
WD 1539-1

J3/23-007
(Draft Fortran 2023)

21st February 2023 9:00

This is an internal working document of INCITS/Fortran and
ISO/IEC JTC1/SC22/WG5.

NOTE: This Working Draft is only available as a PDF file.

This page intentionally left nonblank.

2023-02-17 WD 1539-1 J3/23-007

Contents

Foreword . xii

Introduction . xiii

1 Scope . 1

2 Normative references . 2

3 Terms and definitions . 3

4 Notation, conformance, and compatibility . 24
4.1 Notation, symbols and abbreviated terms . 24

4.1.1 Syntax rules . 24
4.1.2 Constraints . 25
4.1.3 Assumed syntax rules . 25
4.1.4 Syntax conventions and characteristics . 25
4.1.5 Text conventions . 26

4.2 Conformance . 26
4.3 Compatibility . 27

4.3.1 Previous Fortran standards . 27
4.3.2 New intrinsic procedures . 27
4.3.3 Fortran 2018 compatibility . 27
4.3.4 Fortran 2008 compatibility . 28
4.3.5 Fortran 2003 compatibility . 29
4.3.6 Fortran 95 compatibility . 30
4.3.7 Fortran 90 compatibility . 30
4.3.8 FORTRAN 77 compatibility . 31

4.4 Deleted and obsolescent features . 31
4.4.1 General . 31
4.4.2 Nature of deleted features . 31
4.4.3 Nature of obsolescent features . 31

5 Fortran concepts . 32
5.1 High level syntax . 32
5.2 Program unit concepts . 35

5.2.1 Program units and scoping units . 35
5.2.2 Program . 35
5.2.3 Procedure . 35
5.2.4 Module . 36
5.2.5 Submodule . 36

5.3 Execution concepts . 36
5.3.1 Statement classification . 36
5.3.2 Statement order . 36
5.3.3 The END statement . 37
5.3.4 Program execution . 37
5.3.5 Execution sequence . 38

J3/23-007 iii

J3/23-007 WD 1539-1 2023-02-17

5.3.6 Image execution states . 38
5.3.7 Termination of execution . 39

5.4 Data concepts . 39
5.4.1 Type . 39
5.4.2 Data value . 40
5.4.3 Data entity . 40
5.4.4 Definition of objects and pointers . 41
5.4.5 Reference . 42
5.4.6 Array . 42
5.4.7 Coarray . 42
5.4.8 Established coarrays . 43
5.4.9 Pointer . 43
5.4.10 Allocatable variables . 43
5.4.11 Storage . 44

5.5 Fundamental concepts . 44
5.5.1 Names and designators . 44
5.5.2 Statement keyword . 44
5.5.3 Other keywords . 44
5.5.4 Association . 44
5.5.5 Intrinsic . 44
5.5.6 Operator . 45
5.5.7 Companion processors . 45

6 Lexical tokens and source form . 46
6.1 Processor character set . 46

6.1.1 Characters . 46
6.1.2 Letters . 46
6.1.3 Digits . 46
6.1.4 Underscore . 46
6.1.5 Special characters . 46
6.1.6 Other characters . 47

6.2 Low-level syntax . 47
6.2.1 Tokens . 47
6.2.2 Names . 47
6.2.3 Constants . 48
6.2.4 Operators . 48
6.2.5 Statement labels . 49
6.2.6 Delimiters . 49

6.3 Source form . 50
6.3.1 Program units, statements, and lines . 50
6.3.2 Free source form . 50
6.3.3 Fixed source form . 51

6.4 Including source text . 52

7 Types . 54
7.1 Characteristics of types . 54

7.1.1 The concept of type . 54
7.1.2 Type classification . 54
7.1.3 Set of values . 54
7.1.4 Constants . 54
7.1.5 Operations . 54

7.2 Type parameters . 55
7.3 Types, type specifiers, and values . 56

7.3.1 Relationship of types and values to objects . 56
7.3.2 Type specifiers and type compatibility . 56
7.3.3 Type compatibility . 58

iv J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7.4 Intrinsic types . 59
7.4.1 Classification and specification . 59
7.4.2 Intrinsic operations on intrinsic types . 59
7.4.3 Numeric intrinsic types . 59
7.4.4 Character type . 63
7.4.5 Logical type . 66

7.5 Derived types . 66
7.5.1 Derived type concepts . 66
7.5.2 Derived-type definition . 67
7.5.3 Derived-type parameters . 70
7.5.4 Components . 72
7.5.5 Type-bound procedures . 78
7.5.6 Final subroutines . 81
7.5.7 Type extension . 83
7.5.8 Derived-type values . 85
7.5.9 Derived-type specifier . 85
7.5.10 Construction of derived-type values . 85
7.5.11 Derived-type operations and assignment . 88

7.6 Other nonintrinsic types . 88
7.6.1 Interoperable enumerations and enum types . 88
7.6.2 Enumeration types . 90

7.7 Binary, octal, and hexadecimal literal constants . 92
7.8 Construction of array values . 93

8 Attribute declarations and specifications . 96
8.1 Attributes of procedures and data objects . 96
8.2 Type declaration statement . 96
8.3 Automatic data objects . 98
8.4 Initialization . 98
8.5 Attributes . 98

8.5.1 Attribute specification . 98
8.5.2 Accessibility attribute . 99
8.5.3 ALLOCATABLE attribute . 99
8.5.4 ASYNCHRONOUS attribute . 99
8.5.5 BIND attribute for data entities . 100
8.5.6 CODIMENSION attribute . 100
8.5.7 CONTIGUOUS attribute . 102
8.5.8 DIMENSION attribute . 103
8.5.9 EXTERNAL attribute . 107
8.5.10 INTENT attribute . 107
8.5.11 INTRINSIC attribute . 109
8.5.12 OPTIONAL attribute . 109
8.5.13 PARAMETER attribute . 109
8.5.14 POINTER attribute . 110
8.5.15 PROTECTED attribute . 110
8.5.16 SAVE attribute . 111
8.5.17 RANK clause . 111
8.5.18 TARGET attribute . 112
8.5.19 VALUE attribute . 112
8.5.20 VOLATILE attribute . 112

8.6 Attribute specification statements . 113
8.6.1 Accessibility statement . 113
8.6.2 ALLOCATABLE statement . 114
8.6.3 ASYNCHRONOUS statement . 114
8.6.4 BIND statement . 114
8.6.5 CODIMENSION statement . 115

J3/23-007 v

J3/23-007 WD 1539-1 2023-02-17

8.6.6 CONTIGUOUS statement . 115
8.6.7 DATA statement . 115
8.6.8 DIMENSION statement . 117
8.6.9 INTENT statement . 118
8.6.10 OPTIONAL statement . 118
8.6.11 PARAMETER statement . 118
8.6.12 POINTER statement . 118
8.6.13 PROTECTED statement . 119
8.6.14 SAVE statement . 119
8.6.15 TARGET statement . 119
8.6.16 VALUE statement . 119
8.6.17 VOLATILE statement . 120

8.7 IMPLICIT statement . 120
8.8 IMPORT statement . 122
8.9 NAMELIST statement . 124
8.10 Storage association of data objects . 125

8.10.1 EQUIVALENCE statement . 125
8.10.2 COMMON statement . 127
8.10.3 Restrictions on common and equivalence . 128

9 Use of data objects . 129
9.1 Designator . 129
9.2 Variable . 129
9.3 Constants . 130
9.4 Scalars . 130

9.4.1 Substrings . 130
9.4.2 Structure components . 130
9.4.3 Coindexed named objects . 132
9.4.4 Complex parts . 132
9.4.5 Type parameter inquiry . 132

9.5 Arrays . 133
9.5.1 Order of reference . 133
9.5.2 Whole arrays . 133
9.5.3 Array elements and array sections . 133
9.5.4 Simply contiguous array designators . 137

9.6 Image selectors . 137
9.7 Dynamic association . 139

9.7.1 ALLOCATE statement . 139
9.7.2 NULLIFY statement . 143
9.7.3 DEALLOCATE statement . 143
9.7.4 STAT= specifier . 145
9.7.5 ERRMSG= specifier . 146

10 Expressions and assignment . 147
10.1 Expressions . 147

10.1.1 Expression semantics . 147
10.1.2 Form of an expression . 147
10.1.3 Precedence of operators . 151
10.1.4 Evaluation of operations . 153
10.1.5 Intrinsic operations . 154
10.1.6 Defined operations . 160
10.1.7 Evaluation of operands . 162
10.1.8 Integrity of parentheses . 162
10.1.9 Type, type parameters, and shape of an expression . 162
10.1.10 Conformability rules for elemental operations . 164
10.1.11 Specification expression . 164

vi J3/23-007

2023-02-17 WD 1539-1 J3/23-007

10.1.12 Constant expression . 166
10.2 Assignment . 168

10.2.1 Assignment statement . 168
10.2.2 Pointer assignment . 172
10.2.3 Masked array assignment – WHERE . 176
10.2.4 FORALL . 179

11 Execution control . 182
11.1 Executable constructs containing blocks . 182

11.1.1 Blocks . 182
11.1.2 Rules governing blocks . 182
11.1.3 ASSOCIATE construct . 183
11.1.4 BLOCK construct . 184
11.1.5 CHANGE TEAM construct . 186
11.1.6 CRITICAL construct . 188
11.1.7 DO construct . 189
11.1.8 IF construct and statement . 197
11.1.9 SELECT CASE construct . 199
11.1.10 SELECT RANK construct . 201
11.1.11 SELECT TYPE construct . 203
11.1.12 EXIT statement . 206

11.2 Branching . 206
11.2.1 Branch concepts . 206
11.2.2 GO TO statement . 207
11.2.3 Computed GO TO statement . 207

11.3 CONTINUE statement . 207
11.4 STOP and ERROR STOP statements . 207
11.5 FAIL IMAGE statement . 208
11.6 NOTIFY WAIT statement . 208
11.7 Image execution control . 209

11.7.1 Image control statements . 209
11.7.2 Segments . 210
11.7.3 SYNC ALL statement . 211
11.7.4 SYNC IMAGES statement . 212
11.7.5 SYNC MEMORY statement . 213
11.7.6 SYNC TEAM statement . 214
11.7.7 EVENT POST statement . 215
11.7.8 EVENT WAIT statement . 215
11.7.9 FORM TEAM statement . 216
11.7.10 LOCK and UNLOCK statements . 217
11.7.11 STAT= and ERRMSG= specifiers in image control statements 218

12 Input/output statements . 221
12.1 Input/output concepts . 221
12.2 Records . 221

12.2.1 Definition of a record . 221
12.2.2 Formatted record . 221
12.2.3 Unformatted record . 221
12.2.4 Endfile record . 222

12.3 External files . 222
12.3.1 External file concepts . 222
12.3.2 File existence . 222
12.3.3 File access . 223
12.3.4 File position . 225
12.3.5 File storage units . 226

12.4 Internal files . 227

J3/23-007 vii

J3/23-007 WD 1539-1 2023-02-17

12.5 File connection . 227
12.5.1 Referring to a file . 227
12.5.2 Connection modes . 228
12.5.3 Unit existence . 229
12.5.4 Connection of a file to a unit . 229
12.5.5 Preconnection . 230
12.5.6 OPEN statement . 230
12.5.7 CLOSE statement . 234

12.6 Data transfer statements . 236
12.6.1 Form of input and output statements . 236
12.6.2 Control information list . 236
12.6.3 Data transfer input/output list . 241
12.6.4 Execution of a data transfer input/output statement . 243
12.6.5 Termination of data transfer statements . 254

12.7 Waiting on pending data transfer . 254
12.7.1 Wait operation . 254
12.7.2 WAIT statement . 254

12.8 File positioning statements . 255
12.8.1 Syntax . 255
12.8.2 BACKSPACE statement . 256
12.8.3 ENDFILE statement . 256
12.8.4 REWIND statement . 256

12.9 FLUSH statement . 257
12.10 File inquiry statement . 258

12.10.1 Forms of the INQUIRE statement . 258
12.10.2 Inquiry specifiers . 258
12.10.3 Inquire by output list . 264

12.11 Error, end-of-record, and end-of-file conditions . 264
12.11.1 Occurrence of input/output conditions . 264
12.11.2 Error conditions and the ERR= specifier . 265
12.11.3 End-of-file condition and the END= specifier . 265
12.11.4 End-of-record condition and the EOR= specifier . 266
12.11.5 IOSTAT= specifier . 266
12.11.6 IOMSG= specifier . 267

12.12 Restrictions on input/output statements . 267

13 Input/output editing . 268
13.1 Format specifications . 268
13.2 Explicit format specification methods . 268

13.2.1 FORMAT statement . 268
13.2.2 Character format specification . 268

13.3 Form of a format item list . 269
13.3.1 Syntax . 269
13.3.2 Edit descriptors . 269
13.3.3 Fields . 271

13.4 Interaction between input/output list and format . 271
13.5 Positioning by format control . 273
13.6 Decimal symbol . 273
13.7 Data edit descriptors . 273

13.7.1 Purpose of data edit descriptors . 273
13.7.2 Numeric editing . 274
13.7.3 Logical editing . 281
13.7.4 Character editing . 281
13.7.5 Generalized editing . 282
13.7.6 User-defined derived-type editing . 283

13.8 Control edit descriptors . 283

viii J3/23-007

2023-02-17 WD 1539-1 J3/23-007

13.8.1 Position edit descriptors . 283
13.8.2 Slash editing . 284
13.8.3 Colon editing . 285
13.8.4 SS, SP, and S editing . 285
13.8.5 LZS, LZP and LZ editing . 285
13.8.6 P editing . 285
13.8.7 BN and BZ editing . 286
13.8.8 RU, RD, RZ, RN, RC, and RP editing . 286
13.8.9 DC and DP editing . 286

13.9 Character string edit descriptors . 286
13.10 List-directed formatting . 287

13.10.1 Purpose of list-directed formatting . 287
13.10.2 Values and value separators . 287
13.10.3 List-directed input . 287
13.10.4 List-directed output . 289

13.11 Namelist formatting . 291
13.11.1 Purpose of namelist formatting . 291
13.11.2 Name-value subsequences . 291
13.11.3 Namelist input . 291
13.11.4 Namelist output . 294

14 Program units . 296
14.1 Main program . 296
14.2 Modules . 296

14.2.1 Module syntax and semantics . 296
14.2.2 The USE statement and use association . 297
14.2.3 Submodules . 300

14.3 Block data program units . 300

15 Procedures . 302
15.1 Concepts . 302
15.2 Procedure classifications . 302

15.2.1 Procedure classification by reference . 302
15.2.2 Procedure classification by means of definition . 302

15.3 Characteristics . 303
15.3.1 Characteristics of procedures . 303
15.3.2 Characteristics of dummy arguments . 303
15.3.3 Characteristics of function results . 303

15.4 Procedure interface . 304
15.4.1 Interface and abstract interface . 304
15.4.2 Implicit and explicit interfaces . 304
15.4.3 Specification of the procedure interface . 305

15.5 Procedure reference . 314
15.5.1 Syntax of a procedure reference . 314
15.5.2 Actual arguments, dummy arguments, and argument association 316
15.5.3 Function reference . 328
15.5.4 Subroutine reference . 328
15.5.5 Resolving named procedure references . 329
15.5.6 Resolving type-bound procedure references . 331

15.6 Procedure definition . 331
15.6.1 Intrinsic procedure definition . 331
15.6.2 Procedures defined by subprograms . 331
15.6.3 Definition and invocation of procedures by means other than Fortran 337
15.6.4 Statement function . 337

15.7 Pure procedures . 338
15.8 Simple procedures . 340

J3/23-007 ix

J3/23-007 WD 1539-1 2023-02-17

15.9 Elemental procedures . 341
15.9.1 Elemental procedure declaration and interface . 341
15.9.2 Elemental function actual arguments and results . 341
15.9.3 Elemental subroutine actual arguments . 342

16 Intrinsic procedures and modules . 343
16.1 Classes of intrinsic procedures . 343
16.2 Arguments to intrinsic procedures . 343

16.2.1 General rules . 343
16.2.2 The shape of array arguments . 344
16.2.3 Mask arguments . 344
16.2.4 DIM arguments and reduction functions . 344

16.3 Bit model . 345
16.3.1 General . 345
16.3.2 Bit sequence comparisons . 345
16.3.3 Bit sequences as arguments to INT and REAL . 345

16.4 Numeric models . 346
16.5 Atomic subroutines . 346
16.6 Collective subroutines . 347
16.7 Standard generic intrinsic procedures . 348
16.8 Specific names for standard intrinsic functions . 353
16.9 Specifications of the standard intrinsic procedures . 355

16.9.1 General . 355
16.10 Standard intrinsic modules . 450

16.10.1 General . 450
16.10.2 The ISO_FORTRAN_ENV intrinsic module . 451

17 Exceptions and IEEE arithmetic . 458
17.1 Overview of IEEE arithmetic support . 458
17.2 Derived types, constants, and operators defined in the modules 459
17.3 The exceptions . 459
17.4 The rounding modes . 462
17.5 Underflow mode . 462
17.6 Halting . 463
17.7 The floating-point modes and status . 463
17.8 Exceptional values . 463
17.9 IEEE arithmetic . 463
17.10 Summary of the procedures . 464
17.11 Specifications of the procedures . 466

17.11.1 General . 466
17.12 Examples . 492

18 Interoperability with C . 495
18.1 General . 495
18.2 The ISO_C_BINDING intrinsic module . 495

18.2.1 Summary of contents . 495
18.2.2 Named constants and derived types in the module . 495
18.2.3 Procedures in the module . 496

18.3 Interoperability between Fortran and C entities . 504
18.3.1 Interoperability of intrinsic types . 504
18.3.2 Interoperability with C pointer types . 505
18.3.3 Interoperability of enum types . 505
18.3.4 Interoperability of derived types and C structure types 505
18.3.5 Interoperability of scalar variables . 506
18.3.6 Interoperability of array variables . 507
18.3.7 Interoperability of procedures and procedure interfaces 507

x J3/23-007

2023-02-17 WD 1539-1 J3/23-007

18.4 C descriptors . 510
18.5 The source file ISO_Fortran_binding.h . 510

18.5.1 Summary of contents . 510
18.5.2 The CFI_dim_t structure type . 510
18.5.3 The CFI_cdesc_t structure type . 511
18.5.4 Macros and typedefs in ISO_Fortran_binding.h . 512
18.5.5 Functions declared in ISO_Fortran_binding.h . 514

18.6 Restrictions on C descriptors . 522
18.7 Restrictions on formal parameters . 522
18.8 Restrictions on lifetimes . 523
18.9 Interoperation with C global variables . 523

18.9.1 General . 523
18.9.2 Binding labels for common blocks and variables . 524

18.10 Interoperation with C functions . 524
18.10.1 Definition and reference of interoperable procedures . 524
18.10.2 Binding labels for procedures . 525
18.10.3 Exceptions and IEEE arithmetic procedures . 526
18.10.4 Asynchronous communication . 526

19 Scope, association, and definition . 527
19.1 Scopes, identifiers, and entities . 527
19.2 Global identifiers . 527
19.3 Local identifiers . 528

19.3.1 Classes of local identifiers . 528
19.3.2 Local identifiers that are the same as common block names 529
19.3.3 Function results . 529
19.3.4 Components, type parameters, and bindings . 529
19.3.5 Argument keywords . 529

19.4 Statement and construct entities . 530
19.5 Association . 531

19.5.1 Name association . 531
19.5.2 Pointer association . 535
19.5.3 Storage association . 538
19.5.4 Inheritance association . 540
19.5.5 Establishing associations . 540

19.6 Definition and undefinition of variables . 541
19.6.1 Definition of objects and subobjects . 541
19.6.2 Variables that are always defined . 541
19.6.3 Variables that are initially defined . 541
19.6.4 Variables that are initially undefined . 542
19.6.5 Events that cause variables to become defined . 542
19.6.6 Events that cause variables to become undefined . 544
19.6.7 Variable definition context . 546
19.6.8 Pointer association context . 547

Annex A (informative) Processor dependencies . 548

Annex B (informative) Deleted and obsolescent features . 555

Annex C (informative) Extended notes . 559

Index . 636

J3/23-007 xi

J3/23-007 WD 1539-1 2023-02-17

Foreword
1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-

sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with ISO and IEC, also take part in the work.

2 The procedures used to develop this document and those intended for its further maintenance are described in
the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC
Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).

3 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on the ISO
list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations received
(see https://patents.iec.ch).

4 Any trade name used in this document is information given for the convenience of users and does not constitute
an endorsement.

5 For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization
(WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

6 This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcom-
mittee SC 22, Programming languages, their environments and system software interfaces.

7 This fifth edition cancels and replaces the fourth edition (ISO 1539-1:2018), which has been technically revised.

8 The main changes are as follows:
• an array can have a coarray component;
• additional forms of declaration;
• additional edit descriptors;
• additional intrinsic procedures;
• conformance with ISO/IEC 60559:2020;
• other changes listed in the Introduction.

9 A list of all parts in the ISO 1539 series can be found on the ISO website.

10 Any feedback or questions on this document should be directed to the user’s national standards body. A complete
listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-committees.

xii J3/23-007

www.iso.org/directives
www.iec.ch/members_experts/refdocs
www.iso.org/patents
https://patents.iec.ch
www.iso.org/iso/foreword.html
www.iso.org/members.html
www.iec.ch/national-committees

2023-02-17 WD 1539-1 J3/23-007

Introduction
1 This document comprises the specification of the base Fortran language, informally known as Fortran 2023.

With the limitations noted in 4.3.3, the syntax and semantics of Fortran 2018 are contained entirely within
Fortran 2023. Therefore, any standard-conforming Fortran 2018 program not affected by such limitations is a
standard-conforming Fortran 2023 program. New features of Fortran 2023 can be compatibly incorporated into
such Fortran 2018 programs, with any exceptions indicated in the text of this document.

2 Fortran 2023 contains several extensions to Fortran 2018; these are listed below.

• Source form:
The maximum length of a line in free form source has been increased. The maximum length of a statement
has been increased. The limit on the number of continuation lines has been removed.

• Data declaration:
A data object with a coarray component can be an array or allocatable. BIND(C) ENUM are now referred
to as interoperable enumerations, and noninteroperable enumeration types are available. An interoperable
enumeration can be given a type name. TYPEOF and CLASSOF type specifiers can be used to declare one
or more entities to have the same type and type parameters as another entity. A PUBLIC namelist group
can have a PRIVATE namelist group object. The DIMENSION attribute can be declared with a syntax
that does not depend on the rank (8.5.8, 8.5.17).

• Data usage and computation:
Binary, octal, and hexadecimal literal constants can be used in additional contexts. A deferred-length
allocatable errmsg-variable is allocated by the processor to the length of the explanatory message. An
ALLOCATE statement can specify the bounds of an array allocation with array expressions. A pointer
assignment statement can specify lower bounds or rank remapping with array expressions. Arrays can be
used to specify multiple subscripts or subscript triplets (9.5.3.2). Conditional expressions provide selective
evaluation of subexpressions.

• Input/output:
The AT edit descriptor provides output of character values with trailing blanks trimmed. The LEADING_-
ZERO= specifier in the OPEN and WRITE statements, and the LZP, LZS and LZ control edit descriptors,
provide control of optional leading zeros during formatted output. A deferred-length allocatable iomsg-
variable is allocated by the processor to the length of the explanatory message. A deferred-length allocatable
io-unit in a WRITE statement is allocated by the processor to the length of the record to be written.

• Execution control:
The REDUCE locality specifier for the DO CONCURRENT construct specifies reduction variables for the
loop. The NOTIFY WAIT statement, NOTIFY= specifier on an image selector, and the NOTIFY_TYPE
from the intrinsic module ISO_FORTRAN_ENV provide one-sided data-oriented synchronization between
images.

• Intrinsic procedures:
The intrinsic functions ACOSD, ASIND, ATAND, ATAN2D, COSD, SIND, and TAND are trigonometric
functions in which angles are specified in degrees. The intrinsic functions ACOSPI, ASINPI, ATANPI,
ATAN2PI, COSPI, SINPI, and TANPI are trigonometric functions in which angles are specified in half-
revolutions (that is, as multiples of π). The intrinsic function SELECTED_LOGICAL_KIND returns kind
type parameter values for type logical. The intrinsic subroutine SPLIT parses a string into tokens, one
at time. The intrinsic subroutine SYSTEM_CLOCK supports more than one system clock for an image.
The intrinsic subroutine TOKENIZE parses a string into tokens. When a deferred-length allocatable actual
argument of an intrinsic procedure is to be assigned character data, it is allocated by the processor to the
length of the data. Execution of a collective subroutine can be successful on an image even when an error
condition occurs for the corresponding execution on another image.

• Intrinsic modules:
Additional named constants LOGICAL8, LOGICAL16, LOGICAL32, LOGICAL64, and REAL16 have
been added to the intrinsic module ISO_FORTRAN_ENV. The subroutines IEEE_GET_ROUNDING_-
MODE, IEEE_GET_UNDERFLOW_MODE, IEEE_SET_ROUNDING_MODE, and IEEE_SET_UN-
DERFLOW_MODE, from the intrinsic module IEEE_ARITHMETIC, are now considered to be pure
and simple. The subroutines IEEE_GET_MODES, IEEE_GET_STATUS, IEEE_SET_MODES, and

J3/23-007 xiii

J3/23-007 WD 1539-1 2023-02-17

IEEE_SET_STATUS, from the intrinsic module IEEE_EXCEPTIONS, are now considered to be pure
and simple. The procedures C_F_STRPOINTER and F_C_STRING have been added to the intrinsic
module ISO_C_BINDING to assist in the use of null-terminated strings. The subroutine C_F_POINTER
in the intrinsic module ISO_C_BINDING has an extra optional dummy argument, LOWER, that specifies
the lower bounds for FPTR.

• Changes to the intrinsic module IEEE_ARITHMETIC for conformance with ISO/IEC 60559:2020:
The new functions IEEE_MAX, IEEE_MAX_MAG, IEEE_MIN, and IEEE_MIN_MAG perform the op-
erations maximum, maximumMagnitude, minimum, and miminumMagnitude in ISO/IEC 60559:2020. The
functions IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_NUM, and IEEE_MIN_NUM_-
MAG now conform to the operations maximumNumber, maximumMagnitudeNumber, minimumNumber
and minimumMagnitudeNumber in ISO/IEC 60559:2020; the changes affect the treatment of zeros and
NaNs.

• Program units and procedures:
A procedure can be specified to be a simple procedure; a simple procedure references or defines nonlocal
variables only via its dummy arguments. Conditional arguments provide actual argument selection in a
procedure reference.

3 This document is organized in 19 clauses, dealing with 8 conceptual areas. These 8 areas, and the clauses in
which they are treated, are:

High/low level concepts Clauses 4, 5, 6
Data concepts Clauses 7, 8, 9
Computations Clauses 10, 16, 17
Execution control Clause 11
Input/output Clauses 12, 13
Program units Clauses 14, 15
Interoperability with C Clause 18
Scoping and association rules Clause 19

4 It also contains the following nonnormative material:

Processor dependencies Annex A
Deleted and obsolescent features Annex B
Extended notes Annex C
Index Index

xiv J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Information technology — Programming languages —1

Fortran —2

Part 1:3

Base language4

1 Scope5

1 This document specifies the form and establishes the interpretation of programs expressed in the base Fortran6
language. The purpose of this document is to promote portability, reliability, maintainability, and efficient7
execution of Fortran programs for use on a variety of computing systems.8

2 This document specifies9
• the forms that a program written in the Fortran language can take,10

• the rules for interpreting the meaning of a program and its data,11

• the form of the input data to be processed by such a program, and12

• the form of the output data resulting from the use of such a program.13

3 Except where stated otherwise, requirements and prohibitions specified by this document apply to programs14
rather than processors.15

4 This document does not specify16

• the mechanism by which programs are transformed for use on computing systems,17

• the operations required for setup and control of the use of programs on computing systems,18

• the method of transcription of programs or their input or output data to or from a storage medium,19

• the program and processor behavior when this document fails to establish an interpretation except for the20
processor detection and reporting requirements in items (2) to (10) of 4.2,21

• the maximum number of images, or the size or complexity of a program and its data that will exceed the22
capacity of any particular computing system or the capability of a particular processor,23

• the mechanism for determining the number of images of a program,24

• the physical properties of an image or the relationship between images and the computational elements of25
a computing system,26

• the physical properties of the representation of quantities and the method of rounding, approximating, or27
computing numeric values on a particular processor, except by reference to ISO/IEC 60559:2020 under28
conditions specified in Clause 17,29

• the physical properties of input/output records, files, and units, or30

• the physical properties and implementation of storage.31

J3/23-007 1

J3/23-007 WD 1539-1 2023-02-17

2 Normative references1

The following documents are referred to in the text in such a way that some or all of their content constitutes2
requirements of this document. For dated references, only the edition cited applies. For undated references, the3
latest edition of the referenced document (including any amendments) applies.4

ISO/IEC 646:1991 (International Reference Version), Information technology—ISO 7-bit coded character set for5
information interchange6

ISO/IEC 9899:2018, Programming languages—C7

ISO/IEC 10646, Information technology—Universal Multiple-Octet Coded Character Set (UCS)8

ISO/IEC/IEEE 60559:2020, Information technology — Microprocessor Systems — Floating-Point arithmetic9

2 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3 Terms and definitions1

For the purposes of this document, the following terms and definitions apply.2

ISO and IEC maintain terminology databases for use in standardization at the following addresses:3

— ISO Online browsing platform: available at https://www.iso.org/obp4
— IEC Electropedia: available at http://www.electropedia.org/5

3.16
actual argument7
entity that determines argument association (15.5.2.3, 15.5.2.4)8

Note 1 to entry: An actual-arg, consequent-arg, or variable in a defined assignment statement, are all examples
of actual arguments.

3.29
allocatable10
having the ALLOCATABLE attribute (8.5.3)11

3.312
array13
set of scalar data, all of the same type and type parameters, whose individual elements are arranged in a14
rectangular pattern (8.5.8, 9.5)15

3.3.116
array element17
scalar individual element of an array18

3.3.219
array pointer20
array with the POINTER attribute (8.5.14)21

3.3.322
array section23
array subobject designated by array-section, and which is itself an array (9.5.3.4)24

3.3.425
assumed-shape array26
nonallocatable nonpointer dummy argument array that takes its shape from its effective argument (8.5.8.3)27

3.3.528
assumed-size array29
dummy argument array whose size is assumed from that of its effective argument (8.5.8.5)30

3.3.631
deferred-shape array32
allocatable array or array pointer (8.5.8.4)33

3.3.734
explicit-shape array35
array declared with an explicit-shape-spec-list or explicit-shape-bounds-spec, which specifies explicit values for the36
bounds in each dimension of the array (8.5.8.2)37

J3/23-007 3

https://www.iso.org/obp
http://www.electropedia.org/

J3/23-007 WD 1539-1 2023-02-17

3.41
ASCII character2
character whose representation method corresponds to ISO/IEC 646:1991 (International Reference Version)3

3.54
associate name5
name of construct entity associated with a selector of an ASSOCIATE, CHANGE TEAM, SELECT RANK, or6
SELECT TYPE construct (11.1.3, 11.1.5, 11.1.10, 11.1.11)7

3.68
associating entity9
⟨in a dynamically-established association⟩ the entity that did not exist prior to the establishment of the association10
(19.5.5)11

3.712
association13
inheritance association, name association, pointer association, or storage association.14

3.7.115
argument association16
association between an effective argument and a dummy argument (15.5.2)17

3.7.218
construct association19
association between a selector and an associate name in an ASSOCIATE, CHANGE TEAM, SELECT RANK,20
or SELECT TYPE construct(11.1.3, 11.1.5, 11.1.10, 11.1.11, 19.5.1.6)21

3.7.322
host association23
name association, other than argument association, between entities in a submodule or contained scoping unit24
and entities in its host (19.5.1.4)25

3.7.426
inheritance association27
association between the inherited components of an extended type and the components of its parent component28
(19.5.4)29

3.7.530
linkage association31
association between a variable or common block with the BIND attribute and a C global variable (18.9, 19.5.1.5)32

3.7.633
name association34
argument association, construct association, host association, linkage association, or use association (19.5.1)35

3.7.736
pointer association37
association between a pointer and a procedure or a variable with the TARGET attribute (19.5.2)38

3.7.839
storage association40
association between storage sequences (19.5.3)41

3.7.942
use association43
association between entities in a module and entities in a scoping unit or construct that references that module,44
as specified by a USE statement (14.2.2)45

4 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.81
assumed-rank dummy data object2
dummy data object that assumes the rank, shape, and size of its effective argument (8.5.8.7)3

3.94
assumed-type5
declared with a TYPE(*) type specifier (7.3.2)6

3.107
attribute8
property of an entity that determines its uses (8.1)9

3.1110
automatic data object11
nondummy data object with a type parameter or array bound that depends on the value of a specification-expr12
that is not a constant expression (8.3)13

3.1214
base object15
⟨data-ref ⟩ object designated by the leftmost part-name (9.4.2)16

3.1317
binding18
type-bound procedure or final subroutine (7.5.5)19

3.1420
binding name21
name given to a specific or generic type-bound procedure in the type definition (7.5.5)22

3.1523
binding label24
default character value specifying the name by which a global entity with the BIND attribute is known to the25
companion processor (18.10.2, 18.9.2)26

3.1627
block28
sequence of executable constructs formed by the syntactic class block and which is treated as a unit by the29
executable constructs described in 11.130

3.1731
bound32
array bound33
limit of a dimension of an array (8.5.8)34

3.1835
branch target statement36
action-stmt, associate-stmt, end-associate-stmt, if-then-stmt, end-if-stmt, select-case-stmt, end-select-stmt, select-37
rank-stmt, end-select-rank-stmt, select-type-stmt, end-select-type-stmt, do-stmt, end-do-stmt, block-stmt, end-38
block-stmt, critical-stmt, end-critical-stmt, forall-construct-stmt, where-construct-stmt, end-function-stmt, end-mp-39
subprogram-stmt, end-program-stmt, or end-subroutine-stmt, whose statement label appears as a label in a GO TO40
statement, computed GO TO statement, alt-return-spec, END= specifier, EOR= specifier, or ERR= specifier (11.2.1)41

J3/23-007 5

J3/23-007 WD 1539-1 2023-02-17

3.191
C address2
⟨variable or procedure⟩ value of type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING3
identifying the location4

Note 1 to entry: This is the concept that ISO/IEC 9899:2018 calls the address.

3.205
C descriptor6
C structure of type CFI_cdesc_t defined in the source file ISO_Fortran_binding.h (18.4, 18.5)7

3.218
character context9
within a character literal constant (7.4.4) or within a character string edit descriptor (13.3.2)10

3.2211
characteristics12
⟨dummy argument⟩ being a dummy data object, dummy procedure, or an asterisk (alternate return indicator)13

3.2314
characteristics15
⟨dummy data object⟩ properties listed in 15.3.2.216

3.2417
characteristics18
⟨dummy procedure or dummy procedure pointer⟩ properties listed in 15.3.2.319

3.2520
characteristics21
⟨function result⟩ properties listed in 15.3.322

3.2623
characteristics24
⟨procedure⟩ properties listed in 15.3.125

3.2726
coarray27
component, or variable, that has nonzero corank (5.4.7)28

3.27.129
established coarray30
coarray that is accessible using an image-selector (5.4.8)31

3.2832
cobound33
bound (limit) of a codimension (8.5.6)34

3.2935
codimension36
dimension of the pattern formed by a set of corresponding coarrays (8.5.6)37

3.3038
coindexed object39
data object whose designator includes an image-selector (R926, 9.6)40

3.3141
collating sequence42
one-to-one mapping from a character set into the nonnegative integers (7.4.4.4)43

6 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.321
common block2
block of physical storage specified by a COMMON statement (8.10.2)3

3.32.14
blank common5
unnamed common block6

3.337
companion processor8
processor-dependent mechanism by which global data and procedures may be referenced or defined (5.5.7)9

3.3410
component11
part of a derived type, or of an object of derived type, defined by a component-def-stmt (7.5.4)12

3.34.113
direct component14
one of the components, or one of the direct components of a nonpointer nonallocatable component (7.5.1)15

3.34.216
parent component17
component of an extended type whose type is that of the parent type and whose components are inheritance18
associated with the inherited components of the parent type (7.5.7.2)19

3.34.320
potential subobject component21
nonpointer component, or potential subobject component of a nonpointer component (7.5.1)22

3.34.423
subcomponent24
⟨structure⟩ direct component that is a subobject of the structure (9.4.2)25

3.34.526
ultimate component27
component that is of intrinsic type, a pointer, or allocatable; or an ultimate component of a nonpointer nonal-28
locatable component of derived type29

3.3530
component order31
ordering of the nonparent components of a derived type that is used for intrinsic formatted input/output and32
structure constructors (where component keywords are not used) (7.5.4.7)33

3.3634
conformable35
⟨of two data entities⟩ having the same shape, or one being an array and the other being scalar36

3.3737
connected38
relationship between a unit and a file: each is connected if and only if the unit refers to the file (12.5.4)39

3.3840
constant41
data object that has a value and which cannot be defined, redefined, or become undefined during execution of a42
program (6.2.3, 9.3)43

J3/23-007 7

J3/23-007 WD 1539-1 2023-02-17

3.38.11
literal constant2
constant that does not have a name (R605, 7.4)3

3.38.24
named constant5
named data object with the PARAMETER attribute (8.5.13)6

3.397
construct entity8
entity whose identifier has the scope of a construct (19.1, 19.4)9

3.4010
constant expression11
expression satisfying the requirements specified in 10.1.12, thus ensuring that its value is constant12

3.4113
contiguous14
⟨array⟩ having array elements in order that are not separated by other data objects, as specified in 8.5.715

3.4216
contiguous17
⟨multi-part data object⟩ that the parts in order are not separated by other data objects18

3.4319
corank20
number of codimensions of a coarray (zero for objects that are not coarrays) (8.5.6)21

3.4422
cosubscript23
(R927) scalar integer expression in an image-selector (R926)24

3.4525
data entity26
data object, result of the evaluation of an expression, or the result of the execution of a function reference27

3.4628
data object29
object30
constant (7.1.4), variable (9), or subobject of a constant (5.4.3.2.4)31

3.4732
decimal symbol33
character that separates the whole and fractional parts in the decimal representation of a real number in a file34
(13.6)35

3.48
declaration
specification of attributes for various program entities

Note 1 to entry: Often this involves specifying the type of a named data object or specifying the shape of a
named array object.

3.4936
default initialization37
mechanism for automatically initializing pointer components to have a defined pointer association status, and38
nonpointer components to have a particular value (7.5.4.6)39

8 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.501
default-initialized2
⟨subcomponent⟩ subject to a default initialization specified in the type definition for that component (7.5.4.6)3

3.514
definable5
capable of definition and permitted to become defined6

3.527
defined8
⟨data object⟩ has a valid value9

3.5310
defined11
⟨pointer⟩ has a pointer association status of associated or disassociated (19.5.2.2)12

3.5413
defined assignment14
assignment defined by a procedure (10.2.1.4, 15.4.3.4.3)15

3.5516
defined input/output17
input/output defined by a procedure and accessed via a defined-io-generic-spec (R1509, 12.6.4.8)18

3.5619
defined operation20
operation defined by a procedure (10.1.6.1, 15.4.3.4.2)21

3.5722
definition23
⟨data object⟩ process by which the data object becomes defined (19.6.5)24

3.5825
definition26
⟨derived type (7.5.2), interoperable enumeration (7.6.1), enumeration type (7.6.2), or procedure (15.6)⟩ specific-27
ation of the type, enumeration, or procedure28

3.5929
descendant30
⟨module or submodule⟩ submodule that extends that module or submodule or that extends another descendant31
thereof (14.2.3)32

3.6033
designator34
name followed by zero or more component selectors, complex part selectors, array section selectors, array element35
selectors, image selectors, and substring selectors (9.1)36

3.60.137
complex part designator38
designator that designates the real or imaginary part of a complex data object, independently of the other part39
(9.4.4)40

J3/23-007 9

J3/23-007 WD 1539-1 2023-02-17

3.60.2
object designator
data object designator
designator for a data object

Note 1 to entry: An object name is a special case of an object designator.

3.60.31
procedure designator2
designator for a procedure3

3.614
disassociated5
⟨pointer association⟩ pointer association status of not being associated with any target and not being undefined6
(19.5.2.2)7

3.628
disassociated9
⟨pointer⟩ has a pointer association status of disassociated10

3.6311
dummy argument12
entity whose identifier appears in a dummy argument list (R1539) in a FUNCTION, SUBROUTINE, ENTRY, or13
statement function statement, or whose name can be used as an argument keyword in a reference to an intrinsic14
procedure or a procedure in an intrinsic module15

3.63.116
dummy data object17
dummy argument that is a data object18

3.63.219
dummy function20
dummy procedure that is a function21

3.6422
effective argument23
entity that is argument-associated with a dummy argument (15.5.2.4)24

3.6525
effective item26
scalar object resulting from the application of the rules in 12.6.3 to an input/output list27

3.6628
elemental29
independent scalar application of an action or operation to elements of an array or corresponding elements of a30
set of conformable arrays and scalars, or possessing the capability of elemental operation31

Note 1 to entry: Combination of scalar and array operands or arguments combine the scalar operand(s) with
each element of the array operand(s).

3.66.132
elemental assignment33
assignment that operates elementally34

3.66.235
elemental operation36
operation that operates elementally37

10 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.66.31
elemental operator2
operator in an elemental operation3

3.66.44
elemental procedure5
elemental intrinsic procedure or procedure defined by an elemental subprogram (15.9)6

3.66.57
elemental reference8
reference to an elemental procedure with at least one array actual argument9

3.66.610
elemental subprogram11
subprogram with the ELEMENTAL prefix (15.9.1)12

3.6713
END statement14
end-block-data-stmt, end-function-stmt, end-module-stmt, end-mp-subprogram-stmt, end-program-stmt,15

end-submodule-stmt, or end-subroutine-stmt16

3.6817
explicit initialization18
initialization of a data object by a specification statement (8.4, 8.6.7)19

3.6920
extent21
number of elements in a single dimension of an array22

3.7023
external file24
file that exists in a medium external to the program (12.3)25

3.7126
external unit27
external input/output unit28
entity that can be connected to an external file (12.5.3, 12.5.4)29

3.7230
file storage unit31
unit of storage in a stream file or an unformatted record file (12.3.5)32

3.7333
final subroutine34
subroutine whose name appears in a FINAL statement (7.5.6) in a type definition, and which can be automatically35
invoked by the processor when an object of that type is finalized (7.5.6.2)36

3.7437
finalizable38
⟨type⟩ has a final subroutine or a nonpointer nonallocatable component of finalizable type39

3.7540
finalizable41
⟨nonpointer data entity⟩ of finalizable type42

3.7643
finalization44
process of calling final subroutines when one of the events listed in 7.5.6.3 occurs45

J3/23-007 11

J3/23-007 WD 1539-1 2023-02-17

3.771
function2
procedure that is invoked by an expression3

3.784
function result5
entity that returns the value of a function (15.6.2.2)6

3.797
generic identifier8
lexical token sequence that identifies a generic set of procedures, intrinsic operations, and/or intrinsic assignments9
(15.4.3.4)10

3.8011
host instance12
⟨internal procedure, or dummy procedure or procedure pointer associated with an internal procedure⟩ instance13
of the host procedure that supplies the host environment of the internal procedure (15.6.2.4)14

3.8115
host scoping unit16
host17
scoping unit immediately surrounding another scoping unit, or the scoping unit extended by a submodule18

3.8219
IEEE infinity20
ISO/IEC/IEEE 60559:2020 conformant infinite floating-point value21

3.8322
IEEE NaN23
ISO/IEC/IEEE 60559:2020 conformant floating-point datum that does not represent a number24

3.8425
image26
instance of a Fortran program (5.3.4)27

3.84.128
active image29
image that has not failed or stopped (5.3.6)30

3.84.231
failed image32
image that has not initiated termination but which has ceased to participate in program execution (5.3.6)33

3.84.334
stopped image35
image that has initiated normal termination (5.3.6)36

3.8537
image index38
integer value identifying an image within a team39

3.8640
image control statement41
statement that affects the execution ordering between images (11.7)42

12 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.871
inclusive scope2
nonblock scoping unit plus every block scoping unit whose host is that scoping unit or that is nested within such3
a block scoping unit4

Note 1 to entry: That is, inclusive scope is the scope as if BLOCK constructs were not scoping units.

3.885
inherit6
⟨extended type⟩ acquire entities (components, type-bound procedures, and type parameters) through type exten-7
sion from the parent type (7.5.7.2)8

3.899
inquiry function10
intrinsic function, or function in an intrinsic module, whose result depends on the properties of one or more of11
its arguments instead of their values12

3.9013
interface14
⟨procedure⟩ name, procedure characteristics, dummy argument names, binding label, and generic identifiers15
(15.4.1)16

3.90.117
abstract interface18
set of procedure characteristics with dummy argument names (15.4.1)19

3.90.220
explicit interface21
interface of a procedure that includes all the characteristics of the procedure and names for its dummy arguments22
except for asterisk dummy arguments (15.4.2)23

3.90.324
generic interface25
set of procedure interfaces identified by a generic identifier26

3.90.427
implicit interface28
interface of a procedure that is not an explicit interface (15.4.2, 15.4.3.8)29

3.90.530
specific interface31
interface identified by a nongeneric name32

3.9133
interface block34
abstract interface block, generic interface block, or specific interface block (15.4.3.2)35

3.91.136
abstract interface block37
interface block with the ABSTRACT keyword; collection of interface bodies that specify named abstract interfaces38

3.91.239
generic interface block40
interface block with a generic-spec; collection of interface bodies and procedure statements that are to be given41
that generic identifier42

J3/23-007 13

J3/23-007 WD 1539-1 2023-02-17

3.91.31
specific interface block2
interface block with no generic-spec or ABSTRACT keyword; collection of interface bodies that specify the3
interfaces of procedures4

3.925
interoperable6
⟨Fortran entity⟩ equivalent to an entity defined by or definable by the companion processor (18.3)7

3.938
intrinsic9
type, procedure, module, assignment, operator, or input/output operation defined in this document and accessible10
without further definition or specification, or a procedure or module provided by a processor but not defined in11
this document12

3.93.113
standard intrinsic14
⟨procedure or module⟩ defined in this document (16)15

3.93.216
nonstandard intrinsic17
⟨procedure or module⟩ provided by a processor but not defined in this document18

3.9419
internal file20
character variable that is connected to an internal unit (12.4)21

3.9522
internal unit23
input/output unit that is connected to an internal file (12.5.4)24

3.9625
ISO 10646 character26
character whose representation method corresponds to UCS-4 in ISO/IEC 1064627

3.9728
keyword29
statement keyword, argument keyword, type parameter keyword, or component keyword30

3.97.131
argument keyword32
word that identifies the corresponding dummy argument in an actual argument list (15.5.2.1)33

3.97.234
component keyword35
word that identifies a component in a structure constructor (7.5.10)36

3.97.337
statement keyword38
word that is part of the syntax of a statement (5.5.2)39

3.97.440
type parameter keyword41
word that identifies a type parameter in a type-param-spec42

14 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.981
lexical token2
keyword, name, literal constant other than a complex literal constant, operator, label, delimiter, comma, =, =>,3
:, ::, ;, or % (6.2)4

3.995
line6
sequence of zero or more characters7

3.1008
main program9
program unit that is not a subprogram, module, submodule, or block data program unit (14.1)10

3.10111
masked array assignment12
assignment statement in a WHERE statement or WHERE construct (10.2.3)13

3.10214
module15
program unit containing (or accessing from other modules) definitions that are to be made accessible to other16
program units (14.2)17

3.10318
name19
identifier of a program constituent, formed according to the rules given in 6.2.220

3.10421
NaN22
Not a Number, a symbolic floating-point datum (ISO/IEC/IEEE 60559:2020)23

3.10524
operand25
data value that is the subject of an operator26

3.10627
operator28
intrinsic-operator , defined-unary-op, or defined-binary-op (R608, R1004, R1024)29

3.10730
passed-object dummy argument31
dummy argument of a type-bound procedure or procedure pointer component that becomes associated with the32
object through which the procedure is invoked (7.5.4.5)33

3.10834
pointer35
data pointer or procedure pointer36

3.108.137
data pointer38
data entity with the POINTER attribute (8.5.14)39

3.108.240
procedure pointer41
procedure with the POINTER attribute (8.5.14)42

J3/23-007 15

J3/23-007 WD 1539-1 2023-02-17

3.108.31
local procedure pointer2
procedure pointer that is part of a local variable, or a named procedure pointer that is not a dummy argument3
or accessed by use or host association4

3.1095
pointer assignment6
association of a pointer with a target, by execution of a pointer assignment statement (10.2.2) or an intrinsic7
assignment statement (10.2.1.2) for a derived-type object that has the pointer as a subobject8

3.1109
polymorphic10
⟨data entity⟩ able to be of differing dynamic types during program execution (7.3.2.3)11

3.11112
preconnected13
⟨file or unit⟩ connected at the beginning of execution of the program (12.5.5)14

3.11215
procedure16
entity encapsulating an arbitrary sequence of actions that can be invoked directly during program execution17

3.112.118
dummy procedure19
procedure that is a dummy argument (15.2.2.3)20

3.112.221
external procedure22
procedure defined by an external subprogram (R503) or by means other than Fortran (15.6.3)23

3.112.324
internal procedure25
procedure defined by an internal subprogram (R512)26

3.112.427
module procedure28
procedure defined by a module subprogram (R1408), or a specific procedure provided by an intrinsic module29

3.112.530
pure procedure31
procedure declared or defined to be pure (15.7)32

3.112.633
simple procedure34
procedure declared or defined to be simple (15.8)35

3.112.736
type-bound procedure37
procedure that is bound to a derived type and referenced via an object of that type (7.5.5)38

3.11339
processor40
combination of a computing system and mechanism by which programs are transformed for use on that computing41
system42

3.11443
processor dependent44
not completely specified in this document, having methods and semantics determined by the processor45

16 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.1151
program2
set of Fortran program units and entities defined by means other than Fortran that includes exactly one main3
program4

3.1165
program unit6
main program, external subprogram, module, submodule, or block data program unit (5.2.1)7

3.1178
rank9
number of array dimensions of a data entity (zero for a scalar entity)10

3.11811
record12
sequence of values or characters in a file (12.2)13

3.11914
record file15
file composed of a sequence of records (12.1)16

3.12017
reference18
data object reference, procedure reference, or module reference19

3.120.120
data object reference21
appearance of a data object designator (9.1) in a context requiring its value at that point during execution22

3.120.223
function reference24
appearance of the procedure designator for a function, or operator symbol for a defined operation, in a context25
requiring execution of the function during expression evaluation (15.5.3)26

3.120.327
module reference28
appearance of a module name in a USE statement (14.2.2)29

3.120.430
procedure reference31
appearance of a procedure designator, operator symbol, or assignment symbol in a context requiring execution32
of the procedure at that point during execution; or occurrence of defined input/output (13.7.6) or derived-type33
finalization (7.5.6.2)34

3.12135
saved36
having the SAVE attribute (8.5.16)37

3.12238
scalar39
data entity that can be represented by a single value of the type and that is not an array (9.5)40

3.12341
scoping unit42
BLOCK construct, derived-type definition, interface body, program unit, or subprogram, excluding all nested43
scoping units in it44

J3/23-007 17

J3/23-007 WD 1539-1 2023-02-17

3.123.11
block scoping unit2
scoping unit of a BLOCK construct3

3.1244
segment5
maximal sequence of executions on an image of statements other than image control statements (11.7.2)6

3.1257
sequence8
set of elements ordered by a one-to-one correspondence with the numbers 1, 2, to n9

3.12610
sequence structure11
scalar data object of a sequence type (7.5.2.3)12

3.12713
sequence type14
derived type with the SEQUENCE attribute (7.5.2.3)15

3.127.116
character sequence type17
sequence type with no allocatable or pointer components, and whose components are all default character or of18
another character sequence type19

3.127.220
numeric sequence type21
sequence type with no allocatable or pointer components, and whose components are all default complex, default22
integer, default logical, default real, double precision real, or of another numeric sequence type23

3.12824
shape25
array dimensionality of a data entity, represented as a rank-one array whose size is the rank of the data entity26
and whose elements are the extents of the data entity27

Note 1 to entry: Thus the shape of a scalar data entity is an array with rank one and size zero.

3.12928
simply contiguous29
⟨array designator or variable⟩ satisfying the conditions specified in 9.5.430

Note 1 to entry: These conditions are simple ones which make it clear that the designator or variable designates
a contiguous array.

3.13031
size32
⟨array⟩ total number of elements in the array33

3.13134
specification expression35
expression satisfying the requirements specified in 10.1.11, thus being suitable for use in specifications36

3.131.137
component specification expression38
specification expression satisfying additional requirements specified in 10.1.11, thus being suitable for use in39
specifications in a component definition statement40

18 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.1321
specific name2
name that is not a generic name3

3.1334
standard-conforming program5
program that uses only those forms and relationships described in, and has an interpretation according to, this6
document7

3.1348
statement9
sequence of one or more complete or partial lines satisfying a syntax rule that ends in -stmt (6.3)10

3.134.111
executable statement12
end-function-stmt, end-mp-subprogram-stmt, end-program-stmt, end-subroutine-stmt, or statement that is a mem-13
ber of the syntactic class executable-construct, excluding those in the block-specification-part of a BLOCK con-14
struct15

3.134.216
nonexecutable statement17
statement that is not an executable statement18

3.13519
statement entity20
entity whose identifier has the scope of a statement or part of a statement (19.1, 19.4)21

3.13622
statement label23
label24
unsigned positive number of up to five digits that refers to an individual statement (6.2.5)25

3.13726
storage sequence27
contiguous sequence of storage units (19.5.3.2)28

3.13829
storage unit30
character storage unit, numeric storage unit, file storage unit, or unspecified storage unit (19.5.3.2)31

3.138.132
character storage unit33
unit of storage that holds a default character value (19.5.3.2)34

3.138.235
numeric storage unit36
unit of storage that holds a default real, default integer, or default logical value (19.5.3.2)37

3.138.338
unspecified storage unit39
unit of storage that holds a value that is not default character, default real, double precision real, default integer,40
default logical, or default complex (19.5.3.2)41

3.13942
stream file43
file composed of a sequence of file storage units (12.1)44

J3/23-007 19

J3/23-007 WD 1539-1 2023-02-17

3.1401
structure2
scalar data object of derived type (7.5)3

3.140.14
structure component5
component of a structure6

3.140.27
structure constructor8
syntax (structure-constructor , 7.5.10) that specifies a structure value or creates such a value9

3.14110
submodule11
program unit that extends a module or another submodule (14.2.3)12

3.14213
subobject14
portion of data object that can be referenced, and if it is a variable defined, independently of any other portion15
(9.4.2)16

3.14317
subprogram18
function-subprogram (R1532) or subroutine-subprogram (R1537)19

3.143.120
external subprogram21
subprogram that is not contained in a main program, module, submodule, or another subprogram22

3.143.223
internal subprogram24
subprogram that is contained in a main program or another subprogram25

3.143.326
module subprogram27
subprogram that is contained in a module or submodule but is not an internal subprogram28

3.14429
subroutine30
procedure invoked by a CALL statement, by defined assignment, or by some operations on derived-type entities31

3.144.132
atomic subroutine33
intrinsic subroutine that performs an action on its ATOM argument atomically (16.5)34

3.144.235
collective subroutine36
intrinsic subroutine that performs a calculation on a team of images without requiring synchronization (16.6)37

3.14538
target39
entity that is pointer associated with a pointer (19.5.2.2), entity on the right-hand-side of a pointer assignment40
statement (R1034), or entity with the TARGET attribute (8.5.18)41

3.14642
team43
ordered set of images created by execution of a FORM TEAM statement, or the initial ordered set of all images44

20 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.146.11
current team2
team specified by the most recently executed CHANGE TEAM statement of a CHANGE TEAM construct that3
has not completed execution (11.1.5), or initial team if no CHANGE TEAM construct is being executed4

3.146.25
initial team6
team existing at the beginning of program execution, consisting of all images7

3.146.38
parent team9
⟨team except for initial team⟩ current team at time of execution of the FORM TEAM statement that created the10
team (11.7.9)11

3.146.412
sibling teams13
teams created by a single set of corresponding executions of the FORM TEAM statement (11.7.9)14

3.146.515
team number16
−1 which identifies the initial team, or positive integer that identifies a team among its sibling teams17

3.14718
transformational function19
intrinsic function, or function in an intrinsic module, that is neither elemental nor an inquiry function20

3.14821
type22
data type23
named category of data characterized by a set of values, a syntax for denoting these values, and a set of operations24
that interpret and manipulate the values (7.1)25

3.148.126
abstract type27
type with the ABSTRACT attribute (7.5.7.1)28

3.148.229
declared type30
type that a data entity is declared to have, either explicitly or implicitly (7.3.2, 10.1.9)31

3.148.332
derived type33
type defined by a derived-type definition (7.5) or by an intrinsic module34

3.148.435
dynamic type36
type of a data entity at a particular point during execution of a program (7.3.2.3, 10.1.9)37

3.148.538
extended type39
type with the EXTENDS attribute (7.5.7.1)40

3.148.641
extensible type42
type that may be extended using the EXTENDS clause (7.5.7.1)43

J3/23-007 21

J3/23-007 WD 1539-1 2023-02-17

3.148.71
extension type2
⟨of one type with respect to another⟩ is the same type or is an extended type whose parent type is an extension3
type of the other type4

3.148.85
intrinsic type6
type defined by this document that is always accessible (7.4)7

3.148.98
numeric type9
one of the types integer, real, and complex10

3.148.1011
parent type12
⟨extended type⟩ type named in the EXTENDS clause13

3.148.1114
type compatible15
compatibility of the type of one entity with respect to another for purposes such as argument association, pointer16
association, and allocation (7.3.2)17

3.148.1218
type parameter19
value used to parameterize a type (7.2)20

3.148.12.121
assumed type parameter22
length type parameter that assumes the type parameter value from another entity23

Note 1 to entry: The other entity is
• the selector for an associate name,
• the constant-expr for a named constant of type character, or
• the effective argument for a dummy argument.

3.148.12.224
deferred type parameter25
length type parameter whose value can change during execution of a program and whose type-param-value is a26
colon27

3.148.12.328
kind type parameter29
type parameter whose value is required to be defaulted or given by a constant expression30

3.148.12.431
length type parameter32
type parameter whose value is permitted to be assumed, deferred, or given by a specification expression33

3.148.12.534
type parameter inquiry35
syntax (type-param-inquiry) that is used to inquire the value of a type parameter of a data object (9.4.5)36

3.148.12.637
type parameter order38
ordering of the type parameters of a type (7.5.3.2) used for derived-type specifiers (derived-type-spec, 7.5.9)39

22 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3.1491
ultimate argument2
nondummy entity with which a dummy argument is associated via a chain of argument associations (15.5.2.4)3

3.1504
undefined5
⟨data object⟩ does not have a valid value6

3.1517
undefined8
⟨pointer⟩ does not have a pointer association status of associated or disassociated (19.5.2.2)9

3.15210
unit11
input/output unit12
means, specified by an io-unit, for referring to a file (12.5.1)13

3.15314
unlimited polymorphic15
able to have any dynamic type during program execution (7.3.2.3)16

3.15417
unsaved18
not having the SAVE attribute (8.5.16)19

3.15520
variable21
data entity that can be defined and redefined during execution of a program22

3.155.123
event variable24
scalar variable of type EVENT_TYPE (16.10.2.10) from the intrinsic module ISO_FORTRAN_ENV25

3.155.226
local variable27
variable in a scoping unit that is not a dummy argument or part thereof, is not a global entity or part thereof,28
and is not an entity or part of an entity that is accessible outside that scoping unit29

3.155.330
lock variable31
scalar variable of type LOCK_TYPE (16.10.2.19) from the intrinsic module ISO_FORTRAN_ENV32

3.155.433
notify variable34
scalar variable of type NOTIFY_TYPE (16.10.2.22) from the intrinsic module ISO_FORTRAN_ENV35

3.155.536
team variable37
scalar variable of type TEAM_TYPE (16.10.2.34) from the intrinsic module ISO_FORTRAN_ENV38

3.15639
vector subscript40
section-subscript that is an array (9.5.3.4.3)41

3.15742
whole array43
array component or array name without further qualification (9.5.2)44

J3/23-007 23

J3/23-007 WD 1539-1 2023-02-17

4 Notation, conformance, and compatibility1

4.1 Notation, symbols and abbreviated terms2

4.1.1 Syntax rules3

1 Syntax rules describe the forms that Fortran lexical tokens, statements, and constructs may take. These syntax4
rules are expressed in a variation of Backus-Naur form (BNF) with the following conventions.5

• Characters from the Fortran character set (6.1) are interpreted literally as shown, except where otherwise6
noted.7

• Lower-case italicized letters and words (often hyphenated and abbreviated) represent general syntactic8
classes for which particular syntactic entities shall be substituted in actual statements.9

Common abbreviations used in syntactic terms are:10

arg for argument attr for attribute
decl for declaration def for definition
desc for descriptor expr for expression
int for integer op for operator
spec for specifier stmt for statement

• The syntactic metasymbols used are:11

is introduces a syntactic class definition
or introduces a syntactic class alternative
[] encloses an optional item
[] ... encloses an optionally repeated item

that may occur zero or more times
continues a syntax rule

• Each syntax rule is given a unique identifying number of the form Rsnn, where s is a one- or two-digit12
clause number and nn is a two-digit sequence number within that clause. The syntax rules are distributed13
as appropriate throughout the text, and are referenced by number as needed. Some rules in Clauses 5 and14
6 are more fully described in later clauses; in such cases, the clause number s is the number of the later15
clause where the rule is repeated.16

• The syntax rules are not a complete and accurate syntax description of Fortran, and cannot be used to17
generate a Fortran parser automatically; where a syntax rule is incomplete, it is restricted by corresponding18
constraints and text.19

NOTE
An example of the use of the syntax rules is:

digit-string is digit [digit] ...

The following are examples of forms for a digit string allowed by the above rule:

digit
digit digit
digit digit digit digit
digit digit digit digit digit digit digit digit

Some examples of digit-string are:

24 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE (cont.)
4
67
1999
10243852

4.1.2 Constraints1

1 Each constraint is given a unique identifying number of the form Csnn, where s is a one- or two-digit clause2
number and nn is a two- or three-digit sequence number within that clause.3

2 Often a constraint is associated with a particular syntax rule. Where that is the case, the constraint is annotated4
with the syntax rule number in parentheses. A constraint that is associated with a syntax rule constitutes part of5
the definition of the syntax term defined by the rule. It thus applies in all places where the syntax term appears.6

3 Some constraints are not associated with particular syntax rules. The effect of such a constraint is similar to7
that of a restriction stated in the text, except that a processor is required to have the capability to detect and8
report violations of constraints (4.2). In some cases, a broad requirement is stated in text and a subset of the9
same requirement is also stated as a constraint. This indicates that a standard-conforming program is required to10
adhere to the broad requirement, but that a standard-conforming processor is required only to have the capability11
of diagnosing violations of the constraint.12

4.1.3 Assumed syntax rules13

1 In order to minimize the number of additional syntax rules and convey appropriate constraint information, the14
following rules, where the letters xyz stand for any syntactic class phrase, are assumed.15

R401 xyz-list is xyz [, xyz] ...16

R402 xyz-name is name17

R403 scalar-xyz is xyz18

C401 (R403) scalar-xyz shall be scalar.19

2 An explicit syntax rule for a term overrides an assumed rule.20

4.1.4 Syntax conventions and characteristics21

1 Any syntactic class name ending in “-stmt” follows the source form statement rules: it shall be delimited by22
end-of-line or semicolon, and may be labeled unless it forms part of another statement (such as an IF or WHERE23
statement). Conversely, everything considered to be a source form statement is given a “-stmt” ending in the24
syntax rules.25

2 The rules on statement ordering are described rigorously in the definition of program-unit (R502). Expression26
hierarchy is described rigorously in the definition of expr (R1023).27

3 The suffix “-spec” is used consistently for specifiers, such as input/output statement specifiers. It also is used for28
type declaration attribute specifications (for example, “array-spec” in R814), and in a few other cases.29

4 Where reference is made to a type parameter, including the surrounding parentheses, the suffix “-selector” is30
used. See, for example, “kind-selector” (R706) and “length-selector” (R722).31

J3/23-007 25

J3/23-007 WD 1539-1 2023-02-17

4.1.5 Text conventions1

1 In descriptive text, an equivalent English word is frequently used in place of a syntactic term. Particular state-2
ments and attributes are identified in the text by an upper-case keyword, e.g., “END statement”. The descriptions3
of obsolescent features appear in a smaller type size.4

NOTE
This sentence is an example of the type size used for obsolescent features.

4.2 Conformance5

1 A program (5.2.2) is a standard-conforming program if it uses only those forms and relationships described herein6
and if the program has an interpretation according to this document. A program unit (5.2.1) conforms to this7
document if it can be included in a program in a manner that allows the program to be standard conforming.8

2 A processor conforms to this document if:9

(1) it executes any standard-conforming program in a manner that fulfills the interpretations herein,10
subject to any limits that the processor may impose on the size and complexity of the program;11

(2) it contains the capability to detect and report the use within a submitted program unit of a form12
designated herein as obsolescent, insofar as such use can be detected by reference to the numbered13
syntax rules and constraints;14

(3) it contains the capability to detect and report the use within a submitted program unit of a form or15
relationship that is not permitted by the numbered syntax rules or constraints, including the deleted16
features described in Annex B;17

(4) it contains the capability to detect and report the use within a submitted program unit of an intrinsic18
type with a kind type parameter value not supported by the processor (7.4);19

(5) it contains the capability to detect and report the use within a submitted program unit of source20
form or characters not permitted by Clause 6;21

(6) it contains the capability to detect and report the use within a submitted program of name usage22
not consistent with the scope rules for names, labels, operators, and assignment symbols in Clause23
19;24

(7) it contains the capability to detect and report the use within a submitted program unit of a non-25
standard intrinsic procedure (including one with the same name as a standard intrinsic procedure26
but with different requirements);27

(8) it contains the capability to detect and report the use within a submitted program unit of a non-28
standard intrinsic module;29

(9) it contains the capability to detect and report the use within a submitted program unit of a procedure30
from a standard intrinsic module, if the procedure is not defined by this document or the procedure31
has different requirements from those specified by this document; and32

(10) it contains the capability to detect and report the reason for rejecting a submitted program.33

3 However, in a format specification that is not part of a FORMAT statement (13.2.1), a processor need not detect34
or report the use of deleted or obsolescent features, or the use of additional forms or relationships.35

4 A standard-conforming processor may allow additional forms and relationships provided that such additions36
do not conflict with the standard forms and relationships. However, a standard-conforming processor may allow37
additional intrinsic procedures even though this could cause a conflict with the name of a procedure in a standard-38
conforming program. If such a conflict occurs and involves the name of an external procedure, the processor is39
permitted to use the intrinsic procedure unless the name has the EXTERNAL attribute (8.5.9) where it is used.40
A standard-conforming program shall not use nonstandard intrinsic procedures or modules that have been added41
by the processor.42

5 Because a standard-conforming program may place demands on a processor that are not within the scope of this43
document or may include standard items that are not portable, such as external procedures defined by means44

26 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

other than Fortran, conformance to this document does not ensure that a program will execute consistently on1
all or any standard-conforming processors.2

6 The semantics of facilities that are identified as processor dependent are not completely specified in this document.3
They shall be provided, with methods or semantics determined by the processor.4

7 The processor should be accompanied by documentation that specifies the limits it imposes on the size and com-5
plexity of a program and the means of reporting when these limits are exceeded, that defines the additional forms6
and relationships it allows, and that defines the means of reporting the use of additional forms and relationships7
and the use of deleted or obsolescent forms. In this context, the use of a deleted form is the use of an additional8
form.9

8 The processor should be accompanied by documentation that specifies the methods or semantics of processor-10
dependent facilities.11

4.3 Compatibility12

4.3.1 Previous Fortran standards13

1 Table 4.3 lists the previous editions of the Fortran International Standard, along with their informal names.14

Table 4.3: Previous editions of the Fortran International Standard

Official designation Informal name
ISO R 1539-1972 Fortran 66
ISO 1539-1980 Fortran 77
ISO/IEC 1539:1991 Fortran 90
ISO/IEC 1539-1:1997 Fortran 95
ISO/IEC 1539-1:2004 Fortran 2003
ISO/IEC 1539-1:2010 Fortran 2008
ISO/IEC 1539-1:2018 Fortran 2018

4.3.2 New intrinsic procedures15

1 Each Fortran International Standard since ISO 1539:1980 (Fortran 77), defines more intrinsic procedures than16
the previous one. Therefore, a Fortran program conforming to an older standard might have a different inter-17
pretation under a newer standard if it invokes an external procedure having the same name as one of the new18
standard intrinsic procedures, unless that procedure is specified to have the EXTERNAL attribute.19

4.3.3 Fortran 2018 compatibility20

1 Except as identified in this subclause, this document is an upward compatible extension to the preceding Fortran21
International Standard, ISO/IEC 1539-1:2018 (Fortran 2018). A standard-conforming Fortran 2018 program that22
does not use any feature identified in this subclause as being no longer permitted remains standard-conforming23
under this document.24

2 Fortran 2018 allowed integer arguments to the intrinsic subroutine SYSTEM_CLOCK to be of any kind. This25
document requires integer arguments to SYSTEM_CLOCK to have a decimal exponent range at least as large26
as a default integer, and requires that all integer arguments in a reference to SYSTEM_CLOCK have the same27
kind type parameter.28

3 Fortran 2018 permitted a variable in a BLOCK construct that was declared only by a DATA statement to be29
used before the DATA statement. This document does not permit such usage.30

J3/23-007 27

J3/23-007 WD 1539-1 2023-02-17

4 The following Fortran 2018 features might have a different interpretation under this document.1
• After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=2

clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to3
an intrinsic subroutine, that variable might be of shorter or longer length under this document than under4
Fortran 2018, since this document specifies intrinsic assignment semantics for these assignments.5

• This document permits the intrinsic subroutine SYSTEM_CLOCK to use two or more clocks, with different6
characteristics based on the type and kind type parameters of its arguments. A program that invokes7
SYSTEM_CLOCK with different argument types or kinds in different references, could have a different8
interpretation under this document.9

• The result of a reference to IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_NUM, or IEEE_-10
MIN_NUM_MAG where one argument is a number and the other is a signaling NaN is specified to be the11
number in this document. Fortran 2018 specified that the result is a NaN.12

4.3.4 Fortran 2008 compatibility13

1 Except as identified in this subclause, and except for the deleted features noted in Annex B.2, this document14
is an upward compatible extension to ISO/IEC 1539-1:2010 (Fortran 2008). Any standard-conforming Fortran15
2008 program that does not use any deleted features, and does not use any feature identified in this subclause as16
being no longer permitted, remains standard-conforming under this document.17

2 Fortran 2008 specifies that the IOSTAT= variable shall be set to a processor-dependent negative value if the flush18
operation is not supported for the unit specified. This document specifies that the processor-dependent negative19
integer value shall be different from the named constants IOSTAT_EOR or IOSTAT_END from the intrinsic20
module ISO_FORTRAN_ENV.21

3 Fortran 2008 permitted a noncontiguous array that was supplied as an actual argument corresponding to a22
contiguous INTENT (INOUT) dummy argument in one iteration of a DO CONCURRENT construct, without23
being previously defined in that iteration, to be defined in another iteration; this document does not permit this.24

4 Fortran 2008 permitted a pure statement function to reference a volatile variable, and permitted a local variable25
of a pure subprogram or of a BLOCK construct within a pure subprogram to be volatile (provided it was not26
used); this document does not permit that.27

5 Fortran 2008 permitted a pure function to have a result that has a polymorphic allocatable ultimate component;28
this document does not permit that.29

6 Fortran 2008 permitted a PROTECTED TARGET variable accessed by use association to be used as an initial-30
data-target; this document does not permit that.31

7 Fortran 2008 permitted a named constant to have declared type LOCK_TYPE, or have a noncoarray potential32
subobject component with declared type LOCK_TYPE; this document does not permit that.33

8 Fortran 2008 permitted a polymorphic object to be finalized within a DO CONCURRENT construct; this docu-34
ment does not permit that.35

9 Fortran 2008 permitted an unallocated allocatable coarray or coindexed object to be allocated by an assignment36
statement, provided it was scalar, nonpolymorphic, and had no deferred type parameters; this document does37
not permit that.38

10 Fortran 2008 permitted the processor to use a common pseudorandom number generator for all images. This39
document requires separate seeds on each image for the pseudorandom number generator.40

11 Fortran 2008 required ACOSH of a complex value to have the imaginary part nonnegative and had no requirement41
on the real part. This document requires ACOSH of a complex value to have a nonnegative real part and has no42
such requirement on the imaginary part.43

12 Fortran 2008 allowed integer arguments to the intrinsic subroutine SYSTEM_CLOCK to be of any kind. This44
document requires integer arguments to SYSTEM_CLOCK to have a decimal exponent range at least as large45

28 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

as a default integer, and requires that all integer arguments in a reference to SYSTEM_CLOCK have the same1
kind type parameter.2

13 Fortran 2008 permitted a variable in a BLOCK construct that was declared only by a DATA statement to be3
used before the DATA statement. This document does not permit such usage.4

14 The following Fortran 2008 features might have a different interpretation under this document.5
• After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=6

clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to7
an intrinsic subroutine, that variable might be of shorter or longer length under this document than under8
Fortran 2008, since this document specifies intrinsic assignment semantics for these assignments.9

• This document permits the intrinsic subroutine SYSTEM_CLOCK to use two or more clocks, with different10
characteristics based on the type and kind type parameters of its arguments. A program that invokes11
SYSTEM_CLOCK with different argument types or kinds in different references, could have a different12
interpretation under this document.13

4.3.5 Fortran 2003 compatibility14

1 Except as identified in this subclause, this document is an upward compatible extension to ISO/IEC 1539-1:200415
(Fortran 2003). Except as identified in this subclause, any standard-conforming Fortran 2003 program remains16
standard-conforming under this document.17

2 Fortran 2003 permitted a sequence type to have type parameters; that is not permitted by this document.18

3 Fortran 2003 specified that array constructors and structure constructors of finalizable type are finalized. This19
document specifies that these constructors are not finalized.20

4 The form produced by the G edit descriptor for some values and some input/output rounding modes differs from21
that specified by Fortran 2003.22

5 Fortran 2003 required an explicit interface only for a procedure that was actually referenced in the scope, not23
merely passed as an actual argument. This document requires an explicit interface for a procedure under the24
conditions listed in 15.4.2.2, regardless of whether the procedure is referenced in the scope.25

6 Fortran 2003 permitted the function result of a pure function to be a polymorphic allocatable variable, to have26
a polymorphic allocatable ultimate component, or to be finalizable by an impure final subroutine. These are not27
permitted by this document.28

7 Fortran 2003 permitted an INTENT (OUT) argument of a pure subroutine to be polymorphic; that is not29
permitted by this document.30

8 Fortran 2003 interpreted assignment to an allocatable variable from a nonconformable array as intrinsic assign-31
ment, even when an elemental defined assignment was in scope; this document does not permit assignment from32
a nonconformable array in this context.33

9 Fortran 2003 permitted a statement function to be of parameterized derived type; this document does not permit34
that.35

10 Fortran 2003 permitted a pure statement function to reference a volatile variable, and permitted a local variable36
of a pure subprogram to be volatile (provided it was not used); this document does not permit that.37

11 Fortran 2003 allowed integer arguments to the intrinsic subroutine SYSTEM_CLOCK to be of any kind. This38
document requires integer arguments to SYSTEM_CLOCK to have a decimal exponent range at least as large39
as a default integer, and requires that all integer arguments in a reference to SYSTEM_CLOCK have the same40
kind type parameter.41

12 The following Fortran 2003 features might have a different interpretation under this document.42
• After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=43

clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to44

J3/23-007 29

J3/23-007 WD 1539-1 2023-02-17

an intrinsic subroutine, that variable might be of shorter or longer length under this document than under1
Fortran 2003, since this document specifies intrinsic assignment semantics for these assignments.2

• This document permits the intrinsic subroutine SYSTEM_CLOCK to use two or more clocks, with different3
characteristics based on the type and kind type parameters of its arguments. A program that invokes4
SYSTEM_CLOCK with different argument types or kinds in different references, could have a different5
interpretation under this document.6

4.3.6 Fortran 95 compatibility7

1 Except as identified in this subclause, this document is an upward compatible extension to ISO/IEC 1539-1:19978
(Fortran 95). Except as identified in this subclause, any standard-conforming Fortran 95 program remains9
standard-conforming under this document.10

2 Fortran 95 permitted defined assignment between character strings of the same rank and different kinds. This11
document does not permit that if both of the different kinds are ASCII, ISO 10646, or default kind.12

3 The following Fortran 95 features might have different interpretations in this document.13

• Earlier Fortran standards had the concept of printing, meaning that column one of formatted output had14
special meaning for a processor-dependent (possibly empty) set of external files. This could be neither15
detected nor specified by a standard-specified means. The interpretation of the first column is not specified16
by this document.17

• This document specifies a different output format for real zero values in list-directed and namelist output.18

• If the processor distinguishes between positive and negative real zero, this document requires different19
returned values for ATAN2(Y,X) when X < 0 and Y is negative real zero and for LOG(X) and SQRT(X)20
when X is complex with X%RE < 0 and X%IM is negative real zero.21

• This document has fewer restrictions on constant expressions than Fortran 95; this affects whether a variable22
is considered to be an automatic data object.23

• The form produced by the G edit descriptor with d equal to zero differs from that specified by Fortran 9524
for some values.25

4.3.7 Fortran 90 compatibility26

1 Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this document27
is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard-conforming Fortran 9028
program that does not use one of the deleted features remains standard-conforming under this document.29

2 The PAD= specifier in the INQUIRE statement in this document returns the value UNDEFINED if there is no30
connection or the connection is for unformatted input/output. Fortran 90 specified YES.31

3 Fortran 90 specified that if the second argument to MOD or MODULO was zero, the result was processor32
dependent. This document specifies that the second argument shall not be zero.33

4 Fortran 90 permitted defined assignment between character strings of the same rank and different kinds. This34
document does not permit that if both of the different kinds are ASCII, ISO 10646, or default kind.35

5 The following Fortran 90 features have different interpretations in this document:36

• if the processor distinguishes between positive and negative real zero, the result value of the intrinsic function37
SIGN when the second argument is a negative real zero;38

• formatted output of negative real values (when the output value is zero);39

• whether an expression is a constant expression (thus whether a variable is considered to be an automatic40
data object);41

• the G edit descriptor with d equal to zero for some values.42

30 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4.3.8 FORTRAN 77 compatibility1

1 Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this document is an2
upward compatible extension to ISO 1539:1980 (Fortran 77). Any standard-conforming Fortran 77 program3
that does not use one of the deleted features noted in Annex B.1 and that does not depend on the differences4
specified here remains standard-conforming under this document. This document restricts the behavior for some5
features that were processor dependent in Fortran 77. Therefore, a standard-conforming Fortran 77 program6
that uses one of these processor-dependent features might have a different interpretation under this document, yet7
remain a standard-conforming program. The following Fortran 77 features might have different interpretations8
in this document.9

• Fortran 77 permitted a processor to supply more precision derived from a default real constant than can10
be represented in a default real datum when the constant is used to initialize a double precision real data11
object in a DATA statement. This document does not permit a processor this option.12

• If a named variable that was not in a common block was initialized in a DATA statement and did not have13
the SAVE attribute specified, Fortran 77 left its SAVE attribute processor dependent. This document14
specifies (8.6.7) that this named variable has the SAVE attribute.15

• Fortran 77 specified that the number of characters required by the input list was to be less than or equal16
to the number of characters in the record during formatted input. This document specifies (12.6.4.5.3) that17
the input record is logically padded with blanks if there are not enough characters in the record, unless the18
PAD= specifier with the value ’NO’ is specified in an appropriate OPEN or READ statement.19

• A value of zero for an effective item in a formatted output statement will be formatted in a different form20
for some G edit descriptors. In addition, this document specifies how rounding of values will affect the21
output field form, but Fortran 77 did not address this issue. Therefore, the form produced for certain22
combinations of values and G edit descriptors might differ from that produced by some Fortran 7723
processors.24

• Fortran 77 did not permit a processor to distinguish between positive and negative real zero; if the25
processor does so distinguish, the result will differ for the intrinsic function SIGN when the second argument26
is negative real zero, and formatted output of negative real zero will be different.27

4.4 Deleted and obsolescent features28

4.4.1 General29

1 This document protects the users’ investment in existing software by including all but six of the language elements30
of Fortran 90 that are not processor dependent. This document identifies two categories of outmoded features.31
The first category, deleted features, consists of features considered to have been redundant in Fortran 77 and32
largely unused in Fortran 90. Those in the second category, obsolescent features, are considered to have been33
redundant in Fortran 90 and Fortran 95, but are still frequently used.34

4.4.2 Nature of deleted features35

1 There are two groups of deleted features. The first group contains features for which better methods existed in36
Fortran 77; these features were not included in Fortran 95, Fortran 2003, or Fortran 2008, and are not included37
in this document. The second group contains features for which better methods existed in Fortran 90; these38
features were included in Fortran 2008, but are not included in this document.39

4.4.3 Nature of obsolescent features40

1 Better methods existed in Fortran 90 and Fortran 95 for each obsolescent feature. It is recommended that41
programmers use these better methods in new programs and convert existing code to these methods.42

2 The obsolescent features are identified in the text of this document by a distinguishing type font (4.1.5).43

3 A future revision of this document might delete an obsolescent feature if its use has become insignificant.44

J3/23-007 31

J3/23-007 WD 1539-1 2023-02-17

5 Fortran concepts1

5.1 High level syntax2

1 This subclause introduces the syntax associated with program units and other Fortran concepts above the con-3
struct, statement, and expression levels and illustrates their relationships.4

NOTE
Constraints and other information related to the rules that do not begin with R5 appear in the appropriate
clause.

R501 program is program-unit5
[program-unit] ...6

R502 program-unit is main-program7
or external-subprogram8
or module9
or submodule10
or block-data11

R1401 main-program is [program-stmt]12
[specification-part]13
[execution-part]14
[internal-subprogram-part]15
end-program-stmt16

R503 external-subprogram is function-subprogram17
or subroutine-subprogram18

R1532 function-subprogram is function-stmt19
[specification-part]20
[execution-part]21
[internal-subprogram-part]22
end-function-stmt23

R1537 subroutine-subprogram is subroutine-stmt24
[specification-part]25
[execution-part]26
[internal-subprogram-part]27
end-subroutine-stmt28

R1404 module is module-stmt29
[specification-part]30
[module-subprogram-part]31
end-module-stmt32

R1416 submodule is submodule-stmt33
[specification-part]34
[module-subprogram-part]35
end-submodule-stmt36

R1420 block-data is block-data-stmt37
[specification-part]38

32 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

end-block-data-stmt1

R504 specification-part is [use-stmt] ...2
[import-stmt] ...3
[implicit-part]4
[declaration-construct] ...5

R505 implicit-part is [implicit-part-stmt] ...6
implicit-stmt7

R506 implicit-part-stmt is implicit-stmt8
or parameter-stmt9
or format-stmt10
or entry-stmt11

R507 declaration-construct is specification-construct12
or data-stmt13
or format-stmt14
or entry-stmt15
or stmt-function-stmt16

R508 specification-construct is derived-type-def17
or enum-def18
or enumeration-type-def19
or generic-stmt20
or interface-block21
or parameter-stmt22
or procedure-declaration-stmt23
or other-specification-stmt24
or type-declaration-stmt25

R509 execution-part is executable-construct26
[execution-part-construct] ...27

R510 execution-part-construct is executable-construct28
or format-stmt29
or entry-stmt30
or data-stmt31

R511 internal-subprogram-part is contains-stmt32
[internal-subprogram] ...33

R512 internal-subprogram is function-subprogram34
or subroutine-subprogram35

R1407 module-subprogram-part is contains-stmt36
[module-subprogram] ...37

R1408 module-subprogram is function-subprogram38
or subroutine-subprogram39
or separate-module-subprogram40

R1541 separate-module-subprogram is mp-subprogram-stmt41
[specification-part]42
[execution-part]43
[internal-subprogram-part]44
end-mp-subprogram-stmt45

J3/23-007 33

J3/23-007 WD 1539-1 2023-02-17

R513 other-specification-stmt is access-stmt1
or allocatable-stmt2
or asynchronous-stmt3
or bind-stmt4
or codimension-stmt5
or contiguous-stmt6
or dimension-stmt7
or external-stmt8
or intent-stmt9
or intrinsic-stmt10
or namelist-stmt11
or optional-stmt12
or pointer-stmt13
or protected-stmt14
or save-stmt15
or target-stmt16
or volatile-stmt17
or value-stmt18
or common-stmt19
or equivalence-stmt20

R514 executable-construct is action-stmt21
or associate-construct22
or block-construct23
or case-construct24
or change-team-construct25
or critical-construct26
or do-construct27
or if-construct28
or select-rank-construct29
or select-type-construct30
or where-construct31
or forall-construct32

R515 action-stmt is allocate-stmt33
or assignment-stmt34
or backspace-stmt35
or call-stmt36
or close-stmt37
or continue-stmt38
or cycle-stmt39
or deallocate-stmt40
or endfile-stmt41
or error-stop-stmt42
or event-post-stmt43
or event-wait-stmt44
or exit-stmt45
or fail-image-stmt46
or flush-stmt47
or form-team-stmt48
or goto-stmt49
or if-stmt50
or inquire-stmt51
or lock-stmt52
or notify-wait-stmt53
or nullify-stmt54

34 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

or open-stmt1
or pointer-assignment-stmt2
or print-stmt3
or read-stmt4
or return-stmt5
or rewind-stmt6
or stop-stmt7
or sync-all-stmt8
or sync-images-stmt9
or sync-memory-stmt10
or sync-team-stmt11
or unlock-stmt12
or wait-stmt13
or where-stmt14
or write-stmt15
or computed-goto-stmt16
or forall-stmt17

5.2 Program unit concepts18

5.2.1 Program units and scoping units19

1 Program units are the fundamental components of a Fortran program. A program unit is a main program, an20
external subprogram, a module, a submodule, or a block data program unit.21

2 A subprogram is a function subprogram or a subroutine subprogram. A module contains definitions that can be22
made accessible to other program units. A submodule is an extension of a module; it may contain the definitions23
of procedures declared in a module or another submodule. A block data program unit is used to specify initial values for24
data objects in named common blocks.25

3 Each type of program unit is described in Clause 14 or 15.26

4 A program unit consists of a set of nonoverlapping scoping units.27

NOTE
The module or submodule containing a module subprogram is the host scoping unit of the module subprogram.
The containing main program or subprogram is the host scoping unit of an internal subprogram.

An internal procedure is local to its host in the sense that its name is accessible within the host scoping unit
and all its other internal procedures but is not accessible elsewhere.

5.2.2 Program28

1 A program shall consist of exactly one main program, any number (including zero) of other kinds of program units,29
any number (including zero) of external procedures, and any number (including zero) of other entities defined by30
means other than Fortran. The main program shall be defined by a Fortran main-program program-unit or by31
means other than Fortran, but not both.32

5.2.3 Procedure33

1 A procedure is either a function or a subroutine. Invocation of a function in an expression causes a value to be34
computed which is then used in evaluating the expression.35

2 A procedure that is not pure may change the program state by changing the value of accessible data objects or36
procedure pointers.37

3 Procedures are described further in Clause 15.38

J3/23-007 35

J3/23-007 WD 1539-1 2023-02-17

5.2.4 Module1

1 A module contains (or accesses from other modules) definitions that can be made accessible to other program units.2
These definitions include data object declarations, type definitions, procedure definitions, and interface blocks.3
Modules are further described in Clause 14.4

5.2.5 Submodule5

1 A submodule extends a module or another submodule.6

2 It may provide definitions (15.6) for procedures whose interfaces are declared (15.4.3.2) in an ancestor module7
or submodule. It may also contain declarations and definitions of other entities, which are accessible in its8
descendants. An entity declared in a submodule is not accessible by use association unless it is a module procedure9
whose interface is declared in the ancestor module. Submodules are further described in Clause 14.10

NOTE
A submodule has access to entities in its parent module or submodule by host association.

5.3 Execution concepts11

5.3.1 Statement classification12

1 Each Fortran statement is classified as either an executable statement or a nonexecutable statement.13

2 An executable statement is an instruction to perform or control an action. Thus, the executable statements of a14
program unit determine the behavior of the program unit.15

3 Nonexecutable statements are used to configure the program environment in which actions take place.16

5.3.2 Statement order17

Table 5.1: Requirements on statement ordering
PROGRAM, FUNCTION, SUBROUTINE,

MODULE, SUBMODULE, or BLOCK DATA statement
USE statements

IMPORT statements
IMPLICIT NONE

PARAMETER IMPLICIT
statements statements

FORMAT
and PARAMETER Specification constructs

ENTRY and DATA and statement function statements
statements statements

DATA Executable
statements constructs

CONTAINS statement
Internal subprograms

or module subprograms
END statement

1 The syntax rules of 5.1 specify the statement order within program units and subprograms. These rules are18
illustrated in Table 5.1 and Table 5.2. Table 5.1 shows the ordering rules for statements and applies to all19
program units, subprograms, and interface bodies. Vertical lines delineate varieties of statements that can be20

36 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

interspersed and horizontal lines delineate varieties of statements that shall not be interspersed. Internal or1
module subprograms shall follow a CONTAINS statement. Between USE and CONTAINS statements in a2
subprogram, nonexecutable statements generally precede executable statements, although the ENTRY statement,3
FORMAT statement, and DATA statement may appear among the executable statements. Table 5.2 shows which4
statements are allowed in some kinds of scoping units.5

Table 5.2: Statements allowed in scoping units
Kind of scoping unit

Main Module or Block External Module Internal Interface
Statement type program submodule data subprogram subprogram subprogram body

USE Yes Yes Yes Yes Yes Yes Yes
IMPORT No Submodule No No Yes Yes Yes
ENTRY No No No Yes Yes No No

FORMAT Yes No No Yes Yes Yes No
Misc. decl.s 1 Yes Yes Yes Yes Yes Yes Yes
DATA Yes Yes Yes Yes Yes Yes No
Derived-type Yes Yes Yes Yes Yes Yes Yes
Interface Yes Yes No Yes Yes Yes Yes
Executable Yes No No Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No
Statement function Yes No No Yes Yes Yes No

(1) Miscellaneous declarations are PARAMETER statements, IMPLICIT statements, type declaration
statements, enumeration definitions, procedure declaration statements, and specification statements.

5.3.3 The END statement6

1 Each program unit, module subprogram, and internal subprogram shall have exactly one END statement. The7
end-program-stmt, end-function-stmt, end-subroutine-stmt, and end-mp-subprogram-stmt statements are execut-8
able, and may be branch target statements (11.2). Executing an end-program-stmt initiates normal termination.9
Executing an end-function-stmt, end-subroutine-stmt, or end-mp-subprogram-stmt is equivalent to executing a10
return-stmt with no scalar-int-expr.11

2 The end-module-stmt, end-submodule-stmt, and end-block-data-stmt statements are nonexecutable.12

5.3.4 Program execution13

1 Execution of a program consists of the asynchronous execution of a fixed number (which may be one) of its images.14
Each image has its own execution state, floating-point status (17.7), and set of data objects, input/output units,15
and procedure pointers. The image index that identifies an image is an integer value in the range one to the16
number of images in a team.17

2 A team is an ordered set of images that is either the initial team, consisting of all images, or a subset of a parent18
team formed by execution of a FORM TEAM statement. The initial team has no parent; every other team has19
a unique parent team. Among its sibling teams, each team is identified by its team number; this is the integer20
value that was specified in the FORM TEAM statement.21

3 During execution, each image has a current team, which is only changed by execution of CHANGE TEAM22
and END TEAM statements. Image indices, and thus coindexing of variable names with an image-selector , are23
relative to the current team unless a different team is specified. Initially, the current team is the initial team.24

J3/23-007 37

J3/23-007 WD 1539-1 2023-02-17

NOTE 1
Fortran control constructs (11.1, 11.2) control the progress of execution in each image. Image control statements
(11.7.1) affect the relative progress of execution between images. Coarrays (5.4.7) provide a mechanism for
accessing data on one image from another image.

NOTE 2
A processor might allow the number of images to be chosen at compile time, link time, or run time. It might
be the same as the number of CPUs but this is not required. Compiling for a single image might permit the
optimizer to eliminate overhead associated with parallel execution. A program that makes assumptions about
the number of images is unlikely to be portable.

5.3.5 Execution sequence1

1 Following the creation of a fixed number of images, execution begins on each image. Image execution is a2
sequence, in time, of actions. Actions take place during execution of the statement that performs them (except3
when explicitly stated otherwise). Segments (11.7.2) executed by a single image are totally ordered, and segments4
executed by separate images are partially ordered by image control statements (11.7.1).5

2 If the program contains a Fortran main program, each image begins execution with the first executable construct6
of the main program. The execution of a main program or subprogram involves execution of the executable7
constructs within its scoping unit. When a Fortran procedure is invoked, the specification expressions within8
the specification-part of the invoked procedure, if any, are evaluated in a processor dependent order. Thereafter,9
execution proceeds to the first executable construct appearing within the scoping unit of the procedure after the10
invoked entry point. With the following exceptions, the effect of execution is as if the executable constructs are11
executed in the order in which they appear in the main program or subprogram until a STOP, ERROR STOP,12
RETURN, or END statement is executed.13

• Execution of a branching statement (11.2) changes the execution sequence. These statements explicitly14
specify a new starting place for the execution sequence.15

• DO constructs, IF constructs, SELECT CASE constructs, SELECT RANK constructs, and SELECT TYPE16
constructs contain an internal statement structure and execution of these constructs involves implicit in-17
ternal transfer of control. See Clause 11 for the detailed semantics of each of these constructs.18

• A BLOCK construct may contain specification expressions; see 11.1.4 for detailed semantics of this construct.19

• An END=, ERR=, or EOR= specifier (12.11) can result in a branch.20

• An alternate return can result in a branch.21

5.3.6 Image execution states22

1 There are three image execution states: active, stopped, and failed. An image that has initiated normal termin-23
ation of execution is a stopped image. An image that has ceased participating in program execution but has not24
initiated termination is a failed image. All other images are active images.25

2 A failed image remains failed for the remainder of the execution of the program. The conditions that cause an26
image to fail are processor dependent. It is processor dependent whether the processor has the ability to detect27
that an image has failed.28

3 Defining a coindexed object on a failed image has no effect other than defining the stat-variable, if one appears,29
with the value STAT_FAILED_IMAGE (16.10.2.28). The value of a reference to a coindexed object on a failed30
image is processor dependent. Execution continues after such a reference.31

4 When an image fails during the execution of a segment, a data object on a nonfailed image becomes undefined32
if it is not a lock variable, notify variable, or event variable, and it might be defined or become undefined by33
execution of a statement of the segment other than an invocation of an atomic subroutine with the object as an34
actual argument corresponding to the ATOM dummy argument.35

38 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5.3.7 Termination of execution1

1 Termination of execution of a program is either normal termination or error termination. Normal termination2
occurs only when all images initiate normal termination and occurs in three steps: initiation, synchronization,3
and completion. In this case, all images synchronize execution at the second step so that no image starts the4
completion step until all images have finished the initiation step. Error termination occurs when any image5
initiates error termination. Once error termination has been initiated on an image, error termination is initiated6
on all images that have not already initiated error termination. Termination of execution of the program occurs7
when all images have terminated execution or failed.8

2 Normal termination of execution of an image is initiated when a STOP statement or end-program-stmt is executed.9
Normal termination of execution of an image can also be initiated during execution of a procedure defined by a10
companion processor (ISO/IEC 9899:2018, 5.1.2.2.3 and 7.22.4.4). If normal termination of execution is initiated11
within a Fortran program unit and the program incorporates procedures defined by a companion processor, the12
process of execution termination shall include the effect of executing the C exit() function (ISO/IEC 9899:2018,13
7.22.4.4) during the completion step.14

3 Error termination of execution of an image is initiated if an ERROR STOP statement is executed or as specified15
elsewhere in this document. When error termination on an image has been initiated, the processor should initiate16
error termination on other images as quickly as possible.17

4 If the processor supports the concept of a process exit status, it is recommended that error termination initiated18
other than by an ERROR STOP statement supplies a processor-dependent nonzero value as the process exit19
status.20

NOTE 1
As well as in the circumstances specified in this document, error termination might be initiated by means other
than Fortran.

NOTE 2
If an image has initiated normal termination, its data remain available for possible reference or definition by
other images that are still executing.

