQUIVALENCE statements and default initialization
are given in 19.5.3.4.

8.10.1.2 Equivalence association

An EQUIVALENCE statement specifies that the storage sequences (19.5.3.2) of the data objects specified in an equivalence-set are
storage associated. All of the nonzero-sized sequences in the equivalence-set, if any, have the same first storage unit, and all of
the zero-sized sequences in the equivalence-set, if any, are storage associated with one another and with the first storage unit of
any nonzero-sized sequences. This causes the storage association of the data objects in the equivalence-set and can cause storage
association of other data objects.

If any data object in an equivalence-set has the SAVE attribute, all other objects in the equivalence-set have the SAVE attribute;
this may be confirmed by explicit specification.

8.10.1.3 Equivalence of default character objects

A default character data object shall not be equivalenced to an object that is not default character and not of a character sequence
type. The lengths of equivalenced default character objects need not be the same.

An EQUIVALENCE statement specifies that the storage sequences of all the default character data objects specified in an equivalence-
set are storage associated. All of the nonzero-sized sequences in the equivalence-set, if any, have the same first character storage unit,
and all of the zero-sized sequences in the equivalence-set, if any, are storage associated with one another and with the first character
storage unit of any nonzero-sized sequences. This causes the storage association of the data objects in the equivalence-set and can
cause storage association of other data objects.

NOTE 1

For example, using the declarations:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

the association of A, B, and C can be illustrated graphically as:

13/22-007r1 127

11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27

28
29

34

35
36

37

38

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1 (cont.)

l-== === B --- -

== c) -] |--- @ -

8.10.1.4 Array names and array element designators

For a nonzero-sized array, the use of the array name unqualified by a subscript list as an equivalence-object has the same effect as
using an array element designator that identifies the first element of the array.

8.10.1.5 Restrictions on EQUIVALENCE statements

An EQUIVALENCE statement shall not specify that the same storage unit is to occur more than once in a storage sequence.

An EQUIVALENCE statement shall not specify that consecutive storage units are to be nonconsecutive.

8.10.2 COMMON statement

8.10.2.1 General

The COMMON statement specifies blocks of physical storage, called common blocks, that can be accessed by any of the scoping
units in a program. Thus, the COMMON statement provides a global data facility based on storage association (19.5.3).

A common block that does not have a name is called blank common.

R877 common-stmt is COMMON N
B [/ [common-block-name] /] common-block-object-list
B [[,] /[common-block-name] /R

B common-block-object-list | ...
R&78 common-block-object is wariable-name [(array-spec) |
C8121 (R878) An array-spec in a common-block-object shall be an explicit-shape-spec-list.
C8122 (R878) Only one appearance of a given variable-name is permitted in all common-block-object-lists within a scoping unit.
C8123 (R878) A common-block-object shall not be a dummy argument, a function result, an allocatable variable, a derived-type
object with an ultimate component that is allocatable, an object of enumeration type, a procedure pointer, an automatic

data object, a variable with the BIND attribute, an unlimited polymorphic pointer, or a coarray.

8124 (R878) If a common-block-object is of a derived type, the type shall have the BIND attribute or the SEQUENCE attribute
and it shall have no default initialization.

C8125 (R878) A wariable-name shall not be a name made accessible by use association.

In each COMMON statement, the data objects whose names appear in a common block object list following a common block name
are declared to be in that common block. If the first common block name is omitted, all data objects whose names appear in the
first common block object list are specified to be in blank common. Alternatively, the appearance of two slashes with no common
block name between them declares the data objects whose names appear in the common block object list that follows to be in blank
common.

Any common block name or an omitted common block name for blank common may occur more than once in one or more COMMON
statements in a scoping unit. The common block list following each successive appearance of the same common block name in a
scoping unit is treated as a continuation of the list for that common block name. Similarly, each blank common block object list in
a scoping unit is treated as a continuation of blank common.

The form variable-name (array-spec) specifies the DIMENSION attribute for that variable.

If derived-type objects of numeric sequence type or character sequence type (7.5.2.3) appear in common, it is as if the individual
components were enumerated directly in the common list.

8.10.2.2 Common block storage sequence

For each common block in a scoping unit, a common block storage sequence is formed as follows:

128 J3/22-007r1

O~N OO WN -

10
11

12

13
14
15
16
17
18

19
20

21
22

23
24

25

26
27

28
29

30
31

32

33

34
35
36

37
38

39
40

41

42

2022-04-22 WD 1539-1 J3/22-007r1

(1) A storage sequence is formed consisting of the sequence of storage units in the storage sequences (19.5.3.2) of all data
objects in the common block object lists for the common block. The order of the storage sequences is the same as the
order of the appearance of the common block object lists in the scoping unit.

(2) The storage sequence formed in (1) is extended to include all storage units of any storage sequence associated with it
by equivalence association. The sequence shall be extended only by adding storage units beyond the last storage unit.
Data objects associated with an entity in a common block are considered to be in that common block.

Only COMMON statements and EQUIVALENCE statements appearing in the scoping unit contribute to common block storage
sequences formed in that scoping unit.

8.10.2.3 Size of a common block

The size of a common block is the size of its common block storage sequence, including any extensions of the sequence resulting from
equivalence association.

8.10.2.4 Common association

Within a program, the common block storage sequences of all nonzero-sized common blocks with the same name have the same first
storage unit, and the common block storage sequences of all zero-sized common blocks with the same name are storage associated
with one another. Within a program, the common block storage sequences of all nonzero-sized blank common blocks have the same
first storage unit and the storage sequences of all zero-sized blank common blocks are associated with one another and with the first
storage unit of any nonzero-sized blank common blocks. This results in the association of objects in different scoping units. Use or
host association can cause these associated objects to be accessible in the same scoping unit.

A nonpointer object that is default integer, default real, double precision real, default complex, default logical, or of numeric sequence
type shall be associated only with nonpointer objects of these types and kinds.

A nonpointer object that is default character or of character sequence type shall be associated only with nonpointer objects of these
types and kinds.

A nonpointer object of a derived type that is not a numeric sequence or character sequence type shall be associated only with
nonpointer objects of the same type.

A nonpointer object of an enum type shall be associated only with nonpointer objects of the same type.

A nonpointer object of intrinsic type but which is not default integer, default real, double precision real, default complex, default
logical, or default character shall be associated only with nonpointer objects of the same type and type parameters.

A data pointer shall be storage associated only with data pointers of the same type and rank. Data pointers that are storage
associated shall have deferred the same type parameters; corresponding nondeferred type parameters shall have the same value.

An object with the TARGET attribute shall be storage associated only with another object that has the TARGET attribute and the
same type and type parameters.

NOTE 1

A common block is permitted to contain sequences of different storage units, provided each scoping unit that accesses the
common block specifies an identical sequence of storage units for the common block. For example, this allows a single common
block to contain both numeric and character storage units.

Association in different scoping units between objects of default type, objects of double precision real type, and sequence
structures is permitted according to the rules for equivalence objects (8.10.1).

8.10.2.5 Differences between named common and blank common

A blank common block has the same properties as a named common block, except for the following.

o Execution of a RETURN or END statement might cause data objects in a named common block to become undefined unless
the common block has the SAVE attribute, but never causes nonpointer data objects in blank common to become undefined
(19.6.6).

¢ Named common blocks of the same name shall be of the same size in all scoping units of a program in which they appear, but
blank common blocks may be of different sizes.

o A data object in a named common block may be initially defined by means of a DATA statement or type declaration statement
in a block data program unit (14.3), but objects in blank common shall not be initially defined.

8.10.3 Restrictions on common and equivalence

An EQUIVALENCE statement shall not cause the storage sequences of two different common blocks to be associated.

J3/22-007r1 129

w

J3/22-007r1 WD 1539-1 2022-04-22

2 Equivalence association shall not cause a derived-type object with default initialization to be associated with an object in a common
block.

3 Equivalence association shall not cause a common block storage sequence to be extended by adding storage units preceding the first
storage unit of the first object specified in a COMMON statement for the common block.

130 J3/22-007r1

© 00 N O b~ W

10

11

12
13

14

15

16
17

18
19
20

21

22

23

24

25

26

27

28

29

30

2022-04-22 WD 1539-1 J3/22-007r1

9 Use of data objects

9.1 Designator

R901 designator is object-name
or array-element
or array-section
or coindexed-named-object
or complez-part-designator
or structure-component
or substring

The appearance of a data object designator in a context that requires its value is termed a reference.

0.2 Variable

R902 wariable is designator
or function-reference

C901 (R902) designator shall not be a constant or a subobject of a constant.

C902 (R902) function-reference shall have a data pointer result.

A variable is either the data object denoted by designator or the target of the pointer resulting from the evaluation

of function-reference; this pointer shall be associated.

A reference is permitted only if the variable is defined. A reference to a data pointer is permitted only if the
pointer is associated with a target object that is defined. A variable becomes defined with a value when events

described in 19.6.5 occur.

R903 wariable-name is name

C903 (R903) wariable-name shall be the name of a variable.
R904 logical-variable is wariable

C904 (R904) logical-variable shall be of type logical.

R905 char-variable is wariable

C905 (R905) char-variable shall be of type character.

R906 default-char-variable is wariable

C906 (RI06) default-char-variable shall be default character.
R907 int-variable is wariable

C907 (R907) int-variable shall be of type integer.

NOTE 1

For example, given the declarations:

CHARACTER (10) A, B (10)
TYPE (PERSON) P ! See 7.5.2.1, NOTE 1

13/22-007r1

131

g~ W N

10
11
12
13
14

15

16

17
18
19

20
21
22
23
24
25

26

27
28

29

30

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1 (cont.)
then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables.

0.3 Constants

A constant (6.2.3) is a literal constant or a named constant. A literal constant is a scalar denoted by a syntactic
form, which indicates its type, type parameters, and value. A named constant is a constant that has a name; the
name has the PARAMETER attribute (8.5.13, 8.6.11). A reference to a constant is always permitted; redefinition
of a constant is never permitted.

9.4 Scalars

9.4.1 Substrings

A substring is a contiguous portion of a character string (7.4.4).
R908 substring is parent-string (substring-range)

RI909 parent-string is scalar-variable-name
or array-element
or coindexed-named-object
or scalar-structure-component
or scalar-constant

RI10 substring-range is [scalar-int-expr | : | scalar-int-expr |
C908 (R909) parent-string shall be of type character.

The value of the first scalar-int-expr in substring-range is the starting point of the substring and the value of
the second one is the ending point of the substring. The length of a substring is the number of characters in the
substring and is MAX (I — f 4+ 1, 0), where f and [are the starting and ending points, respectively.

Let the characters in the parent string be numbered 1, 2, 3, ..., n, where n is the length of the parent string.
Then the characters in the substring are those from the parent string from the starting point and proceeding in
sequence up to and including the ending point. If the starting point is greater than the ending point, the substring
has length zero; otherwise, both the starting point and the ending point shall be within the range 1, 2, ..., n. If
the starting point is not specified, the default value is 1. If the ending point is not specified, the default value is
n.

NOTE 1

Examples of character substrings are:
B(1) (1:5) array element as parent string
P%NAME(1:1) structure component as parent string
ID(4:9) scalar variable name as parent string

70123456789 (N:N) character constant as parent string

9.4.2 Structure components

A structure component is part of an object of derived type; it can be referenced by an object designator. A
structure component may be a scalar or an array.

R911 data-ref is part-ref [% part-ref | ...

R912 part-ref is part-name [(section-subscript-list) | [image-selector |

132 J3/22-007r1

10
11

12

13
14
15

16
17

18
19
20

21
22

23
24

25

26
27
28

29

30
31

32
33

2022-04-22 WD 1539-1 J3/22-007r1

C909 (R911) Each part-name except the rightmost shall be of derived type.

C910 (RI11) Each part-name except the leftmost shall be the name of a component of the declared type of the
preceding part-name.

C911 (RI11) If the rightmost part-name is of abstract type, data-ref shall be polymorphic.
C912 (R911) The leftmost part-name shall be the name of a data object.

C913 (R912) If a section-subscript-list appears, the sum of the rank of part-ref, the sizes of the arrays in each
multiple subscript, and the number of subscripts, shall equal the rank of part-name.

C914 (R912) If image-selector appears, the number of cosubscripts shall be equal to the corank of part-name.

C915 A data-ref shall not be of type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BIND-
ING (18.2), or of type TEAM_TYPE from the intrinsic module ISO_ FORTRAN ENV (16.10.2), if one
of its part-refs has an image-selector.

C916 (RI12) If image-selector appears and part-name is an array, section-subscript-list shall appear.

C917 (RI11) Except as an actual argument to an intrinsic inquiry function or as the designator in a type
parameter inquiry, a data-ref shall not be a coindexed object that has a polymorphic allocatable potential
subobject component.

C918 Except as an actual argument to an intrinsic inquiry function or as the designator in a type parameter
inquiry, if the rightmost part-ref is polymorphic, no other part-ref shall be coindexed.

The rank of a part-ref of the form part-name is the rank of part-name. The rank of a part-ref that has a section
subscript list is the sum of the number of subscript triplets, the number of vector subscripts, and the sizes of one
of the arrays in each multiple section subscript.

C919 (R911) There shall not be more than one part-ref with nonzero rank. A part-name to the right of a
part-ref with nonzero rank shall not have the ALLOCATABLE or POINTER attribute.

The rank of a data-ref is the rank of the part-ref with nonzero rank, if any; otherwise, the rank is zero. The base
object of a data-ref is the data object whose name is the leftmost part name.

The type and type parameters, if any, of a data-ref are those of the rightmost part name.

A data-ref with more than one part-ref is a subobject of its base object if none of the part-names, except for
possibly the rightmost, is a pointer. If the rightmost part-name is the only pointer, then the data-ref is a subobject
of its base object in contexts that pertain to its pointer association status but not in any other contexts.

NOTE 1

If X is an object of derived type with a pointer component P, then the pointer X%P is a subobject of X
when considered as a pointer — that is in contexts where it is not dereferenced.

However the target of X%P is not a subobject of X. Thus, in contexts where X%P is dereferenced to refer
to the target, it is not a subobject of X.

R913 structure-component is data-ref

C920 (R913) There shall be more than one part-ref and the rightmost part-ref shall not have a section-subscript-
list.

A structure component shall be neither referenced nor defined before the declaration of the base object. A
structure component is a pointer only if the rightmost part name has the POINTER attribute.

J3/22-007r1 133

10
11
12

13

14
15

16

17
18

19
20

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 2

Examples of structure components are:
SCALAR_PARENTY,SCALAR_FIELD scalar component of scalar parent
ARRAY_PARENT (J)%SCALAR_FIELD component of array element parent

ARRAY_PARENT(1:N)%SCALAR_FIELD component of array section parent

For a more elaborate example see C.5.1.

NOTE 3

The syntax rules are structured such that a data-ref that ends in a component name without a following
subscript list is a structure component, even when other component names in the data-ref are followed by
a subscript list. A data-ref that ends in a component name with a following subscript list is either an array
element or an array section. A data-ref of nonzero rank that ends with a substring-range is an array section.
A data-ref of zero rank that ends with a substring-range is a substring.

9.4.3 Coindexed named objects
A coindexed-named-object is a named scalar coarray variable followed by an image selector.
R914 coindezed-named-object is data-ref

C921 (R914) The data-ref shall contain exactly one part-ref. The part-ref shall contain an image-selector.
The part-name shall be the name of a scalar coarray.

9.4.4 Complex parts

R915 complex-part-designator is designator % RE
or designator % IM

C922 (RI15) The designator shall be of complex type.

If complez-part-designator is designator%RE it designates the real part of designator. If it is designator%IM
it designates the imaginary part of designator. The type of a complex-part-designator is real, and its kind and
shape are those of the designator, which can be an array or scalar.

NOTE 1

The following are examples of complex part designators:
impedance’re Same value as REAL (impedance).
fft¥im Same value as AIMAG (fft).
x%im = 0.0 Sets the imaginary part of X to zero.

9.4.5 Type parameter inquiry

A type parameter inquiry is used to inquire about a type parameter of a data object. It applies to both intrinsic
and derived types.

R916 type-param-inquiry is designator % type-param-name

C923 (R916) The type-param-name shall be the name of a type parameter of the declared type of the object
designated by the designator.

A deferred type parameter of a pointer that is not associated or of an unallocated allocatable variable shall not
be inquired about.

134 J3/22-007r1

10
11
12

13

14

15

16

17
18

19
20
21

22

23

24

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 1

A type-param-inquiry has a syntax like that of a structure component reference, but it does not have the
same semantics. It is not a variable and thus can never be assigned to. It can be used only as a primary in
an expression. It is scalar even if designator is an array.

The intrinsic type parameters can also be inquired about by using the intrinsic functions KIND and LEN.

NOTE 2

The following are examples of type parameter inquiries:

a%kind A is real. Same value as KIND (a).
s¥ilen S is character. Same value as LEN (s).
b(10)%kind Inquiry about an array element.

p/dim P is of the derived type general_point.

See 7.5.3.1, NOTE 1 for the definition of the general_point type used in the last example above.

9.5 Arrays

9.5.1 Order of reference

No order of reference to the elements of an array is indicated by the appearance of the array designator, except
where array element ordering (9.5.3.3) is specified.

9.5.2 Whole arrays

A whole array is a named array or a structure component whose final part-ref is an array component name; no
subscript list is appended.

The appearance of a whole array variable in an executable construct specifies all the elements of the array (5.4.6).
The appearance of a whole array designator in a nonexecutable statement specifies the entire array except for the
appearance of a whole array designator in an equivalence set (8.10.1.4). An assumed-size array (8.5.8.5) is permitted to
appear as a whole array in an executable construct or specification expression only as an actual argument in a
procedure reference that does not require the shape.

9.5.3 Array elements and array sections

9.5.3.1 Syntax

RI17 array-element is data-ref

C924 (RI17) Every part-ref shall have rank zero and the last part-ref shall contain a subscript-list.

R918 array-section is data-ref | (substring-range)]
or complex-part-designator

C925 (R918) Exactly one part-ref shall have nonzero rank, and either the final part-ref shall have a section-
subscript-list with nonzero rank, another part-ref shall have nonzero rank, or the complez-part-designator
shall be an array.

C926 (RI18) If a substring-range appears, data-ref shall be of type character.
R919 subscript is scalar-int-expr

R920 multiple-subscript is Q@ int-expr

J3/22-007r1 135

S W N

10

11

12

13

14
15

16
17

18
19

20

21

22
23
24

J3/22-007r1 WD 1539-1 2022-04-22

C927 The int-expr in a multiple-subscript shall be an array of rank one.

R921

section-subscript is subscript
or multiple-subscript
or subscript-triplet
or multiple-subscript-triplet
or wvector-subscript

R922 subscript-triplet is [subscript] : [subscript][: stride]

R923 multiple-subscript-triplet is Q@ [int-expr | : [int-expr] [: inl-expr]

C928 A multiple-subscript-triplet shall have at least one int-expr that is an array of rank one. The int-exprs

in a multiple-subscript-triplet shall be conformable.

R924 stride is scalar-int-expr

R925 wvector-subscript is int-expr

C929 (R925) A wector-subscript shall be an integer array expression of rank one.

C930 (R922) The second subscript shall not be omitted from a subscript-triplet in the last dimension of an

C931

assumed-size array.

If a multiple-subscript-triplet is the last section-subscript in the section-subscript-list of an assumed-size
array, the second int-expr shall appear.

1 An array element is a scalar. An array section is an array. If a substring-range appears in an array-section, each
element is the designated substring of the corresponding element of the array section.

2 The value of a subscript in an array element shall be within the bounds for its dimension.

NOTE 1

For example, with the declarations:

REAL A (10, 10)

CHARACTER (LEN = 10) B (5, 5, 5)
A (1, 2) is an array element, A (1:N:2, M) is a rank-one array section, and B (:, :, :) (2:3) is an array of
shape (5, 5, 5) whose elements are substrings of length 2 of the corresponding elements of B.

NOTE 2

Unless otherwise specified, an array element or array section does not have an attribute of the whole array.
In particular, an array element or an array section does not have the POINTER or ALLOCATABLE
attribute.

NOTE 3

Examples of array elements and array sections are:
ARRAY_A(1:N:2)%ARRAY_B(I, J)%STRING(K)(:) array section
SCALAR_PARENTYARRAY_FIELD(J) array element
SCALAR_PARENTY%ARRAY FIELD(1:N) array section
SCALAR_PARENT%ARRAY_FIELD(1:N)%SCALAR_FIELD array section

9.5.3.2 Sequences of subscripts and subscript triplets

1 A multiple-subscript specifies a sequence of subscripts, the number of which is equal to the size of multiple-
subscript. The effect is as if the array elements were specified individually as subscripts of consecutive dimensions

(not

136

preceded by @).

13/22-007r1

A W N =

© 00 N O o

11
12

2022-04-22 WD 1539-1 J3/22-007r1

In a multiple-subscript-triplet, if the first int-expr does not appear, the effect is as if it were a rank-one array whose
element values are the lower bounds of the corresponding dimensions. If the second int-ezpr does not appear, the
effect is as if it were a rank-one array whose element values are the upper bounds of the corresponding dimensions.
If the third int-expr does not appear, the effect is as if it appeared with the value one.