5.4 Data concepts21

5.4.1 Type22

5.4.1.1 General23

1 A type is a named categorization of data that, together with its type parameters, determines the set of values,24
syntax for denoting these values, and the set of operations that interpret and manipulate the values. This central25
concept is described in 7.1.26

2 A type is either an intrinsic type or a nonintrinsic type. A nonintrinsic type is defined by the program or by an27
intrinsic module.28

5.4.1.2 Intrinsic type29

1 The intrinsic types are integer, real, complex, character, and logical. The properties of intrinsic types are described30
in 7.4.31

2 All intrinsic types have a kind type parameter called KIND, which determines the representation method for the32
specified type. The intrinsic type character also has a length type parameter called LEN, which determines the33
length of the character string.34

J3/23-007 39

J3/23-007 WD 1539-1 2023-02-17

5.4.1.3 Derived type1

1 Derived types can be parameterized. A scalar object of derived type is a structure; assignment of structures2
is defined intrinsically (10.2.1.3), but there are no intrinsic operations for structures. For each derived type, a3
structure constructor is available to create values (7.5.10). In addition, objects of derived type can be used as4
procedure arguments and function results, and can appear in input/output lists. If additional operations are5
needed for a derived type, they can be defined by procedures (10.1.6).6

2 Derived types are described further in 7.5.7

5.4.2 Data value8

1 Each intrinsic type has associated with it a set of values that a datum of that type can take, depending on the9
values of the type parameters. The values for each intrinsic type are described in 7.4. The values that objects of10
a derived type can assume are determined by the type definition, type parameter values, and the sets of values of11
its components. The values that an object of a nonderived nonintrinsic type can assume are determined by the12
type definition.13

5.4.3 Data entity14

5.4.3.1 General15

1 A data entity has a type and type parameters; it might have a data value (an exception is an undefined variable).16
Every data entity has a rank and is thus either a scalar or an array.17

2 A data entity that is the result of the execution of a function reference is called the function result.18

5.4.3.2 Data object19

5.4.3.2.1 Data object classification20

1 A data object is either a constant, variable, or a subobject of a constant. The type and type parameters of a21
named data object can be specified explicitly (8.2) or implicitly (8.7).22

2 Subobjects are portions of data objects that can be referenced and defined (variables only) independently of the23
other portions.24

3 These include portions of arrays (array elements and array sections), portions of character strings (substrings),25
portions of complex objects (real and imaginary parts), and portions of structures (components). Subobjects26
are themselves data objects, but subobjects are referenced only by object designators or intrinsic functions. A27
subobject of a variable is a variable. Subobjects are described in Clause 9.28

4 The following objects are referenced by a name:29
• a named scalar (a scalar object);
• a named array (an array object).30

5 The following subobjects are referenced by an object designator:31
• an array element (a scalar subobject);
• an array section (an array subobject);
• a complex part designator (the real or imaginary part of a complex object);
• a structure component (a scalar or an array subobject);
• a substring (a scalar subobject).

32

5.4.3.2.2 Variable33

1 A variable can have a value or be undefined; during execution of a program it can be defined, redefined, or become34
undefined.35

40 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 A local variable of a module, submodule, main program, subprogram, or BLOCK construct is accessible only in1
that scoping unit or construct and in any contained scoping units and constructs.2

NOTE
A subobject of a local variable is also a local variable.

A local variable cannot be in COMMON or have the BIND attribute, because common blocks and variables with the
BIND attribute are global entities.

5.4.3.2.3 Constant3

1 A constant is either a named constant or a literal constant.4

2 Named constants are defined using the PARAMETER attribute (8.5.13, 8.6.11). The syntax of literal constants5
is described in 7.4.6

5.4.3.2.4 Subobject of a constant7

1 A subobject of a constant is a portion of a constant.8

2 In an object designator for a subobject of a constant, the portion referenced may depend on the value of a variable.9

NOTE
For example, given:

CHARACTER (LEN = 10), PARAMETER :: DIGITS = ’0123456789’
CHARACTER (LEN = 1) :: DIGIT
INTEGER :: I

...
DIGIT = DIGITS (I:I)

DIGITS is a named constant and DIGITS (I:I) designates a subobject of the constant DIGITS.

5.4.3.3 Expression10

1 An expression (10.1) produces a data entity when evaluated. An expression represents either a data object11
reference or a computation; it is formed from operands, operators, and parentheses. The type, type parameters,12
value, and rank of an expression result are determined by the rules in Clause 10.13

5.4.3.4 Function reference14

1 A function reference produces a data entity when the function is executed during expression evaluation. The15
type, type parameters, and rank of a function result are determined by the interface of the function (15.3.3). The16
value of a function result is determined by execution of the function.17

5.4.4 Definition of objects and pointers18

1 When an object is given a valid value during program execution, it becomes defined. This is often accomplished19
by execution of an assignment or input statement. When a variable does not have a predictable value, it is20
undefined.21

2 Similarly, when a pointer is associated with a target or nullified, its pointer association status becomes defined.22
When the association status of a pointer is not predictable, its pointer association status is undefined.23

3 Clause 19 describes the ways in which variables become defined and undefined and the association status of24
pointers becomes defined and undefined.25

J3/23-007 41

J3/23-007 WD 1539-1 2023-02-17

5.4.5 Reference1

1 A data object is referenced when its value is required during execution. A procedure is referenced when it is2
executed.3

2 The appearance of a data object designator or procedure designator as an actual argument does not constitute4
a reference to that data object or procedure unless such a reference is necessary to complete the specification of5
the actual argument.6

5.4.6 Array7

1 An array may have up to fifteen dimensions minus its corank, and any extent in any dimension. The size of an8
array is the total number of elements, which is equal to the product of the extents. An array may have zero9
size. The shape of an array is determined by its rank and its extent in each dimension, and is represented as10
a rank-one array whose elements are the extents. All named arrays shall be declared, and the rank of a named11
array is specified in its declaration. Except for an assumed-rank array, the rank of a named array, once declared,12
is constant.13

2 Any intrinsic operation defined for scalar objects may be applied to conformable objects. Such operations are14
performed elementally to produce a resultant array conformable with the array operands. If an elemental operation15
is intrinsically pure or is implemented by a pure elemental function (15.9), the element operations can be performed16
simultaneously or in any order.17

3 A rank-one array can be constructed from scalars and other arrays and can be reshaped into any allowable array18
shape (7.8).19

4 Arrays are described further in 9.5.20

5.4.7 Coarray21

1 A coarray is a component (7.5.4.3), or variable (9.2), that has nonzero corank. A coarray variable can be directly22
referenced or defined by other images. It may be a scalar or an array.23

2 Requirements and semantics for coarrays that refer to properties that are possessed by variables, but not by type24
components, only apply to coarray variables.25

3 For each coarray on an image, there is a corresponding coarray with the same type, type parameters, and bounds26
on every other image of a team in which it is established (5.4.8). If a coarray is an unsaved local variable of a27
recursive procedure, its corresponding coarrays are the ones at the same depth of recursion of that procedure on28
each image.29

4 The set of corresponding coarrays on all images in a team is arranged in a rectangular pattern. The dimensions of30
this pattern are the codimensions; the number of codimensions is the corank. The bounds for each codimension31
are the cobounds.32

NOTE 1
If the total number of images is not a multiple of the product of the sizes of each but the rightmost of the
codimensions, the rectangular pattern will be incomplete.

5 A coarray on any image can be accessed directly by using cosubscripts. On its own image, a coarray can also be33
accessed without use of cosubscripts.34

6 A subobject of a coarray is a coarray if it does not have any cosubscripts, vector subscripts, allocatable component35
selection, or pointer component selection.36

7 For a coindexed object, its cosubscript list determines the image index (9.6) in the same way that a subscript list37
determines the subscript order value for an array element (9.5.3.3).38

42 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

8 Intrinsic procedures are provided for mapping between an image index and a list of cosubscripts.1

NOTE 2
The mechanism for an image to reference and define a coarray on another image might vary according to the
hardware. On a shared-memory machine, a coarray on an image and the corresponding coarrays on other images
could be implemented as a sequence of arrays with evenly spaced starting addresses. On a distributed-memory
machine with separate physical memory for each image, a processor might store a coarray at the same virtual
address in each physical memory.

NOTE 3
Except in contexts where coindexed objects are disallowed, accessing a coarray on its own image by using a set
of cosubscripts that specify that image has the same effect as accessing it without cosubscripts. In particular,
the segment ordering rules (11.7.2) apply whether or not cosubscripts are used to access the coarray.

5.4.8 Established coarrays2

1 A nonallocatable coarray with the SAVE attribute is established in the initial team.3

2 An allocated allocatable coarray is established in the team in which it was allocated. An unallocated allocatable4
coarray is not established.5

3 A coarray that is established in the team in which a CHANGE TEAM statement is executed is established in6
the team of the CHANGE TEAM construct.7

4 A coarray that is an associating entity in a coarray-association of a CHANGE TEAM statement is established8
in the team of its CHANGE TEAM construct.9

5 A nonallocatable coarray that is an associating entity in an ASSOCIATE, SELECT RANK, or SELECT TYPE10
construct is established in the team in which the ASSOCIATE, SELECT RANK, or SELECT TYPE statement11
is executed.12

6 A nonallocatable coarray that is a dummy argument or host associated with a dummy argument is established13
in the team in which the procedure was invoked. A nonallocatable coarray dummy argument is not established14
in any ancestor team even if the corresponding actual argument is established in one or more of them.15

5.4.9 Pointer16

1 A pointer has an association status which is either associated, disassociated, or undefined (19.5.2.2).17

2 A pointer that is not associated shall not be referenced or defined.18

3 If a data pointer is an array, the rank is declared, but the bounds are determined when it is associated with a19
target.20

5.4.10 Allocatable variables21

1 The allocation status of an allocatable variable is either allocated or unallocated. An allocatable variable becomes22
allocated as described in 9.7.1.3. It becomes unallocated as described in 9.7.3.2.23

2 An unallocated allocatable variable shall not be referenced or defined.24

3 If an allocatable variable is an array, the rank is declared, but the bounds are determined when it is allocated. If25
an allocatable variable is a coarray, the corank is declared, but the cobounds are determined when it is allocated.26

J3/23-007 43

J3/23-007 WD 1539-1 2023-02-17

5.4.11 Storage1

1 Many of the facilities of this document make no assumptions about the physical storage characteristics of data2
objects. However, program units that include storage association dependent features shall observe the storage3
restrictions described in 19.5.3.4

5.5 Fundamental concepts5

5.5.1 Names and designators6

1 A name is used to identify a program constituent, such as a program unit, named variable, named constant,7
dummy argument, or nonintrinsic type.8

2 A designator is used to identify a program constituent or a part thereof.9

5.5.2 Statement keyword10

1 A statement keyword is not a reserved word; that is, a name with the same spelling is allowed. In the syntax11
rules, such keywords appear literally. In descriptive text, this meaning is denoted by the term “keyword” without12
any modifier. Examples of statement keywords are IF, READ, UNIT, KIND, and INTEGER.13

5.5.3 Other keywords14

1 Other keywords denote names that identify items in a list. In this case, items are identified by a preceding15
keyword= rather than their position within the list.16

2 An argument keyword is the name of a dummy argument in the interface for the procedure being referenced, and17
can appear in an actual argument list. A type parameter keyword is the name of a type parameter in the type18
being specified, and can appear in a type-param-spec. A component keyword is the name of a component in a19
structure constructor.20

R516 keyword is name21

NOTE
Use of keywords rather than position to identify items in a list can make such lists more readable and allows
them to be reordered. This facilitates specification of a list in cases where optional items are omitted.

5.5.4 Association22

1 Name association (19.5.1) permits an entity to be identified by different names in the same scoping unit or by23
the same name or different names in different scoping units.24

2 Pointer association (19.5.2) between a pointer and a target allows the target to be denoted by the pointer.25

3 Storage association (19.5.3) causes different entities to use the same storage.26

4 Inheritance association (19.5.4) occurs between components of the parent component and components inherited27
by type extension.28

5.5.5 Intrinsic29

1 All intrinsic types, procedures, assignments, and operators may be used in any scoping unit without further30
definition or specification. Intrinsic modules (16.10, 17, 18.2) may be accessed by use association.31

44 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5.5.6 Operator1

1 This document specifies a number of intrinsic operators (e.g., the arithmetic operators +, –, *, /, and ** with2
numeric operands and the logical operators .AND., .OR., etc. with logical operands). Additional operators can3
be defined within a program (7.5.5, 15.4.3.4).4

5.5.7 Companion processors5

1 A processor has one or more companion processors. A companion processor can be a mechanism that references6
and defines such entities by a means other than Fortran (15.6.3), it can be the Fortran processor itself, or it can7
be another Fortran processor. If there is more than one companion processor, the means by which the Fortran8
processor selects among them are processor dependent.9

2 If a procedure is defined by means of a companion processor that is not the Fortran processor itself, this document10
refers to the C function that defines the procedure, although the procedure need not be defined by means of the11
C programming language.12

NOTE
A companion processor might or might not be a mechanism that conforms to the requirements of ISO/IEC
9899:2018. If it does, 5.3.7 states that a program unit that is defined by means other than Fortran and that
initiates normal termination is required to include the effect of executing the C exit() function.

For example, a processor might allow a procedure defined by some language other than Fortran or C to be
invoked if it can be described by a C prototype as defined in ISO/IEC 9899:2018, 6.7.6.3.

J3/23-007 45

J3/23-007 WD 1539-1 2023-02-17

6 Lexical tokens and source form1

6.1 Processor character set2

6.1.1 Characters3

1 The processor character set is processor dependent. Each character in a processor character set is either a control4
character or a graphic character. The set of graphic characters is further divided into letters (6.1.2), digits (6.1.3),5
underscore (6.1.4), special characters (6.1.5), and other characters (6.1.6).6

2 The letters, digits, underscore, and special characters make up the Fortran character set. Together, the set of7
letters, digits, and underscore define the syntax class alphanumeric-character .8

R601 alphanumeric-character is letter9
or digit10
or underscore11

3 Except for the currency symbol, the graphics used for the characters shall be as given in 6.1.2, 6.1.3, 6.1.4, and12
6.1.5. However, the style of any graphic is not specified.13

6.1.2 Letters14

1 The twenty-six letters are:15

2 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z16

3 The set of letters defines the syntactic class letter . The processor character set shall include lower-case and upper-17
case letters. A lower-case letter is equivalent to the corresponding upper-case letter in program units except in a18
character context (3.21).19

NOTE
The following statements are equivalent:

CALL BIG_COMPLEX_OPERATION (NDATE)
call big_complex_operation (ndate)
Call Big_Complex_Operation (NDate)

6.1.3 Digits20

1 The ten digits are:21

2 0 1 2 3 4 5 6 7 8 922

3 The ten digits define the syntactic class digit.23

6.1.4 Underscore24

R602 underscore is _25

6.1.5 Special characters26

1 The special characters are shown in Table 6.1.27

46 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Table 6.1: Special characters
Character Name of character Character Name of character

Blank ; Semicolon
= Equals ! Exclamation point
+ Plus " Quotation mark or quote
- Minus % Percent
* Asterisk & Ampersand
/ Slash ~ Tilde
\ Backslash < Less than
(Left parenthesis > Greater than
) Right parenthesis ? Question mark
[Left square bracket ’ Apostrophe
] Right square bracket ` Grave accent
{ Left curly bracket ^ Circumflex accent
} Right curly bracket | Vertical line
, Comma $ Currency symbol
. Decimal point or period # Number sign
: Colon @ Commercial at

2 Some of the special characters are used for operator symbols, bracketing, and various forms of separating and1
delimiting other lexical tokens.2

6.1.6 Other characters3

1 Additional characters may be representable in the processor, but shall appear only in comments (6.3.2.3, 6.3.3.2),4
character constants (7.4.4), input/output records (12.2.2), and character string edit descriptors (13.3.2).5

6.2 Low-level syntax6

6.2.1 Tokens7

1 The low-level syntax describes the fundamental lexical tokens of a program unit. A lexical token is a keyword,8
name, literal constant other than a complex literal constant, .NIL., operator, statement label, delimiter, comma,9
=, =>, :, ::, ;, .., ?, or %.10

6.2.2 Names11

1 Names are used for various entities such as variables, program units, dummy arguments, named constants, and12
nonintrinsic types.13

R603 name is letter [alphanumeric-character] ...14

C601 (R603) The maximum length of a name is 63 characters.15

NOTE 1
Examples of names:

A1
NAME_LENGTH (single underscore)
S_P_R_E_A_D__O_U_T (two consecutive underscores)
TRAILER_ (trailing underscore)

J3/23-007 47

J3/23-007 WD 1539-1 2023-02-17

NOTE 2
The word “name” always denotes this particular syntactic form. The word “identifier” is used where entities
can be identified by other syntactic forms or by values; its particular meaning depends on the context in which
it is used.

6.2.3 Constants1

R604 constant is literal-constant2
or named-constant3

R605 literal-constant is int-literal-constant4
or real-literal-constant5
or complex-literal-constant6
or logical-literal-constant7
or char-literal-constant8
or boz-literal-constant9

R606 named-constant is name10

R607 int-constant is constant11

C602 (R607) int-constant shall be of type integer.12

6.2.4 Operators13

R608 intrinsic-operator is power-op14
or mult-op15
or add-op16
or concat-op17
or rel-op18
or not-op19
or and-op20
or or-op21
or equiv-op22

R1008 power-op is **23

R1009 mult-op is *24
or /25

R1010 add-op is +26
or –27

R1012 concat-op is //28

R1014 rel-op is .EQ.29
or .NE.30
or .LT.31
or .LE.32
or .GT.33
or .GE.34
or ==35
or /=36
or <37
or <=38
or >39
or >=40

48 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R1019 not-op is .NOT.1

R1020 and-op is .AND.2

R1021 or-op is .OR.3

R1022 equiv-op is .EQV.4
or .NEQV.5

R609 defined-operator is defined-unary-op6
or defined-binary-op7
or extended-intrinsic-op8

R1004 defined-unary-op is . letter [letter]9

R1024 defined-binary-op is . letter [letter]10

R610 extended-intrinsic-op is intrinsic-operator11

6.2.5 Statement labels12

1 A statement label provides a means of referring to an individual statement.13

R611 label is digit [digit [digit [digit [digit]]]]14

C603 (R611) At least one digit in a label shall be nonzero.15

2 If a statement is labeled, the statement shall contain a nonblank character. The same statement label shall not16
be given to more than one statement in its scope. Leading zeros are not significant in distinguishing between17
statement labels. There are 99999 possible unique statement labels and a processor shall accept any of them as18
a statement label. However, a processor may have a limit on the total number of unique statement labels in one19
program unit.20

NOTE
For example:

99999
10
010

are all statement labels. The last two are equivalent.

3 Any statement that is not part of another statement, and that is not preceded by a semicolon in fixed form, may begin21
with a statement label, but the labels are used only in the following ways.22

• The label on a branch target statement (11.2) is used to identify that statement as the possible destination23
of a branch.24

• The label on a FORMAT statement (13.2.1) is used to identify that statement as the format specification25
for a data transfer statement (12.6).26

• In some forms of the DO construct (11.1.7), the terminal statement of the construct is identified by a label.27

6.2.6 Delimiters28

1 A lexical token that is a delimiter is a (,), /, [,], (/, or /).29

J3/23-007 49

J3/23-007 WD 1539-1 2023-02-17

6.3 Source form1

6.3.1 Program units, statements, and lines2

1 A Fortran program unit is a sequence of one or more lines, organized as Fortran statements, comments, and3
INCLUDE lines. A line is a sequence of zero or more characters. Lines following a program unit END statement4
are not part of that program unit. A Fortran statement is a sequence of one or more complete or partial lines.5

2 A comment may contain any character that may occur in any character context.6

3 There are two source forms. The rules in 6.3.2 apply only to free form source. The rules in 6.3.3 apply only to fixed source7
form. Free form and fixed form shall not be mixed in the same program unit. The means for specifying the source form of a program8
unit are processor dependent.9

6.3.2 Free source form10

6.3.2.1 Free form line length11

1 In free source form there are no restrictions on where a statement (or portion of a statement) can appear within12
a line. A line may contain zero characters. A line shall contain at most ten thousand characters.13

6.3.2.2 Blank characters in free form14

1 In free source form blank characters shall not appear within lexical tokens other than in a character context or in15
a format specification. Blanks may be inserted freely between tokens to improve readability; for example, blanks16
may occur between the tokens that form a complex literal constant. A sequence of blank characters outside of a17
character context is equivalent to a single blank character.18

2 A blank shall be used to separate names, constants, or labels from adjacent keywords, names, constants, or labels.19

NOTE
For example, the blanks after REAL, READ, 30, and DO are required in the following:

REAL X
READ 10
30 DO K=1,3

3 One or more blanks shall be used to separate adjacent keywords except in the following cases, where blanks are20
optional:21

Table 6.2: Adjacent keywords where separating blanks are optional

BLOCK DATA END FILE END SUBROUTINE
DOUBLE PRECISION END FORALL END TEAM
ELSE IF END FUNCTION END TYPE
ELSE WHERE END IF END WHERE
END ASSOCIATE END INTERFACE GO TO
END BLOCK END MODULE IN OUT
END BLOCK DATA END PROCEDURE SELECT CASE
END CRITICAL END PROGRAM SELECT TYPE
END DO END SELECT
END ENUM END SUBMODULE

50 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

6.3.2.3 Free form commentary1

1 The character “!” initiates a comment except where it appears within a character context. The comment extends2
to the end of the line. If the first nonblank character on a line is an “!”, the line is a comment line. Lines3
containing only blanks or containing no characters are also comment lines. Comments may appear anywhere in4
a program unit and may precede the first statement of a program unit or follow the last statement of a program5
unit. Comments have no effect on the interpretation of the program unit.6

NOTE
This document does not restrict the number of consecutive comment lines.

6.3.2.4 Free form statement continuation7

1 The character “&” is used to indicate that the statement is continued on the next line that is not a comment8
line. Comment lines cannot be continued; an “&” in a comment has no effect. Comments may occur within a9
continued statement. When used for continuation, the “&” is not part of the statement. No line shall contain10
a single “&” as the only nonblank character or as the only nonblank character before an “!” that initiates a11
comment.12

2 If a noncharacter context is to be continued, an “&” shall be the last nonblank character on the line, or the last13
nonblank character before an “!”. There shall be a later line that is not a comment; the statement is continued14
on the next such line. If the first nonblank character on that line is an “&”, the statement continues at the next15
character position following that “&”; otherwise, it continues with the first character position of that line.16

3 If a lexical token is split across the end of a line, the first nonblank character on the first following noncomment17
line shall be an “&” immediately followed by the successive characters of the split token.18

4 If a character context is to be continued, an “&” shall be the last nonblank character on the line. There shall be19
a later line that is not a comment; an “&” shall be the first nonblank character on the next such line and the20
statement continues with the next character following that “&”.21

6.3.2.5 Free form statement termination22

1 If a statement is not continued, a comment or the end of the line terminates the statement.23

2 A statement may alternatively be terminated by a “;” character that appears other than in a character context24
or in a comment. The “;” is not part of the statement. After a “;” terminator, another statement may appear25
on the same line, or begin on that line and be continued. A sequence consisting only of zero or more blanks and26
one or more “;” terminators, in any order, is equivalent to a single “;” terminator.27

6.3.2.6 Free form statements28

1 A label may precede any statement not forming part of another statement.29

NOTE
No Fortran statement begins with a digit.

2 A statement shall not have more than one million characters.30

6.3.3 Fixed source form31

6.3.3.1 General32

1 In fixed source form, there are restrictions on where a statement can appear within a line. If a source line contains only characters33
of default kind, it shall contain exactly 72 characters; otherwise, its maximum number of characters is processor dependent.34

2 Except in a character context, blanks are insignificant and may be used freely throughout the program.35

J3/23-007 51

J3/23-007 WD 1539-1 2023-02-17

6.3.3.2 Fixed form commentary1

1 The character “!” initiates a comment except where it appears within a character context or in character position 6. The comment2
extends to the end of the line. If the first nonblank character on a line is an “!” in any character position other than character3
position 6, the line is a comment line. Lines beginning with a “C” or “*” in character position 1 and lines containing only blanks are4
also comment lines. Comments may appear anywhere in a program unit and may precede the first statement of the program unit or5
follow the last statement of a program unit. Comments have no effect on the interpretation of the program unit.6

NOTE
This document does not restrict the number of consecutive comment lines.

6.3.3.3 Fixed form statement continuation7

1 Except within commentary, character position 6 is used to indicate continuation. If character position 6 contains a blank or zero, the8
line is the initial line of a new statement, which begins in character position 7. If character position 6 contains any character other9
than blank or zero, character positions 7–72 of the line constitute a continuation of the preceding noncomment line.10

NOTE
An “!” or “;” in character position 6 is interpreted as a continuation indicator unless it appears within commentary indicated by a
“C” or “*” in character position 1 or by an “!” in character positions 1–5.

2 Comment lines cannot be continued. Comment lines may occur within a continued statement.11

6.3.3.4 Fixed form statement termination12

1 If a statement is not continued, a comment or the end of the line terminates the statement.13

2 A statement may alternatively be terminated by a “;” character that appears other than in a character context, in a comment, or in14
character position 6. The “;” is not part of the statement. After a “;” terminator, another statement may begin on the same line, or15
begin on that line and be continued. A “;” shall not appear as the first nonblank character on an initial line. A sequence consisting16
only of zero or more blanks and one or more “;” terminators, in any order, is equivalent to a single “;” terminator.17

6.3.3.5 Fixed form statements18

1 A label, if it appears, shall occur in character positions 1 through 5 of the first line of a statement; otherwise, positions 1 through19
5 shall be blank. Blanks may appear anywhere within a label. A statement following a “;” on the same line shall not be labeled.20
Character positions 1 through 5 of any continuation lines shall be blank. A statement shall not have more than one million characters.21
The program unit END statement shall not be continued. A statement whose initial line appears to be a program unit END statement22
shall not be continued.23

6.4 Including source text24

1 Additional text can be incorporated into the source text of a program unit during processing. This is accomplished25
with the INCLUDE line, which has the form26

INCLUDE char-literal-constant27

2 The char-literal-constant shall not have a kind type parameter value that is a named-constant.28

3 An INCLUDE line is not a Fortran statement.29

4 An INCLUDE line shall appear on a single source line where a statement can appear; it shall be the only nonblank30
text on this line other than an optional trailing comment. Thus, a statement label is not allowed.31

5 The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE line prior32
to program processing. Included text may contain any source text, including additional INCLUDE lines; such33
nested INCLUDE lines are similarly replaced with the specified source text. The maximum depth of nesting of34
any nested INCLUDE lines is processor dependent. Inclusion of the source text referenced by an INCLUDE line35
shall not, at any level of nesting, result in inclusion of the same source text.36

52 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

6 When an INCLUDE line is resolved, the first included statement line shall not be a continuation line and the last1
included statement line shall not be continued.2

7 The interpretation of char-literal-constant is processor dependent. An example of a possible valid interpretation3
is that char-literal-constant is the name of a file that contains the source text to be included.4

NOTE
In some circumstances, for example where source code is maintained in an INCLUDE file for use in programs whose source form
might be either fixed or free, observing the following rules allows the code to be used with either source form.

• Confine statement labels to character positions 1 to 5 and statements to character positions 7 to 72.
• Treat blanks as being significant.
• Use only the exclamation mark (!) to indicate a comment, but do not start the comment in character position 6.
• For continued statements, place an ampersand (&) in both character position 73 of a continued line and character position

6 of a continuation line.

J3/23-007 53

J3/23-007 WD 1539-1 2023-02-17

7 Types1

7.1 Characteristics of types2

7.1.1 The concept of type3

1 Fortran provides an abstract means whereby data can be categorized without relying on a particular physical4
representation. This abstract means is the concept of type.5

2 A type has a name, a set of valid values, a means to denote such values (constants), and a set of operations to6
manipulate the values.7

7.1.2 Type classification8

1 A type is either an intrinsic type or a nonintrinsic type.9

2 This document defines five intrinsic types: integer, real, complex, character, and logical.10

3 A derived type is one that is defined by a derived-type definition (7.5.2) or by an intrinsic module. An enum11
type is one that is defined by an enum type definition (7.6.1) or by an intrinsic module. An enumeration type12
is one that is defined by an enumeration type definition (7.6.2) or by an intrinsic module. A nonintrinsic type13
name shall be used only where it is accessible (7.5.2.2). An intrinsic type is always accessible.14

7.1.3 Set of values15

1 For each type, there is a set of valid values. The set of valid values for logical is completely determined by this16
document. The sets of valid values for integer, character, and real are processor dependent. The set of valid17
values for complex consists of the set of all the combinations of the values of the real and imaginary parts. The18
set of valid values for a derived type is as defined in 7.5.8. The set of valid values for an enum type is as defined19
in 7.6.1. The set of valid values for an enumeration type is as defined in 7.6.2.20

7.1.4 Constants21

1 The syntax for denoting a value indicates the type, type parameters, and the particular value.22

2 The syntax for literal constants of each intrinsic type is specified in 7.4.23

3 A structure constructor (7.5.10) that is a constant expression (10.1.12) denotes a scalar constant value of derived24
type. An enum constructor (7.6.1) that is a constant expression denotes a scalar constant value of enum type.25
An enumeration constructor (7.6.2) that is a constant expression denotes a scalar constant value of enumeration26
type. An array constructor (7.8) that is a constant expression denotes a constant array value of intrinsic or27
nonintrinsic type.28

4 A constant value can be named (8.5.13, 8.6.11).29

7.1.5 Operations30

1 For each of the intrinsic types, a set of operations and corresponding operators is defined intrinsically. These are31
described in Clause 10. The intrinsic set can be augmented with operations and operators defined by functions32
with the OPERATOR interface (15.4.3.2). Operator definitions are described in Clauses 10 and 15.33

2 For derived types, there are no intrinsic operations. Operations on derived types can be defined by the program34
(7.5.11).35

54 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3 For an enum or enumeration type, a set of intrinsic operations is defined intrinsically as described in Clause 10.1
The intrinsic set can be augmented with operations and operators defined by the program.2

7.2 Type parameters3

1 If a type has type parameters, the set of values, the syntax for denoting the values, and the set of operations on4
the values of the type depend on the values of the parameters.5

2 A type parameter is either a kind type parameter or a length type parameter. All type parameters are of type6
integer. A kind type parameter participates in generic resolution (15.5.5.2), but a length type parameter does7
not.8

3 Each intrinsic type has a kind type parameter named KIND. The intrinsic character type has a length type9
parameter named LEN. A derived type can have type parameters.10

4 A type parameter value can be specified by a type specification (7.4, 7.5.9).11

R701 type-param-value is scalar-int-expr12
or *13
or :14

C701 (R701) The type-param-value for a kind type parameter shall be a constant expression.15

C702 (R701) A colon shall not be used as a type-param-value except in the declaration of an entity that has16
the POINTER or ALLOCATABLE attribute.17

5 A colon as a type-param-value specifies a deferred type parameter.18

6 The values of the deferred type parameters of an object are determined by successful execution of an ALLOCATE19
statement (9.7.1), execution of an intrinsic assignment statement (10.2.1.3), execution of a pointer assignment20
statement (10.2.2), or by argument association (15.5.2).21

NOTE 1
Deferred type parameters of functions, including function procedure pointers, have no values. Instead, they
indicate that those type parameters of the function result will be determined by execution of the function, if it
returns an allocated allocatable result or an associated pointer result.

7 An asterisk as a type-param-value specifies that a length type parameter is an assumed type parameter. It is used22
for a dummy argument to assume the type parameter value from the effective argument, for an associate name23
in a SELECT TYPE construct to assume the type parameter value from the corresponding selector, and for a24
named constant of type character to assume the character length from the constant-expr .25

NOTE 2
The value of a kind type parameter is always known at compile time. Some parameterizations that involve
multiple representation forms need to be distinguished at compile time for practical implementation and per-
formance. Examples include the multiple precisions of the intrinsic real type and the possible multiple character
sets of the intrinsic character type.

The adjective “length” is used for type parameters other than kind type parameters because they often specify a
length, as for intrinsic character type. However, they can be used for other purposes. The important difference
from kind type parameters is that their values need not be known at compile time and might change during
execution.

J3/23-007 55

J3/23-007 WD 1539-1 2023-02-17

7.3 Types, type specifiers, and values1

7.3.1 Relationship of types and values to objects2

1 The name of a type serves as a type specifier and can be used to declare objects of that type. A declaration can3
specify the type of a named object. A data object can be declared explicitly or implicitly. A data object has4
attributes in addition to its type. Clause 8 describes the way in which a data object is declared and how its type5
and other attributes are specified.6

2 An array is formed of scalar data of an intrinsic or nonintrinsic type, and has the same type and type parameters7
as its elements.8

3 A variable is a data object. The type and type parameters of a variable determine which values that variable can9
take. Assignment (10.2) provides one means of changing the value of a variable.10

4 The type of a variable determines the operations that can be used to manipulate the variable.11

7.3.2 Type specifiers and type compatibility12

7.3.2.1 Type specifier syntax13

1 A type specifier specifies a type and type parameter values. It is either a type-spec or a declaration-type-spec.14

R702 type-spec is intrinsic-type-spec15
or derived-type-spec16
or enum-type-spec17
or enumeration-type-spec18

C703 (R702) The derived-type-spec shall not specify an abstract type (7.5.7).19

R703 declaration-type-spec is intrinsic-type-spec20
or TYPE (intrinsic-type-spec)21
or TYPE (derived-type-spec)22
or TYPE (enum-type-spec)23
or TYPE (enumeration-type-spec)24
or CLASS (derived-type-spec)25
or CLASS (*)26
or TYPE (*)27
or TYPEOF (data-ref)28
or CLASSOF (data-ref)29

C704 (R703) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk shall be a30
specification expression.31

C705 (R703) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify an ex-32
tensible type (7.5.7).33

C706 (R703) TYPE(derived-type-spec) shall not specify an abstract type (7.5.7).34

C707 (R702) In TYPE(intrinsic-type-spec) the intrinsic-type-spec shall not end with a comma.35

C708 An entity declared with the CLASS or CLASSOF keyword shall be a dummy argument or have the36
ALLOCATABLE or POINTER attribute.37

C709 A TYPEOF or CLASSOF specifier shall appear only in a type declaration statement or component38
definition statement.39

C710 The data-ref in a TYPEOF or CLASSOF specifier shall have its type and type parameters previously40
declared or established by the implicit typing rules.41

56 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C711 The data-ref in a TYPEOF specifier shall not be unlimited polymorphic or of abstract type.1

C712 The data-ref in a CLASSOF specifier shall not be assumed-type or of intrinsic type.2

C713 If the data-ref in a TYPEOF or CLASSOF specifier has the OPTIONAL attribute, it shall not have a3
deferred or assumed type parameter.4

2 An intrinsic-type-spec specifies the named intrinsic type and its type parameter values. A derived-type-spec5
specifies the named derived type and its type parameter values. An enum-type-spec specifies the named enum6
type. An enumeration-type-spec specifies the named enumeration type.7

3 TYPEOF and CLASSOF with a data-ref that is not unlimited polymorphic specify the same type and type8
parameter values as the declared type and type parameter values of data-ref , except that they specify that a type9
parameter is deferred if it is deferred in data-ref . An entity declared with CLASSOF is polymorphic, and one10
declared with TYPEOF is not polymorphic. If a data-ref is CLASS (*), CLASSOF (data-ref) is equivalent to a11
CLASS (*) specifier.12

NOTE 1
A type-spec is used in an array constructor, a SELECT TYPE construct, or an ALLOCATE statement. An
integer-type-spec is used in a DO CONCURRENT or FORALL statement. Elsewhere, a declaration-type-spec is
used.

NOTE 2
Note that TYPEOF and CLASSOF declare entities whose type parameters depend on those of the data-ref ,
they are not equivalent to simply repeating the declaration of the data-ref . For example, if the data-ref has an
assumed type parameter, the entities declared have the same values for that type parameter as data-ref , they
are not assumed (even if they are dummy arguments).

7.3.2.2 TYPE type specifier13

1 A TYPE type specifier is used to declare entities that are assumed-type, or of an intrinsic or nonintrinsic type.14

2 A derived-type-spec, enum-type-spec, or enumeration-type-spec in a TYPE type specifier in a type declaration15
statement shall specify a previously defined type. If the data entity is a function result, the type may be specified16
in the FUNCTION statement provided the type is defined within the body of the function or is accessible there17
by use or host association. If the type is specified in the FUNCTION statement and is defined within the body18
of the function, it is as if the function result were declared with that type immediately following the definition of19
the specified type.20

3 An entity that is declared using the TYPE(*) type specifier is assumed-type and is an unlimited polymorphic21
entity. It is not declared to have a type, and is not considered to have the same declared type as any other entity,22
including another unlimited polymorphic entity. Its dynamic type and type parameters are assumed from its23
effective argument.24

C714 An assumed-type entity shall be a dummy data object that does not have the ALLOCATABLE, CODI-25
MENSION, INTENT (OUT), POINTER, or VALUE attribute and is not an explicit-shape array.26

C715 An assumed-type variable name shall not appear in a designator or expression except as an actual27
argument corresponding to a dummy argument that is assumed-type, or as the first argument to the28
intrinsic function IS_CONTIGUOUS, LBOUND, PRESENT, RANK, SHAPE, SIZE, or UBOUND, or29
the function C_LOC from the intrinsic module ISO_C_BINDING.30

C716 An assumed-type actual argument that corresponds to an assumed-rank dummy argument shall be31
assumed-shape or assumed-rank.32

J3/23-007 57

J3/23-007 WD 1539-1 2023-02-17

7.3.2.3 CLASS type specifier1

1 The CLASS type specifier is used to declare polymorphic entities. A polymorphic entity is a data entity that is2
able to be of differing dynamic types during program execution.3

2 A derived-type-spec in a CLASS type specifier in a type declaration statement shall specify a previously defined4
derived type. If the data entity is a function result, the derived type may be specified in the FUNCTION5
statement provided the derived type is defined within the body of the function or is accessible there by use or6
host association. If the derived type is specified in the FUNCTION statement and is defined within the body7
of the function, it is as if the function result were declared with that derived type immediately following its8
derived-type-def .9

3 The declared type of a polymorphic entity is the specified type if the CLASS type specifier contains a type name.10

4 An entity declared with the CLASS(*) specifier is an unlimited polymorphic entity. It is not declared to have11
a type, and is not considered to have the same declared type as any other entity, including another unlimited12
polymorphic entity.13

5 The dynamic type of an allocated allocatable polymorphic object is the type with which it was allocated. The14
dynamic type of an associated polymorphic pointer is the dynamic type of its target. The dynamic type of a15
nonallocatable nonpointer polymorphic dummy argument is the dynamic type of its effective argument. The16
dynamic type of an unallocated allocatable object or a disassociated pointer is the same as its declared type. The17
dynamic type of an entity identified by an associate name (11.1.3) is the dynamic type of the selector with which18
it is associated. The dynamic type of an object that is not polymorphic is its declared type.19

7.3.3 Type compatibility20

1 A nonpolymorphic entity is type compatible only with entities of the same declared type, except that an entity21
of an enum type is also type compatible with an expression of type integer if the expression has a primary22
that is an enumerator of that enum type. A polymorphic entity that is not an unlimited polymorphic entity23
is type compatible with entities of the same declared type or any of its extensions. Even though an unlimited24
polymorphic entity is not considered to have a declared type, it is type compatible with all entities. An entity is25
type compatible with a type if it is type compatible with entities of that type.26

NOTE
Given

TYPE TROOT
...
TYPE,EXTENDS(TROOT) :: TEXTENDED
...
CLASS(TROOT) A
CLASS(TEXTENDED) B
...

A is type compatible with B but B is not type compatible with A.

2 A polymorphic allocatable object may be allocated to be of any type with which it is type compatible. A27
polymorphic pointer or dummy argument may, during program execution, be associated with objects with which28
it is type compatible.29

58 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7.4 Intrinsic types1

7.4.1 Classification and specification2

1 Each intrinsic type is classified as a numeric type or a nonnumeric type. The numeric types are integer, real, and3
complex. The nonnumeric intrinsic types are character and logical.4

2 Each intrinsic type has a kind type parameter named KIND; this type parameter is of type integer with default5
kind.6

R704 intrinsic-type-spec is integer-type-spec7
or REAL [kind-selector]8
or DOUBLE PRECISION9
or COMPLEX [kind-selector]10
or CHARACTER [char-selector]11
or LOGICAL [kind-selector]12

R705 integer-type-spec is INTEGER [kind-selector]13

R706 kind-selector is ([KIND =] scalar-int-constant-expr)14

C717 (R706) The value of scalar-int-constant-expr shall be nonnegative and shall specify a representation15
method that exists on the processor.16

7.4.2 Intrinsic operations on intrinsic types17

1 Intrinsic numeric operations are defined as specified in 10.1.5.2.1 for the numeric intrinsic types. Relational18
intrinsic operations are defined as specified in 10.1.5.5 for numeric and character intrinsic types. The intrinsic19
concatenation operation is defined as specified in 10.1.5.3 for the character type. Logical intrinsic operations are20
defined as specified in 10.1.5.4 for the logical type.21

7.4.3 Numeric intrinsic types22

7.4.3.1 Integer type23

1 The set of values for the integer type is a subset of the mathematical integers. The processor shall provide one or24
more representation methods that define sets of values for data of type integer. Each such method is characterized25
by a value for the kind type parameter KIND. The kind type parameter of a representation method is returned26
by the intrinsic function KIND (16.9.118). The decimal exponent range of a representation method is returned27
by the intrinsic function RANGE (16.9.170). The intrinsic function SELECTED_INT_KIND (16.9.181) returns28
a kind value based on a specified decimal exponent range requirement. The integer type includes a zero value,29
which is considered to be neither negative nor positive. The value of a signed integer zero is the same as the30
value of an unsigned integer zero.31

2 The processor shall provide at least one representation method with a decimal exponent range greater than or32
equal to 18.33

3 The type specifier for the integer type uses the keyword INTEGER.34

4 The keyword INTEGER with no kind-selector specifies type integer with default kind; the kind type parameter35
value is equal to KIND (0). The decimal exponent range of default integer shall be at least 5.36

5 Any integer value can be represented as a signed-int-literal-constant.37

R707 signed-int-literal-constant is [sign] int-literal-constant38

R708 int-literal-constant is digit-string [_ kind-param]39

R709 kind-param is digit-string40
or scalar-int-constant-name41

J3/23-007 59

J3/23-007 WD 1539-1 2023-02-17

R710 signed-digit-string is [sign] digit-string1

R711 digit-string is digit [digit] ...2

R712 sign is +3
or –4

C718 (R709) A scalar-int-constant-name shall be a named constant of type integer.5

C719 (R709) The value of kind-param shall be nonnegative.6

C720 (R708) The value of kind-param shall specify a representation method that exists on the processor.7

6 The optional kind type parameter following digit-string specifies the kind type parameter of the integer constant;8
if it does not appear, the constant is default integer.9

7 An integer constant is interpreted as a decimal value.10

NOTE
Examples of signed integer literal constants are:

473
+56
-101
21_2
21_SHORT
1976354279568241_8

where SHORT is a scalar integer named constant. A program that uses a digit-string as a kind-param is unlikely
to be portable.

7.4.3.2 Real type11

1 The real type has values that approximate the mathematical real numbers. The processor shall provide two12
or more approximation methods that define sets of values for data of type real. Each such method has a13
representation method and is characterized by a value for the kind type parameter KIND. The kind type parameter14
of an approximation method is returned by the intrinsic function KIND (16.9.118).15

2 The decimal precision, decimal exponent range, and radix of an approximation method are returned by the16
intrinsic functions PRECISION (16.9.162), RANGE (16.9.170), and RADIX (16.9.166). The intrinsic function17
SELECTED_REAL_KIND (16.9.183) returns a kind value based on specified precision, range, and radix re-18
quirements.19

NOTE 1
See C.3.1 for remarks concerning selection of approximation methods.

3 The real type includes a zero value. Processors that distinguish between positive and negative zeros shall treat20
them as mathematically equivalent21

• in all intrinsic relational operations, and22

• as actual arguments to intrinsic procedures other than those for which it is explicitly specified that negative23
zero is distinguished.24

60 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2
On a processor that distinguishes between 0.0 and −0.0,

(X >= 0.0)

evaluates to true if X = 0.0 or if X = −0.0, and
(X < 0.0)

evaluates to false for X = −0.0.

In order to distinguish between 0.0 and −0.0, a program can use the intrinsic function SIGN. SIGN (1.0, X)
will return −1.0 if X < 0.0 or if the processor distinguishes between 0.0 and −0.0 and X has the value −0.0.

4 The type specifier for the real type uses the keyword REAL. The keyword DOUBLE PRECISION is an alternative1
specifier for one kind of real type.2

5 If the type keyword REAL is used without a kind type parameter, the real type with default real kind is specified3
and the kind value is KIND (0.0). The type specifier DOUBLE PRECISION specifies type real with double4
precision kind; the kind value is KIND (0.0D0). The decimal precision of the double precision real approximation5
method shall be greater than that of the default real method.6

6 The decimal precision of double precision real shall be at least 10, and its decimal exponent range shall be at7
least 37. It is recommended that the decimal precision of default real be at least 6, and that its decimal exponent8
range be at least 37.9

R713 signed-real-literal-constant is [sign] real-literal-constant10

R714 real-literal-constant is significand [exponent-letter exponent] [_ kind-param]11
or digit-string exponent-letter exponent [_ kind-param]12

R715 significand is digit-string . [digit-string]13
or . digit-string14

R716 exponent-letter is E15
or D16

R717 exponent is signed-digit-string17

C721 (R714) If both kind-param and exponent-letter appear, exponent-letter shall be E.18

C722 (R714) The value of kind-param shall specify an approximation method that exists on the processor.19

7 A real literal constant without a kind type parameter is a default real constant if it is without an exponent part20
or has exponent letter E, and is a double precision real constant if it has exponent letter D. A real literal constant21
written with a kind type parameter is a real constant with the specified kind type parameter.22

8 The exponent represents the power of ten scaling to be applied to the significand or digit string. The meaning of23
these constants is as in decimal scientific notation.24

9 The significand may be written with more digits than a processor will use to approximate the value of the constant.25
26

NOTE 3
Examples of signed real literal constants are:

-12.78
+1.6E3
2.1
-16.E4_8
0.45D-4

J3/23-007 61

J3/23-007 WD 1539-1 2023-02-17

NOTE 3 (cont.)
10.93E7_QUAD
.123
3E4

where QUAD is a scalar integer named constant.

7.4.3.3 Complex type1

1 The complex type has values that approximate the mathematical complex numbers. The values of a complex2
type are ordered pairs of real values. The first real value is called the real part, and the second real value is called3
the imaginary part.4

2 Each approximation method used to represent data entities of type real shall be available for both the real and5
imaginary parts of a data entity of type complex. The (default integer) kind type parameter KIND for a complex6
entity specifies for both parts the real approximation method characterized by this kind type parameter value.7
The kind type parameter of an approximation method is returned by the intrinsic function KIND (16.9.118).8

3 The type specifier for the complex type uses the keyword COMPLEX. There is no keyword for double precision9
complex. If the type keyword COMPLEX is used without a kind type parameter, the complex type with default10
complex kind is specified, the kind value is KIND (0.0), and both parts are default real.11

R718 complex-literal-constant is (real-part , imag-part)12

R719 real-part is signed-int-literal-constant13
or signed-real-literal-constant14
or named-constant15

R720 imag-part is signed-int-literal-constant16
or signed-real-literal-constant17
or named-constant18

C723 (R718) Each named constant in a complex literal constant shall be of type integer or real.19

4 If the real part and the imaginary part of a complex literal constant are both real, the kind type parameter value20
of the complex literal constant is the kind type parameter value of the part with the greater decimal precision; if21
the precisions are the same, it is the kind type parameter value of one of the parts as determined by the processor.22
If a part has a kind type parameter value different from that of the complex literal constant, the part is converted23
to the approximation method of the complex literal constant.24

5 If both the real and imaginary parts are integer, they are converted to the default real approximation method25
and the constant is default complex. If only one of the parts is an integer, it is converted to the approximation26
method selected for the part that is real and the kind type parameter value of the complex literal constant is27
that of the part that is real.28

NOTE
Examples of complex literal constants are:

(1.0, -1.0)
(3, 3.1E6)
(4.0_4, 3.6E7_8)
(0., PI)

where PI is a previously declared named constant of type real.

62 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7.4.4 Character type1

7.4.4.1 Character sets2

1 The character type has a set of values composed of character strings. A character string is a sequence of characters,3
numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The number of characters in4
the string is called the length of the string. The length is a type parameter; its kind is processor dependent and5
its value is greater than or equal to zero.6

2 The processor shall provide one or more representation methods that define sets of values for data of type7
character. Each such method is characterized by a value for the (default integer) kind type parameter KIND.8
The kind type parameter of a representation method is returned by the intrinsic function KIND (16.9.118). The9
intrinsic function SELECTED_CHAR_KIND (16.9.180) returns a kind value based on the name of a character10
type. Any character of a particular representation method representable in the processor may occur in a character11
string of that representation method.12

3 The character set specified in ISO/IEC 646:1991 (International Reference Version) is referred to as the ASCII13
character set and its corresponding representation method is ASCII character kind. The character set UCS-4 as14
specified in ISO/IEC 10646 is referred to as the ISO 10646 character set and its corresponding representation15
method is the ISO 10646 character kind.16

7.4.4.2 Character type specifier17

1 The type specifier for the character type uses the keyword CHARACTER.18

2 If the type keyword CHARACTER is used without a kind type parameter, the character type with default19
character kind is specified and the kind value is KIND (’A’).20

3 The default character kind shall support a character set that includes the characters in the Fortran character21
set (6.1). The processor may support additional character sets by supplying nondefault character kinds. The22
characters available in nondefault character kinds are not specified by this document, except that one character23
in each nondefault character set shall be designated as a blank character to be used as a padding character.24

R721 char-selector is length-selector25
or (LEN = type-param-value ,26

KIND = scalar-int-constant-expr)27
or (type-param-value ,28

[KIND =] scalar-int-constant-expr)29
or (KIND = scalar-int-constant-expr30

[, LEN =type-param-value])31

R722 length-selector is ([LEN =] type-param-value)32
or * char-length [,]33

R723 char-length is (type-param-value)34
or int-literal-constant35

C724 (R721) The value of scalar-int-constant-expr shall be nonnegative and shall specify a representation36
method that exists on the processor.37

C725 (R723) The int-literal-constant shall not include a kind-param.38

C726 (R721 R722 R723) A type-param-value of * shall be used only39

• to declare a dummy argument,40

• to declare a named constant,41

• in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy argument of42
type CHARACTER with an assumed character length,43

J3/23-007 63

J3/23-007 WD 1539-1 2023-02-17

• in the type-spec or derived-type-spec of a type guard statement (11.1.11), or1

• in an external function, to declare the character length parameter of the function result.2

C727 A function name shall not be declared with an asterisk type-param-value unless it is of type CHARACTER3
and is the name of a dummy function or the name of the result of an external function.4

C728 A function name declared with an asterisk type-param-value shall not be an array, a pointer, elemental, or pure. A function5
name declared with an asterisk type-param-value shall not have the RECURSIVE attribute.6

C729 (R722) The optional comma in a length-selector is permitted only in a declaration-type-spec in a type-declaration-stmt.7

C730 (R722) The optional comma in a length-selector is permitted only if no double-colon separator appears in the type-8
declaration-stmt.9

C731 (R721) The length specified for a character statement function or for a statement function dummy argument of type10
character shall be a constant expression.11

4 The char-selector in a CHARACTER intrinsic-type-spec and the * char-length in an entity-decl or in a component-12
decl of a type definition specify character length. The * char-length in an entity-decl or a component-decl specifies13
an individual length and overrides the length specified in the char-selector , if any. If a * char-length is not specified14
in an entity-decl or a component-decl, the length-selector or type-param-value specified in the char-selector is the15
character length. If the length is not specified in a char-selector or a * char-length, the length is 1.16

5 If the character length parameter value evaluates to a negative value, the length of character entities declared17
is zero. A character length parameter value of : indicates a deferred type parameter (7.2). A char-length type18
parameter value of * has the following meanings.19

• If used to declare a dummy argument of a procedure, the dummy argument assumes its length from its20
effective argument.21

• If used to declare a named constant, the length is that of the constant value.22

• If used in the type-spec of an ALLOCATE statement, each allocate-object assumes its length from its effective23
argument.24

• If used in the type-spec of a type guard statement, the associating entity assumes its length from the selector.25

• If used to specify the character length parameter of a function result, any scoping unit invoking the function or passing it as26
an actual argument shall declare the function name with a character length parameter value other than * or access such a27
definition by argument, host, or use association. When the function is invoked, the length of the function result is assumed28
from the value of this type parameter.29

7.4.4.3 Character literal constant30

1 The syntax of a character literal constant is given by R724.31

R724 char-literal-constant is [kind-param _] ’ [rep-char] ... ’32
or [kind-param _] " [rep-char] ... "33

C732 (R724) The value of kind-param shall specify a representation method that exists on the processor.34

2 The optional kind type parameter preceding the leading delimiter specifies the kind type parameter of the char-35
acter constant; if it does not appear, the constant is default character.36

3 For the type character with kind kind-param, if it appears, and for default character otherwise, a representable37
character, rep-char , is defined as follows.38

• In free source form, it is any graphic character in the processor-dependent character set.39

• In fixed source form, it is any character in the processor-dependent character set. A processor may restrict the occurrence of40
some or all of the control characters.41

4 The delimiting apostrophes or quotation marks are not part of the value of the character literal constant.42

64 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 An apostrophe character within a character constant delimited by apostrophes is represented by two consecutive1
apostrophes (without intervening blanks); in this case, the two apostrophes are counted as one character. Sim-2
ilarly, a quotation mark character within a character constant delimited by quotation marks is represented by3
two consecutive quotation marks (without intervening blanks) and the two quotation marks are counted as one4
character.5

6 A zero-length character literal constant is represented by two consecutive apostrophes (without intervening blanks)6
or two consecutive quotation marks (without intervening blanks) outside of a character context.7

NOTE 1
Examples of character literal constants are:

"DON’T"
’DON’’T’

both of which have the value DON’T and

’’

which has the zero-length character string as its value.

NOTE 2
An example of a nondefault character literal constant, where the processor supports the corresponding character
set, is:

NIHONGO_’
� � � � � � � � � �

’

where NIHONGO is a named constant whose value is the kind type parameter for Nihongo (Japanese) characters.
This means “Without her, nothing is possible”.

7.4.4.4 Collating sequence8

1 The processor defines a collating sequence for the character set of each kind of character. The collating sequence9
is an isomorphism between the character set and the set of integers {I : 0 ≤ I < N}, where N is the number of10
characters in the set. The intrinsic functions CHAR (16.9.52) and ICHAR (16.9.105) provide conversions between11
the characters and the integers according to this mapping.12

NOTE 1
For example:

ICHAR (’X’)

returns the integer value of the character ’X’ according to the collating sequence of the processor.

2 The collating sequence of the default character kind shall satisfy the following constraints.13
• ICHAR (’A’) < ICHAR (’B’) < ... < ICHAR (’Z’) for the twenty-six upper-case letters.14

• ICHAR (’0’) < ICHAR (’1’) < ... < ICHAR (’9’) for the ten digits.15

• ICHAR (’ ’) < ICHAR (’0’) < ICHAR (’9’) < ICHAR (’A’) or16

ICHAR (’ ’) < ICHAR (’A’) < ICHAR (’Z’) < ICHAR (’0’).17

• ICHAR (’a’) < ICHAR (’b’) < ... < ICHAR (’z’) for the twenty-six lower-case letters.18

• ICHAR (’ ’) < ICHAR (’0’) < ICHAR (’9’) < ICHAR (’a’) or19

ICHAR (’ ’) < ICHAR (’a’) < ICHAR (’z’) < ICHAR (’0’).20

3 There are no constraints on the location of any other character in the collating sequence, nor is there any specified21
collating sequence relationship between the upper-case and lower-case letters.22

J3/23-007 65

J3/23-007 WD 1539-1 2023-02-17

4 The collating sequence for the ASCII character kind is as specified in ISO/IEC 646:1991 (International Reference1
Version); this collating sequence is called the ASCII collating sequence in this document. The collating sequence2
for the ISO 10646 character kind is as specified in ISO/IEC 10646.3

NOTE 2
The intrinsic functions ACHAR (16.9.3) and IACHAR (16.9.98) provide conversions between characters and
corresponding integer values according to the ASCII collating sequence.

5 The intrinsic functions LGT, LGE, LLE, and LLT (16.9.124-16.9.127) provide comparisons between strings based4
on the ASCII collating sequence. International portability is guaranteed if the set of characters used is limited5
to the Fortran character set (6.1).6

7.4.5 Logical type7

1 The logical type has two values, which represent true and false.8

2 The processor shall provide one or more representation methods for data of type logical. Each such method9
is characterized by a value for the (default integer) kind type parameter KIND. The kind type parameter of a10
representation method is returned by the intrinsic function KIND (16.9.118).11

3 The type specifier for the logical type uses the keyword LOGICAL.12

4 The keyword LOGICAL with no kind-selector specifies type logical with default kind; the kind type parameter13
value is equal to KIND (.FALSE.).14

R725 logical-literal-constant is .TRUE. [_ kind-param]15
or .FALSE. [_ kind-param]16

C733 (R725) The value of kind-param shall specify a representation method that exists on the processor.17

5 The optional kind type parameter specifies the kind type parameter of the logical constant; if it does not appear,18
the constant has the default logical kind.19

7.5 Derived types20

7.5.1 Derived type concepts21

1 Additional types can be derived from the intrinsic types and other derived types. A type definition defines the22
name of the type and the names and attributes of its components and type-bound procedures.23

2 A derived type can be parameterized by one or more type parameters, each of which is defined to be either a24
kind or length type parameter and can have a default value.25

3 The ultimate components of a derived type are the components that are of intrinsic type or have the ALLOC-26
ATABLE or POINTER attribute, plus the ultimate components of the components that are of derived type and27
have neither the ALLOCATABLE nor POINTER attribute.28

4 The direct components of a derived type are the components of that type, plus the direct components of the29
components that are of derived type and have neither the ALLOCATABLE nor POINTER attribute.30

5 The potential subobject components of a derived type are the nonpointer components of that type together with31
the potential subobject components of the nonpointer components that are of derived type. This includes all the32
components that could be a subobject of an object of the type (9.4.2).33

6 The components, direct components, potential subobject components, and ultimate components of an object of34
derived type are the components, direct components, potential subobject components, and ultimate components35
of its type, respectively.36

66 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7 By default, no storage sequence is implied by the order of the component definitions. However, a storage sequence1
is implied for a sequence type (7.5.2.3). If the derived type has the BIND attribute, the storage sequence is that2
required by the companion processor (5.5.7, 18.3.4).3

8 A scalar entity of derived type is a structure. If a derived type has the SEQUENCE attribute, a scalar entity of4
the type is a sequence structure.5

NOTE
The ultimate components of an object of the derived type kids defined below are oldest_child%name, oldest_-
child%age, and other_kids. The direct components of such an object are oldest_child%name, oldest_-
child%age, other_kids, and oldest_child.

type :: person
character(len=20) :: name
integer :: age

end type person

type :: kids
type(person) :: oldest_child
type(person), allocatable, dimension(:) :: other_kids

end type kids

7.5.2 Derived-type definition6

7.5.2.1 Syntax of a derived-type definition7

R726 derived-type-def is derived-type-stmt8
[type-param-def-stmt] ...9
[private-or-sequence] ...10
[component-part]11
[type-bound-procedure-part]12
end-type-stmt13

R727 derived-type-stmt is TYPE [[, type-attr-spec-list] ::] type-name14
[(type-param-name-list)]15

R728 type-attr-spec is ABSTRACT16
or access-spec17
or BIND (C)18
or EXTENDS (parent-type-name)19

C734 (R727) A derived type type-name shall not be DOUBLEPRECISION or the same as the name of any20
intrinsic type defined in this document.21

C735 (R727) The same type-attr-spec shall not appear more than once in a given derived-type-stmt.22

C736 The same type-param-name shall not appear more than once in a given derived-type-stmt.23

C737 (R728) A parent-type-name shall be the name of a previously defined extensible type (7.5.7).24

C738 (R726) If the type definition contains or inherits (7.5.7.2) a deferred type-bound procedure (7.5.5), AB-25
STRACT shall appear.26

C739 (R726) If ABSTRACT appears, the type shall be extensible.27

C740 (R726) If EXTENDS appears, SEQUENCE shall not appear.28

C741 (R726) If EXTENDS appears and the type being defined has a coarray potential subobject component,29
its parent type shall have a coarray potential subobject component.30

J3/23-007 67

J3/23-007 WD 1539-1 2023-02-17

C742 (R726) If EXTENDS appears and the type being defined has a potential subobject component of type1
EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE from the intrinsic module ISO_FORTRAN_ENV,2
its parent type shall be EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE, or have a potential sub-3
object component of type EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE.4

R729 private-or-sequence is private-components-stmt5
or sequence-stmt6

C743 (R726) The same private-or-sequence shall not appear more than once in a given derived-type-def .7

R730 end-type-stmt is END TYPE [type-name]8

C744 (R730) If END TYPE is followed by a type-name, the type-name shall be the same as that in the9
corresponding derived-type-stmt.10

1 Derived types with the BIND attribute are subject to additional constraints as specified in 18.3.4.11

NOTE
An example of a derived type definition is:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 50) NAME

END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:
TYPE (PERSON) :: CHAIRMAN

7.5.2.2 Accessibility12

1 The accessibility of a type name is determined as specified in 8.5.2. The accessibility of a type name does not13
affect, and is not affected by, the accessibility of its components and type-bound procedures.14

2 If a derived type is defined in the scoping unit of a module, and its name is private in that module, then the type15
name, and thus the structure constructor (7.5.10) for the type, are accessible only within that module and its16
descendants.17

NOTE
An example of a type with a private name is:

TYPE, PRIVATE :: AUXILIARY
LOGICAL :: DIAGNOSTIC
CHARACTER (LEN = 20) :: MESSAGE

END TYPE AUXILIARY

Such a type would be accessible only within the module in which it is defined, and within its descendants.

7.5.2.3 Sequence type18

R731 sequence-stmt is SEQUENCE19

C745 (R726) If SEQUENCE appears, the type shall have at least one component, each data component shall20
be declared to be of an intrinsic type or of a sequence type, the derived type shall not have any type21
parameter, and a type-bound-procedure-part shall not appear.22

1 If the SEQUENCE statement appears, the type has the SEQUENCE attribute and is a sequence type. The order23
of the component definitions in a sequence type specifies a storage sequence for objects of that type. The type24
is a numeric sequence type if there are no pointer or allocatable components, and each component is default25
integer, default real, double precision real, default complex, default logical, or of numeric sequence type. The26

68 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

type is a character sequence type if there are no pointer or allocatable components, and each component is default1
character or of character sequence type.2

NOTE 1
An example of a numeric sequence type is:

TYPE NUMERIC_SEQ
SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL
LOGICAL :: LOG_VAL

END TYPE NUMERIC_SEQ

NOTE 2
A structure resolves into a sequence of components. Unless the structure includes a SEQUENCE statement,
the use of this terminology in no way implies that these components are stored in this, or any other, order.
Nor is there any requirement that contiguous storage be used. The sequence merely refers to the fact that in
writing the definitions there will necessarily be an order in which the components appear, and this will define
a sequence of components.

This order is of limited significance because a component of an object of derived type will always be accessed
by a component name except in the following contexts:

• the sequence of expressions in a derived-type value constructor,
• intrinsic assignment,
• the sequence of data values in namelist input data, and
• and the inclusion of the structure in an input/output list of a formatted data transfer, where it is expanded

to this sequence of components.

Provided the processor adheres to the defined order in these cases, it is otherwise free to organize the storage
of the components for any nonsequence structure in memory as best suited to the particular architecture.

7.5.2.4 Determination of derived types3

1 Derived-type definitions with the same type name may appear in different scoping units, in which case they might4
be independent and describe different derived types or they might describe the same type.5

2 Two data entities have the same type if they are declared with reference to the same derived-type definition. Data6
entities also have the same type if they are declared with reference to different derived-type definitions that specify7
the same type name, all have the SEQUENCE attribute or all have the BIND attribute, have no components8
with PRIVATE accessibility, and have components that agree in order, name, and attributes. Otherwise, they9
are of different derived types. A data entity declared using a type with the SEQUENCE attribute or with the10
BIND attribute is not of the same type as an entity of a type that has any components that are PRIVATE.11

NOTE 1
An example of declaring two entities with reference to the same derived-type definition is:

TYPE POINT
REAL X, Y

END TYPE POINT
TYPE (POINT) :: X1
CALL SUB (X1)
...
CONTAINS

SUBROUTINE SUB (A)
TYPE (POINT) :: A
...

END SUBROUTINE SUB

J3/23-007 69

J3/23-007 WD 1539-1 2023-02-17

NOTE 1 (cont.)
The definition of derived type POINT is known in subroutine SUB by host association. Because the declarations
of X1 and A both reference the same derived-type definition, X1 and A have the same type. X1 and A also
would have the same type if the derived-type definition were in a module and both SUB and its containing
program unit accessed that derived type from the module.

NOTE 2
An example of data entities in different scoping units having the same type is:

PROGRAM PGM
TYPE EMPLOYEE

SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE
TYPE (EMPLOYEE) PROGRAMMER
CALL SUB (PROGRAMMER)
...

END PROGRAM PGM
SUBROUTINE SUB (POSITION)

TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION
...

END SUBROUTINE SUB

The actual argument PROGRAMMER and the dummy argument POSITION have the same type because they
are declared with reference to a derived-type definition with the same name, the SEQUENCE attribute, and
components that agree in order, name, and attributes.

Suppose the component name ID_NUMBER was ID_NUM in the subroutine. Because all the component
names are not identical to the component names in derived type EMPLOYEE in the main program, the actual
argument PROGRAMMER would not be of the same type as the dummy argument POSITION. Thus, the
program would not be standard-conforming.

NOTE 3
The requirement that the two types have the same name applies to the type-names in the respective derived
type definitions, not to local names introduced via renaming in USE statements.

7.5.3 Derived-type parameters1

7.5.3.1 Type parameter definition statement2

R732 type-param-def-stmt is integer-type-spec, type-param-attr-spec ::3
type-param-decl-list4

R733 type-param-decl is type-param-name [= scalar-int-constant-expr]5

C746 (R732) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the type-param-6
names in the derived-type-stmt of that derived-type-def .7

C747 (R732) Each type-param-name in the derived-type-stmt in a derived-type-def shall appear exactly once as8
a type-param-name in a type-param-def-stmt in that derived-type-def .9

70 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R734 type-param-attr-spec is KIND1
or LEN2

1 The derived type is parameterized if the derived-type-stmt has any type-param-names.3

2 Each type parameter is itself of type integer. If its kind selector is omitted, the kind type parameter is default4
integer.5

3 The type-param-attr-spec explicitly specifies whether a type parameter is a kind parameter or a length parameter.6

4 If a type-param-decl has a scalar-int-constant-expr , the type parameter has a default value which is specified by7
the expression. If necessary, the value is converted according to the rules of intrinsic assignment (10.2.1.3) to a8
value of the same kind as the type parameter.9

5 A type parameter may be used as a primary in a specification expression (10.1.11) in the derived-type-def . A10
kind type parameter may also be used as a primary in a constant expression (10.1.12) in the derived-type-def .11

NOTE
The following example uses derived-type parameters.

TYPE humongous_matrix(k, d)
INTEGER, KIND :: k = KIND (0.0)
INTEGER (SELECTED_INT_KIND (12)), LEN :: d

!-- Specify a potentially nondefault kind for d.
REAL (k) :: element (d, d)

END TYPE

In the following example, dim is declared to be a kind parameter, allowing generic overloading of procedures
distinguished only by dim.

TYPE general_point(dim)
INTEGER, KIND :: dim
REAL :: coordinates(dim)

END TYPE

7.5.3.2 Type parameter order12

1 Type parameter order is an ordering of the type parameters of a derived type; it is used for derived-type specifiers.13

2 The type parameter order of a nonextended type is the order of the type-param-name-list in the derived-type14
definition. The type parameter order of an extended type (7.5.7) consists of the type parameter order of its15
parent type followed by any additional type parameters in the order of the type-param-name-list in the derived-16
type definition.17

NOTE
Given

TYPE :: t1 (k1, k2)
INTEGER, KIND :: k1, k2
REAL (k1) a (k2)

END TYPE
TYPE, EXTENDS(t1) :: t2 (k3)

INTEGER, KIND :: k3
LOGICAL (k3) flag

END TYPE

the type parameter order for type t1 is k1 then k2, and the type parameter order for type t2 is k1 then k2
then k3.

J3/23-007 71

J3/23-007 WD 1539-1 2023-02-17

7.5.4 Components1

7.5.4.1 Component definition statement2

R735 component-part is [component-def-stmt] ...3

R736 component-def-stmt is data-component-def-stmt4
or proc-component-def-stmt5

R737 data-component-def-stmt is declaration-type-spec [[, component-attr-spec-list] ::]6
component-decl-list7

R738 component-attr-spec is access-spec8
or ALLOCATABLE9
or CODIMENSION lbracket coarray-spec rbracket10
or CONTIGUOUS11
or DIMENSION (component-array-spec)12
or POINTER13

R739 component-decl is component-name [(component-array-spec)]14
[lbracket coarray-spec rbracket]15
[* char-length] [component-initialization]16

R740 component-array-spec is explicit-shape-spec-list17
or deferred-shape-spec-list18

19

C748 (R737) No component-attr-spec shall appear more than once in a given component-def-stmt.20

C749 (R737) If neither the POINTER nor the ALLOCATABLE attribute is specified, the declaration-type-21
spec in the component-def-stmt shall specify an intrinsic type, or a previously defined derived, enum, or22
enumeration type.23

C750 (R737) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec shall be24
a deferred-shape-spec-list.25

C751 (R737) If a coarray-spec appears, it shall be a deferred-coshape-spec-list and the component shall have26
the ALLOCATABLE attribute.27

C752 (R737) If a coarray-spec appears, the component shall not be of type C_PTR or C_FUNPTR from28
the intrinsic module ISO_C_BINDING (18.2), or of type TEAM_TYPE from the intrinsic module29
ISO_FORTRAN_ENV (16.10.2).30

C753 A data component whose type has a coarray potential subobject component shall be a nonpointer non-31
allocatable scalar and shall not be a coarray.32

C754 (R737) If neither the POINTER nor the ALLOCATABLE attribute is specified, each component-array-33
spec shall be an explicit-shape-spec-list.34

C755 (R740) Each bound in the explicit-shape-spec shall be a component specification expression.35

C756 (R737) A component shall not have both the ALLOCATABLE and POINTER attributes.36

C757 (R737) If the CONTIGUOUS attribute is specified, the component shall be an array with the POINTER37
attribute.38

C758 (R739) The * char-length option is permitted only if the component is of type character.39

C759 (R736) Each type-param-value within a component-def-stmt shall be a colon or a component specification40
expression.41

72 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
Because a type parameter is not an object, a type-param-value or a bound in an explicit-shape-spec can contain
a type-param-name.

R741 proc-component-def-stmt is PROCEDURE ([proc-interface]) ,1
proc-component-attr-spec-list :: proc-decl-list2

NOTE 2
See 15.4.3.6 for definitions of proc-interface and proc-decl.

R742 proc-component-attr-spec is access-spec3
or NOPASS4
or PASS [(arg-name)]5
or POINTER6

C760 (R741) The same proc-component-attr-spec shall not appear more than once in a given proc-component-7
def-stmt.8

C761 (R741) POINTER shall appear in each proc-component-attr-spec-list.9

C762 (R741) If the procedure pointer component has an implicit interface or has no arguments, NOPASS shall10
be specified.11

C763 (R741) If PASS (arg-name) appears, the interface of the procedure pointer component shall have a dummy12
argument named arg-name.13

C764 (R741) PASS and NOPASS shall not both appear in the same proc-component-attr-spec-list.14

1 The declaration-type-spec in the data-component-def-stmt specifies the type and type parameters of the com-15
ponents in the component-decl-list, except that the character length parameter can be specified or overridden16
for a component by the appearance of * char-length in its entity-decl. The component-attr-spec-list in the data-17
component-def-stmt specifies the attributes whose keywords appear for the components in the component-decl-list,18
except that the DIMENSION attribute can be specified or overridden for a component by the appearance of a19
component-array-spec in its component-decl, and the CODIMENSION attribute can be specified or overridden20
for a component by the appearance of a coarray-spec in its component-decl.21

7.5.4.2 Array components22

1 A data component is an array if its component-decl contains a component-array-spec or its data-component-def-23
stmt contains a DIMENSION clause. If the component-decl contains a component-array-spec, it specifies the24
array rank, and if the array is explicit shape (8.5.8.2), the array bounds; otherwise, the component-array-spec in25
the DIMENSION clause specifies the array rank, and if the array is explicit shape, the array bounds.26

NOTE 1
An example of a derived type definition with an array component is:

TYPE LINE
REAL, DIMENSION (2, 2) :: COORD !

! COORD(:,1) has the value of [X1, Y1]
! COORD(:,2) has the value of [X2, Y2]

REAL :: WIDTH ! Line width in centimeters
INTEGER :: PATTERN ! 1 for solid, 2 for dash, 3 for dot

END TYPE LINE

An example of declaring a variable LINE_SEGMENT to be of the type LINE is:
TYPE (LINE) :: LINE_SEGMENT

J3/23-007 73

J3/23-007 WD 1539-1 2023-02-17

NOTE 1 (cont.)
The scalar variable LINE_SEGMENT has a component that is an array. In this case, the array is a subobject
of a scalar. The double colon in the definition for COORD is required; the double colon in the definition for
WIDTH and PATTERN is optional.

NOTE 2
An example of a derived type definition with an allocatable component is:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS (:)

END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is determined by execution
of an ALLOCATE statement or assignment statement, or by argument association.

NOTE 3
Default initialization of an explicit-shape array component can be specified by a constant expression consisting
of an array constructor (7.8), or of a single scalar that becomes the value of each array element.

7.5.4.3 Coarray components1

1 A data component is a coarray if its component-decl contains a coarray-spec or its data-component-def-stmt2
contains a CODIMENSION clause. If the component-decl contains a coarray-spec it specifies the corank; otherwise,3
the coarray-spec in the CODIMENSION clause specifies the corank.4

NOTE
An example of a derived type definition with a coarray component is:

TYPE GRID_TYPE
REAL, ALLOCATABLE, CODIMENSION [:, :, :] :: GRID (:, :, :)

END TYPE GRID_TYPE

An object of type grid_type cannot be a coarray or a pointer.

7.5.4.4 Pointer components5

1 A data component is a data pointer (5.4.9) if its component-attr-spec-list contains the POINTER keyword. A6
procedure pointer component has the POINTER keyword in its proc-component-attr-spec-list.7

NOTE
An example of a derived type definition with a pointer component is:

TYPE REFERENCE
INTEGER :: VOLUME, YEAR, PAGE
CHARACTER (LEN = 50) :: TITLE
PROCEDURE (printer_interface), POINTER :: PRINT => NULL()
CHARACTER, DIMENSION (:), POINTER :: SYNOPSIS

END TYPE REFERENCE

Any object of type REFERENCE will have the four nonpointer components VOLUME, YEAR, PAGE, and
TITLE, the procedure pointer PRINT, which has an explicit interface the same as printer_interface, plus a
pointer to an array of characters holding SYNOPSIS. The size of this target array will be determined by the
length of the synopsis. The space for the target could be allocated (9.7.1) or the pointer component could be
associated with a target by a pointer assignment statement (10.2.2).

74 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7.5.4.5 The passed-object dummy argument1

1 A passed-object dummy argument is a distinguished dummy argument of a procedure pointer component or2
type-bound procedure (7.5.5). It affects procedure overriding (7.5.7.3) and argument association (15.5.2.2).3

2 If NOPASS is specified, the procedure pointer component or type-bound procedure has no passed-object dummy4
argument.5

3 If neither PASS nor NOPASS is specified or PASS is specified without arg-name, the first dummy argument of a6
procedure pointer component or type-bound procedure is its passed-object dummy argument.7

4 If PASS (arg-name) is specified, the dummy argument named arg-name is the passed-object dummy argument of8
the procedure pointer component or named type-bound procedure.9

C765 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data object10
with the same declared type as the type being defined; all of its length type parameters shall be assumed;11
it shall be polymorphic (7.3.2.3) if and only if the type being defined is extensible (7.5.7). It shall not12
have the VALUE attribute.13

NOTE
If a procedure is bound to several types as a type-bound procedure, different dummy arguments might be the
passed-object dummy argument in different contexts.

7.5.4.6 Default initialization for components14

1 Default initialization provides a means of automatically initializing pointer components to be disassociated or15
associated with specific targets, and nonpointer nonallocatable components to have a particular value. Allocatable16
components are always initialized to unallocated.17

2 A pointer variable or component is data-pointer-initialization compatible with a target if the pointer is type18
compatible with the target, they have the same rank, all nondeferred type parameters of the pointer have the19
same values as the corresponding type parameters of the target, and the target is contiguous if the pointer has20
the CONTIGUOUS attribute.21

R743 component-initialization is = constant-expr22
or => null-init23
or => initial-data-target24

R744 initial-data-target is designator25

C766 (R737) If component-initialization appears, a double-colon separator shall appear before the component-26
decl-list.27

C767 (R737) If component-initialization appears, every type parameter and array bound of the component28
shall be a colon or constant expression.29

C768 (R737) If => appears in component-initialization, POINTER shall appear in the component-attr-spec-30
list. If = appears in component-initialization, neither POINTER nor ALLOCATABLE shall appear in31
the component-attr-spec-list.32

C769 If initial-data-target appears in a component-initialization in a component-decl, component-name shall be33
data-pointer-initialization compatible with it.34

C770 A designator that is an initial-data-target shall designate a nonallocatable, noncoindexed variable that35
has the TARGET and SAVE attributes and does not have a vector subscript. Every subscript, sec-36
tion subscript, substring starting point, and substring ending point in designator shall be a constant37
expression.38

J3/23-007 75

J3/23-007 WD 1539-1 2023-02-17

3 If null-init appears for a pointer component, that component in any object of the type has an initial association1
status of disassociated (3.61) or becomes disassociated as specified in 19.5.2.4.2

4 If initial-data-target appears for a data pointer component, that component in any object of the type is initially3
associated with the target or becomes associated with the target as specified in 19.5.2.3.4

5 If initial-proc-target (15.4.3.6) appears in proc-decl for a procedure pointer component, that component in any5
object of the type is initially associated with the target or becomes associated with the target as specified in6
19.5.2.3.7

6 If constant-expr appears for a nonpointer component, that component in any object of the type is initially defined8
(19.6.3) or becomes defined as specified in 19.6.5 with the value determined from constant-expr . If necessary,9
the value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that agrees in type,10
type parameters, and shape with the component. If the component is of a type for which default initialization is11
specified for a component, the default initialization specified by constant-expr overrides the default initialization12
specified for that component. When one initialization overrides another it is as if only the overriding initialization13
were specified (see NOTE 2). Explicit initialization in a type declaration statement (8.2) overrides default14
initialization (see NOTE 1). Unlike explicit initialization, default initialization does not imply that the object15
has the SAVE attribute.16

7 A subcomponent (9.4.2) is default-initialized if the type of the object of which it is a component specifies default17
initialization for that component, and the subcomponent is not a subobject of an object that is default-initialized18
or explicitly initialized.19

8 A type has default initialization if component-initialization is specified for any direct component of the type. An20
object has default initialization if it is of a type that has default initialization.21

NOTE 1
It is not required that initialization be specified for each component of a derived type. For example:

TYPE DATE
INTEGER DAY
CHARACTER (LEN = 5) MONTH
INTEGER :: YEAR = 2008 ! Partial default initialization

END TYPE DATE

In the following example, the default initial value for the YEAR component of TODAY is overridden by explicit
initialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 2009)

NOTE 2
The default initial value of a component of derived type can be overridden by default initialization specified in
the definition of the type. Continuing the example of NOTE 1:

TYPE SINGLE_SCORE
TYPE(DATE) :: PLAY_DAY = TODAY
INTEGER SCORE
TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL ()

END TYPE SINGLE_SCORE
TYPE(SINGLE_SCORE) SETUP

The PLAY_DAY component of SETUP receives its initial value from TODAY, overriding the initialization for
the YEAR component.

76 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 3
Arrays of structures can be declared with elements that are partially or totally initialized by default. Continuing
the example of NOTE 2:

TYPE MEMBER (NAME_LEN)
INTEGER, LEN :: NAME_LEN
CHARACTER (LEN = NAME_LEN) :: NAME
INTEGER :: TEAM_NO, HANDICAP = 0
TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL ()

END TYPE MEMBER
TYPE (MEMBER(9)) LEAGUE (36) ! Array of partially initialized elements
TYPE (MEMBER(9)) :: ORGANIZER = MEMBER (9) ("I. Manage",1,5,NULL ())

ORGANIZER is explicitly initialized, overriding the default initialization for an object of type MEMBER.

Allocated objects can also be initialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) ! A partially initialized object of type
! SINGLE_SCORE is created.

NOTE 4
A pointer component of a derived type can have as its target an object of that derived type. The type definition
can specify that in objects declared to be of this type, such a pointer is default initialized to disassociated. For
example:

TYPE NODE
INTEGER :: VALUE = 0
TYPE (NODE), POINTER :: NEXT_NODE => NULL ()

END TYPE

A type such as this can be used to construct linked lists of objects of type NODE. Linked lists can also be
constructed using allocatable components.

NOTE 5
A pointer component of a derived type can be default initialized to have an initial target.

TYPE NODE
INTEGER :: VALUE = 0
TYPE (NODE), POINTER :: NEXT_NODE => SENTINEL

END TYPE
TYPE(NODE), SAVE, TARGET :: SENTINEL

7.5.4.7 Component order1

1 Component order is an ordering of the nonparent components of a derived type; it is used for intrinsic format-2
ted input/output and structure constructors where component keywords are not used. Parent components are3
excluded from the component order of an extended type (7.5.7).4

2 The component order of a nonextended type is the order of the declarations of the components in the derived-type5
definition. The component order of an extended type consists of the component order of its parent type followed6
by any additional components in the order of their declarations in the extended derived-type definition.7

NOTE
Given the same type definitions as in 7.5.3.2, NOTE, the component order of type T1 is just A (there is only
one component), and the component order of type T2 is A then FLAG. The parent component (T1) does not
participate in the component order.

J3/23-007 77

J3/23-007 WD 1539-1 2023-02-17

7.5.4.8 Component accessibility1

R745 private-components-stmt is PRIVATE2

C771 (R745) A private-components-stmt is permitted only if the type definition is within the specification part3
of a module.4

1 The default accessibility for the components that are declared in a type’s component-part is private if the type5
definition contains a private-components-stmt, and public otherwise. The accessibility of a component can be6
explicitly declared by an access-spec; otherwise its accessibility is the default for the type definition in which it is7
declared.8

2 If a component is private, that component name is accessible only within the module containing the definition,9
and within its descendants.10

NOTE 1
Type parameters are not components. They are effectively always public.

NOTE 2
The accessibility of the components of a type is independent of the accessibility of the type name. It is possible
to have all four combinations of public and private type names with public and private components.

NOTE 3
An example of a public type with private components is:

TYPE, PUBLIC :: POINT
PRIVATE
REAL :: X, Y

END TYPE POINT

Such a type definition can be accessed by use association; however, the components X and Y are accessible only
within the module and its descendants.

NOTE 4
An example that uses an individual component access-spec to override the default accessibility is:

TYPE MIXED
PRIVATE
INTEGER :: I
INTEGER, PUBLIC :: J

END TYPE MIXED

TYPE (MIXED) :: M

The component M%J is accessible in any scoping unit where M is accessible; M%I is accessible only within the
module containing the TYPE MIXED definition, and within its descendants.

7.5.5 Type-bound procedures11

R746 type-bound-procedure-part is contains-stmt12
[binding-private-stmt]13
[type-bound-proc-binding] ...14

R747 binding-private-stmt is PRIVATE15

C772 (R746) A binding-private-stmt is permitted only if the type definition is within the specification part of16
a module.17

78 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R748 type-bound-proc-binding is type-bound-procedure-stmt1
or type-bound-generic-stmt2
or final-procedure-stmt3

R749 type-bound-procedure-stmt is PROCEDURE [[, binding-attr-list] ::] type-bound-proc-decl-list4
or PROCEDURE (interface-name), binding-attr-list :: binding-name-list5

R750 type-bound-proc-decl is binding-name [=> procedure-name]6

C773 (R749) If => procedure-name appears in a type-bound-proc-decl, the double-colon separator shall appear.7

C774 (R750) The procedure-name shall be the name of an accessible module procedure or an external procedure8
that has an explicit interface.9

C775 A binding-name in a type-bound-proc-decl in a derived type definition shall not be the same as any other10
binding-name within that derived type definition.11

1 If => procedure-name does not appear in a type-bound-proc-decl, it is as though => procedure-name had appeared12
with a procedure name the same as the binding name.13

R751 type-bound-generic-stmt is GENERIC [, access-spec] :: generic-spec => binding-name-list14

C776 (R751) Within the specification-part of a module, each type-bound-generic-stmt shall specify, either im-15
plicitly or explicitly, the same accessibility as every other type-bound-generic-stmt with that generic-spec16
in the same derived type.17

C777 (R751) Each binding-name in binding-name-list shall be the name of a specific binding of the type.18

C778 A binding-name in a type-bound GENERIC statement shall not specify a specific binding that was19
inherited or specified previously for the same generic identifier in that derived type definition.20

C779 (R751) If generic-spec is not generic-name, each of its specific bindings shall have a passed-object dummy21
argument (7.5.4.5).22

C780 (R751) If generic-spec is OPERATOR (defined-operator), the interface of each binding shall be as23
specified in 15.4.3.4.2.24

C781 (R751) If generic-spec is ASSIGNMENT (=), the interface of each binding shall be as specified in25
15.4.3.4.3.26

C782 (R751) If generic-spec is defined-io-generic-spec, the interface of each binding shall be as specified in27
12.6.4.8. The type of the dtv argument shall be type-name.28

R752 binding-attr is access-spec29
or DEFERRED30
or NON_OVERRIDABLE31
or NOPASS32
or PASS [(arg-name)]33

C783 (R752) The same binding-attr shall not appear more than once in a given binding-attr-list.34

C784 (R749) If the interface of the binding has no dummy argument of the type being defined, NOPASS shall35
appear.36

C785 (R749) If PASS (arg-name) appears, the interface of the binding shall have a dummy argument named37
arg-name.38

C786 (R752) PASS and NOPASS shall not both appear in the same binding-attr-list.39

C787 (R752) NON_OVERRIDABLE and DEFERRED shall not both appear in the same binding-attr-list.40

J3/23-007 79

J3/23-007 WD 1539-1 2023-02-17

C788 (R752) DEFERRED shall appear if and only if interface-name appears.1

C789 (R749) An overriding binding (7.5.7.3) shall have the DEFERRED attribute only if the binding it over-2
rides is deferred.3

C790 (R749) A binding shall not override an inherited binding (7.5.7.2) that has the NON_OVERRIDABLE4
attribute.5

2 A type-bound procedure statement declares one or more specific type-bound procedures. A specific type-bound6
procedure can have a passed-object dummy argument (7.5.4.5). A type-bound procedure with the DEFERRED7
attribute is a deferred type-bound procedure. The DEFERRED keyword shall appear only in the definition of8
an abstract type.9

3 A GENERIC statement declares a generic type-bound procedure, which is a type-bound generic interface for its10
specific type-bound procedures.11

4 A binding of a type is a type-bound procedure (specific or generic), a generic type-bound interface, or a final12
subroutine. These are referred to as specific bindings, generic bindings, and final bindings respectively.13

5 A type-bound procedure can be identified by a binding name in the scope of the type definition. This name is the14
binding-name for a specific type-bound procedure, and the generic-name for a generic binding whose generic-spec15
is generic-name. A final binding, or a generic binding whose generic-spec is not generic-name, has no binding16
name.17

6 The interface of a specific type-bound procedure is that of the procedure specified by procedure-name or the18
interface specified by interface-name.19

7 The same generic-spec may be used in several GENERIC statements within a single derived-type definition. Each20
additional GENERIC statement with the same generic-spec extends the generic interface.21

NOTE 1
Unlike the situation with generic procedure names, a generic type-bound procedure name is not permitted to
be the same as a specific type-bound procedure name in the same type (19.3).

8 The default accessibility for the type-bound procedures of a type is private if the type definition contains a binding-22
private-stmt, and public otherwise. The accessibility of a type-bound procedure can be explicitly declared by an23
access-spec; otherwise its accessibility is the default for the type definition in which it is declared.24

9 A public type-bound procedure is accessible via any accessible object of the type. A private type-bound procedure25
is accessible only within the module containing the type definition, and within its descendants.26

NOTE 2
The accessibility of a type-bound procedure is not affected by a PRIVATE statement in the component-part;
the accessibility of a component is not affected by a PRIVATE statement in the type-bound-procedure-part.

NOTE 3
An example of a type and a type-bound procedure is:

TYPE POINT
REAL :: X, Y

CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_LENGTH

END TYPE POINT
...

and in the module-subprogram-part of the same module:

80 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 3 (cont.)
REAL FUNCTION POINT_LENGTH (A, B)

CLASS (POINT), INTENT (IN) :: A, B
POINT_LENGTH = SQRT ((A%X - B%X)**2 + (A%Y - B%Y)**2)

END FUNCTION POINT_LENGTH

7.5.6 Final subroutines1

7.5.6.1 FINAL statement2

R753 final-procedure-stmt is FINAL [::] final-subroutine-name-list3

C791 (R753) A final-subroutine-name shall be the name of a module procedure with exactly one dummy4
argument. That argument shall be nonoptional and shall be a noncoarray, nonpointer, nonallocatable,5
nonpolymorphic variable of the derived type being defined. All length type parameters of the dummy6
argument shall be assumed. The dummy argument shall not have the INTENT (OUT) or VALUE7
attribute.8

C792 (R753) A final-subroutine-name shall not be one previously specified as a final subroutine for that type.9

C793 (R753) A final subroutine shall not have a dummy argument with the same kind type parameters and10
rank as the dummy argument of another final subroutine of that type.11

C794 (R753) If a final subroutine has an assumed-rank dummy argument, no other final subroutine of that12
type shall have a dummy argument with the same kind type parameters.13

1 The FINAL statement specifies that each procedure it names is a final subroutine. A final subroutine might be14
executed when a data entity of that type is finalized (7.5.6.2).15

2 A derived type is finalizable if and only if it has a final subroutine or a nonpointer, nonallocatable component of16
finalizable type. A nonpointer data entity is finalizable if and only if it is of finalizable type. No other entity is17
finalizable.18

NOTE 1
Final subroutines are effectively always “accessible”. They are called for entity finalization regardless of the
accessibility of the type, its other type-bound procedures, or the subroutine name itself.

NOTE 2
Final subroutines are not inherited through type extension and cannot be overridden. The final subroutines of
the parent type are called after any additional final subroutines of an extended type are called.

7.5.6.2 The finalization process19

1 Only finalizable entities are finalized. When an entity is finalized, the following steps are carried out in sequence.20

(1) If the dynamic type of the entity has a final subroutine whose dummy argument has the same kind21
type parameters and rank as the entity being finalized, it is called with the entity as an actual22
argument. Otherwise, if there is an elemental final subroutine whose dummy argument has the same23
kind type parameters as the entity being finalized, or a final subroutine whose dummy argument is24
assumed-rank with the same kind type parameters as the entity being finalized, it is called with the25
entity as an actual argument. Otherwise, no subroutine is called at this point.26

(2) All nonallocatable finalizable components that appear in the type definition are finalized in a processor-27
dependent order. If the entity being finalized is an array, each finalizable component of each element28
of that entity is finalized separately.29

(3) If the entity is of extended type and the parent type is finalizable, the parent component is finalized.30

J3/23-007 81

J3/23-007 WD 1539-1 2023-02-17

2 If several entities are to be finalized as a consequence of an event specified in 7.5.6.3, the order in which they1
are finalized is processor dependent. During this process, execution of a final subroutine for one of these entities2
shall not reference or define any of the other entities that have already been finalized.3

NOTE
An implementation might need to ensure that when an event causes more than one coarray to be deallocated,
they are deallocated in the same order on all images in the current team.

7.5.6.3 When finalization occurs4

1 When an intrinsic assignment statement is executed (10.2.1.3), if the variable is not an unallocated allocatable5
variable, it is finalized after evaluation of expr and before the definition of the variable. If the variable is an6
allocated allocatable variable, or has an allocated allocatable subobject, that would be deallocated by intrinsic7
assignment, the finalization occurs before the deallocation.8

2 When a pointer is deallocated its target is finalized. When an allocatable entity is deallocated, it is finalized9
unless it is the variable in an intrinsic assignment statement. If an error condition occurs during deallocation, it10
is processor dependent whether finalization occurs.11

3 A nonpointer, nonallocatable object that is not a dummy argument or function result is finalized immediately12
before it would become undefined due to execution of a RETURN or END statement (19.6.6, item (3)).13

4 A nonpointer nonallocatable local variable of a BLOCK construct is finalized immediately before it would become14
undefined due to termination of the BLOCK construct (19.6.6, item (23)).15

5 If an executable construct references a nonpointer function, the result is finalized after execution of the innermost16
executable construct containing the reference.17

6 If a specification expression in a scoping unit references a function, the result is finalized before execution of the18
executable constructs in the scoping unit.19

7 When a procedure is invoked, a nonpointer, nonallocatable, INTENT (OUT) dummy argument of that procedure20
is finalized before it becomes undefined. The finalization caused by INTENT (OUT) is considered to occur within21
the invoked procedure; so for elemental procedures, an INTENT (OUT) argument will be finalized only if a scalar22
or elemental final subroutine is available, regardless of the rank of the actual argument.23

8 If an object is allocated via pointer allocation and later becomes unreachable due to all pointers associated with24
that object having their pointer association status changed, it is processor dependent whether it is finalized. If it25
is finalized, it is processor dependent as to when the final subroutines are called.26

NOTE
If finalization is used for storage management, it often needs to be combined with defined assignment.

7.5.6.4 Entities that are not finalized27

1 If image execution is terminated, either by an error (e.g. an allocation failure) or by execution of a stop-stmt,28
error-stop-stmt, or end-program-stmt, entities existing immediately prior to termination are not finalized.29

NOTE
A nonpointer, nonallocatable object that has the SAVE attribute is never finalized as a direct consequence of
the execution of a RETURN or END statement.

82 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7.5.7 Type extension1

7.5.7.1 Extensible, extended, and abstract types2

1 A derived type, other than the type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING, that3
does not have the BIND attribute or the SEQUENCE attribute is an extensible type.4

2 A type with the EXTENDS attribute is an extended type; its parent type is the type named in the EXTENDS5
type-attr-spec.6

NOTE 1
The name of the parent type might be a local name introduced via renaming in a USE statement.

3 An extensible type that does not have the EXTENDS attribute is an extension type of itself only. An extended7
type is an extension of itself and of all types for which its parent type is an extension.8

4 An abstract type is a type that has the ABSTRACT attribute.9

NOTE 2
The DEFERRED attribute (7.5.5) defers the implementation of a type-bound procedure to extensions of the
type; it can appear only in an abstract type. The dynamic type of an object cannot be abstract; therefore, a
deferred type-bound procedure cannot be invoked. An extension of an abstract type need not be abstract if it
has no deferred type-bound procedures. A short example of an abstract type is:

TYPE, ABSTRACT :: FILE_HANDLE
CONTAINS

PROCEDURE(OPEN_FILE), DEFERRED, PASS(HANDLE) :: OPEN
...

END TYPE

For a more elaborate example see C.3.4.

7.5.7.2 Inheritance10

1 An extended type includes all of the type parameters, all of the components, and the nonoverridden (7.5.7.3)11
type-bound procedures of its parent type. These are inherited by the extended type from the parent type. They12
retain all of the attributes that they had in the parent type. Additional type parameters, components, and13
procedure bindings may be declared in the derived-type definition of the extended type.14

NOTE 1
Inaccessible components and bindings of the parent type are also inherited, but they remain inaccessible in the
extended type. Inaccessible entities occur if the type being extended is accessed via use association and has a
private entity.

NOTE 2
An extensible derived type is not required to have any components, bindings, or parameters; an extended type
is not required to have more components, bindings, or parameters than its parent type.

2 An extended type has a scalar, nonpointer, nonallocatable, parent component with the type and type parameters15
of the parent type. The name of this component is the parent type name. If the extended type is defined in a16
module, the parent component has the accessibility of the parent type in the module in which the parent type17
was defined. Components of the parent component are inheritance associated (19.5.4) with the corresponding18
components inherited from the parent type. An ancestor component of a type is the parent component of the19
type or an ancestor component of the parent component.20

3 If a generic binding specified in a type definition has the same generic-spec as an inherited binding, it extends21
the generic interface and shall satisfy the requirements specified in 15.4.3.4.5.22

J3/23-007 83

J3/23-007 WD 1539-1 2023-02-17

NOTE 3
A component or type parameter declared in an extended type cannot have the same name as any accessible
component or type parameter of its parent type.

NOTE 4
For example:

TYPE POINT ! A base type
REAL :: X, Y

END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
! Components X and Y, and component name POINT, inherited from parent
INTEGER :: COLOR

END TYPE COLOR_POINT

7.5.7.3 Type-bound procedure overriding1

1 If a specific type-bound procedure specified in a type definition has the same binding name as an accessible2
type-bound procedure from the parent type then the binding specified in the type definition overrides the one3
from the parent type.4

2 The overriding and overridden type-bound procedures shall satisfy the following conditions.5

• Either both shall have a passed-object dummy argument or neither shall.6

• If the overridden type-bound procedure is pure then the overriding one shall also be pure.7

• If the overridden type-bound procedure is simple then the overriding one shall also be simple.8

• Either both shall be elemental or neither shall.9

• They shall have the same number of dummy arguments.10

• Passed-object dummy arguments, if any, shall correspond by name and position.11

• Dummy arguments that correspond by position shall have the same names and characteristics, except for12
the type of the passed-object dummy arguments.13

• Either both shall be subroutines or both shall be functions having the same result characteristics (15.3.3).14

• If the overridden type-bound procedure is PUBLIC then the overriding one shall not be PRIVATE.15

3 A binding of a type and a binding of an extension of that type correspond if the latter binding is the same binding16
as the former, overrides a corresponding binding, or is an inherited corresponding binding.17

NOTE
The following is an example of procedure overriding, expanding on the example in 7.5.5, NOTE 3.

TYPE, EXTENDS (POINT) :: POINT_3D
REAL :: Z

CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH

END TYPE POINT_3D
. . .

and in the module-subprogram-part of the same module:
REAL FUNCTION POINT_3D_LENGTH (A, B)

CLASS (POINT_3D), INTENT (IN) :: A
CLASS (POINT), INTENT (IN) :: B
SELECT TYPE(B)

CLASS IS(POINT_3D)
POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2 + (A%Z-B%Z)**2)

84 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE (cont.)
RETURN

END SELECT
PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect.’
STOP

END FUNCTION POINT_3D_LENGTH

7.5.8 Derived-type values1

1 The component value of2

• a pointer component is its pointer association,3

• an allocatable component is its allocation status and, if it is allocated, its dynamic type and type parameters,4
bounds and value, and5

• a nonpointer nonallocatable component is its value.6

2 The set of values of a particular derived type consists of all possible sequences of the component values of its7
components.8

7.5.9 Derived-type specifier9

1 A derived-type specifier is used in several contexts to specify a particular derived type and type parameters.10

R754 derived-type-spec is type-name [(type-param-spec-list)]11

R755 type-param-spec is [keyword =] type-param-value12

C795 (R754) type-name shall be the name of an accessible derived type.13

C796 (R754) type-param-spec-list shall appear only if the type is parameterized.14

C797 (R754) There shall be at most one type-param-spec corresponding to each parameter of the type. If a15
type parameter does not have a default value, there shall be a type-param-spec corresponding to that16
type parameter.17

C798 (R755) The keyword= shall not be omitted from a type-param-spec unless the keyword= has been omitted18
from each preceding type-param-spec in the type-param-spec-list.19

C799 (R755) Each keyword shall be the name of a parameter of the type.20

C7100 (R755) An asterisk shall not be used as a type-param-value in a type-param-spec except in the declaration21
of a dummy argument or associate name or in the allocation of a dummy argument.22

2 Type parameter values that do not have type parameter keywords specified correspond to type parameters in type23
parameter order (7.5.3.2). If a type parameter keyword appears, the value corresponds to the type parameter24
named by the keyword. If necessary, the value is converted according to the rules of intrinsic assignment (10.2.1.3)25
to a value of the same kind as the type parameter.26

3 The value of a type parameter for which no type-param-value has been specified is its default value.27

7.5.10 Construction of derived-type values28

1 A derived-type definition implicitly defines a corresponding structure constructor that allows construction of29
scalar values of that derived type. The type and type parameters of a constructed value are specified by a derived30
type specifier.31

R756 structure-constructor is derived-type-spec ([component-spec-list])32

J3/23-007 85

J3/23-007 WD 1539-1 2023-02-17

R757 component-spec is [keyword =] component-data-source1

R758 component-data-source is expr2
or data-target3
or proc-target4

C7101 (R756) The derived-type-spec shall not specify an abstract type (7.5.7).5

C7102 (R756) At most one component-spec shall be provided for a component.6

C7103 (R756) If a component-spec is provided for an ancestor component, a component-spec shall not be provided7
for any component that is inheritance associated with a subcomponent of that ancestor component.8

C7104 (R756) A component-spec shall be provided for a nonallocatable component unless it has default initializ-9
ation or is inheritance associated with a subcomponent of another component for which a component-spec10
is provided.11

C7105 (R757) The keyword= shall not be omitted from a component-spec unless the keyword= has been omitted12
from each preceding component-spec in the constructor.13

C7106 (R757) Each keyword shall be the name of a component of the type.14

C7107 (R756) The type name and all components of the type for which a component-spec appears shall be15
accessible in the scoping unit containing the structure constructor.16

C7108 (R756) If derived-type-spec is a type name that is the same as a generic name, the component-spec-list17
shall not be a valid actual-arg-spec-list for a function reference that is resolvable as a generic reference to18
that name (15.5.5.2).19

C7109 (R758) A data-target shall correspond to a data pointer component; a proc-target shall correspond to a20
procedure pointer component.21

C7110 (R758) A data-target shall have the same rank as its corresponding component.22

NOTE 1
The form ’name(...)’ is interpreted as a generic function-reference if possible; it is interpreted as a structure-
constructor only if it cannot be interpreted as a generic function-reference.

2 In the absence of a component keyword, each component-data-source is assigned to the corresponding component23
in component order (7.5.4.7). If a component keyword appears, the expr is assigned to the component named24
by the keyword. For a nonpointer component, the declared type and type parameters of the component and25
expr shall conform in the same way as for a variable and expr in an intrinsic assignment statement (10.2.1.2).26
If necessary, each value of intrinsic type is converted according to the rules of intrinsic assignment (10.2.1.3) to27
a value that agrees in type and type parameters with the corresponding component of the derived type. For a28
nonpointer nonallocatable component, the shape of the expression shall conform with the shape of the component.29

3 If a component with default initialization has no corresponding component-data-source, then the default initial-30
ization is applied to that component. If an allocatable component has no corresponding component-data-source,31
then that component has an allocation status of unallocated.32

NOTE 2
Because no parent components appear in the defined component ordering, a value for a parent component can
be specified only with a component keyword. Examples of equivalent values using types defined in 7.5.7.2,
NOTE 4:

! Create values with components x = 1.0, y = 2.0, color = 3.
TYPE(POINT) :: PV = POINT(1.0, 2.0) ! Assume components of TYPE(POINT)

! are accessible here.
. . .

86 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2 (cont.)
COLOR_POINT(point=point(1,2), color=3) ! Value for parent component
COLOR_POINT(point=PV, color=3) ! Available even if TYPE(point)

! has private components
COLOR_POINT(1, 2, 3) ! All components of TYPE(point)

! need to be accessible.

4 A structure constructor shall not appear before the referenced type is defined.1

5 For a pointer component, the corresponding component-data-source shall be an allowable data-target or proc-2
target for such a pointer in a pointer assignment statement (10.2.2). If the component data source is a pointer,3
the association of the component is that of the pointer; otherwise, the component is pointer associated with the4
component data source.5

NOTE 3
For example, if the variable TEXT were declared (8.2) to be

CHARACTER, DIMENSION (1:400), TARGET :: TEXT

and BIBLIO were declared using the derived-type definition REFERENCE in 7.5.4.4, NOTE
TYPE (REFERENCE) :: BIBLIO

the statement
BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced &

&paper", SYNOPSIS=TEXT)

is valid and associates the pointer component SYNOPSIS of the object BIBLIO with the target object TEXT.
The keyword SYNOPSIS is required because the fifth component of the type REFERENCE is a procedure
pointer component, not a data pointer component of type character. It is not necessary to specify a proc-target
for the procedure pointer component because it has default initialization.

6 If a component of a derived type is allocatable, the corresponding constructor expression shall be a reference6
to the intrinsic function NULL with no arguments, an allocatable entity of the same rank, or shall evaluate to7
an entity of the same rank. If the expression is a reference to the intrinsic function NULL, the corresponding8
component of the constructor has a status of unallocated.9

7 If the component is allocatable and the expression is an allocatable entity, the corresponding component of the10
constructor has the same allocation status as that allocatable entity. If it is allocated, it has the same bounds;11
if a length parameter of the component is deferred, its value is the same as the corresponding parameter of the12
expression. If the component is polymorphic, it has the same dynamic type and value; otherwise, it has the value13
converted, if necessary, to the declared type of the component.14

8 If the component is allocatable and the expression is not an allocatable entity, the component has an allocation15
status of allocated and the same bounds as the expression; if a length parameter of the component is deferred,16
its value is the same as the corresponding parameter of the expression. If the component is polymorphic, it has17
the same dynamic type and value; otherwise, it has the value converted, if necessary, to the declared type of the18
component.19

NOTE 4
This example shows a derived-type constant expression using the derived type defined in 7.5.2.1, NOTE:

PERSON (21, ’JOHN SMITH’)

This could also be written as
PERSON (NAME = ’JOHN SMITH’, AGE = 21)

J3/23-007 87

J3/23-007 WD 1539-1 2023-02-17

NOTE 5
An example constructor using the derived type GENERAL_POINT defined in 7.5.3.1, NOTE is

general_point(dim=3) ([1., 2., 3.])

7.5.11 Derived-type operations and assignment1

1 Intrinsic assignment of derived-type entities is described in 10.2.1. This document does not specify any intrinsic2
operations on derived-type entities. Any operation on derived-type entities or defined assignment (10.2.1.4) for3
derived-type entities shall be defined explicitly by a function or a subroutine, and a generic interface (7.5.5,4
15.4.3.2).5

7.6 Other nonintrinsic types6

7.6.1 Interoperable enumerations and enum types7

1 An interoperable enumeration is a set of interoperable enumerators, optionally together with an enum type. An8
enum-def defines an interoperable enumeration. An interoperable enumerator is a named integer constant; all9
the enumerators defined by a particular enum-def have the same kind. An enum type is a nonintrinsic type that10
is not a derived type; it has no type parameter.11

R759 enum-def is enum-def-stmt12
enumerator-def-stmt13
[enumerator-def-stmt] ...14
end-enum-stmt15

R760 enum-def-stmt is ENUM, BIND(C) [:: enum-type-name]16

R761 enumerator-def-stmt is ENUMERATOR [::] enumerator-list17

R762 enumerator is named-constant [= scalar-int-constant-expr]18

R763 end-enum-stmt is END ENUM19

C7111 (R761) If = appears in an enumerator , a double-colon separator shall appear before the enumerator-list.20

R764 enum-type-spec is enum-type-name21

C7112 An enum-type-name in an enum-type-spec shall be the name of a previously defined enum type.22

2 The kind type parameter of each enumerator defined by an enum-def is the kind that is interoperable (18.3.1)23
with the corresponding C enumerated type. The corresponding C enumerated type is the type that would be24
declared by a C enumeration specifier (ISO/IEC 9899:2018, 6.7.2.2) that specified C enumeration constants with25
the same values as those specified by the enum-def , in the same order as specified by the enum-def .26

3 If enum-type-name appears in an enum-def , the enum-def defines the enum type with that name. An enum type27
is an interoperable type. The set of values of an enum type has a one-to-one correspondence with the set of28
possible values for the integer kind of its enumerators. The internal representation of each enum type value is29
the same as that of the corresponding integer.30

4 An enum type specifier specifiers the type. Two data entities of enum type have the same type if they are declared31
with reference to the same enum type definition.32

5 The companion processor (5.5.7) shall be one that uses the same representation for the types declared by all C33
enumeration specifiers that specify the same values in the same order.34

88 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
If a companion processor uses an unsigned type to represent a C enumerated type, the Fortran processor will
use the signed integer type of the same width for the enumeration, even though some of the values of the C
enumerators might not be representable in this signed integer type. The types of any such enumerators will be
interoperable with the type declared in the C enumeration.

NOTE 2
ISO/IEC 9899:2018 guarantees the enumeration constants fit in a C int (ISO/IEC 9899:2018, 6.7.2.2). Therefore,
the Fortran processor can evaluate all enumerator values using the integer type with kind parameter C_INT,
and then determine the kind parameter of the integer type that is interoperable with the corresponding C
enumerated type.

NOTE 3
ISO/IEC 9899:2018 specifies that two C enumerated types are compatible only if they specify enumeration
constants with the same names and same values in the same order. This document further requires that a C
processor that is to be a companion processor of a Fortran processor use the same representation for two C
enumerated types if they both specify enumeration constants with the same values in the same order, even if
the names are different.

6 An enumerator is treated as if it were explicitly declared with the PARAMETER attribute. The enumerator is1
a scalar named constant, with the value determined as follows.2

(1) If scalar-int-constant-expr appears, the enumerator has the value specified by scalar-int-constant-3
expr .4

(2) If scalar-int-constant-expr does not appear and the enumerator is the first enumerator in enum-def ,5
the enumerator has the value zero.6

(3) If scalar-int-constant-expr does not appear and the enumerator is not the first enumerator in enum-7
def , it has the value obtained by adding one to the value of the enumerator that immediately precedes8
it in the enum-def .9

R765 enum-constructor is enum-type-spec (scalar-expr)10

C7113 The scalar-expr in an enum-constructor shall be of type integer or be a boz-literal-constant.11

7 An enum constructor produces a scalar value of the specified type, with the specified internal representation. The12
value of scalar-expr shall be representable in objects of that type.13

NOTE 4
Example of an interoperable enumeration definition:

ENUM, BIND(C)
ENUMERATOR :: RED = 4, BLUE = 9
ENUMERATOR YELLOW

END ENUM

The kind type parameter for this enumeration is processor dependent, but the processor is required to select
a kind sufficient to represent the values 4, 9, and 10, which are the values of its enumerators. The following
declaration might be equivalent to the above enumeration definition.

INTEGER (SELECTED_INT_KIND (2)), PARAMETER :: RED = 4, BLUE = 9, YELLOW = 10

An entity of the same kind type parameter value can be declared using the intrinsic function KIND with one of
the enumerators as its argument, for example
INTEGER (KIND (RED)) :: X

J3/23-007 89

J3/23-007 WD 1539-1 2023-02-17

NOTE 5
There is no difference in the effect of declaring the enumerators in multiple ENUMERATOR statements or
in a single ENUMERATOR statement. The order in which the enumerators in an enumeration definition are
declared is significant, but the number of ENUMERATOR statements is not.

NOTE 6
Here is an example of a module that defines two enum types.

Module enum_mod
Enum,Bind(C) :: myenum

Enumerator :: one=1, two, three
End Enum
Enum,Bind(C) :: flags

Enumerator :: f1 = 1, f2 = 2, f3 = 4
End Enum

Contains
Subroutine sub(a) Bind(C)

Type(myenum),Value :: a
Print *,a ! Prints the integer value, as if it were Print *,Int(a).

End Subroutine
End Module

Here is a simple program that uses that module and the enum constructor.

Program example
Use enum_mod
Type(myenum) :: x = one ! Assign enumerator to enum-type var.
Type(myenum) :: y = myenum(12345) ! Using the constructor.
Type(myenum) :: x2 = myenum(two) ! Constructor not needed but valid.
Call sub(x)
Call sub(three)
Call sub(myenum(-Huge(one)))

End Program

Here is an example of invalid usage.

Program invalid
Use enum_mod
Type(myenum) :: z = 12345 ! Integer expr with no enumerator.
Call sub(999) ! Not type-compatible (constructor needed).
Call sub(f1) ! Wrong enum type.

End Program

7.6.2 Enumeration types1

1 An enumeration type is a nonintrinsic type with no type parameter. It is not a derived type and is not inter-2
operable. An enumeration type definition defines the name of the type and lists all the possible values of the3
type.4

R766 enumeration-type-def is enumeration-type-stmt5
enumeration-enumerator-stmt6
[enumeration-enumerator-stmt]...7
end-enumeration-type-stmt8

R767 enumeration-type-stmt is ENUMERATION TYPE [[, access-spec] ::] enumeration-type-name9

90 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C7114 An access-spec on an enumeration-type-stmt shall only appear in the specification part of a module.1

R768 enumeration-enumerator-stmt is ENUMERATOR [::] enumerator-name-list2

R769 end-enumeration-type-stmt is END ENUMERATION TYPE [enumeration-type-name]3

C7115 If enumeration-type-name appears on an END ENUMERATION TYPE statement, it shall be the same4
as on the ENUMERATION TYPE statement.5

2 The access-spec on an ENUMERATION TYPE statement specifies the accessibility of the enumeration-type-6
name and the default accessibility of its enumerators. The accessibility of an enumerator may be confirmed or7
overridden by an access-stmt.8

3 Each enumerator in the definition is a scalar named constant of the enumeration type. The order of the enumerator9
names in the definition defines the ordinal position of each enumerator.10

R770 enumeration-type-spec is enumeration-type-name11

C7116 The enumeration-type-name in an enumeration-type-spec shall be the name of a previously defined enu-12
meration type.13

4 An enumeration type specifier specifiers the type. Two data entities of enumeration type have the same type if14
they are declared with reference to the same enumeration type definition.15

R771 enumeration-constructor is enumeration-type-spec (scalar-int-expr)16

5 An enumeration constructor produces the scalar value of the enumeration type whose ordinal position is the value17
of the scalar-int-expr . The scalar-int-expr shall have a value that is positive and less than or equal to the number18
of enumerators in the enumeration type’s definition.19

NOTE
Here is an example of a module defining two enumeration types.

Module enumeration_mod
Enumeration Type :: v_value

Enumerator :: v_one, v_two, v_three
Enumerator v_four

End Enumeration Type
Enumeration Type :: w_value

Enumerator :: w1, w2, w3, w4, w5, wendsentinel
End Enumeration Type

Contains
Subroutine sub(a)

Type(v_value),Intent(In) :: a
Print 1,a ! Acts similarly to Print *,Int(a).

1 Format(’A has ordinal value ’,I0)
End Subroutine
Subroutine wcheck(w)

Type(w_value),Intent(In) :: w
Select Case(w)
Case(w1)

Print *,’w1 selected’
Case (w2:w4)

Print *,’One of w2...w4 selected’
Case (wendsentinel)

Stop ’Invalid w selected’
Case Default

Stop ’Unrecognized w selected’

J3/23-007 91

J3/23-007 WD 1539-1 2023-02-17

NOTE (cont.)
End Select

End Subroutine
End Module

Here is an example of a program using that module.

Program example
Use enumeration_mod
Type(v_value) :: x = v_one
Type(v_value) :: y = v_value(2) ! Explicit constructor producing v_two.
Type(v_value) :: z,nz ! Initially undefined.
Call sub(x)
Call sub(v_three)
z = v_value(1) ! First value.
Do

If (z==Huge(x)) Write (*,’(A)’,Advance=’No’) ’ Huge:’
Call sub(z)
nz = Next(z)
If (z==nz) Exit
z = nz

End Do
End Program

Here is an example showing some invalid usages of enumerations.

Program invalid
Use enumeration_mod
Type(v_value) :: a, b
a = 1 ! INVALID - wrong type (INTEGER).
b = w1 ! INVALID - wrong enumeration type.
Print *,a ! INVALID - list-directed i/o not available.

End Program

An enumeration type can be used to declare components, for example:

Module example2
Use enumeration_mod
Type vw

Type(v_value) v
Type(w_value) w

End Type
Contains

Subroutine showme(ka)
Type(vw),Intent(In) :: ka
Print 1,ka

1 Format(1X,’v ordinal is ’,I0,’, w ordinal is ’,I0)
End Subroutine

End Module

7.7 Binary, octal, and hexadecimal literal constants1

1 A binary, octal, or hexadecimal constant (boz-literal-constant) is a sequence of digits that represents an ordered2
sequence of bits. Such a constant has no type.3

92 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R772 boz-literal-constant is binary-constant1
or octal-constant2
or hex-constant3

R773 binary-constant is B ’ digit [digit] ... ’4
or B " digit [digit] ... "5

C7117 (R773) digit shall have one of the values 0 or 1.6

R774 octal-constant is O ’ digit [digit] ... ’7
or O " digit [digit] ... "8

C7118 (R774) digit shall have one of the values 0 through 7.9

R775 hex-constant is Z ’ hex-digit [hex-digit] ... ’10
or Z " hex-digit [hex-digit] ... "11

R776 hex-digit is digit12
or A13
or B14
or C15
or D16
or E17
or F18

2 The hex-digits A through F represent the numbers ten through fifteen, respectively; they may be represented19
by their lower-case equivalents. Each digit of a boz-literal-constant represents a sequence of bits, according to20
its numerical interpretation, using the model of 16.3, with z equal to one for binary constants, three for octal21
constants or four for hexadecimal constants. A boz-literal-constant represents a sequence of bits that consists of22
the concatenation of the sequences of bits represented by its digits, in the order the digits are specified. The23
positions of bits in the sequence are numbered from right to left, with the position of the rightmost bit being zero.24
The length of a sequence of bits is the number of bits in the sequence. The processor shall allow the position25
of the leftmost nonzero bit to be at least z − 1, where z is the maximum value that could result from invoking26
the intrinsic function STORAGE_SIZE (16.9.200) with an argument that is a real or integer scalar of any kind27
supported by the processor.28

C7119 (R772) A boz-literal-constant shall appear only as a data-stmt-constant in a DATA statement, as the29
initialization for a named constant or variable of type integer or real, as the expr in an intrinsic assignment30
whose variable is of type integer or real, as an ac-value in an array constructor with a type-spec that31
specifies type integer or real, as the scalar-expr in an enum constructor, or where explicitly allowed in32
16.9 as an actual argument of an intrinsic procedure.33

7.8 Construction of array values34

1 An array constructor constructs a rank-one array value from a sequence of scalar values, array values, and implied35
DO loops.36

R777 array-constructor is (/ ac-spec /)37
or lbracket ac-spec rbracket38

R778 ac-spec is type-spec ::39
or [type-spec ::] ac-value-list40

R779 lbracket is [41

R780 rbracket is]42

J3/23-007 93

J3/23-007 WD 1539-1 2023-02-17

R781 ac-value is expr1
or ac-implied-do2

R782 ac-implied-do is (ac-value-list , ac-implied-do-control)3

R783 ac-implied-do-control is [integer-type-spec ::] ac-do-variable = scalar-int-expr ,4
scalar-int-expr [, scalar-int-expr]5

R784 ac-do-variable is do-variable6

C7120 (R778) If type-spec is omitted, each ac-value expression in the array-constructor shall have the same7
declared type and kind type parameters.8

C7121 (R778) If type-spec specifies an intrinsic type or enum type, each ac-value expression in the array-9
constructor shall be of a type that is in type conformance with a variable of type type-spec as specified10
in Table 10.8, or be a boz-literal-constant.11

C7122 (R778) If type-spec specifies a derived type, the declared type of each ac-value expression in the array-12
constructor shall be that derived type and shall have the same kind type parameter values as specified13
by type-spec.14

C7123 (R778) If type-spec specifies an enumeration type, each ac-value shall be of that type.15

C7124 (R781) An ac-value shall not be unlimited polymorphic.16

C7125 (R781) The declared type of an ac-value shall not be abstract.17

C7126 If an ac-value is a boz-literal-constant, type-spec shall appear and shall specify type integer or real.18

C7127 If an ac-value is a boz-literal-constant and type-spec specifies type real, the boz-literal-constant shall be a19
valid internal representation for the specified kind of real.20

C7128 (R782) The ac-do-variable of an ac-implied-do that is in another ac-implied-do shall not appear as the21
ac-do-variable of the containing ac-implied-do.22

2 If type-spec is omitted, corresponding length type parameters of the declared type of each ac-value expression23
shall have the same value; in this case, the declared type and type parameters of the array constructor are those24
of the ac-value expressions.25

3 If type-spec appears, it specifies the declared type and type parameters of the array constructor. Each ac-value26
expression in the array-constructor shall be compatible with intrinsic assignment to a variable of this type and27
type parameters. Each value is converted to the type and type parameters of the array-constructor in accordance28
with the rules of intrinsic assignment (10.2.1.3).29

4 The dynamic type of an array constructor is the same as its declared type.30

5 The character length of an ac-value in an ac-implied-do whose iteration count is zero shall not depend on the31
value of the ac-do-variable and shall not depend on the value of an expression that is not a constant expression.32

6 If an ac-value is a scalar expression, its value specifies an element of the array constructor. If an ac-value is33
an array expression, the values of the elements of the expression, in array element order (9.5.3.3), specify the34
corresponding sequence of elements of the array constructor. If an ac-value is an ac-implied-do, it is expanded to35
form a sequence of elements under the control of the ac-do-variable, as in the DO construct (11.1.7.4).36

7 For an ac-implied-do, the loop initialization and execution is the same as for a DO construct. The scope and37
attributes of an ac-do-variable are described in 19.4.38

8 An empty sequence forms a zero-sized array.39

94 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
A one-dimensional array can be reshaped into any allowable array shape using the intrinsic function RESHAPE
(16.9.175). An example is:

X = (/ 3.2, 4.01, 6.5 /)
Y = RESHAPE (SOURCE = [2.0, [4.5, 4.5], X], SHAPE = [3, 2])

This results in Y having the 3 × 2 array of values:
2.0 3.2
4.5 4.01
4.5 6.5

NOTE 2
Examples of array constructors containing an implied DO are:

(/ (I, I = 1, 1075) /)

and
[3.6, (3.6 / I, I = 1, N)]

NOTE 3
Using the type definition for PERSON in 7.5.2.1, NOTE, an example of the construction of a derived-type array
value is:

[PERSON (40, ’SMITH’), PERSON (20, ’JONES’)]

NOTE 4
Using the type definition for LINE in 7.5.4.2, NOTE 1, an example of the construction of a derived-type scalar
value with a rank-two array component is:

LINE (RESHAPE ([0.0, 0.0, 1.0, 2.0], [2, 2]), 0.1, 1)

The intrinsic function RESHAPE is used to construct a value that represents a solid line from (0, 0) to (1, 2)
of width 0.1 centimeters.

NOTE 5
Examples of zero-size array constructors are:

[INTEGER ::]
[(I, I = 1, 0)]

NOTE 6
An example of an array constructor that specifies a length type parameter:

[CHARACTER(LEN=7) :: ’Takata’, ’Tanaka’, ’Hayashi’]

In this constructor, without the type specification, it would have been necessary to specify all of the constants
with the same character length.

J3/23-007 95

J3/23-007 WD 1539-1 2023-02-17

8 Attribute declarations and specifications1

8.1 Attributes of procedures and data objects2

1 Every data object has a type and rank and can have type parameters and other properties that determine the3
uses of the object. Collectively, these properties are the attributes of the object. The declared type of a named4
data object is either specified explicitly in a type declaration statement or determined implicitly by the first letter5
of its name (8.7). The attributes listed in 8.5 can be specified in a type declaration statement or individually in6
separate specification statements.7

2 A function has a type and rank and can have type parameters and other attributes that determine the uses of8
the function. The type, rank, and type parameters are the same as those of the function result.9

3 A subroutine does not have a type, rank, or type parameters, but can have other attributes that determine the10
uses of the subroutine.11

8.2 Type declaration statement12

R801 type-declaration-stmt is declaration-type-spec [[, attr-spec] ... ::] entity-decl-list13

1 The type declaration statement specifies the declared type of the entities in the entity declaration list. The type14
and type parameters are those specified by declaration-type-spec, except that the character length type parameter15
can be overridden for an entity by the appearance of * char-length in its entity-decl.16

R802 attr-spec is access-spec17
or ALLOCATABLE18
or ASYNCHRONOUS19
or CODIMENSION lbracket coarray-spec rbracket20
or CONTIGUOUS21
or DIMENSION (array-spec)22
or EXTERNAL23
or INTENT (intent-spec)24
or INTRINSIC25
or language-binding-spec26
or OPTIONAL27
or PARAMETER28
or POINTER29
or PROTECTED30
or rank-clause31
or SAVE32
or TARGET33
or VALUE34
or VOLATILE35

36

C801 (R801) The same attr-spec shall not appear more than once in a given type-declaration-stmt.37

C802 (R801) If a language-binding-spec with a NAME= specifier appears, the entity-decl-list shall consist of a38
single entity-decl.39

C803 (R801) If a language-binding-spec is specified, the entity-decl-list shall not contain any procedure names.40

96 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 The type declaration statement also specifies the attributes whose keywords appear in the attr-spec, except that1
the DIMENSION attribute can be specified or overridden for an entity by the appearance of array-spec in its2
entity-decl, and the CODIMENSION attribute can be specified or overridden for an entity by the appearance of3
coarray-spec in its entity-decl.4

R803 entity-decl is object-name [(array-spec)]5
[lbracket coarray-spec rbracket]6
[* char-length] [initialization]7

or function-name [* char-length]8

C804 (R803) If the entity is not of type character, * char-length shall not appear.9

C805 A type-param-value in a char-length in an entity-decl shall be a colon, asterisk, or specification expression.10

C806 (R801) If initialization appears, a double-colon separator shall appear before the entity-decl-list.11

C807 (R801) If the PARAMETER keyword appears, initialization shall appear in each entity-decl.12

C808 (R803) An initialization shall not appear if object-name is a dummy argument, a function result, an object13
in a named common block unless the type declaration is in a block data program unit, an object in blank common, an14
allocatable variable, or an automatic data object.15

C809 (R803) The function-name shall be the name of an external function, an intrinsic function, a dummy16
function, a procedure pointer, or a statement function.17

R804 object-name is name18

C810 (R804) The object-name shall be the name of a data object.19

R805 initialization is = constant-expr20
or => null-init21
or => initial-data-target22

R806 null-init is function-reference23

C811 (R803) If => appears in initialization, the entity shall have the POINTER attribute. If = appears in24
initialization, the entity shall not have the POINTER attribute.25

C812 (R803) If initial-data-target appears, object-name shall be data-pointer-initialization compatible with it26
(7.5.4.6).27

C813 (R806) The function-reference shall be a reference to the intrinsic function NULL with no arguments.28

3 A name that identifies a specific intrinsic function has a type as specified in 16.8. An explicit type declaration statement is not29
required; however, it is permitted. Specifying a type for a generic intrinsic function name in a type declaration30
statement has no effect.31

4 If initialization appears for a nonpointer entity,32
• its type and type parameters shall conform as specified for intrinsic assignment (10.2.1.2);33

• if the entity has implied shape, the rank of initialization shall be the same as the rank of the entity;34

• if the entity does not have implied shape, initialization shall either be scalar or have the same shape as the35
entity.36

NOTE
Examples of type declaration statements:

REAL A (10)
LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2
COMPLEX :: CUBE_ROOT = (-0.5, 0.866)

J3/23-007 97

J3/23-007 WD 1539-1 2023-02-17

NOTE (cont.)
INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)
INTEGER (SHORT) K ! Range at least -9999 to 9999.
TYPEOF (K) K_TMP ! Also has range at least -9999 to 9999.
REAL (KIND (0.0D0)) B1
REAL (KIND = 2) B2
COMPLEX (KIND = KIND (0.0D0)) :: C
CHARACTER (LEN = 10, KIND = 2) TEXT2
CHARACTER CHAR, STRING *20
TYPE (PERSON) :: CHAIRMAN
TYPE(NODE), POINTER :: HEAD => NULL ()
TYPE (humongous_matrix (k=8, d=1000)) :: MAT
CLASSOF (MAT), POINTER :: MAT_REF ! Same declared type and type parameters as MAT.

(The type HUMONGOUS_MATRIX is defined in 7.5.3.1, NOTE.)

8.3 Automatic data objects1

1 An automatic data object is a nondummy data object with a type parameter or array bound that depends on2
the value of a specification-expr that is not a constant expression.3

C814 An automatic data object shall not have the SAVE attribute.4

2 If a type parameter in a declaration-type-spec or in a char-length in an entity-decl for a local variable of a5
subprogram or BLOCK construct is defined by an expression that is not a constant expression, the type parameter6
value is established on entry to a procedure defined by the subprogram, or on execution of the BLOCK statement,7
and is not affected by any redefinition or undefinition of the variables in the expression during execution of the8
procedure or BLOCK construct.9

8.4 Initialization10

1 The appearance of initialization in an entity-decl for an entity without the PARAMETER attribute specifies that11
the entity is a variable with explicit initialization. Explicit initialization alternatively may be specified in a DATA12
statement unless the variable is of a derived type for which default initialization is specified. If initialization is13
= constant-expr , the variable is initially defined with the value specified by the constant-expr ; if necessary, the14
value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that agrees in type, type15
parameters, and shape with the variable. A variable, or part of a variable, shall not be explicitly initialized more16
than once in a program. If the variable is an array, it shall have its shape specified in either the type declaration17
statement or a previous attribute specification statement in the same scoping unit.18

2 If null-init appears, the initial association status of the object is disassociated. If initial-data-target appears, the19
object is initially associated with the target.20

3 Explicit initialization of a variable that is not in a common block implies the SAVE attribute, which may be confirmed21
by explicit specification.22

8.5 Attributes23

8.5.1 Attribute specification24

1 An attribute may be explicitly specified by an attr-spec in a type declaration statement or by an attribute25
specification statement (8.6). The following constraints apply to attributes.26

C815 An entity shall not be explicitly given any attribute more than once in a scoping unit.27

98 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C816 An array-spec for a nonallocatable nonpointer function result shall be an explicit-shape-spec-list.1

8.5.2 Accessibility attribute2

1 The accessibility attribute specifies the accessibility of an entity via a particular identifier.3

R807 access-spec is PUBLIC4
or PRIVATE5

C817 An access-spec shall appear only in the specification-part of a module.6

2 An access-spec in a type declaration statement specifies the accessibility of the names of all the entities declared7
by that statement. An access-spec in a derived-type-stmt specifies the accessibility of the derived type name. An8
access-spec in an enumeration-type-stmt specifies the accessibility of the enumeration type name, and the default9
accessibility of its enumerators. Accessibility can also be specified by an access-stmt.10

3 An identifier that is specified in a module or is accessible in a module by use association has either the PUB-11
LIC attribute or PRIVATE attribute. An identifier whose accessibility is not explicitly specified has default12
accessibility (8.6.1).13

4 The default accessibility attribute for a module is PUBLIC unless it has been changed by a PRIVATE statement.14
Only an identifier that has the PUBLIC attribute in that module is available to be accessed from that module15
by use association.16

NOTE 1
An identifier can only be accessed by use association if it has the PUBLIC attribute in the module from which
it is accessed. It can nonetheless have the PRIVATE attribute in a module in which it is accessed by use
association, and therefore not be available by use association from that module.

NOTE 2
An example of an accessibility specification is:

REAL, PRIVATE :: X, Y, Z

8.5.3 ALLOCATABLE attribute17

1 A variable with the ALLOCATABLE attribute is a variable for which space is allocated during execution.18

NOTE
Only variables and components can have the ALLOCATABLE attribute. The result of referencing a function
whose result variable has the ALLOCATABLE attribute is a value that does not itself have the ALLOCATABLE
attribute.

8.5.4 ASYNCHRONOUS attribute19

1 An entity with the ASYNCHRONOUS attribute is a variable, and may be subject to asynchronous input/output20
or asynchronous communication.21

2 The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if22

• the variable is a dummy argument or appears in an executable statement or specification expression in that23
scoping unit, and24

• any statement of the scoping unit is executed while the variable is a pending input/output storage sequence25
affector (12.6.2.5) or a pending communication affector (18.10.4).26

3 Use of a variable in an asynchronous data transfer statement can imply the ASYNCHRONOUS attribute; see27
12.6.2.5.28

J3/23-007 99

J3/23-007 WD 1539-1 2023-02-17

4 An object with the ASYNCHRONOUS attribute may be associated with an object that does not have the1
ASYNCHRONOUS attribute, including by use (14.2.2) or host association (19.5.1.4). If an object that is not a2
local variable of a BLOCK construct is specified to have the ASYNCHRONOUS attribute in the specification-3
part of the construct, the object has the attribute within the construct even if it does not have the attribute4
outside the construct. If an object has the ASYNCHRONOUS attribute, then all of its subobjects also have the5
ASYNCHRONOUS attribute.6

NOTE
The ASYNCHRONOUS attribute specifies the variables that might be associated with a pending input/output
storage sequence (the actual memory locations on which asynchronous input/output is being performed) while
the scoping unit is in execution. This information could be used by the compiler to disable certain code motion
optimizations.

8.5.5 BIND attribute for data entities7

1 The BIND attribute for a variable or common block specifies that it is capable of interoperating with a C variable8
whose name has external linkage (18.9).9

R808 language-binding-spec is BIND (C [, NAME = scalar-default-char-constant-expr])10

C818 An entity with the BIND attribute shall be a common block, variable, type, or procedure.11

C819 A variable with the BIND attribute shall be declared in the specification part of a module.12

C820 A variable with the BIND attribute shall be interoperable (18.3).13

C821 Each variable of a common block with the BIND attribute shall be interoperable.14

2 If the value of the scalar-default-char-constant-expr after discarding leading and trailing blanks has nonzero15
length, it shall be valid as an identifier on the companion processor.16

NOTE
ISO/IEC 9899:2018 provides a facility for creating C identifiers whose characters are not restricted to the C
basic character set. Such a C identifier is referred to as a universal character name (ISO/IEC 9899:2018, 6.4.3).
The name of such a C identifier might include characters that are not part of the representation method used
by the processor for default character. If so, the C entity cannot be referenced from Fortran.

3 The BIND attribute for a common block implies the SAVE attribute, which may be confirmed by explicit specification.17

8.5.6 CODIMENSION attribute18

8.5.6.1 General19

1 The CODIMENSION attribute specifies that an entity is a coarray. The coarray-spec specifies its corank or20
corank and cobounds.21

R809 coarray-spec is deferred-coshape-spec-list22
or explicit-coshape-spec23

C822 The sum of the rank and corank of an entity shall not exceed fifteen.24

C823 A coarray shall be a component or a variable that is not a function result.25

C824 A coarray shall not be of type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING26
(18.3.2), or of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV (16.10.2.34).27

C825 An entity whose type has a coarray potential subobject component shall not be a pointer, shall not be a28
coarray, and shall not be a function result.29

100 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C826 A coarray or an object with a coarray potential subobject component shall be an associate name or a1
dummy argument, or have the ALLOCATABLE or SAVE attribute.2

NOTE 1
A coarray is permitted to be of a derived type with pointer or allocatable components. The target of such a
pointer component is always on the same image as the pointer.

NOTE 2
This requirement for the SAVE attribute has the effect that automatic coarrays are not permitted; for example,
the coarray WORK in the following code fragment is not valid.

SUBROUTINE SOLVE3(N,A,B)
INTEGER :: N
REAL :: A(N)[*], B(N)
REAL :: WORK(N)[*] ! Not permitted

If this were permitted, it would require an implicit synchronization on entry to the procedure.

Explicit-shape coarrays that are declared in a subprogram and are not dummy arguments are required to have
the SAVE attribute because otherwise they might be implemented as if they were automatic coarrays.

NOTE 3
Examples of CODIMENSION attribute specifications are:

REAL W(100,100)[0:2,*] ! Explicit-shape coarray
REAL, CODIMENSION[*] :: X ! Scalar coarray
REAL, CODIMENSION[3,*] :: Y(:) ! Assumed-shape coarray
REAL, CODIMENSION[:],ALLOCATABLE :: Z(:,:) ! Allocatable coarray

8.5.6.2 Allocatable coarray3

1 A coarray with the ALLOCATABLE attribute has a specified corank, but its cobounds are determined by4
allocation or argument association.5

R810 deferred-coshape-spec is :6

C827 A coarray with the ALLOCATABLE attribute shall have a coarray-spec that is a deferred-coshape-spec-7
list.8

2 The corank of an allocatable coarray is equal to the number of colons in its deferred-coshape-spec-list.9

3 The cobounds of an unallocated allocatable coarray are undefined. No part of such a coarray shall be referenced10
or defined; however, the coarray may appear as an argument to an intrinsic inquiry function as specified in 16.1.11

4 The cobounds of an allocated allocatable coarray are those specified when the coarray is allocated.12

5 The cobounds of an allocatable coarray are unaffected by any subsequent redefinition or undefinition of the13
variables on which the cobounds’ expressions depend.14

8.5.6.3 Explicit-coshape coarray15

1 An explicit-coshape coarray is a named coarray that has its corank and cobounds declared by an explicit-coshape-16
spec.17

R811 explicit-coshape-spec is [[lower-cobound :] upper-cobound,]...18
[lower-cobound :] *19

C828 A nonallocatable coarray shall have a coarray-spec that is an explicit-coshape-spec.20

J3/23-007 101

J3/23-007 WD 1539-1 2023-02-17

2 The corank is equal to one plus the number of upper-cobounds.1

R812 lower-cobound is specification-expr2

R813 upper-cobound is specification-expr3

C829 (R811) A lower-cobound or upper-cobound that is not a constant expression shall appear only in a sub-4
program, BLOCK construct, or interface body.5

3 If an explicit-coshape coarray is a local variable of a subprogram or BLOCK construct and has cobounds that are6
not constant expressions, the cobounds are determined on entry to a procedure defined by the subprogram, or7
on execution of the BLOCK statement, by evaluating the cobounds expressions. The cobounds of such a coarray8
are unaffected by the redefinition or undefinition of any variable during execution of the procedure or BLOCK9
construct.10

4 The values of each lower-cobound and upper-cobound determine the cobounds of the coarray along a particular11
codimension. The cosubscript range of the coarray in that codimension is the set of integer values between and12
including the lower and upper cobounds. If the lower cobound is omitted, the default value is 1. The upper13
cobound shall not be less than the lower cobound.14

8.5.7 CONTIGUOUS attribute15

C830 An entity with the CONTIGUOUS attribute shall be an array pointer, an assumed-shape array, or an16
assumed-rank dummy data object.17

1 The CONTIGUOUS attribute specifies that an assumed-shape array is contiguous, that an array pointer can18
only be pointer associated with a contiguous target, or that an assumed-rank dummy data object is contiguous.19

2 An object is contiguous if it is20

(1) an object with the CONTIGUOUS attribute,21

(2) a nonpointer whole array that is not assumed-shape,22

(3) an assumed-shape array that is argument associated with an array that is contiguous,23

(4) an assumed-rank dummy data object whose effective argument is contiguous,24

(5) an array allocated by an ALLOCATE statement,25

(6) a pointer associated with a contiguous target, or26

(7) a nonzero-sized array section (9.5.3) provided that27

(a) its base object is contiguous,28

(b) it does not have a vector subscript,29

(c) the array element ordering of the elements of the section is the same as the array element30
ordering of those elements of the base object,31

(d) in the array element ordering of the base object, every element of the base object that is not32
an element of the section either precedes every element of the section or follows every element33
of the section,34

(e) if the array is of type character and a substring-range appears, the substring-range specifies all35
of the characters of the parent-string (9.4.1),36

(f) only its final part-ref has nonzero rank, and37

(g) it is not the real or imaginary part (9.4.4) of an array of type complex.38

3 An object is not contiguous if it is an array subobject, and39

• the object has two or more elements,40

• the elements of the object in array element order are not consecutive in the elements of the base object,41

• the object is not of type character with length zero, and42

• the object is not of a derived type that has no ultimate components other than zero-sized arrays and43
characters with length zero.44

102 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 It is processor dependent whether any other object is contiguous.1

NOTE 1
If a derived type has only one component that is not zero-sized, it is processor dependent whether a structure
component of a contiguous array of that type is contiguous. That is, the derived type might contain padding
on some processors.

NOTE 2
The CONTIGUOUS attribute makes it easier for a processor to enable optimizations that depend on the
memory layout of the object occupying a contiguous block of memory. Examples of CONTIGUOUS attribute
specifications are:

REAL, POINTER, CONTIGUOUS :: SPTR(:)
REAL, CONTIGUOUS, DIMENSION(:,:) :: D

NOTE 3
If an assumed-shape or assumed-rank dummy argument has the CONTIGUOUS attribute, there is no require-
ment for the actual argument to be contiguous. This is the same as for dummy arguments that have explicit
shape or assumed size. The dummy argument will be contiguous even when the actual argument is not.

8.5.8 DIMENSION attribute2

8.5.8.1 General3

1 The DIMENSION attribute specifies that an entity is scalar, assumed-rank, or an array. An assumed-rank4
dummy data object has the rank, shape, and size of its effective argument; otherwise, the rank or rank and shape5
is specified by its RANK clause or its array-spec.6

R814 array-spec is explicit-shape-spec-list7
or explicit-shape-bounds-spec8
or assumed-shape-spec-list9
or assumed-shape-bounds-spec10
or deferred-shape-spec-list11
or assumed-size-spec12
or implied-shape-spec13
or implied-shape-or-assumed-size-spec14
or assumed-rank-spec15

NOTE 1
The maximum rank of an entity is fifteen minus the corank.

NOTE 2
Examples of DIMENSION attribute specifications are:

SUBROUTINE EX (N, A, B)
REAL, DIMENSION (N, 10) :: W ! Automatic explicit-shape array
REAL, DIMENSION (SHAPE (W)) :: X ! Array with the same shape as W
REAL, DIMENSION ([1, 2, 3] :: 10) :: Y ! Same as DIMENSION (1:10, 2:10, 3:10)
REAL, DIMENSION (LBARRAY:UBARRAY) :: Z ! Upper/lower bounds provided by arrays
REAL :: ZZ (LBARRAY+2:UBARRAY+2) ! Upper/lower bounds provided by arrays
REAL A (:), B (0:) ! Assumed-shape arrays
REAL C (LBARRAY:) ! Specified lower bounds, assumed shape
REAL, POINTER :: D (:, :) ! Array pointer
REAL, DIMENSION (:), POINTER :: P ! Array pointer

J3/23-007 103

J3/23-007 WD 1539-1 2023-02-17

NOTE 2 (cont.)
REAL, ALLOCATABLE, DIMENSION (:) :: E ! Allocatable array
REAL, PARAMETER :: V(0:*) = [0.1, 1.1] ! Implied-shape array

8.5.8.2 Explicit-shape array1

R815 explicit-shape-spec is [lower-bound :] upper-bound2

R816 lower-bound is specification-expr3

R817 upper-bound is specification-expr4

R818 explicit-shape-bounds-spec is [explicit-bounds-expr :] explicit-bounds-expr5
or lower-bound : explicit-bounds-expr6
or explicit-bounds-expr : upper-bound7

R819 explicit-bounds-expr is int-expr8

C831 An explicit-shape-spec or explicit-shape-bounds-spec whose bounds are not constant expressions shall9
appear only in a subprogram, derived type definition, BLOCK construct, or interface body.10

C832 If an explicit-shape-bounds-spec has two explicit-bounds-exprs, they shall have the same size.11

C833 An explicit-bounds-expr shall be a restricted expression that is a rank one integer array with constant12
size.13

1 The rank of an entity declared with an explicit-shape-spec-list is equal to the number of explicit-shape-specs; the14
rank of an entity declared with an explicit-shape-bounds-spec is equal to the size of one of the explicit-bounds-exprs.15
If the rank of such an entity is nonzero, the entity is an explicit-shape array; otherwise, it is scalar.16

2 The values of each lower-bound and upper-bound in an explicit-shape-spec determine the bounds along a particular17
dimension and hence the extent in that dimension. If lower-bound is omitted, the lower bound is equal to one.18

3 An explicit-bounds-expr that appears immediately before a colon specifies the lower bounds; otherwise, it specifies19
the upper bounds. The first element specifies the bound for the first dimension, and so on. A lower-bound or20
upper-bound in an explicit-shape-bounds-spec specifies the bound for every dimension of the entity. If no lower21
bound is specified in an explicit-shape-bounds-spec, all the lower bounds are equal to one.22

4 The value of a lower bound or an upper bound may be positive, negative, or zero. The subscript range of the23
array in that dimension is the set of integer values between and including the lower and upper bounds, provided24
the upper bound is not less than the lower bound. If the upper bound is less than the lower bound, the range is25
empty, the extent in that dimension is zero, and the array is of zero size.26

5 An explicit-shape array that is a named local variable of a subprogram or BLOCK construct may have bounds27
that are not constant expressions. The bounds, and hence shape, are determined on entry to a procedure defined28
by the subprogram, or on execution of the BLOCK statement, by evaluating the bounds’ expressions. The29
bounds of such an array are unaffected by the redefinition or undefinition of any variable during execution of the30
procedure or BLOCK construct.31

8.5.8.3 Assumed-shape array32

1 An assumed-shape array is a nonallocatable nonpointer dummy argument array that takes its shape from its33
effective argument.34

R820 assumed-shape-spec is [lower-bound] :35

R821 assumed-shape-bounds-spec is explicit-bounds-expr :36

104 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 If the rank is not specified by a rank-clause, it is equal to the number of colons in the assumed-shape-spec-list,1
or the size of the explicit-bounds-expr in the assumed-shape-bounds-spec. If the rank is nonzero, the entity is an2
assumed-shape array; otherwise, it is scalar.3

3 If explicit-bounds-expr appears it specifies the lower bounds for every dimension; otherwise, if lower-bound appears4
it specifies the lower bound for that dimension; otherwise the lower bound is equal to one.5

4 The extent of a dimension of an assumed-shape array dummy argument is the extent of the corresponding6
dimension of its effective argument. If the lower bound value is d and the extent of the corresponding dimension7
of its effective argument is s, then the value of the upper bound is s + d − 1.8

8.5.8.4 Deferred-shape array9

1 A deferred-shape array is an allocatable array or an array pointer. (An allocatable array has the ALLOCATABLE10
attribute; an array pointer has the POINTER attribute.)11

R822 deferred-shape-spec is :12

C834 An array with the POINTER or ALLOCATABLE attribute shall be declared with a rank-clause or have13
an array-spec that is a deferred-shape-spec-list.14

2 If the rank is not specified by a rank-clause, it is equal to the number of colons in the deferred-shape-spec-list.15

3 The size, bounds, and shape of an unallocated allocatable array or a disassociated array pointer are undefined.16
No part of such an array shall be referenced or defined; however, the array may appear as an argument to an17
intrinsic inquiry function as specified in 16.1.18

4 The bounds of each dimension of an allocated allocatable array are those specified when the array is allocated19
or, if it is a dummy argument, when it is argument associated with an allocated effective argument.20

5 The bounds of each dimension of an associated array pointer, and hence its shape, may be specified21

• in an ALLOCATE statement (9.7.1) when the target is allocated,22

• by pointer assignment (10.2.2), or23

• if it is a dummy argument, by argument association with a nonpointer actual argument or an associated24
pointer effective argument.25

6 The bounds of an array pointer or allocatable array are unaffected by any subsequent redefinition or undefinition26
of variables on which the bounds’ expressions depend.27

8.5.8.5 Assumed-size array28

1 An assumed-size array is a dummy argument array whose size is assumed from that of its effective argument, or29
the associate name of a RANK (*) block in a SELECT RANK construct. The rank and extents may differ for30
the effective and dummy arguments; only the size of the effective argument is assumed by the dummy argument.31
A dummy argument is declared to be an assumed-size array by an assumed-size-spec or an implied-shape-or-32
assumed-size-spec.33

R823 assumed-implied-spec is [lower-bound :] *34

R824 assumed-size-spec is explicit-shape-spec-list, assumed-implied-spec35

C835 An object whose array bounds are specified by an assumed-size-spec shall be a dummy data object.36

C836 An assumed-size array with the INTENT (OUT) attribute shall not be polymorphic, finalizable, of a37
type with an allocatable ultimate component, or of a type for which default initialization is specified.38

R825 implied-shape-or-assumed-size-spec is assumed-implied-spec39

J3/23-007 105

J3/23-007 WD 1539-1 2023-02-17

C837 An object whose array bounds are specified by an implied-shape-or-assumed-size-spec shall be a dummy1
data object or a named constant.2

2 The size of an assumed-size array is determined as follows.3

• If the effective argument associated with the assumed-size dummy array is an array of any type other than4
default character, the size is that of the effective argument.5

• If the actual argument corresponding to the assumed-size dummy array is an array element of any type6
other than default character with a subscript order value of r (9.5.3.3) in an array of size x, the size of the7
dummy array is x − r + 1.8

• If the actual argument is a default character array, default character array element, or a default character9
array element substring (9.4.1), and if it begins at character storage unit t of an array with c character10
storage units, the size of the dummy array is MAX (INT ((c − t + 1)/e), 0), where e is the length of an11
element in the dummy character array.12

• If the actual argument is a default character scalar that is not an array element or array element substring13
designator, the size of the dummy array is MAX (INT (l/e), 0), where e is the length of an element in the14
dummy character array and l is the length of the actual argument.15

3 The rank is equal to one plus the number of explicit-shape-specs.16

4 An assumed-size array has no upper bound in its last dimension and therefore has no extent in its last dimension17
and no shape. An assumed-size array shall not appear in a context that requires its shape.18

5 If a list of explicit-shape-specs appears, it specifies the bounds of the first rank−1 dimensions. If lower-bound19
appears it specifies the lower bound of the last dimension; otherwise that lower bound is 1. An assumed-size20
array can be subscripted or sectioned (9.5.3).21

6 If an assumed-size array has bounds that are not constant expressions, the bounds are determined on entry to22
the procedure. The bounds of such an array are unaffected by the redefinition or undefinition of any variable23
during execution of the procedure.24

8.5.8.6 Implied-shape array25

1 An implied-shape array is a named constant that takes its shape from the constant-expr in its declaration. A26
named constant is declared to be an implied-shape array with an array-spec that is an implied-shape-or-assumed-27
size-spec or an implied-shape-spec.28

R826 implied-shape-spec is assumed-implied-spec, assumed-implied-spec-list29

C838 An implied-shape array shall be a named constant.30

2 The rank of an implied-shape array is the number of assumed-implied-specs in its array-spec.31

3 The extent of each dimension of an implied-shape array is the same as the extent of the corresponding dimension32
of the constant-expr . The lower bound of each dimension is lower-bound, if it appears, and 1 otherwise; the upper33
bound is one less than the sum of the lower bound and the extent.34

8.5.8.7 Assumed-rank entity35

1 An assumed-rank entity is a dummy data object whose rank is assumed from its effective argument, or the36
associate name of a RANK DEFAULT block in a SELECT RANK construct; this rank can be zero. The bounds37
and shape of an assumed-rank entity with the ALLOCATABLE or POINTER attribute are determined as specified38
in 8.5.8.4. An assumed-rank entity is declared with an array-spec that is an assumed-rank-spec.39

R827 assumed-rank-spec is ..40

C839 An assumed-rank entity shall be an associate name or a dummy data object that does not have the41
CODIMENSION or VALUE attribute.42

106 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C840 An assumed-rank variable name shall not appear in a designator or expression except as an actual1
argument that corresponds to a dummy argument that is assumed-rank, the argument of the function2
C_LOC or C_SIZEOF from the intrinsic module ISO_C_BINDING (18.2), the first dummy argument3
of an intrinsic inquiry function, or the selector of a SELECT RANK statement.4

C841 If an assumed-size or nonallocatable nonpointer assumed-rank array is an actual argument that corres-5
ponds to a dummy argument that is an INTENT (OUT) assumed-rank array, it shall not be polymorphic,6
finalizable, of a type with an allocatable ultimate component, or of a type for which default initialization7
is specified.8

8.5.9 EXTERNAL attribute9

1 The EXTERNAL attribute specifies that an entity is an external procedure, dummy procedure, procedure pointer,10
or block data program unit.11

C842 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.12

C843 In an external subprogram, the EXTERNAL attribute shall not be specified for a procedure defined by13
the subprogram.14

C844 In an interface body, the EXTERNAL attribute shall not be specified for the procedure declared by the15
interface body.16

2 If an external procedure or dummy procedure is used as an actual argument or is the target of a procedure pointer17
assignment, it shall be declared to have the EXTERNAL attribute.18

NOTE
The EXTERNAL attribute can be specified in a type declaration statement, by an interface body (15.4.3.2),
by an EXTERNAL statement (15.4.3.5), or by a procedure declaration statement (15.4.3.6).

8.5.10 INTENT attribute19

1 The INTENT attribute specifies the intended use of a dummy argument. An INTENT (IN) dummy argument20
is suitable for receiving data from the invoking scoping unit, an INTENT (OUT) dummy argument is suitable21
for returning data to the invoking scoping unit, and an INTENT (INOUT) dummy argument is suitable for use22
both to receive data from and to return data to the invoking scoping unit.23

R828 intent-spec is IN24
or OUT25
or INOUT26

C845 An entity with the INTENT attribute shall be a dummy data object or a dummy procedure pointer.27

C846 (R828) A nonpointer object with the INTENT (IN) attribute shall not appear in a variable definition28
context (19.6.7).29

C847 A pointer with the INTENT (IN) attribute shall not appear in a pointer association context (19.6.8).30

C848 An INTENT (OUT) dummy argument of a nonintrinsic procedure shall not be an allocatable coarray or31
have a subobject that is an allocatable coarray.32

C849 An entity with the INTENT (OUT) attribute shall not be of, or have a subcomponent of, type EVENT_-33
TYPE (16.10.2.10), LOCK_TYPE (16.10.2.19), or NOTIFY_TYPE (16.10.2.22) from the intrinsic mod-34
ule ISO_FORTRAN_ENV.35

2 The INTENT (IN) attribute for a nonpointer dummy argument specifies that it shall neither be defined nor36
become undefined during the invocation and execution of the procedure. The INTENT (IN) attribute for a37
pointer dummy argument specifies that during the invocation and execution of the procedure its association shall38

J3/23-007 107

J3/23-007 WD 1539-1 2023-02-17

not be changed except that it may become undefined if the target is deallocated other than through the pointer1
(19.5.2.5).2

3 The INTENT (OUT) attribute for a nonpointer dummy argument specifies that the dummy argument becomes3
undefined on invocation of the procedure, except for any subcomponents that are default-initialized (7.5.4.6). Any4
actual argument that corresponds to such a dummy argument shall be definable. The INTENT (OUT) attribute5
for a pointer dummy argument specifies that on invocation of the procedure the pointer association status of6
the dummy argument becomes undefined. Any actual argument that corresponds to such a dummy pointer shall7
be a pointer variable or a procedure pointer that is not the result of a function reference. Any undefinition or8
definition implied by association of an actual argument with an INTENT (OUT) dummy argument shall not9
affect any other entity within the statement that invokes the procedure.10

4 The INTENT (INOUT) attribute for a nonpointer dummy argument specifies that any actual argument that11
corresponds to the dummy argument shall be definable. The INTENT (INOUT) attribute for a pointer dummy12
argument specifies that any actual argument that corresponds to the dummy argument shall be a pointer variable13
or a procedure pointer that is not the result of a function reference.14

NOTE 1
The INTENT attribute for an allocatable dummy argument applies to both the allocation status and the
definition status. An actual argument that corresponds to an INTENT (OUT) allocatable dummy argument is
deallocated on procedure invocation (9.7.3.2). To avoid this deallocation for coarrays, INTENT (OUT) is not
allowed for a dummy argument that is an allocatable coarray or has a subobject that is an allocatable coarray.

5 If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of its effective15
argument (15.5.2).16

6 If a nonpointer object has an INTENT attribute, then all of its subobjects have the same INTENT attribute.17

NOTE 2
An example of INTENT specification is:

SUBROUTINE MOVE (FROM, TO)
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

NOTE 3
If a dummy argument is a nonpointer derived-type object with a pointer component, then the pointer as a
pointer is a subobject of the dummy argument, but the target of the pointer is not. Therefore, the restrictions
on subobjects of the dummy argument apply to the pointer in contexts where it is used as a pointer, but not in
contexts where it is dereferenced to indicate its target. For example, if X is a nonpointer dummy argument of
derived type with an integer pointer component P, and X is INTENT (IN), then the statement

X%P => NEW_TARGET

is prohibited, but
X%P = 0

is allowed (provided that X%P is associated with a definable target).

Similarly, the INTENT restrictions on pointer dummy arguments apply only to the association of the dummy
argument; they do not restrict the operations allowed on its target.

NOTE 4
Argument intent specifications serve several purposes in addition to documenting the intended use of dummy
arguments. A processor can check whether an INTENT (IN) dummy argument is used in a way that could
redefine it. A slightly more sophisticated processor could check to see whether an INTENT (OUT) dummy

108 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 4 (cont.)
argument could possibly be referenced before it is defined. If the procedure’s interface is explicit, the processor
can also verify that actual arguments corresponding to INTENT (OUT) or INTENT (INOUT) dummy argu-
ments are definable. A more sophisticated processor could use this information to optimize the translation of
the referencing scoping unit by taking advantage of the fact that actual arguments corresponding to INTENT
(IN) dummy arguments will not be changed and that any prior value of an actual argument corresponding to
an INTENT (OUT) dummy argument will not be referenced and could thus be discarded.

INTENT (OUT) means that the value of the argument after invoking the procedure is entirely the result of
executing that procedure. If an argument might not be redefined and it is desired to have the argument retain its
value in that case, INTENT (OUT) cannot be used because it would cause the argument to become undefined;
however, INTENT (INOUT) can be used, even if there is no explicit reference to the value of the dummy
argument.

INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The actual argument corresponding
to an INTENT (INOUT) dummy argument is always required to be definable, while an actual argument
corresponding to a dummy argument without an INTENT attribute need be definable only if the dummy
argument is actually redefined.

8.5.11 INTRINSIC attribute1

1 The INTRINSIC attribute specifies that the entity is an intrinsic procedure. The procedure name may be a2
generic name (16.7), a specific name (16.8), or both.3

2 If the specific name of an intrinsic procedure (16.8) is used as an actual argument, the name shall be explicitly specified to have the4
INTRINSIC attribute. Note that a specific intrinsic procedure listed in Table 16.3 is not permitted to be used as an actual argument5
(C1534).6

C850 If the generic name of an intrinsic procedure is explicitly declared to have the INTRINSIC attribute,7
and it is also the generic name of one or more generic interfaces (15.4.3.2) accessible in the same scoping8
unit, the procedures in the interfaces and the generic intrinsic procedure shall all be functions or all be9
subroutines.10

8.5.12 OPTIONAL attribute11

1 The OPTIONAL attribute specifies that the dummy argument need not have an effective argument in a reference12
to the procedure (15.5.2.13).13

C851 An entity with the OPTIONAL attribute shall be a dummy argument.14

NOTE
The intrinsic function PRESENT (16.9.163) can be used to determine whether an optional dummy argument
has an associated effective argument.

8.5.13 PARAMETER attribute15

1 The PARAMETER attribute specifies that an entity is a named constant. The entity has the value specified by16
its constant-expr , converted, if necessary, to the type, type parameters and shape of the entity.17

C852 An entity with the PARAMETER attribute shall not be a variable, a coarray, or a procedure.18

C853 An expression that specifies a length type parameter or array bound of a named constant shall be a19
constant expression.20

2 A named constant shall not be referenced unless it has been defined previously; it may be defined previously in21
the same statement.22

J3/23-007 109

J3/23-007 WD 1539-1 2023-02-17

NOTE
Examples of declarations with a PARAMETER attribute are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /)
TYPE(NODE), PARAMETER :: DEFAULT = NODE(0, NULL ())

8.5.14 POINTER attribute1

1 Entities with the POINTER attribute can be associated with different data objects or procedures during execution2
of a program. A pointer is either a data pointer or a procedure pointer.3

C854 An entity with the POINTER attribute shall not have the ALLOCATABLE, INTRINSIC, or TARGET4
attribute, and shall not be a coarray.5

C855 A named procedure with the POINTER attribute shall have the EXTERNAL attribute.6

2 A data pointer shall not be referenced unless it is pointer associated with a target object that is defined. A data7
pointer shall not be defined unless it is pointer associated with a target object that is definable.8

3 If a data pointer is associated, the values of its deferred type parameters are the same as the values of the9
corresponding type parameters of its target.10

4 A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.11

NOTE
Examples of POINTER attribute specifications are:

TYPE (NODE), POINTER :: CURRENT, TAIL
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

8.5.15 PROTECTED attribute12

1 The PROTECTED attribute imposes limitations on the usage of module entities.13

C856 The PROTECTED attribute shall be specified only in the specification part of a module.14

C857 An entity with the PROTECTED attribute shall be a procedure pointer or variable.15

C858 An entity with the PROTECTED attribute shall not be in a common block.16

C859 A nonpointer object that has the PROTECTED attribute and is accessed by use association shall not17
appear in a variable definition context (19.6.7) or as a data-target or initial-data-target.18

C860 A pointer that has the PROTECTED attribute and is accessed by use association shall not appear in a19
pointer association context (19.6.8).20

2 Other than within the module in which an entity is given the PROTECTED attribute, or within any of its21
descendants,22

• if it is a nonpointer object, it is not definable, and23

• if it is a pointer, its association status shall not be changed except that it may become undefined if its target24
is deallocated other than through the pointer (19.5.2.5), or if its target becomes undefined by completing25
execution of a BLOCK construct or by execution of a RETURN or END statement.26

3 If an object has the PROTECTED attribute, all of its subobjects have the PROTECTED attribute.27

110 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
An example of the PROTECTED attribute:

MODULE temperature
REAL, PROTECTED :: temp_c, temp_f

CONTAINS
SUBROUTINE set_temperature_c(c)

REAL, INTENT(IN) :: c
temp_c = c
temp_f = temp_c*(9.0/5.0) + 32

END SUBROUTINE
END MODULE

The PROTECTED attribute ensures that the variables temp_c and temp_f cannot be modified other than via
the set_temperature_c procedure, thus keeping them consistent with each other.

8.5.16 SAVE attribute1

1 The SAVE attribute specifies that a local variable of a program unit or subprogram retains its association status,2
allocation status, definition status, and value after execution of a RETURN or END statement unless it is a3
pointer and its target becomes undefined (19.5.2.5(6)). If it is a local variable of a subprogram it is shared by all4
instances (15.6.2.4) of the subprogram.5

2 The SAVE attribute specifies that a local variable of a BLOCK construct retains its association status, allocation6
status, definition status, and value after termination of the construct unless it is a pointer and its target becomes7
undefined (19.5.2.5(7)). If the BLOCK construct is within a subprogram the variable is shared by all instances8
(15.6.2.4) of the subprogram.9

3 Giving a common block the SAVE attribute confers the attribute on all entities in the common block.10

C861 An entity with the SAVE attribute shall be a common block, variable, or procedure pointer.11

C862 The SAVE attribute shall not be specified for a dummy argument, a function result, an automatic data12
object, or an object that is in a common block.13

4 A variable, common block, or procedure pointer declared in the scoping unit of a main program, module, or14
submodule implicitly has the SAVE attribute, which may be confirmed by explicit specification. If a common block15
has the SAVE attribute in any other kind of scoping unit, it shall have the SAVE attribute in every scoping unit that is not of a16
main program, module, or submodule.17

8.5.17 RANK clause18

1 The RANK clause specifies the DIMENSION attribute.19

R829 rank-clause is RANK (scalar-int-constant-expr)20

C863 The scalar-int-constant-expr in a rank-clause shall be nonnegative with a value less than or equal to the21
maximum array rank supported by the processor.22

C864 An entity declared with a rank-clause shall be a dummy data object or have the ALLOCATABLE or23
POINTER attribute.24

2 An entity declared with a RANK clause has the specified rank. If the rank is zero the entity is scalar; otherwise,25
if it has the ALLOCATABLE or POINTER attribute, it specifies that it is a deferred-shape array; otherwise, it26
specifies that it is an assumed-shape array with all the lower bounds equal to one.27

J3/23-007 111

J3/23-007 WD 1539-1 2023-02-17

NOTE
Examples of RANK specifications are:

INTEGER :: X0(10,10,10)
LOGICAL, RANK(RANK(X0)), ALLOCATABLE :: X1 ! Rank 3, deferred shape
COMPLEX, RANK(2), POINTER :: X2 ! Rank 2, deferred-shape
LOGICAL, RANK(RANK(X0)) :: X3 ! Rank 3, assumed-shape
REAL, RANK(0) :: X4 ! Scalar

8.5.18 TARGET attribute1

1 The TARGET attribute specifies that a data object may have a pointer associated with it (10.2.2). An object2
without the TARGET attribute shall not have a pointer associated with it.3

C865 An entity with the TARGET attribute shall be a variable.4

C866 An entity with the TARGET attribute shall not have the POINTER attribute.5

2 If an object has the TARGET attribute, then all of its nonpointer subobjects also have the TARGET attribute.6

NOTE 1
In addition to variables explicitly declared to have the TARGET attribute, the objects created by allocation of
pointers (9.7.1.4) have the TARGET attribute.

NOTE 2
Examples of TARGET attribute specifications are:

TYPE (NODE), TARGET :: HEAD
REAL, DIMENSION (1000, 1000), TARGET :: A, B

NOTE 3
Every object designator that starts from an object with the TARGET attribute will have either the TARGET
or POINTER attribute. If pointers are involved, the designator might not necessarily be a subobject of the
original object, but because a pointer can point only to an entity with the TARGET attribute, there is no way
to end up at a nonpointer that does not have the TARGET attribute.

8.5.19 VALUE attribute7

1 The VALUE attribute specifies a type of argument association (15.5.2.5) for a dummy argument.8

C867 An entity with the VALUE attribute shall be a dummy data object. It shall not be an assumed-size9
array, a coarray, or a variable with a coarray potential subobject component.10

C868 An entity with the VALUE attribute shall not have the ALLOCATABLE, INTENT (INOUT), INTENT11
(OUT), POINTER, or VOLATILE attributes.12

C869 A dummy argument of a procedure with the BIND attribute shall not have both the OPTIONAL and13
VALUE attributes.14

8.5.20 VOLATILE attribute15

1 The VOLATILE attribute specifies that an object may be referenced, defined, or become undefined, by means16
not specified by the program. A pointer with the VOLATILE attribute may additionally have its association17
status, dynamic type and type parameters, and array bounds changed by means not specified by the program.18
An allocatable object with the VOLATILE attribute may additionally have its allocation status, dynamic type19
and type parameters, and array bounds changed by means not specified by the program.20

112 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C870 An entity with the VOLATILE attribute shall be a variable that is not an INTENT (IN) dummy argu-1
ment.2

C871 The VOLATILE attribute shall not be specified for a coarray, or a variable with a coarray potential3
subobject component, that is accessed by use (14.2.2) or host (19.5.1.4) association.4

C872 Within a BLOCK construct (11.1.4), the VOLATILE attribute shall not be specified for a coarray, or5
a variable with a coarray potential subobject component, that is not a construct entity (19.4) of that6
construct.7

2 A noncoarray object that has the VOLATILE attribute may be associated with an object that does not have8
the VOLATILE attribute, including by use (14.2.2) or host association (19.5.1.4). If an object that is not a9
local variable of a BLOCK construct is specified to have the VOLATILE attribute in the specification-part of10
the construct, the object has the attribute within the construct even if it does not have the attribute outside the11
construct. The relationship between coarrays, the VOLATILE attribute, and argument association is described12
in 15.5.2.9. The relationship between coarrays, the VOLATILE attribute, and pointer association is described in13
10.2.2.3.14

3 A pointer should have the VOLATILE attribute if its target has the VOLATILE attribute. If, by means not15
specified by the program, the target is referenced, defined, or becomes undefined, the pointer shall have the16
VOLATILE attribute. All members of an EQUIVALENCE group should have the VOLATILE attribute if any member has the17
VOLATILE attribute.18

4 If an object has the VOLATILE attribute, then all of its subobjects also have the VOLATILE attribute.19

5 The Fortran processor should use the most recent definition of a volatile object each time its value is required.20
When a volatile object is defined by means of Fortran, it should make that definition available to the non-Fortran21
parts of the program as soon as possible.22

8.6 Attribute specification statements23

8.6.1 Accessibility statement24

R830 access-stmt is access-spec [[::] access-id-list]25

R831 access-id is access-name26
or generic-spec27

C873 (R830) An access-stmt shall appear only in the specification-part of a module. Only one accessibility28
statement with an omitted access-id-list is permitted in the specification-part of a module.29

C874 (R831) Each access-name shall be the name of a module, variable, procedure, nonintrinsic type, named30
constant, or namelist group.31

C875 A module whose name appears in an access-stmt shall be referenced by a USE statement in the scoping32
unit that contains the access-stmt.33

C876 The name of a module shall appear at most once in all of the access-stmts in a module.34

1 An access-stmt with an access-id-list specifies the accessibility attribute, PUBLIC or PRIVATE, of each access-id35
in the list that is not a module name. An access-stmt without an access-id list specifies the default accessibility36
of the identifiers of entities declared in the module, and of entities accessed from a module whose name does37
not appear in any access-stmt in the module. If an identifier is accessed from another module and also declared38
locally, it has the default accessibility of a locally declared identifier. The statement39

PUBLIC40
specifies a default of public accessibility. The statement41

PRIVATE42
specifies a default of private accessibility. If no such statement appears in a module, the default is public43
accessibility.44

J3/23-007 113

J3/23-007 WD 1539-1 2023-02-17

2 If an identifier is accessed by use association and not declared in the module, and the name of every module1
from which it is accessed appears in an access-stmt in the scoping unit, its default accessibility is PRIVATE if2
the access-spec in every such access-stmt is PRIVATE, or PUBLIC if the access-spec in any such access-stmt is3
PUBLIC.4

NOTE 1
Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+)

NOTE 2
The following is an example of using an accessibility statement on a module name.

MODULE m2
USE m1
! We want to use the types and procedures in m1, but we only want to
! re-export m_type from m1, and export our own procedures.
PRIVATE m1
PUBLIC m_type
. . . definitions for our own entities and module procedures.

END MODULE

8.6.2 ALLOCATABLE statement5

R832 allocatable-stmt is ALLOCATABLE [::] allocatable-decl-list6

R833 allocatable-decl is object-name [(array-spec)]7
[lbracket coarray-spec rbracket]8

1 The ALLOCATABLE statement specifies the ALLOCATABLE attribute (8.5.3) for a list of objects.9

NOTE
An example of an ALLOCATABLE statement is:

REAL A, B (:), SCALAR
ALLOCATABLE :: A (:, :), B, SCALAR

8.6.3 ASYNCHRONOUS statement10

R834 asynchronous-stmt is ASYNCHRONOUS [::] object-name-list11

1 The ASYNCHRONOUS statement specifies the ASYNCHRONOUS attribute (8.5.4) for a list of objects.12

8.6.4 BIND statement13

R835 bind-stmt is language-binding-spec [::] bind-entity-list14

R836 bind-entity is entity-name15
or / common-block-name /16

C877 (R835) If the language-binding-spec has a NAME= specifier, the bind-entity-list shall consist of a single17
bind-entity.18

1 The BIND statement specifies the BIND attribute for a list of variables and common blocks.19

114 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

8.6.5 CODIMENSION statement1

R837 codimension-stmt is CODIMENSION [::] codimension-decl-list2

R838 codimension-decl is coarray-name lbracket coarray-spec rbracket3

1 The CODIMENSION statement specifies the CODIMENSION attribute (8.5.6) for a list of objects.4

NOTE
An example of a CODIMENSION statement is:

CODIMENSION a[*], b[3,*], c[:]

8.6.6 CONTIGUOUS statement5

R839 contiguous-stmt is CONTIGUOUS [::] object-name-list6

1 The CONTIGUOUS statement specifies the CONTIGUOUS attribute (8.5.7) for a list of objects.7

8.6.7 DATA statement8

R840 data-stmt is DATA data-stmt-set [[,] data-stmt-set] ...9

1 The DATA statement specifies explicit initialization (8.4).10

2 If a nonpointer variable has default initialization, it shall not appear in a data-stmt-object-list.11

3 A variable that appears in a DATA statement and has not been typed previously shall not appear in a sub-12
sequent type declaration unless that declaration confirms the implicit typing. An array name, array section, or13
array element that appears in a DATA statement shall have had its array properties established by a previous14
specification statement.15

4 Except for variables in named common blocks, a named variable has the SAVE attribute if any part of it is initialized16
in a DATA statement, and this may be confirmed by explicit specification.17

R841 data-stmt-set is data-stmt-object-list / data-stmt-value-list /18

R842 data-stmt-object is variable19
or data-implied-do20

R843 data-implied-do is (data-i-do-object-list , [integer-type-spec ::] data-i-do-variable =21
scalar-int-constant-expr ,22
scalar-int-constant-expr23
[, scalar-int-constant-expr])24

R844 data-i-do-object is array-element25
or scalar-structure-component26
or data-implied-do27

R845 data-i-do-variable is do-variable28

C878 A data-stmt-object or data-i-do-object shall not be a coindexed variable.29

C879 (R842) A data-stmt-object that is a variable shall be a designator . Each subscript, section subscript,30
substring starting point, and substring ending point in the variable shall be a constant expression.31

C880 (R842) A variable whose designator appears as a data-stmt-object or a data-i-do-object shall not be a32
dummy argument, accessed by use or host association, in a named common block unless the DATA statement is33
in a block data program unit, in blank common, a function name, a function result name, an automatic data34
object, or an allocatable variable.35

J3/23-007 115

J3/23-007 WD 1539-1 2023-02-17

C881 (R842) A data-i-do-object or a variable that appears as a data-stmt-object shall not be an object designator1
in which a pointer appears other than as the entire rightmost part-ref .2

C882 (R844) The array-element shall be a variable.3

C883 (R844) The scalar-structure-component shall be a variable.4

C884 (R844) The scalar-structure-component shall contain at least one part-ref that contains a subscript-list.5

C885 (R844) In an array-element or scalar-structure-component that is a data-i-do-object, any subscript shall6
be a constant expression, and any primary within that subscript that is a data-i-do-variable shall be a7
DO variable of this data-implied-do or of a containing data-implied-do.8

R846 data-stmt-value is [data-stmt-repeat *] data-stmt-constant9

R847 data-stmt-repeat is scalar-int-constant10
or scalar-int-constant-subobject11

C886 (R847) The data-stmt-repeat shall be positive or zero. If the data-stmt-repeat is a named constant, it12
shall have been defined previously.13

R848 data-stmt-constant is scalar-constant14
or scalar-constant-subobject15
or signed-int-literal-constant16
or signed-real-literal-constant17
or null-init18
or initial-data-target19
or structure-constructor20
or enum-constructor21
or enumeration-constructor22

C887 (R848) If a DATA statement constant value is a named constant, structure constructor, enum constructor,23
or enumeration constructor, the named constant or type shall have been defined previously.24

C888 (R848) If a data-stmt-constant is a structure-constructor , enum-constructor , or enumeration-constructor ,25
it shall be a constant expression.26

R849 int-constant-subobject is constant-subobject27

C889 (R849) int-constant-subobject shall be of type integer.28

R850 constant-subobject is designator29

C890 (R850) constant-subobject shall be a subobject of a constant.30

C891 (R850) Any subscript, substring starting point, or substring ending point shall be a constant expression.31

5 The data-stmt-object-list is expanded to form a sequence of pointers and scalar variables, referred to as “sequence32
of variables” in subsequent text. A nonpointer array whose unqualified name appears as a data-stmt-object or33
data-i-do-object is equivalent to a complete sequence of its array elements in array element order (9.5.3.3). An34
array section is equivalent to the sequence of its array elements in array element order. A data-implied-do is35
expanded to form a sequence of array elements and structure components, under the control of the data-i-do-36
variable, as in the DO construct (11.1.7.4). The scope and attributes of a data-i-do-variable are described in37
19.4.38

6 The data-stmt-value-list is expanded to form a sequence of data-stmt-constants. A data-stmt-repeat indicates the39
number of times the following data-stmt-constant is to be included in the sequence; omission of a data-stmt-repeat40
has the effect of a repeat factor of 1.41

116 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7 A zero-sized array or a data-implied-do with an iteration count of zero contributes no variables to the expanded1
sequence of variables, but a zero-length scalar character variable does contribute a variable to the expanded2
sequence. A data-stmt-constant with a repeat factor of zero contributes no data-stmt-constants to the expanded3
sequence of scalar data-stmt-constants.4

8 The expanded sequences of variables and data-stmt-constants are in one-to-one correspondence. Each data-stmt-5
constant specifies the initial value, initial data target, or null-init for the corresponding variable. The lengths of6
the two expanded sequences shall be the same.7

9 A data-stmt-constant shall be null-init or initial-data-target if and only if the corresponding data-stmt-object has8
the POINTER attribute. If data-stmt-constant is null-init, the initial association status of the corresponding data9
statement object is disassociated. If data-stmt-constant is initial-data-target the corresponding data statement10
object shall be data-pointer-initialization compatible (7.5.4.6) with the initial data target; the data statement11
object is initially associated with the target.12

10 A data-stmt-constant other than boz-literal-constant, null-init, or initial-data-target shall be compatible with its13
corresponding variable according to the rules of intrinsic assignment (10.2.1.2). The variable is initially defined14
with the value specified by the data-stmt-constant; if necessary, the value is converted according to the rules of15
intrinsic assignment (10.2.1.3) to a value that agrees in type, type parameters, and shape with the variable.16

11 If a data-stmt-constant is a boz-literal-constant, the corresponding variable shall be of type integer. The boz-17
literal-constant is treated as if it were converted by the intrinsic function INT (16.9.110) to type integer with the18
kind type parameter of the variable.19

NOTE
Examples of DATA statements are:

CHARACTER (LEN = 10) NAME
INTEGER, DIMENSION (0:9) :: MILES
REAL, DIMENSION (100, 100) :: SKEW
TYPE (NODE), POINTER :: HEAD_OF_LIST
TYPE (PERSON) MYNAME, YOURNAME
DATA NAME / ’JOHN DOE’ /, MILES / 10 * 0 /
DATA ((SKEW (K, J), J = 1, K), K = 1, 100) / 5050 * 0.0 /
DATA ((SKEW (K, J), J = K + 1, 100), K = 1, 99) / 4950 * 1.0 /
DATA HEAD_OF_LIST / NULL() /
DATA MYNAME / PERSON (21, ’JOHN SMITH’) /
DATA YOURNAME % AGE, YOURNAME % NAME / 35, ’FRED BROWN’ /

The character variable NAME is initialized with the value JOHN DOE with padding on the right because the
length of the constant is less than the length of the variable. All ten elements of the integer array MILES
are initialized to zero. The two-dimensional array SKEW is initialized so that the lower triangle of SKEW is
zero and the strict upper triangle is one. The structures MYNAME and YOURNAME are declared using the
derived type PERSON from 7.5.2.1, NOTE. The pointer HEAD_OF_LIST is declared using the derived type
NODE from 7.5.4.6, NOTE 4; it is initially disassociated. MYNAME is initialized by a structure constructor.
YOURNAME is initialized by supplying a separate value for each component.

8.6.8 DIMENSION statement20

R851 dimension-stmt is DIMENSION [::] array-name (array-spec)21
[, array-name (array-spec)] ...22

1 The DIMENSION statement specifies the DIMENSION attribute (8.5.8) for a list of objects.23

NOTE
An example of a DIMENSION statement is:

DIMENSION A (10), B (10, 70), C (:)

J3/23-007 117

J3/23-007 WD 1539-1 2023-02-17

8.6.9 INTENT statement1

R852 intent-stmt is INTENT (intent-spec) [::] dummy-arg-name-list2

1 The INTENT statement specifies the INTENT attribute (8.5.10) for the dummy arguments in the list.3

NOTE
An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B

8.6.10 OPTIONAL statement4

R853 optional-stmt is OPTIONAL [::] dummy-arg-name-list5

1 The OPTIONAL statement specifies the OPTIONAL attribute (8.5.12) for the dummy arguments in the list.6

NOTE
An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: B

8.6.11 PARAMETER statement7

1 The PARAMETER statement specifies the PARAMETER attribute (8.5.13) and the values for the named con-8
stants in the list.9

R854 parameter-stmt is PARAMETER (named-constant-def-list)10

R855 named-constant-def is named-constant = constant-expr11

2 If a named constant is defined by a PARAMETER statement, it shall not be subsequently declared to have a12
type or type parameter value that differs from the type and type parameters it would have if declared implicitly13
(8.7). A named array constant defined by a PARAMETER statement shall have its rank specified in a prior14
specification statement.15

3 The constant expression that corresponds to a named constant shall have type and type parameters that conform16
with the named constant as specified for intrinsic assignment (10.2.1.2). If the named constant has implied shape,17
the expression shall have the same rank as the named constant; otherwise, the expression shall either be scalar18
or have the same shape as the named constant.19

4 The value of each named constant is that specified by the corresponding constant expression; if necessary, the20
value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that agrees in type, type21
parameters, and shape with the named constant.22

NOTE
An example of a PARAMETER statement is:

PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100)

8.6.12 POINTER statement23

R856 pointer-stmt is POINTER [::] pointer-decl-list24

R857 pointer-decl is object-name [(deferred-shape-spec-list)]25
or procptr-entity-name26

118 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C892 A procptr-entity-name shall have the EXTERNAL attribute.1

1 The POINTER statement specifies the POINTER attribute (8.5.14) for a list of entities.2

NOTE
An example of a POINTER statement is:

TYPE (NODE) :: CURRENT
POINTER :: CURRENT, A (:, :)

8.6.13 PROTECTED statement3

R858 protected-stmt is PROTECTED [::] entity-name-list4

1 The PROTECTED statement specifies the PROTECTED attribute (8.5.15) for a list of entities.5

8.6.14 SAVE statement6

R859 save-stmt is SAVE [[::] saved-entity-list]7

R860 saved-entity is object-name8
or proc-pointer-name9
or / common-block-name /10

R861 proc-pointer-name is name11

C893 (R859) If a SAVE statement with an omitted saved entity list appears in a scoping unit, no other12
appearance of the SAVE attr-spec or SAVE statement is permitted in that scoping unit.13

C894 A proc-pointer-name shall be the name of a procedure pointer.14

1 A SAVE statement with a saved entity list specifies the SAVE attribute (8.5.16) for a list of entities. A SAVE15
statement without a saved entity list is treated as though it contained the names of all allowed items in the same16
scoping unit.17

NOTE
An example of a SAVE statement is:

SAVE A, B, C, / BLOCKA /, D

8.6.15 TARGET statement18

R862 target-stmt is TARGET [::] target-decl-list19

R863 target-decl is object-name [(array-spec)]20
[lbracket coarray-spec rbracket]21

1 The TARGET statement specifies the TARGET attribute (8.5.18) for a list of objects.22

NOTE
An example of a TARGET statement is:

TARGET :: A (1000, 1000), B

8.6.16 VALUE statement23

R864 value-stmt is VALUE [::] dummy-arg-name-list24

1 The VALUE statement specifies the VALUE attribute (8.5.19) for a list of dummy arguments.25

J3/23-007 119

J3/23-007 WD 1539-1 2023-02-17

8.6.17 VOLATILE statement1

R865 volatile-stmt is VOLATILE [::] object-name-list2

1 The VOLATILE statement specifies the VOLATILE attribute (8.5.20) for a list of objects.3

8.7 IMPLICIT statement4

1 In a scoping unit, an IMPLICIT statement specifies a type, and possibly type parameters, for all implicitly5
typed data entities whose names begin with one of the letters specified in the statement. An IMPLICIT NONE6
statement can indicate that no implicit typing rules are to apply in a particular scoping unit, or that external7
and dummy procedures need to be explicitly given the EXTERNAL attribute.8

R866 implicit-stmt is IMPLICIT implicit-spec-list9
or IMPLICIT NONE [([implicit-none-spec-list])]10

R867 implicit-spec is declaration-type-spec (letter-spec-list)11

R868 letter-spec is letter [– letter]12

R869 implicit-none-spec is EXTERNAL13
or TYPE14

C895 (R866) If an IMPLICIT NONE statement appears in a scoping unit, it shall precede any PARAMETER15
statements that appear in the scoping unit. No more than one IMPLICIT NONE statement shall appear16
in a scoping unit.17

C896 The same implicit-none-spec shall not appear more than once in a given implicit-stmt.18

C897 If an IMPLICIT NONE statement in a scoping unit has an implicit-none-spec of TYPE or has no implicit-19
none-spec-list, there shall be no other IMPLICIT statements in the scoping unit.20

C898 (R868) If the minus and second letter appear, the second letter shall follow the first letter alphabetically.21

C899 If IMPLICIT NONE with an implicit-none-spec of EXTERNAL appears within a scoping unit, the22
name of an external or dummy procedure in that scoping unit or in a contained subprogram or BLOCK23
construct shall have an explicit interface or be explicitly declared to have the EXTERNAL attribute.24

2 A letter-spec consisting of two letters separated by a minus is equivalent to writing a list containing all of the letters25
in alphabetical order in the alphabetic sequence from the first letter through the second letter. For example, A–C26
is equivalent to A, B, C. The same letter shall not appear as a single letter, or be included in a range of letters,27
more than once in all of the IMPLICIT statements in a scoping unit.28

3 In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z and a29
type (and type parameters). An IMPLICIT statement specifies the mapping for the letters in its letter-spec-30
list. IMPLICIT NONE with an implicit-none-spec of TYPE or with no implicit-none-spec-list specifies the null31
mapping for all the letters. If a mapping is not specified for a letter, the default for a program unit or an interface32
body is default integer if the letter is I, J, ..., or N and default real otherwise, and the default for a BLOCK33
construct, internal subprogram, or module subprogram is the mapping in the host scoping unit.34

4 Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic function, is35
not a component, and is not accessed by use or host association is declared implicitly to be of the type (and36
type parameters) mapped from the first letter of its name, provided the mapping is not null. The mapping for37
the first letter of the data entity shall either have been established by a prior IMPLICIT statement or be the38
default mapping for the letter. An explicit type specification in a FUNCTION statement overrides an IMPLICIT39
statement for the result of that function.40

120 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
The following are examples of the use of IMPLICIT statements:

MODULE EXAMPLE_MODULE
IMPLICIT NONE
. . .
INTERFACE

FUNCTION FUN (I) ! Not all data entities need to
INTEGER FUN ! be declared explicitly

END FUNCTION FUN
END INTERFACE

CONTAINS
FUNCTION JFUN (J) ! All data entities need to

INTEGER JFUN, J ! be declared explicitly.
. . .

END FUNCTION JFUN
END MODULE EXAMPLE_MODULE
SUBROUTINE SUB

IMPLICIT COMPLEX (C)
C = (3.0, 2.0) ! C is implicitly declared COMPLEX
. . .

CONTAINS
SUBROUTINE SUB1

IMPLICIT INTEGER (A, C)
C = (0.0, 0.0) ! C is host associated and of

! type complex
Z = 1.0 ! Z is implicitly declared REAL
A = 2 ! A is implicitly declared INTEGER
CC = 1 ! CC is implicitly declared INTEGER
. . .

END SUBROUTINE SUB1
SUBROUTINE SUB2

Z = 2.0 ! Z is implicitly declared REAL and
! is different from the variable of
! the same name in SUB1

. . .
END SUBROUTINE SUB2
SUBROUTINE SUB3

USE EXAMPLE_MODULE ! Accesses integer function FUN
! by use association

Q = FUN (K) ! Q is implicitly declared REAL and
. . . ! K is implicitly declared INTEGER

END SUBROUTINE SUB3
END SUBROUTINE SUB

NOTE 2
The following is an example of a mapping to a derived type that is inaccessible in the local scope:

PROGRAM MAIN
IMPLICIT TYPE(BLOB) (A)
TYPE BLOB

INTEGER :: I
END TYPE BLOB
TYPE(BLOB) :: B
CALL STEVE

CONTAINS

J3/23-007 121

J3/23-007 WD 1539-1 2023-02-17

NOTE 2 (cont.)
SUBROUTINE STEVE

INTEGER :: BLOB
. . .
AA = B
. . .

END SUBROUTINE STEVE
END PROGRAM MAIN

In the subroutine STEVE, it is not possible to explicitly declare a variable to be of type BLOB because BLOB
has been given a different meaning, but implicit mapping for the letter A still maps to type BLOB, so AA is of
type BLOB.

NOTE 3
Implicit typing is not affected by BLOCK constructs. For example, in

SUBROUTINE S(N)
. . .
IF (N>0) THEN

BLOCK
NSQP = CEILING (SQRT (DBLE (N)))

END BLOCK
END IF
. . .
IF (N>0) THEN

BLOCK
PRINT *,NSQP

END BLOCK
END IF

END SUBROUTINE

even if the only two appearances of NSQP are within the BLOCK constructs, the scope of NSQP is the whole
subroutine S.

NOTE 4
In the subprogram

SUBROUTINE EXAMPLE (X, Y)
IMPLICIT NONE (EXTERNAL)
REAL, EXTERNAL :: G
REAL :: X, Y
X = F (Y) ! Invalid: F lacks the EXTERNAL attribute.
X = G (Y) ! Valid: G has the EXTERNAL attribute.

END SUBROUTINE

the referenced function F needs to have the EXTERNAL attribute (8.5.9).

8.8 IMPORT statement1

R870 import-stmt is IMPORT [[::] import-name-list]2
or IMPORT, ONLY : import-name-list3
or IMPORT, NONE4
or IMPORT, ALL5

C8100 (R870) An IMPORT statement shall not appear in the scoping unit of a main-program, external-6
subprogram, module, or block-data.7

122 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C8101 (R870) Each import-name shall be the name of an entity in the host scoping unit.1

C8102 If any IMPORT statement in a scoping unit has an ONLY specifier, all IMPORT statements in that2
scoping unit shall have an ONLY specifier.3

C8103 IMPORT, NONE shall not appear in the scoping unit of a submodule.4

C8104 If an IMPORT, NONE or IMPORT, ALL statement appears in a scoping unit, no other IMPORT5
statement shall appear in that scoping unit.6

C8105 Within an interface body, an entity that is accessed by host association shall be accessible by host or use7
association within the host scoping unit, or explicitly declared prior to the interface body.8

C8106 An entity whose name appears as an import-name or which is made accessible by an IMPORT, ALL9
statement shall not appear in any context described in 19.5.1.4 that would cause the host entity of that10
name to be inaccessible.11

1 If the ONLY specifier appears on an IMPORT statement in a scoping unit other than a BLOCK construct,12
an entity is only accessible by host association if its name appears as an import-name in that scoping unit. If13
a BLOCK construct contains one or more IMPORT statements with ONLY specifiers, identifiers of local and14
construct entities in the host scoping unit that are not in the import-name-list of at least one of the IMPORT15
statements are inaccessible in the BLOCK construct.16

2 An IMPORT, NONE statement in a scoping unit specifies that no entities in the host scoping unit are accessible17
by host association in that scoping unit. This is the default for an interface body that is not a module procedure18
interface body. An IMPORT, NONE statement in a BLOCK construct specifies that the identifiers of local and19
construct entities in the host scoping unit are inaccessible in the BLOCK construct.20

3 An IMPORT, ALL statement in a scoping unit specifies that all entities from the host scoping unit are accessible21
in that scoping unit.22

4 If an IMPORT statement with no specifier and no import-name-list appears in a scoping unit, every entity in23
the host scoping unit is accessible unless its name appears in a context described in 19.5.1.4 that causes it to be24
inaccessible. This is the default for a derived-type definition, internal subprogram, module procedure interface25
body, module subprogram, or submodule.26

5 If an IMPORT statement with an import-name-list appears in a scoping unit other than a BLOCK construct,27
each entity named in the list is accessible.28

NOTE 1
The IMPORT, NONE statement can be used to prevent accidental host association:

SUBROUTINE s(x,n)
IMPLICIT NONE
IMPORT, NONE
. . .
DO i=1,n ! Forces I to be locally declared.

NOTE 2
The IMPORT, ALL statement can be used to prevent accidental “shadowing” of host entities:

SUBROUTINE outer
REAL x
. . .

CONTAINS
SUBROUTINE inner

IMPORT, ALL
. . .
x = x + 1 ! There is a host X, so this must be the host X.

J3/23-007 123

J3/23-007 WD 1539-1 2023-02-17

NOTE 3
The IMPORT, ONLY statement can be used to document deliberate access via host association whilst blocking
accidental access:

SUBROUTINE sub
IMPORT,ONLY : x, y
. . .
x = y + z ! Only X and Y are imported, so Z is local.

NOTE 4
The program

PROGRAM MAIN
BLOCK

IMPORT, NONE
!IMPORT, ONLY: X
X = 1.0

END BLOCK
END

is not conformant. The variable X is implicitly declared in the scoping unit of the main program. The statement
IMPORT, NONE makes X inaccessible in the BLOCK construct. If the IMPORT, NONE statement is replaced
with the IMPORT statement in the comment, the program is conformant.

NOTE 5
The IMPORT statement can be used to allow module procedures to have dummy arguments that are procedures
with assumed-shape arguments of an opaque type. For example:

MODULE M
TYPE T

PRIVATE ! T is an opaque type
. . .

END TYPE
CONTAINS

SUBROUTINE PROCESS(X,Y,RESULT,MONITOR)
TYPE(T),INTENT(IN) :: X(:,:),Y(:,:)
TYPE(T),INTENT(OUT) :: RESULT(:,:)
INTERFACE

SUBROUTINE MONITOR(ITERATION_NUMBER,CURRENT_ESTIMATE)
IMPORT T
INTEGER,INTENT(IN) :: ITERATION_NUMBER
TYPE(T),INTENT(IN) :: CURRENT_ESTIMATE(:,:)

END SUBROUTINE
END INTERFACE
. . .

END SUBROUTINE
END MODULE

The MONITOR dummy procedure requires an explicit interface because it has an assumed-shape array argu-
ment, but TYPE(T) would not be available inside the interface body without the IMPORT statement.

8.9 NAMELIST statement1

1 A NAMELIST statement specifies a group of named data objects, which can be referred to by a single name for2
the purpose of data transfer (12.6, 13.11).3

124 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R871 namelist-stmt is NAMELIST1
/ namelist-group-name / namelist-group-object-list2
[[,] / namelist-group-name /3
namelist-group-object-list] . . .4

C8107 (R871) The namelist-group-name shall not be a name accessed by use association.5

R872 namelist-group-object is variable-name6

C8108 (R872) A namelist-group-object shall not be an assumed-size array.7

C8109 A namelist-group-object shall not be of enumeration type, or have a direct component that is of enumer-8
ation type.9

2 The order in which the values appear on output is the same as the order of the namelist-group-objects in the10
namelist group object list; if a variable appears more than once as a namelist-group-object for the same namelist11
group, its value appears once for each occurrence.12

3 Any namelist-group-name may occur more than once in the NAMELIST statements in a scoping unit. The13
namelist-group-object-list following each successive appearance of the same namelist-group-name in a scoping14
unit is treated as a continuation of the list for that namelist-group-name.15

4 A namelist group object may be a member of more than one namelist group.16

5 A namelist group object shall either be accessed by use or host association or shall have its declared type, kind17
type parameters of the declared type, and rank specified by previous statements in the same scoping unit or18
by the implicit typing rules in effect for the scoping unit. If a namelist group object is typed by the implicit19
typing rules, its appearance in any subsequent type declaration statement shall confirm the implied type and20
type parameters.21

NOTE
An example of a NAMELIST statement is:

NAMELIST /NLIST/ A, B, C

8.10 Storage association of data objects22

8.10.1 EQUIVALENCE statement23

8.10.1.1 General24

1 An EQUIVALENCE statement is used to specify the sharing of storage units by two or more objects in a scoping unit. This causes25
storage association (19.5.3) of the objects that share the storage units.26

2 If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement does not cause type conversion or27
imply mathematical equivalence. If a scalar and an array are equivalenced, the scalar does not have array properties and the array28
does not have the properties of a scalar.29

R873 equivalence-stmt is EQUIVALENCE equivalence-set-list30

R874 equivalence-set is (equivalence-object , equivalence-object-list)31

R875 equivalence-object is variable-name32
or array-element33
or substring34

C8110 (R875) An equivalence-object shall not be a designator with a base object that is a dummy argument, a function result, a35
pointer, an allocatable variable, a derived-type object that has an allocatable or pointer ultimate component, an object of36
a nonsequence derived type, an object of enumeration type, an automatic data object, a coarray, a variable with the BIND37
attribute, a variable in a common block that has the BIND attribute, or a named constant.38

C8111 (R875) An equivalence-object shall not be a designator that has more than one part-ref .39

J3/23-007 125

J3/23-007 WD 1539-1 2023-02-17

C8112 (R875) An equivalence-object shall not have the TARGET attribute.1

C8113 (R875) Each subscript or substring range expression in an equivalence-object shall be an integer constant expression2
(10.1.12).3

C8114 (R874) If an equivalence-object is default integer, default real, double precision real, default complex, default logical, or of4
numeric sequence type, all of the objects in the equivalence set shall be of these types and kinds.5

C8115 (R874) If an equivalence-object is default character or of character sequence type, all of the objects in the equivalence set6
shall be of these types and kinds.7

C8116 (R874) If an equivalence-object is of a sequence type that is not a numeric sequence or character sequence type, all of the8
objects in the equivalence set shall be of that type.9

C8117 (R874) If an equivalence-object is of an intrinsic type but is not default integer, default real, double precision real, default10
complex, default logical, or default character, all of the objects in the equivalence set shall be of the same type with the11
same kind type parameter value.12

C8118 (R875) If an equivalence-object has the PROTECTED attribute, all of the objects in the equivalence set shall have the13
PROTECTED attribute.14

C8119 (R875) The name of an equivalence-object shall not be a name made accessible by use association.15

C8120 (R875) A substring shall not have length zero.16

NOTE
The EQUIVALENCE statement allows the equivalencing of sequence structures and the equivalencing of objects of intrinsic type
with nondefault type parameters, but there are strict rules regarding the appearance of these objects in an EQUIVALENCE
statement.