A multiple-subscript-triplet specifies a sequence of subscript triplets, the number of which is equal to the size of
one of its array int-exprs. If any int-expr is a scalar, the effect is as if it were broadcast to the shape of one that is
an array. An element of the first array acts as if it were the first subscript in a subscript triplet; the corresponding
element of the second array acts as if it were the second subscript; the corresponding element of the third array
acts as if it were the stride.

NOTE 1
Examples of references to parts of arrays using one-dimensional arrays to specify sequences of subscripts or
sequences of subscript triplets, assuming V1, V2, and V3 are rank-one arrays, are:

A(e[3,5])
A(G’ @[3’5], 1)

! Array element, equivalent to A(3, 5)
! Array element, equivalent to A(6, 3, 5, 1)
A(e[1,2]1:[3,4]) ! Array section, equivalent to A(1:3, 2:4)
A(@:[4,6]:2, :, 1) ! Array section with stride, equivalent to A(:4:2, :6:2, :, 1)
ACevi, :, @V2) ! Rank-one array section, the rank of A being
! SIZE (V1) + 1 + SIZE (V2).
! Rank 1 + SIZE (V2) array section, the rank of B being
! SIZE (V1) + 1 + SIZE (V2).
! Rank 1 + SIZE (V3) array section, the rank of C being
! SIZE (V1) + 1 + SIZE (V3).

B(@vi, :, @V2:)

c(evl, :, @::V3)

9.5.3.3 Array element order

1 The elements of an array form a sequence known as the array element order. The position of an array element

in this sequence is determined by the subscript order value of the subscript list designating the element. The
subscript order value is computed from the formulas in Table 9.1.

Table 9.1: Subscript order value

Rank Subscript bounds Subscript list Subscript order value
1 Ji:ka s1 1+ (s —]1)
2 Jiki,jo:ko 51,59 14+ (s1—71)
+(s2 — j2) x di
3 Jiiky, jotka, jaiks S1, 82,83 (51— 1)

+(s2 — jo2) X dy
+(s3 — j3) X dg x dy

1+ (s1—J1)

15 jllk‘l, e ,j152k‘15 S15...,9515 +(52 7]'2) X dl
+...

+(815—j15)><d14><. .. Xdy
NOTE 1 d; = max (k; — j; + 1, 0) is the size of the i*" dimension.
NOTE 2 If the size of the array is nonzero, j; <s; < k; forall: =1,2, ..., 15.

9.5.3.4 Array sections

9.5.3.4.1 Section subscript lists

1 In an array-section having a section-subscript-list, each subscript triplet and wvector-subscript in the section

subscript list indicates a sequence of subscripts, which may be empty. Each subscript in such a sequence shall

J3/22-007r1 137

w

© 0o N O g

10

11
12
13
14
15

16

17
18
19

20
21
22

23

24
25

26

27

J3/22-007r1 WD 1539-1 2022-04-22

be within the bounds for its dimension unless the sequence is empty. The array section is the set of elements
from the array determined by all possible subscript lists obtainable from the single subscripts or sequences of
subscripts specified by each section subscript.

In an array-section with no section-subscript-list, the rank and shape of the array is the rank and shape of the
part-ref with nonzero rank; otherwise, the rank of the array section is the number of subscript triplets and vector
subscripts in the section subscript list. The shape is the rank-one array whose ith element is the number of
integer values in the sequence indicated by the ith subscript triplet or vector subscript. If any of these sequences
is empty, the array section has size zero. The subscript order of the elements of an array section is that of the
array data object that the array section represents.

9.5.3.4.2 Subscript triplet

A subscript triplet designates a regular sequence of subscripts consisting of zero or more subscript values. The
stride in the subscript triplet specifies the increment between the subscript values. The subscripts and stride of a
subscript triplet are optional. An omitted first subscript in a subscript triplet is equivalent to a subscript whose
value is the lower bound for the array and an omitted second subscript is equivalent to the upper bound. An
omitted stride is equivalent to a stride of 1.

The stride shall not be zero.

When the stride is positive, the subscripts specified by a triplet form a regularly spaced sequence of integers
beginning with the first subscript and proceeding in increments of the stride to the largest such integer not
greater than the second subscript; the sequence is empty if the first subscript is greater than the second.

NOTE 1
For example, suppose an array is declared as A (5, 4, 3). The section A (3 : 5, 2, 1 : 2) is the array of shape
(3, 2):

A (3, 2, 1) A (3, 2, 2)

A (4, 2, 1) A (4, 2, 2)

A (5, 2, 1) A (5, 2, 2)

4 When the stride is negative, the sequence begins with the first subscript and proceeds in increments of the stride

down to the smallest such integer equal to or greater than the second subscript; the sequence is empty if the
second subscript is greater than the first.

NOTE 2

For example, if an array is declared B (10), the section B (9 : 1 : —2) is the array of shape (5) whose
elements are B (9), B (7), B (5), B (3), and B (1), in that order.

NOTE 3

A subscript in a subscript triplet need not be within the declared bounds for that dimension if all values
used in selecting the array elements are within the declared bounds.

For example, if an array is declared as B (10), the array section B (3 : 11 : 7) is the array of shape (2)
consisting of the elements B (3) and B (10), in that order.

9.5.3.4.3 Vector subscript

1 A vector subscript designates a sequence of subscripts corresponding to the values of the elements of the expression.

Each element of the expression shall be defined.

2 An array section with a vector subscript shall not be finalized by a nonelemental final subroutine.

3 If a vector subscript has two or more elements with the same value, an array section with that vector subscript

138 J3/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

1 is not definable and shall not be defined or become undefined.

NOTE 1
For example, suppose Z is a two-dimensional array of shape [5, 7] and U and V are one-dimensional arrays

of shape (3) and (4), respectively. Assume the values of U and V are:

U [1, 3, 2]
' [2, 1,1, 31

Then Z (3, V) consists of elements from the third row of Z in the order:

z (3, 2) z @3, 1 z (3,1 Z (@3, 3
Z (U, 2) consists of the column elements:
z (1, 2) Z (3, 2) zZ (2, 2

and Z (U, V) consists of the elements:

z (1, 2) Z (1, 1 z (1, 1 z (1, 3
Z (3, 2) Z (3, 1 Z (3, 1 z (3, 3
Z (2, 2) Z (2, 1 Z (2, 1) Z (2, 3

Because Z (3, V) and Z (U, V) contain duplicate elements from Z, the sections Z (3, V) and Z (U, V) cannot
be redefined as sections.

N

9.5.4 Simply contiguous array designators

3 1 A section-subscript-list specifies a simply contiguous section if and only if it does not have a vector subscript and

4 e all but the last subscript-triplet is a colon,
5 e the last subscript-triplet does not have a stride, and
6 e no subscript-triplet is preceded by a section-subscript that is a subscript.

7 2 An array designator is simply contiguous if and only if it is

e an object-name that has the CONTIGUOUS attribute,
e an object-name that is not a pointer, not assumed-shape, and not assumed-rank,

10 e a structure-component whose final part-name is an array and that either has the CONTIGUOUS attribute
11 or is not a pointer, or

12 e an array section

13 — that is not a complez-part-designator,

14 — that does not have a substring-range,

15 — whose final part-ref has nonzero rank,

16 — whose rightmost part-name has the CONTIGUOUS attribute or is neither assumed-shape nor a pointer,
17 and

18 — which either does not have a section-subscript-list, or has a section-subscript-list which specifies a
19 simply contiguous section.

20 3 An array wvariable is simply contiguous if and only if it is a simply contiguous array designator or a reference to
21 a function that returns a pointer with the CONTIGUOUS attribute.

NOTE 1
Array sections that are simply contiguous include column, plane, cube, and hypercube subobjects of a
simply contiguous base object, for example:
ARRAY1 (10:20, 3) Passes part of the third column of ARRAY1.
X3D (:, i:j, 2) Passes part of the second plane of X3D (or the whole
plane if i==LBOUND (X3D, 2) and j==UBOUND (X3D, 2).

J3/22-007r1 139

o N o o

10
11

12

13

14
15
16
17

18
19
20
21
22
23
24
25
26

27
28
29

30
31

32
33
34
35
36

37
38

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1 (cont.)
YSD (:, iy, i, :, T) Passes the seventh hypercube of Y5D.

All simply contiguous designators designate contiguous objects.

9.6 Image selectors

An image selector determines the image index for a coindexed object.

R926 image-selector is Ibracket cosubscript-list [, image-selector-spec-list | rbracket
R927 cosubscript is scalar-int-expr
R928 image-selector-spec is NOTIFY = notify-variable

or STAT = stat-variable
or TEAM = team-value
or TEAM_NUMBER = scalar-int-expr

C932 No specifier shall appear more than once in a given image-selector-spec-list.

C933 A NOTIFY= image-selector-spec shall appear only in the designator of the variable of an intrinsic as-
signment statement.

C934 TEAM and TEAM_NUMBER shall not both appear in the same image-selector-spec-list.
C935 A stat-variable in an image-selector shall not be a coindexed object.

The number of cosubscripts shall be equal to the corank of the object. The value of a cosubscript in an image
selector shall be within the cobounds for its codimension. Taking account of the cobounds, the cosubscript list in
an image selector determines the image index in the same way that a subscript list in an array element determines
the subscript order value (9.5.3.3), taking account of the bounds.

If a TEAM= specifier appears in an image-selector, the team of the image selector is specified by team-value,
which shall identify the current or an ancestor team; the object shall be an established coarray in that team
or an ancestor thereof. If a TEAM_ NUMBER= specifier appears in an image-selector and the current team is
not the initial team, the value of the scalar-int-expr shall be equal to the value of a team number for a sibling
team of the current team and the team of the image selector is that team; the object shall be an established
coarray in an ancestor of the current team, or an associating entity of the CHANGE TEAM construct. If a
TEAM_NUMBER= specifier appears in an image-selector and the current team is the initial team, the value of
scalar-int-expr shall be the team number for the initial team; the object shall be an established coarray in the
initial team. Otherwise, the team of the image selector is the current team.

Execution of an assignment statement whose variable has a NOTIFY= specifier atomically increments the count
of the corresponding notify variable on the image specified by the image selector, and does not wait for that
image to execute a corresponding NOTIFY WAIT statement.

An image selector shall specify an image index value that is not greater than the number of images in the team
of the image selector, and identifies the image with that index in that team.

Execution of a statement containing an image-selector with a STAT= specifier causes the stat-variable to become
defined. If the designator is part of an operand that is evaluated or is a variable that is being defined or partly
defined, and the object designated is on a failed image, the stat-variable is defined with the value STAT -
FAILED_IMAGE (16.10.2.28) in the intrinsic module ISO_ FORTRAN__ENV; otherwise, it is defined with the
value zero.

The denotation of a stat-variable in an image-selector shall not depend on the evaluation of any entity in the
same statement. The value of an expression shall not depend on the value of any stat-variable that appears in

140 J3/22-007r1

10
11
12

13

14

15
16
17
18

19
20

21

22

23

24

25

26

27

28

29
30

31

32

2022-04-22

WD 1539-1

13/22-007r1

the same statement. The value of a stat-variable in an image-selector shall not be affected by the execution of
any part of the statement, other than by whether the image specified by the image-selector has failed.

NOTE 1

For example, if there are 16 images and the coarray A is declared

REAL ::

AC10) [5, %]

A(:)[1,4] is valid because it specifies image 16, but A(:)[2,4] is invalid because it specifies image 17.

9.7 Dynamic association

9.7.1 ALLOCATE statement

9.7.1.1 Form of the ALLOCATE statement

The ALLOCATE statement dynamically creates pointer targets and allocatable variables.

R929

R930

R931
R932

R933

R934

R935
R936
R937
R938
R939
R940
R941
C936
C937

C938

C939

allocate-stmt

alloc-opt

errmsg-variable
source-expr

allocation

allocate-object

allocate-shape-spec
lower-bound-expr
lower-bounds-expr
upper-bound-expr
upper-bounds-expr
allocate-coarray-spec

allocate-coshape-spec

is

is

or
or
or

is

is

is

or

is

or

is

is

is

is

is

is

is

ALLOCATE ([type-spec ::
B [, alloc-opt-list |)

| allocation-list B

ERRMSG = errmsg-variable
MOLD = source-expr
SOURCE = source-expr
STAT = stat-variable
scalar-default-char-variable

expr

allocate-object | (allocate-shape-spec-list) | M
B [lbracket allocate-coarray-spec rbracket |

([lower-bounds-expr : | upper-bounds-expr) B
B [[bracket allocate-coarray-spec rbracket |

variable-name
structure-component

[lower-bound-expr : | upper-bound-expr
scalar-int-expr

nt-expr

scalar-int-expr

nt-expr

[allocate-coshape-spec-list | | [lower-bound-expr :

[lower-bound-expr : | upper-bound-expr

(R934) Each allocate-object shall be a data pointer or an allocatable variable.

] *

(R929) If any allocate-object has a deferred type parameter, is unlimited polymorphic, or is of abstract
type, either type-spec or source-expr shall appear.

(R929) If type-spec appears, it shall specify a type with which each allocate-object is type compatible.

(R929) A type-param-value in a type-spec shall be an asterisk if and only if each allocate-object is a dummy

13/22-007r1

141

10
11

12

13

14
15
16

17
18
19

20

21

22
23

24
25

26
27
28

29
30

31
32
33

34

J3/22-007r1 WD 1539-1 2022-04-22

argument for which the corresponding type parameter is assumed.

C940 (R929) If type-spec appears, the kind type parameter values of each allocate-object shall be the same as
the corresponding type parameter values of the type-spec.

C941 (R929) If an allocate-object is a coarray, type-spec shall not specify type C_PTR or C_ FUNPTR from
the intrinsic module ISO_C_BINDING, or type TEAM_TYPE from the intrinsic module ISO_ FOR-
TRAN_ENV.

C942 (R929) If an allocate-object is unlimited polymorphic, type-spec shall not specify a type that has a coarray
potential subobject component.

C943 (R929) If an allocate-object is an array, either allocate-shape-spec-list or upper-bounds-expr shall appear
in its allocation, or source-expr shall appear in the ALLOCATE statement and have the same rank as
the allocate-object.

C944 (R933) If allocate-object is scalar, allocate-shape-spec-list shall not appear.

C945 (R933) An allocate-coarray-spec shall appear if and only if the allocate-object is a coarray.

C946 (R933) The number of allocate-shape-specs in an allocate-shape-spec-list shall be the same as the rank
of the allocate-object. The number of allocate-coshape-specs in an allocate-coarray-spec shall be one less
than the corank of the allocate-object.

C947 If upper-bounds-expr and lower-bounds-expr both appear in an allocation, at least one of them shall be
a rank-one array of constant size equal to the rank of allocate-object. Otherwise, if upper-bounds-expr
appears in an allocation, it shall be a rank-one array of constant size equal to the rank of allocate-object.

C948 (R930) No alloc-opt shall appear more than once in a given alloc-opt-list.

C949 (R929) At most one of source-expr and type-spec shall appear.

C950 (R929) Each allocate-object shall be type compatible (7.3.3) with source-expr. If SOURCE= appears,
source-expr shall be a scalar or have the same rank as each allocate-object.

C951 (R929) If source-expr appears, the kind type parameters of each allocate-object shall have the same values
as the corresponding type parameters of source-expr.

C952 (R929) The declared type of source-expr shall not be C_PTR or C_FUNPTR from the intrinsic module
ISO_C_BINDING, or TEAM_TYPE from the intrinsic module ISO_ FORTRAN_ ENV, if an allocate-
object is a coarray.

C953 (R929) If an allocate-object is unlimited polymorphic, the declared type of source-expr shall not be a
type that has a coarray potential subobject component.

C954 (R929) If SOURCE= appears, the declared type of source-expr shall not be EVENT_TYPE, LOCK_ -
TYPE, or NOTIFY_TYPE from the intrinsic module ISO FORTRAN__ENV, or have a potential sub-
object component that is a coarray or of type EVENT TYPE, LOCK_TYPE, or NOTIFY_ TYPE.

C955 (R934) An allocate-object shall not be a coindexed object.

NOTE 1

A pointer or allocatable component of a coarray can only be allocated by its own image.
TYPE (SOMETHING), ALLOCATABLE :: T[:]
ALLOCATE (T[*]) Allowed - implies synchronization.
ALLOCATE (T%AAC (N)) Allowed - allocated by its own image.
ALLOCATE (T[Q]%AAC (N)) Not allowed, because it is coindexed.

142

13/22-007r1

10
11

12
13
14
15
16

17
18
19

20

21
22
23
24
25

26
27
28
29
30
31

32
33
34
35

36
37
38
39
40

41
42
43

2022-04-22 WD 1539-1 J3/22-007r1

An allocate-object or a bound or type parameter of an allocate-object shall not depend on the value of stat-variable,
the value of errmsg-variable, or on the value, bounds, length type parameters, allocation status, or association
status of any allocate-object in the same ALLOCATE statement.

source-expr shall not be allocated within the ALLOCATE statement in which it appears; nor shall it depend on
the value, bounds, deferred type parameters, allocation status, or association status of any allocate-object in that
statement.

If an ALLOCATE statement has a SOURCE= specifier and an allocate-object that is a coarray, source-expr shall
not have a dynamic type of C_PTR or C_ FUNPTR from the intrinsic module ISO _C_BINDING, or EVENT _ -
TYPE, LOCK_TYPE, NOTIFY_TYPE, or TEAM_TYPE from the intrinsic module ISO__ FORTRAN_ENV,
or have a subcomponent whose dynamic type is EVENT TYPE, LOCK_TYPE, NOTIFY_TYPE, or TEAM_ -
TYPE.

If type-spec is specified, each allocate-object is allocated with the specified dynamic type and type parameter
values; if source-expr is specified, each allocate-object is allocated with the dynamic type and type parameter
values of source-expr; otherwise, each allocate-object is allocated with its dynamic type the same as its declared
type. If an allocate-object is unlimited polymorphic, the dynamic type of source-expr shall not have a coarray
potential subobject component.

If a type-param-value in a type-spec in an ALLOCATE statement is an asterisk, it denotes the current value of
that assumed type parameter. If it is an expression, subsequent redefinition or undefinition of any entity in the
expression does not affect the type parameter value.

NOTE 2
An example of an ALLOCATE statement is:
ALLOCATE (X (N), B (-3 : M, 0:9), STAT = IERR_ALLOC)

9.7.1.2 Execution of an ALLOCATE statement

When an ALLOCATE statement is executed for an array for which allocate-shape-spec-list is specified, the values
of the lower bound and upper bound expressions determine the bounds of the array. Subsequent redefinition
or undefinition of any entities in the bound expressions do not affect the array bounds. If the lower bound is
omitted, the default value is one. If the upper bound is less than the lower bound, the extent in that dimension
is zero and the array has zero size.

When an ALLOCATE statement is executed for an array for which upper-bounds-expr is specified, it determines
the upper bounds of the array. Subsequent redefinition or undefinition of an entity in a bounds expression does
not affect the array bounds. If lower-bounds-expr appears, it determines the lower bounds; otherwise the default
value is one. If lower-bounds-expr or upper-bounds-expr is scalar, the effect is as if it were broadcast to the shape
of the other. If any element of upper-bounds-expr is less than the corresponding element of lower-bounds-expr,
the extent in the corresponding dimension is zero and the array has zero size.

When an ALLOCATE statement is executed for a coarray, the values of the lower cobound and upper cobound
expressions determine the cobounds of the coarray. Subsequent redefinition or undefinition of any entities in the
cobound expressions do not affect the cobounds. If the lower cobound is omitted, the default value is 1. The
upper cobound shall not be less than the lower cobound.

If an allocation specifies a coarray, its dynamic type and the values of corresponding type parameters shall be the
same on every active image in the current team. The values of corresponding bounds and corresponding cobounds
shall be the same on those images. If the coarray is a dummy argument, the ultimate arguments (15.5.2.4) on
those images shall be corresponding coarrays. If the coarray is an ultimate component of an array element, the
element shall have the same position in array element order on those images.

When an ALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit syn-
chronization of all active images in the current team. If the current team contains a stopped or failed image,
an error condition occurs. If no other error condition occurs, execution on the active images of the segment

J3/22-007r1 143

g A~ W N =

10

11
12
13
14
15
16
17

18

19
20
21
22

23
24
25

26

27

28
29
30
31
32
33
34
35
36
37
38
39

40

10

11

2

J3/22-007r1 WD 1539-1 2022-04-22

(11.7.2) following the statement is delayed until all other active images in the current team have executed the
same statement the same number of times in this team. The segments that executed before the ALLOCATE
statement on an active image of this team precede the segments that execute after the ALLOCATE statement on
another active image of this team. The coarray shall not become allocated on an image unless it is successfully
allocated on all active images in this team.

NOTE 1

When an image executes an ALLOCATE statement, communication is not necessarily involved apart from
any required for synchronization. The image allocates its coarray and records how the corresponding
coarrays on other images are to be addressed. The processor is not required to detect violations of the
rule that the bounds are the same on all images of the current team, nor is it responsible for detecting or
resolving deadlock problems (such as two images waiting on different ALLOCATE statements.).

If source-expr is a pointer, it shall be associated with a target. If source-expr is allocatable, it shall be allocated.