In addition to the above constraints, further rules on the interaction of EQUIVALENCE statements and default initialization are
given in 19.5.3.4.

8.10.1.2 Equivalence association17

1 An EQUIVALENCE statement specifies that the storage sequences (19.5.3.2) of the data objects specified in an equivalence-set are18
storage associated. All of the nonzero-sized sequences in the equivalence-set, if any, have the same first storage unit, and all of19
the zero-sized sequences in the equivalence-set, if any, are storage associated with one another and with the first storage unit of20
any nonzero-sized sequences. This causes the storage association of the data objects in the equivalence-set and can cause storage21
association of other data objects.22

2 If any data object in an equivalence-set has the SAVE attribute, all other objects in the equivalence-set have the SAVE attribute;23
this may be confirmed by explicit specification.24

8.10.1.3 Equivalence of default character objects25

1 A default character data object shall not be equivalenced to an object that is not default character and not of a character sequence26
type. The lengths of equivalenced default character objects need not be the same.27

2 An EQUIVALENCE statement specifies that the storage sequences of all the default character data objects specified in an equivalence-28
set are storage associated. All of the nonzero-sized sequences in the equivalence-set, if any, have the same first character storage unit,29
and all of the zero-sized sequences in the equivalence-set, if any, are storage associated with one another and with the first character30
storage unit of any nonzero-sized sequences. This causes the storage association of the data objects in the equivalence-set and can31
cause storage association of other data objects.32

NOTE
For example, using the declarations:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

the association of A, B, and C can be illustrated graphically as:

1 2 3 4 5 6 7
|--- --- A --- ---|

|--- --- B --- ---|
|--- C(1) ---| |--- C(2) ---|

126 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

8.10.1.4 Array names and array element designators1

1 For a nonzero-sized array, the use of the array name unqualified by a subscript list as an equivalence-object has the same effect as2
using an array element designator that identifies the first element of the array.3

8.10.1.5 Restrictions on EQUIVALENCE statements4

1 An EQUIVALENCE statement shall not specify that the same storage unit is to occur more than once in a storage sequence.5

2 An EQUIVALENCE statement shall not specify that consecutive storage units are to be nonconsecutive.6

8.10.2 COMMON statement7

8.10.2.1 General8

1 The COMMON statement specifies blocks of physical storage, called common blocks, that can be accessed by any of the scoping9
units in a program. Thus, the COMMON statement provides a global data facility based on storage association (19.5.3).10

2 A common block that does not have a name is called blank common.11

R876 common-stmt is COMMON12
[/ [common-block-name] /] common-block-object-list13
[[,] / [common-block-name] /14
common-block-object-list] ...15

R877 common-block-object is variable-name [(array-spec)]16

C8121 (R877) An array-spec in a common-block-object shall be an explicit-shape-spec-list.17

C8122 (R877) Only one appearance of a given variable-name is permitted in all common-block-object-lists within a scoping unit.18

C8123 (R877) A common-block-object shall not be a dummy argument, a function result, an allocatable variable, a derived-type19
object with an ultimate component that is allocatable, an object of enumeration type, a procedure pointer, an automatic20
data object, a variable with the BIND attribute, an unlimited polymorphic pointer, or a coarray.21

C8124 (R877) If a common-block-object is of a derived type, the type shall have the BIND attribute or the SEQUENCE attribute22
and it shall have no default initialization.23

C8125 (R877) A variable-name shall not be a name made accessible by use association.24

3 In each COMMON statement, the data objects whose names appear in a common block object list following a common block name25
are declared to be in that common block. If the first common block name is omitted, all data objects whose names appear in the26
first common block object list are specified to be in blank common. Alternatively, the appearance of two slashes with no common27
block name between them declares the data objects whose names appear in the common block object list that follows to be in blank28
common.29

4 Any common block name or an omitted common block name for blank common may occur more than once in one or more COMMON30
statements in a scoping unit. The common block list following each successive appearance of the same common block name in a31
scoping unit is treated as a continuation of the list for that common block name. Similarly, each blank common block object list in32
a scoping unit is treated as a continuation of blank common.33

5 The form variable-name (array-spec) specifies the DIMENSION attribute for that variable.34

6 If derived-type objects of numeric sequence type or character sequence type (7.5.2.3) appear in common, it is as if the individual35
components were enumerated directly in the common list.36

8.10.2.2 Common block storage sequence37

1 For each common block in a scoping unit, a common block storage sequence is formed as follows:38
(1) A storage sequence is formed consisting of the sequence of storage units in the storage sequences (19.5.3.2) of all data39

objects in the common block object lists for the common block. The order of the storage sequences is the same as the40
order of the appearance of the common block object lists in the scoping unit.41

(2) The storage sequence formed in (1) is extended to include all storage units of any storage sequence associated with it42
by equivalence association. The sequence shall be extended only by adding storage units beyond the last storage unit.43
Data objects associated with an entity in a common block are considered to be in that common block.44

2 Only COMMON statements and EQUIVALENCE statements appearing in the scoping unit contribute to common block storage45
sequences formed in that scoping unit.46

J3/23-007 127

J3/23-007 WD 1539-1 2023-02-17

8.10.2.3 Size of a common block1

1 The size of a common block is the size of its common block storage sequence, including any extensions of the sequence resulting from2
equivalence association.3

8.10.2.4 Common association4

1 Within a program, the common block storage sequences of all nonzero-sized common blocks with the same name have the same first5
storage unit, and the common block storage sequences of all zero-sized common blocks with the same name are storage associated6
with one another. Within a program, the common block storage sequences of all nonzero-sized blank common blocks have the same7
first storage unit and the storage sequences of all zero-sized blank common blocks are associated with one another and with the first8
storage unit of any nonzero-sized blank common blocks. This results in the association of objects in different scoping units. Use or9
host association can cause these associated objects to be accessible in the same scoping unit.10

2 A nonpointer object that is default integer, default real, double precision real, default complex, default logical, or of numeric sequence11
type shall be associated only with nonpointer objects of these types and kinds.12

3 A nonpointer object that is default character or of character sequence type shall be associated only with nonpointer objects of these13
types and kinds.14

4 A nonpointer object of a derived type that is not a numeric sequence or character sequence type shall be associated only with15
nonpointer objects of the same type.16

5 A nonpointer object of an enum type shall be associated only with nonpointer objects of the same type.17

6 A nonpointer object of intrinsic type but which is not default integer, default real, double precision real, default complex, default18
logical, or default character shall be associated only with nonpointer objects of the same type and type parameters.19

7 A data pointer shall be storage associated only with data pointers of the same type and rank. Data pointers that are storage20
associated shall have deferred the same type parameters; corresponding nondeferred type parameters shall have the same value.21

8 An object with the TARGET attribute shall be storage associated only with another object that has the TARGET attribute and the22
same type and type parameters.23

NOTE
A common block is permitted to contain sequences of different storage units, provided each scoping unit that accesses the common
block specifies an identical sequence of storage units for the common block. For example, this allows a single common block to
contain both numeric and character storage units.

Association in different scoping units between objects of default type, objects of double precision real type, and sequence structures
is permitted according to the rules for equivalence objects (8.10.1).

8.10.2.5 Differences between named common and blank common24

1 A blank common block has the same properties as a named common block, except for the following.25
• Execution of a RETURN or END statement might cause data objects in a named common block to become undefined unless26

the common block has the SAVE attribute, but never causes nonpointer data objects in blank common to become undefined27
(19.6.6).28

• Named common blocks of the same name shall be of the same size in all scoping units of a program in which they appear, but29
blank common blocks may be of different sizes.30

• A data object in a named common block may be initially defined by means of a DATA statement or type declaration statement31
in a block data program unit (14.3), but objects in blank common shall not be initially defined.32

8.10.3 Restrictions on common and equivalence33

1 An EQUIVALENCE statement shall not cause the storage sequences of two different common blocks to be associated.34

2 Equivalence association shall not cause a derived-type object with default initialization to be associated with an object in a common35
block.36

3 Equivalence association shall not cause a common block storage sequence to be extended by adding storage units preceding the first37
storage unit of the first object specified in a COMMON statement for the common block.38

128 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

9 Use of data objects1

9.1 Designator2

R901 designator is object-name3
or array-element4
or array-section5
or coindexed-named-object6
or complex-part-designator7
or structure-component8
or substring9

1 The appearance of a data object designator in a context that requires its value is termed a reference.10

9.2 Variable11

R902 variable is designator12
or function-reference13

C901 (R902) designator shall not be a constant or a subobject of a constant.14

C902 (R902) function-reference shall have a data pointer result.15

1 A variable is either the data object denoted by designator or the target of the pointer resulting from the evaluation16
of function-reference; this pointer shall be associated.17

2 A reference is permitted only if the variable is defined. A reference to a data pointer is permitted only if the18
pointer is associated with a target object that is defined. A variable becomes defined with a value when events19
described in 19.6.5 occur.20

R903 variable-name is name21

C903 (R903) variable-name shall be the name of a variable.22

R904 logical-variable is variable23

C904 (R904) logical-variable shall be of type logical.24

R905 char-variable is variable25

C905 (R905) char-variable shall be of type character.26

R906 default-char-variable is variable27

C906 (R906) default-char-variable shall be default character.28

R907 int-variable is variable29

C907 (R907) int-variable shall be of type integer.30

NOTE
For example, given the declarations:

CHARACTER (10) A, B (10)
TYPE (PERSON) P ! See 7.5.2.1, NOTE

then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables.

J3/23-007 129

J3/23-007 WD 1539-1 2023-02-17

9.3 Constants1

1 A constant (6.2.3) is a literal constant or a named constant. A literal constant is a scalar denoted by a syntactic2
form, which indicates its type, type parameters, and value. A named constant is a constant that has a name; the3
name has the PARAMETER attribute (8.5.13, 8.6.11). A reference to a constant is always permitted; redefinition4
of a constant is never permitted.5

9.4 Scalars6

9.4.1 Substrings7

1 A substring is a contiguous portion of a character string (7.4.4).8

R908 substring is parent-string (substring-range)9

R909 parent-string is scalar-variable-name10
or array-element11
or coindexed-named-object12
or scalar-structure-component13
or scalar-constant14

R910 substring-range is [scalar-int-expr] : [scalar-int-expr]15

C908 (R909) parent-string shall be of type character.16

2 The value of the first scalar-int-expr in substring-range is the starting point of the substring and the value of17
the second one is the ending point of the substring. The length of a substring is the number of characters in the18
substring and is MAX (l − f + 1, 0), where f and l are the starting and ending points, respectively.19

3 Let the characters in the parent string be numbered 1, 2, 3, ..., n, where n is the length of the parent string.20
Then the characters in the substring are those from the parent string from the starting point and proceeding in21
sequence up to and including the ending point. If the starting point is greater than the ending point, the substring22
has length zero; otherwise, both the starting point and the ending point shall be within the range 1, 2, ..., n. If23
the starting point is not specified, the default value is 1. If the ending point is not specified, the default value is24
n.25

NOTE
Examples of character substrings are:

B(1)(1:5) array element as parent string
P%NAME(1:1) structure component as parent string
ID(4:9) scalar variable name as parent string
’0123456789’(N:N) character constant as parent string

9.4.2 Structure components26

1 A structure component is part of an object of derived type; it can be referenced by an object designator. A27
structure component may be a scalar or an array.28

R911 data-ref is part-ref [% part-ref] ...29

R912 part-ref is part-name [(section-subscript-list)] [image-selector]30

C909 (R911) Each part-name except the rightmost shall be of derived type.31

C910 (R911) Each part-name except the leftmost shall be the name of a component of the declared type of the32
preceding part-name.33

130 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C911 (R911) If the rightmost part-name is of abstract type, data-ref shall be polymorphic.1

C912 (R911) The leftmost part-name shall be the name of a data object.2

C913 (R912) If a section-subscript-list appears, the sum of the rank of part-ref , the sizes of the arrays in each3
multiple subscript, and the number of subscripts, shall equal the rank of part-name.4

C914 (R912) If image-selector appears, the number of cosubscripts shall be equal to the corank of part-name.5

C915 A data-ref shall not be of type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BIND-6
ING (18.2), or of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV (16.10.2), if one7
of its part-ref s has an image-selector .8

C916 (R912) If image-selector appears and part-name is an array, section-subscript-list shall appear.9

C917 (R911) Except as an actual argument to an intrinsic inquiry function or as the designator in a type10
parameter inquiry, a data-ref shall not be a coindexed object that has a polymorphic allocatable potential11
subobject component.12

C918 Except as an actual argument to an intrinsic inquiry function or as the designator in a type parameter13
inquiry, if the rightmost part-ref is polymorphic, no other part-ref shall be coindexed.14

2 The rank of a part-ref of the form part-name is the rank of part-name. The rank of a part-ref that has a section15
subscript list is the sum of the number of subscript triplets, the number of vector subscripts, and the sizes of one16
of the arrays in each multiple section subscript.17

C919 (R911) There shall not be more than one part-ref with nonzero rank. A part-name to the right of a18
part-ref with nonzero rank shall not have the ALLOCATABLE or POINTER attribute.19

3 The rank of a data-ref is the rank of the part-ref with nonzero rank, if any; otherwise, the rank is zero. The base20
object of a data-ref is the data object whose name is the leftmost part name.21

4 The type and type parameters, if any, of a data-ref are those of the rightmost part name.22

5 A data-ref with more than one part-ref is a subobject of its base object if none of the part-names, except for23
possibly the rightmost, is a pointer. If the rightmost part-name is the only pointer, then the data-ref is a subobject24
of its base object in contexts that pertain to its pointer association status but not in any other contexts.25

NOTE 1
If X is an object of derived type with a pointer component P, then the pointer X%P is a subobject of X when
considered as a pointer – that is in contexts where it is not dereferenced.

However the target of X%P is not a subobject of X. Thus, in contexts where X%P is dereferenced to refer to
the target, it is not a subobject of X.

R913 structure-component is data-ref26

C920 (R913) There shall be more than one part-ref and the rightmost part-ref shall not have a section-subscript-27
list.28

6 A structure component shall be neither referenced nor defined before the declaration of the base object. A29
structure component is a pointer only if the rightmost part name has the POINTER attribute.30

NOTE 2
Examples of structure components are:

SCALAR_PARENT%SCALAR_FIELD scalar component of scalar parent
ARRAY_PARENT(J)%SCALAR_FIELD component of array element parent
ARRAY_PARENT(1:N)%SCALAR_FIELD component of array section parent

For a more elaborate example see C.5.1.

J3/23-007 131

J3/23-007 WD 1539-1 2023-02-17

NOTE 3
The syntax rules are structured such that a data-ref that ends in a component name without a following
subscript list is a structure component, even when other component names in the data-ref are followed by a
subscript list. A data-ref that ends in a component name with a following subscript list is either an array
element or an array section. A data-ref of nonzero rank that ends with a substring-range is an array section. A
data-ref of zero rank that ends with a substring-range is a substring.

9.4.3 Coindexed named objects1

1 A coindexed-named-object is a named scalar coarray variable followed by an image selector.2

R914 coindexed-named-object is data-ref3

C921 (R914) The data-ref shall contain exactly one part-ref . The part-ref shall contain an image-selector .4
The part-name shall be the name of a scalar coarray.5

9.4.4 Complex parts6

R915 complex-part-designator is designator % RE7
or designator % IM8

C922 (R915) The designator shall be of complex type.9

1 If complex-part-designator is designator%RE it designates the real part of designator . If it is designator%IM10
it designates the imaginary part of designator . The type of a complex-part-designator is real, and its kind and11
shape are those of the designator , which can be an array or scalar.12

NOTE
The following are examples of complex part designators:

impedance%re Same value as REAL (impedance).
fft%im Same value as AIMAG (fft).
x%im = 0.0 Sets the imaginary part of X to zero.

9.4.5 Type parameter inquiry13

1 A type parameter inquiry is used to inquire about a type parameter of a data object. It applies to both intrinsic14
and derived types.15

R916 type-param-inquiry is designator % type-param-name16

C923 (R916) The type-param-name shall be the name of a type parameter of the declared type of the object17
designated by the designator .18

2 A deferred type parameter of a pointer that is not associated or of an unallocated allocatable variable shall not19
be inquired about.20

NOTE 1
A type-param-inquiry has a syntax like that of a structure component reference, but it does not have the same
semantics. It is not a variable and thus can never be assigned to. It can be used only as a primary in an
expression. It is scalar even if designator is an array.

The intrinsic type parameters can also be inquired about by using the intrinsic functions KIND and LEN.

132 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2
The following are examples of type parameter inquiries:

a%kind A is real. Same value as KIND (a).
s%len S is character. Same value as LEN (s).
b(10)%kind Inquiry about an array element.
p%dim P is of the derived type general_point.

See 7.5.3.1, NOTE for the definition of the general_point type used in the last example above.

9.5 Arrays1

9.5.1 Order of reference2

1 No order of reference to the elements of an array is indicated by the appearance of the array designator, except3
where array element ordering (9.5.3.3) is specified.4

9.5.2 Whole arrays5

1 A whole array is a named array or a structure component whose final part-ref is an array component name; no6
subscript list is appended.7

2 The appearance of a whole array variable in an executable construct specifies all the elements of the array (5.4.6).8
The appearance of a whole array designator in a nonexecutable statement specifies the entire array except for the9
appearance of a whole array designator in an equivalence set (8.10.1.4). An assumed-size array (8.5.8.5) is permitted to10
appear as a whole array in an executable construct or specification expression only as an actual argument in a11
procedure reference that does not require the shape.12

9.5.3 Array elements and array sections13

9.5.3.1 Syntax14

R917 array-element is data-ref15

C924 (R917) Every part-ref shall have rank zero and the last part-ref shall contain a subscript-list.16

R918 array-section is data-ref [(substring-range)]17
or complex-part-designator18

C925 (R918) Exactly one part-ref shall have nonzero rank, and either the final part-ref shall have a section-19
subscript-list with nonzero rank, another part-ref shall have nonzero rank, or the complex-part-designator20
shall be an array.21

C926 (R918) If a substring-range appears, data-ref shall be of type character.22

R919 subscript is scalar-int-expr23

R920 multiple-subscript is @ int-expr24

C927 The int-expr in a multiple-subscript shall be an array of rank one.25

R921 section-subscript is subscript26
or multiple-subscript27
or subscript-triplet28
or multiple-subscript-triplet29
or vector-subscript30

J3/23-007 133

J3/23-007 WD 1539-1 2023-02-17

R922 subscript-triplet is [subscript] : [subscript] [: stride]1

R923 multiple-subscript-triplet is @ [int-expr] : [int-expr] [: int-expr]2

C928 A multiple-subscript-triplet shall have at least one int-expr that is an array of rank one. The int-exprs3
in a multiple-subscript-triplet shall be conformable.4

R924 stride is scalar-int-expr5

R925 vector-subscript is int-expr6

C929 (R925) A vector-subscript shall be an integer array expression of rank one.7

C930 (R922) The second subscript shall not be omitted from a subscript-triplet in the last dimension of an8
assumed-size array.9

C931 If a multiple-subscript-triplet is the last section-subscript in the section-subscript-list of an assumed-size10
array, the second int-expr shall appear.11

1 An array element is a scalar. An array section is an array. If a substring-range appears in an array-section, each12
element is the designated substring of the corresponding element of the array section.13

2 The value of a subscript in an array element shall be within the bounds for its dimension.14

NOTE 1
For example, with the declarations:

REAL A (10, 10)
CHARACTER (LEN = 10) B (5, 5, 5)

A (1, 2) is an array element, A (1:N:2, M) is a rank-one array section, and B (:, :, :) (2:3) is an array of shape
(5, 5, 5) whose elements are substrings of length 2 of the corresponding elements of B.

NOTE 2
Unless otherwise specified, an array element or array section does not have an attribute of the whole array. In
particular, an array element or an array section does not have the POINTER or ALLOCATABLE attribute.

NOTE 3
Examples of array elements and array sections are:

ARRAY_A(1:N:2)%ARRAY_B(I, J)%STRING(K)(:) array section
SCALAR_PARENT%ARRAY_FIELD(J) array element
SCALAR_PARENT%ARRAY_FIELD(1:N) array section
SCALAR_PARENT%ARRAY_FIELD(1:N)%SCALAR_FIELD array section

9.5.3.2 Sequences of subscripts and subscript triplets15

1 A multiple-subscript specifies a sequence of subscripts, the number of which is equal to the size of multiple-16
subscript. The effect is as if the array elements were specified individually as subscripts of consecutive dimensions17
(not preceded by @).18

2 In a multiple-subscript-triplet, if the first int-expr does not appear, the effect is as if it were a rank-one array whose19
element values are the lower bounds of the corresponding dimensions. If the second int-expr does not appear, the20
effect is as if it were a rank-one array whose element values are the upper bounds of the corresponding dimensions.21
If the third int-expr does not appear, the effect is as if it appeared with the value one.22

3 A multiple-subscript-triplet specifies a sequence of subscript triplets, the number of which is equal to the size of23
one of its array int-exprs. If any int-expr is a scalar, the effect is as if it were broadcast to the shape of one that is24
an array. An element of the first array acts as if it were the first subscript in a subscript triplet; the corresponding25

134 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

element of the second array acts as if it were the second subscript; the corresponding element of the third array1
acts as if it were the stride.2

NOTE
Examples of references to parts of arrays using one-dimensional arrays to specify sequences of subscripts or
sequences of subscript triplets, assuming V1, V2, and V3 are rank-one arrays, are:

A(@[3,5]) ! Array element, equivalent to A(3, 5)
A(6, @[3,5], 1) ! Array element, equivalent to A(6, 3, 5, 1)
A(@[1,2]:[3,4]) ! Array section, equivalent to A(1:3, 2:4)
A(@:[4,6]:2, :, 1) ! Array section with stride, equivalent to A(:4:2, :6:2, :, 1)
A(@V1, :, @V2) ! Rank-one array section, the rank of A being

! SIZE (V1) + 1 + SIZE (V2).
B(@V1, :, @V2:) ! Rank 1 + SIZE (V2) array section, the rank of B being

! SIZE (V1) + 1 + SIZE (V2).
C(@V1, :, @::V3) ! Rank 1 + SIZE (V3) array section, the rank of C being

! SIZE (V1) + 1 + SIZE (V3).

9.5.3.3 Array element order3

1 The elements of an array form a sequence known as the array element order. The position of an array element4
in this sequence is determined by the subscript order value of the subscript list designating the element. The5
subscript order value is computed from the formulas in Table 9.1.6

Table 9.1: Subscript order value
Rank Subscript bounds Subscript list Subscript order value

1 j1:k1 s1 1 + (s1 − j1)
2 j1:k1,j2:k2 s1, s2

1 + (s1 − j1)
+(s2 − j2) × d1

3 j1:k1, j2:k2, j3:k3 s1, s2, s3
1 + (s1 − j1)
+(s2 − j2) × d1
+(s3 − j3) × d2 × d1

...
...

...
...

15 j1:k1, . . . , j15:k15 s1, . . . , s15
1 + (s1 − j1)
+(s2 − j2) × d1
+ . . .
+(s15−j15)×d14×. . .×d1

NOTE 1 di = max (ki − ji + 1, 0) is the size of the ith dimension.
NOTE 2 If the size of the array is nonzero, ji ≤ si ≤ ki for all i = 1, 2, . . . , 15.

9.5.3.4 Array sections7

9.5.3.4.1 Section subscript lists8

1 In an array-section having a section-subscript-list, each subscript triplet and vector-subscript in the section9
subscript list indicates a sequence of subscripts, which may be empty. Each subscript in such a sequence shall10
be within the bounds for its dimension unless the sequence is empty. The array section is the set of elements11
from the array determined by all possible subscript lists obtainable from the single subscripts or sequences of12
subscripts specified by each section subscript.13

2 In an array-section with no section-subscript-list, the rank and shape of the array is the rank and shape of the14
part-ref with nonzero rank; otherwise, the rank of the array section is the number of subscript triplets and vector15
subscripts in the section subscript list. The shape is the rank-one array whose ith element is the number of16
integer values in the sequence indicated by the ith subscript triplet or vector subscript. If any of these sequences17

J3/23-007 135

J3/23-007 WD 1539-1 2023-02-17

is empty, the array section has size zero. The subscript order of the elements of an array section is that of the1
array data object that the array section represents.2

9.5.3.4.2 Subscript triplet3

1 A subscript triplet designates a regular sequence of subscripts consisting of zero or more subscript values. The4
stride in the subscript triplet specifies the increment between the subscript values. The subscripts and stride of a5
subscript triplet are optional. An omitted first subscript in a subscript triplet is equivalent to a subscript whose6
value is the lower bound for the array and an omitted second subscript is equivalent to the upper bound. An7
omitted stride is equivalent to a stride of 1.8

2 The stride shall not be zero.9

3 When the stride is positive, the subscripts specified by a triplet form a regularly spaced sequence of integers10
beginning with the first subscript and proceeding in increments of the stride to the largest such integer not11
greater than the second subscript; the sequence is empty if the first subscript is greater than the second.12

NOTE 1
For example, suppose an array is declared as A (5, 4, 3). The section A (3 : 5, 2, 1 : 2) is the array of shape
(3, 2):

A (3, 2, 1) A (3, 2, 2)
A (4, 2, 1) A (4, 2, 2)
A (5, 2, 1) A (5, 2, 2)

4 When the stride is negative, the sequence begins with the first subscript and proceeds in increments of the stride13
down to the smallest such integer equal to or greater than the second subscript; the sequence is empty if the14
second subscript is greater than the first.15

NOTE 2
For example, if an array is declared B (10), the section B (9 : 1 : −2) is the array of shape (5) whose elements
are B (9), B (7), B (5), B (3), and B (1), in that order.

NOTE 3
A subscript in a subscript triplet need not be within the declared bounds for that dimension if all values used
in selecting the array elements are within the declared bounds.

For example, if an array is declared as B (10), the array section B (3 : 11 : 7) is the array of shape (2) consisting
of the elements B (3) and B (10), in that order.

9.5.3.4.3 Vector subscript16

1 A vector subscript designates a sequence of subscripts corresponding to the values of the elements of the expression.17
Each element of the expression shall be defined.18

2 An array section with a vector subscript shall not be finalized by a nonelemental final subroutine.19

3 If a vector subscript has two or more elements with the same value, an array section with that vector subscript20
is not definable and shall not be defined or become undefined.21

NOTE
For example, suppose Z is a two-dimensional array of shape [5, 7] and U and V are one-dimensional arrays of
shape (3) and (4), respectively. Assume the values of U and V are:

U = [1, 3, 2]
V = [2, 1, 1, 3]

136 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE (cont.)
Then Z (3, V) consists of elements from the third row of Z in the order:

Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3)

Z (U, 2) consists of the column elements:
Z (1, 2) Z (3, 2) Z (2, 2)

and Z (U, V) consists of the elements:
Z (1, 2) Z (1, 1) Z (1, 1) Z (1, 3)
Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3)
Z (2, 2) Z (2, 1) Z (2, 1) Z (2, 3)

Because Z (3, V) and Z (U, V) contain duplicate elements from Z, the sections Z (3, V) and Z (U, V) cannot
be redefined as sections.

9.5.4 Simply contiguous array designators1

1 A section-subscript-list specifies a simply contiguous section if and only if it does not have a vector subscript and2

• all but the last subscript-triplet is a colon,3

• the last subscript-triplet does not have a stride, and4

• no subscript-triplet is preceded by a section-subscript that is a subscript.5

2 An array designator is simply contiguous if and only if it is6

• an object-name that has the CONTIGUOUS attribute,7

• an object-name that is not a pointer, not assumed-shape, and not assumed-rank,8

• a structure-component whose final part-name is an array and that either has the CONTIGUOUS attribute9
or is not a pointer, or10

• an array section11

– that is not a complex-part-designator ,12

– that does not have a substring-range,13

– whose final part-ref has nonzero rank,14

– whose rightmost part-name has the CONTIGUOUS attribute or is neither assumed-shape nor a pointer,15
and16

– which either does not have a section-subscript-list, or has a section-subscript-list which specifies a17
simply contiguous section.18

3 An array variable is simply contiguous if and only if it is a simply contiguous array designator or a reference to19
a function that returns a pointer with the CONTIGUOUS attribute.20

NOTE
Array sections that are simply contiguous include column, plane, cube, and hypercube subobjects of a simply
contiguous base object, for example:

ARRAY1 (10:20, 3) Passes part of the third column of ARRAY1.
X3D (:, i:j, 2) Passes part of the second plane of X3D (or the whole

plane if i==LBOUND (X3D, 2) and j==UBOUND (X3D, 2).
Y5D (:, :, :, :, 7) Passes the seventh hypercube of Y5D.

All simply contiguous designators designate contiguous objects.

9.6 Image selectors21

1 An image selector determines the image index for a coindexed object.22

J3/23-007 137

J3/23-007 WD 1539-1 2023-02-17

R926 image-selector is lbracket cosubscript-list [, image-selector-spec-list] rbracket1

R927 cosubscript is scalar-int-expr2

R928 image-selector-spec is NOTIFY = notify-variable3
or STAT = stat-variable4
or TEAM = team-value5
or TEAM_NUMBER = scalar-int-expr6

C932 No specifier shall appear more than once in a given image-selector-spec-list.7

C933 A NOTIFY= image-selector-spec shall appear only in the designator of the variable of an intrinsic as-8
signment statement.9

C934 TEAM and TEAM_NUMBER shall not both appear in the same image-selector-spec-list.10

C935 A stat-variable in an image-selector shall not be a coindexed object.11

2 The number of cosubscripts shall be equal to the corank of the object. The value of a cosubscript in an image12
selector shall be within the cobounds for its codimension. Taking account of the cobounds, the cosubscript list in13
an image selector determines the image index in the same way that a subscript list in an array element determines14
the subscript order value (9.5.3.3), taking account of the bounds.15

3 If a TEAM= specifier appears in an image-selector , the team of the image selector is specified by team-value,16
which shall identify the current or an ancestor team; the object shall be an established coarray in that team. If17
a TEAM_NUMBER= specifier appears in an image-selector and the current team is not the initial team, the18
value of the scalar-int-expr shall be equal to the value of a team number for a sibling team of the current team19
and the team of the image selector is that team; the object shall be an established coarray in the parent of the20
current team, or be an associating entity of the CHANGE TEAM construct. If a TEAM_NUMBER= specifier21
appears in an image-selector and the current team is the initial team, the value of scalar-int-expr shall be the22
team number for the initial team; the object shall be an established coarray in the initial team. Otherwise, the23
team of the image selector is the current team.24

4 Execution of an assignment statement whose variable has a NOTIFY= specifier atomically increments the count25
of the corresponding notify variable on the image specified by the image selector, and does not wait for that26
image to execute a corresponding NOTIFY WAIT statement.27

5 An image selector shall specify an image index value that is not greater than the number of images in the team28
of the image selector, and identifies the image with that index in that team.29

6 Execution of a statement containing an image-selector with a STAT= specifier causes the stat-variable to become30
defined. If the designator is part of an operand that is evaluated or is a variable that is being defined or partly31
defined, and the object designated is on a failed image, the stat-variable is defined with the value STAT_-32
FAILED_IMAGE (16.10.2.28) in the intrinsic module ISO_FORTRAN_ENV; otherwise, it is defined with the33
value zero.34

7 The denotation of a stat-variable in an image-selector shall not depend on the evaluation of any entity in the35
same statement. The value of an expression shall not depend on the value of any stat-variable that appears in36
the same statement. The value of a stat-variable in an image-selector shall not be affected by the execution of37
any part of the statement, other than by whether the image specified by the image-selector has failed.38

NOTE
For example, if there are 16 images and the coarray A is declared

REAL :: A(10)[5,*]
A(:)[1,4] is valid because it specifies image 16, but A(:)[2,4] is invalid because it specifies image 17.

138 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

9.7 Dynamic association1

9.7.1 ALLOCATE statement2

9.7.1.1 Form of the ALLOCATE statement3

1 The ALLOCATE statement dynamically creates pointer targets and allocatable variables.4

R929 allocate-stmt is ALLOCATE ([type-spec ::] allocation-list5
[, alloc-opt-list])6

R930 alloc-opt is ERRMSG = errmsg-variable7
or MOLD = source-expr8
or SOURCE = source-expr9
or STAT = stat-variable10

R931 errmsg-variable is scalar-default-char-variable11

R932 source-expr is expr12

R933 allocation is allocate-object [(allocate-shape-spec-list)]13
[lbracket allocate-coarray-spec rbracket]14

or ([lower-bounds-expr :] upper-bounds-expr)15
[lbracket allocate-coarray-spec rbracket]16

R934 allocate-object is variable-name17
or structure-component18

R935 allocate-shape-spec is [lower-bound-expr :] upper-bound-expr19

R936 lower-bound-expr is scalar-int-expr20

R937 lower-bounds-expr is int-expr21

R938 upper-bound-expr is scalar-int-expr22

R939 upper-bounds-expr is int-expr23

R940 allocate-coarray-spec is [allocate-coshape-spec-list ,] [lower-bound-expr :] *24

R941 allocate-coshape-spec is [lower-bound-expr :] upper-bound-expr25

C936 (R934) Each allocate-object shall be a data pointer or an allocatable variable.26

C937 (R929) If any allocate-object has a deferred type parameter, is unlimited polymorphic, or is of abstract27
type, either type-spec or source-expr shall appear.28

C938 (R929) If type-spec appears, it shall specify a type with which each allocate-object is type compatible.29

C939 (R929) A type-param-value in a type-spec shall be an asterisk if and only if each allocate-object is a dummy30
argument for which the corresponding type parameter is assumed.31

C940 (R929) If type-spec appears, the kind type parameter values of each allocate-object shall be the same as32
the corresponding type parameter values of the type-spec.33

C941 (R929) If an allocate-object is a coarray, type-spec shall not specify type C_PTR or C_FUNPTR from34
the intrinsic module ISO_C_BINDING, or type TEAM_TYPE from the intrinsic module ISO_FOR-35
TRAN_ENV.36

J3/23-007 139

J3/23-007 WD 1539-1 2023-02-17

C942 (R929) If an allocate-object is unlimited polymorphic, type-spec shall not specify a type that has a coarray1
potential subobject component.2

C943 (R929) If an allocate-object is an array, either allocate-shape-spec-list or upper-bounds-expr shall appear3
in its allocation, or source-expr shall appear in the ALLOCATE statement and have the same rank as4
the allocate-object.5

C944 (R933) If allocate-object is scalar, allocate-shape-spec-list shall not appear.6

C945 (R933) An allocate-coarray-spec shall appear if and only if the allocate-object is a coarray.7

C946 (R933) The number of allocate-shape-specs in an allocate-shape-spec-list shall be the same as the rank8
of the allocate-object. The number of allocate-coshape-specs in an allocate-coarray-spec shall be one less9
than the corank of the allocate-object.10

C947 If upper-bounds-expr and lower-bounds-expr both appear in an allocation, at least one of them shall be11
a rank-one array of constant size equal to the rank of allocate-object. Otherwise, if upper-bounds-expr12
appears in an allocation, it shall be a rank-one array of constant size equal to the rank of allocate-object.13

C948 (R930) No alloc-opt shall appear more than once in a given alloc-opt-list.14

C949 (R929) At most one of source-expr and type-spec shall appear.15

C950 (R929) Each allocate-object shall be type compatible (7.3.3) with source-expr . If SOURCE= appears,16
source-expr shall be a scalar or have the same rank as each allocate-object.17

C951 (R929) If source-expr appears, the kind type parameters of each allocate-object shall have the same values18
as the corresponding type parameters of source-expr .19

C952 (R929) The declared type of source-expr shall not be C_PTR or C_FUNPTR from the intrinsic module20
ISO_C_BINDING, or TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, if an allocate-21
object is a coarray.22

C953 (R929) If an allocate-object is unlimited polymorphic, the declared type of source-expr shall not be a23
type that has a coarray potential subobject component.24

C954 (R929) If SOURCE= appears, the declared type of source-expr shall not be EVENT_TYPE, LOCK_-25
TYPE, or NOTIFY_TYPE from the intrinsic module ISO_FORTRAN_ENV, or have a potential sub-26
object component that is a coarray or of type EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE.27

C955 (R934) An allocate-object shall not be a coindexed object.28

NOTE 1
A pointer or allocatable component of a coarray can only be allocated by its own image.

TYPE (SOMETHING), ALLOCATABLE :: T[:]
. . .
ALLOCATE (T[*]) Allowed - implies synchronization.
ALLOCATE (T%AAC (N)) Allowed - allocated by its own image.
ALLOCATE (T[Q]%AAC (N)) Not allowed, because it is coindexed.

2 An allocate-object or a bound or type parameter of an allocate-object shall not depend on the value of stat-variable,29
the value of errmsg-variable, or on the value, bounds, length type parameters, allocation status, or association30
status of any allocate-object in the same ALLOCATE statement.31

3 source-expr shall not be allocated within the ALLOCATE statement in which it appears; nor shall it depend on32
the value, bounds, deferred type parameters, allocation status, or association status of any allocate-object in that33
statement.34

140 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 If an ALLOCATE statement has a SOURCE= specifier and an allocate-object that is a coarray, source-expr shall1
not have a dynamic type of C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING, or EVENT_-2
TYPE, LOCK_TYPE, NOTIFY_TYPE, or TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV,3
or have a subcomponent whose dynamic type is EVENT_TYPE, LOCK_TYPE, NOTIFY_TYPE, or TEAM_-4
TYPE.5

5 If type-spec is specified, each allocate-object is allocated with the specified dynamic type and type parameter6
values; if source-expr is specified, each allocate-object is allocated with the dynamic type and type parameter7
values of source-expr ; otherwise, each allocate-object is allocated with its dynamic type the same as its declared8
type. If an allocate-object is unlimited polymorphic, the dynamic type of source-expr shall not have a coarray9
potential subobject component.10

6 If a type-param-value in a type-spec in an ALLOCATE statement is an asterisk, it denotes the current value of11
that assumed type parameter. If it is an expression, subsequent redefinition or undefinition of any entity in the12
expression does not affect the type parameter value.13

NOTE 2
An example of an ALLOCATE statement is:

ALLOCATE (X (N), B (-3 : M, 0:9), STAT = IERR_ALLOC)

9.7.1.2 Execution of an ALLOCATE statement14

1 When an ALLOCATE statement is executed for an array for which allocate-shape-spec-list is specified, the values15
of the lower bound and upper bound expressions determine the bounds of the array. Subsequent redefinition16
or undefinition of any entities in the bound expressions do not affect the array bounds. If the lower bound is17
omitted, the default value is one. If the upper bound is less than the lower bound, the extent in that dimension18
is zero and the array has zero size.19

2 When an ALLOCATE statement is executed for an array for which upper-bounds-expr is specified, it determines20
the upper bounds of the array. Subsequent redefinition or undefinition of an entity in a bounds expression does21
not affect the array bounds. If lower-bounds-expr appears, it determines the lower bounds; otherwise the default22
value is one. If lower-bounds-expr or upper-bounds-expr is scalar, the effect is as if it were broadcast to the shape23
of the other. If any element of upper-bounds-expr is less than the corresponding element of lower-bounds-expr ,24
the extent in the corresponding dimension is zero and the array has zero size.25

3 When an ALLOCATE statement is executed for a coarray, the values of the lower cobound and upper cobound26
expressions determine the cobounds of the coarray. Subsequent redefinition or undefinition of any entities in the27
cobound expressions do not affect the cobounds. If the lower cobound is omitted, the default value is 1. The28
upper cobound shall not be less than the lower cobound.29

4 If an allocation specifies a coarray, its dynamic type and the values of corresponding type parameters shall be the30
same on every active image in the current team. The values of corresponding bounds and corresponding cobounds31
shall be the same on those images. If the coarray is a dummy argument, the ultimate arguments (15.5.2.4) on32
those images shall be corresponding coarrays. If the coarray is an ultimate component of a dummy argument,33
the ultimate arguments on those images shall be declared with the same name in the same scoping unit. If the34
coarray is an ultimate component of an array element, the element shall have the same position in array element35
order on those images. If the coarray is an unsaved local variable of a recursive procedure, the execution of the36
ALLOCATE statement shall be at the same depth of recursion of that procedure on every active image in the37
current team.38

5 When an ALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit syn-39
chronization of all active images in the current team. If the current team contains a stopped or failed image,40
an error condition occurs. If no other error condition occurs, execution on the active images of the segment41
(11.7.2) following the statement is delayed until all other active images in the current team have executed the42
same statement the same number of times in this team. The segments that executed before the ALLOCATE43
statement on an active image of this team precede the segments that execute after the ALLOCATE statement on44

J3/23-007 141

J3/23-007 WD 1539-1 2023-02-17

another active image of this team. The coarray shall not become allocated on an image unless it is successfully1
allocated on all active images in this team.2

NOTE
When an image executes an ALLOCATE statement, communication is not necessarily involved apart from any
required for synchronization. The image allocates its coarray and records how the corresponding coarrays on
other images are to be addressed. The processor is not required to detect violations of the rule that the bounds
are the same on all images of the current team, nor is it responsible for detecting or resolving deadlock problems
(such as two images waiting on different ALLOCATE statements.).

6 If source-expr is a pointer, it shall be associated with a target. If source-expr is allocatable, it shall be allocated.3

7 When an ALLOCATE statement is executed for an array with no allocate-shape-spec-list or upper-bounds-expr ,4
the array is allocated with the shape of source-expr , and with each lower bound equal to the corresponding5
element of LBOUND (source-expr). Subsequent changes to the bounds of source-expr do not affect the array6
bounds.7

8 If SOURCE= appears, source-expr shall be conformable with allocation. If an allocate-object is not polymorphic8
and the source-expr is polymorphic with a dynamic type that differs from its declared type, the value provided for9
that allocate-object is the ancestor component of the source-expr that has the type of the allocate-object; otherwise10
the value provided is the value of the source-expr . On successful allocation, if allocate-object and source-expr11
have the same rank the value of allocate-object becomes the value provided, otherwise the value of each element12
of allocate-object becomes the value provided. The source-expr is evaluated exactly once for each execution of an13
ALLOCATE statement.14

9 If MOLD= appears and source-expr is a variable, its value need not be defined.15

10 If type-spec appears and the value of a length type parameter it specifies differs from the value of the corresponding16
nondeferred type parameter specified in the declaration of any allocate-object, an error condition occurs. If the17
value of a nondeferred length type parameter of an allocate-object differs from the value of the corresponding type18
parameter of source-expr , an error condition occurs.19

11 The set of error conditions for an ALLOCATE statement is processor dependent. If an error condition occurs20
during execution of an ALLOCATE statement that does not contain the STAT= specifier, error termination is21
initiated. The STAT= specifier is described in 9.7.4. The ERRMSG= specifier is described in 9.7.5.22

9.7.1.3 Allocation of allocatable variables23

1 The allocation status of an allocatable entity is one of the following at any time.24

• The status of an allocatable variable becomes “allocated” if it is allocated by an ALLOCATE statement, if25
it is allocated during assignment, or if it is given that status by the intrinsic subroutine MOVE_ALLOC26
(16.9.147). An allocatable variable with this status may be referenced, defined, or deallocated; allocating it27
causes an error condition in the ALLOCATE statement. The result of the intrinsic function ALLOCATED28
(16.9.13) is true for such a variable.29

• An allocatable variable has a status of “unallocated” if it is not allocated. The status of an allocatable30
variable becomes unallocated if it is deallocated (9.7.3) or if it is given that status by the intrinsic sub-31
routine MOVE_ALLOC. An allocatable variable with this status shall not be referenced or defined. It shall32
not be supplied as an actual argument corresponding to a nonallocatable nonoptional dummy argument,33
except to certain intrinsic inquiry functions. It may be allocated with the ALLOCATE statement. Deal-34
locating it causes an error condition in the DEALLOCATE statement. The result of the intrinsic function35
ALLOCATED (16.9.13) is false for such a variable.36

2 At the beginning of execution of a program, allocatable variables are unallocated.37

3 When the allocation status of an allocatable variable changes, the allocation status of any associated allocat-38
able variable changes accordingly. Allocation of an allocatable variable establishes values for the deferred type39
parameters of all associated allocatable variables.40

142 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 An unsaved allocatable local variable of a procedure has a status of unallocated at the beginning of each invocation1
of the procedure. An unsaved allocatable local variable of a construct has a status of unallocated at the beginning2
of each execution of the construct.3

5 When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate components4
have an allocation status of unallocated unless the SOURCE= specifier appears and the corresponding component5
of the source-expr is allocated.6

6 If the evaluation of a function would change the allocation status of a variable and if a reference to the function7
appears in an expression in which the value of the function is not needed to determine the value of the expression,8
the allocation status of the variable after evaluation of the expression is processor dependent.9

9.7.1.4 Allocation of pointer targets10

1 Allocation of a pointer creates an object that implicitly has the TARGET attribute. Following successful execution11
of an ALLOCATE statement for a pointer, the pointer is associated with the target and can be used to reference12
or define the target. Additional pointers can become associated with the pointer target or a part of the pointer13
target by pointer assignment. It is not an error to allocate a pointer that is already associated with a target.14
In this case, a new pointer target is created as required by the attributes of the pointer and any array bounds,15
type, and type parameters specified by the ALLOCATE statement. The pointer is then associated with this16
new target. Any previous association of the pointer with a target is broken. If the previous target had been17
created by allocation, it becomes inaccessible unless other pointers are associated with it. The intrinsic function18
ASSOCIATED (16.9.20) can be used to determine whether a pointer that does not have undefined association19
status is associated.20

2 At the beginning of execution of a function whose result is a pointer, the association status of the result pointer21
is undefined. Before such a function returns, it shall either associate a target with this pointer or cause the22
association status of this pointer to become disassociated.23

9.7.2 NULLIFY statement24

R942 nullify-stmt is NULLIFY (pointer-object-list)25

R943 pointer-object is variable-name26
or structure-component27
or proc-pointer-name28

C956 (R943) Each pointer-object shall have the POINTER attribute.29

1 A pointer-object shall not depend on the value, bounds, or association status of another pointer-object in the30
same NULLIFY statement.31

2 Execution of a NULLIFY statement causes each pointer-object to become disassociated.32

NOTE
When a NULLIFY statement is applied to a polymorphic pointer (7.3.2.3), its dynamic type becomes the same
as its declared type.

9.7.3 DEALLOCATE statement33

9.7.3.1 Form of the DEALLOCATE statement34

1 The DEALLOCATE statement causes allocatable variables to be deallocated; it causes pointer targets to be35
deallocated and the pointers to be disassociated.36

R944 deallocate-stmt is DEALLOCATE (allocate-object-list [, dealloc-opt-list])37

J3/23-007 143

J3/23-007 WD 1539-1 2023-02-17

R945 dealloc-opt is STAT = stat-variable1
or ERRMSG = errmsg-variable2

C957 (R945) No dealloc-opt shall appear more than once in a given dealloc-opt-list.3

2 An allocate-object shall not depend on the value, bounds, allocation status, or association status of another4
allocate-object in the same DEALLOCATE statement; it also shall not depend on the value of the stat-variable5
or errmsg-variable in the same DEALLOCATE statement.6

3 The set of error conditions for a DEALLOCATE statement is processor dependent. If an error condition occurs7
during execution of a DEALLOCATE statement that does not contain the STAT= specifier, error termination is8
initiated. The STAT= specifier is described in 9.7.4. The ERRMSG= specifier is described in 9.7.5.9

4 When more than one allocated object is deallocated by execution of a DEALLOCATE statement, the order of10
deallocation is processor dependent.11

NOTE
An example of a DEALLOCATE statement is:

DEALLOCATE (X, B)

9.7.3.2 Deallocation of allocatable variables12

1 Deallocating an unallocated allocatable variable causes an error condition in the DEALLOCATE statement.13
Deallocating an allocatable variable with the TARGET attribute causes the pointer association status of any14
pointer associated with it to become undefined. An allocatable variable shall not be deallocated if it or any15
subobject of it is argument associated with a dummy argument or construct associated with an associate name.16

2 When the execution of a procedure is terminated by execution of a RETURN or END statement, an unsaved17
allocatable local variable of the procedure retains its allocation and definition status if it is a function result or a18
subobject thereof; otherwise, if it is allocated it will be deallocated.19

3 When a BLOCK construct terminates, any unsaved allocated allocatable local variable of the construct is deal-20
located.21

4 If an executable construct references a function whose result is allocatable or has an allocatable subobject, and22
the function reference is executed, an allocatable result and any allocated allocatable subobject of the result is23
deallocated after execution of the innermost executable construct containing the reference.24

5 If a function whose result is allocatable or has an allocatable subobject is referenced in the specification part of a25
scoping unit, and the function reference is executed, an allocatable result and any allocated allocatable subobject26
of the result is deallocated before execution of the executable constructs of the scoping unit.27

6 When a procedure is invoked, any allocated allocatable object that is an actual argument corresponding to an28
INTENT (OUT) allocatable dummy argument is deallocated; any allocated allocatable object that is a subobject29
of an actual argument corresponding to an INTENT (OUT) dummy argument is deallocated. If a Fortran proced-30
ure that has an INTENT (OUT) allocatable dummy argument is invoked by a C function and the corresponding31
argument in the C function call is a C descriptor that describes an allocated allocatable variable, the variable32
is deallocated on entry to the Fortran procedure. If a C function is invoked from a Fortran procedure via an33
interface with an INTENT (OUT) allocatable dummy argument and the corresponding actual argument in the34
reference to the C function is an allocated allocatable variable, the variable is deallocated on invocation (before35
execution of the C function begins).36

7 When an intrinsic assignment statement (10.2.1.3) is executed, any noncoarray allocated allocatable subobject of37
the variable is deallocated before the assignment takes place.38

8 When a variable of derived type is deallocated, any allocated allocatable subobject is deallocated. If an error39
condition occurs during deallocation, it is processor dependent whether an allocated allocatable subobject is40
deallocated.41

144 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

9 If an allocatable component is a subobject of a finalizable object, any final subroutine for that object is executed1
before the component is automatically deallocated.2

10 When a statement that deallocates a coarray or an object with a coarray potential subobject component is3
executed, there is an implicit synchronization of all active images in the current team. If the current team4
contains a stopped or failed image, an error condition occurs. If no other error condition occurs, execution on the5
active images of the segment (11.7.2) following the statement is delayed until all other active images in the current6
team have executed the same statement the same number of times in this team. The segments that executed7
before the statement on an active image of this team precede the segments that execute after the statement on8
another active image of this team. A coarray shall not become deallocated on an image unless it is successfully9
deallocated on all active images in this team.10

11 If an allocate-object is a coarray dummy argument, the ultimate arguments (15.5.2.4) on those images shall be11
corresponding coarrays.12

12 The effect of automatic deallocation is the same as that of a DEALLOCATE statement without a dealloc-opt-list.13

NOTE 1
In the following example:

SUBROUTINE PROCESS
REAL, ALLOCATABLE :: TEMP (:)
REAL, ALLOCATABLE, SAVE :: X (:)
. . .

END SUBROUTINE PROCESS

on return from subroutine PROCESS, the allocation status of X is preserved because X has the SAVE attribute.
TEMP does not have the SAVE attribute, so it will be deallocated if it was allocated. On the next invocation
of PROCESS, TEMP will have an allocation status of unallocated.

NOTE 2
For example, executing a RETURN, END, or END BLOCK statement, or deallocating an object that has an
allocatable subobject, can cause deallocation of a coarray, and thus an implicit synchronization of all active
images in the current team.

9.7.3.3 Deallocation of pointer targets14

1 If a pointer appears in a DEALLOCATE statement, its association status shall be defined. Deallocating a pointer15
that is disassociated or whose target was not created by an ALLOCATE statement causes an error condition16
in the DEALLOCATE statement. If a pointer is associated with an allocatable entity, the pointer shall not be17
deallocated. A pointer shall not be deallocated if its target or any subobject thereof is argument associated with18
a dummy argument or construct associated with an associate name.19

2 If a pointer appears in a DEALLOCATE statement, it shall be associated with the whole of an object that was20
created by allocation. The pointer shall have the same dynamic type and type parameters as the allocated object,21
and if the allocated object is an array the pointer shall be an array whose elements are the same as those of the22
allocated object in array element order. Deallocating a pointer target causes the pointer association status of any23
other pointer that is associated with the target or a portion of the target to become undefined.24

9.7.4 STAT= specifier25

R946 stat-variable is scalar-int-variable26

1 A stat-variable should have a decimal exponent range of at least four; otherwise the processor-dependent error27
code might not be representable in the variable.28

2 This rest of this subclause applies where an alloc-opt or dealloc-opt that is a STAT= specifier appears in an29
ALLOCATE or DEALLOCATE statement.30

J3/23-007 145

J3/23-007 WD 1539-1 2023-02-17

3 The stat-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement1
in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or2
association status of any allocate-object in that statement. The stat-variable shall not depend on the value of the3
errmsg-variable.4

4 Successful execution of the ALLOCATE or DEALLOCATE statement causes the stat-variable to become defined5
with a value of zero.6

5 If an ALLOCATE statement with a coarray allocate-object, or a DEALLOCATE statement with an allocate-7
object that is a coarray or which has a coarray potential subobject component, is executed when the current8
team contains a stopped image, the stat-variable becomes defined with the value STAT_STOPPED_IMAGE9
from the intrinsic module ISO_FORTRAN_ENV (16.10.2). Otherwise, if such a statement is executed when the10
current team contains a failed image, and no other error condition occurs, the stat-variable becomes defined with11
value STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV. If any other error condition12
occurs during execution of the ALLOCATE or DEALLOCATE statement, the stat-variable becomes defined with13
a processor-dependent positive integer value different from STAT_STOPPED_IMAGE and STAT_FAILED_-14
IMAGE.15

6 If stat-variable became defined with the value STAT_FAILED_IMAGE, each allocate-object is successfully al-16
located or deallocated on all the active images of the current team. If any other error condition occurs, each17
allocate-object has a processor-dependent status:18

• each allocate-object that was successfully allocated shall have an allocation status of allocated or a pointer19
association status of associated;20

• each allocate-object that was successfully deallocated shall have an allocation status of unallocated or a21
pointer association status of disassociated;22

• each allocate-object that was not successfully allocated or deallocated shall retain its previous allocation23
status or pointer association status.24

NOTE
The status of objects that were not successfully allocated or deallocated can be individually checked with the
intrinsic functions ALLOCATED or ASSOCIATED.

9.7.5 ERRMSG= specifier25

1 The errmsg-variable shall not be an allocate-object of the ALLOCATE or DEALLOCATE statement in which26
it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or association27
status of any allocate-object in that statement. The errmsg-variable shall not depend on the value of the stat-28
variable.29

2 If an error condition occurs during execution of an ALLOCATE or DEALLOCATE statement with an ERRMSG=30
specifier, the errmsg-variable is assigned an explanatory message, as if by intrinsic assignment. If no such condition31
occurs, the definition status and value of errmsg-variable are unchanged.32

146 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

10 Expressions and assignment1

10.1 Expressions2

10.1.1 Expression semantics3

1 An expression represents either a data object reference or a computation, and its value is either a scalar or an4
array. Evaluation of an expression produces a value, which has a type, type parameters (if appropriate), and a5
shape (10.1.9). The corank of an expression that is not a variable is zero.6

10.1.2 Form of an expression7

10.1.2.1 Overall expression syntax8

1 An expression is formed from operands, operators, and parentheses. An operand is either a scalar or an array.9
An operation is either intrinsic (10.1.5) or defined (10.1.6). More complicated expressions can be formed using10
operands which are themselves expressions.11

2 An expression is defined in terms of several categories: primary, level-1 expression, level-2 expression, level-312
expression, level-4 expression, and level-5 expression.13

3 These categories are related to the different operator precedence levels and, in general, are defined in terms of14
other categories. The simplest form of each expression category is a primary.15

10.1.2.2 Primary16

R1001 primary is literal-constant17
or designator18
or array-constructor19
or structure-constructor20
or enum-constructor21
or enumeration-constructor22
or function-reference23
or type-param-inquiry24
or type-param-name25
or (expr)26
or conditional-expr27

C1001 (R1001) The type-param-name shall be the name of a type parameter.28

C1002 (R1001) The designator shall not be a whole assumed-size array.29

C1003 (R1001) The expr shall not be a function reference that returns a procedure pointer.30

NOTE
Examples of a primary are:

Example Syntactic class
1.0 constant
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’ (I:I) designator
[1.0, 2.0] array-constructor
PERSON (’Jones’, 12) structure-constructor
F (X, Y) function-reference

J3/23-007 147

J3/23-007 WD 1539-1 2023-02-17

NOTE (cont.)

X%KIND type-param-inquiry
KIND type-param-name
(S + T) (expr)

10.1.2.3 Conditional expressions1

1 A conditional expression is a primary that selectively evaluates a chosen subexpression.2

R1002 conditional-expr is (scalar-logical-expr ? expr [: scalar-logical-expr ? expr]... : expr)3

C1004 Each expr of a conditional-expr shall have the same declared type, kind type parameters, and rank.4

NOTE
Examples of a conditional expression are:

(ABS (RESIDUAL)<=TOLERANCE ? ’ok’ : ’did not converge’)
(I>0 .AND. I<=SIZE (A) ? A (I) : PRESENT (VAL) ? VAL : 0.0)

10.1.2.4 Level-1 expressions5

1 Defined unary operators have the highest operator precedence (Table 10.1). Level-1 expressions are primaries6
optionally operated on by defined unary operators:7

R1003 level-1-expr is [defined-unary-op] primary8

R1004 defined-unary-op is . letter [letter]9

C1005 (R1004) A defined-unary-op shall not contain more than 63 letters and shall not be the same as any10
intrinsic-operator or logical-literal-constant.11

NOTE
Simple examples of a level-1 expression are:

Example Syntactic class
A primary (R1001)
.INVERSE. B level-1-expr (R1003)

A more complicated example of a level-1 expression is:
.INVERSE. (A + B)

10.1.2.5 Level-2 expressions12

1 Level-2 expressions are level-1 expressions optionally involving the numeric operators power-op, mult-op, and13
add-op.14

R1005 mult-operand is level-1-expr [power-op mult-operand]15

R1006 add-operand is [add-operand mult-op] mult-operand16

R1007 level-2-expr is [[level-2-expr] add-op] add-operand17

R1008 power-op is **18

R1009 mult-op is *19
or /20

148 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R1010 add-op is +1
or –2

NOTE
Simple examples of a level-2 expression are:

Example Syntactic class Remarks
A level-1-expr A is a primary. (R1003)
B ** C mult-operand B is a level-1-expr , ** is a power-op,

and C is a mult-operand. (R1005)
D * E add-operand D is an add-operand, * is a mult-op,

and E is a mult-operand. (R1006)
+1 level-2-expr + is an add-op and 1 is an add-operand. (R1007)
F - I level-2-expr F is a level-2-expr , – is an add-op,

and I is an add-operand. (R1007)

A more complicated example of a level-2 expression is:
- A + D * E + B ** C

10.1.2.6 Level-3 expressions3

1 Level-3 expressions are level-2 expressions optionally involving the character operator concat-op.4

R1011 level-3-expr is [level-3-expr concat-op] level-2-expr5

R1012 concat-op is //6

NOTE
Simple examples of a level-3 expression are:

Example Syntactic class
A level-2-expr (R1007)
B // C level-3-expr (R1011)

A more complicated example of a level-3 expression is:

X // Y // ’ABCD’

10.1.2.7 Level-4 expressions7

1 Level-4 expressions are level-3 expressions optionally involving the relational operators rel-op.8

R1013 level-4-expr is [level-3-expr rel-op] level-3-expr9

R1014 rel-op is .EQ.10
or .NE.11
or .LT.12
or .LE.13
or .GT.14
or .GE.15
or ==16
or /=17
or <18
or <=19
or >20
or >=21

J3/23-007 149

J3/23-007 WD 1539-1 2023-02-17

NOTE
Simple examples of a level-4 expression are:

Example Syntactic class
A level-3-expr (R1011)
B == C level-4-expr (R1013)
D < E level-4-expr (R1013)

A more complicated example of a level-4 expression is:
(A + B) /= C

10.1.2.8 Level-5 expressions1

1 Level-5 expressions are level-4 expressions optionally involving the logical operators not-op, and-op, or-op, and2
equiv-op.3

R1015 and-operand is [not-op] level-4-expr4

R1016 or-operand is [or-operand and-op] and-operand5

R1017 equiv-operand is [equiv-operand or-op] or-operand6

R1018 level-5-expr is [level-5-expr equiv-op] equiv-operand7

R1019 not-op is .NOT.8

R1020 and-op is .AND.9

R1021 or-op is .OR.10

R1022 equiv-op is .EQV.11
or .NEQV.12

NOTE
Simple examples of a level-5 expression are:

Example Syntactic class
A level-4-expr (R1013)
.NOT. B and-operand (R1015)
C .AND. D or-operand (R1016)
E .OR. F equiv-operand (R1017)
G .EQV. H level-5-expr (R1018)
S .NEQV. T level-5-expr (R1018)

A more complicated example of a level-5 expression is:

A .AND. B .EQV. .NOT. C

10.1.2.9 General form of an expression13

1 Expressions are level-5 expressions optionally involving defined binary operators. Defined binary operators have14
the lowest operator precedence (Table 10.1).15

R1023 expr is [expr defined-binary-op] level-5-expr16

R1024 defined-binary-op is . letter [letter]17

C1006 (R1024) A defined-binary-op shall not contain more than 63 letters and shall not be the same as any18
intrinsic-operator or logical-literal-constant.19

150 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
Simple examples of an expression are:

Example Syntactic class
A level-5-expr (R1018)
B.UNION.C expr (R1023)

More complicated examples of an expression are:

(B .INTERSECT. C) .UNION. (X - Y)
A + B == C * D
.INVERSE. (A + B)
A + B .AND. C * D
E // G == H (1:10)

10.1.3 Precedence of operators1

1 There is a precedence among the intrinsic and extension operations corresponding to the form of expressions2
specified in 10.1.2, which determines the order in which the operands are combined unless the order is changed3
by the use of parentheses. This precedence order is summarized in Table 10.1.4

Table 10.1: Categories of operations and relative precedence
Category of operation Operators Precedence

Extension defined-unary-op Highest
Numeric ** .
Numeric *, / .
Numeric unary +, – .
Numeric binary +, – .

Character // .
Relational .EQ., .NE., .LT., .LE., .GT., .GE.,

==, /=, <, <=, >, >= .
Logical .NOT. .
Logical .AND. .
Logical .OR. .
Logical .EQV., .NEQV. .

Extension defined-binary-op Lowest

2 The precedence of a defined operation is that of its operator.5

NOTE 1
For example, in the expression

-A ** 2

the exponentiation operator (**) has precedence over the negation operator (–); therefore, the operands of
the exponentiation operator are combined to form an expression that is used as the operand of the negation
operator. The interpretation of the above expression is the same as the interpretation of the expression

- (A ** 2)

3 The general form of an expression (10.1.2) also establishes a precedence among operators in the same syntactic6
class. This precedence determines the order in which the operands are to be combined in determining the7
interpretation of the expression unless the order is changed by the use of parentheses.8

J3/23-007 151

J3/23-007 WD 1539-1 2023-02-17

NOTE 2
In interpreting a level-2-expr containing two or more binary operators + or –, each operand (add-operand) is
combined from left to right. Similarly, the same left-to-right interpretation for a mult-operand in add-operand,
as well as for other kinds of expressions, is a consequence of the general form. However, for interpreting a
mult-operand expression when two or more exponentiation operators ** combine level-1-expr operands, each
level-1-expr is combined from right to left.

For example, the expressions
2.1 + 3.4 + 4.9
2.1 * 3.4 * 4.9
2.1 / 3.4 / 4.9
2 ** 3 ** 4
’AB’ // ’CD’ // ’EF’

have the same interpretations as the expressions
(2.1 + 3.4) + 4.9
(2.1 * 3.4) * 4.9
(2.1 / 3.4) / 4.9
2 ** (3 ** 4)
(’AB’ // ’CD’) // ’EF’

As a consequence of the general form (10.1.2), only the first add-operand of a level-2-expr can be preceded
by the identity (+) or negation (–) operator. These formation rules do not permit expressions containing two
consecutive numeric operators, such as A ** –B or A + –B. However, expressions such as A ** (–B) and
A + (–B) are permitted. The rules do allow a binary operator or an intrinsic unary operator to be followed by
a defined unary operator, such as:

A * .INVERSE. B
- .INVERSE. (B)

As another example, in the expression
A .OR. B .AND. C

the general form implies a higher precedence for the .AND. operator than for the .OR. operator; therefore, the
interpretation of the above expression is the same as the interpretation of the expression

A .OR. (B .AND. C)

NOTE 3
An expression can contain more than one category of operator. The logical expression

L .OR. A + B >= C

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a relational operator,
and a logical operator. This expression would be interpreted the same as the expression

L .OR. ((A + B) >= C)

NOTE 4
If

• the operator ** is extended to type logical,
• the operator .STARSTAR. is defined to duplicate the function of ** on type real,
• .MINUS. is defined to duplicate the unary operator –, and
• L1 and L2 are type logical and X and Y are type real,

then in precedence: L1 ** L2 is higher than X * Y; X * Y is higher than X .STARSTAR. Y; and .MINUS. X
is higher than –X.

152 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

10.1.4 Evaluation of operations1

1 An intrinsic operation requires the values of its operands.2

2 Execution of a function reference in the logical expression in an IF statement (11.1.8.4), the mask expression in a3
WHERE statement (10.2.3.1), or the concurrent-limits and concurrent-steps in a FORALL statement (10.2.4) is permitted to4
define variables in the subsidiary action-stmt, where-assignment-stmt, or forall-assignment-stmt respectively. Except5
in those cases:6

• the evaluation of a function reference shall neither affect nor be affected by the evaluation of any other7
entity within the statement;8

• if a function reference causes definition or undefinition of an actual argument of the function, that argument9
or any associated entities shall not appear elsewhere in the same statement.10

NOTE 1
For example, the statements

A (I) = F (I)
Y = G (X) + X

are prohibited if the reference to F defines or undefines I or the reference to G defines or undefines X.

However, in the statements
IF (F (X)) A = X
WHERE (G (X)) B = X

the reference to F and/or the reference to G can define X.

3 The appearance of an array constructor requires the evaluation of each scalar-int-expr of the ac-implied-do-control11
in any ac-implied-do it contains.12

4 When an elemental binary operation is applied to a scalar and an array or to two arrays of the same shape, the13
operation is performed element-by-element on corresponding array elements of the array operands.14

NOTE 2
For example, the array expression

A + B

produces an array of the same shape as A and B. The individual array elements of the result have the values of
the first element of A added to the first element of B, the second element of A added to the second element of
B, etc.

5 When an elemental unary operator operates on an array operand, the operation is performed element-by-element,15
and the result is the same shape as the operand. If an elemental operation is intrinsically pure or is implemented16
by a pure elemental function (15.9), the element operations may be performed simultaneously or in any order.17

6 Evaluation of a conditional-expr evaluates each scalar-logical-expr in order, until the value of a scalar-logical-expr18
is true, or there are no more scalar-logical-exprs. If the value of a scalar-logical-expr is true, its subsequent expr19
is chosen; otherwise, the last expr of the conditional-expr is chosen. The chosen expr is evaluated, and its value20
is the value of the conditional expression.21

7 The declared type, kind type parameters, and rank of a conditional-expr are the same as those of its exprs. The22
dynamic type, length type parameters, and shape are those of the chosen expr . A conditional-expr is polymorphic23
if and only if one or more of its exprs is polymorphic.24

NOTE 3
Only one expr of a conditional expression is evaluated, and any of its scalar-logical-exprs subsequent to one that
evaluates to true are not evaluated.

J3/23-007 153

J3/23-007 WD 1539-1 2023-02-17

10.1.5 Intrinsic operations1

10.1.5.1 Intrinsic operation classification2

1 An intrinsic operation is either a unary or binary operation. An intrinsic unary operation is an operation of the3
form intrinsic-operator x2 where x2 is of a type (7.4, 7.6) listed in Table 10.2 for the unary intrinsic operator.4

2 An intrinsic binary operation is an operation of the form x1 intrinsic-operator x2 where x1 and x2 are conformable5
and of the types listed in Table 10.2 for the binary intrinsic operator.6

3 A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric operator (+,7
–, *, /, or **). A numeric intrinsic operator is the operator in a numeric intrinsic operation.8

4 The character intrinsic operation is the intrinsic operation for which the intrinsic-operator is (//) and both9
operands are of type character with the same kind type parameter. The character intrinsic operator is the10
operator in a character intrinsic operation.11

5 A logical intrinsic operation is an intrinsic operation for which the intrinsic-operator is .AND., .OR., .NOT.,12
.EQV., or .NEQV. and both operands are of type logical. A logical intrinsic operator is the operator in a logical13
intrinsic operation.14

6 A relational intrinsic operator is an intrinsic-operator that is .EQ., .NE., .GT., .GE., .LT., .LE., ==, /=, >,15
>=, <, or <=. A relational intrinsic operation is an intrinsic operation for which the intrinsic-operator is a16
relational intrinsic operator. A numeric relational intrinsic operation is a relational intrinsic operation for which17
both operands are of numeric type. A character relational intrinsic operation is a relational intrinsic operation for18
which both operands are of type character. An enumeration relational intrinsic operation is a relational intrinsic19
operation for which both operands are of the same enumeration type. An enum relational intrinsic operation is20
a relational intrinsic operation for which one operand is of an enum type, and the other operand has the same21
type or is an integer expression involving an enumerator of that type. The kind type parameters of the operands22
of a character relational intrinsic operation shall be the same.23

7 The interpretations defined in 10.1.5 apply to both scalars and arrays; the interpretation for arrays is obtained24
by applying the interpretation for scalars element by element.25

Table 10.2: Type of operands and results for intrinsic operators

Intrinsic operator op Type of x1 Type of x2 Type of [x1] op x2

Unary +, – I, R, Z I, R, Z
I I, R, Z I, R, Z

Binary +, –, *, /, ** R I, R, Z R, R, Z
Z I, R, Z Z, Z, Z

// C C C
I I, R, Z, N L, L, L, L

.EQ., .NE., R I, R, Z L, L, L
==, /= Z I, R, Z L, L, L

C C L
E E L
N N, I L, L
I I, R, N L, L, L

.GT., .GE., .LT., .LE. R I, R L, L
>, >=, <, <= C C L

E E L
N N, I L, L

.NOT. L L
.AND., .OR., .EQV., .NEQV. L L L

154 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Type of operands and results for intrinsic operators (cont.)
Intrinsic operator op Type of x1 Type of x2 Type of [x1] op x2

The symbols I, R, Z, C, and L stand for the types integer, real, complex, character,
and logical, respectively. The symbol E stands for the same enumeration type for
both operands. The symbol N stands for an enum type, where if the other operand
is N, they have the same type, and if the other operand is I, the integer operand
is an expression with a primary that is an enumerator of the enum type. Where
more than one type for x2 is given, the type of the result of the operation is given
in the same relative position in the next column.

NOTE
For example, if X is of type real and J is of type integer, the expression X + J is of type real.

10.1.5.2 Numeric intrinsic operations1

10.1.5.2.1 Interpretation of numeric intrinsic operations2

1 The two operands of numeric intrinsic binary operations may be of different numeric types or different kind3
type parameters. Except for a value of type real or complex raised to an integer power, if the operands have4
different types or kind type parameters, the effect is as if each operand that differs in type or kind type parameter5
from those of the result is converted to the type and kind type parameter of the result before the operation is6
performed. When a value of type real or complex is raised to an integer power, the integer operand need not be7
converted.8

2 A numeric operation is used to express a numeric computation. Evaluation of a numeric operation produces a9
numeric value. The permitted data types for operands of the numeric intrinsic operations are specified in 10.1.5.1.10

3 The numeric operators and their interpretation in an expression are given in Table 10.3, where x1 denotes the11
operand to the left of the operator and x2 denotes the operand to the right of the operator.12

Table 10.3: Interpretation of the numeric intrinsic operators
Operator Representing Use of operator Interpretation

** Exponentiation x1 ** x2 Raise x1 to the power x2
/ Division x1 / x2 Divide x1 by x2
* Multiplication x1 * x2 Multiply x1 by x2
− Subtraction x1 - x2 Subtract x2 from x1
− Negation - x2 Negate x2
+ Addition x1 + x2 Add x1 and x2
+ Identity + x2 Same as x2

4 The interpretation of a division operation depends on the types of the operands (10.1.5.2.2).13

5 If x1 and x2 are of type integer and x2 has a negative value, the interpretation of x1 ** x2 is the same as the14
interpretation of 1/(x1 ** ABS (x2)), which is subject to the rules of integer division (10.1.5.2.2).15

NOTE
For example, 2 ** (−3) has the value of 1/(2 ** 3), which is zero.

J3/23-007 155

J3/23-007 WD 1539-1 2023-02-17

10.1.5.2.2 Integer division1

1 One operand of type integer may be divided by another operand of type integer. Although the mathematical2
quotient of two integers is not necessarily an integer, Table 10.2 specifies that an expression involving the division3
operator with two operands of type integer is interpreted as an expression of type integer. The result of such an4
operation is the integer closest to the mathematical quotient and between zero and the mathematical quotient5
inclusively.6

NOTE
For example, the expression (−8) / 3 has the value (−2).

10.1.5.2.3 Complex exponentiation7

1 In the case of a complex value raised to a complex power, the value of the operation x1 ** x2 is the principal8
value of xx2

1 .9

10.1.5.2.4 Evaluation of numeric intrinsic operations10

1 The execution of any numeric operation whose result is not defined by the arithmetic used by the processor is11
prohibited. Raising a negative real value to a real power is prohibited.12

2 Once the interpretation of a numeric intrinsic operation is established, the processor may evaluate any mathem-13
atically equivalent expression, provided that the integrity of parentheses is not violated.14

3 Two expressions of a numeric type are mathematically equivalent if, for all possible values of their primaries, their15
mathematical values are equal. However, mathematically equivalent expressions of numeric type can produce16
different computational results.17

NOTE 1
Any difference between the values of the expressions (1./3.)*3. and 1. is a computational difference, not a
mathematical difference. The difference between the values of the expressions 5/2 and 5./2. is a mathematical
difference, not a computational difference.

The mathematical definition of integer division is given in 10.1.5.2.2.

NOTE 2
The following are examples of expressions with allowable alternative forms that can be used by the processor in
the evaluation of those expressions. A, B, and C represent arbitrary real or complex operands; I and J represent
arbitrary integer operands; and X, Y, and Z represent arbitrary operands of numeric type.

Expression Allowable alternative form
X + Y Y + X
X * Y Y * X
-X + Y Y - X
X + Y + Z X + (Y + Z)
X - Y + Z X - (Y - Z)
X * A / Z X * (A / Z)
X * Y - X * Z X * (Y - Z)
A / B / C A / (B * C)
A / 5.0 0.2 * A

The following are examples of expressions with forbidden alternative forms that cannot be used by a processor
in the evaluation of those expressions.

156 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2 (cont.)

Expression Forbidden alternative form
I / 2 0.5 * I
X * I / J X * (I / J)
I / J / A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) - (X * Z) X * (Y - Z)
X * (Y - Z) X * Y - X * Z

NOTE 3
In addition to the parentheses required to establish the desired interpretation, parentheses can be included to
restrict the alternative forms that can be used by the processor in the actual evaluation of the expression. This
is useful for controlling the magnitude and accuracy of intermediate values developed during the evaluation of
an expression.

For example, in the expression
A + (B - C)

the parenthesized expression (B − C) is evaluated and then added to A.

The inclusion of parentheses could change the mathematical value of an expression. For example, the two
expressions

A * I / J
A * (I / J)

could have different mathematical values if I and J are of type integer.

NOTE 4
Each operand in a numeric intrinsic operation has a type that can depend on the order of evaluation used by
the processor.

For example, in the evaluation of the expression
Z + R + I

where Z, R, and I represent data objects of complex, real, and integer type, respectively, the type of the operand
that is added to I could be either complex or real, depending on which pair of operands (Z and R, R and I, or
Z and I) is added first.

10.1.5.3 Character intrinsic operation1

10.1.5.3.1 Interpretation of the character intrinsic operation2

1 The character intrinsic operator // is used to concatenate two operands of type character with the same kind3
type parameter. Evaluation of the character intrinsic operation produces a result of type character.4

2 The interpretation of the character intrinsic operator // when used to form an expression is given in Table 10.4,5
where x1 denotes the operand to the left of the operator and x2 denotes the operand to the right of the operator.6

Table 10.4: Interpretation of the character intrinsic operator //
Operator Representing Use of operator Interpretation

// Concatenation x1 // x2 Concatenate x1 with x2

3 The result of the character intrinsic operation x1 // x2 is a character string whose value is the value of x17
concatenated on the right with the value of x2 and whose length is the sum of the lengths of x1 and x2. Parentheses8
used to specify the order of evaluation have no effect on the value of a character expression.9

J3/23-007 157

J3/23-007 WD 1539-1 2023-02-17

NOTE
For example, the value of the expression (’AB’ // ’CDE’) // ’F’ is the string ’ABCDEF’. The value of the
expression ’AB’ // (’CDE’ // ’F’) is also the string ’ABCDEF’.

10.1.5.3.2 Evaluation of the character intrinsic operation1

1 A processor is only required to evaluate as much of the character intrinsic operation as is required by the context2
in which the expression appears.3

NOTE
For example, the statements

CHARACTER (LEN = 2) C1, C2, C3, CF
C1 = C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to determine the value
of C1 because C1 and C2 both have a length of 2.

10.1.5.4 Logical intrinsic operations4

10.1.5.4.1 Interpretation of logical intrinsic operations5

1 A logical operation is used to express a logical computation. Evaluation of a logical operation produces a result6
of type logical. The permitted types for operands of the logical intrinsic operations are specified in 10.1.5.1.7

2 The logical operators and their interpretation when used to form an expression are given in Table 10.5, where x18
denotes the operand to the left of the operator and x2 denotes the operand to the right of the operator.9

Table 10.5: Interpretation of the logical intrinsic operators
Operator Representing Use of operator Interpretation
.NOT. Logical negation .NOT. x2 True if x2 is false
.AND. Logical conjunction x1 .AND. x2 True if x1 and x2 are both true
.OR. Logical inclusive disjunction x1 .OR. x2 True if x1 and/or x2 is true

.EQV. Logical equivalence x1 .EQV. x2
True if both x1 and x2 are true or
both are false

.NEQV. Logical nonequivalence x1 .NEQV. x2
True if either x1 or x2 is true, but
not both

3 The values of the logical intrinsic operations are shown in Table 10.6.10

Table 10.6: The values of operations involving logical intrinsic operators
x1 x2 .NOT. x2 x1 .AND. x2 x1 .OR. x2 x1 .EQV. x2 x1 .NEQV. x2

true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

10.1.5.4.2 Evaluation of logical intrinsic operations11

1 Once the interpretation of a logical intrinsic operation is established, the processor may evaluate any other12
expression that is logically equivalent, provided that the integrity of parentheses in any expression is not violated.13

158 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
For example, for the variables L1, L2, and L3 of type logical, the processor could choose to evaluate the
expression

L1 .AND. L2 .AND. L3

as
L1 .AND. (L2 .AND. L3)

2 Two expressions of type logical are logically equivalent if their values are equal for all possible values of their1
primaries.2

10.1.5.5 Relational intrinsic operations3

10.1.5.5.1 Interpretation of relational intrinsic operations4

1 A relational intrinsic operation is used to compare values of two operands using the relational intrinsic operators5
.LT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted types for operands of the6
relational intrinsic operators are specified in 10.1.5.1.7

2 The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT., .LE.,8
.GT., .GE., .EQ., and .NE., respectively.9

NOTE 1
As shown in Table 10.2, a relational intrinsic operator cannot be used to compare the value of an expression of
a numeric type with one of type character or logical. Also, two operands of type logical cannot be compared,
a complex operand can be compared with another numeric operand only when the operator is .EQ., .NE., ==,
or /=, and two character operands cannot be compared unless they have the same kind type parameter value.

3 Evaluation of a relational intrinsic operation produces a default logical result.10

4 The interpretation of the relational intrinsic operators is given in Table 10.7, where x1 denotes the operand to11
the left of the operator and x2 denotes the operand to the right of the operator.12

Table 10.7: Interpretation of the relational intrinsic operators
Operator Representing Use of operator Interpretation

.LT. Less than x1 .LT. x2 x1 less than x2
< Less than x1 < x2 x1 less than x2

.LE. Less than or equal to x1 .LE. x2 x1 less than or equal to x2
<= Less than or equal to x1 <= x2 x1 less than or equal to x2
.GT. Greater than x1 .GT. x2 x1 greater than x2

> Greater than x1 > x2 x1 greater than x2
.GE. Greater than or equal to x1 .GE. x2 x1 greater than or equal to x2
>= Greater than or equal to x1 >= x2 x1 greater than or equal to x2
.EQ. Equal to x1 .EQ. x2 x1 equal to x2
== Equal to x1 == x2 x1 equal to x2
.NE. Not equal to x1 .NE. x2 x1 not equal to x2
/= Not equal to x1 /= x2 x1 not equal to x2

5 A numeric relational intrinsic operation is interpreted as having the logical value true if and only if the values of13
the operands satisfy the relation specified by the operator.14

6 In the numeric relational operation15

J3/23-007 159

J3/23-007 WD 1539-1 2023-02-17

x1 rel-op x21
if the types or kind type parameters of x1 and x2 differ, their values are converted to the type and kind type2
parameter of the expression x1 + x2 before evaluation.3

7 A character relational intrinsic operation is interpreted as having the logical value true if and only if the values4
of the operands satisfy the relation specified by the operator.5

8 For a character relational intrinsic operation, the operands are compared one character at a time in order,6
beginning with the first character of each character operand. If the operands are of unequal length, the shorter7
operand is treated as if it were extended on the right with blanks to the length of the longer operand. If both8
x1 and x2 are of zero length, x1 is equal to x2; if every character of x1 is the same as the character in the9
corresponding position in x2, x1 is equal to x2. Otherwise, at the first position where the character operands10
differ, the character operand x1 is considered to be less than x2 if the character value of x1 at this position11
precedes the value of x2 in the collating sequence (3.31); x1 is greater than x2 if the character value of x1 at this12
position follows the value of x2 in the collating sequence.13

NOTE 2
The collating sequence depends partially on the processor; however, the result of the use of the operators .EQ.,
.NE., ==, and /= does not depend on the collating sequence.

For nondefault character kinds, the blank padding character is processor dependent.

9 An enumeration relational intrinsic operation is interpreted as having the logical value true if and only if the14
ordinal values of the operands satisfy the relation specified by the operator.15

10 An enum relational intrinsic operation is interpreted as if all operands of enum type were converted to their16
corresponding integer values.17

10.1.5.5.2 Evaluation of relational intrinsic operations18

1 Once the interpretation of a relational intrinsic operation is established, the processor may evaluate any other19
expression that is relationally equivalent, provided that the integrity of parentheses in any expression is not20
violated.21

2 Two relational intrinsic operations are relationally equivalent if their logical values are equal for all possible values22
of their primaries.23

NOTE
Whether an operand of a relational intrinsic operation could be an IEEE NaN affects whether expressions are
equivalent. For example, if x or y could be a NaN, the expressions

.NOT. (x .LT. y) and x .GE. y

are not equivalent.

10.1.6 Defined operations24

10.1.6.1 Definitions25

1 A defined operation is either a unary operation or a binary operation. A unary defined operation is an operation26
that has the form defined-unary-op x2 or intrinsic-operator x2 and that is defined by a function and a generic27
interface (7.5.5, 15.4.3.4).28

2 A function defines the unary operation op x2 if29

(1) the function is specified with a FUNCTION (15.6.2.2) or ENTRY (15.6.2.6) statement that specifies one30
dummy argument d2,31

(2) either32

160 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(a) a generic interface (15.4.3.2) provides the function with a generic-spec of OPERATOR (op),1
or2

(b) there is a generic binding (7.5.5) in the declared type of x2 with a generic-spec of OPER-3
ATOR (op) and there is a corresponding binding to the function in the dynamic type of x2,4

(3) the type of d2 is compatible with the dynamic type of x2,5

(4) the type parameters, if any, of d2 match the corresponding type parameters of x2, and6

(5) either7

(a) the rank of x2 matches that of d2 or8

(b) the function is elemental and there is no other function that defines the operation.9

3 If d2 is an array, the shape of x2 shall match the shape of d2.10

4 A binary defined operation is an operation that has the form x1 defined-binary-op x2 or x1 intrinsic-operator x211
and that is defined by a function and a generic interface.12

5 A function defines the binary operation x1 op x2 if13

(1) the function is specified with a FUNCTION (15.6.2.2) or ENTRY (15.6.2.6) statement that specifies14
two dummy arguments, d1 and d2,15

(2) either16

(a) a generic interface (15.4.3.2) provides the function with a generic-spec of OPERATOR (op),17
or18

(b) there is a generic binding (7.5.5) in the declared type of x1 or x2 with a generic-spec of19
OPERATOR (op) and there is a corresponding binding to the function in the dynamic type20
of x1 or x2, respectively,21

(3) the types of d1 and d2 are compatible with the dynamic types of x1 and x2, respectively,22

(4) the type parameters, if any, of d1 and d2 match the corresponding type parameters of x1 and x2,23
respectively, and24

(5) either25

(a) the ranks of x1 and x2 match those of d1 and d2, respectively, or26

(b) the function is elemental, x1 and x2 are conformable, and there is no other function that defines27
the operation.28

6 If d1 or d2 is an array, the shapes of x1 and x2 shall match the shapes of d1 and d2, respectively.29

NOTE
An intrinsic operator can be used as the operator in a defined operation. In such a case, the generic properties
of the operator are extended.

10.1.6.2 Interpretation of a defined operation30

1 The interpretation of a defined operation is provided by the function that defines the operation.31

2 The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT., .LE.,32
.GT., .GE., .EQ., and .NE., respectively.33

10.1.6.3 Evaluation of a defined operation34

1 Once the interpretation of a defined operation is established, the processor may evaluate any other expression35
that is equivalent, provided that the integrity of parentheses is not violated.36

2 Two expressions of derived type are equivalent if their values are equal for all possible values of their primaries.37

J3/23-007 161

J3/23-007 WD 1539-1 2023-02-17

10.1.7 Evaluation of operands1

1 It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate entirely each2
operand, if the value of the expression can be determined otherwise.3

NOTE 1
This principle is most often applicable to logical expressions, zero-sized arrays, and zero-length strings, but it
applies to all expressions.

For example, in evaluating the expression
X > Y .OR. L (Z)

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need not be evaluated
if X is greater than Y. Similarly, in the array expression

W (Z) + A

where A is of size zero and W is a function, the function reference W (Z) need not be evaluated.

2 If a statement contains a function reference in a part of an expression that need not be evaluated, all entities that4
would have become defined in the execution of that reference become undefined at the completion of evaluation5
of the expression containing the function reference.6

NOTE 2
In the examples in NOTE 1, if L or W defines its argument, evaluation of the expressions under the specified
conditions causes Z to become undefined, no matter whether or not L(Z) or W(Z) is evaluated.

3 If a statement contains a function reference in a part of an expression that need not be evaluated, no invocation7
of that function in that part of the expression shall execute an image control statement other than CRITICAL8
or END CRITICAL.9

NOTE 3
This restriction is intended to avoid inadvertent deadlock caused by optimization.

10.1.8 Integrity of parentheses10

1 The rules for evaluation specified in 10.1.5 state certain conditions under which a processor can evaluate an expres-11
sion that is different from the one specified by applying the rules given in 10.1.2 and the rules for interpretation12
specified in 10.1.5. However, any expression in parentheses shall be treated as a data entity.13

NOTE
For example, in evaluating the expression A + (B – C) where A, B, and C are of numeric types, the difference
of B and C shall be evaluated before the addition operation is performed; the processor shall not evaluate the
mathematically equivalent expression (A + B) – C.

10.1.9 Type, type parameters, and shape of an expression14

10.1.9.1 General15

1 The type, type parameters, and shape of an expression depend on the operators and on the types, type parameters,16
and shapes of the primaries used in the expression, and are determined recursively from the syntactic form of the17
expression. The type of an expression is one of the intrinsic types (7.4) or a nonintrinsic type (7.5, 7.6).18

2 If an expression is a polymorphic primary or defined operation, the type parameters and the declared and dynamic19
types of the expression are the same as those of the primary or defined operation. Otherwise the type parameters20

162 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

and dynamic type of the expression are the same as its declared type and type parameters; they are referred to1
simply as the type and type parameters of the expression.2

R1025 logical-expr is expr3

C1007 (R1025) logical-expr shall be of type logical.4

R1026 default-char-expr is expr5

C1008 (R1026) default-char-expr shall be default character.6

R1027 int-expr is expr7

C1009 (R1027) int-expr shall be of type integer.8

R1028 numeric-expr is expr9

C1010 (R1028) numeric-expr shall be of type integer, real, or complex.10

10.1.9.2 Type, type parameters, and shape of a primary11

1 The type, type parameters, and shape of a primary are determined according to whether the primary is a12
literal constant, designator, array constructor, structure constructor, enum constructor, enumeration constructor,13
function reference, type parameter inquiry, type parameter name, or parenthesized expression. If a primary is14
a literal constant, its type, type parameters, and shape are those of the literal constant. If it is a structure15
constructor, it is scalar and its type and type parameters are as described in 7.5.10. If it is an enum constructor,16
it is scalar and its type is as described in 7.6.1. If it is an enumeration constructor, it is scalar and its type is as17
described in 7.6.2. If it is an array constructor, its type, type parameters, and shape are as described in 7.8. If it18
is a designator or function reference, its type, type parameters, and shape are those of the designator (8.2, 8.5) or19
the function reference (15.5.3), respectively. If the function reference is generic (15.4.3.2, 16.7) then its type, type20
parameters, and shape are those of the specific function referenced, which is determined by the declared types,21
type parameters, and ranks of its actual arguments as specified in 15.5.5.2. If it is a type parameter inquiry or22
type parameter name, it is a scalar integer with the kind of the type parameter.23

2 If a primary is a parenthesized expression, its type, type parameters, and shape are those of the expression.24

3 The associated target object is referenced if a pointer appears as a primary in an intrinsic or defined operation, the25
expr of a parenthesized primary, or the only primary on the right-hand side of an intrinsic assignment statement.26
The type, type parameters, and shape of the primary are those of the target. If the pointer is not associated27
with a target, it shall appear as a primary only as an actual argument in a reference to a procedure whose28
corresponding dummy argument is declared to be a pointer, as the target in a pointer assignment statement, or29
as explicitly permitted elsewhere in this document.30

4 A disassociated array pointer or an unallocated allocatable array has no shape but does have rank. The type,31
type parameters, and rank of the result of the intrinsic function NULL (16.9.155) depend on context.32

10.1.9.3 Type, type parameters, and shape of the result of an operation33

1 The type of the result of an intrinsic operation [x1] op x2 is specified by Table 10.2. The shape of the result of34
an intrinsic operation is the shape of x2 if op is unary or if x1 is scalar, and is the shape of x1 otherwise.35

2 The type, type parameters, and shape of the result of a defined operation [x1] op x2 are specified by the function36
defining the operation (10.1.6).37

3 An expression of an intrinsic type has a kind type parameter. An expression of type character also has a character38
length parameter.39

4 The type parameters of the result of an intrinsic operation are as follows.40

• For an expression x1 // x2 where // is the character intrinsic operator and x1 and x2 are of type character,41

J3/23-007 163

J3/23-007 WD 1539-1 2023-02-17

the character length parameter is the sum of the lengths of the operands and the kind type parameter is1
the kind type parameter of x1, which shall be the same as the kind type parameter of x2.2

• For an expression op x2 where op is an intrinsic unary operator and x2 is of type integer, real, complex, or3
logical, the kind type parameter of the expression is that of the operand.4

• For an expression x1 op x2 where op is a numeric intrinsic binary operator with one operand of type integer5
and the other of type real or complex, the kind type parameter of the expression is that of the real or6
complex operand.7

• For an expression x1 op x2 where op is a numeric intrinsic binary operator with both operands of the same8
type and kind type parameters, or with one real and one complex with the same kind type parameters, the9
kind type parameter of the expression is identical to that of each operand. In the case where both operands10
are integer with different kind type parameters, the kind type parameter of the expression is that of the11
operand with the greater decimal exponent range if the decimal exponent ranges are different; if the decimal12
exponent ranges are the same, the kind type parameter of the expression is processor dependent, but it is13
the same as that of one of the operands. In the case where both operands are any of type real or complex14
with different kind type parameters, the kind type parameter of the expression is that of the operand with15
the greater decimal precision if the decimal precisions are different; if the decimal precisions are the same,16
the kind type parameter of the expression is processor dependent, but it is the same as that of one of the17
operands.18

• For an expression x1 op x2 where op is a logical intrinsic binary operator with both operands of the same19
kind type parameter, the kind type parameter of the expression is identical to that of each operand. In the20
case where both operands are of type logical with different kind type parameters, the kind type parameter21
of the expression is processor dependent, but it is the same as that of one of the operands.22

• For an expression x1 op x2 where op is a relational intrinsic operator, the kind type parameter of the23
expression is default logical.24

10.1.10 Conformability rules for elemental operations25

1 An elemental operation is an intrinsic operation or a defined operation for which the function is elemental (15.9).26

2 For all elemental binary operations, the two operands shall be conformable. In the case where one is a scalar and27
the other an array, the scalar is treated as if it were an array of the same shape as the array operand with every28
element, if any, of the array equal to the value of the scalar.29

10.1.11 Specification expression30

1 A specification expression is an expression with limitations that make it suitable for use in specifications such as31
length type parameters (C704) and array bounds (R816, R817). A specification-expr shall be a constant expression32
unless it is in an interface body (15.4.3.2), the specification part of a subprogram or BLOCK construct, a derived33
type definition, or the declaration-type-spec of a FUNCTION statement (15.6.2.2).34

R1029 specification-expr is scalar-int-expr35

C1011 (R1029) The scalar-int-expr shall be a restricted expression.36

2 A restricted expression is an expression in which each operation is intrinsic or defined by a specification function37
and each primary is38

(1) a constant or subobject of a constant,39

(2) an object designator with a base object that is a dummy argument that has neither the OPTIONAL40
nor the INTENT (OUT) attribute,41

(3) an object designator with a base object that is in a common block,42

(4) an object designator with a base object that is made accessible by use or host association,43

(5) an array constructor where each element and each scalar-int-expr of each ac-implied-do-control is a44
restricted expression,45

(6) a structure constructor where each component is a restricted expression,46

164 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(7) an enum constructor whose expr is a restricted expression,1

(8) an enumeration constructor whose expr is a restricted expression,2

(9) a specification inquiry where each designator or argument is3

(a) a restricted expression or4

(b) a variable that is not an optional dummy argument, and whose properties inquired about are5
not6

(i) dependent on the upper bound of the last dimension of an assumed-size array,7

(ii) deferred, or8

(iii) defined by an expression that is not a restricted expression,9

(10) a specification inquiry that is a constant expression,10

(11) a reference to the intrinsic function PRESENT,11

(12) a reference to any other standard intrinsic function where each argument is a restricted expression,12

(13) a reference to a transformational function from the intrinsic module IEEE_ARITHMETIC, IEEE_-13
EXCEPTIONS, or ISO_C_BINDING, where each argument is a restricted expression,14

(14) a reference to a specification function where each argument is a restricted expression,15

(15) a type parameter of the derived type being defined,16

(16) an ac-do-variable within an array constructor where each scalar-int-expr of the corresponding ac-17
implied-do-control is a restricted expression, or18

(17) a restricted expression enclosed in parentheses,19

where each subscript, section subscript, substring starting point, substring ending point, and type parameter20
value is a restricted expression.21

3 A specification inquiry is a reference to22

(1) an intrinsic inquiry function other than PRESENT,23

(2) a type parameter inquiry (9.4.5),24

(3) an inquiry function from the intrinsic modules IEEE_ARITHMETIC and IEEE_EXCEPTIONS25
(17.10),26

(4) the function C_SIZEOF from the intrinsic module ISO_C_BINDING (18.2.3.8), or27

(5) the COMPILER_VERSION or COMPILER_OPTIONS function from the intrinsic module ISO_-28
FORTRAN_ENV (16.10.2.6, 16.10.2.7).29

4 A function is a specification function if it is a pure function, is not a standard intrinsic function, is not an internal30
function, is not a statement function, and does not have a dummy procedure argument.31

5 Evaluation of a specification expression shall not directly or indirectly cause a procedure defined by the subpro-32
gram in which it appears to be invoked.33

NOTE 1
Specification functions are nonintrinsic functions that can be used in specification expressions to determine
the attributes of data objects. The requirement that they be pure ensures that they cannot have side effects
that could affect other objects being declared in the same specification-part. The requirement that they not be
internal ensures that they cannot inquire, via host association, about other objects being declared in the same
specification-part. The prohibition against recursion avoids the creation of a new instance of a procedure while
construction of one is in progress.

6 A variable in a specification expression shall have its type and type parameters, if any, specified by a previous34
declaration in the same scoping unit, by the implicit typing rules in effect for the scoping unit, or by host or35
use association. If a variable in a specification expression is typed by the implicit typing rules, its appearance in36
any subsequent type declaration statement shall confirm the implied type and type parameters. If a specification37
inquiry depends on the type of an object of derived type, that type shall be previously defined.38

J3/23-007 165

J3/23-007 WD 1539-1 2023-02-17

7 If a specification expression includes a specification inquiry that depends on a type parameter, array bound,1
or cobound of an entity specified in the same specification-part, the type parameter, array bound, or cobound2
shall be specified in a prior specification of the specification-part. The prior specification may be to the left of3
the specification inquiry in the same statement, but shall not be within the same entity-decl. If a specification4
expression includes a reference to the value of an element of an array specified in the same specification-part, the5
array shall be completely specified in prior declarations.6

8 A generic entity referenced in a specification expression in the specification-part of a scoping unit shall have no7
specific procedures defined in the scoping unit, or its host scoping unit, subsequent to the specification expression.8

9 A component specification expression is a specification expression in which9

• there are no references to specification functions,10

• there are no references to the intrinsic functions ALLOCATED, ASSOCIATED, COMMAND_ARGU-11
MENT_COUNT, EXTENDS_TYPE_OF, GET_TEAM, NUM_IMAGES, PRESENT, SAME_TYPE_-12
AS, TEAM_NUMBER, or THIS_IMAGE,13

• every specification inquiry reference is a constant expression, and14

• the value does not depend on the value of a variable.15

A reference to the intrinsic function TRANSFER in a component specification expression is permitted only if16
each argument is a a constant expression and each ultimate pointer component of the SOURCE argument is17
disassociated.18

NOTE 2
The following are examples of specification expressions:

LBOUND (B, 1) + 5 ! B is an assumed-shape dummy array
M + LEN (C) ! M and C are dummy arguments
2 * PRECISION (A) ! A is a real variable made accessible by a USE statement

10.1.12 Constant expression19

1 A constant expression is an expression with limitations that make it suitable for use as a kind type parameter,20
initializer, or named constant. It is an expression in which each operation is intrinsic, and each primary is21

(1) a constant or subobject of a constant,22

(2) an array constructor where each element and each scalar-int-expr of each ac-implied-do-control is a23
constant expression,24

(3) a structure constructor where each component-spec corresponding to25

(a) an allocatable component is a reference to the intrinsic function NULL,26

(b) a pointer component is an initialization target or a reference to the intrinsic function NULL,27
and28

(c) any other component is a constant expression,29

(4) an enum constructor whose expr is a constant expression,30

(5) an enumeration constructor whose expr is a constant expression,31

(6) a specification inquiry where each designator or argument is32

(a) a constant expression or33

(b) a variable whose properties inquired about are not34

(i) assumed,35

(ii) deferred, or36

(iii) defined by an expression that is not a constant expression,37

(7) a reference to an elemental standard intrinsic function, where each argument is a constant expression,38

166 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(8) a reference to a standard intrinsic function that is transformational, other than COMMAND_AR-1
GUMENT_COUNT, GET_TEAM, NULL, NUM_IMAGES, TEAM_NUMBER, THIS_IMAGE,2
or TRANSFER, where each argument is a constant expression,3

(9) a reference to the intrinsic function NULL that does not have an argument with a type parameter4
that is assumed or is defined by an expression that is not a constant expression,5

(10) a reference to the intrinsic function TRANSFER where each argument is a constant expression and6
each ultimate pointer component of the SOURCE argument is disassociated,7

(11) a reference to a transformational function from the intrinsic module IEEE_ARITHMETIC or IEEE_-8
EXCEPTIONS, where each argument is a constant expression,9

(12) a previously declared kind type parameter of the derived type being defined,10

(13) a data-i-do-variable within a data-implied-do,11

(14) an ac-do-variable within an array constructor where each scalar-int-expr of the corresponding ac-12
implied-do-control is a constant expression, or13

(15) a constant expression enclosed in parentheses,14

and where each subscript, section subscript, substring starting point, substring ending point, and type parameter15
value is a constant expression.16

R1030 constant-expr is expr17

C1012 (R1030) constant-expr shall be a constant expression.18

R1031 default-char-constant-expr is default-char-expr19

C1013 (R1031) default-char-constant-expr shall be a constant expression.20

R1032 int-constant-expr is int-expr21

C1014 (R1032) int-constant-expr shall be a constant expression.22

2 If a constant expression includes a specification inquiry that depends on a type parameter or an array bound of23
an entity specified in the same specification-part, the type parameter or array bound shall be specified in a prior24
specification of the specification-part. The prior specification may be to the left of the specification inquiry in the25
same statement, but shall not be within the same entity-decl unless the specification inquiry appears within an26
initialization.27

3 A generic entity referenced in a constant expression in the specification-part of a scoping unit shall have no specific28
procedures defined in that scoping unit, or its host scoping unit, subsequent to the constant expression.29

NOTE
The following are examples of constant expressions:

3
-3 + 4
’AB’
’AB’ // ’CD’
(’AB’ // ’CD’) // ’EF’
SIZE (A)
DIGITS (X) + 4
4.0 * ATAN (1.0)
CEILING (number_of_decimal_digits / LOG10 (REAL (RADIX (0.0))))

where A is an explicit-shape array with constant bounds, X is default real, and number_of_decimal_digits is
an integer named constant.

J3/23-007 167

J3/23-007 WD 1539-1 2023-02-17

10.2 Assignment1

10.2.1 Assignment statement2

10.2.1.1 General form3

R1033 assignment-stmt is variable = expr4

C1015 (R1033) The variable shall not be a whole assumed-size array.5

NOTE
Examples of an assignment statement are:

A = 3.5 + X * Y
I = INT (A)

1 An assignment-stmt shall meet the requirements of either a defined assignment statement or an intrinsic assign-6
ment statement.7

10.2.1.2 Intrinsic assignment statement8

1 An intrinsic assignment statement is an assignment statement that is not a defined assignment statement9
(10.2.1.4). In an intrinsic assignment statement,10

(1) if the variable is polymorphic it shall be allocatable, and not a coarray or a data object with a coarray11
potential subobject component,12

(2) if expr is an array then the variable shall also be an array,13

(3) the variable and expr shall be conformable unless the variable is an allocatable array that has the14
same rank as expr and is not a coarray or of a type that has a coarray potential subobject component,15

(4) if the variable is polymorphic it shall be type compatible with expr ,16

(5) if expr is a boz-literal-constant, the variable shall be of type integer or real,17

(6) if the variable is not polymorphic and expr is not a boz-literal-constant, the declared types of the18
variable and expr shall conform as specified in Table 10.8,19

(7) if the variable is of type character and of ISO 10646, ASCII, or default character kind, expr shall be20
of ISO 10646, ASCII, or default character kind,21

(8) otherwise if the variable is of type character expr shall have the same kind type parameter,22

(9) if the variable is of derived type each kind type parameter of the variable shall have the same value23
as the corresponding kind type parameter of expr , and24

(10) if the variable is of derived type each length type parameter of the variable shall have the same value25
as the corresponding type parameter of expr unless the variable is allocatable, is not a coarray, and26
its corresponding type parameter is deferred.27

Table 10.8: Intrinsic assignment type conformance
Type of the variable Type of expr

integer integer, real, complex
real integer, real, complex

complex integer, real, complex
character character

logical logical
derived type same derived type as the variable

enumeration type same enumeration type
enum type same enum type, or integer; if of type integer, a primary

in expr shall be an enumerator of the enum type

168 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 If the variable in an intrinsic assignment statement is a coindexed object,1

• the variable shall not be polymorphic,2

• the variable shall not have an allocatable ultimate component,3

• the variable shall be conformable with expr , and4

• each deferred length type parameter of the variable shall have the same value as the corresponding type5
parameter of expr .6

3 If the variable is a pointer, it shall be associated with a definable target such that the type, type parameters,7
and shape of the target and expr conform. If the variable is a coarray or a coindexed object, it shall not be an8
unallocated allocatable variable.9

10.2.1.3 Interpretation of intrinsic assignments10

1 Execution of an intrinsic assignment causes, in effect, the evaluation of the expression expr and all expressions11
within variable (10.1), the possible conversion of expr to the type and type parameters of the variable (Table12
10.9), and the definition of the variable with the resulting value. The execution of the assignment shall have13
the same effect as if the evaluation of expr and the evaluation of all expressions in variable occurred before any14
portion of the variable is defined by the assignment. The evaluation of expressions within variable shall neither15
affect nor be affected by the evaluation of expr .16

2 If the variable is a pointer, the value of expr is assigned to the target of the variable.17

3 If the variable is an unallocated allocatable array, expr shall have the same rank. If the variable is an allocated18
allocatable variable, it is deallocated if expr is an array of different shape, any corresponding length type parameter19
values of the variable and expr differ, or the variable is polymorphic and the dynamic type or any corresponding20
kind type parameter values of the variable and expr differ. If the variable is or becomes an unallocated allocatable21
variable, it is then allocated with22

• the same dynamic type and kind type parameter values as expr if the variable is polymorphic,23

• each deferred type parameter equal to the corresponding type parameter of expr ,24

• the same bounds as before if the variable is an array and expr is scalar, and25

• the shape of expr with each lower bound equal to the corresponding element of LBOUND (expr) if expr is26
an array.27

NOTE 1
For example, given the declaration

CHARACTER(:),ALLOCATABLE :: NAME

then after the assignment statement
NAME = ’Dr. ’//FIRST_NAME//’ ’//SURNAME

NAME will have the length LEN (FIRST_NAME) + LEN (SURNAME) + 5, even if it had previously been
unallocated, or allocated with a different length. However, the assignment statement

NAME(:) = ’Dr. ’//FIRST_NAME//’ ’//SURNAME

is only conforming if NAME is already allocated at the time of the assignment; the assigned value is truncated
or blank padded to the previously allocated length of NAME.

4 Both variable and expr may contain references to any portion of the variable.28

NOTE 2
For example, in the character intrinsic assignment statement:

STRING (2:5) = STRING (1:4)

J3/23-007 169

J3/23-007 WD 1539-1 2023-02-17

NOTE 2 (cont.)
the assignment of the first character of STRING to the second character does not affect the evaluation of
STRING (1:4). If the value of STRING prior to the assignment was ’ABCDEF’, the value following the
assignment is ’AABCDF’.

5 If expr is a scalar and the variable is an array, the expr is treated as if it were an array of the same shape as the1
variable with every element of the array equal to the scalar value of expr .2

6 If the variable is an array, the assignment is performed element-by-element on corresponding array elements of3
the variable and expr .4

NOTE 3
For example, if A and B are arrays of the same shape, the array intrinsic assignment

A = B

assigns the corresponding elements of B to those of A; that is, the first element of B is assigned to the first
element of A, the second element of B is assigned to the second element of A, etc.

If C is an allocatable array of rank 1, then
C = PACK (ARRAY, ARRAY>0)

will cause C to contain all the positive elements of ARRAY in array element order; if C is not allocated or is
allocated with the wrong size, it will be re-allocated to be of the correct size to hold the result of PACK.

7 The processor may perform the element-by-element assignment in any order.5

NOTE 4
For example, the following program segment results in the values of the elements of array X being reversed:

REAL X (10)
. . .

X (1:10) = X (10:1:-1)

8 For an intrinsic assignment statement where the variable is of numeric type, the expr can have a different numeric6
type or kind type parameter, in which case the value of expr is converted to the type and kind type parameter7
of the variable according to the rules of Table 10.9.8

9 For an intrinsic assignment statement where the variable is of type integer or real, and expr is a boz-literal-9
constant, expr is converted to the type and kind type parameter of the variable according to the rules of Table10
10.9.11

Table 10.9: Numeric conversion and the assignment statement

Type of the variable Value assigned

integer INT (expr , KIND = KIND (variable))
real REAL (expr , KIND = KIND (variable))
complex CMPLX (expr , KIND = KIND (variable))
NOTE INT, REAL, CMPLX, and KIND are the generic names

of functions defined in 16.9.

10 For an intrinsic assignment statement where the variable is of type logical, the expr can have a different kind12
type parameter, in which case the value of expr is converted to the kind type parameter of the variable.13

11 For an intrinsic assignment statement where the variable is of type character, the expr can have a different14
character length parameter in which case the conversion of expr to the length of the variable is as follows.15

170 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(1) If the length of the variable is less than that of expr , the value of expr is truncated from the right1
until it is the same length as the variable.2

(2) If the length of the variable is greater than that of expr , the value of expr is extended on the right3
with blanks until it is the same length as the variable.4

12 For an intrinsic assignment statement where the variable is of type character, if expr has a different kind type para-5
meter, each character c in expr is converted to the kind type parameter of the variable by ACHAR (IACHAR(c),6
KIND (variable)).7

NOTE 5
For nondefault character kinds, the blank padding character is processor dependent. When assigning a character
expression to a variable of a different kind, each character of the expression that is not representable in the kind
of the variable is replaced by a processor-dependent character.

13 For an intrinsic assignment where the variable is of enum type, if expr is of type integer, it is converted to the8
type of the variable as if by the enum constructor enum-type-name (expr).9

14 For an intrinsic assignment of the type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING,10
or of the type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, the variable becomes undefined11
if the variable and expr are not on the same image.12

NOTE 6
An intrinsic assignment statement for a variable of declared type C_PTR, C_FUNPTR, or TEAM_TYPE
cannot involve a coindexed object, see C915, which prevents inappropriate copying from one image to another.
However, such copying can occur for a component in a derived-type intrinsic assignment.

15 An intrinsic assignment where the variable is of derived type is performed as if each component of the variable13
were assigned from the corresponding component of expr using pointer assignment (10.2.2) for each pointer14
component, defined assignment for each nonpointer nonallocatable component of a type that has a type-bound15
defined assignment consistent with the component, intrinsic assignment for each other nonpointer nonallocatable16
component, and intrinsic assignment for each allocated coarray component. For unallocated coarray components,17
the corresponding component of the variable shall be unallocated. For a noncoarray allocatable component the18
following sequence of operations is applied.19

(1) If the component of the variable is allocated, it is deallocated.20

(2) If the component of the value of expr is allocated, the corresponding component of the variable is21
allocated with the same dynamic type and type parameters as the component of the value of expr .22
If it is an array, it is allocated with the same bounds. The value of the component of the value of23
expr is then assigned to the corresponding component of the variable using defined assignment if the24
declared type of the component has a type-bound defined assignment consistent with the component,25
and intrinsic assignment for the dynamic type of that component otherwise.26

16 The processor may perform the component-by-component assignment in any order or by any means that has the27
same effect.28

NOTE 7
For an example of a derived-type intrinsic assignment statement, if C and D are of the same derived type with a
pointer component P and nonpointer components S, T, U, and V of type integer, logical, character, and another
derived type, respectively, the intrinsic assignment

C = D

pointer assigns D%P to C%P. It assigns D%S to C%S, D%T to C%T, and D%U to C%U using intrinsic
assignment. It assigns D%V to C%V using defined assignment if objects of that type have a compatible type-
bound defined assignment, and intrinsic assignment otherwise.

J3/23-007 171

J3/23-007 WD 1539-1 2023-02-17

NOTE 8
If an allocatable component of expr is unallocated, the corresponding component of the variable has an allocation
status of unallocated after execution of the assignment.

10.2.1.4 Defined assignment statement1

1 A defined assignment statement is an assignment statement that is defined by a subroutine and a generic interface2
(7.5.5, 15.4.3.4.3) that specifies ASSIGNMENT (=).3

2 A subroutine defines the defined assignment x1 = x2 if4

(1) the subroutine is specified with a SUBROUTINE (15.6.2.3) or ENTRY (15.6.2.6) statement that specifies5
two dummy arguments, d1 and d2,6

(2) either7

(a) a generic interface (15.4.3.2) provides the subroutine with a generic-spec of ASSIGNMENT (=),8
or9

(b) there is a generic binding (7.5.5) in the declared type of x1 or x2 with a generic-spec of10
ASSIGNMENT (=) and there is a corresponding binding to the subroutine in the dynamic11
type of x1 or x2, respectively,12

(3) the types of d1 and d2 are compatible with the dynamic types of x1 and x2, respectively,13

(4) the type parameters, if any, of d1 and d2 match the corresponding type parameters of x1 and x2,14
respectively, and15

(5) either16

(a) the ranks of x1 and x2 match those of d1 and d2 or17

(b) the subroutine is elemental, x2 is scalar or has the same rank as x1, and there is no other18
subroutine that defines the assignment.19

3 If d1 or d2 is an array, the shapes of x1 and x2 shall match the shapes of d1 and d2, respectively. If the subroutine20
is elemental, x2 shall be conformable with x1.21

10.2.1.5 Interpretation of defined assignment statements22

1 The interpretation of a defined assignment is provided by the subroutine that defines it.23

2 If the defined assignment is an elemental assignment and the variable in the assignment is an array, the defined24
assignment is performed element-by-element, on corresponding elements of the variable and expr . If expr is a25
scalar, it is treated as if it were an array of the same shape as the variable with every element of the array equal26
to the scalar value of expr .27

NOTE
The rules of defined assignment (15.4.3.4.3), procedure references (15.5), subroutine references (15.5.4), and
elemental subroutine arguments (15.9.3) ensure that the defined assignment has the same effect as if the eval-
uation of all operations in x2 and x1 occurs before any portion of x1 is defined. If an elemental assignment is
defined by a pure elemental subroutine, the element assignments can be performed simultaneously or in any
order.

10.2.2 Pointer assignment28

10.2.2.1 General29

1 Pointer assignment causes a pointer to become associated with a target or causes its pointer association status30
to become disassociated or undefined. Any previous association between the pointer and a target is broken.31

2 Pointer assignment for a pointer component of a structure can also take place by execution of a derived-type32
intrinsic assignment statement (10.2.1.3).33

172 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

10.2.2.2 Syntax of the pointer assignment statement1

R1034 pointer-assignment-stmt is data-pointer-object [(bounds-spec-list)] => data-target2
or data-pointer-object (lower-bounds-expr :) => data-target3
or data-pointer-object (bounds-remapping-list) => data-target4
or data-pointer-object (lower-bounds-expr : upper-bounds-expr)5

=> data-target6
or proc-pointer-object => proc-target7

R1035 data-pointer-object is variable-name8
or scalar-variable % data-pointer-component-name9

C1016 (R1034) If data-target is not unlimited polymorphic, data-pointer-object shall be type compatible (7.3.3)10
with it and the corresponding kind type parameters shall be equal.11

C1017 (R1034) If data-target is unlimited polymorphic, data-pointer-object shall be unlimited polymorphic, or12
of a type with the BIND attribute or the SEQUENCE attribute.13

C1018 (R1034) If bounds-spec-list is specified, the number of bounds-specs shall equal the rank of data-pointer-14
object.15

C1019 (R1034) If bounds-remapping-list is specified, the number of bounds-remappings shall equal the rank of16
data-pointer-object.17

C1020 If lower-bounds-expr and upper-bounds-expr appear in a pointer-assignment-stmt, at least one of them18
shall be a rank-one array of constant size equal to the rank of data-pointer-object.19

C1021 If lower-bounds-expr appears in a pointer-assignment-stmt but not upper-bounds-expr , it shall be a rank-20
one array of constant size equal to the rank of data-pointer-object.21

C1022 If neither bounds-remapping-list nor upper-bounds-expr appears in a pointer-assignment-stmt, the ranks22
of data-pointer-object and data-target shall be the same.23

C1023 (R1034) A coarray data-target shall have the VOLATILE attribute if and only if the data-pointer-object24
has the VOLATILE attribute.25

C1024 (R1035) A variable-name shall have the POINTER attribute.26

C1025 (R1035) A scalar-variable shall be a data-ref .27

C1026 (R1035) A data-pointer-component-name shall be the name of a component of scalar-variable that is a28
data pointer.29

C1027 (R1035) A data-pointer-object shall not be a coindexed object.30

R1036 bounds-spec is lower-bound-expr :31

R1037 bounds-remapping is lower-bound-expr : upper-bound-expr32

R1038 data-target is expr33

C1028 (R1038) The expr shall be a designator that designates a variable with either the TARGET or POINTER34
attribute and is not an array section with a vector subscript, or it shall be a reference to a function that35
returns a data pointer.36

C1029 (R1038) A data-target shall not be a coindexed object.37

NOTE
A data pointer and its target are always on the same image. A coarray can be of a derived type with pointer
or allocatable subcomponents. For example, if PTR is a pointer component, and Z%PTR on image P has

J3/23-007 173

J3/23-007 WD 1539-1 2023-02-17

NOTE (cont.)
been associated with a target by execution of an ALLOCATE statement or a pointer assignment on image P,
Z[P]%PTR will be a reference to that target.

R1039 proc-pointer-object is proc-pointer-name1
or proc-component-ref2

R1040 proc-component-ref is scalar-variable % procedure-component-name3

C1030 (R1040) The scalar-variable shall be a data-ref that is not a coindexed object.4

C1031 (R1040) The procedure-component-name shall be the name of a procedure pointer component of the5
declared type of scalar-variable.6

R1041 proc-target is expr7
or procedure-name8
or proc-component-ref9

C1032 (R1041) An expr shall be a reference to a function whose result is a procedure pointer.10

C1033 (R1041) A procedure-name shall be the name of an internal, module, or dummy procedure, a procedure11
pointer, a specific intrinsic function listed in Table 16.2, or an external procedure that is accessed by use or host12
association, referenced in the scoping unit as a procedure, or that has the EXTERNAL attribute.13

C1034 (R1041) The proc-target shall not be a nonintrinsic elemental procedure.14

1 In a pointer assignment statement, data-pointer-object or proc-pointer-object denotes the pointer object and15
data-target or proc-target denotes the pointer target.16

2 For pointer assignment performed by a derived-type intrinsic assignment statement, the pointer object is the17
pointer component of the variable and the pointer target is the corresponding component of expr .18

10.2.2.3 Data pointer assignment19

1 If the pointer object is not polymorphic (7.3.2.3) and the pointer target is polymorphic with dynamic type that20
differs from its declared type, the assignment target is the ancestor component of the pointer target that has the21
type of the pointer object. Otherwise, the assignment target is the pointer target.22

2 If the pointer target is not a pointer, the pointer object becomes pointer associated with the assignment target;23
if the pointer target is a pointer with a target that is not on the same image, the pointer association status of the24
pointer object becomes undefined. Otherwise, the pointer association status of the pointer object becomes that25
of the pointer target; if the pointer target is associated with an object, the pointer object becomes associated26
with the assignment target. If the pointer target is allocatable, it shall be allocated.27

NOTE
A pointer assignment statement is not permitted to involve a coindexed pointer or target, see C1027 and C1029.
This prevents a pointer assignment statement from associating a pointer with a target on another image. If
such an association would otherwise be implied, the association status of the pointer becomes undefined. For
example, a derived-type intrinsic assignment where the variable and expr are on different images and the variable
has an ultimate pointer component.

3 If the pointer object is polymorphic, it assumes the dynamic type of the pointer target. If the pointer object is28
of a type with the BIND attribute or the SEQUENCE attribute, the dynamic type of the pointer target shall be29
that type.30

4 If the pointer target is a disassociated pointer, all nondeferred type parameters of the declared type of the pointer31
object that correspond to nondeferred type parameters of the pointer target shall have the same values as the32

174 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

corresponding type parameters of the pointer target. Otherwise, all nondeferred type parameters of the declared1
type of the pointer object shall have the same values as the corresponding type parameters of the pointer target.2

5 If the pointer object has nondeferred type parameters that correspond to deferred type parameters of the pointer3
target, the pointer target shall not be a pointer with undefined association status.4

6 If the pointer object has the CONTIGUOUS attribute, the pointer target shall be contiguous.5

7 If the target of a pointer is a coarray, the pointer shall have the VOLATILE attribute if and only if the coarray6
has the VOLATILE attribute.7

8 If bounds-remapping-list appears, it specifies the upper and lower bounds of each dimension of the pointer,8
and thus the extents; the pointer target shall be simply contiguous (9.5.4) or of rank one, and shall not be a9
disassociated or undefined pointer. The number of elements of the pointer target shall not be less than the10
number implied by the bounds-remapping-list. The elements of the pointer object are associated with those of11
the pointer target, in array element order; if the pointer target has more elements than specified for the pointer12
object, the remaining elements are not associated with the pointer object.13

9 If lower-bounds-expr and upper-bounds-expr appear, the effect is the same as a bounds-remapping-list with each14
bounds-remapping comprising corresponding elements of the lower and upper bounds arrays, in array element15
order. If one of them is a scalar, the effect is as if it were broadcast to the same shape as the other.16

10 If neither bounds-remapping-list nor upper-bounds-expr appears, the extent of a dimension of the pointer object is17
the extent of the corresponding dimension of the pointer target. If bounds-spec-list or lower-bounds-expr appears,18
it specifies the lower bounds; otherwise, the lower bound of each dimension is the result of the intrinsic function19
LBOUND (16.9.119) applied to the corresponding dimension of the pointer target. The upper bound of each20
dimension is one less than the sum of the lower bound and the extent.21

10.2.2.4 Procedure pointer assignment22

1 If the pointer target is not a pointer or dummy argument, the pointer object becomes pointer associated with23
the pointer target. If the pointer target is a nonpointer dummy argument, the pointer object becomes associated24
with the ultimate argument of the dummy argument. Otherwise, the pointer association status of the pointer25
object becomes that of the pointer target; if the pointer target is associated with a procedure, the pointer object26
becomes associated with the same procedure.27

2 The host instance (15.6.2.4) of an associated procedure pointer is the host instance of its target.28

3 If the pointer object has an explicit interface, its characteristics shall be the same as the pointer target except29
that the pointer target may be pure even if the pointer object is not pure, the pointer target may be simple even30
if the pointer object is not simple, and the pointer target may be an elemental intrinsic procedure, even though31
the pointer object cannot be elemental.32

4 If the characteristics of the pointer object or the pointer target are such that an explicit interface is required,33
both the pointer object and the pointer target shall have an explicit interface.34

5 If the pointer object has an implicit interface and is explicitly typed or referenced as a function, the pointer target35
shall be a function. If the pointer object has an implicit interface and is referenced as a subroutine, the pointer36
target shall be a subroutine.37

6 If the pointer object is a function with an implicit interface, the pointer target shall be a function with the same38
type; corresponding type parameters shall have the same value.39

7 If procedure-name is a specific procedure name that is also a generic name, only the specific procedure is associated40
with the pointer object.41

J3/23-007 175

J3/23-007 WD 1539-1 2023-02-17

10.2.2.5 Examples of pointer assignment statements1

NOTE 1
The following are examples of pointer assignment statements. (See 15.4.3.6, NOTE for declarations of P and
BESSEL.)

NEW_NODE % LEFT => CURRENT_NODE
SIMPLE_NAME => TARGET_STRUCTURE % SUBSTRUCT % COMPONENT
PTR => NULL ()
ROW => MAT2D (N, :)
WINDOW => MAT2D (I-1:I+1, J-1:J+1)
POINTER_OBJECT => POINTER_FUNCTION (ARG_1, ARG_2)
EVERY_OTHER => VECTOR (1:N:2)
WINDOW2 (0:, 0:) => MAT2D (ML:MU, NL:NU)
! P is a procedure pointer, BESSEL is a procedure with a compatible interface.
P => BESSEL

! Likewise for a structure component.
STRUCT % COMPONENT => BESSEL

NOTE 2
It is possible to obtain different-rank views of parts of an object by specifying upper bounds in pointer assignment
statements. This requires that the object be either rank one or contiguous. Consider the following example,
in which a matrix is under consideration. The matrix is stored as a rank-one object in MYDATA because
its diagonal is needed for some reason – the diagonal cannot be gotten as a single object from a rank-two
representation. The matrix is represented as a rank-two view of MYDATA.

real, target :: MYDATA (NR*NC) ! An automatic array
real, pointer :: MATRIX (:, :) ! A rank-two view of MYDATA
real, pointer :: VIEW_DIAG (:)
MATRIX (1:NR, 1:NC) => MYDATA ! The MATRIX view of the data
VIEW_DIAG => MYDATA (1::NR+1) ! The diagonal of MATRIX

Rows, columns, or blocks of the matrix can be accessed as sections of MATRIX.

Rank remapping can be applied to CONTIGUOUS arrays, for example:
REAL, CONTIGUOUS, POINTER :: A (:)
REAL, CONTIGUOUS, TARGET :: B (:,:) ! Dummy argument
A (1:SIZE(B)) => B ! Linear view of a rank-2 array

10.2.3 Masked array assignment – WHERE2

10.2.3.1 General form of the masked array assignment3

1 A masked array assignment is either a WHERE statement or a WHERE construct. It is used to mask the4
evaluation of expressions and assignment of values in array assignment statements, according to the value of a5
logical array expression.6

R1042 where-stmt is WHERE (mask-expr) where-assignment-stmt7

R1043 where-construct is where-construct-stmt8
[where-body-construct] ...9

[masked-elsewhere-stmt10
[where-body-construct] ...] ...11

[elsewhere-stmt12
[where-body-construct] ...]13

end-where-stmt14

176 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R1044 where-construct-stmt is [where-construct-name:] WHERE (mask-expr)1

R1045 where-body-construct is where-assignment-stmt2
or where-stmt3
or where-construct4

R1046 where-assignment-stmt is assignment-stmt5

R1047 mask-expr is logical-expr6

R1048 masked-elsewhere-stmt is ELSEWHERE (mask-expr) [where-construct-name]7

R1049 elsewhere-stmt is ELSEWHERE [where-construct-name]8

R1050 end-where-stmt is END WHERE [where-construct-name]9

C1035 (R1046) A where-assignment-stmt that is a defined assignment shall be elemental.10

C1036 (R1043) If the where-construct-stmt is identified by a where-construct-name, the corresponding end-11
where-stmt shall specify the same where-construct-name. If the where-construct-stmt is not identified by12
a where-construct-name, the corresponding end-where-stmt shall not specify a where-construct-name. If13
an elsewhere-stmt or a masked-elsewhere-stmt is identified by a where-construct-name, the corresponding14
where-construct-stmt shall specify the same where-construct-name.15

C1037 (R1045) A statement that is part of a where-body-construct shall not be a branch target statement.16

2 If a where-construct contains a where-stmt, a masked-elsewhere-stmt, or another where-construct then each mask-17
expr within the where-construct shall have the same shape. In each where-assignment-stmt, the mask-expr and18
the variable being defined shall be arrays of the same shape.19

NOTE
Examples of masked array assignment are:

WHERE (TEMP > 100.0) TEMP = TEMP - REDUCE_TEMP
WHERE (PRESSURE <= 1.0)

PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP - 5.0

ELSEWHERE
RAINING = .TRUE.

END WHERE

10.2.3.2 Interpretation of masked array assignments20

1 When a WHERE statement or a where-construct-stmt is executed, a control mask is established. In addition,21
when a WHERE construct statement is executed, a pending control mask is established. If the statement does22
not appear as part of a where-body-construct, the mask-expr of the statement is evaluated, and the control mask is23
established to be the value of mask-expr . The pending control mask is established to have the value .NOT. mask-24
expr upon execution of a WHERE construct statement that does not appear as part of a where-body-construct.25

2 The mask-expr in a WHERE statement, WHERE construct statement, or masked ELSEWHERE statement, is26
evaluated at most once per execution of the statement.27

3 Each statement in a WHERE construct is executed in sequence.28

4 Upon execution of a masked-elsewhere-stmt, the following actions take place in sequence.29

(1) The control mask mc is established to have the value of the pending control mask.30

(2) The pending control mask is established to have the value mc .AND. (.NOT. mask-expr).31

(3) The control mask mc is established to have the value mc .AND. mask-expr .32

J3/23-007 177

J3/23-007 WD 1539-1 2023-02-17

5 Upon execution of an ELSEWHERE statement, the control mask is established to have the value of the pending1
control mask. No new pending control mask value is established.2

6 Upon execution of an ENDWHERE statement, the control mask and pending control mask are established to3
have the values they had prior to the execution of the corresponding WHERE construct statement. Following4
the execution of a WHERE statement that appears as a where-body-construct, the control mask is established to5
have the value it had prior to the execution of the WHERE statement.6

NOTE 1
The establishment of control masks and the pending control mask is illustrated with the following example:

WHERE(cond1) ! Statement 1
...

ELSEWHERE(cond2) ! Statement 2
...

ELSEWHERE ! Statement 3
...

END WHERE

Following execution of statement 1, the control mask has the value cond1 and the pending control
mask has the value .NOT. cond1. Following execution of statement 2, the control mask has the value
(.NOT. cond1) .AND. cond2 and the pending control mask has the value (.NOT. cond1) .AND. (.NOT. cond2).
Following execution of statement 3, the control mask has the value (.NOT. cond1) .AND. (.NOT. cond2). The
false condition values are propagated through the execution of the masked ELSEWHERE statement.

7 Upon execution of a WHERE construct statement that is part of a where-body-construct, the pending control7
mask is established to have the value mc .AND. (.NOT. mask-expr). The control mask is then established to8
have the value mc .AND. mask-expr . The mask-expr is evaluated at most once.9

8 Upon execution of a WHERE statement that is part of a where-body-construct, the control mask is established10
to have the value mc .AND. mask-expr . The pending control mask is not altered.11

9 If a nonelemental function reference occurs in the expr or variable of a where-assignment-stmt or in a mask-expr ,12
the function is evaluated without any masked control; that is, all of its argument expressions are fully evaluated13
and the function is fully evaluated. If the result is an array and the reference is not within the argument list14
of a nonelemental function, elements corresponding to true values in the control mask are selected for use in15
evaluating the expr , variable or mask-expr .16

10 If an elemental operation or function reference occurs in the expr or variable of a where-assignment-stmt or in a17
mask-expr , and is not within the argument list of a nonelemental function reference, the operation is performed18
or the function is evaluated only for the elements corresponding to true values of the control mask.19

11 If an array constructor appears in a where-assignment-stmt or in a mask-expr , the array constructor is evaluated20
without any masked control and then the where-assignment-stmt is executed or the mask-expr is evaluated.21

12 When a where-assignment-stmt is executed, the values of expr that correspond to true values of the control mask22
are assigned to the corresponding elements of the variable.23

13 The value of the control mask is established by the execution of a WHERE statement, a WHERE construct24
statement, an ELSEWHERE statement, a masked ELSEWHERE statement, or an ENDWHERE statement.25
Subsequent changes to the value of entities in a mask-expr have no effect on the value of the control mask. The26
execution of a function reference in the mask expression of a WHERE statement is permitted to affect entities in27
the assignment statement.28

NOTE 2
Examples of function references in masked array assignments are:

178 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2 (cont.)
WHERE (A > 0.0)

A = LOG (A) ! LOG is invoked only for positive elements.
A = A / SUM (LOG (A)) ! LOG is invoked for all elements

! because SUM is transformational
END WHERE

10.2.4 FORALL1

10.2.4.1 Form of the FORALL Construct2

1 The FORALL construct allows multiple assignments, masked array (WHERE) assignments, and nested FORALL constructs and3
statements to be controlled by a single concurrent-control-list and scalar-mask-expr .4

R1051 forall-construct is forall-construct-stmt5
[forall-body-construct] ...6
end-forall-stmt7

R1052 forall-construct-stmt is [forall-construct-name :] FORALL concurrent-header8

R1053 forall-body-construct is forall-assignment-stmt9
or where-stmt10
or where-construct11
or forall-construct12
or forall-stmt13

R1054 forall-assignment-stmt is assignment-stmt14
or pointer-assignment-stmt15

R1055 end-forall-stmt is END FORALL [forall-construct-name]16

C1038 (R1055) If the forall-construct-stmt has a forall-construct-name, the end-forall-stmt shall have the same forall-construct-17
name. If the end-forall-stmt has a forall-construct-name, the forall-construct-stmt shall have the same forall-construct-18
name.19

C1039 (R1053) A statement in a forall-body-construct shall not define an index-name of the forall-construct.20

C1040 (R1053) Any procedure referenced in a forall-body-construct, including one referenced by a defined operation, assignment,21
or finalization, shall be a pure procedure.22

C1041 (R1053) A forall-body-construct shall not be a branch target.23

2 The scope and attributes of an index-name in a concurrent-header in a FORALL construct or statement are described in 19.4.24

10.2.4.2 Execution of the FORALL construct25

10.2.4.2.1 Execution stages26

1 There are three stages in the execution of a FORALL construct:27
(1) determination of the values for index-name variables,28
(2) evaluation of the scalar-mask-expr , and29
(3) execution of the FORALL body constructs.30

10.2.4.2.2 Determination of the values for index variables31

1 The values of the index variables are determined as they are for the DO CONCURRENT statement (11.1.7.4.2).32

10.2.4.2.3 Evaluation of the mask expression33

1 The mask expression is evaluated as it is for the DO CONCURRENT statement (11.1.7.4.2).34

J3/23-007 179

J3/23-007 WD 1539-1 2023-02-17

10.2.4.2.4 Execution of the FORALL body constructs1

1 The forall-body-constructs are executed in the order in which they appear. Each construct is executed for all active combinations of2
the index-name values with the following interpretation:3

2 Execution of a forall-assignment-stmt that is an assignment-stmt causes the evaluation of expr and all expressions within variable4
for all active combinations of index-name values. These evaluations may be done in any order. After all these evaluations have been5
performed, each expr value is assigned to the corresponding variable. The assignments may occur in any order.6

3 Execution of a forall-assignment-stmt that is a pointer-assignment-stmt causes the evaluation of all expressions within data-target7
and data-pointer-object or proc-target and proc-pointer-object, the determination of any pointers within data-pointer-object or proc-8
pointer-object, and the determination of the target for all active combinations of index-name values. These evaluations may be done9
in any order. After all these evaluations have been performed, each data-pointer-object or proc-pointer-object is associated with the10
corresponding target. These associations may occur in any order.11

4 In a forall-assignment-stmt, a defined assignment subroutine shall not reference any variable that becomes defined by the statement.12

NOTE
If a variable defined in an assignment statement within a FORALL construct is referenced in a later statement in that construct,
the later statement uses the value(s) computed in the preceding assignment statement, not the value(s) the variable had prior to
execution of the FORALL.

5 Each statement in a where-construct (10.2.3) within a forall-construct is executed in sequence. When a where-stmt, where-construct-13
stmt or masked-elsewhere-stmt is executed, the statement’s mask-expr is evaluated for all active combinations of index-name values14
as determined by the outer forall-constructs, masked by any control mask corresponding to outer where-constructs. Any where-15
assignment-stmt is executed for all active combinations of index-name values, masked by the control mask in effect for the where-16
assignment-stmt.17

6 Execution of a forall-stmt or forall-construct causes the evaluation of the concurrent-limit and concurrent-step expressions in the18
concurrent-control-list for all active combinations of the index-name values of the outer FORALL construct. The set of combinations19
of index-name values for the inner FORALL is the union of the sets defined by these limits and steps for each active combination of the20
outer index-name values; it also includes the outer index-name values. The scalar-mask-expr is then evaluated for all combinations21
of the index-name values of the inner construct to produce a set of active combinations for the inner construct. If there is no22
scalar-mask-expr , it is as if it appeared with the value true. Each statement in the inner FORALL is then executed for each active23
combination of the index-name values.24

10.2.4.3 The FORALL statement25

1 The FORALL statement allows a single assignment statement or pointer assignment statement to be controlled by a set of index26
values and an optional mask expression.27

R1056 forall-stmt is FORALL concurrent-header forall-assignment-stmt28

2 A FORALL statement is equivalent to a FORALL construct containing a single forall-body-construct that is a forall-assignment-stmt.29

3 The scope of an index-name in a forall-stmt is the statement itself (19.4).30

10.2.4.4 Restrictions on FORALL constructs and statements31

1 A many-to-one assignment is more than one assignment to the same object, or association of more than one target with the same32
pointer, whether the object is referenced directly or indirectly through a pointer. A many-to-one assignment shall not occur within33
a single statement in a FORALL construct or statement. It is possible to assign or pointer-assign to the same object in different34
assignment or pointer assignment statements in a FORALL construct.35

NOTE
The appearance of each index-name in the identification of the left-hand side of an assignment statement is helpful in eliminating
many-to-one assignments, but it is not sufficient to guarantee there will be none. For example, the following is allowed

180 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE (cont.)
FORALL (I = 1:10)

A (INDEX (I)) = B(I)
END FORALL

if and only if INDEX(1:10) contains no repeated values.

2 Within the scope of a FORALL construct, a nested FORALL statement or FORALL construct shall not have the same index-name.1
The concurrent-header expressions within a nested FORALL may depend on the values of outer index-name variables.2

J3/23-007 181

J3/23-007 WD 1539-1 2023-02-17

11 Execution control1

11.1 Executable constructs containing blocks2

11.1.1 Blocks3

1 The following are executable constructs that contain blocks:4

• ASSOCIATE construct;5

• BLOCK construct;6

• CHANGE TEAM construct;7

• CRITICAL construct;8

• DO construct;9

• IF construct;10

• SELECT CASE construct;11

• SELECT RANK construct;12

• SELECT TYPE construct.13

R1101 block is [execution-part-construct] ...14

2 Executable constructs can be used to control which blocks of a program are executed or how many times a block15
is executed. Blocks are always bounded by statements that are particular to the construct in which they are16
embedded.17

NOTE
An example of a construct containing a block is:

IF (A > 0.0) THEN
B = SQRT (A) ! These two statements
C = LOG (A) ! form a block.

END IF

11.1.2 Rules governing blocks18

11.1.2.1 Control flow in blocks19

1 Transfer of control to the interior of a block from outside the block is prohibited, except for the return from a20
procedure invoked within the block. Transfers within a block and transfers from the interior of a block to outside21
the block may occur.22

2 Subroutine and function references (15.5.3, 15.5.4) may appear in a block.23

11.1.2.2 Execution of a block24

1 Execution of a block begins with the execution of the first executable construct in the block.25

2 Execution of the block is completed when26

• execution of the last executable construct in the block completes without branching to a statement within27
the block,28

• a branch (11.2) within the block that has a branch target outside the block occurs,29

• a RETURN statement within the block is executed, or30

• an EXIT or CYCLE statement that belongs to a construct that contains the block is executed.31

182 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
The action that takes place at the terminal boundary depends on the particular construct and on the block
within that construct.

11.1.3 ASSOCIATE construct1

11.1.3.1 Purpose and form of the ASSOCIATE construct2

1 The ASSOCIATE construct associates named entities with expressions or variables during the execution of its3
block. These named construct entities (19.4) are associating entities (19.5.1.6). The names are associate names.4

R1102 associate-construct is associate-stmt5
block6
end-associate-stmt7

R1103 associate-stmt is [associate-construct-name :] ASSOCIATE8
(association-list)9

R1104 association is associate-name => selector10

R1105 selector is expr11
or variable12

C1101 (R1104) If selector is not a variable or is a variable that has a vector subscript, neither associate-name13
nor any subobject thereof shall appear in a variable definition context (19.6.7) or pointer association14
context (19.6.8).15

C1102 (R1104) An associate-name shall not be the same as another associate-name in the same associate-stmt.16

C1103 (R1105) variable shall not be a coindexed object.17

C1104 (R1105) expr shall not be a variable.18

C1105 (R1105) expr shall not be a designator of a procedure pointer or a function reference that returns a19
procedure pointer.20

R1106 end-associate-stmt is END ASSOCIATE [associate-construct-name]21

C1106 (R1106) If the associate-stmt of an associate-construct specifies an associate-construct-name, the corres-22
ponding end-associate-stmt shall specify the same associate-construct-name. If the associate-stmt of an23
associate-construct does not specify an associate-construct-name, the corresponding end-associate-stmt24
shall not specify an associate-construct-name.25

11.1.3.2 Execution of the ASSOCIATE construct26

1 Execution of an ASSOCIATE construct causes evaluation of every expression within every selector that is a27
variable designator and evaluation of every other selector , followed by execution of its block. During execution of28
that block each associate name identifies an entity which is associated (19.5.1.6) with the corresponding selector.29
The associating entity assumes the declared type and type parameters of the selector. If and only if the selector30
is polymorphic, the associating entity is polymorphic.31

2 The other attributes of the associating entity are described in 11.1.3.3.32

3 It is permissible to branch to an end-associate-stmt only from within its ASSOCIATE construct.33

11.1.3.3 Other attributes of associate names34

1 Within an ASSOCIATE, CHANGE TEAM, or SELECT TYPE construct, each associating entity has the same35
rank as its associated selector. The lower bound of each dimension is the result of the intrinsic function LBOUND36

J3/23-007 183

J3/23-007 WD 1539-1 2023-02-17

(16.9.119) applied to the corresponding dimension of selector . The upper bound of each dimension is one less1
than the sum of the lower bound and the extent. The associating entity does not have the ALLOCATABLE or2
POINTER attributes; it has the TARGET attribute if and only if the selector is a variable and has either the3
TARGET or POINTER attribute.4

2 Within an ASSOCIATE, SELECT RANK, or SELECT TYPE construct, each associating entity has the same5
corank as its associated selector. If the selector is a coarray, the cobounds of each codimension of the associating6
entity are the same as those of the selector.7

3 Within a CHANGE TEAM construct, the associating entity is a coarray. Its corank and cobounds are as specified8
in its codimension-decl.9

4 Within an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT TYPE construct, the associating entity10
has the ASYNCHRONOUS or VOLATILE attribute if and only if the selector is a variable and has the attribute.11
If the associating entity is polymorphic, it assumes the dynamic type and type parameter values of the selector.12
The associating entity does not have the OPTIONAL attribute. If the selector has the OPTIONAL attribute, it13
cannot be absent (15.5.2.13). The associating entity is contiguous if and only if the selector is contiguous.14

5 The associating entity itself is a variable, but if the selector is not a definable variable, the associating entity15
is not definable and shall not be defined or become undefined. If a selector is not permitted to appear in16
a variable definition context (19.6.7), neither the associate name nor any subobject thereof shall appear in a17
variable definition context or pointer association context (19.6.8).18

11.1.3.4 Examples of the ASSOCIATE construct19

NOTE
The following example illustrates an association with an expression.

ASSOCIATE (Z => EXP (-(X**2+Y**2)) * COS (THETA))
PRINT *, A+Z, A-Z

END ASSOCIATE

The following example illustrates an association with a derived-type variable.
ASSOCIATE (XC => AX%B(I,J)%C)

XC%DV = XC%DV + PRODUCT (XC%EV(1:N))
END ASSOCIATE

The following example illustrates association with an array section.
ASSOCIATE (ARRAY => AX%B(I,:)%C)

ARRAY(N)%EV = ARRAY(N-1)%EV
END ASSOCIATE

The following example illustrates multiple associations.
ASSOCIATE (W => RESULT(I,J)%W, ZX => AX%B(I,J)%D, ZY => AY%B(I,J)%D)

W = ZX*X + ZY*Y
END ASSOCIATE

11.1.4 BLOCK construct20

1 The BLOCK construct is an executable construct that can contain declarations.21

R1107 block-construct is block-stmt22
[block-specification-part]23
block24
end-block-stmt25

R1108 block-stmt is [block-construct-name :] BLOCK26

184 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R1109 block-specification-part is [use-stmt] ...1
[import-stmt] ...2
[declaration-construct] ...3

R1110 end-block-stmt is END BLOCK [block-construct-name]4

C1107 (R1107) A block-specification-part shall not contain a COMMON, EQUIVALENCE, INTENT, NAMELIST,5
OPTIONAL, statement function, or VALUE statement.6

C1108 (R1107) A SAVE statement in a BLOCK construct shall contain a saved-entity-list that does not specify a7
common-block-name.8

C1109 The block of a block-construct shall not begin with a FORMAT statement or a DATA statement.9

C1110 (R1107) If the block-stmt of a block-construct specifies a block-construct-name, the corresponding end-10
block-stmt shall specify the same block-construct-name. If the block-stmt does not specify a block-11
construct-name, the corresponding end-block-stmt shall not specify a block-construct-name.12

2 Except for the ASYNCHRONOUS, IMPORT, and VOLATILE statements, specifications in a BLOCK construct13
declare construct entities whose scope is that of the BLOCK construct (19.4). The appearance of the name of an14
object that is not a construct entity in an ASYNCHRONOUS or VOLATILE statement in a BLOCK construct15
specifies that the object has the attribute within the construct even if it does not have the attribute outside the16
construct.17

3 Execution of a BLOCK construct causes evaluation of the specification expressions within its specification part18
in a processor-dependent order, followed by execution of its block.19

4 It is permissible to branch to an end-block-stmt only from within its BLOCK construct.20

NOTE
The following is an example of a BLOCK construct.

IF (swapxy) THEN
BLOCK

REAL (KIND (x)) tmp
tmp = x
x = y
y = tmp

END BLOCK
END IF

Actions on a variable local to a BLOCK construct do not affect any variable of the same name outside the
construct. For example,

F = 254E-2
BLOCK

REAL F
F = 39.37

END BLOCK
! F is still equal to 254E-2.

A SAVE statement outside a BLOCK construct does not affect variables local to the BLOCK construct, because
a SAVE statement affects variables in its scoping unit rather than in its inclusive scope. For example,

SUBROUTINE S
. . .
SAVE
. . .
BLOCK

REAL X ! Not saved.

J3/23-007 185

J3/23-007 WD 1539-1 2023-02-17

NOTE (cont.)
REAL,SAVE :: Y(100) ! SAVE attribute is allowed.
Z = 3 ! Implicitly declared in S, thus saved.
. . .

END BLOCK
. . .

END SUBROUTINE

11.1.5 CHANGE TEAM construct1

11.1.5.1 Purpose and form of the CHANGE TEAM construct2

1 The CHANGE TEAM construct changes the current team. Named construct entities (19.4) can be associated3
(19.5.1.6) with coarrays in the containing scoping unit, in the same way as for the ASSOCIATE construct.4

R1111 change-team-construct is change-team-stmt5
block6
end-change-team-stmt7

R1112 change-team-stmt is [team-construct-name :] CHANGE TEAM (team-value8
[, coarray-association-list] [, sync-stat-list])9

R1113 coarray-association is codimension-decl => selector10

R1114 end-change-team-stmt is END TEAM [([sync-stat-list])] [team-construct-name]11

R1115 team-value is scalar-expr12

C1111 A branch (11.2) within a CHANGE TEAM construct shall not have a branch target that is outside the13
construct.14

C1112 A RETURN statement shall not appear within a CHANGE TEAM construct.15

C1113 If the change-team-stmt of a change-team-construct specifies a team-construct-name, the corresponding16
end-change-team-stmt shall specify the same team-construct-name. If the change-team-stmt of a change-17
team-construct does not specify a team-construct-name, the corresponding end-change-team-stmt shall18
not specify a team-construct-name.19

C1114 In a change-team-stmt, a coarray-name in a codimension-decl shall not be the same as a selector , or20
another coarray-name, in that statement.21

C1115 A team-value shall be of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.22

C1116 No selector shall appear more than once in a given change-team-stmt.23

C1117 A selector in a coarray-association shall be a named coarray.24

2 Each coarray-name in a codimension-decl in the CHANGE TEAM statement is an associate name which is25
associated with the corresponding selector. Each associating entity assumes the type and type parameters of26
its selector; it is polymorphic if and only if the selector is polymorphic. The other attributes of the associating27
entities are described in 11.1.3.3.28

11.1.5.2 Execution of a CHANGE TEAM construct29

1 The team-values on the active images that execute the CHANGE TEAM statement shall be those of team variables30
defined by corresponding executions of the same FORM TEAM statement (11.7.9). When the CHANGE TEAM31
statement is executed, the current team shall be the team that was current when those team variables were defined.32
The current team for the statements of the CHANGE TEAM block is the team identified by the team-value. If33

186 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

team-value is a variable, the variable shall not be defined or become undefined during execution of the CHANGE1
TEAM construct. A CHANGE TEAM construct completes execution by executing its END TEAM statement,2
which restores the current team to the original team that was current for the CHANGE TEAM statement.3

2 Execution of a CHANGE TEAM construct causes evaluation of the expressions within each codimension-decl in4
the CHANGE TEAM statement, followed by execution of its block. Each selector shall be an established coarray5
when the CHANGE TEAM statement begins execution.6

3 It is permissible to branch to an end-change-team-stmt only from within its CHANGE TEAM construct.7

4 An allocatable coarray that was allocated immediately before executing a CHANGE TEAM statement shall not8
be deallocated during execution of the construct. An allocatable coarray that was unallocated immediately before9
executing a CHANGE TEAM statement, and which is allocated immediately before executing the corresponding10
END TEAM statement, is deallocated by the execution of the END TEAM statement.11

5 Successful execution of a CHANGE TEAM statement performs an implicit synchronization of all images of the12
new team that is identified by team-value. All active images of the new team shall execute the same CHANGE13
TEAM statement. On each image of the new team, execution of the segment following the CHANGE TEAM14
statement is delayed until all other images of that team have executed the same statement the same number of15
times in the original team.16

6 If the new team contains a failed image and no other error condition occurs, there is an implicit synchronization17
of all active images of the new team. On each active image of the new team, execution of the segment following18
the CHANGE TEAM statement is delayed until all other active images of that team have executed the same19
statement the same number of times in the original team.20

7 If no error condition other than the new team containing a failed image occurs, the segments that executed before21
the CHANGE TEAM statement on an active image of the new team precede the segments that execute after the22
CHANGE TEAM statement on another active image of that team.23

8 When a CHANGE TEAM construct completes execution, there is an implicit synchronization of all active images24
in the new team. On each active image of the new team, execution of the segment following the END TEAM25
statement is delayed until all other active images of this team have executed the same construct the same number26
of times in this team. The segments that executed before the END TEAM statement on an active image of the27
new team precede the segments that execute after the END TEAM statement on another active image of that28
team.29

NOTE 1
Deallocation of an allocatable coarray that was not allocated at the beginning of a CHANGE TEAM construct,
but is allocated at the end of execution of the construct, occurs even for allocatable coarrays with the SAVE
attribute.

NOTE 2
Execution of a CHANGE TEAM statement includes a synchronization of the executing image with the other
images that will be in the same team after execution of the CHANGE TEAM statement. Synchronization of
these images occurs again when the corresponding END TEAM statement is executed.

If it is desired to synchronize all of the images in the team that was current when the CHANGE TEAM
statement was executed, a SYNC TEAM statement that specifies the parent team can be executed immediately
after the CHANGE TEAM statement. If similar semantics are desired following the END TEAM statement, a
SYNC ALL statement could immediately follow the END TEAM statement.

9 18730

NOTE 3
A coarray that is established when a CHANGE TEAM statement is executed retains its corank and cobounds
inside the block. If it is desired to perform remote accesses based on corank or cobounds different from those

J3/23-007 187

J3/23-007 WD 1539-1 2023-02-17

NOTE 3 (cont.)
of the original coarray, an associating coarray can be used. An example of this is in C.7.7.

11.1.6 CRITICAL construct1

1 A CRITICAL construct limits execution of a block to one image at a time.2

R1116 critical-construct is critical-stmt3
block4
end-critical-stmt5

R1117 critical-stmt is [critical-construct-name :] CRITICAL [([sync-stat-list])]6

R1118 end-critical-stmt is END CRITICAL [critical-construct-name]7

C1118 (R1116) If the critical-stmt of a critical-construct specifies a critical-construct-name, the corresponding8
end-critical-stmt shall specify the same critical-construct-name. If the critical-stmt of a critical-construct9
does not specify a critical-construct-name, the corresponding end-critical-stmt shall not specify a critical-10
construct-name.11

C1119 (R1116) The block of a critical-construct shall not contain a RETURN statement or an image control12
statement.13

C1120 A branch (11.2) within a CRITICAL construct shall not have a branch target that is outside the construct.14

2 Execution of the CRITICAL construct is completed when execution of its block is completed, or the executing15
image fails (5.3.6). A procedure invoked, directly or indirectly, from a CRITICAL construct shall not execute an16
image control statement.17

3 The processor shall ensure that once an image has commenced executing block, no other image shall commence18
executing block until this image has completed execution of the construct. The image shall not execute an image19
control statement during the execution of block. The sequence of executed statements is therefore a segment20
(11.7.2). If image M completes execution of the construct without failing and image T is the next to execute the21
construct, the segment on image M precedes the segment on image T. Otherwise, if image M completes execution22
of the construct by failing, and image T is the next to execute the construct, the previous segment on image M23
precedes the segment on image T.24

4 The effect of a STAT= or ERRMSG= specifier in a CRITICAL statement is specified in 11.7.11.25

5 It is permissible to branch to an end-critical-stmt only from within its CRITICAL construct.26

NOTE 1
If more than one image executes the block of a CRITICAL construct without failing, its execution by one image
always either precedes or succeeds its execution by another nonfailed image. Typically no other statement
ordering is needed. Consider the following example:

CRITICAL
GLOBAL_COUNTER[1] = GLOBAL_COUNTER[1] + 1

END CRITICAL

The definition of GLOBAL_COUNTER [1] by a particular image will always precede the reference to the same
variable by the next image to execute the block.

NOTE 2
The following example permits a large number of jobs to be shared among the images:

INTEGER :: NUM_JOBS[*], JOB
. . .

188 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2 (cont.)
IF (THIS_IMAGE() == 1) READ(*,*) NUM_JOBS
SYNC ALL
DO

CRITICAL
JOB = NUM_JOBS[1]
NUM_JOBS[1] = JOB - 1

END CRITICAL
IF (JOB > 0) THEN

. . . ! Work on JOB
ELSE

EXIT
END IF

END DO
SYNC ALL

11.1.7 DO construct1

11.1.7.1 Purpose and form of the DO construct2

1 The DO construct specifies the repeated execution of a sequence of executable constructs. Such a repeated3
sequence is called a loop.4

2 The number of iterations of a loop can be determined at the beginning of execution of the DO construct, or can5
be left indefinite (“DO forever” or DO WHILE). The execution order of the iterations can be left indeterminate6
(DO CONCURRENT); except in this case, the loop can be terminated immediately (11.1.7.4.5). An iteration of7
the loop can be curtailed by executing a CYCLE statement (11.1.7.4.4).8

3 There are three phases in the execution of a DO construct: initiation of the loop, execution of each iteration of9
the loop, and termination of the loop.10

4 The scope and attributes of an index-name in a concurrent-header (DO CONCURRENT) are described in 19.4.11

11.1.7.2 Form of the DO construct12

R1119 do-construct is do-stmt13
block14
end-do15

R1120 do-stmt is nonlabel-do-stmt16
or label-do-stmt17

R1121 label-do-stmt is [do-construct-name :] DO label [loop-control]18

R1122 nonlabel-do-stmt is [do-construct-name :] DO [loop-control]19

R1123 loop-control is [,] do-variable = scalar-int-expr , scalar-int-expr20
[, scalar-int-expr]21

or [,] WHILE (scalar-logical-expr)22
or [,] CONCURRENT concurrent-header concurrent-locality23

R1124 do-variable is scalar-int-variable-name24

C1121 (R1124) The do-variable shall be a variable of type integer.25

R1125 concurrent-header is ([integer-type-spec ::] concurrent-control-list [, scalar-mask-expr])26

J3/23-007 189

J3/23-007 WD 1539-1 2023-02-17

R1126 concurrent-control is index-name = concurrent-limit : concurrent-limit [: concurrent-step]1

R1127 concurrent-limit is scalar-int-expr2

R1128 concurrent-step is scalar-int-expr3

R1129 concurrent-locality is [locality-spec]...4

R1130 locality-spec is LOCAL (variable-name-list)5
or LOCAL_INIT (variable-name-list)6
or REDUCE (reduce-operation : variable-name-list)7
or SHARED (variable-name-list)8
or DEFAULT (NONE)9

R1131 reduce-operation is binary-reduce-op10
or function-reduction-name11

R1132 binary-reduce-op is +12
or *13
or .AND.14
or .OR.15
or .EQV.16
or .NEQV.17

C1122 The function-reduction-name shall be the name of the standard intrinsic function IAND, IEOR, IOR,18
MAX, or MIN.19

C1123 (R1125) Any procedure referenced in the scalar-mask-expr , including one referenced by a defined opera-20
tion, shall be a pure procedure (15.7).21

C1124 (R1126) The index-name shall be a named scalar variable of type integer.22

C1125 (R1126) A concurrent-limit or concurrent-step in a concurrent-control shall not contain a reference to23
any index-name in the concurrent-control-list in which it appears.24

C1126 A variable-name in a locality-spec shall be the name of a variable in the innermost executable construct25
or scoping unit that includes the DO CONCURRENT statement.26

C1127 A variable-name in a locality-spec shall not be the same as an index-name in the concurrent-header of27
the same DO CONCURRENT statement.28

C1128 The name of a variable shall not appear in more than one variable-name-list, or more than once in a29
variable-name-list, in a given concurrent-locality.30

C1129 The DEFAULT (NONE) locality-spec shall not appear more than once in a given concurrent-locality.31

C1130 A variable-name that appears in a LOCAL or LOCAL_INIT locality-spec shall not have the ALLOC-32
ATABLE, INTENT (IN), or OPTIONAL attribute, shall not be of finalizable type, shall not have an33
allocatable ultimate component, shall not be a nonpointer polymorphic dummy argument, and shall not34
be a coarray or an assumed-size array. A variable-name that is not permitted to appear in a variable35
definition context shall not appear in a LOCAL or LOCAL_INIT locality-spec.36

C1131 A variable-name that appears in a REDUCE locality-spec shall not have the ASYNCHRONOUS, INTENT37
(IN), OPTIONAL, or VOLATILE attribute, shall not be coindexed, and shall not be an assumed-size38
array. A variable-name that is not permitted to appear in a variable definition context shall not appear39
in a REDUCE locality-spec.40

C1132 A variable-name that appears in a REDUCE locality-spec shall be of intrinsic type suitable for the intrinsic41
operation or function specified by its reduce-operation.42

190 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C1133 A variable that is referenced by the scalar-mask-expr of a concurrent-header or by any concurrent-limit1
or concurrent-step in that concurrent-header shall not appear in a LOCAL locality-spec in the same DO2
CONCURRENT statement.3

1 1904

C1134 If the locality-spec DEFAULT (NONE) appears in a DO CONCURRENT statement, a variable that is5
a local or construct entity of a scope containing the DO CONCURRENT construct, and that appears in6
the block of the construct, shall have its locality explicitly specified by that statement.7

R1133 end-do is end-do-stmt8
or continue-stmt9

R1134 end-do-stmt is END DO [do-construct-name]10

C1135 (R1119) If the do-stmt of a do-construct specifies a do-construct-name, the corresponding end-do shall be11
an end-do-stmt specifying the same do-construct-name. If the do-stmt of a do-construct does not specify12
a do-construct-name, the corresponding end-do shall not specify a do-construct-name.13

C1136 (R1119) If the do-stmt is a nonlabel-do-stmt, the corresponding end-do shall be an end-do-stmt.14

C1137 (R1119) If the do-stmt is a label-do-stmt, the corresponding end-do shall be identified with the same label.15

2 It is permissible to branch to an end-do only from within its DO construct.16

11.1.7.3 Active and inactive DO constructs17

1 A DO construct is either active or inactive. Initially inactive, a DO construct becomes active only when its DO18
statement is executed.19

2 Once active, the DO construct becomes inactive only when it terminates (11.1.7.4.5).20

11.1.7.4 Execution of a DO construct21

11.1.7.4.1 Loop initiation22

1 When the DO statement is executed, the DO construct becomes active. If loop-control is23

[,] do-variable = scalar-int-expr1 , scalar-int-expr2 [, scalar-int-expr3]24

the following steps are performed in sequence.25

(1) The initial parameter m1, the terminal parameter m2, and the incrementation parameter m3 are26
of type integer with the same kind type parameter as the do-variable. Their values are established27
by evaluating scalar-int-expr1, scalar-int-expr2, and scalar-int-expr3, respectively, including, if ne-28
cessary, conversion to the kind type parameter of the do-variable according to the rules for numeric29
conversion (Table 10.9). If scalar-int-expr3 does not appear, m3 has the value 1. The value of m330
shall not be zero.31

(2) The DO variable becomes defined with the value of the initial parameter m1.32

(3) The iteration count is established and is the value of the expression (m2 − m1 + m3)/m3, unless that33
value is negative, in which case the iteration count is 0.34

NOTE
The iteration count is zero whenever:

m1 > m2 and m3 > 0, or
m1 < m2 and m3 < 0.

J3/23-007 191

J3/23-007 WD 1539-1 2023-02-17

2 If loop-control is omitted, no iteration count is calculated. The effect is as if a large positive iteration count,1
impossible to decrement to zero, were established. If loop-control is [,] WHILE (scalar-logical-expr), the effect2
is as if loop-control were omitted and the following statement inserted as the first statement of the block:3

IF (.NOT. (scalar- logical-expr)) EXIT4

3 For a DO CONCURRENT construct, the values of the index variables for the iterations of the construct are5
determined by the rules in 11.1.7.4.2.6

4 At the completion of the execution of the DO statement, the execution cycle begins.7

11.1.7.4.2 DO CONCURRENT loop control8

1 The concurrent-limit and concurrent-step expressions in the concurrent-control-list are evaluated. These ex-9
pressions may be evaluated in any order. The set of values that a particular index-name variable assumes is10
determined as follows.11

(1) The lower bound m1, the upper bound m2, and the step m3 are of type integer with the same kind12
type parameter as the index-name. Their values are established by evaluating the first concurrent-13
limit, the second concurrent-limit, and the concurrent-step expressions, respectively, including, if14
necessary, conversion to the kind type parameter of the index-name according to the rules for numeric15
conversion (Table 10.9). If concurrent-step does not appear, m3 has the value 1. The value m3 shall16
not be zero.17

(2) Let the value of max be (m2 − m1 + m3)/m3. If max≤ 0 for some index-name, the execution of the18
construct is complete. Otherwise, the set of values for the index-name is19

m1 + (k − 1) × m3 where k = 1, 2, . . . , max.20

2 The set of combinations of index-name values is the Cartesian product of the sets defined by each triplet specific-21
ation. An index-name becomes defined when this set is evaluated.22

3 The scalar-mask-expr , if any, is evaluated for each combination of index-name values. If there is no scalar-23
mask-expr , it is as if it appeared with the value true. The index-name variables may be primaries in the24
scalar-mask-expr .25

4 The set of active combinations of index-name values is the subset of all possible combinations for which the26
scalar-mask-expr has the value true.27

NOTE
The index-name variables can appear in the mask, for example

DO CONCURRENT (I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)
. . .

11.1.7.4.3 The execution cycle28

1 The execution cycle of a DO construct that is not a DO CONCURRENT construct consists of the following steps29
performed in sequence repeatedly until termination.30

(1) The iteration count, if any, is tested. If it is zero, the loop terminates and the DO construct becomes31
inactive. If loop-control is [,] WHILE (scalar-logical-expr), the scalar-logical-expr is evaluated; if32
the value of this expression is false, the loop terminates and the DO construct becomes inactive.33

(2) The block of the loop is executed.34

(3) The iteration count, if any, is decremented by one. The DO variable, if any, is incremented by the35
value of the incrementation parameter m3.36

2 Except for the incrementation of the DO variable that occurs in step (3), the DO variable shall neither be redefined37
nor become undefined while the DO construct is active.38

192 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3 The block of a DO CONCURRENT construct is executed for every active combination of the index-name values.1
Each execution of the block is an iteration. The executions may occur in any order.2

11.1.7.4.4 CYCLE statement3

1 Execution of a loop iteration can be curtailed by executing a CYCLE statement that belongs to the construct.4

R1135 cycle-stmt is CYCLE [do-construct-name]5

C1138 If a do-construct-name appears on a CYCLE statement, the CYCLE statement shall be within that6
do-construct; otherwise, it shall be within at least one do-construct.7

C1139 A cycle-stmt shall not appear within a CHANGE TEAM, CRITICAL, or DO CONCURRENT construct8
if it belongs to an outer construct.9

2 A CYCLE statement belongs to a particular DO construct. If the CYCLE statement contains a DO construct10
name, it belongs to that DO construct; otherwise, it belongs to the innermost DO construct in which it appears.11

3 Execution of a CYCLE statement that belongs to a DO construct that is not a DO CONCURRENT construct12
causes immediate progression to step (3) of the execution cycle of the DO construct to which it belongs.13

4 Execution of a CYCLE statement that belongs to a DO CONCURRENT construct completes execution of that14
iteration of the construct.15

5 In a DO construct, a transfer of control to the end-do has the same effect as execution of a CYCLE statement16
belonging to that construct.17

11.1.7.4.5 Loop termination18

1 For a DO construct that is not a DO CONCURRENT construct, the loop terminates, and the DO construct19
becomes inactive, when any of the following occurs.20

• The iteration count is determined to be zero or the scalar-logical-expr is false, when tested during step (1)21
of the above execution cycle.22

• An EXIT statement that belongs to the DO construct is executed.23

• An EXIT or CYCLE statement that belongs to an outer construct and is within the DO construct is24
executed.25

• A branch occurs within the DO construct and the branch target statement is outside the construct.26

• A RETURN statement within the DO construct is executed.27

2 For a DO CONCURRENT construct, the loop terminates, and the DO construct becomes inactive when all of28
the iterations have completed execution.29

3 When a DO construct becomes inactive, the DO variable, if any, of the DO construct retains its last defined30
value.31

11.1.7.5 Additional semantics for DO CONCURRENT constructs32

C1140 A RETURN statement shall not appear within a DO CONCURRENT construct.33

C1141 An image control statement shall not appear within a DO CONCURRENT construct.34

C1142 A branch (11.2) within a DO CONCURRENT construct shall not have a branch target that is outside35
the construct.36

C1143 A reference to an impure procedure shall not appear within a DO CONCURRENT construct.37

C1144 A statement that might result in the deallocation of a polymorphic entity shall not appear within a DO38
CONCURRENT construct.39

J3/23-007 193

J3/23-007 WD 1539-1 2023-02-17

C1145 A reference to the procedure IEEE_GET_FLAG, IEEE_GET_HALTING_MODE, IEEE_GET_-1
STATUS, IEEE_SET_HALTING_MODE, IEEE_SET_MODES, or IEEE_SET_STATUS from the2
intrinsic module IEEE_EXCEPTIONS, shall not appear within a DO CONCURRENT construct.3

C1146 A reference to the procedure IEEE_SET_ROUNDING_MODE or IEEE_SET_UNDERFLOW_MODE4
from the intrinsic module IEEE_ARITHMETIC shall not appear within a DO CONCURRENT con-5
struct.6

1 The locality of a variable that appears in a DO CONCURRENT construct is LOCAL, LOCAL_INIT, REDUCE,7
SHARED, or unspecified. A construct or statement entity of a construct or statement within the DO CONCUR-8
RENT construct has SHARED locality if it has the SAVE attribute. If it does not have the SAVE attribute, it9
is a different entity in each iteration, similar to LOCAL locality.10

2 A variable that has LOCAL or LOCAL_INIT locality is a construct entity with the same type, type parameters,11
and rank as the variable with the same name in the innermost executable construct or scoping unit that includes12
the DO CONCURRENT construct, and the outside variable is inaccessible by that name within the construct. The13
construct entity has the ASYNCHRONOUS, CONTIGUOUS, POINTER, TARGET, or VOLATILE attribute if14
and only if the outside variable has that attribute; it does not have the BIND, INTENT, PROTECTED, SAVE,15
or VALUE attribute, even if the outside variable has that attribute. If it is not a pointer, it has the same bounds16
as the outside variable. At the beginning of execution of each iteration,17

• if a variable with LOCAL locality is a pointer it has undefined pointer association status, and otherwise it18
is undefined except for any subobjects that are default-initialized;19

• a variable with LOCAL_INIT locality has the pointer association status and definition status of the out-20
side variable with that name; the outside variable shall not be an undefined pointer or a nonallocatable21
nonpointer variable that is undefined.22

If a variable with LOCAL or LOCAL_INIT locality becomes an affector of a pending input/output operation,23
the operation shall have completed before the end of the iteration. If a variable with LOCAL or LOCAL_INIT24
locality has the TARGET attribute, a pointer associated with it during an iteration becomes undefined when25
execution of that iteration completes.26

3 A variable that has REDUCE locality is a construct entity with the same type, type parameters, rank, and bounds27
as the variable with the same name in the innermost executable construct or scoping unit that includes the DO28
CONCURRENT construct (the outside variable); the outside variable is inaccessible by that name within the29
construct. The outside variable shall not be an unallocated allocatable variable or a pointer that is not associated.30
The construct entity has the CONTIGUOUS attribute if and only if the outside variable has that attribute; it31
does not have the ALLOCATABLE, BIND, INTENT, POINTER, PROTECTED, SAVE, TARGET, or VALUE32
attribute, even if the outside variable has that attribute. Before execution of the iterations begins, the construct33
entity is assigned an initial value corresponding to its reduce-operation as specified in Table 11.1.34

Table 11.1: Initial values for reduction operations
Operation Initial value

+ 0
* 1

.AND. .TRUE.
.OR. .FALSE.

.EQV. .TRUE.
.NEQV. .FALSE.
IAND All bits set
IEOR 0
IOR 0
MAX Least representable value of the type and kind
MIN Largest representable value of the type and kind

194 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
A processor can implement a DO CONCURRENT construct in a manner such that a variable with REDUCE
locality might not have the initial value from Table 11.1 at the start of every iteration.

4 A variable that has REDUCE locality shall only appear within the block of a DO CONCURRENT construct in1
the designator of a variable, as the object-name, or as the leftmost part-name of an array-element or array-section,2
in an intrinsic assignment statement with the following forms:3

variable = variable binary-reduce-op expr
variable = expr binary-reduce-op variable
variable = function-reduction-name ([expr ,]... variable [, expr]...)

4

where each occurrence of variable has the same form.5

5 If a variable has REDUCE locality, on termination of the DO CONCURRENT construct the outside variable6
is updated by combining it with the values the construct entity had at completion of each iteration, using the7
reduce-operation. The processor may combine the values in any order.8

6 If a variable has SHARED locality, appearances of the variable within the DO CONCURRENT construct refer9
to the variable in the innermost executable construct or scoping unit that includes the DO CONCURRENT10
construct. If it is defined or becomes undefined during any iteration, it shall not be referenced, defined, or11
become undefined during any other iteration. If it is allocated, deallocated, nullified, or pointer-assigned during12
an iteration it shall not have its allocation or association status, dynamic type, array bounds, shape, or a deferred13
type parameter value inquired about in any other iteration. A noncontiguous array with SHARED locality shall14
not be supplied as an actual argument corresponding to a contiguous INTENT (INOUT) dummy argument.15

7 If a variable has unspecified locality,16

• if it is referenced in an iteration it shall either be previously defined during that iteration, or shall not be17
defined or become undefined during any other iteration; if it is defined or becomes undefined by more than18
one iteration it becomes undefined when the loop terminates;19

• if it is noncontiguous and is supplied as an actual argument corresponding to a contiguous INTENT (IN-20
OUT) dummy argument in an iteration, it shall either be previously defined in that iteration or shall not21
be defined in any other iteration;22

• if it is a pointer and is used in an iteration other than as the pointer in pointer assignment, allocation,23
or nullification, it shall either be previously pointer associated during that iteration or shall not have its24
pointer association changed during any iteration;25

• if it is a pointer whose pointer association is changed in more than one iteration, it has an association status26
of undefined when the construct terminates;27

• if it is allocatable and is allocated in more than one iteration, it shall have an allocation status of unallocated28
at the end of every iteration;29

• if it is allocatable and is referenced, defined, deallocated, or has its allocation status, dynamic type, or a30
deferred type parameter value inquired about, in any iteration, it shall either be previously allocated in31
that iteration or shall not be allocated or deallocated in any other iteration.32

8 A DO CONCURRENT construct shall not contain an input/output statement that has an ADVANCE= specifier.33

9 If data are written to a file record or position in one iteration, that record or position in that file shall not be34
read from or written to in a different iteration. If records are written to a file connected for sequential access by35
more than one iteration, the ordering of records written by different iterations is processor dependent.36

NOTE 2
The restrictions on referencing variables defined in an iteration of a DO CONCURRENT construct apply to
any procedure invoked within the loop.

J3/23-007 195

J3/23-007 WD 1539-1 2023-02-17

NOTE 3
The restrictions on the statements in a DO CONCURRENT construct are designed to ensure there are no data
dependencies between iterations of the loop. This permits code optimizations that might otherwise be difficult
or impossible because they would depend on properties of the program not visible to the compiler.

11.1.7.6 Examples of DO constructs1

NOTE 1
The following program fragment computes a tensor product of two arrays:

DO I = 1, M
DO J = 1, N

C (I, J) = DOT_PRODUCT (A (I, J, :), B(:, I, J))
END DO

END DO

NOTE 2
The following program fragment contains a DO construct that uses the WHILE form of loop-control. The
loop will continue to execute until an end-of-file or input/output error is encountered, at which point the DO
statement terminates the loop. When a negative value of X is read, the program skips immediately to the next
READ statement, bypassing most of the block of the loop.

READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X
DO WHILE (IOS == 0)

IF (X >= 0.) THEN
CALL SUBA (X)
CALL SUBB (X)
. . .
CALL SUBZ (X)

ENDIF
READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X

END DO

NOTE 3
The following example behaves exactly the same as the one in NOTE 2. However, the READ statement has
been moved to the interior of the loop, so that only one READ statement is needed. Also, a CYCLE statement
has been used to avoid an extra level of IF nesting.

DO ! A "DO WHILE + 1/2" loop
READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X
IF (IOS /= 0) EXIT
IF (X < 0.) CYCLE
CALL SUBA (X)
CALL SUBB (X)
. . .
CALL SUBZ (X)

END DO

NOTE 4
The following example illustrates a case in which the user knows that there are no repeated values in the index
array IND. The DO CONCURRENT construct makes it easier for the processor to generate vector gather/scatter
code, unroll the loop, or parallelize the code for this loop, potentially improving performance.

INTEGER :: A(N),IND(N)
. . .

196 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 4 (cont.)
DO CONCURRENT (I=1:M)

A(IND(I)) = I
END DO

NOTE 5
The following code demonstrates the use of the LOCAL clause so that the X inside the DO CONCURRENT
construct is a temporary variable, and will not affect the X outside the construct.

X = 1.0
DO CONCURRENT (I=1:10) LOCAL (X)

IF (A (I) > 0) THEN
X = SQRT (A (I))
A (I) = A (I) - X**2

END IF
B (I) = B (I) - A (I)

END DO
PRINT *, X ! Always prints 1.0.

NOTE 6
Additional examples of DO constructs are in C.7.3.

11.1.8 IF construct and statement1

11.1.8.1 Purpose and form of the IF construct2

1 The IF construct selects for execution at most one of its constituent blocks. The selection is based on a sequence3
of logical expressions.4

R1136 if-construct is if-then-stmt5
block6

[else-if-stmt7
block] ...8

[else-stmt9
block]10

end-if-stmt11

R1137 if-then-stmt is [if-construct-name :] IF (scalar-logical-expr) THEN12

R1138 else-if-stmt is ELSE IF (scalar-logical-expr) THEN [if-construct-name]13

R1139 else-stmt is ELSE [if-construct-name]14

R1140 end-if-stmt is END IF [if-construct-name]15

C1147 (R1136) If the if-then-stmt of an if-construct specifies an if-construct-name, the corresponding end-if-16
stmt shall specify the same if-construct-name. If the if-then-stmt of an if-construct does not specify an17
if-construct-name, the corresponding end-if-stmt shall not specify an if-construct-name. If an else-if-18
stmt or else-stmt specifies an if-construct-name, the corresponding if-then-stmt shall specify the same19
if-construct-name.20

11.1.8.2 Execution of an IF construct21

1 At most one of the blocks in the IF construct is executed. If there is an ELSE statement in the construct,22
exactly one of the blocks in the construct is executed. The scalar logical expressions are evaluated in the order23

J3/23-007 197

J3/23-007 WD 1539-1 2023-02-17

of their appearance in the construct until a true value is found or an ELSE statement or END IF statement is1
encountered. If a true value or an ELSE statement is found, the block immediately following is executed and this2
completes the execution of the construct. The scalar logical expressions in any remaining ELSE IF statements of3
the IF construct are not evaluated. If none of the evaluated expressions is true and there is no ELSE statement,4
the execution of the construct is completed without the execution of any block within the construct.5

2 It is permissible to branch to an END IF statement only from within its IF construct. Execution of an END IF6
statement has no effect.7

11.1.8.3 Examples of IF constructs8

NOTE

IF (CVAR == ’RESET’) THEN
I = 0; J = 0; K = 0

END IF
PROOF_DONE: IF (PROP) THEN

WRITE (3, ’(’’QED’’)’)
STOP

ELSE
PROP = NEXTPROP

END IF PROOF_DONE
IF (A > 0) THEN

B = C/A
IF (B > 0) THEN

D = 1.0
END IF

ELSE IF (C > 0) THEN
B = A/C
D = -1.0

ELSE
B = ABS (MAX (A, C))
D = 0

END IF

11.1.8.4 IF statement9

1 The IF statement controls the execution of a single action statement based on a single logical expression.10

R1141 if-stmt is IF (scalar-logical-expr) action-stmt11

C1148 (R1141) The action-stmt in the if-stmt shall not be an if-stmt.12

2 Execution of an IF statement causes evaluation of the scalar logical expression. If the value of the expression is13
true, the action statement is executed. If the value is false, the action statement is not executed.14

3 The execution of a function reference in the scalar logical expression may affect entities in the action statement.15

NOTE
An example of an IF statement is:

IF (A > 0.0) A = LOG (A)

198 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

11.1.9 SELECT CASE construct1

11.1.9.1 Purpose and form of the SELECT CASE construct2

1 The SELECT CASE construct selects for execution at most one of its constituent blocks. The selection is based3
on the value of an expression.4

R1142 case-construct is select-case-stmt5
[case-stmt6

block] ...7
end-select-stmt8

R1143 select-case-stmt is [case-construct-name :] SELECT CASE (case-expr)9

R1144 case-stmt is CASE case-selector [case-construct-name]10

R1145 end-select-stmt is END SELECT [case-construct-name]11

C1149 (R1142) If the select-case-stmt of a case-construct specifies a case-construct-name, the corresponding end-12
select-stmt shall specify the same case-construct-name. If the select-case-stmt of a case-construct does13
not specify a case-construct-name, the corresponding end-select-stmt shall not specify a case-construct-14
name. If a case-stmt specifies a case-construct-name, the corresponding select-case-stmt shall specify the15
same case-construct-name.16

R1146 case-expr is scalar-expr17

C1150 case-expr shall be of type character, integer, or logical, or of enum or enumeration type.18

R1147 case-selector is (case-value-range-list)19
or DEFAULT20

C1151 (R1142) No more than one of the selectors of one of the CASE statements shall be DEFAULT.21

R1148 case-value-range is case-value22
or case-value :23
or : case-value24
or case-value : case-value25

R1149 case-value is scalar-constant-expr26

C1152 (R1142) For a given case-construct, each case-value shall be of the same type as case-expr , or in type27
conformance as specified in Table 10.8 if case-expr is of an enum type. For character type, the kind type28
parameters shall be the same; character length differences are allowed.29

C1153 (R1142) A case-value-range using a colon shall not be used if case-expr is of type logical.30

C1154 (R1142) For a given case-construct, there shall be no possible value of the case-expr that matches more31
than one case-value-range.32

11.1.9.2 Execution of a SELECT CASE construct33

1 The execution of the SELECT CASE statement causes the case expression to be evaluated. For a case value34
range list, a match occurs if the case expression value matches any of the case value ranges in the list. For a case35
expression with a value of c, a match is determined as follows.36

(1) If the case value range contains a single value v without a colon, a match occurs for type logical if37
the expression c .EQV. v is true, and a match occurs for other types if the expression c == v is true.38

(2) If the case value range is of the form low : high, a match occurs if the expression low <= c .AND.39
c <= high is true.40

(3) If the case value range is of the form low :, a match occurs if the expression low <= c is true.41

J3/23-007 199

J3/23-007 WD 1539-1 2023-02-17

(4) If the case value range is of the form : high, a match occurs if the expression c <= high is true.1

(5) If no other selector matches and a DEFAULT selector appears, it matches the case index.2

(6) If no other selector matches and the DEFAULT selector does not appear, there is no match.3

2 The block following the CASE statement containing the matching selector, if any, is executed. This completes4
execution of the construct.5

3 It is permissible to branch to an end-select-stmt only from within its SELECT CASE construct.6

11.1.9.3 Examples of SELECT CASE constructs7

NOTE 1
An integer signum function:

INTEGER FUNCTION SIGNUM (N)
SELECT CASE (N)
CASE (:-1)

SIGNUM = -1
CASE (0)

SIGNUM = 0
CASE (1:)

SIGNUM = 1
END SELECT
END

NOTE 2
A code fragment to check for balanced parentheses:

CHARACTER (80) :: LINE
. . .
LEVEL = 0
SCAN_LINE: DO I = 1, 80

CHECK_PARENS: SELECT CASE (LINE (I:I))
CASE (’(’)

LEVEL = LEVEL + 1
CASE (’)’)

LEVEL = LEVEL - 1
IF (LEVEL < 0) THEN

PRINT *, ’UNEXPECTED RIGHT PARENTHESIS’
EXIT SCAN_LINE

END IF
CASE DEFAULT

! Ignore all other characters
END SELECT CHECK_PARENS

END DO SCAN_LINE
IF (LEVEL > 0) THEN

PRINT *, ’MISSING RIGHT PARENTHESIS’
END IF

NOTE 3
The following three fragments are equivalent:

IF (SILLY == 1) THEN ! Fragment one
CALL THIS

ELSE

200 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 3 (cont.)
CALL THAT

END IF

SELECT CASE (SILLY == 1) ! Fragment two
CASE (.TRUE.)

CALL THIS
CASE (.FALSE.)

CALL THAT
END SELECT

SELECT CASE (SILLY) ! Fragment three
CASE DEFAULT

CALL THAT
CASE (1)

CALL THIS
END SELECT

NOTE 4
A code fragment showing several selections of one block:

SELECT CASE (N)
CASE (1, 3:5, 8) ! Selects 1, 3, 4, 5, 8

CALL SUB
CASE DEFAULT

CALL OTHER
END SELECT

11.1.10 SELECT RANK construct1

11.1.10.1 Purpose and form of the SELECT RANK construct2

1 The SELECT RANK construct selects for execution at most one of its constituent blocks. The selection is based3
on the rank of an assumed-rank variable. A name is associated with the variable (19.4, 19.5.1.6), in the same4
way as for the ASSOCIATE construct.5

R1150 select-rank-construct is select-rank-stmt6
[select-rank-case-stmt7
block]...8

end-select-rank-stmt9

R1151 select-rank-stmt is [select-construct-name :] SELECT RANK10
([associate-name =>] selector)11

C1155 The selector in a select-rank-stmt shall be the name of an assumed-rank array.12

R1152 select-rank-case-stmt is RANK (scalar-int-constant-expr) [select-construct-name]13
or RANK (*) [select-construct-name]14
or RANK DEFAULT [select-construct-name]15

C1156 A scalar-int-constant-expr in a select-rank-case-stmt shall be nonnegative.16

C1157 For a given select-rank-construct, the same rank value shall not be specified in more than one select-rank-17
case-stmt.18

C1158 For a given select-rank-construct, there shall be at most one RANK (*) select-rank-case-stmt and at19
most one RANK DEFAULT select-rank-case-stmt.20

J3/23-007 201

J3/23-007 WD 1539-1 2023-02-17

C1159 If select-construct-name appears on a select-rank-case-stmt the corresponding select-rank-stmt shall spe-1
cify the same select-construct-name.2

C1160 A SELECT RANK construct shall not have a select-rank-case-stmt that is RANK (*) if the selector3
has the ALLOCATABLE or POINTER attribute.4

R1153 end-select-rank-stmt is END SELECT [select-construct-name]5

C1161 If the select-rank-stmt of a select-rank-construct specifies a select-construct-name, the corresponding6
end-select-rank-stmt shall specify the same select-construct-name. If the select-rank-stmt of a select-7
rank-construct does not specify a select-construct-name, the corresponding end-select-rank-stmt shall not8
specify a select-construct-name.9

2 The associate name of a SELECT RANK construct is the associate-name if specified; otherwise it is the name10
that constitutes the selector.11

3 The scalar-int-constant-expr in a select-rank-case-stmt may have a value greater than the maximum possible rank12
of the selector; in this case, its block will never be executed.13

11.1.10.2 Execution of the SELECT RANK construct14

1 A SELECT RANK construct selects at most one block to be executed. During execution of that block, the15
associate name identifies an entity which is associated (19.5.1.6) with the selector. A RANK (*) statement16
matches the selector if the selector is argument associated with an assumed-size array. A RANK (scalar-int-17
constant-expr) statement matches the selector if the selector has that rank and is not argument associated with18
an assumed-size array. A RANK DEFAULT statement matches the selector if no other select-rank-case-stmt19
of the construct matches the selector. If a select-rank-case-stmt matches the selector, the block following that20
statement is executed; otherwise, control is transferred to the end-select-rank-stmt.21

2 It is permissible to branch to an end-select-rank-stmt only from within its SELECT RANK construct.22

11.1.10.3 Attributes of a SELECT RANK associate name23

1 The associating entity (19.5.5) assumes the declared type and type parameters of the selector. It is polymorphic24
if and only if the selector is polymorphic.25

2 Within the block following a RANK DEFAULT statement, the associating entity is assumed-rank and has exactly26
the same attributes as the selector. Within the block following a RANK (*) statement, the associating entity27
has rank 1 and is assumed-size, as if it were declared with DIMENSION(1:*). Within the block following a28
RANK (scalar-int-constant-expr) statement, the associating entity has the specified rank; the lower bound of29
each dimension is the result of the intrinsic function LBOUND (16.9.119) applied to the corresponding dimension30
of the selector, and the upper bound of each dimension is the result of the intrinsic function UBOUND (16.9.215)31
applied to the corresponding dimension of the selector.32

3 The associating entity has the ALLOCATABLE, POINTER, or TARGET attribute if the selector has that33
attribute. The other attributes of the associating entity are described in 11.1.3.3.34

11.1.10.4 Examples of the SELECT RANK construct35

NOTE 1
This example shows how to use a SELECT RANK construct to process scalars and rank-2 arrays; anything else
will be rejected as an error.

SUBROUTINE process(x)
REAL x(..)
!
SELECT RANK(x)
RANK (0)

202 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1 (cont.)
x = 0

RANK (2)
IF (SIZE(x,2)>=2) x(:,2) = 2

RANK DEFAULT
Print *, ’I did not expect rank’, RANK(x), ’shape’, SHAPE(x)
ERROR STOP ’process bad arg’

END SELECT

NOTE 2
The following example shows how to process assumed-size arrays, including how to use sequence association for
multi-dimensional processing of an assumed-size array.

SELECT RANK (y => x)
RANK (*)

IF (RANK(x)==2) THEN
! Special code for the rank two case.
CALL sequence_assoc_2(y, LBOUND(x,1), UBOUND(x,1), LBOUND(x,2))

ELSE
! We just do all the other ranks in array element order.
i = 1
DO

IF (y(i)==0) Exit
y(i) = -y(i)
i = i + 1

END DO
END IF

END SELECT
. . .

CONTAINS
. . .
SUBROUTINE sequence_assoc_2(a, lb1, ub1, lb2)

INTEGER, INTENT (IN) :: lb1, ub1, lb2
REAL a(lb1:ub1,lb2:*)
j = lb2

outer: DO
DO i=lb1,ub1

IF (a(i,j)==0) EXIT outer
a(i,j) = a(i,j)**2

END DO
j = j + 1
IF (ANY(a(:,j)==0)) EXIT
j = j + 1

END DO outer
END SUBROUTINE

11.1.11 SELECT TYPE construct1

11.1.11.1 Purpose and form of the SELECT TYPE construct2

1 The SELECT TYPE construct selects for execution at most one of its constituent blocks. The selection is based3
on the dynamic type of an expression. A name is associated with the expression or variable (19.4, 19.5.1.6), in4
the same way as for the ASSOCIATE construct.5

J3/23-007 203

J3/23-007 WD 1539-1 2023-02-17

R1154 select-type-construct is select-type-stmt1
[type-guard-stmt2

block] ...3
end-select-type-stmt4

R1155 select-type-stmt is [select-construct-name :] SELECT TYPE5
([associate-name =>] selector)6

C1162 (R1155) If selector is not a named variable, associate-name => shall appear.7

C1163 (R1155) If selector is not a variable or is a variable that has a vector subscript, neither associate-name8
nor any subobject thereof shall appear in a variable definition context (19.6.7) or pointer association9
context (19.6.8).10

C1164 (R1155) The selector in a select-type-stmt shall be polymorphic.11

R1156 type-guard-stmt is TYPE IS (type-spec) [select-construct-name]12
or CLASS IS (derived-type-spec) [select-construct-name]13
or CLASS DEFAULT [select-construct-name]14

C1165 (R1156) The type-spec or derived-type-spec shall specify that each length type parameter is assumed.15

C1166 (R1156) The type-spec or derived-type-spec shall not specify a derived type with the BIND attribute or16
the SEQUENCE attribute.17

C1167 (R1154) If selector is not unlimited polymorphic, each TYPE IS or CLASS IS type-guard-stmt shall18
specify an extension of the declared type of selector .19

C1168 (R1154) For a given select-type-construct, the same type and kind type parameter values shall not be20
specified in more than one TYPE IS type-guard-stmt and shall not be specified in more than one CLASS21
IS type-guard-stmt.22

C1169 (R1154) For a given select-type-construct, there shall be at most one CLASS DEFAULT type-guard-stmt.23

R1157 end-select-type-stmt is END SELECT [select-construct-name]24

C1170 (R1154) If the select-type-stmt of a select-type-construct specifies a select-construct-name, the correspond-25
ing end-select-type-stmt shall specify the same select-construct-name. If the select-type-stmt of a select-26
type-construct does not specify a select-construct-name, the corresponding end-select-type-stmt shall not27
specify a select-construct-name. If a type-guard-stmt specifies a select-construct-name, the corresponding28
select-type-stmt shall specify the same select-construct-name.29

2 The associate name of a SELECT TYPE construct is the associate-name if specified; otherwise it is the name30
that constitutes the selector .31

11.1.11.2 Execution of the SELECT TYPE construct32

1 Execution of a SELECT TYPE construct causes evaluation of every expression within a selector that is a variable33
designator, or evaluation of a selector that is not a variable designator.34

2 A SELECT TYPE construct selects at most one block to be executed. During execution of that block, the35
associate name identifies an entity which is associated (19.5.1.6) with the selector.36

3 A TYPE IS type guard statement matches the selector if the dynamic type and kind type parameter values of37
the selector are the same as those specified by the statement. A CLASS IS type guard statement matches the38
selector if the dynamic type of the selector is an extension of the type specified by the statement and the kind39
type parameter values specified by the statement are the same as the corresponding type parameter values of the40
dynamic type of the selector.41

204 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 The block to be executed is selected as follows.1

(1) If a TYPE IS type guard statement matches the selector, the block following that statement is2
executed.3

(2) Otherwise, if exactly one CLASS IS type guard statement matches the selector, the block following4
that statement is executed.5

(3) Otherwise, if several CLASS IS type guard statements match the selector, one of these statements6
will inevitably specify a type that is an extension of all the types specified in the others; the block7
following that statement is executed.8

(4) Otherwise, if there is a CLASS DEFAULT type guard statement, the block following that statement9
is executed.10

(5) Otherwise, no block is executed.11

NOTE 1
This algorithm does not examine the type guard statements in source text order when it looks for a match; it
selects the most particular type guard when there are several potential matches.

5 Within the block following a TYPE IS type guard statement, the associating entity (19.5.5) is not polymorphic12
(7.3.2.3), has the type named in the type guard statement, and has the type parameter values of the selector.13

6 Within the block following a CLASS IS type guard statement, the associating entity is polymorphic and has the14
declared type named in the type guard statement. The type parameter values of the associating entity are the15
corresponding type parameter values of the selector.16

7 Within the block following a CLASS DEFAULT type guard statement, the associating entity is polymorphic and17
has the same declared type as the selector. The type parameter values of the associating entity are those of the18
declared type of the selector.19

NOTE 2
If the declared type of the selector is T, specifying CLASS DEFAULT has the same effect as specifying CLASS
IS (T).

8 The other attributes of the associating entity are described in 11.1.3.3.20

9 It is permissible to branch to an end-select-type-stmt only from within its SELECT TYPE construct.21

11.1.11.3 Examples of the SELECT TYPE construct22

NOTE 1

TYPE POINT
REAL :: X, Y

END TYPE POINT
TYPE, EXTENDS(POINT) :: POINT_3D

REAL :: Z
END TYPE POINT_3D
TYPE, EXTENDS(POINT) :: COLOR_POINT

INTEGER :: COLOR
END TYPE COLOR_POINT

TYPE(POINT), TARGET :: P
TYPE(POINT_3D), TARGET :: P3
TYPE(COLOR_POINT), TARGET :: C
CLASS(POINT), POINTER :: P_OR_C
P_OR_C => C
SELECT TYPE (A => P_OR_C)

J3/23-007 205

J3/23-007 WD 1539-1 2023-02-17

NOTE 1 (cont.)
CLASS IS (POINT)

! "CLASS (POINT) :: A" implied here
PRINT *, A%X, A%Y ! This block gets executed

TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: A" implied here
PRINT *, A%X, A%Y, A%Z

END SELECT

NOTE 2
The following example illustrates the omission of associate-name. It uses the declarations from NOTE 1.