When an ALLOCATE statement is executed for an array with no allocate-shape-spec-list or upper-bounds-expr,
the array is allocated with the shape of source-expr, and with each lower bound equal to the corresponding
element of LBOUND (source-expr). Subsequent changes to the bounds of source-ezpr do not affect the array
bounds.

If SOURCE= appears, source-expr shall be conformable with allocation. If an allocate-object is not polymorphic
and the source-expr is polymorphic with a dynamic type that differs from its declared type, the value provided for
that allocate-object is the ancestor component of the source-expr that has the type of the allocate-object; otherwise
the value provided is the value of the source-expr. On successful allocation, if allocate-object and source-expr
have the same rank the value of allocate-object becomes the value provided, otherwise the value of each element
of allocate-object becomes the value provided. The source-expr is evaluated exactly once for each execution of an
ALLOCATE statement.

If MOLD= appears and source-expr is a variable, its value need not be defined.

If type-spec appears and the value of a length type parameter it specifies differs from the value of the corresponding
nondeferred type parameter specified in the declaration of any allocate-object, an error condition occurs. If the
value of a nondeferred length type parameter of an allocate-object differs from the value of the corresponding type
parameter of source-expr, an error condition occurs.

The set of error conditions for an ALLOCATE statement is processor dependent. If an error condition occurs
during execution of an ALLOCATE statement that does not contain the STAT= specifier, error termination is
initiated. The STAT= specifier is described in 9.7.4. The ERRMSG= specifier is described in 9.7.5.

9.7.1.3 Allocation of allocatable variables

The allocation status of an allocatable entity is one of the following at any time.

o The status of an allocatable variable becomes “allocated” if it is allocated by an ALLOCATE statement, if
it is allocated during assignment, or if it is given that status by the intrinsic subroutine MOVE__ALLOC
(16.9.147). An allocatable variable with this status may be referenced, defined, or deallocated; allocating it
causes an error condition in the ALLOCATE statement. The result of the intrinsic function ALLOCATED
(16.9.13) is true for such a variable.

e An allocatable variable has a status of “unallocated” if it is not allocated. The status of an allocatable
variable becomes unallocated if it is deallocated (9.7.3) or if it is given that status by the intrinsic sub-
routine MOVE_ALLOC. An allocatable variable with this status shall not be referenced or defined. It shall
not be supplied as an actual argument corresponding to a nonallocatable nonoptional dummy argument,
except to certain intrinsic inquiry functions. It may be allocated with the ALLOCATE statement. Deal-
locating it causes an error condition in the DEALLOCATE statement. The result of the intrinsic function
ALLOCATED (16.9.13) is false for such a variable.

At the beginning of execution of a program, allocatable variables are unallocated.

144 J3/22-007r1

10
11
12

13

14
15
16
17
18
19
20
21
22
23

24
25
26

27

28

29
30
31

32

33
34

35

36

37

38
39

2022-04-22 WD 1539-1 J3/22-007r1

When the allocation status of an allocatable variable changes, the allocation status of any associated allocat-
able variable changes accordingly. Allocation of an allocatable variable establishes values for the deferred type
parameters of all associated allocatable variables.

An unsaved allocatable local variable of a procedure has a status of unallocated at the beginning of each invocation
of the procedure. An unsaved allocatable local variable of a construct has a status of unallocated at the beginning
of each execution of the construct.

When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate components
have an allocation status of unallocated unless the SOURCE= specifier appears and the corresponding component
of the source-expr is allocated.

If the evaluation of a function would change the allocation status of a variable and if a reference to the function
appears in an expression in which the value of the function is not needed to determine the value of the expression,
the allocation status of the variable after evaluation of the expression is processor dependent.

9.7.1.4 Allocation of pointer targets

Allocation of a pointer creates an object that implicitly has the TARGET attribute. Following successful execution
of an ALLOCATE statement for a pointer, the pointer is associated with the target and can be used to reference
or define the target. Additional pointers can become associated with the pointer target or a part of the pointer
target by pointer assignment. It is not an error to allocate a pointer that is already associated with a target.
In this case, a new pointer target is created as required by the attributes of the pointer and any array bounds,
type, and type parameters specified by the ALLOCATE statement. The pointer is then associated with this
new target. Any previous association of the pointer with a target is broken. If the previous target had been
created by allocation, it becomes inaccessible unless other pointers are associated with it. The intrinsic function
ASSOCIATED (16.9.20) can be used to determine whether a pointer that does not have undefined association
status is associated.

At the beginning of execution of a function whose result is a pointer, the association status of the result pointer
is undefined. Before such a function returns, it shall either associate a target with this pointer or cause the
association status of this pointer to become disassociated.

9.7.2 NULLIFY statement
R942 nullify-stmt is NULLIFY (pointer-object-list)

R943 pointer-object is wariable-name
or structure-component
or proc-pointer-name

C956 (R943) Each pointer-object shall have the POINTER attribute.

A pointer-object shall not depend on the value, bounds, or association status of another pointer-object in the
same NULLIFY statement.

Execution of a NULLIFY statement causes each pointer-object to become disassociated.

NOTE 1

When a NULLIFY statement is applied to a polymorphic pointer (7.3.2.3), its dynamic type becomes the
same as its declared type.

9.7.3 DEALLOCATE statement
9.7.3.1 Form of the DEALLOCATE statement

The DEALLOCATE statement causes allocatable variables to be deallocated; it causes pointer targets to be
deallocated and the pointers to be disassociated.

J3/22-007r1 145

10

11
12

13

14
15
16
17

18
19
20

21
22

23
24
25

26
27
28

29
30
31
32
33
34
35
36
37

38
39

40

J3/22-007r1 WD 1539-1 2022-04-22

R944 deallocate-stmt is DEALLOCATE (allocate-object-list | , dealloc-opt-list |)

R945 dealloc-opt is STAT = stat-variable
or ERRMSG = errmsg-variable

C957 (R945) No dealloc-opt shall appear more than once in a given dealloc-opt-list.

An allocate-object shall not depend on the value, bounds, allocation status, or association status of another
allocate-object in the same DEALLOCATE statement; it also shall not depend on the value of the stat-variable
or errmsg-variable in the same DEALLOCATE statement.

The set of error conditions for a DEALLOCATE statement is processor dependent. If an error condition occurs
during execution of a DEALLOCATE statement that does not contain the STAT= specifier, error termination is
initiated. The STAT= specifier is described in 9.7.4. The ERRMSG= specifier is described in 9.7.5.

When more than one allocated object is deallocated by execution of a DEALLOCATE statement, the order of
deallocation is processor dependent.

NOTE 1
An example of a DEALLOCATE statement is:
DEALLOCATE (X, B)

9.7.3.2 Deallocation of allocatable variables

Deallocating an unallocated allocatable variable causes an error condition in the DEALLOCATE statement.
Deallocating an allocatable variable with the TARGET attribute causes the pointer association status of any
pointer associated with it to become undefined. An allocatable variable shall not be deallocated if it or any
subobject of it is argument associated with a dummy argument or construct associated with an associate name.

When the execution of a procedure is terminated by execution of a RETURN or END statement, an unsaved
allocatable local variable of the procedure retains its allocation and definition status if it is a function result or a
subobject thereof; otherwise, if it is allocated it will be deallocated.

When a BLOCK construct terminates, any unsaved allocated allocatable local variable of the construct is deal-
located.

If an executable construct references a function whose result is allocatable or has an allocatable subobject, and
the function reference is executed, an allocatable result and any allocated allocatable subobject of the result is
deallocated after execution of the innermost executable construct containing the reference.

If a function whose result is allocatable or has an allocatable subobject is referenced in the specification part of a
scoping unit, and the function reference is executed, an allocatable result and any allocated allocatable subobject
of the result is deallocated before execution of the executable constructs of the scoping unit.

When a procedure is invoked, any allocated allocatable object that is an actual argument corresponding to an
INTENT (OUT) allocatable dummy argument is deallocated; any allocated allocatable object that is a subobject
of an actual argument corresponding to an INTENT (OUT) dummy argument is deallocated. If a Fortran proced-
ure that has an INTENT (OUT) allocatable dummy argument is invoked by a C function and the corresponding
argument in the C function call is a C descriptor that describes an allocated allocatable variable, the variable
is deallocated on entry to the Fortran procedure. If a C function is invoked from a Fortran procedure via an
interface with an INTENT (OUT) allocatable dummy argument and the corresponding actual argument in the
reference to the C function is an allocated allocatable variable, the variable is deallocated on invocation (before
execution of the C function begins).

When an intrinsic assignment statement (10.2.1.3) is executed, any noncoarray allocated allocatable subobject of
the variable is deallocated before the assignment takes place.

When a variable of derived type is deallocated, any allocated allocatable subobject is deallocated. If an error

146 J3/22-007r1

~

© 0 N o O«

11
12

13
14

16

17
18
19
20
21

22
23
24
25
26

27

28

29
30

10

11

12

2022-04-22 WD 1539-1 J3/22-007r1

condition occurs during deallocation, it is processor dependent whether an allocated allocatable subobject is
deallocated.

If an allocatable component is a subobject of a finalizable object, any final subroutine for that object is executed
before the component is automatically deallocated.

When a statement that deallocates a coarray or an object with a coarray potential subobject component is
executed, there is an implicit synchronization of all active images in the current team. If the current team
contains a stopped or failed image, an error condition occurs. If no other error condition occurs, execution on the
active images of the segment (11.7.2) following the statement is delayed until all other active images in the current
team have executed the same statement the same number of times in this team. The segments that executed
before the statement on an active image of this team precede the segments that execute after the statement on
another active image of this team. A coarray shall not become deallocated on an image unless it is successfully
deallocated on all active images in this team.

If an allocate-object is a coarray dummy argument, the ultimate arguments (15.5.2.4) on those images shall be
corresponding coarrays.

The effect of automatic deallocation is the same as that of a DEALLOCATE statement without a dealloc-opt-list.

NOTE 1
In the following example:
SUBROUTINE PROCESS

REAL, ALLOCATABLE :: TEMP (:)
REAL, ALLOCATABLE, SAVE :: X (:)

END SUBROUTINE PROCESS

on return from subroutine PROCESS, the allocation status of X is preserved because X has the SAVE
attribute. TEMP does not have the SAVE attribute, so it will be deallocated if it was allocated. On the
next invocation of PROCESS, TEMP will have an allocation status of unallocated.

NOTE 2

For example, executing a RETURN, END, or END BLOCK statement, or deallocating an object that has
an allocatable subobject, can cause deallocation of a coarray, and thus an implicit synchronization of all
active images in the current team.

9.7.3.3 Deallocation of pointer targets

If a pointer appears in a DEALLOCATE statement, its association status shall be defined. Deallocating a pointer
that is disassociated or whose target was not created by an ALLOCATE statement causes an error condition
in the DEALLOCATE statement. If a pointer is associated with an allocatable entity, the pointer shall not be
deallocated. A pointer shall not be deallocated if its target or any subobject thereof is argument associated with
a dummy argument or construct associated with an associate name.

If a pointer appears in a DEALLOCATE statement, it shall be associated with the whole of an object that was
created by allocation. The pointer shall have the same dynamic type and type parameters as the allocated object,
and if the allocated object is an array the pointer shall be an array whose elements are the same as those of the
allocated object in array element order. Deallocating a pointer target causes the pointer association status of any
other pointer that is associated with the target or a portion of the target to become undefined.

9.7.4 STAT= specifier

R946 stat-variable is scalar-int-variable

A stat-variable should have a decimal exponent range of at least four; otherwise the processor-dependent error
code might not be representable in the variable.

J3/22-007r1 147

[o) IS B V)

~

10
11
12
13
14
15
16
17

18
19
20

21
22

23
24

25
26

27

28
29
30
31

32
33
34

J3/22-007r1 WD 1539-1 2022-04-22

This rest of this subclause applies where an alloc-opt or dealloc-opt that is a STAT= specifier appears in an
ALLOCATE or DEALLOCATE statement.

The stat-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement
in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or
association status of any allocate-object in that statement. The stat-variable shall not depend on the value of the
errmsg-variable.

Successful execution of the ALLOCATE or DEALLOCATE statement causes the stat-variable to become defined
with a value of zero.

If an ALLOCATE statement with a coarray allocate-object, or a DEALLOCATE statement with an allocate-
object that is a coarray or which has a coarray potential subobject component, is executed when the current
team contains a stopped image, the stat-variable becomes defined with the value STAT STOPPED_IMAGE
from the intrinsic module ISO_ FORTRAN__ENV (16.10.2). Otherwise, if such a statement is executed when the
current team contains a failed image, and no other error condition occurs, the stat-variable becomes defined with
value STAT FAILED IMAGE from the intrinsic module ISO FORTRAN_ENV. If any other error condition
occurs during execution of the ALLOCATE or DEALLOCATE statement, the stat-variable becomes defined with
a processor-dependent positive integer value different from STAT STOPPED_IMAGE and STAT FAILED -
IMAGE.

If stat-variable became defined with the value STAT FAILED_ IMAGE, each allocate-object is successfully al-
located or deallocated on all the active images of the current team. If any other error condition occurs, each
allocate-object has a processor-dependent status:

e each allocate-object that was successfully allocated shall have an allocation status of allocated or a pointer
association status of associated;

e each allocate-object that was successfully deallocated shall have an allocation status of unallocated or a
pointer association status of disassociated;

e each allocate-object that was not successfully allocated or deallocated shall retain its previous allocation
status or pointer association status.

NOTE 1

The status of objects that were not successfully allocated or deallocated can be individually checked with
the intrinsic functions ALLOCATED or ASSOCIATED.

9.7.5 ERRMSG= specifier

The errmsg-variable shall not be an allocate-object of the ALLOCATE or DEALLOCATE statement in which
it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or association
status of any allocate-object in that statement. The errmsg-variable shall not depend on the value of the stat-
variable.

If an error condition occurs during execution of an ALLOCATE or DEALLOCATE statement with an ERRMSG=
specifier, the errmsg-variable is assigned an explanatory message, as if by intrinsic assignment. If no such condition
occurs, the definition status and value of errmsg-variable are unchanged.

148 J3/22-007r1

10
11

12
13

14
15

16

17
18
19
20
21
22
23
24
25
26
27

28

29

30

2022-04-22 WD 1539-1 J3/22-007r1

10 Expressions and assignment

10.1 Expressions

10.1.1 Expression semantics

An expression represents either a data object reference or a computation, and its value is either a scalar or an
array. Evaluation of an expression produces a value, which has a type, type parameters (if appropriate), and a
shape (10.1.9). The corank of an expression that is not a variable is zero.

10.1.2 Form of an expression
10.1.2.1 Overall expression syntax

An expression is formed from operands, operators, and parentheses. An operand is either a scalar or an array.
An operation is either intrinsic (10.1.5) or defined (10.1.6). More complicated expressions can be formed using
operands which are themselves expressions.

An expression is defined in terms of several categories: primary, level-1 expression, level-2 expression, level-3
expression, level-4 expression, and level-5 expression.

These categories are related to the different operator precedence levels and, in general, are defined in terms of
other categories. The simplest form of each expression category is a primary.

10.1.2.2 Primary

R1001 primary is literal-constant
or designator
or array-constructor
or structure-constructor
or enum-constructor
or enumeration-constructor
or function-reference
or type-param-inquiry
or type-param-name
or (expr)
or conditional-expr

C1001 (R1001) The type-param-name shall be the name of a type parameter.
C1002 (R1001) The designator shall not be a whole assumed-size array.
C1003 (R1001) The ezpr shall not be a function reference that returns a procedure pointer.

NOTE 1

’ Examples of a primary are:

J3/22-007r1 149

10
11

12

13
14

15

16

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1 (cont.)

Example Syntactic class

1.0 constant

> ABCDEFGHI JKLMNOPQRSTUVWXYZ’> (I:I) designator

[1.0, 2.0 1] array-constructor
PERSON (’Jones’, 12) structure-constructor
F X, Y function-reference
X%KIND type-param-inquiry
KIND type-param-name

(8 +7T) (expr)

10.1.2.3 Conditional expressions

A conditional expression is a primary that selectively evaluates a chosen subexpression.

R1002 conditional-expr is (scalar-logical-expr 7 expr | : scalar-logical-expr 7 expr |... : expr)
C1004 Each expr of a conditional-expr shall have the same declared type, kind type parameters, and rank.

NOTE 1
Examples of a conditional expression are:

(ABS (RESIDUAL)<=TOLERANCE 7 ’ok’ : ’did not converge’)
(I>0 .AND. I<=SIZE (A) ? A (I) : PRESENT (VAL) ? VAL : 0.0)

10.1.2.4 Level-1 expressions

Defined unary operators have the highest operator precedence (Table 10.1). Level-1 expressions are primaries
optionally operated on by defined unary operators:

R1003 level-1-expr is [defined-unary-op | primary
R1004 defined-unary-op is . letter [letter]

C1005 (R1004) A defined-unary-op shall not contain more than 63 letters and shall not be the same as any
intrinsic-operator or logical-literal-constant.

NOTE 1

Simple examples of a level-1 expression are:
Example Syntactic class
A primary (R1001)
.INVERSE. B level-1-expr (R1003)

A more complicated example of a level-1 expression is:

.INVERSE. (A + B)

10.1.2.5 Level-2 expressions

Level-2 expressions are level-1 expressions optionally involving the numeric operators power-op, mult-op, and
add-op.

R1005 mult-operand is level-1-expr [power-op mult-operand]

R1006 add-operand is [add-operand mult-op | mult-operand

150 J3/22-007r1

10

11

12

13

14
15
16
17
18
19
20

2022-04-22 WD 1539-1 J3/22-007r1

R1007 level-2-expr is [[level-2-expr | add-op | add-operand
R1008 power-op is *¥
R1009 mult-op is *
or /
R1010 add-op is +
or —
NOTE 1
Simple examples of a level-2 expression are:
Example Syntactic class Remarks
A level-1-expr A is a primary. (R1003)
B *x C mult-operand B is a level-1-expr, ** is a power-op,
and C is a mult-operand. (R1005)
D x E add-operand D is an add-operand, * is a mult-op,
and E is a mult-operand. (R1006)
+1 level-2-expr + is an add-op and 1 is an add-operand. (R1007)
F-1I level-2-expr F is a level-2-expr, — is an add-op,

and I is an add-operand. (R1007)

A more complicated example of a level-2 expression is:
- A+D=x*xE+ B *xx C

10.1.2.6 Level-3 expressions

Level-3 expressions are level-2 expressions optionally involving the character operator concat-op.

R1011 level-3-expr is [level-3-expr concat-op | level-2-expr
R1012 concat-op is //
NOTE 1
Simple examples of a level-3 expression are:
Example Syntactic class
A level-2-expr (R1007)
B//C level-3-expr (R1011)

A more complicated example of a level-3 expression is:

X // Y // ’ABCD’

10.1.2.7 Level-4 expressions

Level-4 expressions are level-3 expressions optionally involving the relational operators rel-op.

R1013 level-4-expr is [level-3-expr rel-op | level-3-expr
R1014 rel-op is .EQ.

or .NE.

or .LT.

or .LE.

or .GT.

or .GE.

or ==

13/22-007r1

151

g W N =

10

11

12

13

14

15

16
17

18

19
20

13/22-007r1

or /=
or <
or <=
or >
or >=

NOTE 1

WD 1539-1

2022-04-22

Simple examples of a level-4 expression are:

Example
A

B ==

D < E

(A +B) /=¢C

Syntactic class

level-3-expr (R1011)
level-4-expr (R1013)
level-4-expr (R1013)

A more complicated example of a level-4 expression is:

10.1.2.8 Level-5 expressions

1 Level-5 expressions are level-4 expressions optionally involving the logical operators not-op, and-op, or-op, and

equiv-op.
R1015 and-operand is [not-op | level-4-expr
R1016 or-operand is [or-operand and-op | and-operand
R1017 equiv-operand is [equiv-operand or-op | or-operand
R1018 level-5-expr is [level-5-expr equiv-op | equiv-operand
R1019 not-op is .NOT.
R1020 and-op is .AND.
R1021 or-op is .OR.
R1022 equiv-op is .EQV.
or .NEQV.
NOTE 1

Simple examples of a level-5 expression are:

Example

A

.NOT. B

C .AND. D
E .OR. F
G .EQV. H
S .NEQV. T

Syntactic class
level-4-expr (R1013)
and-operand (R1015)
or-operand (R1016)
equiv-operand (R1017)
level-5-expr (R1018)
level-5-expr (R1018)

A more complicated example of a level-5 expression is:

A .AND. B .EQV. .NOT. C

10.1.2.9 General form of an expression

1 Expressions are level-5 expressions optionally involving defined binary operators. Defined binary operators have

the lowest operator precedence (Table 10.1).

152 J3/22-007r1

0 N o

9

2022-04-22 WD 1539-1 J3/22-007r1

R1023 expr is [expr defined-binary-op | level-5-expr
R1024 defined-binary-op is . letter [letter]

C1006 (R1024) A defined-binary-op shall not contain more than 63 letters and shall not be the same as any
intrinsic-operator or logical-literal-constant.