P_OR_C => P3
SELECT TYPE (P_OR_C)
CLASS IS (POINT)

! "CLASS (POINT) :: P_OR_C" implied here
PRINT *, P_OR_C%X, P_OR_C%Y

TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: P_OR_C" implied here
PRINT *, P_OR_C%X, P_OR_C%Y, P_OR_C%Z ! This block gets executed

END SELECT

11.1.12 EXIT statement1

1 The EXIT statement provides one way of terminating a loop, or completing execution of another construct.2

R1158 exit-stmt is EXIT [construct-name]3

C1171 If a construct-name appears on an EXIT statement, the EXIT statement shall be within that construct;4
otherwise, it shall be within at least one do-construct.5

2 An EXIT statement belongs to a particular construct. If a construct name appears, the EXIT statement belongs6
to that construct; otherwise, it belongs to the innermost DO construct in which it appears.7

C1172 An exit-stmt shall not appear within a DO CONCURRENT construct if it belongs to that construct or8
an outer construct.9

C1173 An exit-stmt shall not appear within a CHANGE TEAM or CRITICAL construct if it belongs to an10
outer construct.11

3 When an EXIT statement that belongs to a DO construct is executed, it terminates the loop (11.1.7.4.5) and12
any active loops contained within the terminated loop. When an EXIT statement that belongs to a non-DO13
construct is executed, it terminates any active loops contained within that construct, and completes execution14
of that construct. If the EXIT statement belongs to a CHANGE TEAM construct, the effect is the same as15
transferring control to the END TEAM statement; if that statement contains a STAT= or ERRMSG= specifier,16
the stat-variable or errmsg-variable becomes defined as specified for that statement.17

11.2 Branching18

11.2.1 Branch concepts19

1 Branching is used to alter the normal execution sequence. A branch causes a transfer of control from one statement20
to a labeled branch target statement in the same inclusive scope. Branching can be caused by a GO TO state-21
ment, a computed GO TO statement, a CALL statement that has an alt-return-spec, or an input/output statement that has22
an END=, EOR=, or ERR= specifier. Although procedure references and control constructs can cause transfer23

206 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

of control, they are not branches. A branch target statement is an action-stmt, associate-stmt, end-associate-1
stmt, if-then-stmt, end-if-stmt, select-case-stmt, end-select-stmt, select-rank-stmt, end-select-rank-stmt, select-2
type-stmt, end-select-type-stmt, do-stmt, end-do-stmt, block-stmt, end-block-stmt, critical-stmt, end-critical-stmt,3
forall-construct-stmt, forall-stmt, where-construct-stmt, end-function-stmt, end-mp-subprogram-stmt, end-program-4
stmt, or end-subroutine-stmt.5

11.2.2 GO TO statement6

R1159 goto-stmt is GO TO label7

C1174 (R1159) The label shall be the statement label of a branch target statement that appears in the same8
inclusive scope as the goto-stmt.9

1 Execution of a GO TO statement causes a branch to the branch target statement identified by the label.10

11.2.3 Computed GO TO statement11

R1160 computed-goto-stmt is GO TO (label-list) [,] scalar-int-expr12

C1175 (R1160) Each label in label-list shall be the statement label of a branch target statement that appears in the same inclusive13
scope as the computed-goto-stmt.14

1 Execution of a computed GO TO statement causes evaluation of the scalar integer expression. If this value is i such that 1 ≤ i ≤ n15
where n is the number of labels in label-list, a branch occurs to the branch target statement identified by the ith label in the list of16
labels. If i is less than 1 or greater than n, the execution sequence continues as though a CONTINUE statement were executed.17

11.3 CONTINUE statement18

1 Execution of a CONTINUE statement has no effect.19

R1161 continue-stmt is CONTINUE20

11.4 STOP and ERROR STOP statements21

R1162 stop-stmt is STOP [stop-code] [, QUIET = scalar-logical-expr]22

R1163 error-stop-stmt is ERROR STOP [stop-code] [, QUIET = scalar-logical-expr]23

R1164 stop-code is scalar-default-char-expr24
or scalar-int-expr25

C1176 (R1164) The scalar-int-expr shall be of default kind.26

1 Execution of a STOP statement initiates normal termination of execution. Execution of an ERROR STOP27
statement initiates error termination of execution.28

2 When an image is terminated by a STOP or ERROR STOP statement, its stop code, if any, is made available29
in a processor-dependent manner. If the stop-code is an integer, it is recommended that the value be used as30
the process exit status, if the processor supports that concept. If the stop-code in a STOP statement is of type31
character or does not appear, or if an end-program-stmt is executed, it is recommended that the value zero be32
supplied as the process exit status, if the processor supports that concept. If the stop-code in an ERROR STOP33
statement is of type character or does not appear, it is recommended that a processor-dependent nonzero value34
be supplied as the process exit status, if the processor supports that concept.35

3 If QUIET= is omitted or the scalar-logical-expr has the value false:36
• if any exception (17) is signaling on that image, the processor shall issue a warning indicating which37

exceptions are signaling, and this warning shall be on the unit identified by the named constant ERROR_-38
UNIT from the intrinsic module ISO_FORTRAN_ENV (16.10.2.9);39

J3/23-007 207

J3/23-007 WD 1539-1 2023-02-17

• if a stop code is specified, it is recommended that it be made available by formatted output to the same1
unit.2

4 If QUIET= appears and the scalar-logical-expr has the value true, no output of signaling exceptions or stop code3
shall be produced.4

NOTE 1
When normal termination occurs on more than one image, it is expected that a processor-dependent summary
of any stop codes and signaling exceptions will be made available.

NOTE 2
If the integer stop-code is used as the process exit status, the processor might be able to interpret only values
within a limited range, or only a limited portion of the integer value (for example, only the least-significant 8
bits).

11.5 FAIL IMAGE statement5

R1165 fail-image-stmt is FAIL IMAGE6

1 Execution of a FAIL IMAGE statement causes the executing image to cease participating in program execution7
without initiating termination. No further statements are executed by that image.8

NOTE
The FAIL IMAGE statement enables testing of a recovery algorithm without needing an actual failure.

On a processor that does not have the ability to detect that an image has failed, execution of a FAIL IMAGE
statement might provide a simulated failure environment that provides debug information.

In a piece of code that executes about once a second, invoking this subroutine on an image
SUBROUTINE FAIL

REAL :: X
CALL RANDOM_NUMBER (X)
IF (X<0.001) FAIL IMAGE

END SUBROUTINE FAIL

will cause that image to have approximately a 1/1000 chance of failure every second.

Note that FAIL IMAGE is not an image control statement.

11.6 NOTIFY WAIT statement9

1 The NOTIFY WAIT statement waits until the value of its notify-variable is greater than or equal to a threshold10
value.11

R1166 notify-wait-stmt is NOTIFY WAIT (notify-variable [, event-wait-spec-list])12

R1167 notify-variable is scalar-variable13

C1177 A notify-variable shall be of type NOTIFY_TYPE from the intrinsic module ISO_FORTRAN_ENV.14

C1178 A notify-variable shall not be a coindexed object.15

2 The notify-variable shall not depend on the value of stat-variable or errmsg-variable.16

208 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3 Execution of a NOTIFY WAIT statement consists of the following sequence of actions:1

(1) if the UNTIL_COUNT= specifier appears and its scalar-int-expr is greater than one, the threshold2
value is set to that value, otherwise, the threshold value is set to one;3

(2) the executing image waits until the count of the notify variable is greater than or equal to the4
threshold value or an error condition occurs;5

(3) if no error condition occurs, the count of the notify variable is atomically decremented by the threshold6
value.7

4 If an error condition occurs during execution of an NOTIFY WAIT statement, the value of the count of its notify8
variable is processor dependent.9

5 Execution of an assignment statement whose variable has a NOTIFY= specifier is initially unsatisfied. Successful10
execution of a NOTIFY WAIT statement with a threshold value of k satisfies the first k unsatisfied executions11
of assignment statements whose NOTIFY= specifier specifies the same notify variable as the NOTIFY WAIT12
statement.13

6 The stat-variable of a NOTIFY WAIT statement shall not depend on the value of the notify variable or the14
errmsg-variable. The errmsg-variable of a NOTIFY WAIT statement shall not depend on the value of the notify15
variable or the stat-variable.16

7 If a NOTIFY WAIT statement has a STAT= specifier, stat-variable is assigned the value zero if execution of17
the statement is successful, and a processor-dependent positive value that is different from the value of STAT_-18
FAILED_IMAGE (16.10.2.28) and STAT_STOPPED_IMAGE (16.10.2.31) from the intrinsic module ISO_-19
FORTRAN_ENV (16.10.2) if an error condition occurs.20

8 If an error condition occurs during execution of a NOTIFY WAIT statement with no STAT=, error termination21
is initiated.22

9 If a NOTIFY WAIT statement has an ERRMSG= specifier and an error condition occurs, errmsg-variable is23
assigned an explanatory message, as if by intrinsic assignment. If no such condition occurs, the definition status24
and the value of errmsg-variable are unchanged.25

10 The set of error conditions that can occur during execution of a NOTIFY WAIT statement is processor dependent.26

11.7 Image execution control27

11.7.1 Image control statements28

1 The execution sequence on each image is specified in 5.3.5.29

2 Execution of an image control statement divides the execution sequence on an image into segments. Each of the30
following is an image control statement:31

• SYNC ALL statement;32

• SYNC IMAGES statement;33

• SYNC MEMORY statement;34

• SYNC TEAM statement;35

• ALLOCATE statement that has a coarray allocate-object;36

• DEALLOCATE statement that has an allocate-object that is a coarray or has a coarray potential subobject37
component;38

• CHANGE TEAM or END TEAM statement (11.1.5);39

• CRITICAL or END CRITICAL statement (11.1.6);40

• EVENT POST or EVENT WAIT statement;41

• FORM TEAM statement;42

• LOCK or UNLOCK statement;43

J3/23-007 209

J3/23-007 WD 1539-1 2023-02-17

• any statement that completes execution of a block or procedure and which results in the implicit deallocation1
of a coarray;2

• a CALL statement that references the intrinsic subroutine MOVE_ALLOC with coarray arguments;3

• STOP statement;4

• END statement of a main program.5

3 During an execution of a statement that invokes more than one procedure, at most one invocation shall cause6
execution of an image control statement other than CRITICAL or END CRITICAL.7

11.7.2 Segments8

1 On each image, the sequence of statements executed before the first execution of an image control statement,9
between the execution of two image control statements, or after the last execution of an image control statement10
is a segment. The segment executed immediately before the execution of an image control statement includes11
the evaluation of all expressions within the statement. If an image does not execute any image control statement12
before termination of execution, its entire statement execution sequence is a single segment.13

2 By execution of image control statements or user-defined ordering (11.7.5), the program can ensure that the14
execution of the ith segment on image P, Pi, either precedes or succeeds the execution of the jth segment on15
another image Q, Qj . If the program does not ensure this, segments Pi and Qj are unordered; depending on the16
relative execution speeds of the images, some or all of the execution of the segment Pi may take place at the same17
time as some or all of the execution of the segment Qj .18

3 A coarray may be referenced or defined by execution of an atomic subroutine during the execution of a segment19
that is unordered relative to the execution of a segment in which the coarray is referenced or defined by execution20
of an atomic subroutine. An event variable or notify variable may be referenced or defined during the execution21
of a segment that is unordered relative to the execution of another segment in which that event variable or notify22
variable is defined. A variable defined in an unordered segment only by execution of an assignment statement23
with a NOTIFY= specifier may be referenced or defined after execution of a NOTIFY WAIT statement that24
satisfies that assignment statement execution. Otherwise,25

• if a variable is defined or becomes undefined on an image in a segment, it shall not be referenced, defined,26
or become undefined in a segment on another image unless the segments are ordered,27

• if the allocation of an allocatable subobject of a coarray or the pointer association of a pointer subobject28
of a coarray is changed on an image in a segment, that subobject shall not be referenced, defined, or have29
its allocation or association status, dynamic type, array bounds, shape, or a deferred type parameter value30
inquired about in a segment on another image unless the segments are ordered, and31

• if a procedure invocation on image P is in execution in segments Pi, Pi+1, . . . , Pk and defines a noncoarray32
dummy argument, the effective argument shall not be referenced, defined, or become undefined on another33
image Q in a segment Qj unless Qj precedes Pi or succeeds Pk.34

4 If, by execution of a statement in segment Pi on image P,35
• a variable X is defined, referenced, becomes undefined, or has its allocation status, pointer association36

status, array bounds, dynamic type, or type parameters changed or inquired about,37

• segment Pi on image P precedes segment Qj on image Q, and38

• X is defined, referenced, becomes undefined, or has its allocation status, pointer association status, array39
bounds, dynamic type, or type parameters changed or inquired about by execution of a statement in segment40
Qj on image Q,41

then the action regarding X in segment Pi on image P precedes the action regarding X in segment Qj on image42
Q.43

NOTE 1
The set of all segments on all images is partially ordered: the segment Pi precedes segment Qj if and only if
there is a sequence of segments starting with Pi and ending with Qj such that each segment of the sequence

210 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1 (cont.)
precedes the next either because they are consecutive segments on the same image or because of the execution
of image control statements.

NOTE 2
If the segments S1, S2, . . . , Sk on the distinct images P1, P2, . . . , Pk are all unordered with respect to each
other, it is expected that the processor will ensure that each of these images is provided with an equitable share
of resources for executing its segment.

NOTE 3
Because of the restrictions on references and definitions in unordered segments, the processor can apply code
motion optimizations within a segment as if it were the only image in execution, provided calls to atomic
subroutines are not involved.

NOTE 4
The model upon which the interpretation of a program is based is that there is a permanent memory location
for each coarray and that all images on which it is established can access it.

In practice, apart from executions of atomic subroutines, the processor could make a copy of a nonvolatile
coarray in a segment (in cache or a register, for example) and, as an optimization, defer copying a changed
value back to its permanent memory location while it is still being used. Since the variable is not volatile, it is
safe to defer this copying back until the end of the segment. It might not be safe to defer this action beyond
the end of the segment since another image might reference the variable then.

The value of the ATOM argument of an atomic subroutine might be accessed or modified by another concurrently
executing image. Therefore, execution of an atomic subroutine that references the ATOM argument cannot
rely on a local copy, but instead always gets its value from its permanent memory location. Execution of an
atomic subroutine that defines the ATOM argument does not complete until the value of its ATOM argument
has been sent to its permanent memory location.

NOTE 5
The incorrect sequencing of image control statements can suspend execution indefinitely. For example, one
image might be executing a SYNC ALL statement while another is executing an ALLOCATE statement for a
coarray.

11.7.3 SYNC ALL statement1

R1168 sync-all-stmt is SYNC ALL [([sync-stat-list])]2

R1169 sync-stat is STAT = stat-variable3
or ERRMSG = errmsg-variable4

C1179 No specifier shall appear more than once in a given sync-stat-list.5

C1180 A stat-variable or errmsg-variable in a sync-stat shall not be a coindexed object.6

1 The STAT= and ERRMSG= specifiers for image control statements are described in 11.7.11.7

2 Successful execution of a SYNC ALL statement performs a synchronization of all images in the current team.8
Execution on an image, M, of the segment following the SYNC ALL statement is delayed until each other image9
in the current team has executed a SYNC ALL statement as many times as has image M in this team. The10
segments that executed before the SYNC ALL statement on an image precede the segments that execute after11
the SYNC ALL statement on another image.12

J3/23-007 211

J3/23-007 WD 1539-1 2023-02-17

NOTE
The processor might have special hardware or employ an optimized algorithm to make the SYNC ALL statement
execute efficiently.

Here is a simple example of its use. Image 1 reads data and broadcasts it to other images:
REAL :: P[*]
. . .
SYNC ALL
IF (THIS_IMAGE()==1) THEN

READ (*,*) P
DO I = 2, NUM_IMAGES()

P[I] = P
END DO

END IF
SYNC ALL

11.7.4 SYNC IMAGES statement1

R1170 sync-images-stmt is SYNC IMAGES (image-set [, sync-stat-list])2

R1171 image-set is int-expr3
or *4

C1181 An image-set that is an int-expr shall be scalar or of rank one.5

C1182 The value of image-set shall not depend on the value of stat-variable or errmsg-variable.6

1 If image-set is an array expression, the value of each element shall be positive and not greater than the number7
of images in the current team, and there shall be no repeated values.8

2 If image-set is a scalar expression, its value shall be positive and not greater than the number of images in the9
current team.10

3 An image-set that is an asterisk specifies all images in the current team.11

4 Execution of a SYNC IMAGES statement performs a synchronization of the image with each of the other images12
in the image-set. Executions of SYNC IMAGES statements on images M and T correspond if the number of13
times image M has executed a SYNC IMAGES statement in the current team with T in its image set is the same14
as the number of times image T has executed a SYNC IMAGES statement with M in its image set in this team.15
The segments that executed before the SYNC IMAGES statement on either image precede the segments that16
execute after the corresponding SYNC IMAGES statement on the other image.17

NOTE 1
A SYNC IMAGES statement that specifies the single image index value THIS_IMAGE () in its image set is
allowed. This simplifies writing programs for an arbitrary number of images by allowing correct execution in
the limiting case of the number of images being equal to one.

NOTE 2
In a program that uses SYNC ALL as its only synchronization mechanism, every SYNC ALL statement could
be replaced by a SYNC IMAGES (*) statement, but SYNC ALL might give better performance.

SYNC IMAGES statements are not required to specify the entire image set, or even the same image set, on all
images participating in the synchronization. In the following example, image 1 will wait for each of the other
images to execute the statement SYNC IMAGES (1). The other images wait for image 1 to set up the data,
but do not wait on any other image.

212 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2 (cont.)
IF (THIS_IMAGE() == 1) then

! Set up coarray data needed by all other images.
SYNC IMAGES(*)

ELSE
SYNC IMAGES(1)
! Use the data set up by image 1.

END IF

When the following example runs on five or more images, each image synchronizes with both of its neighbors,
in a circular fashion.

INTEGER :: up, down
. . .
IF (NUM_IMAGES () > 1) THEN

up = THIS_IMAGE () + 1; IF (up>NUM_IMAGES ()) up = 1
down = THIS_IMAGE () - 1; IF (down==0) down = NUM_IMAGES ()
SYNC IMAGES ((/ up, down /))

END IF

This might appear to have the same effect as SYNC ALL but there is no ordering between the preceding
and succeeding segments on non-adjacent images. For example, the segment preceding the SYNC IMAGES
statement on image 3 will be ordered before those succeeding it on images 2 and 4, but not those on images 1
and 5.

NOTE 3
In the following example, each image synchronizes with its neighbor.

INTEGER :: ME, NE, STEP, NSTEPS
NE = NUM_IMAGES()
ME = THIS_IMAGE()
. . . ! Initial calculation
SYNC ALL
DO STEP = 1, NSTEPS

IF (ME > 1) SYNC IMAGES(ME-1)
. . . ! Perform calculation

IF (ME < NE) SYNC IMAGES(ME+1)
END DO
SYNC ALL

The calculation starts on image 1 since all the others will be waiting on SYNC IMAGES (ME−1). When this
is done, image 2 can start and image 1 can perform its second calculation. This continues until they are all
executing different steps at the same time. Eventually, image 1 will finish and then the others will finish one
by one.

11.7.5 SYNC MEMORY statement1

1 Execution of a SYNC MEMORY statement ends one segment and begins another; those two segments can be2
ordered by a user-defined way with respect to segments on other images.3

R1172 sync-memory-stmt is SYNC MEMORY [([sync-stat-list])]4

2 If, by execution of statements on image P,5

• a variable X on image Q is defined, referenced, becomes undefined, or has its allocation status, pointer6
association status, array bounds, dynamic type, or type parameters changed or inquired about by execution7
of a statement,8

J3/23-007 213

J3/23-007 WD 1539-1 2023-02-17

• that statement precedes a successful execution of a SYNC MEMORY statement, and1

• a variable Y on image Q is defined, referenced, becomes undefined, or has its allocation status, pointer2
association status, array bounds, dynamic type, or type parameters changed or inquired about by execution3
of a statement that succeeds execution of that SYNC MEMORY statement,4

then the action regarding X on image Q precedes the action regarding Y on image Q.5

3 User-defined ordering of segment Pi on image P to precede segment Qj on image Q occurs when6

• image P executes an image control statement that ends segment Pi, and then executes statements that7
initiate a cooperative synchronization between images P and Q, and8

• image Q executes statements that complete the cooperative synchronization between images P and Q and9
then executes an image control statement that begins segment Qj .10

4 Execution of the cooperative synchronization between images P and Q shall include a dependency that forces11
execution on image P of the statements that initiate the synchronization to precede the execution on image Q of12
the statements that complete the synchronization. The mechanisms available for creating such a dependency are13
processor dependent.14

NOTE 1
SYNC MEMORY usually suppresses compiler optimizations that might reorder memory operations across the
segment boundary defined by the SYNC MEMORY statement and ensures that all memory operations initiated
in the preceding segments in its image complete before any memory operations in the subsequent segment in
its image are initiated. It needs to do this unless it can establish that failure to do so could not alter processing
on another image.

NOTE 2
SYNC MEMORY can be used to implement specialized schemes for segment ordering. For example, the user
might have access to an external procedure that performs synchronization between images. That library pro-
cedure might not be aware of the mechanisms used by the processor to manage remote data references and
definitions, and therefore not, by itself, be able to ensure the correct memory state before and after its refer-
ence. The SYNC MEMORY statement provides the needed memory ordering that enables the safe use of the
external synchronization routine. For example:

INTEGER :: IAM
REAL :: X[*]

IAM = THIS_IMAGE ()
IF (IAM == 1) X = 1.0
SYNC MEMORY
CALL EXTERNAL_SYNC ()
SYNC MEMORY
IF (IAM == 2) WRITE (*,*) X[1]

where executing the subroutine EXTERNAL_SYNC has an image synchronization effect similar to executing
a SYNC ALL statement.

11.7.6 SYNC TEAM statement15

R1173 sync-team-stmt is SYNC TEAM (team-value [, sync-stat-list])16

1 The team-value shall identify an ancestor team, the current team, or a team whose parent is the current team.17
The executing image shall be a member of the specified team.18

2 Successful execution of a SYNC TEAM statement performs a synchronization of the team identified by team-19
value. Execution on an image, M, of the segment following the SYNC TEAM statement is delayed until each20
other image of the specified team has executed a SYNC TEAM statement specifying the same team as many21

214 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

times as has image M in this team. The segments that executed before the SYNC TEAM statement on an image1
precede the segments that execute after the corresponding SYNC TEAM statement on another image.2

NOTE
A SYNC TEAM statement synchronizes a particular team whereas a SYNC ALL statement synchronizes the
current team.

11.7.7 EVENT POST statement3

1 The EVENT POST statement posts an event.4

R1174 event-post-stmt is EVENT POST (event-variable [, sync-stat-list])5

R1175 event-variable is scalar-variable6

C1183 (R1175) An event-variable shall be of type EVENT_TYPE from the intrinsic module ISO_FORTRAN_-7
ENV (16.10.2).8

2 The event-variable shall not depend on the value of stat-variable or errmsg-variable.9

3 Successful execution of an EVENT POST statement atomically increments the count of the event variable by10
one. If an error condition occurs during execution of an EVENT POST statement, the value of the count of the11
event variable is processor dependent. The completion of an EVENT POST statement does not depend on the12
execution of a corresponding EVENT WAIT statement.13

11.7.8 EVENT WAIT statement14

1 The EVENT WAIT statement waits until an event is posted.15

R1176 event-wait-stmt is EVENT WAIT (event-variable [, event-wait-spec-list])16

R1177 event-wait-spec is until-spec17
or sync-stat18

R1178 until-spec is UNTIL_COUNT = scalar-int-expr19

C1184 (R1176) The event-variable in an event-wait-stmt shall not be coindexed.20

C1185 No specifier shall appear more than once in a given event-wait-spec-list.21

2 The event-variable shall not depend on the value of stat-variable or errmsg-variable.22

3 Execution of an EVENT WAIT statement consists of the following sequence of actions:23

1. if the UNTIL_COUNT= specifier does not appear, the threshold value is set to one; otherwise, the threshold24
value is set to the maximum of the value of the scalar-int-expr and one;25

2. the executing image waits until the count of the event variable is greater than or equal to the threshold26
value or an error condition occurs;27

3. if no error condition occurs, the count of the event variable is atomically decremented by the threshold28
value.29

4 If an error condition occurs during execution of an EVENT WAIT statement, the value of the count of its event30
variable is processor dependent.31

5 An EVENT POST statement execution is initially unsatisfied. Successful execution of an EVENT WAIT state-32
ment with a threshold of k satisfies the first k unsatisfied EVENT POST statement executions for that event33

J3/23-007 215

J3/23-007 WD 1539-1 2023-02-17

variable. This EVENT WAIT statement execution causes the segment following the EVENT WAIT statement1
execution to succeed the segments preceding those k EVENT POST statement executions.2

11.7.9 FORM TEAM statement3

1 The FORM TEAM statement creates a set of sibling teams whose parent team is the current team.4

R1179 form-team-stmt is FORM TEAM (team-number , team-variable5
[, form-team-spec-list])6

R1180 team-number is scalar-int-expr7

R1181 team-variable is scalar-variable8

C1186 A team-variable shall be of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.9

R1182 form-team-spec is NEW_INDEX = scalar-int-expr10
or sync-stat11

C1187 No specifier shall appear more than once in a given form-team-spec-list.12

2 Successful execution of a FORM TEAM statement creates a new team for each unique team-number value specified13
by the active images of the current team. The value of team-number shall be positive. Each executing image will14
belong to the team whose team number is equal to the value of team-number on that image, and the team-variable15
becomes defined with a value that identifies that team.16

3 The value of the scalar-int-expr in a NEW_INDEX= specifier specifies the image index that the executing image17
will have in its new team. It shall be positive, less than or equal to the number of images in the team, and18
different from the value specified by every other image that belongs to that team.19

4 If the NEW_INDEX= specifier does not appear, the image index of the executing image in the new team is20
processor dependent. This image index will be positive, less than or equal to the number of images in the team,21
and different from that of every other image in the team.22

5 If the FORM TEAM statement is executed on one image, the same statement shall be executed on all active23
images of the current team. When a FORM TEAM statement is executed, there is an implicit synchronization24
of all active images in the current team. On those images, execution of the segment following the statement is25
delayed until all other active images in the current team have executed the same statement the same number of26
times in this team. The segments that executed before the FORM TEAM statement on an active image of this27
team precede the segments that execute after the FORM TEAM statement on another active image of this team.28
If an error condition other than detection of a failed image occurs, the team variable becomes undefined.29

6 If execution of a FORM TEAM statement assigns the value STAT_FAILED_IMAGE to the stat-variable, the30
effect is the same as for the successful execution of FORM TEAM except for the value assigned to stat-variable.31

NOTE 1
Executing the statement

FORM TEAM (2 - MOD (THIS_IMAGE (), 2), ODD_EVEN)

will create two subteams of the current team, with images whose image index is odd being in the team with
number 1, and those with an even image index being in the team with number 2.

NOTE 2
If the current team consists of P 2 images, with corresponding coarrays on each image representing parts of a
larger array spread over a P × P square, the following code will establish teams for the rows with image indices
equal to the column indices.

USE, INTRINSIC :: ISO_FORTRAN_ENV

216 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2 (cont.)
TYPE(TEAM_TYPE) :: ROW
REAL :: A [P, *]
INTEGER :: ME (2)
ME (:) = THIS_IMAGE (A)
FORM TEAM (ME(1), ROW, NEW_INDEX=ME(2))

11.7.10 LOCK and UNLOCK statements1

R1183 lock-stmt is LOCK (lock-variable [, lock-stat-list])2

R1184 lock-stat is ACQUIRED_LOCK = scalar-logical-variable3
or sync-stat4

C1188 No specifier shall appear more than once in a given lock-stat-list.5

R1185 unlock-stmt is UNLOCK (lock-variable [, sync-stat-list])6

R1186 lock-variable is scalar-variable7

C1189 (R1186) A lock-variable shall be of type LOCK_TYPE from the intrinsic module ISO_FORTRAN_ENV8
(16.10.2.19).9

1 The lock-variable shall not depend on the value of stat-variable, errmsg-variable, or the scalar-logical-variable in10
the ACQUIRED_LOCK= specifier. The scalar-logical-variable shall not depend on the value of the lock-variable,11
stat-variable, or errmsg-variable.12

2 A lock variable is unlocked if and only if the value of each component is the same as its default value. If it has any13
other value, it is locked. A lock variable is locked by an image if it was locked by execution of a LOCK statement14
on that image, has not been subsequently unlocked by execution of an UNLOCK statement on the same image,15
and that image has not failed.16

3 Successful execution of a LOCK statement without an ACQUIRED_LOCK= specifier causes the lock variable17
to become locked by that image. If the lock variable is already locked by another image, that LOCK statement18
causes the lock variable to become locked after the other image causes the lock variable to become unlocked.19

4 If the lock variable is unlocked, successful execution of a LOCK statement with an ACQUIRED_LOCK= specifier20
causes the lock variable to become locked by that image and the scalar logical variable to become defined with the21
value true. If the lock variable is already locked by a different image, successful execution of a LOCK statement22
with an ACQUIRED_LOCK= specifier leaves the lock variable unchanged and causes the scalar logical variable23
to become defined with the value false.24

5 Successful execution of an UNLOCK statement causes the lock variable to become unlocked. Failure of an image25
causes all lock variables that are locked by that image to become unlocked.26

6 During execution of the program, the value of a lock variable changes through a sequence of locked and unlocked27
states due to the execution of LOCK and UNLOCK statements, and by failure of an image while it is locked by28
that image. If a lock variable becomes unlocked by execution of an UNLOCK statement on image M and next29
becomes locked by execution of a LOCK statement on image T, the segments preceding the UNLOCK statement30
on image M precede the segments following the LOCK statement on image T. Execution of a LOCK statement31
that does not cause the lock variable to become locked does not affect segment ordering.32

7 An error condition occurs if the lock variable in a LOCK statement is already locked by the executing image.33
An error condition occurs if the lock variable in an UNLOCK statement is not already locked by the executing34
image. If an error condition occurs during execution of a LOCK or UNLOCK statement, the value of the lock35
variable is not changed and the value of the ACQUIRED_LOCK variable, if any, is not changed.36

J3/23-007 217

J3/23-007 WD 1539-1 2023-02-17

NOTE 1
A lock variable is effectively defined atomically by a LOCK or UNLOCK statement. If LOCK statements on
two images both attempt to acquire a lock, one will succeed and the other will either fail if an ACQUIRED_-
LOCK= specifier appears, or will wait until the lock is later released if an ACQUIRED_LOCK= specifier does
not appear.

NOTE 2
An image might wait for a LOCK statement to successfully complete for a long period of time if other images
frequently lock and unlock the same lock variable. This situation might result from executing LOCK statements
with ACQUIRED_LOCK= specifiers inside a spin loop.

NOTE 3
The following example illustrates the use of LOCK and UNLOCK statements to manage a work queue:

USE, INTRINSIC :: ISO_FORTRAN_ENV

TYPE(LOCK_TYPE) :: queue_lock[*] ! Lock on each image to manage its work queue
INTEGER :: work_queue_size[*]
TYPE(Task) :: work_queue(100)[*] ! List of tasks to perform

TYPE(Task) :: job ! Current task working on
INTEGER :: me

me = THIS_IMAGE()
DO

! Process the next item in your work queue

LOCK (queue_lock) ! New segment A starts
! This segment A is ordered with respect to
! segment B executed by image me-1 below because of lock exclusion
IF (work_queue_size>0) THEN

! Fetch the next job from the queue
job = work_queue(work_queue_size)
work_queue_size = work_queue_size-1

END IF
UNLOCK (queue_lock) ! Segment ends
. . . Actually process the task.

! Add a new task on neighbors queue:
LOCK(queue_lock[me+1]) ! Starts segment B
! This segment B is ordered with respect to
! segment A executed by image me+1 above because of lock exclusion
IF (work_queue_size[me+1]<SIZE (work_queue)) THEN

work_queue_size[me+1] = work_queue_size[me+1]+1
work_queue(work_queue_size[me+1])[me+1] = job

END IF
UNLOCK (queue_lock[me+1]) ! Ends segment B

END DO

11.7.11 STAT= and ERRMSG= specifiers in image control statements1

1 In an image control statement, the stat-variable in a sync-stat shall not depend on the value of an errmsg-variable2
in a sync-stat, event-variable, lock-variable, team-variable, or the scalar-logical-variable in the ACQUIRED_-3

218 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

LOCK= specifier. The errmsg-variable in a sync-stat shall not depend on the value of a stat-variable in a1
sync-stat, event-variable, lock-variable, team-variable, or the scalar-logical-variable in the ACQUIRED_LOCK=2
specifier.3

2 If a STAT= specifier appears in a sync-stat in an image control statement, the stat-variable is assigned the value4
zero if execution of the statement is successful.5

3 If the STAT= specifier appears in a sync-stat in an EVENT WAIT or SYNC MEMORY statement and an error6
condition occurs, stat-variable is assigned a processor-dependent positive value that is different from the value7
of STAT_FAILED_IMAGE (16.10.2.28) and STAT_STOPPED_IMAGE (16.10.2.31) from the intrinsic module8
ISO_FORTRAN_ENV (16.10.2).9

4 The images involved in execution of an END TEAM, FORM TEAM, or SYNC ALL statement are those in the10
current team. The images involved in execution of a CHANGE TEAM or SYNC TEAM statement are those of11
the specified team. The images involved in execution of a SYNC IMAGES statement are the images specified12
and the executing image. The images involved in execution of an EVENT POST statement are the image on13
which the event variable is located and the executing image.14

5 If the STAT= specifier appears in a sync-stat in a CHANGE TEAM, END TEAM, EVENT POST, FORM15
TEAM, SYNC ALL, SYNC IMAGES, or SYNC TEAM statement,16

• if one of the images involved has stopped, stat-variable is assigned the value STAT_STOPPED_IMAGE17
(16.10.2.31) from the intrinsic module ISO_FORTRAN_ENV;18

• otherwise, if one of the images involved has failed and no other error condition occurs, the intended action19
is performed on the active images involved and stat-variable is assigned the value STAT_FAILED_IMAGE20
(16.10.2.28) from the intrinsic module ISO_FORTRAN_ENV;21

• otherwise, if any other error condition occurs, stat-variable is assigned a processor-dependent positive value22
that is different from the values of STAT_STOPPED_IMAGE and STAT_FAILED_IMAGE.23

6 If the STAT= specifier appears in a sync-stat in a SYNC ALL, SYNC IMAGES, or SYNC TEAM statement24
and the error condition STAT_STOPPED_IMAGE occurs, the effect is the same as that of executing the SYNC25
MEMORY statement, except for defining the stat-variable.26

7 If the STAT= specifier appears in a sync-stat in a LOCK statement,27

• if the image on which the lock variable is located has failed, the stat-variable becomes defined with the28
value STAT_FAILED_IMAGE;29

• otherwise, if the lock variable is locked by the executing image, the stat-variable becomes defined with the30
value of STAT_LOCKED (16.10.2.29) from the intrinsic module ISO_FORTRAN_ENV;31

• otherwise, if the lock variable is unlocked because of the failure of the image that locked it, stat-variable32
becomes defined with the value STAT_UNLOCKED_FAILED_IMAGE (16.10.2.33) from the intrinsic33
module ISO_FORTRAN_ENV.34

8 If the STAT= specifier appears in a sync-stat in an UNLOCK statement,35

• if the image on which the lock variable is located has failed, the stat-variable becomes defined with the36
value STAT_FAILED_IMAGE;37

• otherwise, if the lock variable has the value unlocked, the stat-variable becomes defined with the value of38
STAT_UNLOCKED (16.10.2.32) from the intrinsic module ISO_FORTRAN_ENV;39

• otherwise, if the lock variable is locked by a different image, the stat-variable becomes defined with the40
value STAT_LOCKED_OTHER_IMAGE (16.10.2.30) from the intrinsic module ISO_FORTRAN_ENV.41

9 If the STAT= specifier appears in a sync-stat in a LOCK or UNLOCK statement and any other error condition42
occurs during execution of that statement, the stat-variable becomes defined with a processor-dependent positive43
value that is different from STAT_LOCKED, STAT_LOCKED_OTHER_IMAGE, STAT_UNLOCKED, and44
STAT_UNLOCKED_FAILED_IMAGE.45

J3/23-007 219

J3/23-007 WD 1539-1 2023-02-17

10 If an image completes execution of a CRITICAL statement that has a sync-stat that is a STAT= specifier and the1
previous image to have entered the construct failed while executing it, the stat-variable becomes defined with the2
value STAT_FAILED_IMAGE and execution of the construct continues normally. If any other error condition3
occurs during execution of a CRITICAL statement that has a STAT= specifier, the stat-variable becomes defined4
with a processor-dependent positive value other than STAT_FAILED_IMAGE.5

11 If an error condition occurs during execution of an image control statement that does not contain the STAT=6
specifier in a sync-stat, error termination is initiated.7

12 If an ERRMSG= specifier appears in an image control statement and an error condition occurs, errmsg-variable8
is assigned an explanatory message, as if by intrinsic assignment. If no such condition occurs, the definition status9
and value of errmsg-variable are unchanged.10

13 The set of error conditions that can occur in an image control statement is processor dependent.11

NOTE
A processor might detect communication failure between images and treat it as an error condition. A processor
might also treat an invalid set of images in a SYNC IMAGES statement as an error condition.

220 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

12 Input/output statements1

12.1 Input/output concepts2

1 Input statements provide the means of transferring data from external media to internal storage or from an internal3
file to internal storage. This process is called reading. Output statements provide the means of transferring data4
from internal storage to external media or from internal storage to an internal file. This process is called writing.5
Some input/output statements specify that editing of the data is to be performed.6

2 In addition to the statements that transfer data, there are auxiliary input/output statements to manipulate the7
external medium, or to describe or inquire about the properties of the connection to the external medium.8

3 The input/output statements are the BACKSPACE, CLOSE, ENDFILE, FLUSH, INQUIRE, OPEN, PRINT,9
READ, REWIND, WAIT, and WRITE statements.10

4 A file is composed of either a sequence of file storage units (12.3.5) or a sequence of records, which provide an11
extra level of organization to the file. A file composed of records is called a record file. A file composed of file12
storage units is called a stream file. A processor may allow a file to be viewed both as a record file and as a stream13
file; in this case the relationship between the file storage units when viewed as a stream file and the records when14
viewed as a record file is processor dependent.15

5 A file is either an external file (12.3) or an internal file (12.4).16

12.2 Records17

12.2.1 Definition of a record18

1 A record is a sequence of values or a sequence of characters. For example, a line on a terminal is usually considered19
to be a record. However, a record does not necessarily correspond to a physical entity. There are three kinds of20
records:21

(1) formatted;22

(2) unformatted;23

(3) endfile.24

NOTE
What is called a “record” in Fortran is commonly called a “logical record”. There is no concept in Fortran of a
“physical record.”

12.2.2 Formatted record25

1 A formatted record consists of a sequence of characters that are representable in the processor; however, a26
processor may prohibit some control characters (6.1.1) from appearing in a formatted record. The length of a27
formatted record is measured in characters and depends primarily on the number of characters put into the record28
when it is written; however, it may depend on the processor and the external medium. The length may be zero.29
Formatted records shall be read or written only by formatted input/output statements.30

12.2.3 Unformatted record31

1 An unformatted record consists of a sequence of values in a processor-dependent form and may contain data32
of any type or may contain no data. The length of an unformatted record is measured in file storage units33

J3/23-007 221

J3/23-007 WD 1539-1 2023-02-17

(12.3.5) and depends on the output list (12.6.3) used when it is written, as well as on the processor and the1
external medium. The length may be zero. Unformatted records shall be read or written only by unformatted2
input/output statements.3

12.2.4 Endfile record4

1 An endfile record is written explicitly by the ENDFILE statement; the file shall be connected for sequential5
access. An endfile record is written implicitly to a file connected for sequential access when the most recent data6
transfer statement referring to the file is an output statement, no intervening file positioning statement referring7
to the file has been executed, and8

• a REWIND or BACKSPACE statement references the unit to which the file is connected, or9

• the unit is closed, either explicitly by a CLOSE statement, implicitly by normal termination, or implicitly10
by another OPEN statement for the same unit.11

2 An endfile record shall occur only as the last record of a file. An endfile record does not have a length property.12

NOTE
An endfile record does not necessarily have any physical embodiment. The processor can use a record count or
any other means to register the position of the file at the time an ENDFILE statement is executed, so that it
can take appropriate action when that position is reached again during a read operation. The endfile record,
however it is implemented, is considered to exist for the BACKSPACE statement (12.8.2).

12.3 External files13

12.3.1 External file concepts14

1 An external file is any file that exists in a medium external to the program.15

2 At any given time, there is a processor-dependent set of allowed access methods, a processor-dependent set of16
allowed forms, a processor-dependent set of allowed actions, and a processor-dependent set of allowed record17
lengths for a file.18

NOTE 1
For example, the processor-dependent set of allowed actions for a printer would likely include the write action,
but not the read action.

3 A file may have a name; a file that has a name is called a named file. The name of a named file is represented by19
a character string value. The set of allowable names for a file is processor dependent. Whether a named file on20
one image is the same as a file with the same name on another image is processor dependent.21

NOTE 2
If different files are needed on each image, using a different file name on each image will improve portability of
the code. One technique is to incorporate the image index as part of the name.

4 An external file that is connected to a unit has a position property (12.3.4).22

NOTE 3
For more explanatory information on external files, see C.8.1.

12.3.2 File existence23

1 At any given time, there is a processor-dependent set of external files that exist for a program. A file may be24
known to the processor, yet not exist for a program at a particular time.25

222 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 To create a file means to cause a file to exist that did not exist previously. To delete a file means to terminate1
the existence of the file.2

3 All input/output statements may refer to files that exist. A CLOSE, ENDFILE, FLUSH, INQUIRE, OPEN,3
PRINT, REWIND, or WRITE statement is permitted to refer to a file that does not exist. No other input/output4
statement shall refer to a file that does not exist. Execution of a WRITE, PRINT, or ENDFILE statement5
referring to a preconnected file that does not exist creates the file. This file is a different file from one preconnected6
on any other image.7

12.3.3 File access8

12.3.3.1 File access methods9

1 There are three methods of accessing the data of an external file: sequential, direct, and stream. Some files may10
have more than one allowed access method; other files may be restricted to one access method.11

NOTE
For example, a processor might provide only sequential access to a file on magnetic tape. Thus, the set of
allowed access methods depends on the file and the processor.

2 The method of accessing a file is determined when the file is connected to a unit (12.5.4) or when the file is12
created if the file is preconnected (12.5.5).13

12.3.3.2 Sequential access14

1 Sequential access is a method of accessing the records of an external record file in order.15

2 While connected for sequential access, an external file has the following properties.16

• The order of the records is the order in which they were written if the direct access method is not a member17
of the set of allowed access methods for the file. If the direct access method is also a member of the set of18
allowed access methods for the file, the order of the records is the same as that specified for direct access.19
In this case, the first record accessible by sequential access is the record whose record number is 1 for direct20
access. The second record accessible by sequential access is the record whose record number is 2 for direct21
access, etc. A record that has not been written since the file was created shall not be read.22

• The records of the file are either all formatted or all unformatted, except that the last record of the file can23
be an endfile record. Unless the previous reference to the file was an output statement, the last record, if24
any, of the file shall be an endfile record.25

• The records of the file shall be read or written only by sequential access data transfer statements.26

12.3.3.3 Direct access27

1 Direct access is a method of accessing the records of an external record file in arbitrary order.28

2 While connected for direct access, an external file has the following properties.29

• Each record of the file is uniquely identified by a positive integer called the record number. The record30
number of a record is specified when the record is written. Once established, the record number of a record31
can never be changed. The order of the records is the order of their record numbers.32

• The records of the file are either all formatted or all unformatted. If the sequential access method is also a33
member of the set of allowed access methods for the file, its endfile record, if any, is not considered to be34
part of the file while it is connected for direct access. If the sequential access method is not a member of35
the set of allowed access methods for the file, the file shall not contain an endfile record.36

• The records of the file shall be read or written only by direct access data transfer statements.37

• All records of the file have the same length.38

J3/23-007 223

J3/23-007 WD 1539-1 2023-02-17

• Records need not be read or written in the order of their record numbers. Any record may be written1
into the file while it is connected to a unit. For example, it is permissible to write record 3, even though2
records 1 and 2 have not been written. Any record may be read from the file while it is connected to a3
unit, provided that the record has been written since the file was created, and if a READ statement for this4
connection is permitted.5

• The records of the file shall not be read or written using list-directed formatting (13.10), namelist formatting6
(13.11), or a nonadvancing data transfer statement (12.3.4.2).7

NOTE
A record cannot be deleted; however, a record can be rewritten.

12.3.3.4 Stream access8

1 Stream access is a method of accessing the file storage units (12.3.5) of an external stream file.9

2 The properties of an external file connected for stream access depend on whether the connection is for unformatted10
or formatted access. While connected for stream access, the file storage units of the file shall be read or written11
only by stream access data transfer statements.12

3 While connected for unformatted stream access, an external file has the following properties.13

• Each file storage unit in the file is uniquely identified by a positive integer called the position. The first file14
storage unit in the file is at position 1. The position of each subsequent file storage unit is one greater than15
that of its preceding file storage unit.16

• If it is possible to position the file, the file storage units need not be read or written in order of their position.17
For example, it might be permissible to write the file storage unit at position 3, even though the file storage18
units at positions 1 and 2 have not been written. Any file storage unit may be read from the file while it is19
connected to a unit, provided that the file storage unit has been written since the file was created, and if a20
READ statement for this connection is permitted.21

4 While connected for formatted stream access, an external file has the following properties.22

• Some file storage units of the file can contain record markers; this imposes a record structure on the file23
in addition to its stream structure. There might or might not be a record marker at the end of the file. If24
there is no record marker at the end of the file, the final record is incomplete.25

• No maximum length (12.5.6.16) is applicable to these records.26

• Writing an empty record with no record marker has no effect.27

• Each file storage unit in the file is uniquely identified by a positive integer called the position. The first file28
storage unit in the file is at position 1. The relationship between positions of successive file storage units is29
processor dependent; not all positive integers need correspond to valid positions.30

• If it is possible to position the file, the file position can be set to a position that was previously identified31
by the POS= specifier in an INQUIRE statement.32

• A processor may prohibit some control characters (6.1.1) from appearing in a formatted stream file.33

NOTE 1
Because the record structure is determined from the record markers that are stored in the file itself, an incomplete
record at the end of the file is necessarily not empty.

NOTE 2
There might be some character positions in the file that do not correspond to characters written; this is because
on some processors a record marker could be written to the file as a carriage-return/line-feed or other sequence.
The means of determining the position in a file connected for stream access is via the POS= specifier in an
INQUIRE statement (12.10.2.23).

224 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

12.3.4 File position1

12.3.4.1 General2

1 Execution of certain input/output statements affects the position of an external file. Certain circumstances can3
cause the position of a file to become indeterminate.4

2 The initial point of a file is the position just before the first record or file storage unit. The terminal point is the5
position just after the last record or file storage unit. If there are no records or file storage units in the file, the6
initial point and the terminal point are the same position.7

3 If a record file is positioned within a record, that record is the current record; otherwise, there is no current8
record.9

4 Let n be the number of records in the file. If 1 < i ≤ n and a file is positioned within the ith record or between10
the (i − 1)th record and the ith record, the (i − 1)th record is the preceding record. If n ≥ 1 and the file is11
positioned at its terminal point, the preceding record is the nth and last record. If n = 0 or if a file is positioned12
at its initial point or within the first record, there is no preceding record.13

5 If 1 ≤ i < n and a file is positioned within the ith record or between the ith and (i + 1)th record, the (i + 1)th14
record is the next record. If n ≥ 1 and the file is positioned at its initial point, the first record is the next record.15
If n = 0 or if a file is positioned at its terminal point or within the nth (last) record, there is no next record.16

6 For a file connected for stream access, the file position is either between two file storage units, at the initial point17
of the file, at the terminal point of the file, or undefined.18

12.3.4.2 Advancing and nonadvancing input/output19

1 An advancing input/output statement always positions a record file after the last record read or written, unless20
there is an error condition.21

2 A nonadvancing input/output statement may position a record file at a character position within the current22
record, or a subsequent record (13.8.2). Using nonadvancing input/output, it is possible to read or write a record23
of the file by a sequence of data transfer statements, each accessing a portion of the record. If a nonadvancing24
output statement leaves a file positioned within a current record and no further output statement is executed for25
the file before it is closed or a BACKSPACE, ENDFILE, or REWIND statement is executed for it, the effect is26
as if the output statement were the corresponding advancing output statement.27

12.3.4.3 File position prior to data transfer28

1 The positioning of the file prior to data transfer depends on the method of access: sequential, direct, or stream.29

2 For sequential access on input, if there is a current record, the file position is not changed. Otherwise, the file is30
positioned at the beginning of the next record and this record becomes the current record. Input shall not occur31
if there is no next record or if there is a current record and the last data transfer statement accessing the file32
performed output.33

3 If the file contains an endfile record, the file shall not be positioned after the endfile record prior to data transfer.34
However, a REWIND or BACKSPACE statement may be used to reposition the file.35

4 For sequential access on output, if there is a current record, the file position is not changed and the current record36
becomes the last record of the file. Otherwise, a new record is created as the next record of the file; this new37
record becomes the last and current record of the file and the file is positioned at the beginning of this record.38

5 For direct access, the file is positioned at the beginning of the record specified by the REC= specifier. This record39
becomes the current record.40

6 For stream access, the file is positioned immediately before the file storage unit specified by the POS= specifier;41
if there is no POS= specifier, the file position is not changed.42

J3/23-007 225

J3/23-007 WD 1539-1 2023-02-17

7 File positioning for child data transfer statements is described in 12.6.4.8.1

12.3.4.4 File position after data transfer2

1 If an error condition (12.11) occurred, the position of the file is indeterminate. If no error condition occurred,3
but an end-of-file condition (12.11) occurred as a result of reading an endfile record, the file is positioned after4
the endfile record.5

2 For unformatted stream input/output, if no error condition occurred, the file position is not changed. For6
unformatted stream output, if the file position exceeds the previous terminal point of the file, the terminal point7
is set to the file position.8

NOTE 1
An unformatted stream output statement with a POS= specifier and an empty output list can have the effect
of extending the terminal point of a file without actually writing any data.

3 For formatted stream input, if an end-of-file condition occurred, the file position is not changed.9

4 For nonadvancing input, if no error condition or end-of-file condition occurred, but an end-of-record condition10
(12.11) occurred, the file is positioned after the record just read. If no error condition, end-of-file condition, or11
end-of-record condition occurred in a nonadvancing input statement, the file position is not changed. If no error12
condition occurred in a nonadvancing output statement, the file position is not changed.13

5 In all other cases, the file is positioned after the record just read or written and that record becomes the preceding14
record.15

6 For a formatted stream output statement, if no error condition occurred, the terminal point of the file is set to16
the next position after the highest-numbered position to which a datum was transferred by the statement.17

NOTE 2
The highest-numbered position might not be the current one if the output involved a T, TL, TR, or X edit
descriptor (13.8.1) and the statement is a nonadvancing output statement.

12.3.5 File storage units18

1 A file storage unit is the basic unit of storage in a stream file or an unformatted record file. It is the unit of file19
position for stream access, the unit of record length for unformatted files, and the unit of file size for all external20
files.21

2 Every value in a stream file or an unformatted record file shall occupy an integer number of file storage units; if22
the stream or record file is unformatted, this number shall be the same for all scalar values of the same type and23
type parameters. The number of file storage units required for an item of a given type and type parameters can24
be determined using the IOLENGTH= specifier of the INQUIRE statement (12.10.3).25

3 For a file connected for unformatted stream access, the processor shall not have alignment restrictions that prevent26
a value of any type from being stored at any positive integer file position.27

4 The number of bits in a file storage unit is given by the constant FILE_STORAGE_SIZE (16.10.2.11) defined28
in the intrinsic module ISO_FORTRAN_ENV. It is recommended that the file storage unit be an 8-bit octet29
where this choice is practical.30

NOTE
The requirement that every data value occupy an integer number of file storage units implies that data items
inherently smaller than a file storage unit will require padding. This suggests that the file storage unit be small
to avoid wasted space. Ideally, the file storage unit would be chosen such that padding is never required. A file
storage unit of one bit would always meet this goal, but would likely be impractical because of the alignment
requirements.

226 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE (cont.)
The prohibition on alignment restrictions prohibits the processor from requiring data alignments larger than
the file storage unit.

The 8-bit octet is recommended as a good compromise that is small enough to accommodate the requirements
of many applications, yet not so small that the data alignment requirements are likely to cause significant
performance problems.

12.4 Internal files1

1 Internal files provide a means of transferring and converting data from internal storage to internal storage.2

2 An internal file is a record file with the following properties.3

• The file is a variable of default, ASCII, or ISO 10646 character kind that is not an array section with a4
vector subscript.5

• A record of an internal file is a scalar character variable.6

• If the file is a scalar character variable, it consists of a single record whose length is the same as the length7
of the scalar character variable. If the file is a character array, it is treated as a sequence of character array8
elements. Each array element, if any, is a record of the file. The ordering of the records of the file is the9
same as the ordering of the array elements in the array (9.5.3.3) or the array section (9.5.3.4). Every record10
of the file has the same length, which is the length of an array element in the array.11

• A record of the internal file becomes defined by writing the record.12
– If the internal file is an allocatable, deferred-length character scalar variable, it is assigned the characters13

written by intrinsic assignment, allocating or reallocating to have length equal to the number of14
characters written if necessary.15

– Otherwise, if the number of characters written in a record is less than the length of the record, the16
remaining portion of the record is filled with blanks; the number of characters to be written shall not17
exceed the length of the record.18

• A record shall be read only if the record is defined.19

• A record of an internal file can become defined (or undefined) by means other than an output statement.20
For example, the character variable can become defined by a character assignment statement.21

• An internal file is always positioned at the beginning of the first record prior to data transfer, except for22
child data transfer statements (12.6.4.8). This record becomes the current record.23

• The initial value of a connection mode (12.5.2) is the value that would be implied by an initial OPEN24
statement without the corresponding keyword.25

• Reading and writing records shall be accomplished only by sequential access formatted data transfer state-26
ments.27

• An internal file shall not be specified as the unit in a CLOSE, INQUIRE, or OPEN statement.28

12.5 File connection29

12.5.1 Referring to a file30

1 A unit, specified by an io-unit, provides a means for referring to a file.31

R1201 io-unit is file-unit-number32
or *33
or internal-file-variable34

R1202 file-unit-number is scalar-int-expr35

R1203 internal-file-variable is char-variable36

J3/23-007 227

J3/23-007 WD 1539-1 2023-02-17

C1201 (R1203) The char-variable shall not be an array section with a vector subscript.1

C1202 (R1203) The char-variable shall be default character, ASCII character, or ISO 10646 character.2

2 A unit is either an external unit or an internal unit. An external unit is used to refer to an external file and3
is specified by an asterisk or a file-unit-number . The value of file-unit-number shall be nonnegative, the unit4
argument of an active defined input/output procedure (12.6.4.8), a NEWUNIT value (12.5.6.13), or equal to5
one of the named constants INPUT_UNIT, OUTPUT_UNIT, or ERROR_UNIT of the intrinsic module ISO_-6
FORTRAN_ENV (16.10.2). An internal unit is used to refer to an internal file and is specified by an internal-7
file-variable or a file-unit-number whose value is equal to the unit argument of an active defined input/output8
procedure. The value of a file-unit-number shall identify a valid unit.9

3 On an image, the external unit identified by a particular value of a scalar-int-expr is the same external unit in10
all program units.11

NOTE 1
In the example:

SUBROUTINE A
READ (6) X
. . .

SUBROUTINE B
N = 6
REWIND N

the value 6 used in both program units identifies the same external unit.

4 In a READ statement, an io-unit that is an asterisk identifies an external unit that is preconnected for sequential12
formatted input on image 1 in the initial team only (12.6.4.3); it is not preconnected on any other image. This unit13
is also identified by the value of the named constant INPUT_UNIT of the intrinsic module ISO_FORTRAN_-14
ENV (16.10.2.13). This unit is also used by a READ statement without an io-control-spec-list. In a WRITE15
statement, an io-unit that is an asterisk identifies an external unit that is preconnected for sequential formatted16
output. This unit is also identified by the value of the named constant OUTPUT_UNIT of the intrinsic module17
ISO_FORTRAN_ENV (16.10.2.24). This unit is also used by a PRINT statement.18

5 This document identifies a processor-dependent external unit for the purpose of error reporting. This unit shall19
be preconnected for sequential formatted output. The processor may define this to be the same as the output20
unit identified by an asterisk. This unit is also identified by a unit number defined by the named constant21
ERROR_UNIT of the intrinsic module ISO_FORTRAN_ENV.22

NOTE 2
Even though OUTPUT_UNIT is connected to a separate file on each image, it is expected that the processor
could merge the sequences of records from these files into a single sequence of records that is sent to the physical
device associated with this unit, such as the user’s terminal. If ERROR_UNIT is associated with the same
physical device, the sequences of records from files connected to ERROR_UNIT on each of the images could
be merged into the same sequence generated from the OUTPUT_UNIT files. Otherwise, it is expected that
the sequence of records in the files connected to ERROR_UNIT on each image could be merged into a single
sequence of records that is sent to the physical device associated with ERROR_UNIT.

12.5.2 Connection modes23

1 A connection for formatted input/output has several changeable modes: these are the blank interpretation mode24
(13.8.7), delimiter mode (13.10.4, 13.11.4.2), sign mode (13.8.4), leading zero mode (13.8.5), decimal edit mode25
(13.8.9), input/output rounding mode (13.7.2.3.8), pad mode (12.6.4.5.3), and scale factor (13.8.6). A connection26
for unformatted input/output has no changeable modes.27

2 Values for the modes of a connection are established when the connection is initiated. If the connection is initiated28
by an OPEN statement, the values are as specified, either explicitly or implicitly, by the OPEN statement. If the29

228 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

connection is initiated other than by an OPEN statement (that is, if the file is an internal file or preconnected file)1
the values established are those that would be implied by an initial OPEN statement without the corresponding2
keywords.3

3 The scale factor cannot be explicitly specified in an OPEN statement; it is implicitly 0.4

4 The modes of a connection to an external file can be changed by a subsequent OPEN statement that modifies5
the connection.6

5 The modes of a connection can be temporarily changed by a corresponding keyword specifier in a data transfer7
statement or by an edit descriptor. Keyword specifiers take effect at the beginning of execution of the data8
transfer statement. Edit descriptors take effect when they are encountered in format processing. When a data9
transfer statement terminates, the values for the modes are reset to the values in effect immediately before the10
data transfer statement was executed.11

12.5.3 Unit existence12

1 At any given time, there is a processor-dependent set of external units that exist for an image.13

2 All input/output statements are permitted to refer to units that exist. The CLOSE, INQUIRE, and WAIT14
statements are also permitted to refer to units that do not exist. No other input/output statement shall refer to15
a unit that does not exist.16

12.5.4 Connection of a file to a unit17

1 An external unit has a property of being connected or not connected. If connected, it refers to an external file. An18
external unit may become connected by preconnection or by the execution of an OPEN statement. The property19
of connection is symmetric; the unit is connected to a file if and only if the file is connected to the unit.20

2 Every input/output statement except an OPEN, CLOSE, INQUIRE, or WAIT statement shall refer to a unit21
that is connected to a file and thereby make use of or affect that file.22

3 A file may be connected and not exist (12.3.2).23

NOTE 1
An example is a preconnected external file that has not yet been written.

4 A unit shall not be connected to more than one file at the same time. However, means are provided to change24
the status of an external unit and to connect a unit to a different file. It is processor dependent whether a file25
can be connected to more than one unit at the same time.26

5 This document defines means of portable interoperation with C. C streams are described in ISO/IEC 9899:2018,27
7.21.2. Whether a unit can be connected to a file that is also connected to a C stream is processor dependent.28
If a unit is connected to a file that is also connected to a C stream, the results of performing input/output29
operations on such a file are processor dependent. It is processor dependent whether the files connected to30
the units INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT correspond to the predefined C text streams31
standard input, standard output, and standard error. If a main program or procedure defined by means of Fortran32
and a main program or procedure defined by means other than Fortran perform input/output operations on the33
same external file, the results are processor dependent. A main program or procedure defined by means of Fortran34
and a main program or procedure defined by means other than Fortran can perform input/output operations on35
different external files without interference.36

6 If input/output operations are performed on more than one unit while they are connected to the same external37
file, the results are processor dependent.38

7 After an external unit has been disconnected by the execution of a CLOSE statement, it may be connected again39
within the same program to the same file or to a different file. After an external file has been disconnected by40

J3/23-007 229

J3/23-007 WD 1539-1 2023-02-17

the execution of a CLOSE statement, it may be connected again within the same program to the same unit or1
to a different unit.2

NOTE 2
The only means of referencing a file that has been disconnected is by the appearance of its name in an OPEN
or INQUIRE statement. There might be no means of reconnecting an unnamed file once it is disconnected.

8 An internal unit is always connected to the internal file designated by the variable that identifies the unit.3

NOTE 3
For more explanatory information on file connection properties, see C.8.4.

12.5.5 Preconnection4

1 Preconnection means that the unit is connected to a file at the beginning of execution of the program and therefore5
it may be specified in input/output statements without the prior execution of an OPEN statement.6

12.5.6 OPEN statement7

12.5.6.1 General8

1 An OPEN statement initiates or modifies the connection between an external file and a specified unit. The OPEN9
statement can be used to connect an existing file to a unit, create a file that is preconnected, create a file and10
connect it to a unit, or change certain modes of a connection between a file and a unit.11

2 An external unit may be connected by an OPEN statement in the main program or any subprogram.12

3 If the file to be connected to the unit does not exist but is the same as the file to which the unit is preconnected,13
the modes specified by an OPEN statement become a part of the connection.14

4 If the file to be connected to the unit is not the same as the file to which the unit is connected, the effect is as15
if a CLOSE statement without a STATUS= specifier had been executed for the unit immediately prior to the16
execution of an OPEN statement.17

5 If a unit is connected to a file that exists, execution of an OPEN statement for that unit is permitted. If the18
FILE= specifier is not included in such an OPEN statement, the file to be connected to the unit is the same as19
the file to which the unit is already connected.20

6 If the file to be connected to the unit is the same as the file to which the unit is connected, a new connection is not21
established and values for any changeable modes (12.5.2) specified come into effect for the established connection;22
the current file position is unaffected. Before any effect on changeable modes, a wait operation is performed for23
any pending asynchronous data transfer operations for the specified unit. If the POSITION= specifier appears24
in such an OPEN statement, the value specified shall not disagree with the current position of the file. If the25
STATUS= specifier is included in such an OPEN statement, it shall be specified with the value OLD. Other than26
ERR=, IOSTAT=, and IOMSG=, and the changeable modes, the values of all other specifiers in such an OPEN27
statement shall not differ from those in effect for the established connection.28

7 A STATUS= specifier with a value of OLD is always allowed when the file to be connected to the unit is the same29
as the file to which the unit is connected. In this case, if the status of the file was SCRATCH before execution of30
the OPEN statement, the file will still be deleted when the unit is closed, and the file is still considered to have31
a status of SCRATCH.32

12.5.6.2 Syntax of the OPEN statement33

R1204 open-stmt is OPEN (connect-spec-list)34

R1205 connect-spec is [UNIT =] file-unit-number35

230 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

or ACCESS = scalar-default-char-expr1
or ACTION = scalar-default-char-expr2
or ASYNCHRONOUS = scalar-default-char-expr3
or BLANK = scalar-default-char-expr4
or DECIMAL = scalar-default-char-expr5
or DELIM = scalar-default-char-expr6
or ENCODING = scalar-default-char-expr7
or ERR = label8
or FILE = file-name-expr9
or FORM = scalar-default-char-expr10
or IOMSG = iomsg-variable11
or IOSTAT = stat-variable12
or LEADING_ZERO = scalar-default-char-expr13
or NEWUNIT = scalar-int-variable14
or PAD = scalar-default-char-expr15
or POSITION = scalar-default-char-expr16
or RECL = scalar-int-expr17
or ROUND = scalar-default-char-expr18
or SIGN = scalar-default-char-expr19
or STATUS = scalar-default-char-expr20

R1206 file-name-expr is scalar-default-char-expr21

R1207 iomsg-variable is scalar-default-char-variable22

C1203 No specifier shall appear more than once in a given connect-spec-list.23

C1204 (R1204) If the NEWUNIT= specifier does not appear, a file-unit-number shall be specified; if the optional24
characters UNIT= are omitted, the file-unit-number shall be the first item in the connect-spec-list.25

C1205 (R1204) If a NEWUNIT= specifier appears, a file-unit-number shall not appear.26

C1206 (R1204) The label used in the ERR= specifier shall be the statement label of a branch target statement27
that appears in the same inclusive scope as the OPEN statement.28

1 Some specifiers that require a scalar-default-char-expr have a limited list of character values. These values are29
listed for each such specifier. Any trailing blanks are ignored. The value specified is without regard to case. Some30
specifiers have a default value if the specifier is omitted.31

2 The IOSTAT=, ERR=, and IOMSG= specifiers are described in 12.11.32

NOTE 1
An example of an OPEN statement is:

OPEN (10, FILE = ’employee.names’, ACTION = ’READ’, PAD = ’YES’)

NOTE 2
For more explanatory information on the OPEN statement, see C.8.3.

12.5.6.3 ACCESS= specifier in the OPEN statement33

1 The scalar-default-char-expr shall evaluate to SEQUENTIAL, DIRECT, or STREAM. The ACCESS= specifier34
specifies the access method for the connection of the file as being sequential, direct, or stream. If this specifier is35
omitted, the default value is SEQUENTIAL. For an existing file, the specified access method shall be included in36
the set of allowed access methods for the file. For a new file, the processor creates the file with a set of allowed37
access methods that includes the specified method.38

J3/23-007 231

J3/23-007 WD 1539-1 2023-02-17

12.5.6.4 ACTION= specifier in the OPEN statement1

1 The scalar-default-char-expr shall evaluate to READ, WRITE, or READWRITE. READ specifies that the2
WRITE, PRINT, and ENDFILE statements shall not refer to this connection. WRITE specifies that READ3
statements shall not refer to this connection. READWRITE permits any input/output statements to refer to this4
connection. If this specifier is omitted, the default value is processor dependent. If READWRITE is included in5
the set of allowable actions for a file, both READ and WRITE also shall be included in the set of allowed actions6
for that file. For an existing file, the specified action shall be included in the set of allowed actions for the file.7
For a new file, the processor creates the file with a set of allowed actions that includes the specified action.8

12.5.6.5 ASYNCHRONOUS= specifier in the OPEN statement9

1 The scalar-default-char-expr shall evaluate to YES or NO. If YES is specified, asynchronous input/output on10
the unit is allowed. If NO is specified, asynchronous input/output on the unit is not allowed. If this specifier is11
omitted, the default value is NO.12

12.5.6.6 BLANK= specifier in the OPEN statement13

1 The scalar-default-char-expr shall evaluate to NULL or ZERO. The BLANK= specifier is permitted only for a14
connection for formatted input/output. It specifies the blank interpretation mode (13.8.7, 12.6.2.6) for input for15
this connection. This mode has no effect on output. It is a changeable mode (12.5.2). If this specifier is omitted16
in an OPEN statement that initiates a connection, the default value is NULL.17

12.5.6.7 DECIMAL= specifier in the OPEN statement18

1 The scalar-default-char-expr shall evaluate to COMMA or POINT. The DECIMAL= specifier is permitted only19
for a connection for formatted input/output. It specifies the decimal edit mode (13.6, 13.8.9, 12.6.2.7) for this20
connection. It is a changeable mode (12.5.2). If this specifier is omitted in an OPEN statement that initiates a21
connection, the default value is POINT.22

12.5.6.8 DELIM= specifier in the OPEN statement23

1 The scalar-default-char-expr shall evaluate to APOSTROPHE, QUOTE, or NONE. The DELIM= specifier is24
permitted only for a connection for formatted input/output. It specifies the delimiter mode (12.6.2.8) for list-25
directed (13.10.4) and namelist (13.11.4.2) output for the connection. This mode has no effect on input. It is26
a changeable mode (12.5.2). If this specifier is omitted in an OPEN statement that initiates a connection, the27
default value is NONE.28

12.5.6.9 ENCODING= specifier in the OPEN statement29

1 The scalar-default-char-expr shall evaluate to UTF-8 or DEFAULT. The ENCODING= specifier is permitted30
only for a connection for formatted input/output. The value UTF-8 specifies that the encoding form of the file31
is UTF-8 as specified in ISO/IEC 10646. Such a file is called a Unicode file, and all characters therein are of ISO32
10646 character kind. The value UTF-8 shall not be specified if the processor does not support the ISO 1064633
character kind. The value DEFAULT specifies that the encoding form of the file is processor dependent. If this34
specifier is omitted in an OPEN statement that initiates a connection, the default value is DEFAULT.35

12.5.6.10 FILE= specifier in the OPEN statement36

1 The value of the FILE= specifier is the name of the file to be connected to the specified unit. Any trailing blanks37
are ignored. The file-name-expr shall be a name that is allowed by the processor. The interpretation of case is38
processor dependent.39

2 This specifier shall appear if the STATUS= specifier has the value NEW or REPLACE. This specifier shall not40
appear if the STATUS= specifier has the value SCRATCH. If the STATUS= specifier has the value OLD, this41
specifier shall appear unless the unit is connected and the file connected to the unit exists. If this specifier42

232 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

is omitted and the unit is not connected to a file, the STATUS= specifier shall be specified with a value of1
SCRATCH; in this case, the connection is made to a processor-dependent file.2

12.5.6.11 FORM= specifier in the OPEN statement3

1 The scalar-default-char-expr shall evaluate to FORMATTED or UNFORMATTED. The FORM= specifier de-4
termines whether the file is being connected for formatted or unformatted input/output. If this specifier is5
omitted, the default value is UNFORMATTED if the file is being connected for direct access or stream access,6
and the default value is FORMATTED if the file is being connected for sequential access. For an existing file,7
the specified form shall be included in the set of allowed forms for the file. For a new file, the processor creates8
the file with a set of allowed forms that includes the specified form.9

12.5.6.12 LEADING_ZERO= specifier in the OPEN statement10

1 The scalar-default-char-expr shall evaluate to one of PRINT, SUPPRESS, or PROCESSOR_DEFINED. The11
LEADING_ZERO= specifier is permitted only for a connection for formatted input/output. It specifies the12
leading zero mode (13.8.5, 12.6.2.10) for this connection. It is a changeable mode (12.5.2). If this specifier is13
omitted in an OPEN statement that initiates a connection, the default value is PROCESSOR_DEFINED.14

12.5.6.13 NEWUNIT= specifier in the OPEN statement15

1 If this specifier appears in an OPEN statement, either the FILE= specifier shall appear, or the STATUS= specifier16
shall appear with a value of SCRATCH.17

2 The variable is defined with a processor determined NEWUNIT value if no error condition occurs during the18
execution of the OPEN statement. If an error condition occurs, the processor shall not change the value of the19
variable.20

3 A NEWUNIT value is a negative number, and shall not be equal to −1, any of the named constants ER-21
ROR_UNIT, INPUT_UNIT, or OUTPUT_UNIT from the intrinsic module ISO_FORTRAN_ENV (16.10.2),22
any value used by the processor for the unit argument to a defined input/output procedure, nor any previous23
NEWUNIT value that identifies a file that is connected. The unit identified by a NEWUNIT value shall not be24
preconnected.25

12.5.6.14 PAD= specifier in the OPEN statement26

1 The scalar-default-char-expr shall evaluate to YES or NO. The PAD= specifier is permitted only for a connection27
for formatted input/output. It specifies the pad mode (12.6.4.5.3, 12.6.2.11) for input for this connection. This28
mode has no effect on output. It is a changeable mode (12.5.2). If this specifier is omitted in an OPEN statement29
that initiates a connection, the default value is YES.30

12.5.6.15 POSITION= specifier in the OPEN statement31

1 The scalar-default-char-expr shall evaluate to ASIS, REWIND, or APPEND. The connection shall be for sequen-32
tial or stream access. A new file is positioned at its initial point. REWIND positions an existing file at its initial33
point. APPEND positions an existing file such that the endfile record is the next record, if it has one. If an34
existing file does not have an endfile record, APPEND positions the file at its terminal point. ASIS leaves the35
position unchanged if the file exists and already is connected. If the file exists but is not connected, the position36
resulting from ASIS is processor dependent. If this specifier is omitted, the default value is ASIS.37

12.5.6.16 RECL= specifier in the OPEN statement38

1 The value of the RECL= specifier shall be positive. It specifies the length of each record in a file being connected39
for direct access, or specifies the maximum length of a record in a file being connected for sequential access. This40
specifier shall not appear when a file is being connected for stream access. This specifier shall appear when a41
file is being connected for direct access. If this specifier is omitted when a file is being connected for sequential42
access, the default value is processor dependent. If the file is being connected for formatted input/output, the43

J3/23-007 233

J3/23-007 WD 1539-1 2023-02-17

length is the number of characters for all records that contain only characters of default kind. When a record1
contains any nondefault characters, the effect of the RECL= specifier is processor dependent. If the file is being2
connected for unformatted input/output, the length is measured in file storage units. For an existing file, the3
value of the RECL= specifier shall be included in the set of allowed record lengths for the file. For a new file, the4
processor creates the file with a set of allowed record lengths that includes the specified value.5

12.5.6.17 ROUND= specifier in the OPEN statement6

1 The scalar-default-char-expr shall evaluate to one of UP, DOWN, ZERO, NEAREST, COMPATIBLE, or PRO-7
CESSOR_DEFINED. The ROUND= specifier is permitted only for a connection for formatted input/output.8
It specifies the input/output rounding mode (13.7.2.3.8, 12.6.2.14) for this connection. It is a changeable mode9
(12.5.2). If this specifier is omitted in an OPEN statement that initiates a connection, the input/output rounding10
mode is processor dependent; it shall be one of the above modes.11

NOTE
A processor is free to select any input/output rounding mode for the default mode. The mode might correspond
to UP, DOWN, ZERO, NEAREST, or COMPATIBLE; or it might be a completely different input/output
rounding mode.

12.5.6.18 SIGN= specifier in the OPEN statement12

1 The scalar-default-char-expr shall evaluate to one of PLUS, SUPPRESS, or PROCESSOR_DEFINED. The13
SIGN= specifier is permitted only for a connection for formatted input/output. It specifies the sign mode14
(13.8.4, 12.6.2.15) for this connection. It is a changeable mode (12.5.2). If this specifier is omitted in an OPEN15
statement that initiates a connection, the default value is PROCESSOR_DEFINED.16

12.5.6.19 STATUS= specifier in the OPEN statement17

1 The scalar-default-char-expr shall evaluate to OLD, NEW, SCRATCH, REPLACE, or UNKNOWN. If OLD is18
specified, the file shall exist. If NEW is specified, the file shall not exist.19

2 Successful execution of an OPEN statement with NEW specified creates the file and changes the status to OLD.20
If REPLACE is specified and the file does not already exist, the file is created and the status is changed to OLD.21
If REPLACE is specified and the file does exist, the file is deleted, a new file is created with the same name, and22
the status is changed to OLD. If SCRATCH is specified, the file is created and connected to the specified unit23
for use by the program but is deleted at the execution of a CLOSE statement referring to the same unit or at24
the normal termination of the program.25

3 If UNKNOWN is specified, the status is processor dependent. If this specifier is omitted, the default value is26
UNKNOWN.27

NOTE
SCRATCH cannot be specified if the FILE= specifier appears (12.5.6.10).

12.5.7 CLOSE statement28

12.5.7.1 General29

1 The CLOSE statement is used to terminate the connection of a specified unit to an external file.30

2 Execution of a CLOSE statement for a unit may occur in any program unit of a program and need not occur in31
the same program unit as the execution of an OPEN statement referring to that unit.32

3 Execution of a CLOSE statement performs a wait operation for any pending asynchronous data transfer operations33
for the specified unit.34

234 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Execution of a CLOSE statement specifying a unit that does not exist, exists but is connected to a file that does1
not exist, or has no file connected to it, is permitted and affects no file or unit.2

5 After a unit has been disconnected by execution of a CLOSE statement, it may be connected again within the3
same program, either to the same file or to a different file. After a named file has been disconnected by execution4
of a CLOSE statement, it may be connected again within the same program, either to the same unit or to a5
different unit, provided that the file still exists.6

6 During the completion step (5.3.7) of normal termination, all units that are connected are closed. Each unit is7
closed with status KEEP unless the file status prior to termination of execution was SCRATCH, in which case8
the unit is closed with status DELETE.9

NOTE
The effect is as though a CLOSE statement without a STATUS= specifier were executed on each connected
unit.

12.5.7.2 Syntax10

R1208 close-stmt is CLOSE (close-spec-list)11

R1209 close-spec is [UNIT =] file-unit-number12
or IOSTAT = stat-variable13
or IOMSG = iomsg-variable14
or ERR = label15
or STATUS = scalar-default-char-expr16

C1207 No specifier shall appear more than once in a given close-spec-list.17

C1208 A file-unit-number shall be specified in a close-spec-list; if the optional characters UNIT= are omitted,18
the file-unit-number shall be the first item in the close-spec-list.19

C1209 (R1209) The label used in the ERR= specifier shall be the statement label of a branch target statement20
that appears in the same inclusive scope as the CLOSE statement.21

1 The scalar-default-char-expr has a limited list of character values. Any trailing blanks are ignored. The value22
specified is without regard to case.23

2 The IOSTAT=, ERR=, and IOMSG= specifiers are described in 12.11.24

NOTE
An example of a CLOSE statement is:

CLOSE (10, STATUS = ’KEEP’)

12.5.7.3 STATUS= specifier in the CLOSE statement25

1 The scalar-default-char-expr shall evaluate to KEEP or DELETE. The STATUS= specifier determines the dis-26
position of the file that is connected to the specified unit. KEEP shall not be specified for a file whose status prior27
to execution of a CLOSE statement is SCRATCH. If KEEP is specified for a file that exists, the file continues28
to exist after the execution of a CLOSE statement. If KEEP is specified for a file that does not exist, the file29
will not exist after the execution of a CLOSE statement. If DELETE is specified, the file will not exist after the30
execution of a CLOSE statement. If this specifier is omitted, the default value is KEEP, unless the file status31
prior to execution of the CLOSE statement is SCRATCH, in which case the default value is DELETE.32

J3/23-007 235

J3/23-007 WD 1539-1 2023-02-17

12.6 Data transfer statements1

12.6.1 Form of input and output statements2

1 The READ statement is the data transfer input statement. The WRITE statement and the PRINT statement3
are the data transfer output statements.4

R1210 read-stmt is READ (io-control-spec-list) [input-item-list]5
or READ format [, input-item-list]6

R1211 write-stmt is WRITE (io-control-spec-list) [output-item-list]7

R1212 print-stmt is PRINT format [, output-item-list]8

NOTE 1
Examples of data transfer statements are:

READ (6, *) SIZE
READ 10, A, B
WRITE (6, 10) A, S, J
PRINT 10, A, S, J

10 FORMAT (2E16.3, I5)

NOTE 2
A statement of the form

READ (name)

where name is the name of a default character variable is a formatted input statement. The format expression
“(name)” is the format. The statement cannot be an input statement that specifies an internal file because of
C1221.

12.6.2 Control information list9

12.6.2.1 Syntax10

1 A control information list is an io-control-spec-list. It governs data transfer.11

R1213 io-control-spec is [UNIT =] io-unit12
or [FMT =] format13
or [NML =] namelist-group-name14
or ADVANCE = scalar-default-char-expr15
or ASYNCHRONOUS = scalar-default-char-constant-expr16
or BLANK = scalar-default-char-expr17
or DECIMAL = scalar-default-char-expr18
or DELIM = scalar-default-char-expr19
or END = label20
or EOR = label21
or ERR = label22
or ID = id-variable23
or IOMSG = iomsg-variable24
or IOSTAT = stat-variable25
or LEADING_ZERO = scalar-default-char-expr26
or PAD = scalar-default-char-expr27
or POS = scalar-int-expr28
or REC = scalar-int-expr29
or ROUND = scalar-default-char-expr30

236 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

or SIGN = scalar-default-char-expr1
or SIZE = scalar-int-variable2

R1214 id-variable is scalar-int-variable3

C1210 No specifier shall appear more than once in a given io-control-spec-list.4

C1211 An io-unit shall be specified in an io-control-spec-list; if the optional characters UNIT= are omitted, the5
io-unit shall be the first item in the io-control-spec-list.6

C1212 (R1213) A DELIM=, LEADING_ZERO=, or SIGN= specifier shall not appear in a read-stmt.7

C1213 (R1213) A BLANK=, PAD=, END=, EOR=, or SIZE= specifier shall not appear in a write-stmt.8

C1214 A SIZE= specifier shall not appear in a list-directed or namelist input statement.9

C1215 (R1213) The label in the ERR=, EOR=, or END= specifier shall be the statement label of a branch10
target statement that appears in the same inclusive scope as the data transfer statement.11

C1216 (R1213) A namelist-group-name shall be the name of a namelist group.12

C1217 (R1213) A namelist-group-name shall not appear if a REC= specifier, format, input-item-list, or an13
output-item-list appears in the data transfer statement.14

C1218 (R1213) If format appears without a preceding FMT=, it shall be the second item in the io-control-spec-15
list and the first item shall be io-unit.16

C1219 (R1213) If namelist-group-name appears without a preceding NML=, it shall be the second item in the17
io-control-spec-list and the first item shall be io-unit.18

C1220 (R1213) If io-unit is not a file-unit-number , the io-control-spec-list shall not contain a REC= specifier or19
a POS= specifier.20

C1221 (R1213) If io-unit is an internal-file-variable, the io-control-spec-list shall contain a format or a namelist-21
group-name.22

C1222 (R1213) If the REC= specifier appears, an END= specifier shall not appear, and the format, if any, shall23
not be an asterisk.24

C1223 (R1213) An ADVANCE= specifier shall appear only in a formatted sequential or stream data transfer25
statement with explicit format specification (13.2) whose io-control-spec-list does not contain an internal-26
file-variable as the io-unit.27

C1224 (R1213) If an EOR= specifier appears, an ADVANCE= specifier also shall appear.28

C1225 (R1213) The scalar-default-char-constant-expr in an ASYNCHRONOUS= specifier shall have the value29
YES or NO.30

C1226 (R1213) An ASYNCHRONOUS= specifier with a value YES shall not appear unless io-unit is a file-31
unit-number .32

C1227 (R1213) If an ID= specifier appears, an ASYNCHRONOUS= specifier with the value YES shall also33
appear.34

C1228 (R1213) If a POS= specifier appears, the io-control-spec-list shall not contain a REC= specifier.35

C1229 (R1213) If a DECIMAL=, BLANK=, LEADING_ZERO=, PAD=, SIGN=, or ROUND= specifier ap-36
pears, a format or namelist-group-name shall also appear.37

C1230 (R1213) If a DELIM= specifier appears, either format shall be an asterisk or namelist-group-name shall38
appear.39

J3/23-007 237

J3/23-007 WD 1539-1 2023-02-17

C1231 (R1214) The scalar-int-variable shall have a decimal exponent range no smaller than that of default1
integer.2

2 If an EOR= specifier appears, an ADVANCE= specifier with the value NO shall also appear.3

3 If the data transfer statement contains a format or namelist-group-name, the statement is a formatted in-4
put/output statement; otherwise, it is an unformatted input/output statement.5

4 The ADVANCE=, ASYNCHRONOUS=, DECIMAL=, BLANK=, DELIM=, LEADING_ZERO=, PAD=,6
SIGN=, and ROUND= specifiers have a limited list of character values. Any trailing blanks are ignored. The7
values specified are without regard to case.8

5 The IOSTAT=, ERR=, EOR=, END=, and IOMSG= specifiers are described in 12.11.9

NOTE
An example of a READ statement is:

READ (IOSTAT = IOS, UNIT = 6, FMT = ’(10F8.2)’) A, B

12.6.2.2 Format specification in a data transfer statement10

1 The format specifier supplies a format specification or specifies list-directed formatting for a formatted in-11
put/output statement.12

R1215 format is default-char-expr13
or label14
or *15

C1232 (R1215) The label shall be the label of a FORMAT statement that appears in the same inclusive scope16
as the statement containing the FMT= specifier.17

2 The default-char-expr shall evaluate to a valid format specification (13.2.1 and 13.2.2).18

3 If default-char-expr is an array, it is treated as if all of the elements of the array were specified in array element19
order and were concatenated.20

4 If format is *, the statement is a list-directed input/output statement.21

NOTE
An example in which the format is a character expression is:

READ (6, FMT = "(" // CHAR_FMT // ")") X, Y, Z

where CHAR_FMT is a default character variable.

12.6.2.3 NML= specifier in a data transfer statement22

1 The NML= specifier supplies the namelist-group-name (8.9). This name identifies a particular collection of data23
objects on which transfer is to be performed.24

2 If a namelist-group-name appears, the statement is a namelist input/output statement.25

12.6.2.4 ADVANCE= specifier in a data transfer statement26

1 The scalar-default-char-expr shall evaluate to YES or NO. The ADVANCE= specifier determines whether advan-27
cing input/output occurs for a nonchild data transfer statement. If YES is specified for a nonchild data transfer28
statement, advancing input/output occurs. If NO is specified, nonadvancing input/output occurs (12.3.4.2). If29
this specifier is omitted from a nonchild data transfer statement that allows the specifier, the default value is30
YES. A formatted child data transfer statement is a nonadvancing input/output statement, and any ADVANCE=31
specifier is ignored.32

238 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

12.6.2.5 ASYNCHRONOUS= specifier in a data transfer statement1

1 The ASYNCHRONOUS= specifier determines whether this data transfer statement is synchronous or asynchron-2
ous. If YES is specified, the statement and the input/output operation are asynchronous. If NO is specified or if3
the specifier is omitted, the statement and the input/output operation are synchronous.4

2 Asynchronous input/output is permitted only for external files opened with an ASYNCHRONOUS= specifier5
with the value YES in the OPEN statement.6

NOTE 1
Both synchronous and asynchronous input/output are allowed for files opened with an ASYNCHRONOUS=
specifier of YES. For other files, only synchronous input/output is allowed; this includes files opened with an
ASYNCHRONOUS= specifier of NO, files opened without an ASYNCHRONOUS= specifier, preconnected files
accessed without an OPEN statement, and internal files.

The ASYNCHRONOUS= specifier value in a data transfer statement is a constant expression because it effects
compiler optimizations and, therefore, needs to be known at compile time.

3 The processor may perform an asynchronous data transfer operation asynchronously, but it is not required to do7
so. For each external file, records and file storage units read or written by asynchronous data transfer statements8
are read, written, and processed in the same order as they would have been if the data transfer statements were9
synchronous. The documentation of the Fortran processor should describe when input/output will be performed10
asynchronously.11

4 If a variable is used in an asynchronous data transfer statement as12

• an item in an input/output list,13

• a group object in a namelist, or14

• a SIZE= specifier,15

the base object of the data-ref is implicitly given the ASYNCHRONOUS attribute in the scoping unit of the data16
transfer statement. This attribute may be confirmed by explicit declaration.17

5 When an asynchronous input/output statement is executed, the set of storage units specified by the item list or18
NML= specifier, plus the storage units specified by the SIZE= specifier, is defined to be the pending input/output19
storage sequence for the data transfer operation.20

NOTE 2
A pending input/output storage sequence is not necessarily a contiguous set of storage units.

6 A pending input/output storage sequence affector is a variable of which any part is associated with a storage unit21
in a pending input/output storage sequence.22

12.6.2.6 BLANK= specifier in a data transfer statement23

1 The scalar-default-char-expr shall evaluate to NULL or ZERO. The BLANK= specifier temporarily changes24
(12.5.2) the blank interpretation mode (13.8.7, 12.5.6.6) for the connection. If the specifier is omitted, the mode25
is not changed.26

12.6.2.7 DECIMAL= specifier in a data transfer statement27

1 The scalar-default-char-expr shall evaluate to COMMA or POINT. The DECIMAL= specifier temporarily changes28
(12.5.2) the decimal edit mode (13.6, 13.8.9, 12.5.6.7) for the connection. If the specifier is omitted, the mode is29
not changed.30

J3/23-007 239

J3/23-007 WD 1539-1 2023-02-17

12.6.2.8 DELIM= specifier in a data transfer statement1

1 The scalar-default-char-expr shall evaluate to APOSTROPHE, QUOTE, or NONE. The DELIM= specifier tem-2
porarily changes (12.5.2) the delimiter mode (13.10.4, 13.11.4.2, 12.5.6.8) for the connection. If the specifier is3
omitted, the mode is not changed.4

12.6.2.9 ID= specifier in a data transfer statement5

1 Successful execution of an asynchronous data transfer statement containing an ID= specifier causes the variable6
specified in the ID= specifier to become defined with a processor determined value. If this value is zero, the7
data transfer operation has been completed. A nonzero value is referred to as the identifier of the data transfer8
operation. This identifier is different from the identifier of any other pending data transfer operation for this unit.9
It can be used in a subsequent WAIT or INQUIRE statement to identify the particular data transfer operation.10

2 If an error condition occurs during the execution of a data transfer statement containing an ID= specifier, the11
variable specified in the ID= specifier becomes undefined.12

3 A child data transfer statement shall not specify the ID= specifier.13

12.6.2.10 LEADING_ZERO= specifier in a data transfer statement14

1 The scalar-default-char-expr shall evaluate to PRINT, SUPPRESS, or PROCESSOR_DEFINED. The LEAD-15
ING_ZERO= specifier temporarily changes (12.5.2) the leading zero mode (13.8.5, 12.5.6.12) for the connection.16
If the specifier is omitted, the mode is not changed.17

12.6.2.11 PAD= specifier in a data transfer statement18

1 The scalar-default-char-expr shall evaluate to YES or NO. The PAD= specifier temporarily changes (12.5.2) the19
pad mode (12.6.4.5.3, 12.5.6.14) for the connection. If the specifier is omitted, the mode is not changed.20

12.6.2.12 POS= specifier in a data transfer statement21

1 The POS= specifier specifies the file position in file storage units. This specifier shall not appear in a data transfer22
statement unless the statement specifies a unit connected for stream access. A child data transfer statement shall23
not specify this specifier.24

2 A processor may prohibit the use of POS= with particular files that do not have the properties necessary to25
support random positioning. A processor may also prohibit positioning a particular file to any position prior to26
its current file position if the file does not have the properties necessary to support such positioning.27

NOTE
A unit that is connected to a device or data stream might not be positionable.

3 If the file is connected for formatted stream access, the file position specified by POS= shall be equal to either 128
(the beginning of the file) or a value previously returned by a POS= specifier in an INQUIRE statement for the29
file.30

12.6.2.13 REC= specifier in a data transfer statement31

1 The REC= specifier specifies the number of the record that is to be read or written. This specifier shall appear32
only in a data transfer statement that specifies a unit connected for direct access; it shall not appear in a child33
data transfer statement. If the io-control-spec-list contains a REC= specifier, the statement is a direct access34
data transfer statement. A child data transfer statement is a direct access data transfer statement if the parent35
is a direct access data transfer statement. Any other data transfer statement is a sequential access data transfer36
statement or a stream access data transfer statement, depending on whether the file connection is for sequential37
access or stream access.38

240 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

12.6.2.14 ROUND= specifier in a data transfer statement1

1 The scalar-default-char-expr shall evaluate to one of UP, DOWN, ZERO, NEAREST, COMPATIBLE or PRO-2
CESSOR_DEFINED. The ROUND= specifier temporarily changes (12.5.2) the input/output rounding mode3
(13.7.2.3.8, 12.5.6.17) for the connection. If the specifier is omitted, the mode is not changed.4

12.6.2.15 SIGN= specifier in a data transfer statement5

1 The scalar-default-char-expr shall evaluate to PLUS, SUPPRESS, or PROCESSOR_DEFINED. The SIGN=6
specifier temporarily changes (12.5.2) the sign mode (13.8.4, 12.5.6.18) for the connection. If the specifier is7
omitted, the mode is not changed.8

12.6.2.16 SIZE= specifier in a data transfer statement9

1 The SIZE= specifier in an input statement causes the variable specified to become defined with the count of10
the characters transferred from the file by data edit descriptors during the input operation. Blanks inserted as11
padding are not counted.12

2 For a synchronous input statement, this definition occurs when execution of the statement completes. For an13
asynchronous input statement, this definition occurs when the corresponding wait operation is performed.14

12.6.3 Data transfer input/output list15

1 An input/output list specifies the entities whose values are transferred by a data transfer statement.16

R1216 input-item is variable17
or io-implied-do18

R1217 output-item is expr19
or io-implied-do20

R1218 io-implied-do is (io-implied-do-object-list , io-implied-do-control)21

R1219 io-implied-do-object is input-item22
or output-item23

R1220 io-implied-do-control is do-variable = scalar-int-expr ,24
scalar-int-expr [, scalar-int-expr]25

C1233 (R1216) A variable that is an input-item shall not be a whole assumed-size array.26

C1234 (R1219) In an input-item-list, an io-implied-do-object shall be an input-item. In an output-item-list, an27
io-implied-do-object shall be an output-item.28

C1235 (R1217) An expression that is an output-item shall not have a value that is a procedure pointer.29

2 An input-item shall not appear as, nor be associated with, the do-variable of any io-implied-do that contains the30
input-item.31

NOTE 1
A constant, an expression involving operators or function references that does not have a pointer result, or an
expression enclosed in parentheses cannot appear as an input list item.

3 If an input item is a pointer, it shall be associated with a definable target and data are transferred from the file to32
the associated target. If an output item is a pointer, it shall be associated with a target and data are transferred33
from the target to the file.34

J3/23-007 241

J3/23-007 WD 1539-1 2023-02-17

NOTE 2
Data transfers always involve the movement of values between a file and internal storage. A pointer as such
cannot be read or written. Therefore, a pointer shall not appear as an item in an input/output list unless it is
associated with a target that can receive a value (input) or can deliver a value (output).

4 If an input item or an output item is allocatable, it shall be allocated.1

5 A list item shall not be polymorphic unless it is processed by a defined input/output procedure (12.6.4.8).2

6 A list item that is of an enumeration type shall not appear in a list-directed data transfer statement. In a3
formatted data transfer statement, it shall correspond to an I, B, O, or Z edit descriptor.4

7 The do-variable of an io-implied-do that is in another io-implied-do shall not appear as, nor be associated with,5
the do-variable of the containing io-implied-do.6

8 The following rules describing whether to expand an input/output list item are re-applied to each expanded list7
item until none of the rules apply.8

• If an array appears as an input/output list item, it is treated as if the elements, if any, were specified in9
array element order (9.5.3.3). However, no element of that array shall affect the value of any expression in10
the input-item, nor shall any element appear more than once in a given input-item.11

NOTE 3
For example:

INTEGER A (100), J (100)
. . .
READ *, A (A) ! Not allowed
READ *, A (LBOUND (A, 1) : UBOUND (A, 1)) ! Allowed
READ *, A (J) ! Allowed if no two elements

! of J have the same value
A(1) = 1; A(10) = 10
READ *, A (A (1) : A (10)) ! Not allowed

• If an effective item of derived type in an unformatted input/output statement is not processed by a defined12
input/output procedure (12.6.4.8), and if any subobject of that effective item would be processed by a13
defined input/output procedure, the effective item is treated as if all of the components of the object were14
specified in component order (7.5.4.7); those components shall be accessible in the scoping unit containing15
the data transfer statement and shall not be pointers or allocatable.16

• An effective item of derived type in an unformatted input/output statement is treated as a single value17
in a processor-dependent form unless the effective item or a subobject thereof is processed by a defined18
input/output procedure (12.6.4.8).19

NOTE 4
The appearance of a derived-type object as an input/output list item in an unformatted input/output statement
is not equivalent to the list of its components.

Unformatted input/output involving derived-type list items forms the single exception to the rule that the
appearance of an aggregate list item (such as an array) is equivalent to the appearance of its expanded list of
component parts. This exception permits the processor greater latitude in improving efficiency or in matching
the processor-dependent sequence of values for a derived-type object to similar sequences for aggregate ob-
jects used by means other than Fortran. However, formatted input/output of all list items and unformatted
input/output of list items other than those of derived types adhere to the above rule.

• If an effective item of derived type in a formatted input/output statement is not processed by a defined20
input/output procedure, that effective item is treated as if all of the components of the effective item21
were specified in component order; those components shall be accessible in the scoping unit containing the22
input/output statement and shall not be pointers or allocatable.23

242 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

• If a derived-type list item is not processed by a defined input/output procedure and is not treated as a list1
of its individual components, all the subcomponents of that list item shall be accessible in the scoping unit2
containing the data transfer statement and shall not be pointers or allocatable.3

• For an io-implied-do, the loop initialization and execution are the same as for a DO construct (11.1.7.4).4

NOTE 5
An example of an output list with an implied DO is:

WRITE (LP, FMT = ’(10F8.2)’) (LOG (A (I)), I = 1, N + 9, K), G

9 The scalar objects resulting when a data transfer statement’s list items are expanded according to the rules in5
this subclause for handling array and derived-type list items are called effective items. Zero-sized arrays and6
io-implied-dos with an iteration count of zero do not contribute to the list of effective items. A scalar character7
item of zero length is an effective item.8

NOTE 6
In a formatted input/output statement, edit descriptors are associated with effective items, which are always
scalar. The rules in 12.6.3 determine the set of effective items corresponding to each actual list item in the
statement. These rules might have to be applied repetitively until all of the effective items are scalar items.