NOTE 1

Simple examples of an expression are:
Example Syntactic class
A level-5-expr (R1018)
B.UNION.C expr (R1023)

More complicated examples of an expression are:

(B .INTERSECT. C) .UNION. (X - Y)
A+B==C=x*D

.INVERSE. (A + B)

A+ B .AND. C * D

E// G==H (1:10)

10.1.3 Precedence of operators

1 There is a precedence among the intrinsic and extension operations corresponding to the form of expressions

specified in 10.1.2, which determines the order in which the operands are combined unless the order is changed
by the use of parentheses. This precedence order is summarized in Table 10.1.

Table 10.1: Categories of operations and relative precedence

Category of operation Operators Precedence
Extension defined-unary-op Highest
Numeric *x
Numeric */

Numeric unary +, —

Numeric binary 4+, —
Character
Relational .EQ., .NE., .LT., .LE., .GT., .GE.,

==, /=, <, <=, >, >=

Logical .NOT.

Logical AND.

Logical .OR.

Logical EQV., NEQV. .
Extension defined-binary-op Lowest

2 The precedence of a defined operation is that of its operator.

NOTE 1
For example, in the expression
—A xk 2

the exponentiation operator (**) has precedence over the negation operator (—); therefore, the operands of
the exponentiation operator are combined to form an expression that is used as the operand of the negation
operator. The interpretation of the above expression is the same as the interpretation of the expression

- (A *x 2)

J3/22-007r1 153

J3/22-007r1 WD 1539-1 2022-04-22

3 The general form of an expression (10.1.2) also establishes a precedence among operators in the same syntactic
class. This precedence determines the order in which the operands are to be combined in determining the
interpretation of the expression unless the order is changed by the use of parentheses.

NOTE 2

In interpreting a level-2-expr containing two or more binary operators + or —, each operand (add-operand)
is combined from left to right. Similarly, the same left-to-right interpretation for a mult-operand in add-
operand, as well as for other kinds of expressions, is a consequence of the general form. However, for
interpreting a mult-operand expression when two or more exponentiation operators ** combine level-1-expr
operands, each level-1-expr is combined from right to left.

For example, the expressions

2 k% 3 x*x 4
YAB? // 'CD? // YEF?
have the same interpretations as the expressions

(2.1 + 3.4) + 4.9

(2.1 x 3.4) * 4.9

(2.1 / 3.4) / 4.9

2 xkx (3 *xx 4)

(’AB’ // °CD’) // ’EF’

As a consequence of the general form (10.1.2), only the first add-operand of a level-2-expr can be preceded
by the identity (4) or negation (—) operator. These formation rules do not permit expressions containing
two consecutive numeric operators, such as A ** —-B or A + —B. However, expressions such as A ** (-B)
and A + (-B) are permitted. The rules do allow a binary operator or an intrinsic unary operator to be
followed by a defined unary operator, such as:

A x _INVERSE. B

- .INVERSE. (B)

As another example, in the expression
A .OR. B .AND. C

the general form implies a higher precedence for the .AND. operator than for the .OR. operator; therefore,
the interpretation of the above expression is the same as the interpretation of the expression

A .OR. (B .AND. C)

NOTE 3
An expression can contain more than one category of operator. The logical expression
L .0R. A+ B >=C
where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a relational
operator, and a logical operator. This expression would be interpreted the same as the expression

L .0R. ((A + B) >=0C)

NOTE 4
If

 the operator ** is extended to type logical,
 the operator .STARSTAR. is defined to duplicate the function of ** on type real,
e .MINUS. is defined to duplicate the unary operator —, and

154 13/22-007r1

11
12

13
14

15
16
17

18
19
20
21

22

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 4 (cont.)

e L1 and L2 are type logical and X and Y are type real,

then in precedence: L1 ** L2 is higher than X * Y; X * Y is higher than X .STARSTAR. Y; and .MINUS. X
is higher than —X.

10.1.4 Evaluation of operations
1 An intrinsic operation requires the values of its operands.

2 Execution of a function reference in the logical expression in an IF statement (11.1.8.4), the mask expression in a
WHERE statement (10.2.3.1), or the concurrent-limits and concurrent-steps in a FORALL statement (10.2.4) is permitted to
define variables in the subsidiary action-stmt, where-assignment-stmt, or forall-assignment-stmt respectively. Except
in those cases:

o the evaluation of a function reference shall neither affect nor be affected by the evaluation of any other
entity within the statement;

o if a function reference causes definition or undefinition of an actual argument of the function, that argument
or any associated entities shall not appear elsewhere in the same statement.

NOTE 1
For example, the statements
A =F (D

Y=G6G (X) +X
are prohibited if the reference to F defines or undefines I or the reference to G defines or undefines X.

However, in the statements

IF (F (X)) A =X
WHERE (G (X)) B = X

the reference to F and/or the reference to G can define X.

3 The appearance of an array constructor requires the evaluation of each scalar-int-expr of the ac-implied-do-control
in any ac-implied-do it contains.

4 When an elemental binary operation is applied to a scalar and an array or to two arrays of the same shape, the
operation is performed element-by-element on corresponding array elements of the array operands.

NOTE 2
For example, the array expression
A+ B

produces an array of the same shape as A and B. The individual array elements of the result have the
values of the first element of A added to the first element of B, the second element of A added to the second
element of B, etc.

5 When an elemental unary operator operates on an array operand, the operation is performed element-by-element,
and the result is the same shape as the operand. If an elemental operation is intrinsically pure or is implemented
by a pure elemental function (15.9), the element operations may be performed simultaneously or in any order.

6 Evaluation of a conditional-expr evaluates each scalar-logical-expr in order, until the value of a scalar-logical-expr
is true, or there are no more scalar-logical-exprs. If the value of a scalar-logical-expr is true, its subsequent expr
is chosen; otherwise, the last expr of the conditional-expr is chosen. The chosen ezpr is evaluated, and its value
is the value of the conditional expression.

7 The declared type, kind type parameters, and rank of a conditional-expr are the same as those of its exprs. The

J3/22-007r1 155

10

11
12
13

14
15
16

17
18
19
20
21
22
23
24
25

26
27

J3/22-007r1 WD 1539-1 2022-04-22

dynamic type, length type parameters, and shape are those of the chosen expr. A conditional-expr is polymorphic
if and only if one or more of its ezprs is polymorphic.

NOTE 3

Only one expr of a conditional expression is evaluated, and any of its scalar-logical-exprs subsequent to one
that evaluates to true are not evaluated.

10.1.5 Intrinsic operations
10.1.5.1 Intrinsic operation classification

An intrinsic operation is either a unary or binary operation. An intrinsic unary operation is an operation of the
form intrinsic-operator xo where xs is of a type (7.4, 7.6) listed in Table 10.2 for the unary intrinsic operator.

An intrinsic binary operation is an operation of the form xy intrinsic-operator xo where x1 and x5 are conformable
and of the types listed in Table 10.2 for the binary intrinsic operator.

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric operator (+,
—, * /, or **). A numeric intrinsic operator is the operator in a numeric intrinsic operation.

The character intrinsic operation is the intrinsic operation for which the intrinsic-operator is (//) and both
operands are of type character with the same kind type parameter. The character intrinsic operator is the
operator in a character intrinsic operation.

A logical intrinsic operation is an intrinsic operation for which the intrinsic-operator is .AND., .OR., .NOT.,
EQV., or NEQV. and both operands are of type logical. A logical intrinsic operator is the operator in a logical
intrinsic operation.

A relational intrinsic operator is an intrinsic-operator that is .EQ., .NE., .GT., .GE., .LT., .LE., ==, /=, >,
>=, <, or <=. A relational intrinsic operation is an intrinsic operation for which the intrinsic-operator is a
relational intrinsic operator. A numeric relational intrinsic operation is a relational intrinsic operation for which
both operands are of numeric type. A character relational intrinsic operation is a relational intrinsic operation for
which both operands are of type character. An enumeration relational intrinsic operation is a relational intrinsic
operation for which both operands are of the same enumeration type. An enum relational intrinsic operation is
a relational intrinsic operation for which one operand is of an enum type, and the other operand has the same
type or is an integer expression involving an enumerator of that type. The kind type parameters of the operands
of a character relational intrinsic operation shall be the same.

The interpretations defined in 10.1.5 apply to both scalars and arrays; the interpretation for arrays is obtained
by applying the interpretation for scalars element by element.

Table 10.2: Type of operands and results for intrinsic operators

Intrinsic operator op Type of z1 Type of x5 Type of [z1] op x2
Unary +, — LR, Z LR, Z
I LR, Z LR, Z
Binary +, —, *, /, ** R ILR,Z R, R, Z
7 LR, Z 7,7,7
// C C C
I LR,Z,N L, L, L, L
EQ., NE., R LR, Z L,L, L
==, /= Z LR, Z L,L, L
C C L
E E L
N N, I L, L

156 J3/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

Type of operands and results for intrinsic operators (cont.)
Intrinsic operator op Type of z; Type of - Type of [z1] op x2
I IR, N L,L, L
.GT., .GE., .LT., .LE. R IR L, L
> >=, <, <= C C L
E E L
N N, I L, L
.NOT. L L
AND., .OR., .EQV., NEQV. L L L

The symbols I, R, Z, C, and L stand for the types integer, real, complex, character,
and logical, respectively. The symbol E stands for the same enumeration type for
both operands. The symbol N stands for an enum type, where if the other operand
is N, they have the same type, and if the other operand is I, the integer operand
is an expression with a primary that is an enumerator of the enum type. Where
more than one type for x5 is given, the type of the result of the operation is given
in the same relative position in the next column.

NOTE 1
For example, if X is of type real and J is of type integer, the expression X + J is of type real.

1 10.1.5.2 Numeric intrinsic operations
2 10.1.5.2.1 Interpretation of numeric intrinsic operations

1 The two operands of numeric intrinsic binary operations may be of different numeric types or different kind
type parameters. Except for a value of type real or complex raised to an integer power, if the operands have
different types or kind type parameters, the effect is as if each operand that differs in type or kind type parameter
from those of the result is converted to the type and kind type parameter of the result before the operation is
performed. When a value of type real or complex is raised to an integer power, the integer operand need not be
converted.

o N o b~ W

9 2 A numeric operation is used to express a numeric computation. Evaluation of a numeric operation produces a
10 numeric value. The permitted data types for operands of the numeric intrinsic operations are specified in 10.1.5.1.

11 3 The numeric operators and their interpretation in an expression are given in Table 10.3, where x; denotes the
12 operand to the left of the operator and x5 denotes the operand to the right of the operator.

Table 10.3: Interpretation of the numeric intrinsic operators

Operator Representing Use of operator Interpretation
*x Exponentiation z1 ¥ 29 Raise x1 to the power xq
/ Division x1 /[@9 Divide z1 by w2
* Multiplication 1 * 29 Multiply z1 by -
— Subtraction T1 — X Subtract zo from
— Negation - T9 Negate o
+ Addition r1 + X2 Add x71 and zo
+ Identity + o Same as o

13 4 The interpretation of a division operation depends on the types of the operands (10.1.5.2.2).

*3k

14 5 If x1 and x5 are of type integer and x5 has a negative value, the interpretation of x Ty is the same as the

J3/22-007r1 157

~N o o s~ Ww

10

11

12
13

14
15

16
17
18

J3/22-007r1 WD 1539-1 2022-04-22

interpretation of 1/(zy ** ABS (z2)), which is subject to the rules of integer division (10.1.5.2.2).

NOTE 1
For example, 2 ** (—3) has the value of 1/(2 ** 3), which is zero.

10.1.5.2.2 Integer division

One operand of type integer may be divided by another operand of type integer. Although the mathematical
quotient of two integers is not necessarily an integer, Table 10.2 specifies that an expression involving the division
operator with two operands of type integer is interpreted as an expression of type integer. The result of such an
operation is the integer closest to the mathematical quotient and between zero and the mathematical quotient
inclusively.

NOTE 1
For example, the expression (—8) / 3 has the value (—2).

10.1.5.2.3 Complex exponentiation

In the case of a complex value raised to a complex power, the value of the operation z; **

value of 7.

x9 is the principal

10.1.5.2.4 Evaluation of numeric intrinsic operations

The execution of any numeric operation whose result is not defined by the arithmetic used by the processor is
prohibited. Raising a negative real value to a real power is prohibited.

Once the interpretation of a numeric intrinsic operation is established, the processor may evaluate any mathem-
atically equivalent expression, provided that the integrity of parentheses is not violated.

Two expressions of a numeric type are mathematically equivalent if, for all possible values of their primaries, their
mathematical values are equal. However, mathematically equivalent expressions of numeric type can produce
different computational results.

NOTE 1

Any difference between the values of the expressions (1./3.)*3. and 1. is a computational difference,
not a mathematical difference. The difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

The mathematical definition of integer division is given in 10.1.5.2.2.

NOTE 2

The following are examples of expressions with allowable alternative forms that can be used by the processor
in the evaluation of those expressions. A, B, and C represent arbitrary real or complex operands; I and J
represent arbitrary integer operands; and X, Y, and Z represent arbitrary operands of numeric type.

Expression Allowable alternative form
X+Y Y + X

X*Y Y * X

X+Y Y -X

X+Y+7Z X+(Y+72)

X-Y +7Z X-(Y-2)

X*A/Z X*(A/7Z)
X*Y-X*7Z X*(Y-7)

A/B/C A/ (B*QC)

A /5.0 0.2*A

158 J3/22-007r1

2022-04-22

WD 1539-1 13/22-007r1

NOTE 2 (cont.)

The following are examples of expressions with forbidden alternative forms that cannot be used by a
processor in the evaluation of those expressions.

Expression Forbidden alternative form

I/2 0.5 * 1

X*1/7J X*T/J)

1/J/A I/(J*A)

X+Y)+7Z X+ (Y +72)

X*Y)-(X*7) X *(Y-2)

X*(Y-12) X*Y-X*7Z
NOTE 3

In addition to the parentheses required to establish the desired interpretation, parentheses can be included to
restrict the alternative forms that can be used by the processor in the actual evaluation of the expression.
This is useful for controlling the magnitude and accuracy of intermediate values developed during the
evaluation of an expression.

For example, in the expression
A+ (B-0
the parenthesized expression (B — C) is evaluated and then added to A.

The inclusion of parentheses could change the mathematical value of an expression. For example, the two
expressions

AxTI/J

Ax (I/J)

could have different mathematical values if I and J are of type integer.

NOTE 4

Each operand in a numeric intrinsic operation has a type that can depend on the order of evaluation used
by the processor.

For example, in the evaluation of the expression
Z+R+1I
where Z, R, and I represent data objects of complex, real, and integer type, respectively, the type of the

operand that is added to I could be either complex or real, depending on which pair of operands (Z and R,
R and I, or Z and 1) is added first.

10.1.5.3 Character intrinsic operation

10.1.5.3.1 Interpretation of the character intrinsic operation

The character intrinsic operator // is used to concatenate two operands of type character with the same kind
type parameter. Evaluation of the character intrinsic operation produces a result of type character.

The interpretation of the character intrinsic operator // when used to form an expression is given in Table 10.4,
where 1 denotes the operand to the left of the operator and zo denotes the operand to the right of the operator.

Table 10.4: Interpretation of the character intrinsic operator //

Operator Representing

Use of operator Interpretation

// Concatenation

x1 /] a2

Concatenate x, with xo

J3/22-007r1 159

10

11
12

13

J3/22-007r1 WD 1539-1 2022-04-22

The result of the character intrinsic operation z; // zo is a character string whose value is the value of z;
concatenated on the right with the value of x5 and whose length is the sum of the lengths of x; and x5. Parentheses
used to specify the order of evaluation have no effect on the value of a character expression.

NOTE 1

For example, the value of the expression ("AB’ // ’CDE’) // 'F’ is the string ’ABCDEF’. The value of the
expression ’AB’ // ("CDE’ // ’F’) is also the string ’ABCDEF".

10.1.5.3.2 Evaluation of the character intrinsic operation

A processor is only required to evaluate as much of the character intrinsic operation as is required by the context
in which the expression appears.

NOTE 1

For example, the statements
CHARACTER (LEN = 2) C1, C2, C3, CF
C1 =C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to determine the
value of C1 because C1 and C2 both have a length of 2.

10.1.5.4 Logical intrinsic operations
10.1.5.4.1 Interpretation of logical intrinsic operations

A logical operation is used to express a logical computation. Evaluation of a logical operation produces a result
of type logical. The permitted types for operands of the logical intrinsic operations are specified in 10.1.5.1.

The logical operators and their interpretation when used to form an expression are given in Table 10.5, where x
denotes the operand to the left of the operator and x5 denotes the operand to the right of the operator.

Table 10.5: Interpretation of the logical intrinsic operators

Operator Representing Use of operator Interpretation

.NOT. Logical negation NOT. x4 True if x4 is false

AND. Logical conjunction z1 .AND. x4 True if 1 and x5 are both true
.OR. Logical inclusive disjunction z1 .OR. 25 True if 27 and/or x5 is true

True if both 21 and x5 are true or
both are false

True if either x1 or x5 is true, but
not both

EQV. Logical equivalence z1 .EQV. zo

.NEQV. Logical nonequivalence z1 .NEQV. z2

3 The values of the logical intrinsic operations are shown in Table 10.6.

Table 10.6: The values of operations involving logical intrinsic operators

T T .NOT. T T AND. T T .OR. To ik EQV i) T NEQV To
true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

160 J3/22-007r1

10

11

2022-04-22 WD 1539-1 J3/22-007r1

10.1.5.4.2 Evaluation of logical intrinsic operations

Once the interpretation of a logical intrinsic operation is established, the processor may evaluate any other
expression that is logically equivalent, provided that the integrity of parentheses in any expression is not violated.

NOTE 1
For example, for the variables L1, L2, and L3 of type logical, the processor could choose to evaluate the
expression

L1 .AND. L2 .AND. L3

as

L1 .AND. (L2 .AND. L3)

Two expressions of type logical are logically equivalent if their values are equal for all possible values of their
primaries.

10.1.5.5 Relational intrinsic operations

10.1.5.5.1 Interpretation of relational intrinsic operations

A relational intrinsic operation is used to compare values of two operands using the relational intrinsic operators
LT, .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted types for operands of the
relational intrinsic operators are specified in 10.1.5.1.

The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT., .LE.,
.GT., .GE., .EQ., and .NE., respectively.

NOTE 1

As shown in Table 10.2, a relational intrinsic operator cannot be used to compare the value of an expression
of a numeric type with one of type character or logical. Also, two operands of type logical cannot be
compared, a complex operand can be compared with another numeric operand only when the operator is
.EQ., NE., ==, or /=, and two character operands cannot be compared unless they have the same kind
type parameter value.

3 Evaluation of a relational intrinsic operation produces a default logical result.

4 The interpretation of the relational intrinsic operators is given in Table 10.7, where z; denotes the operand to

the left of the operator and x5 denotes the operand to the right of the operator.

Table 10.7: Interpretation of the relational intrinsic operators

Operator Representing Use of operator Interpretation
.LT. Less than z1 LT. 29 1 less than o
< Less than T < X2 1 less than zo
.LE. Less than or equal to z1 .LE. 2o x1 less than or equal to x5
= Less than or equal to T <= X9 z1 less than or equal to xs
.GT. Greater than r1 .GT. zo x1 greater than xo
> Greater than T1 > To x1 greater than xo
.GE. Greater than or equal to r1 .GE. z9 x1 greater than or equal to x5
>= Greater than or equal to T1 >= X9 x1 greater than or equal to x5
EQ. Equal to r1 .EQ. 22 r1 equal to xo
== Equal to T == X9 r1 equal to xo
.NE. Not equal to z1 .NE. 29 1 not equal to xo
/= Not equal to 1 /= 29 1 not equal to x»

J3/22-007r1 161

o W

10
11
12
13
14
15
16

17
18

19
20

21

22
23
24

25
26

27

28

29
30
31

32

10

J3/22-007r1 WD 1539-1 2022-04-22

A numeric relational intrinsic operation is interpreted as having the logical value true if and only if the values of
the operands satisfy the relation specified by the operator.

In the numeric relational operation

x1 rel-op T
if the types or kind type parameters of x; and o differ, their values are converted to the type and kind type
parameter of the expression x; + x5 before evaluation.

A character relational intrinsic operation is interpreted as having the logical value true if and only if the values
of the operands satisfy the relation specified by the operator.

For a character relational intrinsic operation, the operands are compared one character at a time in order,
beginning with the first character of each character operand. If the operands are of unequal length, the shorter
operand is treated as if it were extended on the right with blanks to the length of the longer operand. If both
x1 and zo are of zero length, x; is equal to xo; if every character of x; is the same as the character in the
corresponding position in x2, x; is equal to x5. Otherwise, at the first position where the character operands
differ, the character operand x; is considered to be less than xo if the character value of z; at this position
precedes the value of zo in the collating sequence (3.31); x; is greater than xs if the character value of x; at this
position follows the value of x5 in the collating sequence.

NOTE 2
The collating sequence depends partially on the processor; however, the result of the use of the operators
.EQ., .NE., ==, and /= does not depend on the collating sequence.

For nondefault character kinds, the blank padding character is processor dependent.

An enumeration relational intrinsic operation is interpreted as having the logical value true if and only if the
ordinal values of the operands satisfy the relation specified by the operator.

An enum relational intrinsic operation is interpreted as if all operands of enum type were converted to their
corresponding integer values.

10.1.5.5.2 Evaluation of relational intrinsic operations

Once the interpretation of a relational intrinsic operation is established, the processor may evaluate any other
expression that is relationally equivalent, provided that the integrity of parentheses in any expression is not
violated.

Two relational intrinsic operations are relationally equivalent if their logical values are equal for all possible values
of their primaries.

NOTE 1

Whether an operand of a relational intrinsic operation could be an IEEE NaN affects whether expressions
are equivalent. For example, if x or y could be a NaN, the expressions

.NOT. (x .LT. y) and x .GE. y

are not equivalent.

10.1.6 Defined operations
10.1.6.1 Definitions

A defined operation is either a unary operation or a binary operation. A unary defined operation is an operation
that has the form defined-unary-op xo or intrinsic-operator xo and that is defined by a function and a generic
interface (7.5.5, 15.4.3.4).

A function defines the unary operation op xo if

162 J3/22-007r1

N o oA W N

17
18

19
20
21
22
23
24
25

26
27

28

29

30
31

32

33

34

35
36

37

38
39

2022-04-22 WD 1539-1 J3/22-007r1

the function is specified with a FUNCTION (15.6.2.2) or ENTRY (15.6.2.6) statement that specifies one
dummy argument ds,

either

(a) a generic interface (15.4.3.2) provides the function with a generic-spec of OPERATOR (op),
or

(b) there is a generic binding (7.5.5) in the declared type of x5 with a generic-spec of OPER-
ATOR (op) and there is a corresponding binding to the function in the dynamic type of zq,

the type of dy is compatible with the dynamic type of o,

the type parameters, if any, of ds match the corresponding type parameters of xo, and

either

(a) the rank of x5 matches that of do or

(b) the function is elemental and there is no other function that defines the operation.

3 If dy is an array, the shape of x5 shall match the shape of ds.

4 A binary defined operation is an operation that has the form z; defined-binary-op xo or xy intrinsic-operator o
and that is defined by a function and a generic interface.

5 A function defines the binary operation x; op xo if

1)
(2)

the function is specified with a FUNCTION (15.6.2.2) or ENTRY (15.6.2.6) statement that specifies
two dummy arguments, d; and ds,

either
(a) a generic interface (15.4.3.2) provides the function with a generic-spec of OPERATOR (op),
or

(b) there is a generic binding (7.5.5) in the declared type of z; or xo with a generic-spec of
OPERATOR (op) and there is a corresponding binding to the function in the dynamic type
of x1 or zo, respectively,

the types of d; and dy are compatible with the dynamic types of x; and x5, respectively,

the type parameters, if any, of d; and dy match the corresponding type parameters of x; and o,
respectively, and

either
(a) the ranks of z; and x5 match those of dy and ds, respectively, or

(b) the function is elemental, 1 and zs are conformable, and there is no other function that defines
the operation.

6 If dy or ds is an array, the shapes of 1 and x5 shall match the shapes of d; and ds, respectively.

NOTE 1

An intrinsic operator can be used as the operator in a defined operation. In such a case, the generic
properties of the operator are extended.

10.1.6.2

Interpretation of a defined operation

1 The interpretation of a defined operation is provided by the function that defines the operation.

2 The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT., .LE.,
.GT., .GE., .EQ., and .NE., respectively.

10.1.6.3

Evaluation of a defined operation

1 Once the interpretation of a defined operation is established, the processor may evaluate any other expression
that is equivalent, provided that the integrity of parentheses is not violated.

J3/22-007r1 163

10

11

12
13
14

15

16

17
18
19

J3/22-007r1 WD 1539-1 2022-04-22

Two expressions of derived type are equivalent if their values are equal for all possible values of their primaries.

10.1.7 Evaluation of operands

It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate entirely each
operand, if the value of the expression can be determined otherwise.

NOTE 1

This principle is most often applicable to logical expressions, zero-sized arrays, and zero-length strings, but
it applies to all expressions.

For example, in evaluating the expression
X>Y .0R. L (2)

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need not be
evaluated if X is greater than Y. Similarly, in the array expression

W (Z) + A

where A is of size zero and W is a function, the function reference W (Z) need not be evaluated.

If a statement contains a function reference in a part of an expression that need not be evaluated, all entities that
would have become defined in the execution of that reference become undefined at the completion of evaluation
of the expression containing the function reference.

NOTE 2

In the examples in NOTE 1, if L or W defines its argument, evaluation of the expressions under the specified
conditions causes Z to become undefined, no matter whether or not L(Z) or W(Z) is evaluated.

If a statement contains a function reference in a part of an expression that need not be evaluated, no invocation
of that function in that part of the expression shall execute an image control statement other than CRITICAL
or END CRITICAL.

NOTE 3
‘ This restriction is intended to avoid inadvertent deadlock caused by optimization.

10.1.8 Integrity of parentheses

The rules for evaluation specified in 10.1.5 state certain conditions under which a processor can evaluate an expres-
sion that is different from the one specified by applying the rules given in 10.1.2 and the rules for interpretation
specified in 10.1.5. However, any expression in parentheses shall be treated as a data entity.

NOTE 1

For example, in evaluating the expression A + (B — C) where A, B, and C are of numeric types, the
difference of B and C shall be evaluated before the addition operation is performed; the processor shall not
evaluate the mathematically equivalent expression (A + B) — C.

10.1.9 Type, type parameters, and shape of an expression
10.1.9.1 General

The type, type parameters, and shape of an expression depend on the operators and on the types, type parameters,
and shapes of the primaries used in the expression, and are determined recursively from the syntactic form of the
expression. The type of an expression is one of the intrinsic types (7.4) or a nonintrinsic type (7.5, 7.6).

164 J3/22-007r1

A W N =

10

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32

33
34

35

36
37

38
39

40
41

2022-04-22 WD 1539-1 J3/22-007r1

If an expression is a polymorphic primary or defined operation, the type parameters and the declared and dynamic
types of the expression are the same as those of the primary or defined operation. Otherwise the type parameters
and dynamic type of the expression are the same as its declared type and type parameters; they are referred to
simply as the type and type parameters of the expression.

R1025 logical-expr is expr

C1007 (R1025) logical-expr shall be of type logical.

R1026 default-char-expr is expr

C1008 (R1026) default-char-expr shall be default character.
R1027 int-expr is expr

C1009 (R1027) int-expr shall be of type integer.

R1028 numeric-expr is expr

C1010 (R1028) numeric-expr shall be of type integer, real, or complex.

10.1.9.2 Type, type parameters, and shape of a primary

The type, type parameters, and shape of a primary are determined according to whether the primary is a
literal constant, designator, array constructor, structure constructor, enum constructor, enumeration constructor,
function reference, type parameter inquiry, type parameter name, or parenthesized expression. If a primary is
a literal constant, its type, type parameters, and shape are those of the literal constant. If it is a structure
constructor, it is scalar and its type and type parameters are as described in 7.5.10. If it is an enum constructor,
it is scalar and its type is as described in 7.6.1. If it is an enumeration constructor, it is scalar and its type is as
described in 7.6.2. If it is an array constructor, its type, type parameters, and shape are as described in 7.8. If it
is a designator or function reference, its type, type parameters, and shape are those of the designator (8.2, 8.5) or
the function reference (15.5.3), respectively. If the function reference is generic (15.4.3.2, 16.7) then its type, type
parameters, and shape are those of the specific function referenced, which is determined by the declared types,
type parameters, and ranks of its actual arguments as specified in 15.5.5.2. If it is a type parameter inquiry or
type parameter name, it is a scalar integer with the kind of the type parameter.

If a primary is a parenthesized expression, its type, type parameters, and shape are those of the expression.

The associated target object is referenced if a pointer appears as a primary in an intrinsic or defined operation, the
expr of a parenthesized primary, or the only primary on the right-hand side of an intrinsic assignment statement.
The type, type parameters, and shape of the primary are those of the target. If the pointer is not associated
with a target, it shall appear as a primary only as an actual argument in a reference to a procedure whose
corresponding dummy argument is declared to be a pointer, as the target in a pointer assignment statement, or
as explicitly permitted elsewhere in this document.

A disassociated array pointer or an unallocated allocatable array has no shape but does have rank. The type,
type parameters, and rank of the result of the intrinsic function NULL (16.9.155) depend on context.

10.1.9.3 Type, type parameters, and shape of the result of an operation

The type of the result of an intrinsic operation [x1] op xo is specified by Table 10.2. The shape of the result of
an intrinsic operation is the shape of x5 if op is unary or if x; is scalar, and is the shape of z1 otherwise.

The type, type parameters, and shape of the result of a defined operation [x1] op zo are specified by the function
defining the operation (10.1.6).

An expression of an intrinsic type has a kind type parameter. An expression of type character also has a character
length parameter.

J3/22-007r1 165

[y

© 0 N O B~ WwN

NN NNNNNRBRRRB 2 2 H 2 93 (9
DA WNNHE O W OoWLWNO O M WNHFH O

27

28

29
30
31

32

33
34
35
36

37

38

39
40

41

42
43

44
45

J3/22-007r1 WD 1539-1 2022-04-22

4 The type parameters of the result of an intrinsic operation are as follows.

o For an expression 21 // x5 where // is the character intrinsic operator and x; and x5 are of type character,
the character length parameter is the sum of the lengths of the operands and the kind type parameter is
the kind type parameter of x1, which shall be the same as the kind type parameter of x,.

e For an expression op xo where op is an intrinsic unary operator and x5 is of type integer, real, complex, or
logical, the kind type parameter of the expression is that of the operand.

e For an expression ;1 op o where op is a numeric intrinsic binary operator with one operand of type integer
and the other of type real or complex, the kind type parameter of the expression is that of the real or
complex operand.

e For an expression x1 op x5 where op is a numeric intrinsic binary operator with both operands of the same
type and kind type parameters, or with one real and one complex with the same kind type parameters, the
kind type parameter of the expression is identical to that of each operand. In the case where both operands
are integer with different kind type parameters, the kind type parameter of the expression is that of the
operand with the greater decimal exponent range if the decimal exponent ranges are different; if the decimal
exponent ranges are the same, the kind type parameter of the expression is processor dependent, but it is
the same as that of one of the operands. In the case where both operands are any of type real or complex
with different kind type parameters, the kind type parameter of the expression is that of the operand with
the greater decimal precision if the decimal precisions are different; if the decimal precisions are the same,
the kind type parameter of the expression is processor dependent, but it is the same as that of one of the
operands.

e For an expression x; op x5 where op is a logical intrinsic binary operator with both operands of the same
kind type parameter, the kind type parameter of the expression is identical to that of each operand. In the
case where both operands are of type logical with different kind type parameters, the kind type parameter
of the expression is processor dependent, but it is the same as that of one of the operands.

o For an expression x1 op xo where op is a relational intrinsic operator, the kind type parameter of the
expression is default logical.

10.1.10 Conformability rules for elemental operations
An elemental operation is an intrinsic operation or a defined operation for which the function is elemental (15.9).

For all elemental binary operations, the two operands shall be conformable. In the case where one is a scalar and
the other an array, the scalar is treated as if it were an array of the same shape as the array operand with every
element, if any, of the array equal to the value of the scalar.

10.1.11 Specification expression

A specification expression is an expression with limitations that make it suitable for use in specifications such as
length type parameters (C704) and array bounds (R817, R818). A specification-expr shall be a constant expression
unless it is in an interface body (15.4.3.2), the specification part of a subprogram or BLOCK construct, a derived
type definition, or the declaration-type-spec of a FUNCTION statement (15.6.2.2).

R1029 specification-expr is scalar-int-expr
C1011 (R1029) The scalar-int-expr shall be a restricted expression.

A restricted expression is an expression in which each operation is intrinsic or defined by a specification function
and each primary is

(1) a constant or subobject of a constant,

(2) an object designator with a base object that is a dummy argument that has neither the OPTIONAL
nor the INTENT (OUT) attribute,

(3) an object designator with a base object that is in a common block,

(4) an object designator with a base object that is made accessible by use or host association,

166 J3/22-007r1

© 0 N o O A~ W N+

= e
N = O

13
14
15

16
17

18
19

20
21

22

23
24

25

26
27

28
29

30

31
32

33
34

35
36

37
38
39
40

2022-04-22 WD 1539-1 J3/22-007r1

~ I~~~
o
~— — ~— —

(17)

an array constructor where each element and each scalar-int-expr of each ac-implied-do-control is a
restricted expression,

a structure constructor where each component is a restricted expression,
an enum constructor whose expr is a restricted expression,
an enumeration constructor whose expr is a restricted expression,
a specification inquiry where each designator or argument is
(a) a restricted expression or
(b) a variable that is not an optional dummy argument, and whose properties inquired about are
not
(i) dependent on the upper bound of the last dimension of an assumed-size array,
(ii) deferred, or
(iii) defined by an expression that is not a restricted expression,

a specification inquiry that is a constant expression,
a reference to the intrinsic function PRESENT,
a reference to any other standard intrinsic function where each argument is a restricted expression,

a reference to a transformational function from the intrinsic module IEEE ARITHMETIC, IEEE_ -
EXCEPTIONS, or ISO_ C_BINDING, where each argument is a restricted expression,

a reference to a specification function where each argument is a restricted expression,
a type parameter of the derived type being defined,

an ac-do-variable within an array constructor where each scalar-int-expr of the corresponding ac-
implied-do-control is a restricted expression, or

a restricted expression enclosed in parentheses,

where each subscript, section subscript, substring starting point, substring ending point, and type parameter
value is a restricted expression.

3 A specification inquiry is a reference to

(1)

an intrinsic inquiry function other than PRESENT,
a type parameter inquiry (9.4.5),

an inquiry function from the intrinsic modules IEEE_ARITHMETIC and IEEE_EXCEPTIONS
(17.10),

the function C_SIZEOF from the intrinsic module ISO__C_BINDING (18.2.3.8), or

the COMPILER_VERSION or COMPILER OPTIONS function from the intrinsic module ISO_ -
FORTRAN_ENV (16.10.2.6, 16.10.2.7).

4 A function is a specification function if it is a pure function, is not a standard intrinsic function, is not an internal
function, is not a statement function, and does not have a dummy procedure argument.

5 Evaluation of a specification expression shall not directly or indirectly cause a procedure defined by the subpro-
gram in which it appears to be invoked.

NOTE 1

Specification functions are nonintrinsic functions that can be used in specification expressions to determine
the attributes of data objects. The requirement that they be pure ensures that they cannot have side effects
that could affect other objects being declared in the same specification-part. The requirement that they
not be internal ensures that they cannot inquire, via host association, about other objects being declared
in the same specification-part. The prohibition against recursion avoids the creation of a new instance of a
procedure while construction of one is in progress.

6 A variable in a specification expression shall have its type and type parameters, if any, specified by a previous
declaration in the same scoping unit, by the implicit typing rules in effect for the scoping unit, or by host or use
association. If a variable in a specification expression is typed by the implicit typing rules, its appearance in any
subsequent type declaration statement shall confirm the implied type and type parameters.

J3/22-007r1 167

SO W N

~

10
11
12

13
14

15
16

17
18

19

20
21
22

23
24
25
26
27

28

29
30
31

32
33

34
35

36
37

38
39

40
41

J3/22-007r1 WD 1539-1 2022-04-22

If a specification expression includes a specification inquiry that depends on a type parameter, array bound,
or cobound of an entity specified in the same specification-part, the type parameter, array bound, or cobound
shall be specified in a prior specification of the specification-part. The prior specification may be to the left of
the specification inquiry in the same statement, but shall not be within the same entity-decl. If a specification
expression includes a reference to the value of an element of an array specified in the same specification-part, the
array shall be completely specified in prior declarations.

A generic entity referenced in a specification expression in the specification-part of a scoping unit shall have no
specific procedures defined in the scoping unit, or its host scoping unit, subsequent to the specification expression.

NOTE 2
The following are examples of specification expressions:

LBOUND (B, 1) + 5 ! B is an assumed-shape dummy array
M + LEN (C) ! M and C are dummy arguments
2 * PRECISION (A) ! A is a real variable made accessible by a USE statement

10.1.12 Constant expression

1 A constant expression is an expression with limitations that make it suitable for use as a kind type parameter,

initializer, or named constant. It is an expression in which each operation is intrinsic, and each primary is

(1) a constant or subobject of a constant,

(2) an array constructor where each element and each scalar-int-expr of each ac-implied-do-control is a
constant expression,

(3) a structure constructor where each component-spec corresponding to
(a) an allocatable component is a reference to the intrinsic function NULL,

(b) a pointer component is an initialization target or a reference to the intrinsic function NULL,
and

(¢) any other component is a constant expression,

(4) an enum constructor whose expr is a constant expression,
(5) an enumeration constructor whose exzpr is a constant expression,
(6) a specification inquiry where each designator or argument is

(a) a constant expression or

(b) a variable whose properties inquired about are not
(i) assumed,
(ii) deferred, or

(iii) defined by an expression that is not a constant expression,

(7) areference to an elemental standard intrinsic function, where each argument is a constant expression,

(8) a reference to a standard intrinsic function that is transformational, other than COMMAND AR-
GUMENT COUNT, GET TEAM, NULL, NUM_IMAGES, TEAM NUMBER, THIS IMAGE,
or TRANSFER, where each argument is a constant expression,

(9) a reference to the intrinsic function NULL that does not have an argument with a type parameter
that is assumed or is defined by an expression that is not a constant expression,

(10) a reference to the intrinsic function TRANSFER where each argument is a constant expression and
each ultimate pointer component of the SOURCE argument is disassociated,

(11) areference to a transformational function from the intrinsic module IEEE__ ARITHMETIC or IEEE_ -
EXCEPTIONS, where each argument is a constant expression,

(12) a previously declared kind type parameter of the derived type being defined,

(13) a data-i-do-variable within a data-implied-do,

(14) an ac-do-variable within an array constructor where each scalar-int-expr of the corresponding ac-
implied-do-control is a constant expression, or

168 J3/22-007r1

10
11
12
13
14

15
16

17

18

19

20

21

2022-04-22 WD 1539-1 J3/22-007r1

(15) a constant expression enclosed in parentheses,

and where each subscript, section subscript, substring starting point, substring ending point, and type parameter
value is a constant expression.

R1030 constant-expr is expr

C1012 (R1030) constant-expr shall be a constant expression.

R1031 default-char-constant-expr is default-char-expr

C1013 (R1031) default-char-constant-expr shall be a constant expression.
R1032 int-constant-expr is int-expr

C1014 (R1032) int-constant-expr shall be a constant expression.

If a constant expression includes a specification inquiry that depends on a type parameter or an array bound of
an entity specified in the same specification-part, the type parameter or array bound shall be specified in a prior
specification of the specification-part. The prior specification may be to the left of the specification inquiry in the
same statement, but shall not be within the same entity-decl unless the specification inquiry appears within an
initialization.

A generic entity referenced in a constant expression in the specification-part of a scoping unit shall have no specific
procedures defined in that scoping unit, or its host scoping unit, subsequent to the constant expression.

NOTE 1
The following are examples of constant expressions:

3

-3 + 4

)AB)

)AB) // ’CD’

(’AB’ // °CD’) // ’EF’

SIZE (A)

DIGITS (X) + 4

4.0 * ATAN (1.0)

CEILING (number_of_decimal_digits / LOG10 (REAL (RADIX (0.0))))

where A is an explicit-shape array with constant bounds, X is default real, and number_of decimal digits
is an integer named constant.

10.2 Assignment

10.2.1 Assignment statement
10.2.1.1 General form

R1033 assignment-stmt is wariable = expr

C1015 (R1033) The wariable shall not be a whole assumed-size array.

NOTE 1

Examples of an assignment statement are:
A=3.5+Xx*Y
I = INT (A)

J3/22-007r1 169

[&)]

© 0 N O

11
12

13
14

15
16

17

18
19

20
21
22

23
24
25
26

27
28

29
30
31

J3/22-007r1 WD 1539-1 2022-04-22

1 An assignment-stmt shall meet the requirements of either a defined assignment statement or an intrinsic assign-
ment statement.

10.2.1.2

Intrinsic assignment statement

1 An intrinsic assignment statement is an assignment statement that is not a defined assignment statement
(10.2.1.4).

In an intrinsic assignment statement,

if the variable is polymorphic it shall be allocatable, and not a coarray or a data object with a coarray
potential subobject component,

if expr is an array then the variable shall also be an array,

the variable and ezpr shall be conformable unless the variable is an allocatable array that has the
same rank as ezpr and is not a coarray or of a type that has a coarray potential subobject component,

if the variable is polymorphic it shall be type compatible with ezpr,

if expr is a boz-literal-constant, the variable shall be of type integer or real,

if the variable is not polymorphic and expr is not a boz-literal-constant, the declared types of the
variable and expr shall conform as specified in Table 10.8,

if the variable is of type character and of ISO 10646, ASCII, or default character kind, expr shall be
of ISO 10646, ASCII, or default character kind,

otherwise if the variable is of type character exzpr shall have the same kind type parameter,

if the variable is of derived type each kind type parameter of the variable shall have the same value
as the corresponding kind type parameter of expr, and

if the variable is of derived type each length type parameter of the variable shall have the same value
as the corresponding type parameter of ezpr unless the variable is allocatable, is not a coarray, and
its corresponding type parameter is deferred.