10 An input/output list shall not contain an effective item of nondefault character kind if the data transfer statement9
specifies an internal file of default character kind. An input/output list shall not contain an effective item that is10
nondefault character except for ISO 10646 or ASCII character if the data transfer statement specifies an internal11
file of ISO 10646 character kind. An input/output list shall not contain an effective item of type character of any12
kind other than ASCII if the data transfer statement specifies an ASCII character internal file.13

11 An output list shall not contain an effective item that is a boz-literal-constant.14

12.6.4 Execution of a data transfer input/output statement15

12.6.4.1 Data transfer sequence of operations16

1 Execution of a WRITE or PRINT statement for a unit connected to a file that does not exist creates the file17
unless an error condition occurs.18

2 The effect of executing a synchronous data transfer statement shall be as if the following operations were performed19
in the order specified.20

(1) Determine the direction of data transfer (12.6.4.2).21

(2) Identify the unit (12.6.4.3).22

(3) Perform a wait operation for all pending input/output operations for the unit. If an error, end-of-file,23
or end-of-record condition occurs during any of the wait operations, steps 4 through 8 are skipped.24

(4) Establish the format if one is specified.25

(5) If the statement is not a child data transfer statement (12.6.4.8),26

(a) position the file prior to data transfer (12.3.4.3), and27

(b) for formatted data transfer, set the left tab limit (13.8.1.2).28

(6) Transfer data between the file and the entities specified by the input/output list (if any) or namelist,29
possibly mediated by defined input/output procedures (12.6.4.8).30

(7) Determine whether an error, end-of-file, or end-of-record condition has occurred.31

(8) Position the file after data transfer (12.3.4.4) unless the statement is a child data transfer statement32
(12.6.4.8).33

(9) Cause any variable specified in a SIZE= specifier to become defined.34

(10) If an error, end-of-file, or end-of-record condition occurred, processing continues as specified in 12.11;35
otherwise, any variable specified in an IOSTAT= specifier is assigned the value zero.36

J3/23-007 243

J3/23-007 WD 1539-1 2023-02-17

3 The effect of executing an asynchronous data transfer statement shall be as if the following operations were1
performed in the order specified.2

(1) Determine the direction of data transfer (12.6.4.2).3

(2) Identify the unit (12.6.4.3).4

(3) Optionally, perform wait operations for one or more pending input/output operations for the unit.5
If an error, end-of-file, or end-of-record condition occurs during any of the wait operations, steps 46
through 9 are skipped.7

(4) Establish the format if one is specified.8

(5) Position the file prior to data transfer (12.3.4.3) and, for formatted data transfer, set the left tab9
limit (13.8.1.2).10

(6) Establish the set of storage units identified by the input/output list. For an input statement, this11
might require some or all of the data in the file to be read if an input variable is used as a scalar-12
int-expr in an io-implied-do-control in the input/output list, as a subscript, substring-range, stride,13
or is otherwise referenced.14

(7) Initiate an asynchronous data transfer between the file and the entities specified by the input/output15
list (if any) or namelist. The asynchronous data transfer may complete (and an error, end-of-file, or16
end-of-record condition may occur) during the execution of this data transfer statement or during a17
later wait operation.18

(8) Determine whether an error, end-of-file, or end-of-record condition has occurred. The conditions19
may occur during the execution of this data transfer statement or during the corresponding wait20
operation, but not both.21

(9) Position the file as if the data transfer had finished (12.3.4.4).22

(10) Cause any variable specified in a SIZE= specifier to become undefined.23

(11) If an error, end-of-file, or end-of-record condition occurred, processing continues as specified in 12.11;24
otherwise, any variable specified in an IOSTAT= specifier is assigned the value zero.25

4 For an asynchronous data transfer statement, the data transfers may occur during execution of the statement,26
during execution of the corresponding wait operation, or anywhere between. The data transfer operation is27
considered to be pending until a corresponding wait operation is performed.28

5 For asynchronous output, a pending input/output storage sequence affector (12.6.2.5) shall not be redefined,29
become undefined, or have its pointer association status changed.30

6 For asynchronous input, a pending input/output storage sequence affector shall not be referenced, become defined,31
become undefined, become associated with a dummy argument that has the VALUE attribute, or have its pointer32
association status changed.33

7 Error, end-of-file, and end-of-record conditions in an asynchronous data transfer operation may occur during34
execution of either the data transfer statement or the corresponding wait operation. If an ID= specifier does not35
appear in the initiating data transfer statement, the conditions may occur during the execution of any subsequent36
data transfer or wait operation for the same unit. When a condition occurs for a previously executed asynchronous37
data transfer statement, a wait operation is performed for all pending data transfer operations on that unit. When38
a condition occurs during a subsequent statement, any actions specified by IOSTAT=, IOMSG=, ERR=, END=,39
and EOR= specifiers for that statement are taken.40

8 If execution of the program is terminated during execution of an output statement, the contents of the file become41
undefined.42

NOTE
Because end-of-file and error conditions for asynchronous data transfer statements without an ID= specifier
can be reported by the processor during the execution of a subsequent data transfer statement, it might be
impossible for the user to determine which data transfer statement caused the condition. Reliably detecting
which input statement caused an end-of-file condition requires that all asynchronous input statements for the
unit include an ID= specifier.

244 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

12.6.4.2 Direction of data transfer1

1 Execution of a READ statement causes values to be transferred from a file to the entities specified by the input2
list, if any, or specified within the file itself for namelist input. Execution of a WRITE or PRINT statement3
causes values to be transferred to a file from the entities specified by the output list and format specification, if4
any, or by the namelist-group-name for namelist output.5

12.6.4.3 Identifying a unit6

1 A data transfer statement that contains an input/output control list includes a UNIT= specifier that identifies7
an external or internal unit. A READ statement that does not contain an input/output control list specifies a8
particular processor-dependent unit, which is the same as the unit identified by * in a READ statement that9
contains an input/output control list (12.5.1) and is the same as the unit identified by the value of the named10
constant INPUT_UNIT of the intrinsic module ISO_FORTRAN_ENV (16.10.2.13). The PRINT statement11
specifies some other processor-dependent unit, which is the same as the unit identified by * in a WRITE statement12
and is the same as the unit identified by the value of the named constant OUTPUT_UNIT of the intrinsic module13
ISO_FORTRAN_ENV (16.10.2.24). Thus, each data transfer statement identifies an external or internal unit.14

2 The unit identified by a data transfer statement shall be connected to a file when execution of the statement15
begins.16

NOTE
The unit could be preconnected.

12.6.4.4 Establishing a format17

1 If the input/output control list contains * as a format, list-directed formatting is established. If namelist-group-18
name appears, namelist formatting is established. If no format or namelist-group-name is specified, unformatted19
data transfer is established. Otherwise, the format specified by format is established.20

2 For output to an internal file, a format specification that is in the file or is associated with the file shall not be21
specified.22

3 An input list item, or an entity associated with it, shall not contain any portion of an established format spe-23
cification.24

12.6.4.5 Data transfer25

12.6.4.5.1 General26

1 Data are transferred between the file and the entities specified by the input/output list or namelist. The list items27
are processed in the order of the input/output list for all data transfer statements except namelist data transfer28
statements. The list items for a namelist input statement are processed in the order of the entities specified29
within the input records. The list items for a namelist output statement are processed in the order in which the30
variables are specified in the namelist-group-object-list. Effective items are derived from the input/output list31
items as described in 12.6.3.32

2 All values needed to determine which entities are specified by an input/output list item are determined at the33
beginning of the processing of that item.34

3 All values are transmitted to or from the entities specified by a list item prior to the processing of any succeeding35
list item for all data transfer statements.36

NOTE
In the example

READ (N) N, X (N)

the old value of N identifies the unit, but the new value of N is the subscript of X.

J3/23-007 245

J3/23-007 WD 1539-1 2023-02-17

4 All values following the name= part of the namelist entity (13.11) within the input records are transmitted to1
the matching entity specified in the namelist-group-object-list prior to processing any succeeding entity within2
the input record for namelist input statements. If an entity is specified more than once within the input record3
during a namelist input statement, the last occurrence of the entity specifies the value or values to be used for4
that entity.5

5 If the input/output item is a pointer, data are transferred between the file and the associated target.6

6 If an internal file has been specified, an input/output list item shall not be in the file or associated with the file.7

7 During the execution of an output statement that specifies an internal file, no part of that internal file shall be8
referenced, defined, or become undefined as the result of evaluating any output list item.9

8 During the execution of an input statement that specifies an internal file, no part of that internal file shall be10
defined or become undefined as the result of transferring a value to any input list item.11

9 A DO variable becomes defined and its iteration count established at the beginning of processing of the io-implied-12
do-object-list an io-implied-do.13

10 On output, every entity whose value is to be transferred shall be defined.14

12.6.4.5.2 Unformatted data transfer15

1 If the file is not connected for unformatted input/output, unformatted data transfer is prohibited.16

2 During unformatted data transfer, data are transferred without editing between the file and the entities specified17
by the input/output list. If the file is connected for sequential or direct access, exactly one record is read or18
written.19

3 A value in the file is stored in a contiguous sequence of file storage units, beginning with the file storage unit20
immediately following the current file position.21

4 After each value is transferred, the current file position is moved to a point immediately after the last file storage22
unit of the value.23

5 On input from a file connected for sequential or direct access, the number of file storage units required by the24
input list shall be less than or equal to the number of file storage units in the record.25

6 On input, if the file storage units transferred do not contain a value with the same type and type parameters as26
the input list entity, then the resulting value of the entity is processor dependent except in the following cases.27

• A complex entity may correspond to two real values with the same kind type parameter as the complex28
entity.29

• A default character list entity of length n may correspond to n default characters stored in the file, regardless30
of the length parameters of the entities that were written to these storage units of the file. If the file is31
connected for stream input, the characters may have been written by formatted stream output.32

7 On output to a file connected for unformatted direct access, the output list shall not specify more values than33
can fit into the record. If the file is connected for direct access and the values specified by the output list do not34
fill the record, the remainder of the record is undefined.35

8 If the file is connected for unformatted sequential access, the record is created with a length sufficient to hold36
the values from the output list. This length shall be one of the set of allowed record lengths for the file and37
shall not exceed the value specified in the RECL= specifier, if any, of the OPEN statement that established the38
connection.39

12.6.4.5.3 Formatted data transfer40

1 If the file is not connected for formatted input/output, formatted data transfer is prohibited.41

246 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 During formatted data transfer, data are transferred with editing between the file and the entities specified by1
the input/output list or by the namelist-group-name. Format control is initiated and editing is performed as2
described in Clause 13.3

3 The current record and possibly additional records are read or written.4

4 During advancing input when the pad mode has the value NO, the input list and format specification shall not5
require more characters from the record than the record contains.6

5 During advancing input when the pad mode has the value YES, blank characters are supplied by the processor7
if the input list and format specification require more characters from the record than the record contains.8

6 During nonadvancing input when the pad mode has the value NO, an end-of-record condition (12.11) occurs if9
the input list and format specification require more characters from the record than the record contains, and the10
record is complete (12.3.3.4). If the record is incomplete, an end-of-file condition occurs instead of an end-of-record11
condition.12

7 During nonadvancing input when the pad mode has the value YES, blank characters are supplied by the processor13
if an effective item and its corresponding data edit descriptors require more characters from the record than the14
record contains. If the record is incomplete, an end-of-file condition occurs; otherwise, an end-of-record condition15
occurs.16

8 If the file is connected for direct access, the record number is increased by one as each succeeding record is read17
or written.18

9 On output, if the file is connected for direct access or is an internal file and the characters specified by the output19
list and format do not fill a record, blank characters are added to fill the record.20

10 On output, the output list and format specification shall not specify more characters for a record than have been21
specified by a RECL= specifier in the OPEN statement or the record length of an internal file.22

12.6.4.6 List-directed formatting23

1 If list-directed formatting has been established, editing is performed as described in 13.10.24

12.6.4.7 Namelist formatting25

1 If namelist formatting has been established, editing is performed as described in 13.11.26

2 Every allocatable namelist-group-object in the namelist group shall be allocated and every namelist-group-object27
that is a pointer shall be associated with a target. If a namelist-group-object is polymorphic or has an ultimate28
component that is allocatable or a pointer, that object shall be processed by a defined input/output procedure29
(12.6.4.8).30

12.6.4.8 Defined input/output31

12.6.4.8.1 General32

1 Defined input/output allows a program to override the default handling of derived-type objects and values in33
data transfer statements described in 12.6.3.34

2 A defined input/output procedure is a procedure accessible by a defined-io-generic-spec (15.4.3.2). A particular35
defined input/output procedure is selected as described in 12.6.4.8.4.36

12.6.4.8.2 Defined input/output procedures37

1 For a particular derived type and a particular set of kind type parameter values, there are four possible sets of38
characteristics for defined input/output procedures; one each for formatted input, formatted output, unformatted39
input, and unformatted output. The program need not supply all four procedures. The procedures are specified40

J3/23-007 247

J3/23-007 WD 1539-1 2023-02-17

to be used for derived-type input/output by interface blocks (15.4.3.2) or by generic bindings (7.5.5), with a1
defined-io-generic-spec (R1509). The defined-io-generic-specs for these procedures are READ (FORMATTED),2
READ (UNFORMATTED), WRITE (FORMATTED), and WRITE (UNFORMATTED), for formatted input,3
unformatted input, formatted output, and unformatted output respectively.4

2 In the four interfaces, which specify the characteristics of defined input/output procedures, the following syntax5
term is used:6

R1221 dtv-type-spec is TYPE(derived-type-spec)7
or CLASS(derived-type-spec)8

C1236 (R1221) If derived-type-spec specifies an extensible type, the CLASS keyword shall be used; otherwise,9
the TYPE keyword shall be used.10

C1237 (R1221) All length type parameters of derived-type-spec shall be assumed.11

3 If the defined-io-generic-spec is READ (FORMATTED), the characteristics shall be the same as those specified12
by the following interface:13

SUBROUTINE my_read_routine_formatted (dtv, &14
unit, &15
iotype, v_list, &16
iostat, iomsg)17

! the derived-type variable18
dtv-type-spec , INTENT(INOUT) :: dtv19
INTEGER, INTENT(IN) :: unit ! unit number20
! the edit descriptor string21
CHARACTER (LEN=*), INTENT(IN) :: iotype22
INTEGER, INTENT(IN) :: v_list(:)23
INTEGER, INTENT(OUT) :: iostat24
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg25

END26

4 If the defined-io-generic-spec is READ (UNFORMATTED), the characteristics shall be the same as those specified27
by the following interface:28

SUBROUTINE my_read_routine_unformatted (dtv, &29
unit, &30
iostat, iomsg)31

! the derived-type variable32
dtv-type-spec , INTENT(INOUT) :: dtv33
INTEGER, INTENT(IN) :: unit34
INTEGER, INTENT(OUT) :: iostat35
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg36

END37

5 If the defined-io-generic-spec is WRITE (FORMATTED), the characteristics shall be the same as those specified38
by the following interface:39

SUBROUTINE my_write_routine_formatted (dtv, &40
unit, &41
iotype, v_list, &42
iostat, iomsg)43

! the derived-type value/variable44
dtv-type-spec , INTENT(IN) :: dtv45
INTEGER, INTENT(IN) :: unit46
! the edit descriptor string47

248 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

CHARACTER (LEN=*), INTENT(IN) :: iotype1
INTEGER, INTENT(IN) :: v_list(:)2
INTEGER, INTENT(OUT) :: iostat3
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg4

END5

6 If the defined-io-generic-spec is WRITE (UNFORMATTED), the characteristics shall be the same as those6
specified by the following interface:7

SUBROUTINE my_write_routine_unformatted (dtv, &8
unit, &9
iostat, iomsg)10

! the derived-type value/variable11
dtv-type-spec , INTENT(IN) :: dtv12
INTEGER, INTENT(IN) :: unit13
INTEGER, INTENT(OUT) :: iostat14
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg15

END16

7 The actual specific procedure names (the my_..._routine_... procedure names above) are not significant. In17
the discussion here and elsewhere, the dummy arguments in these interfaces are referred to by the names given18
above; the names are, however, arbitrary.19

12.6.4.8.3 Executing defined input/output data transfers20

1 If a defined input/output procedure is selected for an effective item as specified in 12.6.4.8.4, the processor shall21
call the selected defined input/output procedure for that effective item. The defined input/output procedure22
controls the actual data transfer operations for the effective item.23

2 A data transfer statement that includes a derived-type list item and that causes a defined input/output procedure24
to be invoked is called a parent data transfer statement. A data transfer statement that is executed while a parent25
data transfer statement is being processed and that specifies the unit passed into a defined input/output procedure26
is called a child data transfer statement. As a child data transfer statement and its corresponding parent data27
transfer statement use the same file connection (12.5), the connection modes at the beginning of execution of the28
child data transfer statement are those in effect in the parent data transfer statement at the moment when the29
defined input/output procedure was invoked.30

NOTE 1
A defined input/output procedure will usually contain child data transfer statements that read values from or
write values to the current record or at the current file position. The effect of executing the defined input/output
procedure is similar to that of substituting the list items from any child data transfer statements into the parent
data transfer statement’s list items, along with similar substitutions in the format specification.

NOTE 2
A particular execution of a READ, WRITE or PRINT statement can be both a parent and a child data
transfer statement. A defined input/output procedure can indirectly call itself or another defined input/output
procedure by executing a child data transfer statement containing a list item of derived type, where a matching
interface is accessible for that derived type. If a defined input/output procedure calls itself indirectly in this
manner, it cannot be declared NON_RECURSIVE.

3 A child data transfer statement is processed differently from a nonchild data transfer statement in the following31
ways.32

• Executing a child data transfer statement does not position the file prior to data transfer.33

J3/23-007 249

J3/23-007 WD 1539-1 2023-02-17

• An unformatted child data transfer statement does not position the file after data transfer is complete.1

• Any ADVANCE= specifier in a child input/output statement is ignored.2

4 When a defined input/output procedure is invoked, the processor shall pass a unit argument that has a value as3
follows.4

• If the parent data transfer statement uses a file-unit-number , the value of the unit argument shall be that5
of the file-unit-number .6

• If the parent data transfer statement is a WRITE statement with an asterisk unit or a PRINT statement,7
the unit argument shall have the same value as the named constant OUTPUT_UNIT of the intrinsic8
module ISO_FORTRAN_ENV (16.10.2).9

• If the parent data transfer statement is a READ statement with an asterisk unit or a READ statement10
without an io-control-spec-list, the unit argument shall have the same value as the INPUT_UNIT named11
constant of the intrinsic module ISO_FORTRAN_ENV (16.10.2).12

• Otherwise the parent data transfer statement accesses an internal file, in which case the unit argument13
shall have a processor-dependent negative value.14

NOTE 3
The unit argument passed to a defined input/output procedure will be negative when the parent data transfer
statement specified an internal unit, or specified an external unit that is a NEWUNIT value. When an internal
unit is used with the INQUIRE statement, an error condition will occur, and any variable specified in an IO-
STAT= specifier will be assigned the value IOSTAT_INQUIRE_INTERNAL_UNIT from the intrinsic module
ISO_FORTRAN_ENV (16.10.2).

5 For formatted data transfer, the processor shall pass an iotype argument that has the value15

• “LISTDIRECTED” if the parent data transfer statement specified list directed formatting,16

• “NAMELIST” if the parent data transfer statement specified namelist formatting, or17

• “DT” concatenated with the char-literal-constant, if any, of the DT edit descriptor in the format specification18
of the parent data transfer statement.19

6 If the parent data transfer statement is an input statement, the dtv dummy argument is argument associated20
with the effective item that caused the defined input procedure to be invoked, as if the effective item were an21
actual argument in this procedure reference (5.4.5).22

7 If the parent data transfer statement is an output statement, the processor shall provide the value of the effective23
item in the dtv dummy argument.24

8 If the v-list of the edit descriptor appears in the parent data transfer statement, the processor shall provide the25
values from it in the v_list dummy argument, with the same number of elements in the same order as v-list.26
If there is no v-list in the edit descriptor or if the data transfer statement specifies list-directed or namelist27
formatting, the processor shall provide v_list as a zero-sized array.28

NOTE 4
The user’s procedure might choose to interpret an element of the v_list argument as a field width, but this is
not required. If it does, it would be appropriate to fill an output field with “*”s if the width is too small.

9 The iostat argument is used to report whether an error, end-of-record, or end-of-file condition (12.11) occurs.29
If an error condition occurs, the defined input/output procedure shall assign a positive value to the iostat30
argument. Otherwise, if an end-of-file condition occurs, the defined input procedure shall assign the value of the31
named constant IOSTAT_END (16.10.2.16) to the iostat argument. Otherwise, if an end-of-record condition32
occurs, the defined input procedure shall assign the value of the named constant IOSTAT_EOR (16.10.2.17) to33
iostat. Otherwise, the defined input/output procedure shall assign the value zero to the iostat argument.34

250 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

10 If the defined input/output procedure returns a nonzero value for the iostat argument, the procedure shall also1
return an explanatory message in the iomsg argument. Otherwise, the procedure shall not change the value of2
the iomsg argument.3

NOTE 5
The values of the iostat and iomsg arguments set in a defined input/output procedure need not be passed to
all of the parent data transfer statements.

11 If the iostat argument of the defined input/output procedure has a nonzero value when that procedure returns,4
and the processor therefore terminates execution of the program as described in 12.11, the processor shall make5
the value of the iomsg argument available in a processor-dependent manner.6

12 While a parent READ statement is active, an input/output statement shall not read from any external unit other7
than the one specified by the unit dummy argument and shall not perform output to any external unit.8

13 While a parent WRITE or PRINT statement is active, an input/output statement shall not perform output to9
any external unit other than the one specified by the unit dummy argument and shall not read from any external10
unit.11

14 While a parent data transfer statement is active, a data transfer statement that specifies an internal file is12
permitted.13

15 OPEN, CLOSE, BACKSPACE, ENDFILE, and REWIND statements shall not be executed while a parent data14
transfer statement is active.15

16 A defined input/output procedure may use a format specification with a DT edit descriptor for handling a16
component of the derived type that is itself of a derived type. A child data transfer statement that is a list17
directed or namelist input/output statement may contain a list item of derived type.18

17 Because a child data transfer statement does not position the file prior to data transfer, the child data transfer19
statement starts transferring data from where the file was positioned by the parent data transfer statement’s20
most recently processed effective item or edit descriptor. This is not necessarily at the beginning of a record.21

18 The edit descriptors T and TL used on unit by a child data transfer statement shall not cause the file to be22
positioned before the file position at the time the defined input/output procedure was invoked.23

NOTE 6
A defined input/output procedure could use INQUIRE to determine the settings of BLANK=, PAD=,
ROUND=, DECIMAL=, and DELIM= for an external unit. The INQUIRE statement provides values as
specified in 12.10.

19 Neither a parent nor child data transfer statement shall be asynchronous.24

20 A defined input/output procedure, and any procedures invoked therefrom, shall not define, nor cause to become25
undefined, any storage unit referenced by any input/output list item, the corresponding format, or any specifier26
in any active parent data transfer statement, except through the dtv argument.27

NOTE 7
A data transfer statement with an ID=, POS=, or REC= specifier cannot be a child data transfer statement
in a standard-conforming program.

NOTE 8
A simple example of derived type formatted output follows. The derived type variable chairman has two
components. The type and an associated write formatted procedure are defined in a module so as to be
accessible from wherever they might be needed. It would also be possible to check that iotype indeed has the
value ’DT’ and to set iostat and iomsg accordingly.

J3/23-007 251

J3/23-007 WD 1539-1 2023-02-17

NOTE 8 (cont.)
MODULE p

TYPE :: person
CHARACTER (LEN=20) :: name
INTEGER :: age

CONTAINS
PROCEDURE,PRIVATE :: pwf
GENERIC :: WRITE(FORMATTED) => pwf

END TYPE person

CONTAINS

SUBROUTINE pwf (dtv,unit,iotype,vlist,iostat,iomsg)
! argument definitions

CLASS(person), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: vlist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

! local variable
CHARACTER (LEN=9) :: pfmt

! vlist(1) and (2) are to be used as the field widths of the two
! components of the derived type variable. First set up the format to
! be used for output.

WRITE(pfmt,’(A,I2,A,I2,A)’) ’(A’, vlist(1), ’,I’, vlist(2), ’)’

! now the basic output statement
WRITE(unit, FMT=pfmt, IOSTAT=iostat) dtv%name, dtv%age

END SUBROUTINE pwf

END MODULE p

PROGRAM committee
USE p
INTEGER id, members
TYPE (person) :: chairman
. . .
WRITE(6, FMT="(I2, DT (15,6), I5)") id, chairman, members

! this writes a record with four fields, with lengths 2, 15, 6, 5
! respectively

END PROGRAM

NOTE 9
In the following example, the variables of the derived type node form a linked list, with a single value at each
node. The subroutine pwf is used to write the values in the list, one per line.

MODULE p

TYPE node
INTEGER :: value = 0

252 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 9 (cont.)
TYPE (NODE), POINTER :: next_node => NULL ()

CONTAINS
PROCEDURE,PRIVATE :: pwf
GENERIC :: WRITE(FORMATTED) => pwf

END TYPE node

CONTAINS

SUBROUTINE pwf (dtv,unit,iotype,vlist,iostat,iomsg)
! Write the chain of values, each on a separate line in I9 format.

CLASS(node), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: vlist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

WRITE(unit,’(i9 /)’, IOSTAT = iostat) dtv%value
IF(iostat/=0) RETURN
IF(ASSOCIATED(dtv%next_node)) WRITE(unit,’(dt)’, IOSTAT=iostat) dtv%next_node

END SUBROUTINE pwf

END MODULE p

12.6.4.8.4 Resolving defined input/output procedure references1

1 A suitable generic interface for defined input/output of an effective item is one that has a defined-io-generic-spec2
that is appropriate to the direction (read or write) and form (formatted or unformatted) of the data transfer3
as specified in 12.6.4.8.2, and has a specific interface whose dtv argument is compatible with the effective item4
according to the rules for argument association in 15.5.2.5.5

2 When an effective item (12.6.3) that is of derived type is encountered during a data transfer, defined input/output6
occurs if both of the following conditions are true.7

(1) The circumstances of the input/output are such that defined input/output is permitted; that is,8
either9

(a) the transfer was initiated by a list-directed, namelist, or unformatted input/output statement,10
or11

(b) a format specification is supplied for the data transfer statement, and the edit descriptor12
corresponding to the effective item is a DT edit descriptor.13

(2) A suitable defined input/output procedure is available; that is, either14

(a) the declared type of the effective item has a suitable generic type-bound procedure, or15

(b) a suitable generic interface is accessible.16

3 If (2a) is true, the procedure referenced is determined as for explicit type-bound procedure references (15.5); that17
is, the binding with the appropriate specific interface is located in the declared type of the effective item, and the18
corresponding binding in the dynamic type of the effective item is selected.19

4 If (2a) is false and (2b) is true, the reference is to the procedure identified by the appropriate specific interface20
in the interface block.21

J3/23-007 253

J3/23-007 WD 1539-1 2023-02-17

12.6.5 Termination of data transfer statements1

1 Termination of a data transfer statement occurs when2

• format processing encounters a colon or data edit descriptor and there are no remaining elements in the3
input-item-list or output-item-list,4

• unformatted or list-directed data transfer exhausts the input-item-list or output-item-list,5

• namelist output exhausts the namelist-group-object-list,6

• an error condition occurs,7

• an end-of-file condition occurs,8

• a slash (/) is encountered as a value separator (13.10, 13.11) in the record being read during list-directed9
or namelist input, or10

• an end-of-record condition occurs during execution of a nonadvancing input statement (12.11).11

12.7 Waiting on pending data transfer12

12.7.1 Wait operation13

1 Execution of an asynchronous data transfer statement in which neither an error, end-of-record, nor end-of-file14
condition occurs initiates a pending data transfer operation. There may be multiple pending data transfer15
operations for the same or multiple units simultaneously. A pending data transfer operation remains pending16
until a corresponding wait operation is performed. A wait operation can be performed by a BACKSPACE,17
CLOSE, ENDFILE, FLUSH, INQUIRE, PRINT, READ, REWIND, WAIT, or WRITE statement.18

2 A wait operation completes the processing of a pending data transfer operation. Each wait operation completes19
only a single data transfer operation, although a single statement may perform multiple wait operations.20

3 If the actual data transfer is not yet complete, the wait operation first waits for its completion. If the data21
transfer operation is an input operation that completed without error, the storage units of the input/output22
storage sequence then become defined with the values as described in 12.6.2.16 and 12.6.4.5.23

4 If any error, end-of-file, or end-of-record conditions occur, the applicable actions specified by the IOSTAT=,24
IOMSG=, ERR=, END=, and EOR= specifiers of the statement that performs the wait operation are taken.25

5 If an error or end-of-file condition occurs during a wait operation for a unit, the processor performs a wait26
operation for all pending data transfer operations for that unit.27

NOTE
Error, end-of-file, and end-of-record conditions can be raised either during the data transfer statement that
initiates asynchronous input/output, a subsequent asynchronous data transfer statement for the same unit, or
during the wait operation. If raised during a data transfer statement, they trigger actions according to the
IOSTAT=, ERR=, END=, and EOR= specifiers of that statement; if raised during the wait operation, the
actions are in accordance with the specifiers of the statement that performs the wait operation.

6 After completion of the wait operation, the data transfer operation and its input/output storage sequence are no28
longer considered to be pending.29

12.7.2 WAIT statement30

1 A WAIT statement performs a wait operation for specified pending asynchronous data transfer operations.31

R1222 wait-stmt is WAIT (wait-spec-list)32

R1223 wait-spec is [UNIT =] file-unit-number33
or END = label34

254 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

or EOR = label1
or ERR = label2
or ID = scalar-int-expr3
or IOMSG = iomsg-variable4
or IOSTAT = stat-variable5

C1238 No specifier shall appear more than once in a given wait-spec-list.6

C1239 A file-unit-number shall be specified in a wait-spec-list; if the optional characters UNIT= are omitted,7
the file-unit-number shall be the first item in the wait-spec-list.8

C1240 (R1223) The label in the ERR=, EOR=, or END= specifier shall be the statement label of a branch9
target statement that appears in the same inclusive scope as the WAIT statement.10

2 The IOSTAT=, ERR=, EOR=, END=, and IOMSG= specifiers are described in 12.11.11

3 The value of the expression specified in the ID= specifier shall be zero or the identifier of a pending data transfer12
operation for the specified unit. If the ID= specifier appears, a wait operation for the specified data transfer13
operation, if any, is performed. If the ID= specifier is omitted, wait operations for all pending data transfers for14
the specified unit are performed.15

4 Execution of a WAIT statement specifying a unit that does not exist, has no file connected to it, or is not open16
for asynchronous input/output is permitted, provided that the WAIT statement has no ID= specifier; such a17
WAIT statement does not cause an error or end-of-file condition to occur.18

NOTE
An EOR= specifier has no effect if the pending data transfer operation is not a nonadvancing read. An END=
specifier has no effect if the pending data transfer operation is not a READ.

12.8 File positioning statements19

12.8.1 Syntax20

R1224 backspace-stmt is BACKSPACE file-unit-number21
or BACKSPACE (position-spec-list)22

R1225 endfile-stmt is ENDFILE file-unit-number23
or ENDFILE (position-spec-list)24

R1226 rewind-stmt is REWIND file-unit-number25
or REWIND (position-spec-list)26

1 A unit that is connected for direct access shall not be referred to by a BACKSPACE, ENDFILE, or REWIND27
statement. A unit that is connected for unformatted stream access shall not be referred to by a BACKSPACE28
statement. A unit that is connected with an ACTION= specifier having the value READ shall not be referred29
to by an ENDFILE statement.30

R1227 position-spec is [UNIT =] file-unit-number31
or IOMSG = iomsg-variable32
or IOSTAT = stat-variable33
or ERR = label34

C1241 No specifier shall appear more than once in a given position-spec-list.35

C1242 A file-unit-number shall be specified in a position-spec-list; if the optional characters UNIT= are omitted,36
the file-unit-number shall be the first item in the position-spec-list.37

2 25538

J3/23-007 255

J3/23-007 WD 1539-1 2023-02-17

C1243 (R1227) The label in the ERR= specifier shall be the statement label of a branch target statement that1
appears in the same inclusive scope as the file positioning statement.2

3 The IOSTAT=, ERR=, and IOMSG= specifiers are described in 12.11.3

4 Execution of a file positioning statement performs a wait operation for all pending asynchronous data transfer4
operations for the specified unit.5

12.8.2 BACKSPACE statement6

1 Execution of a BACKSPACE statement causes the file connected to the specified unit to be positioned before7
the current record if there is a current record, or before the preceding record if there is no current record. If the8
file is at its initial point, the position of the file is not changed.9

NOTE 1
If the preceding record is an endfile record, the file is positioned before the endfile record.

2 If a BACKSPACE statement causes the implicit writing of an endfile record, the file is positioned before the10
record that precedes the endfile record.11

3 Backspacing a file that is connected but does not exist is prohibited.12

4 Backspacing over records written using list-directed or namelist formatting is prohibited.13

NOTE 2
An example of a BACKSPACE statement is:

BACKSPACE (10, IOSTAT = N)

12.8.3 ENDFILE statement14

1 Execution of an ENDFILE statement for a file connected for sequential access writes an endfile record as the next15
record of the file. The file is then positioned after the endfile record, which becomes the last record of the file.16
If the file can also be connected for direct access, only those records before the endfile record are considered to17
have been written. Thus, only those records shall be read during subsequent direct access connections to the file.18

2 After execution of an ENDFILE statement for a file connected for sequential access, a BACKSPACE or REWIND19
statement shall be used to reposition the file prior to execution of any data transfer input/output statement or20
ENDFILE statement.21

3 Execution of an ENDFILE statement for a file connected for stream access causes the terminal point of the file22
to become equal to the current file position. Only file storage units before the current position are considered23
to have been written; thus only those file storage units shall be subsequently read. Subsequent stream output24
statements may be used to write further data to the file.25

4 Execution of an ENDFILE statement for a file that is connected but does not exist creates the file; if the file is26
connected for sequential access, it is created prior to writing the endfile record.27

NOTE
An example of an ENDFILE statement is:

ENDFILE K

12.8.4 REWIND statement28

1 Execution of a REWIND statement causes the specified file to be positioned at its initial point.29

256 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
If the file is already positioned at its initial point, execution of this statement has no effect on the position of
the file.

2 Execution of a REWIND statement for a file that is connected but does not exist is permitted and has no effect1
on any file.2

NOTE 2
An example of a REWIND statement is:

REWIND 10

12.9 FLUSH statement3

R1228 flush-stmt is FLUSH file-unit-number4
or FLUSH (flush-spec-list)5

R1229 flush-spec is [UNIT =] file-unit-number6
or IOSTAT = stat-variable7
or IOMSG = iomsg-variable8
or ERR = label9

C1244 No specifier shall appear more than once in a given flush-spec-list.10

C1245 A file-unit-number shall be specified in a flush-spec-list; if the optional characters UNIT= are omitted11
from the unit specifier, the file-unit-number shall be the first item in the flush-spec-list.12

C1246 (R1229) The label in the ERR= specifier shall be the statement label of a branch target statement that13
appears in the same inclusive scope as the FLUSH statement.14

1 The IOSTAT=, IOMSG= and ERR= specifiers are described in 12.11.15

2 Execution of a FLUSH statement causes data written to an external file to be available to other processes, or16
causes data placed in an external file by means other than Fortran to be available to a READ statement. These17
actions are processor dependent.18

3 Execution of a FLUSH statement for a file that is connected but does not exist is permitted and has no effect on19
any file. A FLUSH statement has no effect on file position.20

4 Execution of a FLUSH statement performs a wait operation for all pending asynchronous data transfer operations21
for the specified unit.22

NOTE 1
Because this document does not specify the mechanism of file storage, the exact meaning of the flush operation
is not precisely defined. It is expected that the flush operation will make all data written to a file available to
other processes or devices, or make data recently added to a file by other processes or devices available to the
program via a subsequent read operation. This is commonly called “flushing input/output buffers”.

NOTE 2
An example of a FLUSH statement is:

FLUSH (10, IOSTAT = N)

J3/23-007 257

J3/23-007 WD 1539-1 2023-02-17

12.10 File inquiry statement1

12.10.1 Forms of the INQUIRE statement2

1 The INQUIRE statement can be used to inquire about properties of a particular named file, of the connection3
to a particular unit, or the number of file storage units required for an output list. There are three forms of the4
INQUIRE statement: inquire by file, which uses the FILE= specifier, inquire by unit, which uses the UNIT=5
specifier, and inquire by output list, which uses only the IOLENGTH= specifier. Assignments to specifier variables6
are converted, truncated, or padded according to the rules of intrinsic assignment.7

2 For inquiry by unit, the unit specified need not exist or be connected to a file. If it is connected to a file, the8
inquiry is being made about the connection and about the file connected.9

3 For inquiry by file, the file specified need not exist or be connected to a unit. If it is connected to a unit, the10
inquiry is being made about the connection as well as about the file.11

4 An INQUIRE statement may be executed before, while, or after a file is connected to a unit. All values assigned12
by an INQUIRE statement are those that are current at the time the statement is executed.13

R1230 inquire-stmt is INQUIRE (inquire-spec-list)14
or INQUIRE (IOLENGTH = scalar-int-variable)15

output-item-list16

NOTE
Examples of INQUIRE statements are:

INQUIRE (IOLENGTH = IOL) A (1:N)
INQUIRE (UNIT = JOAN, OPENED = LOG_01, NAMED = LOG_02, &

FORM = CHAR_VAR, IOSTAT = IOS)

12.10.2 Inquiry specifiers17

12.10.2.1 Syntax18

1 Unless constrained, the following inquiry specifiers may be used in either of the inquire by file or inquire by unit19
forms of the INQUIRE statement.20

R1231 inquire-spec is [UNIT =] file-unit-number21
or FILE = file-name-expr22
or ACCESS = scalar-default-char-variable23
or ACTION = scalar-default-char-variable24
or ASYNCHRONOUS = scalar-default-char-variable25
or BLANK = scalar-default-char-variable26
or DECIMAL = scalar-default-char-variable27
or DELIM = scalar-default-char-variable28
or DIRECT = scalar-default-char-variable29
or ENCODING = scalar-default-char-variable30
or ERR = label31
or EXIST = scalar-logical-variable32
or FORM = scalar-default-char-variable33
or FORMATTED = scalar-default-char-variable34
or ID = scalar-int-expr35
or IOMSG = iomsg-variable36
or IOSTAT = stat-variable37
or LEADING_ZERO = scalar-default-char-variable38
or NAME = scalar-default-char-variable39
or NAMED = scalar-logical-variable40

258 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

or NEXTREC = scalar-int-variable1
or NUMBER = scalar-int-variable2
or OPENED = scalar-logical-variable3
or PAD = scalar-default-char-variable4
or PENDING = scalar-logical-variable5
or POS = scalar-int-variable6
or POSITION = scalar-default-char-variable7
or READ = scalar-default-char-variable8
or READWRITE = scalar-default-char-variable9
or RECL = scalar-int-variable10
or ROUND = scalar-default-char-variable11
or SEQUENTIAL = scalar-default-char-variable12
or SIGN = scalar-default-char-variable13
or SIZE = scalar-int-variable14
or STREAM = scalar-default-char-variable15
or UNFORMATTED = scalar-default-char-variable16
or WRITE = scalar-default-char-variable17

C1247 No specifier shall appear more than once in a given inquire-spec-list.18

C1248 An inquire-spec-list shall contain one FILE= specifier or one file-unit-number , but not both.19

C1249 In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are omitted,20
the file-unit-number shall be the first item in the inquire-spec-list.21

C1250 If an ID= specifier appears in an inquire-spec-list, a PENDING= specifier shall also appear.22

C1251 (R1229) The label in the ERR= specifier shall be the statement label of a branch target statement that23
appears in the same inclusive scope as the INQUIRE statement.24

2 If file-unit-number identifies an internal unit (12.6.4.8.2), an error condition occurs.25

3 When a returned value of a specifier other than the NAME= specifier is of type character, the value returned is26
in upper case.27

4 If an error condition occurs during execution of an INQUIRE statement, all of the inquiry specifier variables28
become undefined, except for variables in the IOSTAT= and IOMSG= specifiers (if any).29

5 The IOSTAT=, ERR=, and IOMSG= specifiers are described in 12.11.30

12.10.2.2 FILE= specifier in the INQUIRE statement31

1 The value of the file-name-expr in the FILE= specifier specifies the name of the file being inquired about. The32
named file need not exist or be connected to a unit. The value of the file-name-expr shall be of a form acceptable33
to the processor as a file name. Any trailing blanks are ignored. The interpretation of case is processor dependent.34

12.10.2.3 ACCESS= specifier in the INQUIRE statement35

1 The scalar-default-char-variable in the ACCESS= specifier is assigned the value SEQUENTIAL if the connection36
is for sequential access, DIRECT if the connection is for direct access, or STREAM if the connection is for stream37
access. If there is no connection, it is assigned the value UNDEFINED.38

12.10.2.4 ACTION= specifier in the INQUIRE statement39

1 The scalar-default-char-variable in the ACTION= specifier is assigned the value READ if the connection is for40
input only, WRITE if the connection is for output only, and READWRITE if the connection is for both input41
and output. If there is no connection, the scalar-default-char-variable is assigned the value UNDEFINED.42

J3/23-007 259

J3/23-007 WD 1539-1 2023-02-17

12.10.2.5 ASYNCHRONOUS= specifier in the INQUIRE statement1

1 The scalar-default-char-variable in the ASYNCHRONOUS= specifier is assigned the value YES if the connection2
allows asynchronous input/output; it is assigned the value NO if the connection does not allow asynchronous3
input/output. If there is no connection, the scalar-default-char-variable is assigned the value UNDEFINED.4

12.10.2.6 BLANK= specifier in the INQUIRE statement5

1 The scalar-default-char-variable in the BLANK= specifier is assigned the value ZERO or NULL, corresponding6
to the blank interpretation mode in effect for a connection for formatted input/output. If there is no connection,7
or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the value8
UNDEFINED.9

12.10.2.7 DECIMAL= specifier in the INQUIRE statement10

1 The scalar-default-char-variable in the DECIMAL= specifier is assigned the value COMMA or POINT, corres-11
ponding to the decimal edit mode in effect for a connection for formatted input/output. If there is no connection,12
or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the value13
UNDEFINED.14

12.10.2.8 DELIM= specifier in the INQUIRE statement15

1 The scalar-default-char-variable in the DELIM= specifier is assigned the value APOSTROPHE, QUOTE, or16
NONE, corresponding to the delimiter mode in effect for a connection for formatted input/output. If there is no17
connection or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the18
value UNDEFINED.19

12.10.2.9 DIRECT= specifier in the INQUIRE statement20

1 The scalar-default-char-variable in the DIRECT= specifier is assigned the value YES if DIRECT is included in21
the set of allowed access methods for the file, NO if DIRECT is not included in the set of allowed access methods22
for the file, and UNKNOWN if the processor is unable to determine whether DIRECT is included in the set of23
allowed access methods for the file or if the unit identified by file-unit-number is not connected to a file.24

12.10.2.10 ENCODING= specifier in the INQUIRE statement25

1 The scalar-default-char-variable in the ENCODING= specifier is assigned the value UTF-8 if the connection is26
for formatted input/output with an encoding form of UTF-8, and is assigned the value UNDEFINED if the27
connection is for unformatted input/output. If there is no connection, it is assigned the value UTF-8 if the28
processor is able to determine that the encoding form of the file is UTF-8; if the processor is unable to determine29
the encoding form of the file or if the unit identified by file-unit-number is not connected to a file, the variable is30
assigned the value UNKNOWN.31

NOTE
The value assigned could be something other than UTF-8, UNDEFINED, or UNKNOWN if the processor
supports other specific encoding forms (e.g. UTF-16BE).

12.10.2.11 EXIST= specifier in the INQUIRE statement32

1 Execution of an INQUIRE by file statement causes the scalar-logical-variable in the EXIST= specifier to be33
assigned the value true if there exists a file with the specified name; otherwise, false is assigned. Execution of an34
INQUIRE by unit statement causes true to be assigned if the specified unit exists; otherwise, false is assigned.35

12.10.2.12 FORM= specifier in the INQUIRE statement36

1 The scalar-default-char-variable in the FORM= specifier is assigned the value FORMATTED if the connection37
is for formatted input/output, and is assigned the value UNFORMATTED if the connection is for unformatted38

260 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

input/output. If there is no connection, it is assigned the value UNDEFINED.1

12.10.2.13 FORMATTED= specifier in the INQUIRE statement2

1 The scalar-default-char-variable in the FORMATTED= specifier is assigned the value YES if FORMATTED is3
included in the set of allowed forms for the file, NO if FORMATTED is not included in the set of allowed forms4
for the file, and UNKNOWN if the processor is unable to determine whether FORMATTED is included in the5
set of allowed forms for the file or if the unit identified by file-unit-number is not connected to a file.6

12.10.2.14 ID= specifier in the INQUIRE statement7

1 The value of the expression specified in the ID= specifier shall be the identifier of a pending data transfer operation8
for the specified unit. This specifier interacts with the PENDING= specifier (12.10.2.22).9

12.10.2.15 LEADING_ZERO= specifier in the INQUIRE statement10

1 The scalar-default-char-variable in the LEADING_ZERO= specifier is assigned the value PRINT, SUPPRESS,11
or PROCESSOR_DEFINED, corresponding to the leading zero mode in effect for a connection for formatted12
input/output. If there is no connection, or if the connection is not for formatted input/output, the scalar-default-13
char-variable is assigned the value UNDEFINED.14

12.10.2.16 NAME= specifier in the INQUIRE statement15

1 The scalar-default-char-variable in the NAME= specifier is assigned the value of the name of the file if the file16
has a name; otherwise, it becomes undefined. The value assigned shall be suitable for use as the value of the17
file-name-expr in the FILE= specifier in an OPEN statement.18

NOTE
If this specifier appears in an INQUIRE by file statement, its value is not necessarily the same as the name
given in the FILE= specifier.

The processor could assign a file name qualified by a user identification, device, directory, or other relevant
information.

2 The case of the characters assigned to scalar-default-char-variable is processor dependent.19

12.10.2.17 NAMED= specifier in the INQUIRE statement20

1 The scalar-logical-variable in the NAMED= specifier is assigned the value true if the file has a name; otherwise,21
it is assigned the value false.22

12.10.2.18 NEXTREC= specifier in the INQUIRE statement23

1 The scalar-int-variable in the NEXTREC= specifier is assigned the value n + 1, where n is the record number of24
the last record read from or written to the connection for direct access. If there is a connection but no records have25
been read or written since the connection, the scalar-int-variable is assigned the value 1. If there is no connection,26
the connection is not for direct access, or the position is indeterminate because of a previous error condition, the27
scalar-int-variable becomes undefined. If there are pending data transfer operations for the specified unit, the28
value assigned is computed as if all the pending data transfers had already completed.29

12.10.2.19 NUMBER= specifier in the INQUIRE statement30

1 Execution of an INQUIRE by file statement causes the scalar-int-variable in the NUMBER= specifier to be31
assigned the value of the external unit number of the unit that is connected to the file. If more than one unit32
on an image is connected to the file, which of the connected external unit numbers is assigned to the scalar-int-33
variable is processor dependent. If there is no unit connected to the file, the value −1 is assigned. Execution of34
an INQUIRE by unit statement causes the scalar-int-variable to be assigned the value of file-unit-number .35

J3/23-007 261

J3/23-007 WD 1539-1 2023-02-17

12.10.2.20 OPENED= specifier in the INQUIRE statement1

1 Execution of an INQUIRE by file statement causes the scalar-logical-variable in the OPENED= specifier to be2
assigned the value true if the file specified is connected to a unit; otherwise, false is assigned. Execution of an3
INQUIRE by unit statement causes the scalar-logical-variable to be assigned the value true if the specified unit4
is connected to a file; otherwise, false is assigned.5

12.10.2.21 PAD= specifier in the INQUIRE statement6

1 The scalar-default-char-variable in the PAD= specifier is assigned the value YES or NO, corresponding to the7
pad mode in effect for a connection for formatted input/output. If there is no connection or if the connection is8
not for formatted input/output, the scalar-default-char-variable is assigned the value UNDEFINED.9

12.10.2.22 PENDING= specifier in the INQUIRE statement10

1 The PENDING= specifier is used to determine whether previously pending asynchronous data transfers are11
complete. A data transfer operation is previously pending if it is pending at the beginning of execution of the12
INQUIRE statement.13

2 If an ID= specifier appears and the specified data transfer operation is complete, then the variable specified in14
the PENDING= specifier is assigned the value false and the INQUIRE statement performs the wait operation15
for the specified data transfer.16

3 If the ID= specifier is omitted and all previously pending data transfer operations for the specified unit are17
complete, then the variable specified in the PENDING= specifier is assigned the value false and the INQUIRE18
statement performs wait operations for all previously pending data transfers for the specified unit.19

4 In all other cases, the variable specified in the PENDING= specifier is assigned the value true, no wait operations20
are performed, and the previously pending data transfers remain pending after the execution of the INQUIRE21
statement.22

NOTE
The processor has considerable flexibility in defining when it considers a transfer to be complete. Any of the
following approaches could be used:

• The INQUIRE statement could consider an asynchronous data transfer to be incomplete until after the
corresponding wait operation. In this case PENDING= would always return true unless there were no
previously pending data transfers for the unit.

• The INQUIRE statement could wait for all specified data transfers to complete and then always return
false for PENDING=.

• The INQUIRE statement could actually test the state of the specified data transfer operations.

12.10.2.23 POS= specifier in the INQUIRE statement23

1 The scalar-int-variable in the POS= specifier is assigned the number of the file storage unit immediately following24
the current position of a file connected for stream access. If the file is positioned at its terminal position, the25
variable is assigned a value one greater than the number of the highest-numbered file storage unit in the file.26
If there are pending data transfer operations for the specified unit, the value assigned is computed as if all the27
pending data transfers had already completed. If there is no connection, the file is not connected for stream28
access, or if the position of the file is indeterminate because of previous error conditions, the variable becomes29
undefined.30

12.10.2.24 POSITION= specifier in the INQUIRE statement31

1 The scalar-default-char-variable in the POSITION= specifier is assigned the value REWIND if the connection32
was opened for positioning at its initial point, APPEND if the connection was opened for positioning before its33

262 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

endfile record or at its terminal point, and ASIS if the connection was opened without changing its position.1
If there is no connection or if the file is connected for direct access, the scalar-default-char-variable is assigned2
the value UNDEFINED. If the file has been repositioned since the connection, the scalar-default-char-variable3
is assigned a processor-dependent value, which shall not be REWIND unless the file is positioned at its initial4
point and shall not be APPEND unless the file is positioned so that its endfile record is the next record or at its5
terminal point if it has no endfile record.6

12.10.2.25 READ= specifier in the INQUIRE statement7

1 The scalar-default-char-variable in the READ= specifier is assigned the value YES if READ is included in the8
set of allowed actions for the file, NO if READ is not included in the set of allowed actions for the file, and9
UNKNOWN if the processor is unable to determine whether READ is included in the set of allowed actions for10
the file or if the unit identified by file-unit-number is not connected to a file.11

12.10.2.26 READWRITE= specifier in the INQUIRE statement12

1 The scalar-default-char-variable in the READWRITE= specifier is assigned the value YES if READWRITE is13
included in the set of allowed actions for the file, NO if READWRITE is not included in the set of allowed actions14
for the file, and UNKNOWN if the processor is unable to determine whether READWRITE is included in the15
set of allowed actions for the file or if the unit identified by file-unit-number is not connected to a file.16

12.10.2.27 RECL= specifier in the INQUIRE statement17

1 The scalar-int-variable in the RECL= specifier is assigned the value of the record length of a connection for direct18
access, or the value of the maximum record length of a connection for sequential access. If the connection is for19
formatted input/output, the length is the number of characters for all records that contain only characters of20
default kind. If the connection is for unformatted input/output, the length is measured in file storage units. If21
there is no connection, the scalar-int-variable is assigned the value −1, and if the connection is for stream access,22
the scalar-int-variable is assigned the value −2.23

12.10.2.28 ROUND= specifier in the INQUIRE statement24

1 The scalar-default-char-variable in the ROUND= specifier is assigned the value UP, DOWN, ZERO, NEAREST,25
COMPATIBLE, or PROCESSOR_DEFINED, corresponding to the input/output rounding mode in effect for26
a connection for formatted input/output. If there is no connection or if the connection is not for formatted27
input/output, the scalar-default-char-variable is assigned the value UNDEFINED. The processor shall return the28
value PROCESSOR_DEFINED only if the behavior of the input/output rounding mode is different from that29
of the UP, DOWN, ZERO, NEAREST, and COMPATIBLE modes.30

12.10.2.29 SEQUENTIAL= specifier in the INQUIRE statement31

1 The scalar-default-char-variable in the SEQUENTIAL= specifier is assigned the value YES if SEQUENTIAL is32
included in the set of allowed access methods for the file, NO if SEQUENTIAL is not included in the set of allowed33
access methods for the file, and UNKNOWN if the processor is unable to determine whether SEQUENTIAL is34
included in the set of allowed access methods for the file or if the unit identified by file-unit-number is not35
connected to a file.36

12.10.2.30 SIGN= specifier in the INQUIRE statement37

1 The scalar-default-char-variable in the SIGN= specifier is assigned the value PLUS, SUPPRESS, or PRO-38
CESSOR_DEFINED, corresponding to the sign mode in effect for a connection for formatted input/output.39
If there is no connection, or if the connection is not for formatted input/output, the scalar-default-char-variable40
is assigned the value UNDEFINED.41

J3/23-007 263

J3/23-007 WD 1539-1 2023-02-17

12.10.2.31 SIZE= specifier in the INQUIRE statement1

1 The scalar-int-variable in the SIZE= specifier is assigned the size of the file in file storage units. If the file size2
cannot be determined or if the unit identified by file-unit-number is not connected to a file, the variable is assigned3
the value −1.4

2 For a file that can be connected for stream access, the file size is the number of the highest-numbered file storage5
unit in the file.6

3 For a file that can be connected for sequential or direct access, the file size may be different from the number of7
storage units implied by the data in the records; the exact relationship is processor dependent.8

4 If there are pending data transfer operations for the specified unit, the value assigned is computed as if all the9
pending data transfers had already completed.10

12.10.2.32 STREAM= specifier in the INQUIRE statement11

1 The scalar-default-char-variable in the STREAM= specifier is assigned the value YES if STREAM is included in12
the set of allowed access methods for the file, NO if STREAM is not included in the set of allowed access methods13
for the file, and UNKNOWN if the processor is unable to determine whether STREAM is included in the set of14
allowed access methods for the file or if the unit identified by file-unit-number is not connected to a file.15

12.10.2.33 UNFORMATTED= specifier in the INQUIRE statement16

1 The scalar-default-char-variable in the UNFORMATTED= specifier is assigned the value YES if UNFORMAT-17
TED is included in the set of allowed forms for the file, NO if UNFORMATTED is not included in the set of18
allowed forms for the file, and UNKNOWN if the processor is unable to determine whether UNFORMATTED is19
included in the set of allowed forms for the file or if the unit identified by file-unit-number is not connected to a20
file.21

12.10.2.34 WRITE= specifier in the INQUIRE statement22

1 The scalar-default-char-variable in the WRITE= specifier is assigned the value YES if WRITE is included in the23
set of allowed actions for the file, NO if WRITE is not included in the set of allowed actions for the file, and24
UNKNOWN if the processor is unable to determine whether WRITE is included in the set of allowed actions for25
the file or if the unit identified by file-unit-number is not connected to a file.26

12.10.3 Inquire by output list27

1 The scalar-int-variable in the IOLENGTH= specifier is assigned the processor-dependent number of file storage28
units that would be required to store the data of the output list in an unformatted file. The value shall be suitable29
as a RECL= specifier in an OPEN statement that connects a file for unformatted direct access if data will be30
read from or written to the file using data transfer statements with an input/output list that specifies transfer of31
a sequence of objects having the same types, type parameters, and extents, in the same order as the output list32
in the INQUIRE statement.33

2 The output list in an INQUIRE statement shall not contain any derived-type list items that require a defined34
input/output procedure as described in 12.6.3. If a derived-type list item appears in the output list, the value35
returned for the IOLENGTH= specifier assumes that no defined input/output procedure will be invoked.36

12.11 Error, end-of-record, and end-of-file conditions37

12.11.1 Occurrence of input/output conditions38

1 The set of input/output error conditions is processor dependent. Except as otherwise specified, when an error39
condition occurs or is detected is processor dependent.40

264 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 An end-of-record condition occurs when a nonadvancing input statement attempts to transfer data from a position1
beyond the end of the current record, unless the file is a stream file and the current record is at the end of the2
file (an end-of-file condition occurs instead).3

3 An end-of-file condition occurs when4
• an endfile record is encountered during the reading of a file connected for sequential access,5

• an attempt is made to read a record beyond the end of an internal file, or6

• an attempt is made to read beyond the end of a stream file.7

4 An end-of-file condition may occur at the beginning of execution of an input statement. An end-of-file condition8
also may occur during execution of a formatted input statement when more than one record is required by the9
interaction of the input list and the format. An end-of-file condition also may occur during execution of a stream10
input statement.11

12.11.2 Error conditions and the ERR= specifier12

1 If an error condition occurs during execution of an input/output statement, the position of the file becomes13
indeterminate.14

2 If an error condition occurs during execution of an input/output statement that contains neither an ERR= nor15
IOSTAT= specifier, error termination is initiated. If an error condition occurs during execution of an input/output16
statement that contains either an ERR= specifier or an IOSTAT= specifier then:17

(1) processing of the input/output list, if any, terminates;18

(2) if the statement is a data transfer statement or the error condition occurs during a wait operation,19
all do-variables in the statement that initiated the transfer become undefined;20

(3) if an IOSTAT= specifier appears, the stat-variable in the IOSTAT= specifier becomes defined as21
specified in 12.11.5;22

(4) if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 12.11.6;23

(5) if the statement is a READ statement and it contains a SIZE= specifier, the scalar-int-variable in24
the SIZE= specifier becomes defined as specified in 12.6.2.16;25

(6) if the statement is a READ statement or the error condition occurs in a wait operation for a transfer26
initiated by a READ statement, all input items or namelist group objects in the statement that27
initiated the transfer become undefined;28

(7) if an ERR= specifier appears, a branch to the statement labeled by the label in the ERR= specifier29
occurs.30

12.11.3 End-of-file condition and the END= specifier31

1 If an end-of-file condition occurs during execution of an input/output statement that contains neither an END=32
specifier nor an IOSTAT= specifier, error termination is initiated. If an end-of-file condition occurs during33
execution of an input/output statement that contains either an END= specifier or an IOSTAT= specifier, and34
an error condition does not occur then:35

(1) processing of the input list, if any, terminates;36

(2) if the statement is a data transfer statement or the end-of-file condition occurs during a wait operation,37
all do-variables in the statement that initiated the transfer become undefined;38

(3) if the statement is an input statement or the end-of-file condition occurs during a wait operation39
for a transfer initiated by an input statement, all effective items resulting from the expansion of list40
items or the namelist group in the statement that initiated the transfer become undefined;41

(4) if the file specified in the input statement is an external record file, it is positioned after the endfile42
record;43

(5) if an IOSTAT= specifier appears, the stat-variable in the IOSTAT= specifier becomes defined as44
specified in 12.11.5;45

J3/23-007 265

J3/23-007 WD 1539-1 2023-02-17

(6) if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 12.11.6;1

(7) if an END= specifier appears, a branch to the statement labeled by the label in the END= specifier2
occurs.3

12.11.4 End-of-record condition and the EOR= specifier4

1 If an end-of-record condition occurs during execution of an input/output statement that contains neither an5
EOR= specifier nor an IOSTAT= specifier, error termination is initiated. If an end-of-record condition occurs6
during execution of an input/output statement that contains either an EOR= specifier or an IOSTAT= specifier,7
and an error condition does not occur then:8

(1) if the pad mode has the value9

(a) YES, the record is padded with blanks to satisfy the effective item (12.6.4.5.3) and correspond-10
ing data edit descriptors that require more characters than the record contains,11

(b) NO, the effective item becomes undefined;12

(2) processing of the input list, if any, terminates;13

(3) if the statement is a data transfer statement or the end-of-record condition occurs during a wait14
operation, all do-variables in the statement that initiated the transfer become undefined;15

(4) the file specified in the input statement is positioned after the current record;16

(5) if an IOSTAT= specifier appears, the stat-variable in the IOSTAT= specifier becomes defined as17
specified in 12.11.5;18

(6) if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 12.11.6;19

(7) if a SIZE= specifier appears, the scalar-int-variable in the SIZE= specifier becomes defined as spe-20
cified in (12.6.2.16);21

(8) if an EOR= specifier appears, a branch to the statement labeled by the label in the EOR= specifier22
occurs.23

12.11.5 IOSTAT= specifier24

1 Execution of an input/output statement containing the IOSTAT= specifier causes the stat-variable in the IO-25
STAT= specifier to become defined with26

• a zero value if neither an error condition, an end-of-file condition, nor an end-of-record condition occurs,27

• the processor-dependent positive integer value of the constant IOSTAT_INQUIRE_INTERNAL_UNIT28
from the intrinsic module ISO_FORTRAN_ENV (16.10.2) if a unit number in an INQUIRE statement29
identifies an internal file,30

• a processor-dependent positive integer value different from IOSTAT_INQUIRE_INTERNAL_UNIT if any31
other error condition occurs,32

• the processor-dependent negative integer value of the constant IOSTAT_END (16.10.2.16) from the intrinsic33
module ISO_FORTRAN_ENV if an end-of-file condition occurs and no error condition occurs,34

• the processor-dependent negative integer value of the constant IOSTAT_EOR (16.10.2.17) from the intrinsic35
module ISO_FORTRAN_ENV if an end-of-record condition occurs and no error condition or end-of-file36
condition occurs, or37

• a processor-dependent negative integer value different from IOSTAT_EOR and IOSTAT_END, if the IO-38
STAT= specifier appears in a FLUSH statement and the processor does not support the flush operation for39
the specified unit.40

NOTE
An end-of-file condition can occur only for sequential or stream input and an end-of-record condition can occur
only for nonadvancing input. For example,

READ (FMT = "(E8.3)", UNIT = 3, IOSTAT = IOSS) X
IF (IOSS < 0) THEN

266 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE (cont.)
! Perform end-of-file processing on the file connected to unit 3.
CALL END_PROCESSING

ELSE IF (IOSS > 0) THEN
! Perform error processing
CALL ERROR_PROCESSING

END IF

12.11.6 IOMSG= specifier1

1 If an error, end-of-file, or end-of-record condition occurs during execution of an input/output statement, iomsg-2
variable is assigned an explanatory message, as if by intrinsic assignment. If no such condition occurs, the3
definition status and value of iomsg-variable are unchanged.4

12.12 Restrictions on input/output statements5

1 If a unit, or a file connected to a unit, does not have all of the properties required for the execution of certain6
input/output statements, those statements shall not refer to the unit.7

2 An input/output statement that is executed while another input/output statement is being executed is a recursive8
input/output statement. A recursive input/output statement shall not identify an external unit that is identified9
by another input/output statement being executed except that a child data transfer statement may identify its10
parent data transfer statement external unit.11

3 An input/output statement shall not cause the value of any established format specification to be modified.12

4 A recursive input/output statement shall not modify the value of any internal unit except that a recursive WRITE13
statement may modify the internal unit identified by that recursive WRITE statement.14

5 The value of a specifier in an input/output statement shall not depend on the definition or evaluation of any other15
specifier in the io-control-spec-list or inquire-spec-list in that statement. The value of an internal-file-variable or16
of a FMT=, ID=, IOMSG=, IOSTAT=, or SIZE= specifier shall not depend on the value of any input-item or17
io-implied-do do-variable in the same statement.18

6 The value of any subscript or substring bound of a variable that appears in a specifier in an input/output19
statement shall not depend on any input-item, io-implied-do do-variable, or on the definition or evaluation of any20
other specifier in the io-control-spec-list or inquire-spec-list in that statement.21

7 In a data transfer statement, the variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier, if any, shall22
not be associated with any entity in the data transfer input/output list (12.6.3) or namelist-group-object-list, nor23
with a do-variable of an io-implied-do in the data transfer input/output list.24

8 In a data transfer statement, if a variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier is an array25
element reference, its subscript values shall not be affected by the data transfer, the io-implied-do processing, or26
the definition or evaluation of any other specifier in the io-control-spec-list.27

9 A variable that can become defined or undefined as a result of its use in a specifier in an INQUIRE statement,28
or any associated entity, shall not appear in another specifier in the same INQUIRE statement.29

NOTE
Restrictions on the evaluation of expressions (10.1.4) prohibit certain side effects.

J3/23-007 267

J3/23-007 WD 1539-1 2023-02-17

13 Input/output editing1

13.1 Format specifications2

1 A format used in conjunction with a data transfer statement provides information that directs the editing between3
the internal representation of data and the characters of a sequence of formatted records.4

2 A format (12.6.2.2) in a data transfer statement can refer to a FORMAT statement or to a character expression5
that contains a format specification. A format specification provides explicit editing information. The format6
alternatively can be an asterisk (*), which indicates list-directed formatting (13.10). Namelist formatting (13.11)7
is indicated by specifying a namelist-group-name instead of a format.8

13.2 Explicit format specification methods9

13.2.1 FORMAT statement10

R1301 format-stmt is FORMAT format-specification11

R1302 format-specification is ([format-items])12
or ([format-items,] unlimited-format-item)13

C1301 (R1301) The format-stmt shall be labeled.14

1 Blank characters may precede the initial left parenthesis of the format specification. Additional blank characters15
may appear at any point within the format specification, with no effect on the interpretation of the format16
specification, except within a character string edit descriptor (13.9).17

NOTE
Examples of FORMAT statements are:

5 FORMAT (1PE12.4, I10)
9 FORMAT (I12, /, ’ Dates: ’, 2 (2I3, I5))

13.2.2 Character format specification18

1 A character expression used as a format in a formatted input/output statement shall evaluate to a character19
string whose leading part is a valid format specification.20

NOTE 1
The format specification begins with a left parenthesis and ends with a right parenthesis.

2 All character positions up to and including the final right parenthesis of the format specification shall be defined21
at the time the data transfer statement is executed, and shall not become redefined or undefined during the22
execution of the statement. Character positions, if any, following the right parenthesis that ends the format23
specification need not be defined and may contain any character data with no effect on the interpretation of the24
format specification.25

3 If the format is a character array, it is treated as if all of the elements of the array were specified in array element26
order and were concatenated. However, if a format is a character array element, the format specification shall be27
entirely within that array element.28

268 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 2
If a character constant is used as a format in data transfer statement, care needs to be taken that the value
of the character constant is a valid format specification. In particular, if a format specification delimited by
apostrophes contains a character constant edit descriptor delimited with apostrophes, two apostrophes are
needed to delimit the edit descriptor and four apostrophes are needed for each apostrophe that occurs within
the edit descriptor. For example, the text:
2 ISN’T 3

can be written by various combinations of output statements and format specifications:
WRITE (6, 100) 2, 3

100 FORMAT (1X, I1, 1X, ’ISN’’T’, 1X, I1)
WRITE (6, ’(1X, I1, 1X, ’’ISN’’’’T’’, 1X, I1)’) 2, 3
WRITE (6, ’(A)’) ’ 2 ISN’’T 3’

Doubling of internal apostrophes usually can be avoided by using quotation marks to delimit the format spe-
cification and doubling of internal quotation marks usually can be avoided by using apostrophes as delimiters.

13.3 Form of a format item list1

13.3.1 Syntax2

R1303 format-items is format-item [[,] format-item] ...3

R1304 format-item is [r] data-edit-desc4
or control-edit-desc5
or char-string-edit-desc6
or [r] (format-items)7

R1305 unlimited-format-item is * (format-items)8

R1306 r is int-literal-constant9

C1302 (R1303) The optional comma shall not be omitted except10

• between a P edit descriptor and an immediately following F, E, EN, ES, EX, D, or G edit descriptor11
(13.8.6), possibly preceded by a repeat specification,12

• before a slash edit descriptor when the optional repeat specification does not appear (13.8.2),13

• after a slash edit descriptor, or14

• before or after a colon edit descriptor (13.8.3)15

C1303 (R1305) An unlimited-format-item shall contain at least one data edit descriptor.16

C1304 (R1306) r shall be positive.17

C1305 (R1306) A kind parameter shall not be specified for r .18

1 The integer literal constant r is called a repeat specification.19

13.3.2 Edit descriptors20

1 An edit descriptor is a data edit descriptor (data-edit-desc), control edit descriptor (control-edit-desc), or character21
string edit descriptor (char-string-edit-desc).22

R1307 data-edit-desc is I w [. m]23
or B w [. m]24
or O w [. m]25

J3/23-007 269

J3/23-007 WD 1539-1 2023-02-17

or Z w [. m]1
or F w . d2
or E w . d [E e]3
or EN w . d [E e]4
or ES w . d [E e]5
or EX w . d [E e]6
or G w [. d [E e]]7
or L w8
or A [w]9
or AT10
or D w . d11
or DT [char-literal-constant] [(v-list)]12

R1308 w is int-literal-constant13

R1309 m is int-literal-constant14

R1310 d is int-literal-constant15

R1311 e is int-literal-constant16

R1312 v is signed-int-literal-constant17

C1306 (R1308) w shall be zero or positive for the I, B, O, Z, D, E, EN, ES, EX, F, and G edit descriptors. w18
shall be positive for all other edit descriptors.19

C1307 (R1307) For the G edit descriptor, d shall be specified if w is not zero.20

C1308 (R1307) For the G edit descriptor, e shall not be specified if w is zero.21

C1309 (R1307) A kind parameter shall not be specified for the char-literal-constant in the DT edit descriptor,22
or for w, m, d, e, and v.23

2 An I, B, O, Z, F, E, EN, ES, EX, G, L, A, AT, D, or DT edit descriptor indicates the manner of editing.24

R1313 control-edit-desc is blank-interp-edit-desc25
or decimal-edit-desc26
or leading-zero-edit-desc27
or position-edit-desc28
or round-edit-desc29
or sign-edit-desc30
or k P31
or :32
or [r] /33

R1314 k is signed-int-literal-constant34

C1310 (R1314) A kind parameter shall not be specified for k.35

3 In k P, k is called the scale factor.36

R1315 position-edit-desc is T n37
or TL n38
or TR n39
or n X40

R1316 n is int-literal-constant41

C1311 (R1316) n shall be positive.42

270 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C1312 (R1316) A kind parameter shall not be specified for n.1

R1317 blank-interp-edit-desc is BN2
or BZ3

R1318 decimal-edit-desc is DC4
or DP5

R1319 leading-zero-edit-desc is LZS6
or LZP7
or LZ8

R1320 round-edit-desc is RU9
or RD10
or RZ11
or RN12
or RC13
or RP14

R1321 sign-edit-desc is SS15
or SP16
or S17

4 A T, TL, TR, X, slash, colon, SS, SP, S, LZS, LZP, LZ, P, BN, BZ, RU, RD, RZ, RN, RC, RP, DC, or DP edit18
descriptor indicates the manner of editing.19

R1322 char-string-edit-desc is char-literal-constant20

C1313 (R1322) A kind parameter shall not be specified for the char-literal-constant.21

5 Each rep-char in a character string edit descriptor shall be capable of representation by the processor.22

6 A character string edit descriptor provides constant data to be output, and is not valid for input.23

7 The edit descriptors are without regard to case except within a character string edit descriptor.24

13.3.3 Fields25

1 A field is a part of a record that is read on input or written on output when format control encounters a data26
edit descriptor or a character string edit descriptor. The field width is the size in characters of the field.27

13.4 Interaction between input/output list and format28

1 The start of formatted data transfer using a format specification initiates format control (12.6.4.5.3). Each action29
of format control depends on information jointly provided by the next edit descriptor in the format specification30
and the next effective item in the input/output list, if one exists.31

2 If an input/output list specifies at least one effective item, at least one data edit descriptor shall exist in the32
format specification.33

NOTE 1
An empty format specification of the form () can be used only if the input/output list has no effective item
(12.6.4.5). A zero length character item is an effective item, but a zero sized array and an implied DO list with
an iteration count of zero is not.

3 A format specification is interpreted from left to right. The exceptions are format items preceded by a repeat34
specification r , and format reversion (described below).35

J3/23-007 271

J3/23-007 WD 1539-1 2023-02-17

4 A format item preceded by a repeat specification is processed as a list of r items, each identical to the format1
item but without the repeat specification and separated by commas.2

NOTE 2
An omitted repeat specification is treated in the same way as a repeat specification whose value is one.

5 To each data edit descriptor interpreted in a format specification, there corresponds one effective item specified3
by the input/output list (12.6.3), except that an effective item of type complex requires the interpretation of two4
F, E, EN, ES, EX, D, or G edit descriptors. For each control edit descriptor or character edit descriptor, there is5
no corresponding item specified by the input/output list, and format control communicates information directly6
with the record.7

6 Whenever format control encounters a data edit descriptor in a format specification, it determines whether8
there is a corresponding effective item specified by the input/output list. If there is such an item, it transmits9
appropriately edited information between the item and the record, and then format control proceeds. If there is10
no such item, format control terminates.11

7 If format control encounters a colon edit descriptor in a format specification and another effective item is not12
specified, format control terminates.13

8 If format control encounters the rightmost parenthesis of an unlimited format item, control reverts to the leftmost14
parenthesis of that unlimited format item. This reversion of format control has no effect on the changeable modes15
(12.5.2).16

9 If format control encounters the rightmost parenthesis of a complete format specification and another effective17
item is not specified, format control terminates. However, if another effective item is specified, format control18
then reverts to the beginning of the format item terminated by the last preceding right parenthesis that is not19
part of a DT edit descriptor. If there is no such preceding right parenthesis, format control reverts to the first20
left parenthesis of the format specification. If any reversion occurs, the reused portion of the format specification21
shall contain at least one data edit descriptor. If format control reverts to a parenthesis that is preceded by a22
repeat specification, the repeat specification is reused. Reversion of format control, of itself, has no effect on23
the changeable modes. The file is positioned in a manner identical to the way it is positioned when a slash edit24
descriptor is processed (13.8.2).25

NOTE 3
Example: The format specification:

10 FORMAT (1X, 2(F10.3, I5))

with the output statement
WRITE (10,10) 10.1, 3, 4.7, 1, 12.4, 5, 5.2, 6

produces the same output as the format specification:
10 FORMAT (1X, F10.3, I5, F10.3, I5/F10.3, I5, F10.3, I5)

NOTE 4
The effect of an unlimited-format-item is as if its enclosed list were preceded by a very large repeat count. There
is no file positioning implied by unlimited-format-item reversion. This can be used to write what is commonly
called a comma separated value record.

For example,
WRITE(10, ’("IARRAY =", *(I0, :, ","))’) IARRAY

produces a single record with a header and a comma separated list of integer values.

272 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

13.5 Positioning by format control1

1 After each data edit descriptor or character string edit descriptor is processed, the file is positioned after the last2
character read or written in the current record.3

2 After each T, TL, TR, or X edit descriptor is processed, the file is positioned as described in 13.8.1.1. After each4
slash edit descriptor is processed, the file is positioned as described in 13.8.2.5

3 During formatted stream output, processing of an A or AT edit descriptor can cause file positioning to occur6
(13.7.4).7

4 If format control reverts as described in 13.4, the file is positioned in a manner identical to the way it is positioned8
when a slash edit descriptor is processed (13.8.2).9

5 During a read operation, any unprocessed characters of the current record are skipped whenever the next record10
is read.11

13.6 Decimal symbol12

1 The decimal symbol is the character that separates the whole and fractional parts in the decimal representation13
of a real number in an internal or external file. When the decimal edit mode is POINT, the decimal symbol is a14
decimal point. When the decimal edit mode is COMMA, the decimal symbol is a comma.15

2 If the decimal edit mode is COMMA during list-directed input/output, the character used as a value separator16
is a semicolon in place of a comma.17

13.7 Data edit descriptors18

13.7.1 Purpose of data edit descriptors19

1 A data edit descriptor causes the conversion of data to or from its internal representation; during formatted20
stream output, an A or AT data edit descriptor can also cause file positioning. On input, the specified variable21
becomes defined unless an error condition, an end-of-file condition, or an end-of-record condition occurs. On22
output, the specified expression is evaluated.23

2 During input from a Unicode file,24

• characters in the record that correspond to an ASCII character variable shall have a position in the ISO25
10646 character collating sequence of 127 or less, and26

• characters in the record that correspond to a default character variable shall be representable as default27
characters.28

3 During input from a non-Unicode file,29

• characters in the record that correspond to a character variable shall have the kind of the character variable,30
and31

• characters in the record that correspond to a numeric or logical variable shall be default characters.32

4 During output to a Unicode file, all characters transmitted to the record are of ISO 10646 character kind. If a33
character effective item or character string edit descriptor contains a character that is not representable as an34
ISO 10646 character, the result is processor dependent.35

5 During output to a non-Unicode file, characters transmitted to the record as a result of processing a character36
string edit descriptor or as a result of evaluating a numeric, logical, or default character data entity, are of default37
kind.38

J3/23-007 273

J3/23-007 WD 1539-1 2023-02-17

13.7.2 Numeric editing1

13.7.2.1 General rules2

1 The I, B, O, Z, F, E, EN, ES, EX, D, and G edit descriptors can be used to specify the input/output of integer,3
real, and complex data. The I, B, O, Z and G edit descriptors can be used to specify the input/output of enum4
type data. The I, B, O, and Z edit descriptors can be used to specify input/output of enumeration type data.5
The following general rules apply.6

(1) On input, leading blanks are not significant. When the input field is not an IEEE exceptional7
specification or hexadecimal-significand number (13.7.2.3.2), the interpretation of blanks, other than8
leading blanks, is determined by the blank interpretation mode (13.8.7). Plus signs may be omitted.9
A field containing only blanks is considered to be zero.10

(2) On input, with F, E, EN, ES, EX, D, and G editing, a decimal symbol appearing in the input field11
overrides the portion of an edit descriptor that specifies the decimal symbol location. The input field12
may have more digits than the processor uses to approximate the value of the datum.13

(3) On output with I, F, E, EN, ES, EX, D, and G editing, the representation of a nonnegative internal14
value in the field may be prefixed with a plus sign, as controlled by the S, SP, and SS edit descriptors15
or the processor. The representation of a negative internal value in the field shall be prefixed with a16
minus sign.17

(4) On output, the representation is right justified in the field. If the number of characters produced by18
the editing is smaller than the field width, leading blanks are inserted in the field.19

(5) On output, if an exponent exceeds its specified or implied width using the E, EN, ES, EX, D, or G20
edit descriptor, or the number of characters produced exceeds the field width, the processor shall fill21
the entire field of width w with asterisks. However, the processor shall not produce asterisks if the22
field width is not exceeded when optional characters are omitted.23

NOTE
When the sign mode is PLUS, a plus sign is not optional.

(6) On output, with I, B, O, Z, D, E, EN, ES, EX, F, and G editing, the specified value of the field width24
w may be zero. In such cases, the processor selects the smallest positive actual field width that does25
not result in a field filled with asterisks. The specified value of w shall not be zero on input.26

(7) On output of a real zero value, the digits in the exponent field shall all be zero.27

13.7.2.2 Integer editing28

1 The Iw and Iw.m edit descriptors indicate that the field to be edited occupies w positions, except when w is zero.29
When w is zero, the processor selects the field width. On input, w shall not be zero. The corresponding effective30
item shall be of type integer or of enum or enumeration type. The G, B, O, and Z edit descriptors also may be31
used to edit integer data (13.7.5.2.2, 13.7.2.4).32

2 On input, m has no effect.33

3 In the standard form of the input field for the I edit descriptor, the character string is a signed-digit-string (R710),34
except for the interpretation of blanks. If the input field does not have the standard form and is not acceptable35
to the processor, an error condition occurs.36

4 The output field for the Iw edit descriptor consists of zero or more leading blanks followed by a minus sign if the37
internal value is negative, or an optional plus sign otherwise, followed by the magnitude of the internal value as38
a digit-string without leading zeros.39

NOTE
A digit-string always consists of at least one digit.

5 The output field for the Iw.m edit descriptor is the same as for the Iw edit descriptor, except that the digit-string40
consists of at least m digits. If necessary, sufficient leading zeros are included to achieve the minimum of m digits.41

274 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

The value of m shall not exceed the value of w, except when w is zero. If m is zero and the internal value is zero,1
the output field consists of only blank characters, regardless of the sign control in effect. When m and w are both2
zero, and the internal value is zero, one blank character is produced.3

6 If the effective item for output is of enumeration type, the value output is its ordinal position. If the effective4
item for input is of enumeration type, the value of the input field shall be positive and less than or equal to5
the number of enumerators; the value assigned to the effective item is the enumeration value with that ordinal6
position.7

7 If the effective item for output is of enum type, the value output is its corresponding integer value. If the effective8
item for input is of enum type, the value assigned is the enum value corresponding to the value of the input field.9

13.7.2.3 Real and complex editing10

13.7.2.3.1 General11

1 The F, E, EN, ES, EX, and D edit descriptors specify the editing of real and complex data. An effective item12
corresponding to an F, E, EN, ES, EX, or D edit descriptor shall be real or complex. The G, B, O, and Z edit13
descriptors also may be used to edit real and complex data (13.7.5.2.3, 13.7.2.4).14

13.7.2.3.2 F editing15

1 The Fw.d edit descriptor indicates that the field occupies w positions, except when w is zero in which case the16
processor selects the field width. The fractional part of the field consists of d digits. On input, w shall not be17
zero.18

2 A lower-case letter is equivalent to the corresponding upper-case letter in an IEEE exceptional specification or19
the exponent in a numeric input field.20

3 The standard form of the input field is an IEEE exceptional specification, a hexadecimal-significand number, or21
consists of a mantissa optionally followed by an exponent. The form of the mantissa is an optional sign, followed22
by a string of one or more digits optionally containing a decimal symbol, including any blanks interpreted as23
zeros. The d has no effect on input if the input field contains a decimal symbol. If the decimal symbol is omitted,24
the rightmost d digits of the string, with leading zeros assumed if necessary, are interpreted as the fractional part25
of the value represented. The string of digits may contain more digits than a processor uses to approximate the26
value. The form of the exponent is one of the following:27

• a sign followed by a digit-string;28

• the letter E followed by zero or more blanks, followed by a signed-digit-string;29

• the letter D followed by zero or more blanks, followed by a signed-digit-string.30

4 An exponent containing a D is processed identically to an exponent containing an E.31

NOTE 1
If the input field does not contain an exponent, the effect is as if the basic form were followed by an exponent
with a value of −k, where k is the established scale factor (13.8.6).

5 An input field that is an IEEE exceptional specification consists of optional blanks, followed by either32

• an optional sign, followed by the string ’INF’ or the string ’INFINITY’, or33

• an optional sign, followed by the string ’NAN’, optionally followed by zero or more alphanumeric characters34
enclosed in parentheses,35

optionally followed by blanks.36

6 The value specified by ’INF’ or ’INFINITY’ is an IEEE infinity; this form shall not be used if the processor does37
not support IEEE infinities for the input variable. The value specified by ’NAN’ is an IEEE NaN; this form shall38

J3/23-007 275

J3/23-007 WD 1539-1 2023-02-17

not be used if the processor does not support IEEE NaNs for the input variable. The NaN value is a quiet NaN if1
the only nonblank characters in the field are ’NAN’ or ’NAN()’; otherwise, the NaN value is processor dependent.2
The interpretation of a sign in a NaN input field is processor dependent.3

7 An input field that is a hexadecimal-significand number consists of an optional sign, followed by the hexadecimal4
indicator which is the digit 0 immediately followed by the letter X, followed by a hexadecimal significand followed5
by a hexadecimal exponent. A hexadecimal significand is a string of one or more hexadecimal characters optionally6
containing a decimal symbol. The decimal symbol indicates the position of the hexadecimal point; if no decimal7
symbol appears, the hexadecimal point implicitly follows the last hexadecimal symbol. A hexadecimal exponent8
is the letter P followed by a (decimal) signed-digit-string. Embedded blanks are not permitted in a hexadecimal-9
significand number; trailing blanks are ignored. The value is equal to the significand multiplied by two raised to10
the power of the exponent, negated if the optional sign is minus.11

8 If the input field does not have one of the standard forms, and is not acceptable to the processor, an error12
condition occurs.13

9 For an internal value that is an IEEE infinity, the output field consists of blanks, if necessary, followed by a minus14
sign for negative infinity or an optional plus sign otherwise, followed by the letters ’Inf’ or ’Infinity’, right justified15
within the field. The minimum field width required for output of the form ’Inf’ is 3 if no sign is produced, and16
4 otherwise. The minimum field width required for output of the form ’Infinity’ is 8 if no sign is produced, and17
9 otherwise. If w is greater than or equal to the minimum required for the form ’Infinity’, the form ’Infinity’ is18
output. If w is zero or w is less than the minimum required for the form ’Infinity’ and greater than or equal to19
the minimum required for the form ’Inf’, the form ’Inf’ is output. Otherwise (w is greater than zero but less than20
the minimum required for any form), the field is filled with asterisks.21

10 For an internal value that is an IEEE NaN, the output field consists of blanks, if necessary, followed by the22
letters ’NaN’ and optionally followed by one to w−5 alphanumeric processor-dependent characters enclosed in23
parentheses, right justified within the field. If w is greater than zero and less than 3, the field is filled with24
asterisks. If w is zero, the output field is ’NaN’.25

NOTE 2
The processor-dependent characters following ’NaN’ might convey additional information about that particular
NaN.

11 For an internal value that is neither an IEEE infinity nor a NaN, the output field consists of blanks, if necessary,26
followed by a minus sign if the internal value is negative, or an optional plus sign otherwise, followed by a string27
of digits that contains a decimal symbol and represents the magnitude of the internal value, as modified by the28
established scale factor and rounded (13.7.2.3.8) to d fractional digits. Leading zeros are not permitted except29
for an optional zero immediately to the left of the decimal symbol if the magnitude of the value in the output30
field is less than one. The optional zero shall appear if there would otherwise be no digits in the output field.31

13.7.2.3.3 E and D editing32

1 The Ew.d, Dw.d, and Ew.d Ee edit descriptors indicate that the external field occupies w positions, except when33
w is zero in which case the processor selects the field width. The fractional part of the field contains d digits,34
unless a scale factor greater than one is in effect. If e is positive the exponent part contains e digits, otherwise it35
contains the minimum number of digits required to represent the exponent value. The e has no effect on input.36

2 The form and interpretation of the input field is the same as for Fw.d editing (13.7.2.3.2).37

3 For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw.d.38

4 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field for a scale factor39
of zero is40

[±] [0].x1x2 . . . xdexp41
where:42

• ± signifies a plus sign or a minus sign;43

276 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

• . signifies a decimal symbol (13.6);1

• x1x2 . . . xd are the d most significant digits of the internal value after rounding (13.7.2.3.8);2

• exp is a decimal exponent having one of the forms specified in Table 13.1.3

Table 13.1: E and D exponent forms
Edit Descriptor Absolute Value of Exponent Form of Exponent1

Ew.d with w > 0 |exp| ≤ 99 E±z1z2 or ±0z1z2

99 < |exp| ≤ 999 ±z1z2z3

Ew.d Ee with e > 0 |exp| ≤ 10e − 1 E±z1z2 . . . ze

Ew.d E0 or E0.d any E±z1z2 . . . zs

Dw.d with w > 0 |exp| ≤ 99 D±z1z2 or E±z1z2
or ±0z1z2

99 < |exp| ≤ 999 ±z1z2z3

D0.d any D±z1z2 . . . zs or E±z1z2 . . . zs

(1) where each z is a digit, and s is the minimum number of digits required to
represent the exponent. A plus sign is produced if the exponent value is zero.

5 The scale factor k controls the decimal normalization (13.3.2, 13.8.6). If −d < k ≤ 0, the output field contains4
exactly |k| leading zeros and d − |k| significant digits after the decimal symbol. If 0 < k < d + 2, the output field5
contains exactly k significant digits to the left of the decimal symbol and d − k + 1 significant digits to the right6
of the decimal symbol. Other values of k are not permitted.7

13.7.2.3.4 EN editing8

1 The EN edit descriptor produces an output field in the form of a real number in engineering notation such that9
the decimal exponent is divisible by three and the absolute value of the significand (R715) is greater than or10
equal to 1 and less than 1000, except when the output value is zero. The scale factor has no effect on output.11

2 The forms of the edit descriptor are ENw.d and ENw.d Ee indicating that the external field occupies w positions,12
except when w is zero in which case the processor selects the field width. The fractional part of the field contains13
d digits. If e is positive the exponent part contains e digits, otherwise it contains the minimum number of digits14
required to represent the exponent value.15

3 The form and interpretation of the input field is the same as for Fw.d editing (13.7.2.3.2).16

4 For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw.d.17

5 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field is18
[±] yyy . x1x2 . . . xdexp19

where:20

• ± signifies a plus sign or a minus sign;21

• yyy are the 1 to 3 decimal digits representative of the most significant digits of the internal value after22
rounding (13.7.2.3.8);23

• yyy is an integer such that 1 ≤ yyy < 1000 or, if the output value is zero, yyy = 0;24

• . signifies a decimal symbol (13.6);25

• x1x2 . . . xd are the d next most significant digits of the internal value after rounding;26

• exp is a decimal exponent, divisible by three, having one of the forms specified in Table 13.2.27

J3/23-007 277

J3/23-007 WD 1539-1 2023-02-17

Table 13.2: EN exponent forms
Edit Descriptor Absolute Value of Exponent Form of Exponent1

ENw.d with w > 0 |exp| ≤ 99 E±z1z2 or ±0z1z2

99 < |exp| ≤ 999 ±z1z2z3

ENw.d Ee with e > 0 |exp| ≤ 10e − 1 E±z1z2 . . . ze

ENw.d E0 or EN0.d any E±z1z2 . . . zs

(1) where each z is a digit, and s is the minimum number of digits required to
represent the exponent. A plus sign is produced if the exponent value is zero.

NOTE
Examples:

Internal value Output field using SS, EN12.3
6.421 6.421E+00
-.5 -500.000E-03
.00217 2.170E-03

4721.3 4.721E+03

13.7.2.3.5 ES editing1

1 The ES edit descriptor produces an output field in the form of a real number in scientific notation such that the2
absolute value of the significand (R715) is greater than or equal to 1 and less than 10, except when the output3
value is zero. The scale factor has no effect on output.4

2 The forms of the edit descriptor are ESw.d and ESw.d Ee indicating that the external field occupies w positions,5
except when w is zero in which case the processor selects the field width. The fractional part of the field contains6
d digits. If e is positive the exponent part contains e digits, otherwise it contains the minimum number of digits7
required to represent the exponent value.8

3 The form and interpretation of the input field is the same as for Fw.d editing (13.7.2.3.2).9

4 For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw.d.10

5 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field is11
[±] y . x1x2 . . . xdexp12

where:13

• ± signifies a plus sign or a minus sign;14

• y is a decimal digit representative of the most significant digit of the internal value after rounding (13.7.2.3.8);15

• . signifies a decimal symbol (13.6);16

• x1x2 . . . xd are the d next most significant digits of the internal value after rounding;17

• exp is a decimal exponent having one of the forms specified in Table 13.3.18

Table 13.3: ES exponent forms
Edit Descriptor Absolute Value of Exponent Form of Exponent1

ESw.d with w > 0 |exp| ≤ 99 E±z1z2 or ±0z1z2

99 < |exp| ≤ 999 ±z1z2z3

ESw.d Ee with e > 0 |exp| ≤ 10e − 1 E±z1z2 . . . ze

ESw.d E0 or ES0.d any E±z1z2 . . . zs

(1) where each z is a digit, and s is the minimum number of digits required to
represent the exponent. A plus sign is produced if the exponent value is zero.

278 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
Examples:

Internal value Output field using SS, ES12.3
6.421 6.421E+00
-.5 -5.000E-01
.00217 2.170E-03

4721.3 4.721E+03

13.7.2.3.6 EX editing1

1 The EX edit descriptor produces an output field in the form of a hexadecimal-significand number.2

2 The EXw.d and EXw.dEe edit descriptors indicate that the external field occupies w positions, except when w3
is zero in which case the processor selects the field width. The fractional part of the field contains d hexadecimal4
digits, except when d is zero in which case the processor selects the number of hexadecimal digits to be the5
minimum required so that the output field is equal to the internal value; d shall not be zero if the radix of the6
internal value is not a power of two. The hexadecimal point, represented by a decimal symbol, appears after7
the first hexadecimal digit. For the form EXw.d, and for EXw.dE0, the exponent part contains the minimum8
number of digits needed to represent the exponent; otherwise the exponent contains e digits. The e has no effect9
on input. The scale factor has no effect on output.10

3 The form and interpretation of the input field is the same as for Fw.d editing (13.7.2.3.2).11

4 For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw.d.12

5 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field is13
[±] 0X x0 . x1x2 . . . exp14

where:15

• ± signifies a plus sign or a minus sign;16

• . signifies a decimal symbol (13.6);17

• x0x1x2 . . . are the most significant hexadecimal digits of the internal value, after rounding if d is not zero18
(13.7.2.3.8);19

• exp is a binary exponent expressed as a decimal integer; for EXw.d and EXw.dE0, the form is P ±z1 . . . zn,20
where n is the minimum number of digits needed to represent exp, and for EXw.dEe with e greater than21
zero the form is P ±z1 . . . ze. The choice of binary exponent is processor dependent. If the most significant22
binary digits of the internal value are b0b1b2 . . ., the binary exponent might make the value of x0 be that of23
b0, b0b1, b0b1b2, or b0b1b2b3. A plus sign is produced if the exponent value is zero.24

NOTE
Examples:

Internal value Edit descriptor Possible output with SS in effect
1.375 EX0.1 0X1.6P+0

−15.625 EX14.4E3 -0X1.F400P+003
1048580.0 EX0.0 0X1.00004P+20

2.375 EX0.1 0X2.6P+0

13.7.2.3.7 Complex editing25

1 A complex datum consists of a pair of separate real data. The editing of a scalar datum of complex type is26
specified by two edit descriptors each of which specifies the editing of real data. The first edit descriptor specifies27
the editing for the real part; the second specifies it for the imaginary part. The two edit descriptors may be28
different. Control and character string edit descriptors may be processed between the edit descriptor for the real29
part and the edit descriptor for the imaginary part.30

J3/23-007 279

J3/23-007 WD 1539-1 2023-02-17

13.7.2.3.8 Input/output rounding mode1

1 The input/output rounding mode can be specified by an OPEN statement (12.5.2), a data transfer statement2
(12.6.2.14), or an edit descriptor (13.8.8).3

2 In what follows, the term “decimal value” means the exact decimal number as given by the character string, while4
the term “internal value” means the number actually stored in the processor. For example, in dealing with the5
decimal constant 0.1, the decimal value is the mathematical quantity 1/10, which has no exact representation6
in binary form. Formatted output of real data involves conversion from an internal value to a decimal value;7
formatted input involves conversion from a decimal value to an internal value.8

3 When the input/output rounding mode is UP, the value resulting from conversion shall be the smallest represent-9
able value that is greater than or equal to the original value. When the input/output rounding mode is DOWN,10
the value resulting from conversion shall be the largest representable value that is less than or equal to the original11
value. When the input/output rounding mode is ZERO, the value resulting from conversion shall be the value12
closest to the original value and no greater in magnitude than the original value. When the input/output rounding13
mode is NEAREST, the value resulting from conversion shall be the closer of the two nearest representable values14
if one is closer than the other. If the two nearest representable values are equidistant from the original value, it is15
processor dependent which one of them is chosen. When the input/output rounding mode is COMPATIBLE, the16
value resulting from conversion shall be the closer of the two nearest representable values or the value away from17
zero if halfway between them. When the input/output rounding mode is PROCESSOR_DEFINED, rounding18
during conversion shall be a processor-dependent default mode, which may correspond to one of the other modes.19

4 On processors that support IEEE rounding on conversions (17.4), NEAREST shall correspond to round to nearest,20
as specified in ISO/IEC 60559:2020.21

NOTE
On processors that support IEEE rounding on conversions, the input/output rounding modes COMPATIBLE
and NEAREST will produce the same results except when the datum is halfway between the two nearest
representable values. In that case, NEAREST will pick the even value, but COMPATIBLE will pick the
value away from zero. The input/output rounding modes UP, DOWN, and ZERO have the same effect as those
specified in ISO/IEC 60559:2020 for round toward +∞, round toward −∞, and round toward zero, respectively.

13.7.2.4 B, O, and Z editing22

1 The Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate that the field to be edited occupies w23
positions, except when w is zero. When w is zero, the processor selects the field width. On input, w shall not be24
zero. The corresponding effective item shall be of type integer, real, or complex, or of enum or enumeration type.25

2 On input, m has no effect.26

3 In the standard form of the input field for the B, O, and Z edit descriptors the character string consists of binary,27
octal, or hexadecimal digits (as in R773, R774, R775) in the respective input field. The lower-case hexadecimal28
digits a through f in a hexadecimal input field are equivalent to the corresponding upper-case hexadecimal digits.29
If the input field does not have the standard form, and is not acceptable to the processor, an error condition30
occurs.31

4 Input editing produces the value INT (X) if the effective item is of type integer and REAL (X) if the effective32
item is of type real or complex, where X is a boz-literal-constant that specifies the same bit sequence as the digits33
of the input field. If the effective item is of enum or enumeration type ET, the value is ET (INT (X)).34

5 The output field for the Bw, Ow, and Zw descriptors consists of zero or more leading blanks followed by the35
internal value in a form identical to the digits of a binary, octal, or hexadecimal constant, respectively, that36
specifies the same bit sequence but without leading zero bits.37

280 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
A binary, octal, or hexadecimal constant always consists of at least one digit or hexadecimal digit.