Table 10.8: Intrinsic assignment type conformance

Type of the variable Type of expr
integer integer, real, complex
real integer, real, complex
complex integer, real, complex
character character
logical logical
derived type same derived type as the variable

enumeration type same enumeration type

enum type same enum type, or integer; if of type integer, a primary

in expr shall be an enumerator of the enum type

2 If the variable in an intrinsic assignment statement is a coindexed object,

the variable shall not be polymorphic,
the variable shall not have an allocatable ultimate component,
the variable shall be conformable with exzpr, and

each deferred length type parameter of the variable shall have the same value as the corresponding type
parameter of expr.

3 If the variable is a pointer, it shall be associated with a definable target such that the type, type parameters,
and shape of the target and expr conform. If the variable is a coarray or a coindexed object, it shall not be an
unallocated allocatable variable.

170

13/22-007r1

N o o~ W N

10
11
12
13

14
15
16

17
18

19

20
21

22
23

2022-04-22 WD 1539-1 J3/22-007r1

10.2.1.3 Interpretation of intrinsic assignments

Execution of an intrinsic assignment causes, in effect, the evaluation of the expression expr and all expressions
within variable (10.1), the possible conversion of expr to the type and type parameters of the variable (Table
10.9), and the definition of the variable with the resulting value. The execution of the assignment shall have
the same effect as if the evaluation of expr and the evaluation of all expressions in variable occurred before any
portion of the variable is defined by the assignment. The evaluation of expressions within variable shall neither
affect nor be affected by the evaluation of expr.

If the variable is a pointer, the value of expr is assigned to the target of the variable.

If the variable is an unallocated allocatable array, expr shall have the same rank. If the variable is an allocated
allocatable variable, it is deallocated if expr is an array of different shape, any corresponding length type parameter
values of the variable and expr differ, or the variable is polymorphic and the dynamic type or any corresponding
kind type parameter values of the variable and expr differ. If the variable is or becomes an unallocated allocatable
variable, it is then allocated with

e the same dynamic type and kind type parameter values as expr if the variable is polymorphic,
e each deferred type parameter equal to the corresponding type parameter of expr,
e the same bounds as before if the variable is an array and expr is scalar, and

« the shape of expr with each lower bound equal to the corresponding element of LBOUND (expr) if expr is
an array.

NOTE 1
For example, given the declaration
CHARACTER(:) ,ALLOCATABLE :: NAME

then after the assignment statement

NAME = ’Dr. ’//FIRST_NAME//’ ’//SURNAME

NAME will have the length LEN (FIRST NAME) + LEN (SURNAME) + 5, even if it had previously
been unallocated, or allocated with a different length. However, the assignment statement

NAME(:) = ’Dr. ’//FIRST_NAME//’ ’//SURNAME

is only conforming if NAME is already allocated at the time of the assignment; the assigned value is
truncated or blank padded to the previously allocated length of NAME.

4 Both wvariable and expr may contain references to any portion of the variable.

NOTE 2
For example, in the character intrinsic assignment statement:
STRING (2:5) = STRING (1:4)

the assignment of the first character of STRING to the second character does not affect the evaluation of
STRING (1:4). If the value of STRING prior to the assignment was ’ABCDEF’, the value following the
assignment is "AABCDF".

If expr is a scalar and the variable is an array, the expr is treated as if it were an array of the same shape as the
variable with every element of the array equal to the scalar value of expr.

If the variable is an array, the assignment is performed element-by-element on corresponding array elements of
the variable and expr.

NOTE 3

For example, if A and B are arrays of the same shape, the array intrinsic assignment ‘

13/22-007r1 171

10
11

12
13
14
15

16
17
18

7

10

11

12

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 3 (cont.)
A =B

assigns the corresponding elements of B to those of A; that is, the first element of B is assigned to the first
element of A, the second element of B is assigned to the second element of A, etc.

If C is an allocatable array of rank 1, then

C = PACK (ARRAY, ARRAY>0)

will cause C to contain all the positive elements of ARRAY in array element order; if C is not allocated or
is allocated with the wrong size, it will be re-allocated to be of the correct size to hold the result of PACK.

The processor may perform the element-by-element assignment in any order.

NOTE 4
For example, the following program segment results in the values of the elements of array X being reversed:
REAL X (10)

X (.1.:'10) =X (10:1:-1)

For an intrinsic assignment statement where the variable is of numeric type, the expr can have a different numeric
type or kind type parameter, in which case the value of expr is converted to the type and kind type parameter
of the variable according to the rules of Table 10.9.

For an intrinsic assignment statement where the variable is of type integer or real, and expr is a boz-literal-
constant, expr is converted to the type and kind type parameter of the variable according to the rules of Table
10.9.

Table 10.9: Numeric conversion and the assignment statement

Type of the variable Value assigned

integer INT (expr, KIND = KIND (variable))
real REAL (ezpr, KIND = KIND (variable))
complex CMPLX (ezpr, KIND = KIND (variable))

NOTE INT, REAL, CMPLX, and KIND are the generic names
of functions defined in 16.9.

For an intrinsic assignment statement where the variable is of type logical, the expr can have a different kind
type parameter, in which case the value of expr is converted to the kind type parameter of the variable.

For an intrinsic assignment statement where the variable is of type character, the ezpr can have a different
character length parameter in which case the conversion of expr to the length of the variable is as follows.

(1) If the length of the variable is less than that of expr, the value of ezpr is truncated from the right
until it is the same length as the variable.

(2) If the length of the variable is greater than that of ezpr, the value of expr is extended on the right
with blanks until it is the same length as the variable.

For an intrinsic assignment statement where the variable is of type character, if ezpr has a different kind type para-
meter, each character ¢ in expr is converted to the kind type parameter of the variable by ACHAR (IACHAR(c),
KIND (variable)).

172 J3/22-007r1

© 0 N O

10
11
12

13
14
15
16
17
18
19

20
21

22

23
24

13

14

15

16

1

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 5

For nondefault character kinds, the blank padding character is processor dependent. When assigning a char-
acter expression to a variable of a different kind, each character of the expression that is not representable
in the kind of the variable is replaced by a processor-dependent character.

For an intrinsic assignment where the variable is of enum type, if expr is of type integer, it is converted to the
type of the variable as if by the enum constructor enum-type-name (expr).

For an intrinsic assignment of the type C_PTR or C_ FUNPTR from the intrinsic module ISO _C_BINDING,
or of the type TEAM TYPE from the intrinsic module ISO_ FORTRAN _ENV, the variable becomes undefined
if the variable and ezpr are not on the same image.

NOTE 6

An intrinsic assignment statement for a variable of declared type C_PTR, C_ FUNPTR, or TEAM_TYPE
cannot involve a coindexed object, see C915, which prevents inappropriate copying from one image to
another. However, such copying can occur for a component in a derived-type intrinsic assignment.

An intrinsic assignment where the variable is of derived type is performed as if each component of the variable
were assigned from the corresponding component of expr using pointer assignment (10.2.2) for each pointer
component, defined assignment for each nonpointer nonallocatable component of a type that has a type-bound
defined assignment consistent with the component, intrinsic assignment for each other nonpointer nonallocatable
component, and intrinsic assignment for each allocated coarray component. For unallocated coarray components,
the corresponding component of the variable shall be unallocated. For a noncoarray allocatable component the
following sequence of operations is applied.

(1) If the component of the variable is allocated, it is deallocated.

(2) If the component of the value of expr is allocated, the corresponding component of the variable is
allocated with the same dynamic type and type parameters as the component of the value of expr.
If it is an array, it is allocated with the same bounds. The value of the component of the value of
ezxpr is then assigned to the corresponding component of the variable using defined assignment if the
declared type of the component has a type-bound defined assignment consistent with the component,
and intrinsic assignment for the dynamic type of that component otherwise.

The processor may perform the component-by-component assignment in any order or by any means that has the
same effect.

NOTE 7

For an example of a derived-type intrinsic assignment statement, if C and D are of the same derived type
with a pointer component P and nonpointer components S, T, U, and V of type integer, logical, character,
and another derived type, respectively, the intrinsic assignment

C=0D

pointer assigns D%P to C%P. It assigns D%S to C%S, D%T to C%T, and D%U to C%U using intrinsic
assignment. It assigns D%V to C%V using defined assignment if objects of that type have a compatible
type-bound defined assignment, and intrinsic assignment otherwise.

NOTE 8

If an allocatable component of ezpr is unallocated, the corresponding component of the variable has an
allocation status of unallocated after execution of the assignment.

10.2.1.4 Defined assignment statement

A defined assignment statement is an assignment statement that is defined by a subroutine and a generic interface
(7.5.5, 15.4.3.4.3) that specifies ASSIGNMENT (=).

J3/22-007r1 173

[y

© 00N O B~ WN

11
12

13
14

15
16

18

19

20

21
22
23
24

25

26

27
28

29
30

31

32
33
34
35
36
37

J3/22-007r1 WD 1539-1 2022-04-22

2 A subroutine defines the defined assignment ;1 = xo if

(1)
(2)

the subroutine is specified with a SUBROUTINE (15.6.2.3) or ENTRY (15.6.2.6) statement that specifies
two dummy arguments, d; and da,

either

(a) ageneric interface (15.4.3.2) provides the subroutine with a generic-spec of ASSIGNMENT (=),
or

(b) there is a generic binding (7.5.5) in the declared type of x; or xo with a generic-spec of
ASSIGNMENT (=) and there is a corresponding binding to the subroutine in the dynamic
type of xy1 or xo, respectively,

the types of di and ds are compatible with the dynamic types of z1 and xo, respectively,

the type parameters, if any, of d; and do match the corresponding type parameters of xz; and xo,
respectively, and

either

(a) the ranks of z; and x5 match those of d; and dy or

(b) the subroutine is elemental, x5 is scalar or has the same rank as z7, and there is no other
subroutine that defines the assignment.

3 If d; or ds is an array, the shapes of 1 and x5 shall match the shapes of d; and ds, respectively. If the subroutine
is elemental, x5 shall be conformable with .

10.2.1.5

Interpretation of defined assignment statements

1 The interpretation of a defined assignment is provided by the subroutine that defines it.

2 If the defined assignment is an elemental assignment and the variable in the assignment is an array, the defined
assignment is performed element-by-element, on corresponding elements of the variable and expr. If ezpr is a
scalar, it is treated as if it were an array of the same shape as the variable with every element of the array equal
to the scalar value of expr.

NOTE 1

The rules of defined assignment (15.4.3.4.3), procedure references (15.5), subroutine references (15.5.4), and
elemental subroutine arguments (15.9.3) ensure that the defined assignment has the same effect as if the
evaluation of all operations in x5 and z; occurs before any portion of x; is defined. If an elemental assignment
is defined by a pure elemental subroutine, the element assignments can be performed simultaneously or in
any order.

10.2.2 Pointer assignment

10.2.2.1 General

1 Pointer assignment causes a pointer to become associated with a target or causes its pointer association status
to become disassociated or undefined. Any previous association between the pointer and a target is broken.

2 Pointer assignment for a pointer component of a structure can also take place by execution of a derived-type
intrinsic assignment statement (10.2.1.3).

10.2.2.2 Syntax of the pointer assignment statement

R1034 pointer-assignment-stmt is data-pointer-object

174

bounds-spec-list) | => data-target
ower-bounds-expr :) => data-target
ounds-remapping-list) => data-target
ower-bounds-expr : upper-bounds-expr) R

—

[
or data-pointer-object (
or data-pointer-object (
or data-pointer-object (
B => data-target
or proc-pointer-object => proc-target

o~ o=~

13/22-007r1

10

11
12

13
14

15
16

17
18

19

20

21
22

23

24

25

26

27
28
29

30

31
32

33

34

2022-04-22 WD 1539-1 J3/22-007r1

R1035 data-pointer-object is wariable-name
or scalar-variable % data-pointer-component-name

C1016 (R1034) If data-target is not unlimited polymorphic, data-pointer-object shall be type compatible (7.3.3)
with it and the corresponding kind type parameters shall be equal.

C1017 (R1034) If data-target is unlimited polymorphic, data-pointer-object shall be unlimited polymorphic, or
of a type with the BIND attribute or the SEQUENCE attribute.

C1018 (R1034) If bounds-spec-list is specified, the number of bounds-specs shall equal the rank of data-pointer-
object.

C1019 (R1034) If bounds-remapping-list is specified, the number of bounds-remappings shall equal the rank of
data-pointer-object.

C1020 If lower-bounds-expr and upper-bounds-expr appear in a pointer-assignment-stmt, at least one of them
shall be a rank-one array of constant size equal to the rank of data-pointer-object.

C1021 If lower-bounds-expr appears in a pointer-assignment-stmt but not upper-bounds-expr, it shall be a rank-
one array of constant size equal to the rank of data-pointer-object.

C1022 If neither bounds-remapping-list nor upper-bounds-expr appears in a pointer-assignment-stmt, the ranks
of data-pointer-object and data-target shall be the same.

C1023 (R1034) A coarray data-target shall have the VOLATILE attribute if and only if the data-pointer-object
has the VOLATILE attribute.

C1024 (R1035) A wvariable-name shall have the POINTER attribute.
C1025 (R1035) A scalar-variable shall be a data-ref.

C1026 (R1035) A data-pointer-component-name shall be the name of a component of scalar-variable that is a
data pointer.

C1027 (R1035) A data-pointer-object shall not be a coindexed object.

R1036 bounds-spec is lower-bound-expr :
R1037 bounds-remapping is lower-bound-expr : upper-bound-expr
R1038 data-target is expr

C1028 (R1038) The expr shall be a designator that designates a variable with either the TARGET or POINTER
attribute and is not an array section with a vector subscript, or it shall be a reference to a function that
returns a data pointer.

C1029 (R1038) A data-target shall not be a coindexed object.

NOTE 1

A data pointer and its target are always on the same image. A coarray can be of a derived type with pointer
or allocatable subcomponents. For example, if PTR is a pointer component, and Z%PTR on image P has
been associated with a target by execution of an ALLOCATE statement or a pointer assignment on image
P, Z[P]%PTR will be a reference to that target.

R1039 proc-pointer-object is proc-pointer-name
or proc-component-ref

R1040 proc-component-ref is scalar-variable % procedure-component-name

C1030 (R1040) The scalar-variable shall be a data-ref that is not a coindexed object.

J3/22-007r1 175

10

11
12

13
14

15

16
17
18

19
20
21
22
23

24
25
26

27
28
29
30

31
32

33

34
35

36

J3/22-007r1 WD 1539-1 2022-04-22

C1031 (R1040) The procedure-component-name shall be the name of a procedure pointer component of the
declared type of scalar-variable.

R1041 proc-target is expr
or procedure-name
or proc-component-ref

C1032 (R1041) An expr shall be a reference to a function whose result is a procedure pointer.

C1033 (R1041) A procedure-name shall be the name of an internal, module, or dummy procedure, a procedure
pointer, a specific intrinsic function listed in Table 16.2, or an external procedure that is accessed by use or host
association, referenced in the scoping unit as a procedure, or that has the EXTERNAL attribute.

C1034 (R1041) The proc-target shall not be a nonintrinsic elemental procedure.

In a pointer assignment statement, data-pointer-object or proc-pointer-object denotes the pointer object and
data-target or proc-target denotes the pointer target.

For pointer assignment performed by a derived-type intrinsic assignment statement, the pointer object is the
pointer component of the variable and the pointer target is the corresponding component of ezpr.

10.2.2.3 Data pointer assignment

If the pointer object is not polymorphic (7.3.2.3) and the pointer target is polymorphic with dynamic type that
differs from its declared type, the assignment target is the ancestor component of the pointer target that has the
type of the pointer object. Otherwise, the assignment target is the pointer target.

If the pointer target is not a pointer, the pointer object becomes pointer associated with the assignment target;
if the pointer target is a pointer with a target that is not on the same image, the pointer association status of the
pointer object becomes undefined. Otherwise, the pointer association status of the pointer object becomes that
of the pointer target; if the pointer target is associated with an object, the pointer object becomes associated
with the assignment target. If the pointer target is allocatable, it shall be allocated.

NOTE 1

A pointer assignment statement is not permitted to involve a coindexed pointer or target, see C1027 and
C1029. This prevents a pointer assignment statement from associating a pointer with a target on another
image. If such an association would otherwise be implied, the association status of the pointer becomes
undefined. For example, a derived-type intrinsic assignment where the variable and expr are on different
images and the variable has an ultimate pointer component.

If the pointer object is polymorphic, it assumes the dynamic type of the pointer target. If the pointer object is
of a type with the BIND attribute or the SEQUENCE attribute, the dynamic type of the pointer target shall be
that type.

If the pointer target is a disassociated pointer, all nondeferred type parameters of the declared type of the pointer
object that correspond to nondeferred type parameters of the pointer target shall have the same values as the
corresponding type parameters of the pointer target. Otherwise, all nondeferred type parameters of the declared
type of the pointer object shall have the same values as the corresponding type parameters of the pointer target.

If the pointer object has nondeferred type parameters that correspond to deferred type parameters of the pointer
target, the pointer target shall not be a pointer with undefined association status.

If the pointer object has the CONTIGUOUS attribute, the pointer target shall be contiguous.

If the target of a pointer is a coarray, the pointer shall have the VOLATILE attribute if and only if the coarray
has the VOLATILE attribute.

If bounds-remapping-list appears, it specifies the upper and lower bounds of each dimension of the pointer,

176 J3/22-007r1

g W N =

10
11
12
13

14

15
16
17
18
19

20

21
22
23
24

25
26

27
28
29

30
31

32
33

34

10

2022-04-22 WD 1539-1 J3/22-007r1

and thus the extents; the pointer target shall be simply contiguous (9.5.4) or of rank one, and shall not be a
disassociated or undefined pointer. The number of elements of the pointer target shall not be less than the
number implied by the bounds-remapping-list. The elements of the pointer object are associated with those of
the pointer target, in array element order; if the pointer target has more elements than specified for the pointer
object, the remaining elements are not associated with the pointer object.

If lower-bounds-expr and upper-bounds-expr appear, the effect is the same as a bounds-remapping-list with each
bounds-remapping comprising corresponding elements of the lower and upper bounds arrays, in array element
order. If one of them is a scalar, the effect is as if it were broadcast to the same shape as the other.

If neither bounds-remapping-list nor upper-bounds-expr appears, the extent of a dimension of the pointer object is
the extent of the corresponding dimension of the pointer target. If bounds-spec-list or lower-bounds-expr appears,
it specifies the lower bounds; otherwise, the lower bound of each dimension is the result of the intrinsic function
LBOUND (16.9.119) applied to the corresponding dimension of the pointer target. The upper bound of each
dimension is one less than the sum of the lower bound and the extent.

10.2.2.4 Procedure pointer assignment

If the pointer target is not a pointer or dummy argument, the pointer object becomes pointer associated with
the pointer target. If the pointer target is a nonpointer dummy argument, the pointer object becomes associated
with the ultimate argument of the dummy argument. Otherwise, the pointer association status of the pointer
object becomes that of the pointer target; if the pointer target is associated with a procedure, the pointer object
becomes associated with the same procedure.

The host instance (15.6.2.4) of an associated procedure pointer is the host instance of its target.

If the pointer object has an explicit interface, its characteristics shall be the same as the pointer target except
that the pointer target may be pure even if the pointer object is not pure, the pointer target may be simple even
if the pointer object is not simple, and the pointer target may be an elemental intrinsic procedure, even though
the pointer object cannot be elemental.

If the characteristics of the pointer object or the pointer target are such that an explicit interface is required,
both the pointer object and the pointer target shall have an explicit interface.

If the pointer object has an implicit interface and is explicitly typed or referenced as a function, the pointer target
shall be a function. If the pointer object has an implicit interface and is referenced as a subroutine, the pointer
target shall be a subroutine.

If the pointer object is a function with an implicit interface, the pointer target shall be a function with the same
type; corresponding type parameters shall have the same value.

If procedure-name is a specific procedure name that is also a generic name, only the specific procedure is associated
with the pointer object.

10.2.2.5 Examples of pointer assignment statements

NOTE 1

The following are examples of pointer assignment statements. (See 15.4.3.6, NOTE 1 for declarations of P
and BESSELL.)

NEW_NODE % LEFT => CURRENT_NODE

SIMPLE_NAME => TARGET _STRUCTURE % SUBSTRUCT Y% COMPONENT
PTR => NULL ()

ROW => MAT2D (N, :)

WINDOW => MAT2D (I-1:I+1, J-1:J+1)

POINTER_OBJECT => POINTER_FUNCTION (ARG_1, ARG_2)
EVERY_OTHER => VECTOR (1:N:2)

WINDOW2 (0:, 0:) => MAT2D (ML:MU, NL:NU)

J3/22-007r1 177

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1 (cont.)

! P is a procedure pointer and BESSEL is a procedure with a
! compatible interface.
P => BESSEL

! Likewise for a structure component.
STRUCT % COMPONENT => BESSEL

NOTE 2

It is possible to obtain different-rank views of parts of an object by specifying upper bounds in pointer
assignment statements. This requires that the object be either rank one or contiguous. Consider the
following example, in which a matrix is under consideration. The matrix is stored as a rank-one object in
MYDATA because its diagonal is needed for some reason — the diagonal cannot be gotten as a single object

10
11
12
13

14

15
16
17

18

19

from a rank-two representation. The matrix is represented as a rank-two view of MYDATA.

real, target :: MYDATA (NR*NC) ! An automatic array

real, pointer :: MATRIX (:, :) ! A rank-two view of MYDATA
real, pointer :: VIEW_DIAG (:)

MATRIX (1:NR, 1:NC) => MYDATA ! The MATRIX view of the data
VIEW_DIAG => MYDATA (1::NR+1) ! The diagonal of MATRIX

Rows, columns, or blocks of the matrix can be accessed as sections of MATRIX.

Rank remapping can be applied to CONTIGUOUS arrays, for example:

REAL, CONTIGUOUS, POINTER :: A (:)
REAL, CONTIGUOUS, TARGET :: B (:,:) ! Dummy argument
A (1:SIZE(B)) => B ! Linear view of a rank-2 array

10.2.3 Masked array assignment — WHERE

10.2.3.1 General form of the masked array assignment

A masked array assignment is either a WHERE statement or a WHERE construct. It is used to mask the
evaluation of expressions and assignment of values in array assignment statements, according to the value of a

logical array expression.
R1042 where-stmt is WHERE (mask-expr) where-assignment-stmt

R1043 where-construct is where-construct-stmt
[where-body-construct | ...
[masked-elsewhere-stmt
[where-body-construct | ...] ...
[elsewhere-stmt
[where-body-construct | ... |
end-where-stmt

R1044 where-construct-stmt is [where-construct-name:] WHERE (mask-expr)

R1045 where-body-construct is where-assignment-stmt
or where-stmt
or where-construct

R1046 where-assignment-stmt is assignment-stmt

R1047 mask-expr is logical-expr

178 J3/22-007r1

© 0 N o O

10

11
12
13

14

15
16
17
18
19

20
21

22

23

24
25
26

27
28

29
30
31
32

2022-04-22 WD 1539-1 J3/22-007r1

R1048 masked-elsewhere-stmt is ELSEWHERE (mask-expr) [where-construct-name]
R1049 elsewhere-stmt is ELSEWHERE [where-construct-name]
R1050 end-where-stmt is END WHERE [where-construct-name]

C1035 (R1046) A where-assignment-stmt that is a defined assignment shall be elemental.

C1036 (R1043) If the where-construct-stmt is identified by a where-construct-name, the corresponding end-
where-stmt shall specify the same where-construct-name. If the where-construct-stmt is not identified by
a where-construct-name, the corresponding end-where-stmt shall not specify a where-construct-name. If
an elsewhere-stmt or a masked-elsewhere-stmt is identified by a where-construct-name, the corresponding
where-construct-stmt shall specify the same where-construct-name.

C1037 (R1045) A statement that is part of a where-body-construct shall not be a branch target statement.

If a where-construct contains a where-stmt, a masked-elsewhere-stmt, or another where-construct then each mask-
expr within the where-construct shall have the same shape. In each where-assignment-stmt, the mask-expr and
the variable being defined shall be arrays of the same shape.

NOTE 1
Examples of masked array assignment are:

WHERE (TEMP > 100.0) TEMP = TEMP - REDUCE_TEMP
WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP - 5.0
ELSEWHERE
RAINING = .TRUE.
END WHERE

10.2.3.2 Interpretation of masked array assignments

When a WHERE statement or a where-construct-stmt is executed, a control mask is established. In addition,
when a WHERE construct statement is executed, a pending control mask is established. If the statement does
not appear as part of a where-body-construct, the mask-expr of the statement is evaluated, and the control mask is
established to be the value of mask-expr. The pending control mask is established to have the value .NOT. mask-
expr upon execution of a WHERE construct statement that does not appear as part of a where-body-construct.

The mask-expr in a WHERE statement, WHERE construct statement, or masked ELSEWHERE statement, is
evaluated at most once per execution of the statement.

Fach statement in a WHERE construct is executed in sequence.

Upon execution of a masked-elsewhere-stmt, the following actions take place in sequence.

(1) The control mask m, is established to have the value of the pending control mask.
(2) The pending control mask is established to have the value m. .AND. (NOT. mask-expr).
(3) The control mask m, is established to have the value m., .AND. mask-expr.

Upon execution of an ELSEWHERE statement, the control mask is established to have the value of the pending
control mask. No new pending control mask value is established.

Upon execution of an ENDWHERE statement, the control mask and pending control mask are established to
have the values they had prior to the execution of the corresponding WHERE construct statement. Following
the execution of a WHERE statement that appears as a where-body-construct, the control mask is established to
have the value it had prior to the execution of the WHERE statement.

J3/22-007r1 179

© 00 N O

11
12
13

14
15

16
17

18
19
20
21
22

10

11

12

13

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 1
The establishment of control masks and the pending control mask is illustrated with the following example:
WHERE (cond1) | Statement 1
ELSEWHERE (cond?2) ! Statement 2
ELSEWHERE ! Statement 3
END WHERE

Following execution of statement 1, the control mask has the value condl and the pending
control mask has the value .NOT. condl. Following execution of statement 2, the control
mask has the value (NOT. condl) .AND. cond2 and the pending control mask has the value
(.NOT. condl) .AND. (.NOT. cond2). Following execution of statement 3, the control mask has the value
(.NOT. condl) .AND. (.NOT. cond2). The false condition values are propagated through the execution of
the masked ELSEWHERE statement.

Upon execution of a WHERE construct statement that is part of a where-body-construct, the pending control
mask is established to have the value m, .AND. ((NOT. mask-ezpr). The control mask is then established to
have the value m. .AND. mask-expr. The mask-expr is evaluated at most once.

Upon execution of a WHERE statement that is part of a where-body-construct, the control mask is established
to have the value m. .AND. mask-expr. The pending control mask is not altered.

If a nonelemental function reference occurs in the expr or variable of a where-assignment-stmt or in a mask-expr,
the function is evaluated without any masked control; that is, all of its argument expressions are fully evaluated
and the function is fully evaluated. If the result is an array and the reference is not within the argument list
of a nonelemental function, elements corresponding to true values in the control mask are selected for use in
evaluating the expr, variable or mask-expr.

If an elemental operation or function reference occurs in the expr or variable of a where-assignment-stmt or in a
mask-expr, and is not within the argument list of a nonelemental function reference, the operation is performed
or the function is evaluated only for the elements corresponding to true values of the control mask.

If an array constructor appears in a where-assignment-stmt or in a mask-expr, the array constructor is evaluated
without any masked control and then the where-assignment-stmt is executed or the mask-expr is evaluated.

When a where-assignment-stmt is executed, the values of expr that correspond to true values of the control mask
are assigned to the corresponding elements of the variable.

The value of the control mask is established by the execution of a WHERE statement, a WHERE construct
statement, an ELSEWHERE statement, a masked ELSEWHERE statement, or an ENDWHERE statement.
Subsequent changes to the value of entities in a mask-expr have no effect on the value of the control mask. The
execution of a function reference in the mask expression of a WHERE statement is permitted to affect entities in
the assignment statement.

NOTE 2

Examples of function references in masked array assignments are:

WHERE (A > 0.0)
A = LOG (4) ! LOG is invoked only for positive elements.
A=A/ SUM (LOG (A)) ! LOG is invoked for all elements
! because SUM is transformational

END WHERE

180 J3/22-007r1

10
11
12
13

14
15

16

17

19

20

21
22

23

24

25

26

27
28
29
30

31

32

33

34

35

36
37

38
39

2022-04-22 WD 1539-1 J3/22-007r1

10.2.4 FORALL
10.2.4.1 Form of the FORALL Construct

The FORALL construct allows multiple assignments, masked array (WHERE) assignments, and nested FORALL constructs and

statements to be controlled by a single concurrent-control-list and scalar-mask-expr.

R1051 forall-construct is forall-construct-stmt
[forall-body-construct | ...

end-forall-stmt
R1052 forall-construct-stmt is [forall-construct-name :] FORALL concurrent-header

R1053 forall-body-construct is forall-assignment-stmt
or where-stmt
or where-construct
or forall-construct

or forall-stmt

R1054 forall-assignment-stmt is assignment-stmt

or pointer-assignment-stmt

R1055 end-forall-stmt is END FORALL [forall-construct-name |

C1038 (R1055) If the forall-construct-stmt has a forall-construct-name, the end-forall-stmt shall have the same forall-construct-
name. If the end-forall-stmt has a forall-construct-name, the forall-construct-stmt shall have the same forall-construct-
name.

C1039 (R1053) A statement in a forall-body-construct shall not define an indez-name of the forall-construct.

(1040 (R1053) Any procedure referenced in a forall-body-construct, including one referenced by a defined operation, assignment,
or finalization, shall be a pure procedure.

C1041 (R1053) A forall-body-construct shall not be a branch target.

The scope and attributes of an index-name in a concurrent-header in a FORALL construct or statement are described in 19.4.
10.2.4.2 Execution of the FORALL construct

10.2.4.2.1 Execution stages

There are three stages in the execution of a FORALL construct:
(1) determination of the values for indez-name variables,
(2) evaluation of the scalar-mask-expr, and
(3) execution of the FORALL body constructs.

10.2.4.2.2 Determination of the values for index variables

The values of the index variables are determined as they are for the DO CONCURRENT statement (11.1.7.4.2).
10.2.4.2.3 Evaluation of the mask expression
The mask expression is evaluated as it is for the DO CONCURRENT statement (11.1.7.4.2).

10.2.4.2.4 Execution of the FORALL body constructs

The forall-body-constructs are executed in the order in which they appear. Each construct is executed for all active combinations of

the indez-name values with the following interpretation:

Execution of a forall-assignment-stmt that is an assignment-stmt causes the evaluation of expr and all expressions within variable

for all active combinations of indez-name values. These evaluations may be done in any order. After all these evaluations have been

J3/22-007r1 181

S G~ W N

10
11
12

13
14
15
16
17
18
19

20

21
22

23

24

25

26

27
28
29
30

J3/22-007r1 WD 1539-1 2022-04-22

performed, each expr value is assigned to the corresponding wvariable. The assignments may occur in any order.

Execution of a forall-assignment-stmt that is a pointer-assignment-stmt causes the evaluation of all expressions within data-target
and data-pointer-object or proc-target and proc-pointer-object, the determination of any pointers within data-pointer-object or proc-
pointer-object, and the determination of the target for all active combinations of index-name values. These evaluations may be done
in any order. After all these evaluations have been performed, each data-pointer-object or proc-pointer-object is associated with the

corresponding target. These associations may occur in any order.
In a forall-assignment-stmt, a defined assignment subroutine shall not reference any variable that becomes defined by the statement.

NOTE 1

If a variable defined in an assignment statement within a FORALL construct is referenced in a later statement in that construct,

the later statement uses the value(s) computed in the preceding assignment statement, not the value(s) the variable had prior
to execution of the FORALL.

Each statement in a where-construct (10.2.3) within a forall-construct is executed in sequence. When a where-stmt, where-construct-
stmt or masked-elsewhere-stmt is executed, the statement’s mask-expr is evaluated for all active combinations of indez-name values
as determined by the outer forall-constructs, masked by any control mask corresponding to outer where-constructs. Any where-
assignment-stmt is executed for all active combinations of index-name values, masked by the control mask in effect for the where-

assignment-stmt.

Execution of a forall-stmt or forall-construct causes the evaluation of the concurrent-limit and concurrent-step expressions in the
concurrent-control-list for all active combinations of the indez-name values of the outer FORALL construct. The set of combinations
of indez-name values for the inner FORALL is the union of the sets defined by these limits and steps for each active combination of the
outer indezx-name values; it also includes the outer index-name values. The scalar-mask-expr is then evaluated for all combinations
of the index-name values of the inner construct to produce a set of active combinations for the inner construct. If there is no
scalar-mask-expr, it is as if it appeared with the value true. Each statement in the inner FORALL is then executed for each active

combination of the indez-name values.

10.2.4.3 The FORALL statement

The FORALL statement allows a single assignment statement or pointer assignment statement to be controlled by a set of index

values and an optional mask expression.
R1056 forall-stmt is FORALL concurrent-header forall-assignment-stmt
A FORALL statement is equivalent to a FORALL construct containing a single forall-body-construct that is a forall-assignment-stmt.

The scope of an indez-name in a forall-stmt is the statement itself (19.4).

10.2.4.4 Restrictions on FORALL constructs and statements

A many-to-one assignment is more than one assignment to the same object, or association of more than one target with the same
pointer, whether the object is referenced directly or indirectly through a pointer. A many-to-one assignment shall not occur within
a single statement in a FORALL construct or statement. It is possible to assign or pointer-assign to the same object in different

assignment or pointer assignment statements in a FORALL construct.

NOTE 1

The appearance of each index-name in the identification of the left-hand side of an assignment statement is helpful in eliminating

many-to-one assignments, but it is not sufficient to guarantee there will be none. For example, the following is allowed

FORALL (I = 1:10)
A (INDEX (I)) = B(I)
END FORALL

if and only if INDEX(1:10) contains no repeated values.

182 J3/22-007r1

2022-04-22 WD 1539-1 J3/22-007r1

2 Within the scope of a FORALL construct, a nested FORALL statement or FORALL construct shall not have the same indez-name.

The concurrent-header expressions within a nested FORALL may depend on the values of outer index-name variables.

13/22-007r1 183

© 0 N o O

11
12
13

14

15
16
17

18

19

20
21
22

23

24

25

26

27
28

29
30

J3/22-007r1 WD 1539-1 2022-04-22

11 Execution control

11.1 Executable constructs containing blocks

11.1.1 Blocks

The following are executable constructs that contain blocks:

¢ ASSOCIATE construct;

e BLOCK construct;

« CHANGE TEAM construct;
e CRITICAL construct;

e DO construct;

e IF construct;

e SELECT CASE construct;

e SELECT RANK construct;
e« SELECT TYPE construct.

R1101 block is [execution-part-construct | ...

Executable constructs can be used to control which blocks of a program are executed or how many times a block
is executed. Blocks are always bounded by statements that are particular to the construct in which they are
embedded.

NOTE 1
An example of a construct containing a block is:
IF (A > 0.0) THEN
B = SQRT (A) ! These two statements

C = LOG (A) ! form a block.
END IF

11.1.2 Rules governing blocks
11.1.2.1 Control flow in blocks

Transfer of control to the interior of a block from outside the block is prohibited, except for the return from a
procedure invoked within the block. Transfers within a block and transfers from the interior of a block to outside
the block may occur.

Subroutine and function references (15.5.3, 15.5.4) may appear in a block.

11.1.2.2 Execution of a block
Execution of a block begins with the execution of the first executable construct in the block.

Execution of the block is completed when

o execution of the last executable construct in the block completes without branching to a statement within
the block,

o a branch (11.2) within the block that has a branch target outside the block occurs,
e a RETURN statement within the block is executed, or

184 J3/22-007r1

10

11

12
13

14
15
16

17

18

19

20
21

22

23
24
25
26

27

28
29
30
31
32

33

34

2022-04-22 WD 1539-1 J3/22-007r1

e an EXIT or CYCLE statement that belongs to a construct that contains the block is executed.

NOTE 1

The action that takes place at the terminal boundary depends on the particular construct and on the block
within that construct.

11.1.3 ASSOCIATE construct

11.1.3.1 Purpose and form of the ASSOCIATE construct

1 The ASSOCIATE construct associates named entities with expressions or variables during the execution of its
block. These named construct entities (19.4) are associating entities (19.5.1.6). The names are associate names.

R1102

R1103

R1104

R1105

C1101

C1102
C1103
C1104

C1105

R1106

C1106

associate-construct is associate-stmt

block

end-associate-stmt
associate-stmt is [associate-construct-name : | ASSOCIATE B

B (association-list)
association is associate-name => selector
selector is expr
or wvariable

(R1104) If selector is not a variable or is a variable that has a vector subscript, neither associate-name

nor any subobject thereof shall appear in a variable definition context (19.6.7) or pointer association
context (19.6.8).

R1104) An associate-name shall not be the same as another associate-name in the same associate-stmt.

)
R1105) wariable shall not be a coindexed object.
)

R1105) expr shall not be a variable.

(
(
(
(R1105) expr shall not be a designator of a procedure pointer or a function reference that returns a
procedure pointer.

end-associate-stmt is END ASSOCIATE [associate-construct-name |

(R1106) If the associate-stmt of an associate-construct specifies an associate-construct-name, the corres-
ponding end-associate-stmt shall specify the same associate-construct-name. If the associate-stmt of an
associate-construct does not specify an associate-construct-name, the corresponding end-associate-stmt
shall not specify an associate-construct-name.

11.1.3.2 Execution of the ASSOCIATE construct

1 Execution of an ASSOCIATE construct causes evaluation of every expression within every selector that is a
variable designator and evaluation of every other selector, followed by execution of its block. During execution of
that block each associate name identifies an entity which is associated (19.5.1.6) with the corresponding selector.
The associating entity assumes the declared type and type parameters of the selector. If and only if the selector
is polymorphic, the associating entity is polymorphic.

2 The other attributes of the associating entity are described in 11.1.3.3.

3 It is permissible to branch to an end-associate-stmt only from within its ASSOCIATE construct.

J3/22-007r1 185

J3/22-007r1 WD 1539-1 2022-04-22

1 11.1.3.3 Other attributes of associate names

2 1 Within an ASSOCIATE, CHANGE TEAM, or SELECT TYPE construct, each associating entity has the same
3 rank as its associated selector. The lower bound of each dimension is the result of the intrinsic function LBOUND
4 (16.9.119) applied to the corresponding dimension of selector. The upper bound of each dimension is one less
5 than the sum of the lower bound and the extent. The associating entity does not have the ALLOCATABLE or
6 POINTER attributes; it has the TARGET attribute if and only if the selector is a variable and has either the
7 TARGET or POINTER attribute.

8 2 Within an ASSOCIATE, SELECT RANK, or SELECT TYPE construct, each associating entity has the same
9 corank as its associated selector. If the selector is a coarray, the cobounds of each codimension of the associating
10 entity are the same as those of the selector.

11 3 Within a CHANGE TEAM construct, the associating entity is a coarray. Its corank and cobounds are as specified
12 in its codimension-decl.

13 4 Within an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT TYPE construct, the associating entity

14 has the ASYNCHRONOUS or VOLATILE attribute if and only if the selector is a variable and has the attribute.
15 If the associating entity is polymorphic, it assumes the dynamic type and type parameter values of the selector.
16 The associating entity does not have the OPTIONAL attribute. If the selector has the OPTIONAL attribute, it
17 cannot be absent (15.5.2.13). The associating entity is contiguous if and only if the selector is contiguous.

18 5 The associating entity itself is a variable, but if the selector is not a definable variable, the associating entity

19 is not definable and shall not be defined or become undefined. If a selector is not permitted to appear in
20 a variable definition context (19.6.7), neither the associate name nor any subobject thereof shall appear in a
21 variable definition context or pointer association context (19.6.8).
22 11.1.3.4 Examples of the ASSOCIATE construct

NOTE 1

The following example illustrates an association with an expression.
ASSOCIATE (Z => EXP (- (X*¥2+Y**x2)) * COS (THETA))
PRINT *, A+Z, A-Z
END ASSOCIATE

The following example illustrates an association with a derived-type variable.
ASSOCIATE (XC => AXY%B(I,J)%C)
XC%DV = XCY%DV + PRODUCT (XC%EV(1:N))
END ASSOCIATE

The following example illustrates association with an array section.
ASSOCIATE (ARRAY => AXY%B(I,:)%C)
ARRAY(N)%EV = ARRAY(N-1)%EV
END ASSOCIATE

The following example illustrates multiple associations.
ASSOCIATE (W => RESULT(I,J)%W, ZX => AXY%B(I,J)%D, ZY => AYY%B(I,J)%D)
W = ZX*X + ZY*Y
END ASSOCIATE

23 11.1.4 BLOCK construct

24 1 The BLOCK construct is an executable construct that can contain declarations.

186 J3/22-007r1

[&] A W N =

© 0 N O

10

11
12

13
14

15
16
17

18
19
20
21

22
23

24

2022-04-22 WD 1539-1 J3/22-007r1

R1107

R1108

R1109

R1110

C1107

C1108

C1109

2 Except

block-construct is block-stmt
[block-specification-part |
block
end-block-stmt
block-stmt is [block-construct-name :] BLOCK
block-specification-part is [use-stmt]...

[import-stmt | ...
[[declaration-construct | ...
specification-construct |

end-block-stmt is END BLOCK [block-construct-name |

(R1107) A block-specification-part shall not contain a COMMON, EQUIVALENCE, INTENT, NAMELIST,
OPTIONAL, statement function, or VALUE statement.

(R1107) A SAVE statement in a BLOCK construct shall contain a saved-entity-list that does not specify a

common-block-name.

(R1107) If the block-stmt of a block-construct specifies a block-construct-name, the corresponding end-
block-stmt shall specify the same block-construct-name. If the block-stmt does not specify a block-
construct-name, the corresponding end-block-stmt shall not specify a block-construct-name.

for the ASYNCHRONOUS and VOLATILE statements, specifications in a BLOCK construct declare

construct entities whose scope is that of the BLOCK construct (19.4). The appearance of the name of an object
that is not a construct entity in an ASYNCHRONOUS or VOLATILE statement in a BLOCK construct specifies
that the object has the attribute within the construct even if it does not have the attribute outside the construct.

3 Execution of a BLOCK construct causes evaluation of the specification expressions within its specification part
in a processor-dependent order, followed by execution of its block.

4 Tt is permissible to branch to an end-block-stmt only from within its BLOCK construct.

NOTE 1

The following is an example of a BLOCK construct.

Actions on a variable local to a BLOCK construct do not affect any variable of the same name outside the
construct. For example,

A SAVE statement outside a BLOCK construct does not affect variables local to the BLOCK construct,
because a SAVE statement affects variables in its scoping unit rather than in its inclusive scope. For
example,

IF (swapxy) THEN

BLOCK
REAL (KIND (x)) tmp
tmp = x
X=Yy
y = tmp
END BLOCK
END IF

F = 254E-2
BLOCK
REAL F
F = 39.37
END BLOCK
! F is still equal to 254E-2.

J3/22-007r1 187

10

11

12

13
14

15

16
17
18
19

20
21

22

23

24

25
26
27
28

13/22-007r1 WD 1539-1

NOTE 1 (cont.)

2022-04-22

SUBROUTINE S
SAVE
BLOCK

REAL X

REAL,SAVE ::
Z =3

I Not saved.
Y(100) ! SAVE attribute is allowed.
! Implicitly declared in S, thus saved.

END BLOCK

END SUBROUTINE

11.1.5 CHANGE TEAM construct

11.1.5.1 Purpose and form of the CHANGE TEAM construct

The CHANGE TEAM construct changes the current team. Named construct entities (19.4) can be associated
(19.5.1.6) with coarrays in the containing scoping unit, in the same way as for the ASSOCIATE construct.

R1111 change-team-construct is change-team-stmt

block

end-change-team-stmt
R1112 change-team-stmt is [team-construct-name : | CHANGE TEAM (team-value B

B [, coarray-association-list | [, sync-stat-list])

R1113 coarray-association is codimension-decl => selector
R1114 end-change-team-stmt is END TEAM [([sync-stat-list |) | [team-construct-name]
R1115 team-value is scalar-expr
C1110 A branch (11.2) within a CHANGE TEAM construct shall not have a branch target that is outside the

C1111

C1112

C1113

Cl114
C1115

C1116

construct.
A RETURN statement shall not appear within a CHANGE TEAM construct.

If the change-team-stmt of a change-team-construct specifies a team-construct-name, the corresponding
end-change-team-stmt shall specify the same team-construct-name. If the change-team-stmt of a change-
team-construct does not specify a team-construct-name, the corresponding end-change-team-stmt shall
not specify a team-construct-name.

In a change-team-stmt, a coarray-name in a codimension-decl shall not be the same as a selector, or
another coarray-name, in that statement.

A team-value shall be of type TEAM__TYPE from the intrinsic module ISO_ FORTRAN_ENV.
No selector shall appear more than once in a given change-team-stmt.

A selector in a coarray-association shall be a named coarray.

Each coarray-name in a codimension-decl in the CHANGE TEAM statement is an associate name which is
associated with the corresponding selector. Each associating entity assumes the type and type parameters of
its selector; it is polymorphic if and only if the selector is polymorphic. The other attributes of the associating
entities are described in 11.1.3.3.

188

13/22-007r1

0 N o o~ W N

10
11

12

13
14
15
16

17
18
19
20
21

22
23
24
25

26
27
28

29
30
31
32
33
34

2022-04-22 WD 1539-1 J3/22-007r1

11.1.5.2 Execution of a CHANGE TEAM construct

The team-values on the active images that execute the CHANGE TEAM statement shall be those of team variables
defined by corresponding executions of the same FORM TEAM statement (11.7.9). When the CHANGE TEAM
statement is executed, the current team shall be the team that was current when those team variables were defined.
The current team for the statements of the CHANGE TEAM block is the team identified by the team-value. If
team-value is a variable, the variable shall not be defined or become undefined during execution of the CHANGE
TEAM construct. A CHANGE TEAM construct completes execution by executing its END TEAM statement,
which restores the current team to the original team that was current for the CHANGE TEAM statement.

Execution of a CHANGE TEAM construct causes evaluation of the expressions within each codimension-decl in
the CHANGE TEAM statement, followed by execution of its block. Each selector shall be an established coarray
when the CHANGE TEAM statement begins execution.

It is permissible to branch to an end-change-team-stmt only from within its CHANGE TEAM construct.

An allocatable coarray that was allocated immediately before executing a CHANGE TEAM statement shall not
be deallocated during execution of the construct. An allocatable coarray that was unallocated immediately before
executing a CHANGE TEAM statement, and which is allocated immediately before executing the corresponding
END TEAM statement, is deallocated by the execution of the END TEAM statement.

Successful execution of a CHANGE TEAM statement performs an implicit synchronization of all images of the
new team that is identified by team-value. All active images of the new team shall execute the same CHANGE
TEAM statement. On each image of the new team, execution of the segment following the CHANGE TEAM
statement is delayed until all other images of that team have executed the same statement the same number of
times in the original team.

If the new team contains a failed image and no other error condition occurs, there is an implicit synchronization
of all active images of the new team. On each active image of the new team, execution of the segment following
the CHANGE TEAM statement is delayed until all other active images of that team have executed the same
statement the same number of times in the original team.

If no error condition other than the new team containing a failed image occurs, the segments that executed before
the CHANGE TEAM statement on an active image of the new team precede the segments that execute after the
CHANGE TEAM statement on another active image of that team.

When a CHANGE TEAM construct completes execution, there is an implicit synchronization of all active images
in the new team. On each active image of the new team, execution of the segment following the END TEAM
statement is delayed until all other active images of this team have executed the same construct the same number
of times in this team. The segments that executed before the END TEAM statement on an active image of the
new team precede the segments that execute after the END TEAM statement on another active image of that
team.

NOTE 1

Deallocation of an allocatable coarray that was not allocated at the beginning of a CHANGE TEAM
construct, but is allocated at the end of execution of the construct, occurs even for allocatable coarrays
with the SAVE attribute.

NOTE 2

Execution of a CHANGE TEAM statement includes a synchronization of the executing image with the other
images that will be in the same team after execution of the CHANGE TEAM statement. Synchronization
of these images occurs again when the corresponding END TEAM statement is executed.

If it is desired to synchronize all of the images in the team that was current when the CHANGE TEAM
statement was executed, a SYNC TEAM statement that specifies the parent team can be executed imme-
diately after the CHANGE TEAM statement. If similar semantics are desired following the END TEAM
statement, a SYNC ALL statement could immediately follow the END TEAM statement.

J3/22-007r1 189

10
11

12
13

14

15
16
17

18
19
20
21
22
23
24

25

26

J3/22-007r1 WD 1539-1 2022-04-22

NOTE 3

A coarray that is established when a CHANGE TEAM statement is executed retains its corank and cobounds
inside the block. If it is desired to perform remote accesses based on corank or cobounds different from
those of the original coarray, an associating coarray can be used. An example of this is in C.7.7.

11.1.6 CRITICAL construct

A CRITICAL construct limits execution of a block to one image at a time.

R1116 critical-construct is critical-stmt

block

end-critical-stmt
R1117 ecritical-stmt is [eritical-construct-name : | CRITICAL [([sync-stat-list])]
R1118 end-critical-stmt is END CRITICAL | critical-construct-name |

C1117 (R1116) If the critical-stmt of a critical-construct specifies a critical-construct-name, the corresponding

end-critical-stmt shall specify the same critical-construct-name. If the critical-stmt of a critical-construct
does not specify a critical-construct-name, the corresponding end-critical-stmt shall not specify a critical-
construct-name.

C1118 (R1116) The block of a critical-construct shall not contain a RETURN statement or an image control

statement.

C1119 A branch (11.2) within a CRITICAL construct shall not have a branch target that is outside the construct.

Execution of the CRITICAL construct is completed when execution of its block is completed, or the executing
image fails (5.3.6). A procedure invoked, directly or indirectly, from a CRITICAL construct shall not execute an
image control statement.

The

processor shall ensure that once an image has commenced executing block, no other image shall commence

executing block until this image has completed execution of the construct. The image shall not execute an image
control statement during the execution of block. The sequence of executed statements is therefore a segment
(11.7.2). If image M completes execution of the construct without failing and image T is the next to execute the
construct, the segment on image M precedes the segment on image T. Otherwise, if image M completes execution
of the construct by failing, and image T is the next to execute the construct, the previous segment on image M
precedes the segment on image T.

The effect of a STAT= or ERRMSG= specifier in a CRITICAL statement is specified in 11.7.11.

It is

permissible to branch to an end-critical-stmt only from within its CRITICAL construct.

NOTE 1

If more than one image executes the block of a CRITICAL construct without failing, its execution by one
image always either precedes or succeeds its execution by another nonfailed image. Typically no other
statement ordering is needed. Consider the following example:

CRITICAL
GLOBAL_COUNTER[1] = GLOBAL_COUNTER[1] + 1
END CRITICAL

The definition of GLOBAL__COUNTER [1] by a particular image will always precede the reference to the
same variable by the next image to execute the block.

NOTE 2

|

The following example permits a large number of jobs to be shared among the images:

190

13/22-007r1

»~

0 N o O«

10

11

12

13
14
15

16
17

18

19

20
21
22
23

24

25

2022-04-22 WD 1539-1 J3/22-007r1

NOTE 2 (cont.)
INTEGER :: NUM_JOBS[*], JOB

IF (THIS_IMAGE() == 1) READ(*,*) NUM_JOBS
SYNC ALL
DO
CRITICAL
JOB = NUM_JOBS[1]
NUM_JOBS[1] = JOB - 1
END CRITICAL
IF (JOB > 0) THEN
! Work on JOB
ELSE
EXIT
END IF
END DO
SYNC ALL

11.1.7 DO construct
11.1.7.1 Purpose and form of the DO construct

The DO construct specifies the repeated execution of a sequence of executable constructs. Such a repeated
sequence is called a loop.

The number of iterations of a loop can be determined at the beginning of execution of the DO construct, or can
be left indefinite (“DO forever” or DO WHILE). The execution order of the iterations can be left indeterminate
(DO CONCURRENT); except in this case, the loop can be terminated immediately (11.1.7.4.5). An iteration of
the loop can be curtailed by executing a CYCLE statement (11.1.7.4.4).

There are three phases in the execution of a DO construct: initiation of the loop, execution of each iteration of
the loop, and termination of the loop.

The scope and attributes of an indez-name in a concurrent-header (DO CONCURRENT) are described in 19.4.

11.1.7.2 Form of the DO construct

R1119 do-construct is do-stmt
block
end-do
R1120 do-stmt is nonlabel-do-stmit

or label-do-stmt

R1121 label-do-stmt is [do-construct-name : | DO label [loop-control]
R1122 nonlabel-do-stmt is [do-construct-name : | DO [loop-control |
R1123 loop-control is [,] do-variable = scalar-int-expr, scalar-int-expr B

[
W [, scalar-int-expr |
[
[

or [,] WHILE (scalar-logical-expr)
or [,] CONCURRENT concurrent-header concurrent-locality
R1124 do-variable is scalar-int-variable-name

C1120 (R1124) The do-variable shall be a variable of type integer.

J3/22-007r1 191

© 0 N O

11
12

13
14
15
16
17
18

19
20

21
22

23

24
25

26
27

28
29

30
31

32

33
34
35
36
37

38
39
40
41

42

J3/22-007r1 WD 1539-1 2022-04-22

R1125
R1126
R1127
R1128
R1129

R1130

R1131

R1132

C1121

C1122

C1123

C1124

C1125

C1126

C1127

C1128

C1129

C1130

C1131

192

concurrent-header is ([integer-type-spec :: | concurrent-control-list | , scalar-mask-expr])
concurrent-control is index-name = concurrent-limit : concurrent-limit | : concurrent-step |
concurrent-limit is scalar-int-expr

concurrent-step is scalar-int-expr

concurrent-locality is [locality-spec |...

locality-spec is LOCAL (variable-name-list)

or LOCAL_INIT (wvariable-name-list)

or REDUCE (reduce-operation : variable-name-list)
or SHARED (variable-name-list)

or DEFAULT (NONE)

reduce-operation is binary-reduce-op
or function-reduction-name

binary-reduce-op is +
or *
or .AND.
or .OR.
or .EQV.
or .NEQV.

The function-reduction-name shall be the name of the standard intrinsic function TAND, TEOR, IOR,
MAX, or MIN.

(R1125) Any procedure referenced in the scalar-mask-expr, including one referenced by a defined opera-
tion, shall be a pure procedure (15.7).

(R1126) The index-name shall be a named scalar variable of type integer.

(R1126) A concurrent-limit or concurrent-step in a concurrent-control shall not contain a reference to
any index-name in the concurrent-control-list in which it appears.

A wvariable-name in a locality-spec shall be the name of a variable in the innermost executable construct
or scoping unit that includes the DO CONCURRENT statement.

A wariable-name in a locality-spec shall not be the same as an indez-name in the concurrent-header of

the same DO CONCURRENT statement.

The name of a variable shall not appear in more than one variable-name-list, or more than once in a
variable-name-list, in a given concurrent-locality.

The DEFAULT (NONE) locality-spec shall not appear more than once in a given concurrent-locality.

A wvariable-name that appears in a LOCAL or LOCAL__INIT locality-spec shall not have the ALLOCAT-
ABLE, INTENT (IN), or OPTIONAL attribute, shall not be of finalizable type, shall not be a nonpointer
polymorphic dummy argument, and shall not be a coarray or an assumed-size array. A variable-name that
is not permitted to appear in a variable definition context shall not appear in a LOCAL or LOCAL_ INIT
locality-spec.

A variable-name that appears in a REDUCE locality-spec shall not have the ASYNCHRONOUS, INTENT
(IN), OPTIONAL, or VOLATILE attribute, shall not be coindexed, and shall not be an assumed-size
array. A variable-name that is not permitted to appear in a variable definition context shall not appear
in a REDUCE locality-spec.

A variable-name that appears in a REDUCE locality-spec shall be of intrinsic type suitable for the intrinsic

13/22-007r1

10

11
12
13

14

15

16

17

18
19

20

21

22

23

24

25

26
27
28
29
30
31
32

33
34

35

2022-04-22 WD 1539-1 J3/22-007r1

C1132

C1133

R1133

R1134

C1134

C1135

C1136

operation or function specified by its reduce-operation.

A variable that is referenced by the scalar-mask-expr of a concurrent-header or by any concurrent-limit
or concurrent-step in that concurrent-header shall not appear in a LOCAL locality-spec in the same DO
CONCURRENT statement.

If the locality-spec DEFAULT (NONE) appears in a DO CONCURRENT statement, a variable that is
a local or construct entity of a scope containing the DO CONCURRENT construct, and that appears in
the block of the construct, shall have its locality explicitly specified by that statement.

end-do is end-do-stmt

or continue-stmt
end-do-stmt is END DO [do-construct-name]

(R1119) If the do-stmt of a do-construct specifies a do-construct-name, the corresponding end-do shall be
an end-do-stmt specifying the same do-construct-name. If the do-stmt of a do-construct does not specify
a do-construct-name, the corresponding end-do shall not specify a do-construct-name.

(R1119) If the do-stmt is a nonlabel-do-stmt, the corresponding end-do shall be an end-do-stmt.

(R1119) If the do-stmt is a label-do-stmt, the corresponding end-do shall be identified with the same label.

1 It is permissible to branch to an end-do only from within its DO construct.

11.1.7.3 Active and inactive DO constructs

1 A DO construct is either active or inactive. Initially inactive, a DO construct becomes active only when its DO
statement is executed.

2 Once active, the DO construct becomes inactive only when it terminates (11.1.7.4.5).

11.1.7.4 Execution of a DO construct

11.1.7.4.1 Loop initiation

1 When the DO statement is executed, the DO construct becomes active. If loop-control is

[,] do-variable = scalar-int-expry , scalar-int-expry |, scalar-int-exprs |

the following steps are performed in sequence.

(1) The initial parameter m;y, the terminal parameter msy, and the incrementation parameter ms are

of type integer with the same kind type parameter as the do-variable. Their values are established
by evaluating scalar-int-expry, scalar-int-expro, and scalar-int-exprs, respectively, including, if ne-
cessary, conversion to the kind type parameter of the do-variable according to the rules for numeric
conversion (Table 10.9). If scalar-int-exprs does not appear, mg has the value 1. The value of ms
shall not be zero.

(2) The DO variable becomes defined with the value of the initial parameter m;.
(3) The iteration count is established and is the value of the expression (mg —mj +mg3)/ms, unless that

value is negative, in which case the iteration count is 0.

NOTE 1

The iteration count is zero whenever:

my > meo and mg > 0, or
my < mo and mg < 0.

2 If loop-control is omitted, no iteration count is calculated. The effect is as if a large positive iteration count,

J3/22-007r1 193

10

11
12
13
14
15
16
17
18

19

20
21

22
23
24

25
26

27

28
29

30
31
32
33
34
35

36
37

38
39

J3/22-007r1 WD 1539-1 2022-04-22

impossible to decrement to zero, were established. If loop-control is [, | WHILE (scalar-logical-expr), the effect
is as if loop-control were omitted and the following statement inserted as the first statement of the block:

IF (.NOT. (scalar-logical-ezpr)) EXIT

For a DO CONCURRENT construct, the values of the index variables for the iterations of the construct are
determined by the rules in 11.1.7.4.2.

At the completion of the execution of the DO statement, the execution cycle begins.

11.1.7.4.2 DO CONCURRENT loop control

The concurrent-limit and concurrent-step expressions in the concurrent-control-list are evaluated. These ex-
pressions may be evaluated in any order. The set of values that a particular index-name variable assumes is
determined as follows.

(1) The lower bound m;, the upper bound ms, and the step ms are of type integer with the same kind
type parameter as the index-name. Their values are established by evaluating the first concurrent-
limit, the second concurrent-limit, and the concurrent-step expressions, respectively, including, if
necessary, conversion to the kind type parameter of the indez-name according to the rules for numeric
conversion (Table 10.9). If concurrent-step does not appear, ms has the value 1. The value mg shall
not be zero.

(2) Let the value of maz be (mg — my + m3)/ms. If maz< 0 for some indez-name, the execution of the
construct is complete. Otherwise, the set of values for the index-name is

my+ (k—1) x m3 where k =1, 2, ..., maz.

The set of combinations of indexz-name values is the Cartesian product of the sets defined by each triplet specific-
ation. An indez-name becomes defined when this set is evaluated.

The scalar-mask-expr, if any, is evaluated for each combination of indexr-name values. If there is no scalar-
mask-expr, it is as if it appeared with the value true. The index-name variables may be primaries in the
scalar-mask-expr.

The set of active combinations of index-name values is the subset of all possible combinations for which the
scalar-mask-expr has the value true.

NOTE 1
The indez-name variables can appear in the mask, for example

DO CONCURRENT (I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)

11.1.7.4.3 The execution cycle

The execution cycle of a DO construct that is not a DO CONCURRENT construct consists of the following steps
performed in sequence repeatedly until termination.

(1) The iteration count, if any, is tested. If it is zero, the loop terminates and the DO construct becomes
inactive. If loop-control is | , | WHILE (scalar-logical-expr), the scalar-logical-expr is evaluated; if
the value of this expression is false, the loop terminates and the DO construct becomes inactive.

(2) The block of the loop is executed.

(3) The iteration count, if any, is decremented by one. The DO variable, if any, is incremented by the
value of the incrementation parameter ms.

Except for the incrementation of the DO variable that occurs in step (3), the DO variable shall neither be redefined
nor become undefined while the DO construct is active.

The block of a DO CONCURRENT construct is executed for every active combination of the indez-name values.
Each execution of the block is an iteration. The executions may occur in any order.

194 J3/22-007r1

10
11

12
13

14
15

16

17
18

19
20

21
22
23
24
25

26
27

28
29

30

31

32

33
34

35

36
37

38
39

2022-04-22 WD 1539-1 J3/22-007r1

11.1.7.4.4 CYCLE statement
Execution of a loop iteration can be curtailed by executing a CYCLE statement that belongs to the construct.
R1135 cycle-stmt is CYCLE [do-construct-name |

C1137 If a do-construct-name appears on a CYCLE statement, the CYCLE statement shall be within that
do-construct; otherwise, it shall be within at least one do-construct.

C1138 A cycle-stmt shall not appear within a CHANGE TEAM, CRITICAL, or DO CONCURRENT construct
if it belongs to an outer construct.

A CYCLE statement belongs to a particular DO construct. If the CYCLE statement contains a DO construct
name, it belongs to that DO construct; otherwise, it belongs to the innermost DO construct in which it appears.

Execution of a CYCLE statement that belongs to a DO construct that is not a DO CONCURRENT construct
causes immediate progression to step (3) of the execution cycle of the DO construct to which it belongs.

Execution of a CYCLE statement that belongs to a DO CONCURRENT construct completes execution of that
iteration of the construct.

In a DO construct, a transfer of control to the end-do has the same effect as execution of a CYCLE statement
belonging to that construct.

11.1.7.4.5 Loop termination

For a DO construct that is not a DO CONCURRENT construct, the loop terminates, and the DO construct
becomes inactive, when any of the following occurs.

o The iteration count is d