R1323 hex-digit-string is hex-digit [hex-digit] ...1

6 The output field for the Bw.m, Ow.m, and Zw.m edit descriptor is the same as for the Bw, Ow, and Zw edit2
descriptor, except that the digit-string or hex-digit-string consists of at least m digits. If necessary, sufficient3
leading zeros are included to achieve the minimum of m digits. The value of m shall not exceed the value of w,4
except when w is zero. If m is zero and the internal value consists of all zero bits, the output field consists of5
only blank characters. When m and w are both zero, and the internal value consists of all zero bits, one blank6
character is produced.7

13.7.3 Logical editing8

1 The Lw edit descriptor indicates that the field occupies w positions. The corresponding effective item shall be of9
type logical. The G edit descriptor also may be used to edit logical data (13.7.5.3).10

2 The standard form of the input field consists of optional blanks, optionally followed by a period, followed by a T11
for true or F for false. The T or F may be followed by additional characters in the field, which are ignored. If the12
input field does not have the standard form, and is not acceptable to the processor, an error condition occurs.13

3 A lower-case letter is equivalent to the corresponding upper-case letter in a logical input field.14

NOTE
The logical constants .TRUE. and .FALSE. are acceptable input forms.

4 The output field consists of w−1 blanks followed by a T or F, depending on whether the internal value is true or15
false, respectively.16

13.7.4 Character editing17

1 The A[w] edit descriptor is used with an effective item of type character. The AT edit descriptor is used with18
an effective item of type character in an output statement; it shall not be used for input. The G edit descriptor19
also may be used to edit character data (13.7.5.4). The kind type parameter of all characters transferred and20
converted under control of one A, AT, or G edit descriptor is implied by the kind of the corresponding effective21
item.22

2 If a field width w is specified with the A edit descriptor, the field consists of w characters. If a field width w is23
not specified with the A edit descriptor, the number of characters in the field is the length of the corresponding24
effective item, regardless of the value of the kind type parameter.25

3 Let len be the length of the effective item. If the specified field width w for an A edit descriptor corresponding26
to an effective item on input is greater than or equal to len, the rightmost len characters will be taken from the27
input field. If the specified field width w is less than len, the w characters will appear left justified with len−w28
trailing blanks in the internal value.29

4 If the specified field width w for an A edit descriptor corresponding to an effective item on output is greater than30
len, the output field will consist of w−len blanks followed by the len characters from the internal value. If the31
specified field width w is less than or equal to len, the output field will consist of the leftmost w characters from32
the internal value.33

5 The field width for an AT edit descriptor is the length of the value of the effective item after any trailing blanks34
are removed. The output field consists of the value of the effective item after any trailing blanks are removed; if35
the value of the effective item is all blanks, no output is produced by the edit descriptor.36

J3/23-007 281

J3/23-007 WD 1539-1 2023-02-17

NOTE 1
For nondefault character kinds, the blank padding character is processor dependent.

6 If the file is connected for stream access, the output may be split across more than one record if it contains1
newline characters. A newline character is a nonblank character returned by the intrinsic function NEW_LINE.2
Beginning with the first character of the output field, each character that is not a newline is written to the current3
record in successive positions; each newline character causes file positioning at that point as if by slash editing4
(the current record is terminated at that point, a new empty record is created following the current record, this5
new record becomes the last and current record of the file, and the file is positioned at the beginning of this new6
record).7

NOTE 2
If the intrinsic function NEW_LINE returns a blank character for a particular character kind, then the processor
does not support using a character of that kind to cause record termination in a formatted stream file.

13.7.5 Generalized editing8

13.7.5.1 Overview9

1 The Gw, Gw.d and Gw.d Ee edit descriptors are used with an effective item of enum type or any intrinsic type.10
When w is nonzero, these edit descriptors indicate that the external field occupies w positions. For real or complex11
data the fractional part consists of a maximum of d digits and the exponent part consists of e digits. When these12
edit descriptors are used to specify the input/output of integer, logical, or character data, d and e have no effect.13
When w is zero the processor selects the field width. On input, w shall not be zero.14

13.7.5.2 Generalized numeric editing15

13.7.5.2.1 Overview16

1 When used to specify the input/output of integer, real, complex, and enum data, the Gw, Gw.d and Gw.d Ee17
edit descriptors follow the general rules for numeric editing (13.7.2).18

NOTE
The Gw.d Ee edit descriptor follows any additional rules for the Ew.d Ee edit descriptor.

13.7.5.2.2 Generalized integer and enum editing19

1 When used to specify the input/output of integer or enum data, the Gw, Gw.d, and Gw.d Ee edit descriptors20
follow the rules for the Iw edit descriptor (13.7.2.2). Note that w cannot be zero for input editing (13.7.5.1).21

13.7.5.2.3 Generalized real and complex editing22

1 The form and interpretation of the input field for Gw.d and Gw.d Ee editing is the same as for Fw.d editing23
(13.7.2.3.2). The rest of this subclause applies only to output editing.24

2 If w is nonzero and d is zero, kPEw.0 or kPEw.0Ee editing is used for Gw.0 editing or Gw.0Ee editing respectively.25

3 When used to specify the output of real or complex data that is not an IEEE infinity or NaN, the G0 and G0.d26
edit descriptors follow the rules for the Gw.dEe edit descriptor, except that any leading or trailing blanks are27
removed. Reasonable processor-dependent values of w, d (if not specified), and e are used with each output value.28

4 For an internal value that is an IEEE infinity or NaN, the form of the output field for the Gw.d and Gw.d Ee29
edit descriptors is the same as for Fw.d, and the form of the output field for the G0 and G0.d edit descriptors is30
the same as for F0.0.31

5 Otherwise, the method of representation in the output field depends on the magnitude of the internal value32

282 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

being edited. If the internal value is zero, let s be one. If the internal value is a number other than zero, let N1
be the decimal value that is the result of converting the internal value to d significant digits according to the2
input/output rounding mode and let s be the integer such that 10s−1 ≤ |N | < 10s. If s < 0 or s > d, kPEw.d or3
kPEw.dEe editing is used for Gw.d editing or Gw.dEe editing respectively, where k is the scale factor (13.8.6).4
If 0 ≤ s ≤ d, the scale factor has no effect and F(w − n).(d − s),n(’b’) editing is used where b is a blank and n is5
4 for Gw.d editing, e + 2 for Gw.dEe editing if e > 0, and 4 for Gw.dE0 editing.6

6 The value of w−n shall be positive.7

NOTE
The scale factor has no effect on output unless the magnitude of the datum to be edited is outside the range
that permits effective use of F editing.

13.7.5.3 Generalized logical editing8

1 When used to specify the input/output of logical data, the Gw.d and Gw.d Ee edit descriptors with nonzero w9
follow the rules for the Lw edit descriptor (13.7.3). When used to specify the output of logical data, the G0 and10
G0.d edit descriptors follow the rules for the L1 edit descriptor.11

13.7.5.4 Generalized character editing12

1 When used to specify the input/output of character data, the Gw.d and Gw.d Ee edit descriptors with nonzero13
w follow the rules for the Aw edit descriptor (13.7.4). When used to specify the output of character data, the G014
and G0.d edit descriptors follow the rules for the A edit descriptor with no field width.15

13.7.6 User-defined derived-type editing16

1 The DT edit descriptor specifies that a user-provided procedure shall be used instead of the processor’s default17
input/output formatting for processing an effective item of derived type.18

2 The DT edit descriptor may include a character literal constant. The character value “DT” concatenated with the19
character literal constant is passed to the defined input/output procedure as the iotype argument (12.6.4.8). The20
v values of the edit descriptor are passed to the defined input/output procedure as the v_list array argument.21

NOTE
For the edit descriptor DT’Link List’(10, 4, 2), iotype is "DTLink List" and v_list is [10, 4, 2].

3 If a derived-type variable or value corresponds to a DT edit descriptor, there shall be an accessible interface to22
a corresponding defined input/output procedure for that derived type (12.6.4.8). A DT edit descriptor shall not23
correspond to an effective item that is not of a derived type.24

13.8 Control edit descriptors25

13.8.1 Position edit descriptors26

13.8.1.1 Position editing27

1 The position edit descriptors T, TL, TR, and X, specify the position at which the next character will be transmit-28
ted to or from the record. If any character skipped by a position edit descriptor is of type nondefault character,29
and the unit is a default character internal file or an external non-Unicode file, the result of that position editing30
is processor dependent.31

2 On input, if the position specified by a position edit descriptor is before the current position, portions of a record32
can be processed more than once, possibly with different editing.33

J3/23-007 283

J3/23-007 WD 1539-1 2023-02-17

3 On input, a position beyond the last character of the record may be specified if no characters are transmitted1
from such positions.2

4 On output, a position edit descriptor does not by itself cause characters to be transmitted and therefore does not3
by itself affect the length of the record. If characters are transmitted to positions at or after the position specified4
by a position edit descriptor, positions skipped and not previously filled are filled with blanks. The result is as if5
the entire record were initially filled with blanks.6

5 On output, a character in the record can be replaced. A position edit descriptor never directly causes a character7
already placed in the record to be replaced, but it might result in positioning such that subsequent editing causes8
a replacement.9

13.8.1.2 T, TL, and TR editing10

1 The left tab limit affects file positioning by the T and TL edit descriptors. Immediately prior to nonchild data11
transfer (12.6.4.8.3), the left tab limit becomes defined as the character position of the current record or the12
current position of the stream file. If, during data transfer, the file is positioned to another record, the left tab13
limit becomes defined as character position one of that record.14

2 The Tn edit descriptor indicates that the transmission of the next character to or from a record is to occur at15
the nth character position of the record, relative to the left tab limit. This position can be in either direction16
from the current position.17

3 The TLn edit descriptor indicates that the transmission of the next character to or from the record is to occur at18
the character position n characters backward from the current position. However, if n is greater than the difference19
between the current position and the left tab limit, the TLn edit descriptor indicates that the transmission of20
the next character to or from the record is to occur at the left tab limit.21

4 The TRn edit descriptor indicates that the transmission of the next character to or from the record is to occur22
at the character position n characters forward from the current position.23

13.8.1.3 X editing24

1 The nX edit descriptor indicates that the transmission of the next character to or from a record is to occur at25
the character position n characters forward from the current position.26

NOTE
An nX edit descriptor has the same effect as a TRn edit descriptor.

13.8.2 Slash editing27

1 The slash edit descriptor indicates the end of data transfer to or from the current record.28

2 On input from a file connected for sequential or stream access, the remaining portion of the current record is29
skipped and the file is positioned at the beginning of the next record. This record becomes the current record.30
On output to a file connected for sequential or stream access, a new empty record is created following the current31
record; this new record then becomes the last and current record of the file and the file is positioned at the32
beginning of this new record.33

3 For a file connected for direct access, the record number is increased by one and the file is positioned at the34
beginning of the record that has that record number, if there is such a record, and this record becomes the35
current record.36

NOTE
A record that contains no characters can be written on output; if the file is an internal file or a file connected
for direct access, the record is filled with blank characters.

An entire record can be skipped on input.

284 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 The repeat specification is optional in the slash edit descriptor. If it is not specified, the default value is one.1

13.8.3 Colon editing2

1 The colon edit descriptor terminates format control if there are no more effective items in the input/output list3
(12.6.3). The colon edit descriptor has no effect if there are more effective items in the input/output list.4

13.8.4 SS, SP, and S editing5

1 The SS, SP, and S edit descriptors temporarily change (12.5.2) the sign mode (12.5.6.18, 12.6.2.15) for the6
connection. The edit descriptors SS, SP, and S set the sign mode corresponding to the SIGN= specifier values7
SUPPRESS, PLUS, and PROCESSOR_DEFINED, respectively.8

2 The sign mode controls optional plus characters in numeric output fields. When the sign mode is PLUS, the9
processor shall produce a plus sign in any position that normally contains an optional plus sign. When the10
sign mode is SUPPRESS, the processor shall not produce a plus sign in such positions. When the sign mode is11
PROCESSOR_DEFINED, the processor has the option of producing a plus sign or not in such positions, subject12
to 13.7.2(5).13

3 The SS, SP, and S edit descriptors affect only I, F, E, EN, ES, EX, D, and G editing during the execution of an14
output statement. The SS, SP, and S edit descriptors have no effect during the execution of an input statement.15

13.8.5 LZS, LZP and LZ editing16

1 The LZS, LZP, and LZ edit descriptors temporarily change (12.5.2) the leading zero mode (12.5.6.12, 12.6.2.10)17
for the connection. The edit descriptors LZS, LZP, and LZ set the leading zero mode corresponding to the18
LEADING_ZERO= specifier values SUPPRESS, PRINT, and PROCESSOR_DEFINED, respectively.19

2 The leading zero mode controls optional leading zero characters in numeric output fields. When the leading zero20
mode is PRINT, the processor shall produce a leading zero in any position that normally contains an optional21
leading zero. When the leading zero mode is SUPPRESS, the processor shall not produce a leading zero in such22
positions. When the leading zero mode is PROCESSOR_DEFINED, the processor has the option of producing23
a leading zero or not in such positions, subject to 13.7.2(5).24

3 The LZS, LZP, and LZ edit descriptors affect only F, E, D, and G editing during the execution of an output25
statement. The LZS, LZP, and LZ edit descriptors have no effect during the execution of an input statement.26

13.8.6 P editing27

1 The kP edit descriptor temporarily changes (12.5.2) the scale factor for the connection to k. The scale factor28
affects the editing done by the F, E, EN, ES, EX, D, and G edit descriptors for real and complex quantities.29

2 The scale factor k affects the appropriate editing in the following manner.30

• On input, with F, E, EN, ES, EX, D, and G editing (provided that no exponent exists in the field), the31
effect is that the externally represented number equals the internally represented number multiplied by 10k;32
the scale factor is applied to the external decimal value and then this is converted using the input/output33
rounding mode.34

• On input, with F, E, EN, ES, EX, D, and G editing, the scale factor has no effect if there is an exponent35
in the field.36

• On output, with F output editing, the effect is that the externally represented number equals the internally37
represented number multiplied by 10k; the internal value is converted using the input/output rounding38
mode and then the scale factor is applied to the converted decimal value.39

• On output, with E and D editing, the effect is that the significand (R715) part of the quantity to be40
produced is multiplied by 10k and the exponent is reduced by k.41

J3/23-007 285

J3/23-007 WD 1539-1 2023-02-17

• On output, with G editing, the effect is suspended unless the magnitude of the datum to be edited is outside1
the range that permits the use of F editing. If the use of E editing is required, the scale factor has the same2
effect as with E output editing.3

• On output, with EN, ES, and EX editing, the scale factor has no effect.4

13.8.7 BN and BZ editing5

1 The BN and BZ edit descriptors temporarily change (12.5.2) the blank interpretation mode (12.5.6.6, 12.6.2.6)6
for the connection. The edit descriptors BN and BZ set the blank interpretation mode corresponding to the7
BLANK= specifier values NULL and ZERO, respectively.8

2 The blank interpretation mode controls the interpretation of nonleading blanks in numeric input fields. Such9
blank characters are interpreted as zeros when the blank interpretation mode has the value ZERO; they are10
ignored when the blank interpretation mode has the value NULL. The effect of ignoring blanks is to treat the11
input field as if blanks had been removed, the remaining portion of the field right justified, and the blanks replaced12
as leading blanks. However, a field containing only blanks has the value zero.13

3 The blank interpretation mode affects only numeric editing (13.7.2) and generalized numeric editing (13.7.5.2)14
on input. It has no effect on output.15

13.8.8 RU, RD, RZ, RN, RC, and RP editing16

1 The round edit descriptors temporarily change (12.5.2) the connection’s input/output rounding mode (12.5.6.17,17
12.6.2.14, 13.7.2.3.8). The round edit descriptors RU, RD, RZ, RN, RC, and RP set the input/output rounding18
mode corresponding to the ROUND= specifier values UP, DOWN, ZERO, NEAREST, COMPATIBLE, and19
PROCESSOR_DEFINED, respectively. The input/output rounding mode affects the conversion of real and20
complex values in formatted input/output. It affects only D, E, EN, ES, EX, F, and G editing.21

13.8.9 DC and DP editing22

1 The decimal edit descriptors temporarily change (12.5.2) the decimal edit mode (12.5.6.7, 12.6.2.7, 13.6) for23
the connection. The edit descriptors DC and DP set the decimal edit mode corresponding to the DECIMAL=24
specifier values COMMA and POINT, respectively.25

2 The decimal edit mode controls the representation of the decimal symbol (13.6) during conversion of real and26
complex values in formatted input/output. The decimal edit mode affects only D, E, EN, ES, EX, F, and G27
editing.28

13.9 Character string edit descriptors29

1 A character string edit descriptor shall not be used on input.30

2 The character string edit descriptor causes characters to be written from the enclosed characters of the edit31
descriptor itself, including blanks. For a character string edit descriptor, the width of the field is the number of32
characters between the delimiting characters. Within the field, two consecutive delimiting characters are counted33
as a single character.34

NOTE
A delimiter for a character string edit descriptor is either an apostrophe or quote.

286 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

13.10 List-directed formatting1

13.10.1 Purpose of list-directed formatting2

1 List-directed input/output allows data editing according to the type of the effective item instead of by a format3
specification. It also allows data to be free-field, that is, separated by commas (or semicolons) or blanks.4

13.10.2 Values and value separators5

1 The characters in one or more list-directed records constitute a sequence of values and value separators. The end6
of a record has the same effect as a blank character, unless it is within a character constant. Any sequence of two7
or more consecutive blanks is treated as a single blank, unless it is within a character constant.8

2 Each value is either a null value, c, r*c, or r*, where c is a literal constant, optionally signed if integer or real, or9
an undelimited character constant and r is an unsigned, nonzero, integer literal constant. Neither c nor r shall10
have kind type parameters specified. The constant c is interpreted as though it had the same kind type parameter11
as the corresponding effective item. The r*c form is equivalent to r successive appearances of the constant c,12
and the r* form is equivalent to r successive appearances of the null value. Neither of these forms shall contain13
embedded blanks, except where permitted within the constant c.14

3 A value separator is15

• a comma optionally preceded by one or more contiguous blanks and optionally followed by one or more16
contiguous blanks, unless the decimal edit mode is COMMA, in which case a semicolon is used in place of17
the comma,18

• a slash optionally preceded by one or more contiguous blanks and optionally followed by one or more19
contiguous blanks, or20

• one or more contiguous blanks between two nonblank values or following the last nonblank value, where a21
nonblank value is a constant, an r*c form, or an r* form.22

NOTE 1
Although a slash encountered in an input record is referred to as a separator, it actually causes termination of
list-directed and namelist input statements; it does not actually separate two values.

NOTE 2
If no effective item is specified in a list-directed input/output statement, one input record is skipped or one
empty output record is written.

13.10.3 List-directed input23

13.10.3.1 List-directed input forms24

1 Input forms acceptable to edit descriptors for a given type are acceptable for list-directed formatting, except as25
noted below. If the form of the input value is not acceptable to the processor for the type of the next effective26
item in the list, an error condition occurs. Blanks are never used as zeros, and embedded blanks are not permitted27
in constants, except within character constants and complex constants as specified below.28

2 For the r*c form of an input value, the constant c is interpreted as an undelimited character constant if the first29
effective item corresponding to this value is default, ASCII, or ISO 10646 character, there is a nonblank character30
immediately after r*, and that character is not an apostrophe or a quotation mark; otherwise, c is interpreted as31
a literal constant.32

NOTE 1
The end of a record has the effect of a blank, except when it appears within a character constant.

J3/23-007 287

J3/23-007 WD 1539-1 2023-02-17

3 When the next effective item is of type integer or of an enum type, the value in the input record is interpreted as1
if an Iw edit descriptor with a suitable value of w were used.2

4 When the next effective item is of type real, the input form is that of a numeric input field. A numeric input field3
is a field suitable for F editing (13.7.2.3.2) that is assumed to have no fractional digits unless a decimal symbol4
appears within the field.5

5 When the next effective item is of type complex, the input form consists of a left parenthesis followed by an6
ordered pair of numeric input fields separated by a comma (if the decimal edit mode is POINT) or semicolon7
(if the decimal edit mode is COMMA), and followed by a right parenthesis. The first numeric input field is the8
real part of the complex constant and the second is the imaginary part. Each of the numeric input fields may be9
preceded or followed by any number of blanks and ends of records. The end of a record may occur after the real10
part or before the imaginary part.11

6 When the next effective item is of type logical, the input form shall not include value separators among the12
optional characters permitted for L editing.13

7 When the next effective item is of type character, the input form consists of a possibly delimited sequence of zero14
or more rep-chars whose kind type parameter is implied by the kind of the effective item. Character sequences15
may be continued from the end of one record to the beginning of the next record, but the end of record shall16
not occur between a doubled apostrophe in an apostrophe-delimited character sequence, nor between a doubled17
quote in a quote-delimited character sequence. The end of the record does not cause a blank or any other18
character to become part of the character sequence. The character sequence may be continued on as many19
records as needed. The characters blank, comma, semicolon, and slash may appear in default, ASCII, or ISO20
10646 character sequences.21

8 If the next effective item is default, ASCII, or ISO 10646 character and22

• the character sequence does not contain value separators,23

• the character sequence does not cross a record boundary,24

• the first nonblank character is not a quotation mark or an apostrophe,25

• the leading characters are not digits followed by an asterisk, and26

• the character sequence contains at least one character,27

the delimiting apostrophes or quotation marks are not required. If the delimiters are omitted, the character28
sequence is terminated by the first blank, comma (if the decimal edit mode is POINT), semicolon (if the decimal29
edit mode is COMMA), slash, or end of record; in this case apostrophes and quotation marks within the datum30
are not to be doubled.31

9 Let len be the current length of the next effective item, and let w be the length of the character sequence. If len32
is less than or equal to w, the leftmost len characters of the sequence are transmitted to the next effective item.33
If len is greater than w, the sequence is transmitted to the leftmost w characters of the next effective item and34
the remaining len−w characters of the next effective item are filled with blanks.35

NOTE 2
An allocatable, deferred-length character effective item does not have its allocation status or allocated length
changed as a result of list-directed input.

13.10.3.2 Null values36

1 A null value is specified by37

• the r* form,38

• no characters between consecutive value separators, or39

• no characters before the first value separator in the first record read by each execution of a list-directed40
input statement.41

288 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
The end of a record following any other value separator, with or without separating blanks, does not specify a
null value in list-directed input.

2 A null value has no effect on the definition status of the next effective item. A null value shall not be used for1
either the real or imaginary part of a complex constant, but a single null value may represent an entire complex2
constant.3

3 A slash encountered as a value separator during execution of a list-directed input statement causes termination4
of execution of that input statement after the transference of the previous value. Any characters remaining in the5
current record are ignored. If there are additional effective items, the effect is as if null values had been supplied6
for them. Any do-variable in the input list becomes defined as if enough null values had been supplied for any7
remaining effective items.8

NOTE 2
All blanks encountered during list-directed input are considered to be part of some value separator except for

• blanks embedded in a character sequence,
• embedded blanks surrounding the real or imaginary part of a complex constant, and
• leading blanks in the first record read by each execution of a list-directed input statement, unless imme-

diately followed by a slash or comma.

NOTE 3
List-directed input example:

INTEGER I; REAL X (8); CHARACTER (11) P; COMPLEX Z; LOGICAL G
. . .
READ *, I, X, P, Z, G

The input data records are:
12345,12345,,2*1.5,4*
ISN’T_BOB’S,(123,0),.TEXAS$

The results are:

Variable Value
I 12345
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) – X (8) unchanged
P ISN’T_BOB’S
Z (123.0,0.0)
G true

13.10.4 List-directed output9

1 The form of the values produced is the same as that required for input, except as noted otherwise. With the10
exception of adjacent undelimited character sequences, the values are separated by one or more blanks or by a11
comma, or a semicolon if the decimal edit mode is COMMA, optionally preceded by one or more blanks and12
optionally followed by one or more blanks. Two undelimited character sequences are considered adjacent when13
both were written using list-directed input/output, no intervening data transfer or file positioning operations on14
that unit occurred, and both were written either by a single data transfer statement, or during the execution of15

J3/23-007 289

J3/23-007 WD 1539-1 2023-02-17

a parent data transfer statement along with its child data transfer statements. The form of the values produced1
by defined output (12.6.4.8) is determined by the defined output procedure; this form need not be compatible2
with list-directed input.3

2 The processor may begin new records as necessary, but the end of record shall not occur within a constant except4
as specified for complex constants and character sequences. The processor shall not insert blanks within character5
sequences or within constants, except as specified for complex constants.6

3 Logical output values are T for the value true and F for the value false.7

4 Integer output constants are produced with the effect of an Iw edit descriptor.8

5 Real constants are produced with the effect of either an F edit descriptor or an E edit descriptor, depending on9
the magnitude x of the value and a range 10d1 ≤ x < 10d2 , where d1 and d2 are processor-dependent integers. If10
the magnitude x is within this range or is zero, the constant is produced using 0PFw.d; otherwise, 1PEw.d Ee is11
used.12

6 For numeric output, reasonable processor-dependent values of w, d, and e are used for each of the numeric13
constants output.14

7 Complex constants are enclosed in parentheses with a separator between the real and imaginary parts, each15
produced as defined above for real constants. The separator is a comma if the decimal edit mode is POINT; it is16
a semicolon if the decimal edit mode is COMMA. The end of a record shall not occur between the separator and17
the imaginary part unless the entire constant is as long as, or longer than, an entire record. The only embedded18
blanks permitted within a complex constant are between the separator and the end of a record and one blank at19
the beginning of the next record.20

8 Character sequences produced when the delimiter mode has a value of NONE21

• are not delimited by apostrophes or quotation marks,22

• are not separated from each other by value separators,23

• have each internal apostrophe or quotation mark represented externally by one apostrophe or quotation24
mark, and25

• have a blank character inserted by the processor at the beginning of any record that begins with the26
continuation of a character sequence from the preceding record.27

9 Character sequences produced when the delimiter mode has a value of QUOTE are delimited by quotes, are28
preceded and followed by a value separator, and have each internal quote represented on the external medium by29
two contiguous quotes.30

10 Character sequences produced when the delimiter mode has a value of APOSTROPHE are delimited by apo-31
strophes, are preceded and followed by a value separator, and have each internal apostrophe represented on the32
external medium by two contiguous apostrophes.33

11 If two or more successive values in an output record have identical values, the processor has the option of producing34
a repeated constant of the form r*c instead of the sequence of identical values.35

12 Slashes, as value separators, and null values are not produced as output by list-directed formatting.36

13 Except for new records created by explicit formatting within a defined output procedure or by continuation of37
delimited character sequences, each output record begins with a blank character.38

NOTE
The length of the output records is not specified and is processor dependent.

290 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

13.11 Namelist formatting1

13.11.1 Purpose of namelist formatting2

1 Namelist input/output allows data editing with name-value subsequences. This facilitates documentation of input3
and output files and more flexibility on input.4

13.11.2 Name-value subsequences5

1 The characters in one or more namelist records constitute a sequence of name-value subsequences, each of which6
consists of an object designator followed by an equals and followed by one or more values and value separators.7
The equals may optionally be preceded or followed by one or more contiguous blanks. The end of a record has the8
same effect as a blank character, unless it is within a character constant. Any sequence of two or more consecutive9
blanks is treated as a single blank, unless it is within a character constant.10

2 Each object designator shall begin with a name from the namelist-group-object-list (8.9) and shall follow the11
syntax of designator (R901). It shall not contain a vector subscript or an image-selector and shall not designate a12
zero-sized array, a zero-sized array section, or a zero-length character string. Each subscript, stride, and substring13
range expression shall be an optionally signed integer literal constant with no kind type parameter specified. If14
a section subscript list appears, the number of section subscripts shall be equal to the rank of the object. If15
the namelist group object is of derived type, the designator in the input record may be either the name of the16
variable or the designator of one of its components, indicated by qualifying the variable name with the appropriate17
component name. Successive qualifications may be applied as appropriate to the shape and type of the variable18
represented. Each designator may be preceded and followed by one or more optional blanks but shall not contain19
embedded blanks.20

3 A value separator for namelist formatting is the same as for list-directed formatting (13.10.2), or one or more21
contiguous blanks between a nonblank value and the following object designator or namelist comment (13.11.3.6).22

13.11.3 Namelist input23

13.11.3.1 Overall syntax24

1 Input for a namelist input statement consists of25

(1) optional blanks and namelist comments,26

(2) the character & followed immediately by the namelist-group-name as specified in the NAMELIST27
statement,28

(3) one or more blanks,29

(4) a sequence of zero or more name-value subsequences separated by value separators, and30

(5) a slash to terminate the namelist input.31

NOTE
A slash encountered in a namelist input record causes the input statement to terminate. A slash cannot be used
to separate two values in a namelist input statement.

2 The order of the name-value subsequences in the input records need not match the order of the namelist-group-32
object-list. The input records need not specify all objects in the namelist-group-object-list. They may specify a33
part of an object more than once.34

3 A group name or object name is without regard to case.35

13.11.3.2 Namelist input processing36

1 The name-value subsequences are evaluated serially, in left-to-right order. A namelist group object designator37
may appear in more than one name-value subsequence. The definition status of an object that is not a subobject38
of a designator in any name-value subsequence remains unchanged.39

J3/23-007 291

J3/23-007 WD 1539-1 2023-02-17

2 When the designator in the input record represents an array variable or a variable of derived type, the effect is1
as if the variable represented were expanded into a sequence of scalar list items (effective items), in the same way2
that formatted input/output list items are expanded (12.6.3). The number of values following the equals shall3
not exceed the number of effective items, but may be less; in the latter case, the effect is as if sufficient null values4
had been appended to match any remaining effective items. Except as noted elsewhere in this subclause, if an5
input value is not acceptable to the processor for the type of the corresponding effective item, an error condition6
occurs.7

NOTE
For example, if the designator in the input record designates an integer array of size 100, at most 100 values,
each of which is either a digit string or a null value, can follow the equals; these values would then be assigned
to the elements of the array in array element order.

3 A slash encountered as a value separator during the execution of a namelist input statement causes termination8
of execution of that input statement after transference of the previous value. If there are additional items in the9
namelist group object being transferred, the effect is as if null values had been supplied for them.10

4 Successive namelist records are read by namelist input until a slash is encountered; the remainder of the record11
is ignored.12

5 A namelist comment may appear after any value separator except a slash (which terminates namelist input). A13
namelist comment is also permitted to start in the first nonblank position of an input record except within a14
character literal constant.15

13.11.3.3 Namelist input values16

1 Each value is either a null value (13.11.3.4), c, r*c, or r*, where c is a literal constant, optionally signed if integer17
or real, and r is an unsigned, nonzero, integer literal constant. A kind type parameter shall not be specified for c18
or r. The constant c is interpreted as though it had the same kind type parameter as the corresponding effective19
item. The r*c form is equivalent to r successive appearances of the constant c, and the r* form is equivalent to20
r successive null values. Neither of these forms shall contain embedded blanks, except where permitted within21
the constant c.22

2 The datum c (13.11) is any input value acceptable to format specifications for a given type, except for restrictions23
on the form of input values specified in this subclause. The form of a real or complex value is dependent on the24
decimal edit mode in effect (13.6). The form of an input value shall be acceptable for the type of the corresponding25
effective item. The number and forms of the input values that may follow the equals in a name-value subsequence26
depend on the shape and type of the object represented by the name in the input record. When the name in27
the input record is that of a scalar variable of an intrinsic type, the equals shall not be followed by more than28
one value. Blanks are never used as zeros, and embedded blanks are not permitted in constants except within29
character constants and complex constants as specified in this subclause.30

3 When the next effective item is of type real, the input form of the input value is that of a numeric input field. A31
numeric input field is a field suitable for F editing (13.7.2.3.2) that is assumed to have no fractional digits unless32
a decimal symbol appears within the field.33

4 When the next effective item is of type complex, the input form of the input value consists of a left parenthesis34
followed by an ordered pair of numeric input fields separated by a comma (if the decimal edit mode is POINT) or35
a semicolon (if the decimal edit mode is COMMA), and followed by a right parenthesis. The first numeric input36
field is the real part of the complex constant and the second field is the imaginary part. Each of the numeric37
input fields may be preceded or followed by any number of blanks and ends of records. The end of a record may38
occur between the real part and the comma or semicolon, or between the comma or semicolon and the imaginary39
part.40

5 When the next effective item is of type logical, the input form of the input value shall not include equals or value41
separators among the optional characters permitted for L editing (13.7.3).42

292 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

6 When the next effective item is of type integer or of an enum type, the value in the input record is interpreted as1
if an Iw edit descriptor with a suitable value of w were used.2

7 When the next effective item is of type character, the input form consists of a sequence of zero or more rep-chars3
whose kind type parameter is implied by the kind of that effective item, delimited by apostrophes or quotes.4
Such a sequence may be continued from the end of one record to the beginning of the next record, but the end of5
record shall not occur between a doubled apostrophe in an apostrophe-delimited sequence, nor between a doubled6
quote in a quote-delimited sequence. The end of the record does not cause a blank or any other character to7
become part of the sequence. The sequence may be continued on as many records as needed. The characters8
blank, comma, semicolon, and slash may appear in such character sequences.9

NOTE
The delimiters in the input form for a namelist input item of type character avoid the ambiguity that could
arise between undelimited character sequences and object names. The value of the DELIM= specifier, if any,
in the OPEN statement for an external file is ignored during namelist input (12.5.6.8).

8 Let len be the length of the next effective item, and let w be the length of the character sequence. If len is less10
than or equal to w, the leftmost len characters of the sequence are transmitted to the next effective item. If len11
is greater than w, the constant is transmitted to the leftmost w characters of the next effective item and the12
remaining len−w characters of the next effective item are filled with blanks. The effect is as though the sequence13
were assigned to the next effective item in an intrinsic assignment statement (10.2.1.3).14

13.11.3.4 Null values15

1 A null value is specified by16

• the r* form,17

• blanks between two consecutive nonblank value separators following an equals,18

• a value separator that is the first nonblank character following an equals, or19

• two consecutive nonblank value separators.20

2 A null value has no effect on the definition status of the corresponding effective item. If the effective item is21
defined, it retains its previous value; if it is undefined, it remains undefined. A null value shall not be used as22
either the real or imaginary part of a complex constant, but a single null value may represent an entire complex23
constant.24

NOTE
The end of a record following a value separator, with or without intervening blanks, does not specify a null
value in namelist input.

13.11.3.5 Blanks25

1 All blanks in a namelist input record are considered to be part of some value separator except for26

• blanks embedded in a character constant,27

• embedded blanks surrounding the real or imaginary part of a complex constant,28

• leading blanks following the equals unless followed immediately by a slash or comma, or a semicolon if the29
decimal edit mode is COMMA, and30

• blanks between a name and the following equals.31

13.11.3.6 Namelist comments32

1 Except within a character literal constant, a “!” character after a value separator or in the first nonblank position33
of a namelist input record initiates a comment. The comment extends to the end of the record and may contain34
any graphic character in the processor-dependent character set. The comment is ignored. A slash within the35

J3/23-007 293

J3/23-007 WD 1539-1 2023-02-17

namelist comment does not terminate execution of the namelist input statement. Namelist comments are not1
allowed in stream input because comments depend on record structure.2

NOTE
Namelist input example:

INTEGER I; REAL X (8); CHARACTER (11) P; COMPLEX Z; LOGICAL G
NAMELIST / TODAY / G, I, P, Z, X
READ (*, NML = TODAY)

The input data records are:
&TODAY I = 12345, X(1) = 12345, X(3:4) = 2*1.5, I=6, ! This is a comment.
P = ’’ISN’T_BOB’S’’, Z = (123,0)/

The results stored are:

Variable Value
I 6
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) – X (8) unchanged
P ISN’T_BOB’S
Z (123.0,0.0)
G unchanged

13.11.4 Namelist output3

13.11.4.1 Form of namelist output4

1 The form of the output produced by intrinsic namelist output shall be suitable for input, except for character5
output. The names in the output are in upper case. With the exception of adjacent undelimited character6
values, the values are separated by one or more blanks or by a comma, or a semicolon if the decimal edit mode is7
COMMA, optionally preceded by one or more blanks and optionally followed by one or more blanks. The form8
of the output produced by defined output (12.6.4.8) is determined by the defined output procedure; this form9
need not be compatible with namelist input.10

2 Namelist output shall not include namelist comments.11

3 The processor may begin new records as necessary. However, except for complex constants and character values,12
the end of a record shall not occur within a constant, character value, or name, and blanks shall not appear13
within a constant, character value, or name.14

NOTE
The length of the output records is not specified exactly and is processor dependent.

13.11.4.2 Namelist output editing15

1 Values in namelist output records are edited as for list-directed output (13.10.4).16

NOTE
Namelist output records produced with a DELIM= specifier with a value of NONE and which contain a character
sequence might not be acceptable as namelist input records.

294 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

13.11.4.3 Namelist output records1

1 If two or more successive values for the same namelist-group-object in an output record produced have identical2
values, the processor has the option of producing a repeated constant of the form r*c instead of the sequence of3
identical values.4

2 The name of each namelist-group-object is placed in the output record followed by an equals and a list of values5
of that namelist-group-object.6

3 An ampersand character followed immediately by a namelist-group-name is placed at the start of the first output7
record to indicate which particular group of data objects is being output. A slash is placed in the output record8
to indicate the end of the namelist formatting.9

4 A null value is not produced by namelist formatting.10

5 Except for new records created by explicit formatting within a defined output procedure or by continuation of11
delimited character sequences, each output record begins with a blank character.12

J3/23-007 295

J3/23-007 WD 1539-1 2023-02-17

14 Program units1

14.1 Main program2

1 A Fortran main program is a program unit that does not contain a SUBROUTINE, FUNCTION, MODULE,3
SUBMODULE, or BLOCK DATA statement as its first statement.4

R1401 main-program is [program-stmt]5
[specification-part]6
[execution-part]7
[internal-subprogram-part]8
end-program-stmt9

R1402 program-stmt is PROGRAM program-name10

R1403 end-program-stmt is END [PROGRAM [program-name]]11

C1401 (R1401) The program-name shall not be included in the end-program-stmt unless the optional program-12
stmt is used. If included, it shall be identical to the program-name specified in the program-stmt.13

NOTE 1
The program name is global to the program (19.2). For explanatory information about uses for the program
name, see C.10.1.

NOTE 2
An example of a main program is:

PROGRAM ANALYZE
REAL A, B, C (10,10) ! Specification part
CALL FIND ! Execution part

CONTAINS
SUBROUTINE FIND ! Internal subprogram
. . .
END SUBROUTINE FIND

END PROGRAM ANALYZE

2 The main program may be defined by means other than Fortran; in that case, the program shall not contain a14
main-program program unit.15

3 A reference to a Fortran main-program shall not appear in any program unit in the program, including itself.16

14.2 Modules17

14.2.1 Module syntax and semantics18

1 A module contains declarations, specifications, and definitions. Public identifiers of module entities are accessible19
to other program units by use association as specified in 14.2.2. A module that is provided as an inherent part20
of the processor is an intrinsic module. A nonintrinsic module is defined by a module program unit or a means21
other than Fortran.22

2 Procedures and types defined in an intrinsic module are not themselves intrinsic.23

296 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

R1404 module is module-stmt1
[specification-part]2
[module-subprogram-part]3
end-module-stmt4

R1405 module-stmt is MODULE module-name5

R1406 end-module-stmt is END [MODULE [module-name]]6

R1407 module-subprogram-part is contains-stmt7
[module-subprogram] ...8

R1408 module-subprogram is function-subprogram9
or subroutine-subprogram10
or separate-module-subprogram11

C1402 (R1404) If the module-name is specified in the end-module-stmt, it shall be identical to the module-name12
specified in the module-stmt.13

C1403 (R1404) A module specification-part shall not contain a stmt-function-stmt, an entry-stmt, or a format-stmt.14

3 If a procedure declared in the scoping unit of a module has an implicit interface, it shall be given the EXTERNAL15
attribute in that scoping unit; if it is a function, its type and type parameters shall be explicitly declared in a16
type declaration statement in that scoping unit.17

4 If an intrinsic procedure is declared in the scoping unit of a module, it shall explicitly be given the INTRINSIC18
attribute in that scoping unit or be used as an intrinsic procedure in that scoping unit.19

NOTE 1
The module name is global to the program (19.2).

NOTE 2
Although statement function definitions, ENTRY statements, and FORMAT statements cannot appear in the specific-
ation part of a module, they can appear in the specification part of a module subprogram in the module.

NOTE 3
For a discussion of the impact of modules on dependent compilation, see C.10.2.

NOTE 4
For examples of the use of modules, see C.10.3.

14.2.2 The USE statement and use association20

1 The USE statement specifies use association. A USE statement is a reference to the module it specifies. At the21
time a USE statement is processed, the public portions of the specified module shall be available. A module shall22
not reference itself, either directly or indirectly.23

2 The USE statement provides the means by which a scoping unit accesses named data objects, nonintrinsic types,24
procedures, abstract interfaces, generic identifiers, and namelist groups in a module. The entities in the scoping25
unit are use associated with the entities in the module. The accessed entities have the attributes specified26
in the module, except that an accessed entity may have a different accessibility attribute, it may have the27
ASYNCHRONOUS attribute even if the associated module entity does not, and if it is not a coarray it may have28
the VOLATILE attribute even if the associated module entity does not. The entities made accessible are identified29
by the names or generic identifiers used to identify them in the module. By default, the accessed entities are30
identified by the same identifiers in the scoping unit containing the USE statement, but it is possible to specify31

J3/23-007 297

J3/23-007 WD 1539-1 2023-02-17

that different identifiers are used. A use-associated variable is considered to have been previously declared; any1
other use-associated entity is considered to have been previously defined.2

NOTE 1
The accessibility of module entities can be controlled by accessibility attributes (7.5.2.2, 8.5.2), and the ONLY
option of the USE statement. Definability of module entities can be controlled by the PROTECTED attribute
(8.5.15).

R1409 use-stmt is USE [[, module-nature] ::] module-name [, rename-list]3
or USE [[, module-nature] ::] module-name ,4

ONLY : [only-list]5

R1410 module-nature is INTRINSIC6
or NON_INTRINSIC7

R1411 rename is local-name => use-name8
or OPERATOR (local-defined-operator) =>9

OPERATOR (use-defined-operator)10

R1412 only is generic-spec11
or only-use-name12
or rename13

R1413 only-use-name is use-name14

C1404 (R1409) If module-nature is INTRINSIC, module-name shall be the name of an intrinsic module.15

C1405 (R1409) If module-nature is NON_INTRINSIC, module-name shall be the name of a nonintrinsic module.16

C1406 (R1409) A scoping unit shall not directly reference an intrinsic module and a nonintrinsic module of the17
same name.18

C1407 (R1411) OPERATOR (use-defined-operator) shall not identify a type-bound generic interface.19

C1408 (R1412) The generic-spec shall not identify a type-bound generic interface.20

NOTE 2
Constraints C1407 and C1408 do not prevent accessing a generic-spec that is declared by an interface block,
even if a type-bound generic interface has the same generic-spec.

C1409 Each generic-spec, use-name, and use-defined-operator in a USE statement shall be a public identifier of21
the module.22

C1410 An only-use-name shall be a nongeneric name.23

R1414 local-defined-operator is defined-unary-op24
or defined-binary-op25

R1415 use-defined-operator is defined-unary-op26
or defined-binary-op27

3 A use-stmt without a module-nature provides access either to an intrinsic or to a nonintrinsic module. If the28
module-name is the name of both an intrinsic and a nonintrinsic module, the nonintrinsic module is accessed.29

4 The USE statement without the ONLY option provides access to all public entities in the specified module.30

5 A USE statement with the ONLY option provides access only to those entities that appear as generic-specs,31
use-names, or use-defined-operators in the only-list.32

298 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

6 More than one USE statement for a given module may appear in a specification part. If one of the USE statements1
is without an ONLY option, all public entities in the module are accessible. If all the USE statements have ONLY2
options, only those entities in one or more of the only-lists are accessible.3

7 An accessible entity in the referenced module is associated with one or more accessed entities, each with its own4
identifier. These identifiers are5

• the identifier of the entity in the referenced module if that identifier appears as an only-use-name or as the6
defined-operator of a generic-spec in any only for that module,7

• each of the local-names or local-defined-operators that the entity is given in any rename for that module,8
and9

• the identifier of the entity in the referenced module if that identifier does not appear as a use-name or10
use-defined-operator in any rename for that module.11

8 An ultimate entity is a module entity that is not accessed by use association. An accessed entity shall not be12
associated with two or more ultimate entities unless its identifier is not used, or the ultimate entities are generic13
interfaces. Generic interfaces are handled as described in 15.4.3.4.14

NOTE 3
There is no prohibition against a use-name or use-defined-operator appearing multiple times in one USE state-
ment or in multiple USE statements involving the same module. As a result, it is possible for one use-associated
entity to be accessible by more than one local identifier.

9 The local identifier of an entity made accessible by a USE statement shall not appear in any other nonexecutable15
statement that would cause any attribute (8.5) of the entity to be specified in the scoping unit that contains the16
USE statement, except that it may appear in a PUBLIC or PRIVATE statement in the scoping unit of a module17
and it may be given the ASYNCHRONOUS or VOLATILE attribute.18

10 An entity in a scoping unit that is accessed by use association through more than one use path, has the ASYN-19
CHRONOUS or VOLATILE attribute in any of those use paths, and is not given that attribute in that scoping20
unit, shall have that attribute in all use paths.21

NOTE 4
The constraints in 8.10.1, 8.10.2, and 8.9 prohibit the local-name from appearing as a common-block-object in a
COMMON statement, an equivalence-object in an EQUIVALENCE statement, or a namelist-group-name in a NAMELIST
statement, respectively. There is no prohibition against the local-name appearing as a common-block-name or a
namelist-group-object.

NOTE 5
For a discussion of the impact of the ONLY option and renaming on dependent compilation, see C.10.2.2.

NOTE 6
Examples:

USE STATS_LIB
provides access to all public entities in the module STATS_LIB.

USE MATH_LIB; USE STATS_LIB, SPROD => PROD
provides access to all public identifiers in both MATH_LIB and STATS_LIB. If MATH_LIB contains an entity
named PROD, it can be accessed by that name, while the entity PROD of STATS_LIB can be accessed by the
name SPROD.

USE STATS_LIB, ONLY: YPROD; USE STATS_LIB, ONLY : PROD
provides access to YPROD and PROD in STAT_LIB.

J3/23-007 299

J3/23-007 WD 1539-1 2023-02-17

NOTE 6 (cont.)
USE STATS_LIB, ONLY : YPROD; USE STATS_LIB

provides access to all public identifiers in STAT_LIB.

14.2.3 Submodules1

1 A submodule is a program unit that extends a module or another submodule. The program unit that it extends2
is its host, and is specified by the parent-identifier in the submodule-stmt.3

2 A module or submodule is an ancestor program unit of all of its descendants, which are its submodules and their4
descendants. The submodule identifier is the ordered pair whose first element is the ancestor module name and5
whose second element is the submodule name; the submodule name by itself is not a local or global identifier.6

NOTE
A module and its submodules stand in a tree-like relationship one to another, with the module at the root.
Therefore, a submodule has exactly one ancestor module and can have one or more ancestor submodules.

3 A submodule may provide implementations for separate module procedures (15.6.2.5), each of which is declared7
(15.4.3.2) within that submodule or one of its ancestors, and declarations and definitions of other entities that8
are accessible by host association in its descendants.9

R1416 submodule is submodule-stmt10
[specification-part]11
[module-subprogram-part]12

end-submodule-stmt13

R1417 submodule-stmt is SUBMODULE (parent-identifier) submodule-name14

R1418 parent-identifier is ancestor-module-name [: parent-submodule-name]15

R1419 end-submodule-stmt is END [SUBMODULE [submodule-name]]16

C1411 (R1416) A submodule specification-part shall not contain a format-stmt, entry-stmt, or stmt-function-stmt.17

C1412 (R1418) The ancestor-module-name shall be the name of a nonintrinsic module that declares a separate18
module procedure; the parent-submodule-name shall be the name of a descendant of that module.19

C1413 (R1416) If a submodule-name appears in the end-submodule-stmt, it shall be identical to the one in the20
submodule-stmt.21

14.3 Block data program units22

1 A block data program unit is used to provide initial values for data objects in named common blocks.23

R1420 block-data is block-data-stmt24
[specification-part]25
end-block-data-stmt26

R1421 block-data-stmt is BLOCK DATA [block-data-name]27

R1422 end-block-data-stmt is END [BLOCK DATA [block-data-name]]28

C1414 (R1420) The block-data-name shall be included in the end-block-data-stmt only if it was provided in the block-data-stmt29
and, if included, shall be identical to the block-data-name in the block-data-stmt.30

C1415 (R1420) A block-data specification-part shall contain only derived-type definitions and ASYNCHRONOUS, BIND, COM-31
MON, DATA, DIMENSION, EQUIVALENCE, IMPLICIT, INTRINSIC, PARAMETER, POINTER, SAVE, TARGET,32
USE, VOLATILE, and type declaration statements.33

300 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C1416 (R1420) A type declaration statement in a block-data specification-part shall not contain ALLOCATABLE, EXTERNAL,1
or BIND attribute specifiers.2

2 If an object in a named common block is initially defined, all storage units in the common block storage sequence shall be specified3
even if they are not all initially defined. More than one named common block may have objects initially defined in a single block4
data program unit.5

3 An object that is initially defined in a block data program unit shall be in a named common block.6

4 The same named common block shall not be specified in more than one block data program unit in a program.7

5 There shall not be more than one unnamed block data program unit in a program.8

J3/23-007 301

J3/23-007 WD 1539-1 2023-02-17

15 Procedures1

15.1 Concepts2

1 The concept of a procedure was introduced in 5.2.3. This clause contains a complete description of procedures.3
The actions specified by a procedure are performed when the procedure is invoked by execution of a reference to4
it.5

2 The sequence of actions encapsulated by a procedure has access to entities in the procedure reference by way of6
argument association (15.5.2). A name that appears as a dummy-arg-name in the SUBROUTINE, FUNCTION,7
or ENTRY statement in the declaration of a procedure (R1539) is a dummy argument. Dummy arguments are8
also specified for intrinsic procedures and procedures in intrinsic modules in Clauses 16, 17, and 18.9

15.2 Procedure classifications10

15.2.1 Procedure classification by reference11

1 The definition of a procedure specifies it to be a function or a subroutine. A reference to a function either appears12
explicitly as a primary within an expression, or is implied by a defined operation (10.1.6) within an expression.13
A reference to a subroutine is a CALL statement, a defined assignment statement (10.2.1.4), the appearance of14
an object processed by defined input/output (12.6.4.8) in an input/output list, or finalization (7.5.6).15

2 A procedure is classified as elemental if it is a procedure that can be referenced elementally (15.9).16

15.2.2 Procedure classification by means of definition17

15.2.2.1 Intrinsic procedures18

1 A procedure that is provided as an inherent part of the processor is an intrinsic procedure.19

15.2.2.2 External, internal, and module procedures20

1 An external procedure is a procedure that is defined by an external subprogram or by a means other than Fortran.21

2 An internal procedure is a procedure that is defined by an internal subprogram. Internal subprograms may22
appear in the main program, in an external subprogram, or in a module subprogram. Internal subprograms shall23
not appear in other internal subprograms. Internal subprograms are the same as external subprograms except24
that the name of the internal procedure is not a global identifier, an internal subprogram shall not contain an ENTRY25
statement, and the internal subprogram has access to host entities by host association.26

3 A module procedure is a procedure that is defined by a module subprogram, or a specific procedure provided by27
an intrinsic module.28

4 A subprogram defines a procedure for the SUBROUTINE or FUNCTION statement. If the subprogram has one or29
more ENTRY statements, it also defines a procedure for each of them.30

15.2.2.3 Dummy procedures31

1 A dummy argument that is specified to be a procedure or appears as the procedure designator in a procedure32
reference is a dummy procedure. A dummy procedure with the POINTER attribute is a dummy procedure33
pointer.34

302 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

15.2.2.4 Procedure pointers1

1 A procedure pointer is a procedure that has the POINTER attribute. A procedure pointer can be pointer2
associated with an external, internal, intrinsic, or module procedure.3

15.2.2.5 Statement functions4

1 A function that is defined by a single statement is a statement function (15.6.4).5

15.3 Characteristics6

15.3.1 Characteristics of procedures7

1 The characteristics of a procedure are the classification of the procedure as a function or subroutine, whether it8
is pure, whether it is simple, whether it is elemental, whether it has the BIND attribute, the characteristics of its9
dummy arguments, and the characteristics of its function result if it is a function.10

15.3.2 Characteristics of dummy arguments11

15.3.2.1 General12

1 Each dummy argument has the characteristic that it is a dummy data object, a dummy procedure, or an asterisk13
(alternate return indicator).14

15.3.2.2 Characteristics of dummy data objects15

1 The characteristics of a dummy data object are its declared type, its type parameters, its shape (unless it is16
assumed-rank), its corank, its codimensions, its intent (8.5.10, 8.6.9), whether it is optional (8.5.12, 8.6.10),17
whether it is allocatable (8.5.3), whether it has the ASYNCHRONOUS (8.5.4), CONTIGUOUS (8.5.7), VALUE18
(8.5.19), or VOLATILE (8.5.20) attributes, whether it is polymorphic, and whether it is a pointer (8.5.14, 8.6.12)19
or a target (8.5.18, 8.6.15). If a type parameter of an object or a bound of an array is not a constant expression,20
the exact dependence on the entities in the expression is a characteristic. If a rank, shape, size, type, or type21
parameter is assumed or deferred, it is a characteristic.22

15.3.2.3 Characteristics of dummy procedures23

1 The characteristics of a dummy procedure are the explicitness of its interface (15.4.2), its characteristics as a24
procedure if the interface is explicit, whether it is a pointer, and whether it is optional (8.5.12, 8.6.10).25

15.3.2.4 Characteristics of asterisk dummy arguments26

1 A dummy argument that is an asterisk has no other characteristic.27

15.3.3 Characteristics of function results28

1 The characteristics of a function result are its declared type, type parameters, rank, whether it is polymorphic,29
whether it is allocatable, whether it is a pointer, whether it has the CONTIGUOUS attribute, and whether it is a30
procedure pointer. If a function result is an array that is not allocatable or a pointer, its shape is a characteristic.31
If a type parameter of a function result or a bound of a function result array is not a constant expression, the32
exact dependence on the entities in the expression is a characteristic. If type parameters of a function result are33
deferred, which parameters are deferred is a characteristic. Whether the length of a character function result is assumed34
is a characteristic.35

J3/23-007 303

J3/23-007 WD 1539-1 2023-02-17

15.4 Procedure interface1

15.4.1 Interface and abstract interface2

1 The interface of a procedure determines the forms of reference through which it can be invoked. The procedure’s3
interface consists of its name, binding label, generic identifiers, characteristics, and the names of its dummy4
arguments. The characteristics and binding label of a procedure are fixed, but the remainder of the interface may5
differ in differing contexts, except that for a separate module procedure body (15.6.2.5), the dummy argument6
names and whether it has the NON_RECURSIVE attribute shall be the same as in its corresponding module7
procedure interface body (15.4.3.2).8

2 An abstract interface is a set of procedure characteristics with the dummy argument names.9

15.4.2 Implicit and explicit interfaces10

15.4.2.1 Interfaces and scopes11

1 The interface of a procedure is either explicit or implicit. It is explicit if it is12

• an internal procedure, module procedure, or intrinsic procedure,13

• a subroutine, or a function with a separate result name, within the scoping unit that defines it, or14

• a procedure declared by a procedure declaration statement that specifies an explicit interface, or by an15
interface body.16

Otherwise, the interface of the identifier is implicit. The interface of a statement function is always implicit.17

NOTE
For example, the subroutine LLS of C.10.3.4 has an explicit interface.

15.4.2.2 Explicit interface18

1 Within the scope of a procedure identifier, the procedure shall have an explicit interface if it is not a statement19
function and20

(1) a reference to the procedure appears with an argument keyword (15.5.2),21

(2) the procedure is used in a context that requires it to be pure (15.7),22

(3) the procedure is used in a context that requires it to be simple (15.8),23

(4) the procedure has a dummy argument that24

(a) has the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER, TARGET, VALUE,25
or VOLATILE attribute,26

(b) is an assumed-shape array,27

(c) is assumed-rank,28

(d) is a coarray,29

(e) is of a parameterized derived type, or30

(f) is polymorphic,31

(5) the procedure has a result that32

(a) is an array,33

(b) is a pointer or is allocatable, or34

(c) has a nonassumed type parameter value that is not a constant expression,35

(6) the procedure is elemental, or36

(7) the procedure has the BIND attribute.37

304 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

15.4.3 Specification of the procedure interface1

15.4.3.1 General2

1 The interface for an internal, external, module, or dummy procedure is specified by a FUNCTION, SUB-3
ROUTINE, or ENTRY statement and by specification statements for the dummy arguments and the result of4
a function. These statements may appear in the procedure definition, in an interface body, or both, except that5
the ENTRY statement shall not appear in an interface body.6

NOTE
An interface body cannot be used to describe the interface of an internal procedure, a module procedure that
is not a separate module procedure, or an intrinsic procedure because the interfaces of such procedures are
already explicit. However, the name of a procedure can appear in a PROCEDURE statement in an interface
block (15.4.3.2).

15.4.3.2 Interface block7

R1501 interface-block is interface-stmt8
[interface-specification] ...9
end-interface-stmt10

R1502 interface-specification is interface-body11
or procedure-stmt12

R1503 interface-stmt is INTERFACE [generic-spec]13
or ABSTRACT INTERFACE14

R1504 end-interface-stmt is END INTERFACE [generic-spec]15

R1505 interface-body is function-stmt16
[specification-part]17
end-function-stmt18

or subroutine-stmt19
[specification-part]20
end-subroutine-stmt21

R1506 procedure-stmt is [MODULE] PROCEDURE [::] specific-procedure-list22

R1507 specific-procedure is procedure-name23

R1508 generic-spec is generic-name24
or OPERATOR (defined-operator)25
or ASSIGNMENT (=)26
or defined-io-generic-spec27

R1509 defined-io-generic-spec is READ (FORMATTED)28
or READ (UNFORMATTED)29
or WRITE (FORMATTED)30
or WRITE (UNFORMATTED)31

C1501 (R1501) An interface-block in a subprogram shall not contain an interface-body for a procedure defined32
by that subprogram.33

C1502 (R1501) If the end-interface-stmt includes a generic-spec, the interface-stmt shall specify the same34
generic-spec, except that if one generic-spec has a defined-operator that is .LT., .LE., .GT., .GE., .EQ.,35
or .NE., the other generic-spec may have a defined-operator that is the corresponding operator <, <=,36
>, >=, ==, or /=.37

J3/23-007 305

J3/23-007 WD 1539-1 2023-02-17

C1503 (R1503) If the interface-stmt is ABSTRACT INTERFACE, then the function-name in the function-stmt1
or the subroutine-name in the subroutine-stmt shall not be the same as a keyword that specifies an2
intrinsic type.3

C1504 (R1502) A procedure-stmt is allowed only in an interface block that has a generic-spec.4

C1505 (R1505) An interface-body of a pure procedure shall specify the intents of all dummy arguments except5
alternate return indicators, dummy procedures, and arguments with the POINTER or VALUE attribute.6

C1506 (R1505) An interface-body shall not contain a data-stmt, format-stmt, entry-stmt, or stmt-function-stmt.7

C1507 (R1506) If MODULE appears in a procedure-stmt, each procedure-name in that statement shall denote a8
module procedure.9

C1508 (R1507) A procedure-name shall denote a nonintrinsic procedure that has an explicit interface.10

C1509 (R1501) An interface-specification in a generic interface block shall not specify a procedure that was11
specified previously in any accessible interface with the same generic identifier.12

1 An external or module subprogram specifies a specific interface for each procedure defined in that subprogram.13

2 An interface block introduced by ABSTRACT INTERFACE is an abstract interface block. An interface body14
in an abstract interface block specifies an abstract interface. An interface block with a generic specification is15
a generic interface block. An interface block with neither ABSTRACT nor a generic specification is a specific16
interface block.17

3 The name of the entity declared by an interface body is the function-name in the function-stmt or the subroutine-18
name in the subroutine-stmt that begins the interface body.19

4 A module procedure interface body is an interface body whose initial statement contains the keyword MODULE.20
It specifies the interface for a separate module procedure (15.6.2.5). A separate module procedure is accessible21
by use association if and only if its interface body is declared in the specification part of a module and is public.22
If a corresponding (15.6.2.5) separate module procedure is not defined, the interface may be used to specify an23
explicit specific interface but the procedure shall not be used in any other way.24

5 An interface body in a generic or specific interface block specifies the EXTERNAL attribute and an explicit25
specific interface for an external procedure, dummy procedure, or procedure pointer. If the name of the declared26
procedure is that of a dummy argument in the subprogram containing the interface body, the procedure is a27
dummy procedure. If the procedure has the POINTER attribute, it is a procedure pointer. If it is not a dummy28
procedure or procedure pointer, it is an external procedure.29

6 An interface body specifies all of the characteristics of the explicit specific interface or abstract interface. The30
specification part of an interface body may specify attributes or define values for data entities that do not31
determine characteristics of the procedure. Such specifications have no effect.32

7 If an explicit specific interface for an external procedure is specified by an interface body or a procedure declaration33
statement (15.4.3.6), the characteristics shall be consistent with those specified in the procedure definition, except34
that the interface may specify a procedure that is not pure even if the procedure is defined to be pure, and the35
interface may specify a procedure that is not simple even if the procedure is defined to be simple. An interface for36
a procedure defined by an ENTRY statement may be specified by using the entry name as the procedure name in the interface body.37
If an external procedure does not exist in the program, an interface body for it may be used to specify an explicit38
specific interface but the procedure shall not be used in any other way. A procedure shall not have more than39
one explicit specific interface in a given scoping unit, except that if the interface is accessed by use association,40
there may be more than one local name for the procedure. If a procedure is accessed by use association, each41
access shall be to the same procedure declaration or definition.42

306 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
The dummy argument names in an interface body can be different from the corresponding dummy argument
names in the procedure definition because the name of a dummy argument is not a characteristic.

NOTE 2
An example of a specific interface block is:

INTERFACE
SUBROUTINE EXT1 (X, Y, Z)

REAL, DIMENSION (100, 100) :: X, Y, Z
END SUBROUTINE EXT1
SUBROUTINE EXT2 (X, Z)

REAL X
COMPLEX (KIND = 4) Z (2000)

END SUBROUTINE EXT2
FUNCTION EXT3 (P, Q)

LOGICAL EXT3
INTEGER P (1000)
LOGICAL Q (1000)

END FUNCTION EXT3
END INTERFACE

This interface block specifies explicit interfaces for the three external procedures EXT1, EXT2, and EXT3.
Invocations of these procedures can use argument keywords (15.5.2); for example:

PRINT *, EXT3 (Q = P_MASK (N+1 : N+1000), P = ACTUAL_P)

15.4.3.3 GENERIC statement1

1 A GENERIC statement specifies a generic identifier for one or more specific procedures, in the same way as a2
generic interface block that does not contain interface bodies.3

R1510 generic-stmt is GENERIC [, access-spec] :: generic-spec => specific-procedure-list4

C1510 (R1510) A specific-procedure in a GENERIC statement shall not specify a procedure that was specified5
previously in any accessible interface with the same generic identifier.6

2 If access-spec appears, it specifies the accessibility (8.5.2) of generic-spec.7

15.4.3.4 Generic interfaces8

15.4.3.4.1 Generic identifiers9

1 A generic interface block specifies a generic interface for each of the procedures in the interface block. The10
PROCEDURE statement lists nonintrinsic procedures with explicit interfaces that have this generic interface. A11
GENERIC statement specifies a generic interface for each of the procedures named in its specific-procedure-list.12
A generic interface is always explicit.13

2 The generic-spec in an interface-stmt is a generic identifier for all the procedures in the interface block. The14
generic-spec in a GENERIC statement is a generic identifier for all of the procedures named in its specific-15
procedure-list. The rules specifying how any two procedures with the same generic identifier shall differ are given16
in 15.4.3.4.5. They ensure that any generic invocation applies to at most one specific procedure. If a specific17
procedure in a generic interface has a function dummy argument, that argument shall have its type and type18
parameters explicitly declared in the specific interface.19

3 A generic name is a generic identifier that refers to all of the procedure names in the generic interface. A generic20
name may be the same as any one of the procedure names in the generic interface, or the same as any accessible21
generic name.22

J3/23-007 307

J3/23-007 WD 1539-1 2023-02-17

4 A generic name may be the same as a derived-type name, in which case all of the procedures in the generic1
interface shall be functions.2

5 An interface-stmt having a defined-io-generic-spec is an interface for a defined input/output procedure (12.6.4.8).3

NOTE 1
An example of a generic procedure interface is:

INTERFACE SWITCH
SUBROUTINE INT_SWITCH (X, Y)

INTEGER, INTENT (INOUT) :: X, Y
END SUBROUTINE INT_SWITCH
SUBROUTINE REAL_SWITCH (X, Y)

REAL, INTENT (INOUT) :: X, Y
END SUBROUTINE REAL_SWITCH
SUBROUTINE COMPLEX_SWITCH (X, Y)

COMPLEX, INTENT (INOUT) :: X, Y
END SUBROUTINE COMPLEX_SWITCH

END INTERFACE SWITCH

Any of these three subroutines (INT_SWITCH, REAL_SWITCH, COMPLEX_SWITCH) can be referenced
with the generic name SWITCH, as well as by its specific name. For example, a reference to INT_SWITCH
could take the form:

CALL SWITCH (MAX_VAL, LOC_VAL) ! MAX_VAL and LOC_VAL are of type INTEGER

NOTE 2
A type-bound-generic-stmt within a derived-type definition (7.5.5) specifies a generic identifier for a set of type-
bound procedures.

15.4.3.4.2 Defined operations4

1 If OPERATOR is specified in a generic specification, all of the procedures specified in the generic interface shall5
be functions that can be referenced as defined operations (10.1.6, 15.5). In the case of functions of two arguments,6
infix binary operator notation is implied. In the case of functions of one argument, prefix operator notation is7
implied. OPERATOR shall not be specified for functions with no arguments or for functions with more than two8
arguments. The dummy arguments shall be nonoptional dummy data objects and shall have the INTENT (IN)9
or VALUE attribute. The function result shall not have assumed character length. If the operator is an intrinsic-operator10
(R608), the number of dummy arguments shall be consistent with the intrinsic uses of that operator, and the11
types, kind type parameters, or ranks of the dummy arguments shall differ from those required for the intrinsic12
operation (10.1.5), treating a CLASS (*) dummy argument as not differing in type or kind.13

2 A defined operation is treated as a reference to the function. For a unary defined operation, the operand14
corresponds to the function’s dummy argument; for a binary operation, the left-hand operand corresponds to the15
first dummy argument of the function and the right-hand operand corresponds to the second dummy argument.16
All restrictions and constraints that apply to actual arguments in a reference to the function also apply to the17
corresponding operands in the expression as if they were used as actual arguments.18

3 A given defined operator may, as with generic names, apply to more than one function, in which case it is generic19
in exact analogy to generic procedure names. For intrinsic operator symbols, the generic properties include the20
intrinsic operations they represent. Because both forms of each relational operator have the same interpretation21
(10.1.6.2), extending one form (such as <=) has the effect of defining both forms (<= and .LE.).22

NOTE
An example of the use of the OPERATOR generic specification is:

INTERFACE OPERATOR (*)

308 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE (cont.)
FUNCTION BOOLEAN_AND (B1, B2)

LOGICAL, INTENT (IN) :: B1 (:), B2 (SIZE (B1))
LOGICAL :: BOOLEAN_AND (SIZE (B1))

END FUNCTION BOOLEAN_AND
END INTERFACE OPERATOR (*)

This allows, for example
SENSOR (1:N) * ACTION (1:N)

as an alternative to the function reference
BOOLEAN_AND (SENSOR (1:N), ACTION (1:N)) ! SENSOR and ACTION are of type LOGICAL

15.4.3.4.3 Defined assignments1

1 If ASSIGNMENT (=) is specified in a generic specification, all the procedures in the generic interface shall2
be subroutines that can be referenced as defined assignments (10.2.1.4, 10.2.1.5). Defined assignment may, as3
with generic names, apply to more than one subroutine, in which case it is generic in exact analogy to generic4
procedure names.5

2 Each of these subroutines shall have exactly two dummy arguments. The dummy arguments shall be nonoptional6
dummy data objects. The first argument shall have INTENT (OUT) or INTENT (INOUT) and the second7
argument shall have the INTENT (IN) or VALUE attribute. Either the second argument shall be an array whose8
rank differs from that of the first argument, the declared types and kind type parameters of the arguments shall9
not conform as specified in Table 10.8, or the first argument shall be of derived type. A defined assignment is10
treated as a reference to the subroutine, with the left-hand side as the first argument and the right-hand side11
enclosed in parentheses as the second argument. All restrictions and constraints that apply to actual arguments12
in a reference to the subroutine also apply to the left-hand-side and to the right-hand-side enclosed in parentheses13
as if they were used as actual arguments. The ASSIGNMENT generic specification specifies that assignment is14
extended or redefined.15

NOTE 1
An example of the use of the ASSIGNMENT generic specification is:

INTERFACE ASSIGNMENT (=)
SUBROUTINE LOGICAL_TO_NUMERIC (N, B)

INTEGER, INTENT (OUT) :: N
LOGICAL, INTENT (IN) :: B

END SUBROUTINE LOGICAL_TO_NUMERIC
SUBROUTINE CHAR_TO_STRING (S, C)

USE STRING_MODULE ! Contains definition of type STRING
TYPE (STRING), INTENT (OUT) :: S ! A variable-length string
CHARACTER (*), INTENT (IN) :: C

END SUBROUTINE CHAR_TO_STRING
END INTERFACE ASSIGNMENT (=)

Example assignments are:
KOUNT = SENSOR (J) ! CALL LOGICAL_TO_NUMERIC (KOUNT, (SENSOR (J)))
NOTE = ’89AB’ ! CALL CHAR_TO_STRING (NOTE, (’89AB’))

NOTE 2
A procedure which has a generic identifier of ASSIGNMENT (=) and whose second dummy argument has the
ALLOCATABLE or POINTER attribute cannot be directly invoked by defined assignment. This is because
the actual argument associated with that dummy argument is the right-hand side of the assignment enclosed

J3/23-007 309

J3/23-007 WD 1539-1 2023-02-17

NOTE 2 (cont.)
in parentheses, which makes the actual argument an expression that does not have the ALLOCATABLE,
POINTER, or TARGET attribute.

15.4.3.4.4 Defined input/output procedure interfaces1

1 All of the procedures specified in an interface block for a defined input/output procedure shall be subroutines2
that have interfaces as described in 12.6.4.8.2.3

15.4.3.4.5 Restrictions on generic declarations4

1 This subclause contains the rules that shall be satisfied by every pair of specific procedures that have the same5
generic identifier within the scope of the identifier. If a generic procedure is accessed from a module, the rules6
apply to all the specific versions even if some of them are inaccessible by their specific names.7

NOTE 1
In most scoping units, the possible sources of procedures with a particular generic identifier are the accessible
generic identifiers specified by generic interface blocks or GENERIC statements and the generic bindings other
than names for the accessible objects in that scoping unit. In a type definition, they are the generic bindings,
including those from a parent type.

2 A dummy argument is type, kind, and rank compatible, or TKR compatible, with another dummy argument if8
the first is type compatible with the second, the kind type parameters of the first have the same values as the9
corresponding kind type parameters of the second, and both have the same rank or either is assumed-rank.10

3 Two dummy arguments are distinguishable if11

• one is a procedure and the other is a data object,12

• they are both data objects or known to be functions, and neither is TKR compatible with the other,13

• one has the ALLOCATABLE attribute and the other has the POINTER attribute and not the INTENT14
(IN) attribute, or15

• one is a function with nonzero rank and the other is not known to be a function.16

C1511 Within the scope of a generic operator, if two procedures with that identifier have the same number of17
arguments, one shall have a dummy argument that corresponds by position in the argument list to a18
dummy argument of the other that is distinguishable from it.19

C1512 Within the scope of the generic ASSIGNMENT (=) identifier, if two procedures have that identifier, one20
shall have a dummy argument that corresponds by position in the argument list to a dummy argument21
of the other that is distinguishable from it.22

C1513 Within the scope of a defined-io-generic-spec, if two procedures have that generic identifier, their dtv23
arguments (12.6.4.8.2) shall be distinguishable.24

C1514 Within the scope of a generic name, each pair of procedures identified by that name shall both be25
subroutines or both be functions, and26

(1) there is a non-passed-object dummy data object in one or the other of them such that27

(a) the number of dummy data objects in one that are nonoptional, are not passed-object, and28
with which that dummy data object is TKR compatible, possibly including that dummy29
data object itself,30

exceeds31

(b) the number of non-passed-object dummy data objects, both optional and nonoptional, in32
the other that are not distinguishable from that dummy data object,33

310 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(2) the number of nonoptional dummy procedures in one of them exceeds the number of dummy1
procedures in the other,2

(3) both have passed-object dummy arguments and the passed-object dummy arguments are distin-3
guishable, or4

(4) at least one of them shall have both5

(a) a nonoptional non-passed-object dummy argument at an effective position such that either6
the other procedure has no dummy argument at that effective position or the dummy argu-7
ment at that position is distinguishable from it, and8

(b) a nonoptional non-passed-object dummy argument whose name is such that either the other9
procedure has no dummy argument with that name or the dummy argument with that name10
is distinguishable from it,11

and the dummy argument that disambiguates by position shall either be the same as or occur12
earlier in the argument list than the one that disambiguates by name.13

4 The effective position of a dummy argument is its position in the argument list after any passed-object dummy14
argument has been removed.15

5 Within the scope of a generic name that is the same as the generic name of an intrinsic procedure, the intrinsic16
procedure is not accessible by its generic name if the procedures in the interface and the intrinsic procedure are17
not all functions or not all subroutines. If a generic invocation is consistent with both a specific procedure from18
an interface and an accessible intrinsic procedure, it is the specific procedure from the interface that is referenced.19

NOTE 2
An extensive explanation of the application of these rules is in C.11.6.

15.4.3.5 EXTERNAL statement20

1 An EXTERNAL statement specifies the EXTERNAL attribute (8.5.9) for a list of names.21

R1511 external-stmt is EXTERNAL [::] external-name-list22

2 The appearance of the name of a block data program unit in an EXTERNAL statement confirms that the block23
data program unit is a part of the program.24

NOTE 1
For explanatory information on potential portability problems with external procedures, see C.11.1.

NOTE 2
An example of an EXTERNAL statement is:

EXTERNAL FOCUS

15.4.3.6 Procedure declaration statement25

1 A procedure declaration statement declares procedure pointers, dummy procedures, and external procedures. It26
specifies the EXTERNAL attribute (8.5.9) for all entities in the proc-decl-list.27

R1512 procedure-declaration-stmt is PROCEDURE ([proc-interface])28
[[, proc-attr-spec] ... ::] proc-decl-list29

R1513 proc-interface is interface-name30
or declaration-type-spec31

R1514 proc-attr-spec is access-spec32
or proc-language-binding-spec33

J3/23-007 311

J3/23-007 WD 1539-1 2023-02-17

or INTENT (intent-spec)1
or OPTIONAL2
or POINTER3
or PROTECTED4
or SAVE5

R1515 proc-decl is procedure-entity-name [=> proc-pointer-init]6

R1516 interface-name is name7

R1517 proc-pointer-init is null-init8
or initial-proc-target9

R1518 initial-proc-target is procedure-name10

C1515 (R1516) The name shall be the name of an abstract interface or of a procedure that has an explicit11
interface. If name is declared by a procedure-declaration-stmt it shall be previously declared. If name12
denotes an intrinsic procedure it shall be one that is listed in Table 16.2.13

C1516 (R1516) The name shall not be the same as a keyword that specifies an intrinsic type.14

C1517 (R1512) If a proc-interface describes an elemental procedure, each procedure-entity-name shall specify an15
external procedure.16

C1518 (R1515) If => appears in proc-decl, the procedure entity shall have the POINTER attribute.17

C1519 (R1518) The procedure-name shall be the name of a nonelemental external or module procedure, or a18
specific intrinsic function listed in Table 16.2.19

C1520 (R1512) If proc-language-binding-spec with NAME= is specified, then proc-decl-list shall contain exactly20
one proc-decl, which shall neither have the POINTER attribute nor be a dummy procedure.21

C1521 (R1512) If proc-language-binding-spec is specified, the proc-interface shall appear, it shall be an interface-22
name, and interface-name shall be declared with a proc-language-binding-spec.23

2 If proc-interface appears and consists of interface-name, it specifies an explicit specific interface (15.4.3.2) for the24
declared procedure entities. The abstract interface (15.4) is that specified by the interface named by interface-25
name. The interface specified by interface-name shall not depend on any characteristic of a procedure identified26
by a procedure-entity-name in the proc-decl-list of the same procedure declaration statement.27

3 If proc-interface appears and consists of declaration-type-spec, it specifies that the declared procedure entities are28
functions having implicit interfaces and the specified result type. If a type is specified for an external function,29
its function definition (15.6.2.2) shall specify the same result type and type parameters.30

4 If proc-interface does not appear, the procedure declaration statement does not specify whether the declared31
procedure entities are subroutines or functions.32

5 If a proc-attr-spec other than a proc-language-binding-spec appears, it specifies that the declared procedure entities33
have that attribute. These attributes are described in 8.5. If a proc-language-binding-spec with NAME= appears,34
it specifies a binding label or its absence, as described in 18.10.2. A proc-language-binding-spec without NAME=35
is allowed, but is redundant with the proc-interface required by C1521.36

6 If => appears in a proc-decl in a procedure-declaration-stmt it specifies the initial association status of the37
corresponding procedure entity, and implies the SAVE attribute, which may be confirmed by explicit specification.38
If => null-init appears, the procedure entity is initially disassociated. If => initial-proc-target appears, the39
procedure entity is initially associated with the target.40

7 If procedure-entity-name has an explicit interface, its characteristics shall be the same as initial-proc-target except41
that initial-proc-target may be pure even if procedure-entity-name is not pure, initial-proc-target may be simple42
even if procedure-entity-name is not simple, and initial-proc-target may be an elemental intrinsic procedure.43

312 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

8 If the characteristics of procedure-entity-name or initial-proc-target are such that an explicit interface is required,1
both procedure-entity-name and initial-proc-target shall have an explicit interface.2

9 If procedure-entity-name has an implicit interface and is explicitly typed or referenced as a function, initial-proc-3
target shall be a function. If procedure-entity-name has an implicit interface and is referenced as a subroutine,4
initial-proc-target shall be a subroutine.5

10 If initial-proc-target and procedure-entity-name are functions, their results shall have the same characteristics.6

NOTE
The following code illustrates procedure declaration statements. 10.2.2.5, NOTE 1 illustrates the use of the P
and BESSEL defined by this code.

ABSTRACT INTERFACE
FUNCTION REAL_FUNC (X)

REAL, INTENT (IN) :: X
REAL :: REAL_FUNC

END FUNCTION REAL_FUNC
END INTERFACE

INTERFACE
SUBROUTINE SUB (X)

REAL, INTENT (IN) :: X
END SUBROUTINE SUB

END INTERFACE

!-- Some external or dummy procedures with explicit interface.
PROCEDURE (REAL_FUNC) :: BESSEL, GFUN
PROCEDURE (SUB) :: PRINT_REAL
!-- Some procedure pointers with explicit interface,
!-- one initialized to NULL().
PROCEDURE (REAL_FUNC), POINTER :: P, R => NULL ()
PROCEDURE (REAL_FUNC), POINTER :: PTR_TO_GFUN
!-- A derived type with a procedure pointer component ...
TYPE STRUCT_TYPE

PROCEDURE (REAL_FUNC), POINTER, NOPASS :: COMPONENT
END TYPE STRUCT_TYPE
!-- ... and a variable of that type.
TYPE(STRUCT_TYPE) :: STRUCT
!-- An external or dummy function with implicit interface
PROCEDURE (REAL) :: PSI

15.4.3.7 INTRINSIC statement7

1 An INTRINSIC statement specifies the INTRINSIC attribute (8.5.11) for a list of names.8

R1519 intrinsic-stmt is INTRINSIC [::] intrinsic-procedure-name-list9

C1522 (R1519) Each intrinsic-procedure-name shall be the name of an intrinsic procedure.10

15.4.3.8 Implicit interface specification11

1 If the interface of a function is implicit, the type and type parameters of the function result are specified by an12
implicit or explicit type specification of the function name. The type, type parameters, and shape of the dummy13
arguments of a procedure invoked from where the interface of the procedure is implicit shall be such that each14
actual argument is consistent with the characteristics of the corresponding dummy argument.15

J3/23-007 313

J3/23-007 WD 1539-1 2023-02-17

15.5 Procedure reference1

15.5.1 Syntax of a procedure reference2

1 The form of a procedure reference is dependent on the interface of the procedure or procedure pointer, but is3
independent of the means by which the procedure is defined. The forms of procedure references are as follows.4

R1520 function-reference is procedure-designator ([actual-arg-spec-list])5

C1523 (R1520) The procedure-designator shall designate a function.6

C1524 (R1520) The actual-arg-spec-list shall not contain an alt-return-spec.7

R1521 call-stmt is CALL procedure-designator [([actual-arg-spec-list])]8

C1525 (R1521) The procedure-designator shall designate a subroutine.9

R1522 procedure-designator is procedure-name10
or proc-component-ref11
or data-ref % binding-name12

C1526 (R1522) A procedure-name shall be a generic name or the name of a procedure.13

C1527 (R1522) A binding-name shall be a binding name (7.5.5) of the declared type of data-ref .14

C1528 (R1522) A data-ref shall not be a polymorphic subobject of a coindexed object.15

C1529 (R1522) If data-ref is an array, the referenced type-bound procedure shall have the PASS attribute.16

2 The data-ref in a procedure-designator shall not be an unallocated allocatable variable or a pointer that is not17
associated.18

3 Resolving references to type-bound procedures is described in 15.5.6.19

4 A function may also be referenced as a defined operation (10.1.6). A subroutine may also be referenced as a20
defined assignment (10.2.1.4, 10.2.1.5), by defined input/output (12.6.4.8), or by finalization (7.5.6).21

NOTE 1
When resolving type-bound procedure references, constraints on the use of coindexed objects ensure that the
coindexed object (on the remote image) has the same dynamic type as the corresponding object on the local
image. Thus a processor can resolve the type-bound procedure using the coarray variable on its own image and
pass the coindexed object as the actual argument.

R1523 actual-arg-spec is [keyword =] actual-arg22

R1524 actual-arg is expr23
or variable24
or procedure-name25
or proc-component-ref26
or conditional-arg27
or alt-return-spec28

R1525 alt-return-spec is * label29

C1530 (R1523) The keyword = shall not appear if the interface of the procedure is implicit.30

C1531 (R1523) The keyword = shall not be omitted from an actual-arg-spec unless it has been omitted from31
each preceding actual-arg-spec in the argument list.32

C1532 (R1523) Each keyword shall be the name of a dummy argument in the explicit interface of the procedure.33

314 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C1533 (R1524) A nonintrinsic elemental procedure shall not be used as an actual argument.1

C1534 (R1524) A procedure-name shall be the name of an external, internal, module, or dummy procedure, a2
specific intrinsic function listed in Table 16.2, or a procedure pointer.3

C1535 An actual-arg that is an expr shall not be a variable or a conditional-arg.4

C1536 (R1525) The label shall be the statement label of a branch target statement that appears in the same inclusive scope as the5
call-stmt.6

C1537 An actual argument that is a coindexed object shall not have a pointer ultimate component.7

R1526 conditional-arg is (scalar-logical-expr ? consequent8
[: scalar-logical-expr ? consequent]... : consequent)9

R1527 consequent is consequent-arg10
or .NIL.11

R1528 consequent-arg is expr12
or variable13

C1538 Each consequent-arg of a conditional-arg shall have the same declared type, and kind type parameters.14

C1539 Either all consequent-args in a conditional-arg shall have the same rank, or be assumed-rank.15

C1540 At least one consequent in a conditional-arg shall be a consequent-arg. If the corresponding dummy16
argument is not optional, .NIL. shall not appear.17

C1541 If its corresponding dummy argument is INTENT (OUT) or INTENT (INOUT), each consequent-arg in18
a conditional-arg shall be a variable.19

C1542 If its corresponding dummy argument is allocatable, a pointer, or a coarray, the attributes of each20
consequent-arg in a conditional-arg shall satisfy the requirements of that dummy argument.21

C1543 A consequent-arg shall not be assumed-rank unless its corresponding dummy argument is assumed-rank.22

C1544 A consequent-arg that is an expr shall not be a variable.23

C1545 In a reference to a generic procedure, each consequent-arg in a conditional-arg shall have the same corank,24
and if any consequent-arg of a conditional-arg has the ALLOCATABLE or POINTER attribute, each25
consequent-arg shall have that attribute.26

NOTE 2
Examples of procedure reference using procedure pointers:

P => BESSEL
WRITE (*, *) P(2.5) !-- BESSEL(2.5)

S => PRINT_REAL
CALL S(3.14)

NOTE 3
An internal procedure cannot be invoked using a procedure pointer from either Fortran or C after the host
instance completes execution, because the pointer is then undefined. While the host instance is active, however,
if an internal procedure was passed as an actual argument or is the target of a procedure pointer, it could be
invoked from outside of the host subprogram.

Assume there is a procedure with the following interface that calculates
∫ b

a
f(x) dx.

INTERFACE

J3/23-007 315

J3/23-007 WD 1539-1 2023-02-17

NOTE 3 (cont.)
FUNCTION INTEGRATE(F, A, B) RESULT(INTEGRAL) BIND(C)

USE ISO_C_BINDING
INTERFACE

FUNCTION F(X) BIND(C) ! Integrand
USE ISO_C_BINDING
REAL(C_FLOAT), VALUE :: X
REAL(C_FLOAT) :: F

END FUNCTION
END INTERFACE
REAL(C_FLOAT), VALUE :: A, B ! Bounds
REAL(C_FLOAT) :: INTEGRAL

END FUNCTION INTEGRATE
END INTERFACE

This procedure can be called from Fortran or C, and could be written in either Fortran or C. The argument F
representing the mathematical function f(x) can be written as an internal procedure; this internal procedure
will have access to any host instance local variables necessary to actually calculate f(x). For example:

REAL FUNCTION MY_INTEGRATION(N, A, B) RESULT(INTEGRAL)
! Integrate f(x)=x^n over [a,b]
USE ISO_C_BINDING
INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: A, B

INTEGRAL = INTEGRATE(MY_F, REAL (A, C_FLOAT), REAL (B, C_FLOAT))
! This will call the internal function MY_F to calculate f(x).
! The above interface of INTEGRATE needs to be explicit and available.

CONTAINS
REAL(C_FLOAT) FUNCTION MY_F(X) BIND(C) ! Integrand

REAL(C_FLOAT), VALUE :: X
MY_F = X**N ! N is taken from the host instance of MY_INTEGRATION.

END FUNCTION
END FUNCTION MY_INTEGRATION

The function INTEGRATE cannot retain a function pointer to MY_F and use it after INTEGRATE has
finished execution, because the host instance of MY_F might no longer exist, making the pointer undefined. If
such a pointer is retained, then it can only be used to invoke MY_F during the execution of the instance of
MY_INTEGRATION that called INTEGRATE.

15.5.2 Actual arguments, dummy arguments, and argument association1

15.5.2.1 Argument correspondence2

1 In either a subroutine reference or a function reference, the actual argument list identifies the correspondence3
between the actual arguments and the dummy arguments of the procedure. This correspondence can be estab-4
lished either by keyword or by position. If an argument keyword appears, the actual argument corresponds to5
the dummy argument whose name is the same as the argument keyword (using the dummy argument names from6
the interface accessible by the procedure reference). In the absence of an argument keyword, an actual argument7
corresponds to the dummy argument occupying the corresponding position in the reduced dummy argument list;8
that is, the first actual argument corresponds to the first dummy argument in the reduced list, the second actual9
argument corresponds to the second dummy argument in the reduced list, etc. The reduced dummy argument10
list is either the full dummy argument list or, if there is a passed-object dummy argument (7.5.4.5), the dummy11
argument list with the passed-object dummy argument omitted. Exactly one actual argument shall correspond12
to each nonoptional dummy argument. At most one actual argument shall correspond to each optional dummy13

316 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

argument. Each actual argument shall correspond to a dummy argument.1

NOTE
For example, the procedure defined by

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT)
INTERFACE

FUNCTION FUNCT (X)
REAL FUNCT, X

END FUNCTION FUNCT
END INTERFACE
REAL SOLUTION
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT
. . .

can be invoked with
CALL SOLVE (FUN, SOL, PRINT = 6)

provided its interface is explicit, and if the interface is specified by an interface body, the name of the last
argument is PRINT.

15.5.2.2 The passed-object dummy argument and argument correspondence2

1 In a reference to a type-bound procedure, or a procedure pointer component, that has a passed-object dummy3
argument (7.5.4.5), the data-ref of the function-reference or call-stmt corresponds, as an actual argument, with4
the passed-object dummy argument.5

15.5.2.3 Conditional argument correspondence6

1 If an actual-arg is a conditional-arg, each scalar-logical-expr is evaluated in order, until the value of a scalar-7
logical-expr is true, or there are no more scalar-logical-exprs. If the value of a scalar-logical-expr is true, its8
subsequent consequent is chosen; otherwise, the last consequent is chosen.9

2 If the chosen consequent is a consequent-arg, its expr or variable is the actual argument for the corresponding10
dummy argument, and if it is an expr , it is evaluated. If the chosen consequent is .NIL., the actual argument for11
that dummy argument is not present.12

3 Each consequent-arg in a conditional-arg shall satisfy any requirements of the dummy argument on declared type,13
kind type parameters, attributes, and properties that do not depend on evaluation of the consequent-arg or any14
contained expressions.15

4 The declared type, kind type parameters, and rank of a conditional-arg are those of its consequent-args. It has16
the ALLOCATABLE or POINTER attribute if and only if all of its consequent-args have that attribute. It is17
polymorphic if and only if one or more of its consequent-args is polymorphic. If all of its consequent-args have18
the same corank, it has that corank; otherwise it has corank zero. It is simply contiguous if and only if all of its19
consequent-args are simply contiguous.20

NOTE
An example of conditional arguments in a procedure reference is:

CALL sub ((x>0 ? x : y>0 ? y : z), &
(edge>0 ? edge : mode==3 ? 1.0 : .NIL.), &
some, other, arguments)

15.5.2.4 Argument association21

1 Except in references to intrinsic inquiry functions, a pointer actual argument that corresponds to a nonoptional22
nonpointer dummy argument shall be pointer associated with a target.23

J3/23-007 317

J3/23-007 WD 1539-1 2023-02-17

2 If a nonpointer dummy argument without the VALUE attribute corresponds to a pointer actual argument that1
is pointer associated with a target,2

• if the dummy argument is polymorphic, it becomes argument associated with that target;3

• if the dummy argument is nonpolymorphic, it becomes argument associated with the declared type part of4
that target.5

3 If a present nonpointer dummy argument without the VALUE attribute corresponds to a nonpointer actual6
argument,7

• if the dummy argument is polymorphic, it becomes argument associated with that actual argument;8

• if the dummy argument is nonpolymorphic, it becomes argument associated with the declared type part of9
that actual argument.10

4 A present dummy argument with the VALUE attribute becomes argument associated with a definable anonymous11
data object whose initial value is the value of the actual argument.12

5 A present pointer dummy argument that corresponds to a pointer actual argument becomes argument associated13
with that actual argument. A present pointer dummy argument that does not correspond to a pointer actual14
argument is not argument associated.15

6 The entity that is argument associated with a dummy argument is called its effective argument.16

7 The ultimate argument is the effective argument if the effective argument is not a dummy argument or a subobject17
of a dummy argument. If the effective argument is a dummy argument, the ultimate argument is the ultimate18
argument of that dummy argument. If the effective argument is a subobject of a dummy argument, the ultimate19
argument is the corresponding subobject of the ultimate argument of that dummy argument.20

NOTE 1
For the sequence of subroutine calls

INTEGER :: X(100)
CALL SUBA (X)
. . .
SUBROUTINE SUBA(A)
INTEGER :: A(:)
CALL SUBB (A(1:5), A(5:1:-1))
. . .
SUBROUTINE SUBB(B, C)
INTEGER :: B(:), C(:)

the ultimate argument of B is X(1:5). The ultimate argument of C is X(5:1:-1) and this is not the same object
as the ultimate argument of B.

NOTE 2
Fortran argument association is usually similar to call by reference and call by value-result. If the VALUE
attribute is specified, the effect is as if the actual argument were assigned to a temporary variable, and that
variable were then argument associated with the dummy argument. Subsequent changes to the value or definition
status of the dummy argument do not affect the actual argument. The actual mechanism by which this happens
is determined by the processor.

15.5.2.5 Ordinary dummy variables21

1 The requirements in this subclause apply to actual arguments that correspond to nonallocatable nonpointer22
dummy data objects.23

2 The dummy argument shall be type compatible with the actual argument. If the actual argument is a polymorphic24
coindexed object, the dummy argument shall not be polymorphic. If the actual argument is a polymorphic25
assumed-size array, the dummy argument shall be polymorphic. If the actual argument is of a derived type that26

318 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

has type parameters, type-bound procedures, or final subroutines, the dummy argument shall not be assumed-1
type.2

3 The kind type parameter values of the actual argument shall agree with the corresponding ones of the dummy3
argument. The length type parameter values of a present actual argument shall agree with the corresponding4
ones of the dummy argument that are not assumed, except for the case of the character length parameter of5
an actual argument of type character with default kind or C character kind (18.2.2) associated with a dummy6
argument that is not assumed-shape or assumed-rank.7

4 If a present scalar dummy argument is of type character with default kind or C character kind, the length len of8
the dummy argument shall be less than or equal to the length of the actual argument. The dummy argument9
becomes associated with the leftmost len characters of the actual argument. If a present array dummy argument10
is of type character with default kind or C character kind and is not assumed-shape or assumed-rank, it becomes11
associated with the leftmost characters of the actual argument element sequence (15.5.2.12).12

5 The values of assumed type parameters of a dummy argument are assumed from the corresponding type para-13
meters of its effective argument.14

6 If the actual argument is a coindexed object with an allocatable ultimate component, the dummy argument shall15
have the INTENT (IN) or the VALUE attribute.16

NOTE 1
If the actual argument is a coindexed object, a processor that uses distributed memory might create a copy
on the executing image of the actual argument, including copies of any allocated allocatable subobjects, and
associate the dummy argument with that copy. If necessary, on return from the procedure, the value of the
copy would be copied back to the actual argument.

7 Except in references to intrinsic inquiry functions, if the dummy argument is nonoptional and the actual argument17
is allocatable, the corresponding actual argument shall be allocated.18

8 If the dummy argument does not have the TARGET attribute, any pointers associated with the effective argument19
do not become associated with the corresponding dummy argument on invocation of the procedure. If such a20
dummy argument is used as an actual argument that corresponds to a dummy argument with the TARGET21
attribute, whether any pointers associated with the original effective argument become associated with the dummy22
argument with the TARGET attribute is processor dependent.23

9 If the dummy argument has the TARGET attribute, does not have the VALUE attribute, and either the effective24
argument is simply contiguous or the dummy argument is scalar, assumed-rank, or assumed-shape, and does not25
have the CONTIGUOUS attribute, and the effective argument has the TARGET attribute but is not a coindexed26
object or an array section with a vector subscript then27

• any pointers associated with the effective argument become associated with the corresponding dummy28
argument on invocation of the procedure, and29

• when execution of the procedure completes, any pointers that do not become undefined (19.5.2.5) and are30
associated with the dummy argument remain associated with the effective argument.31

10 If the dummy argument has the TARGET attribute and is an explicit-shape array, an assumed-shape array with32
the CONTIGUOUS attribute, an assumed-rank object with the CONTIGUOUS attribute, or an assumed-size33
array, and the effective argument has the TARGET attribute but is not simply contiguous and is not an array34
section with a vector subscript then35

• on invocation of the procedure, whether any pointers associated with the effective argument become asso-36
ciated with the corresponding dummy argument is processor dependent, and37

• when execution of the procedure completes, the pointer association status of any pointer that is pointer38
associated with the dummy argument is processor dependent.39

11 If the dummy argument has the TARGET attribute and the effective argument does not have the TARGET40

J3/23-007 319

J3/23-007 WD 1539-1 2023-02-17

attribute or is an array section with a vector subscript, any pointers associated with the dummy argument1
become undefined when execution of the procedure completes.2

12 If the dummy argument has the TARGET attribute and the VALUE attribute, any pointers associated with the3
dummy argument become undefined when execution of the procedure completes.4

13 If the actual argument is a coindexed scalar, the corresponding dummy argument shall be scalar.5

14 If the actual argument is a noncoindexed scalar, the corresponding dummy argument shall be scalar unless6
• the actual argument is default character, of type character with the C character kind (18.2.2), or is an7

element or substring of an element of an array that is not an assumed-shape, pointer, or polymorphic array,8

• the dummy argument has assumed-rank, or9

• the dummy argument is an assumed-type assumed-size array.10

15 If the procedure is nonelemental and is referenced by a generic name or as a defined operator or defined assignment,11
the ranks of the actual arguments and corresponding dummy arguments shall agree.12

16 If a dummy argument is an assumed-shape array, the rank of the actual argument shall be the same as the rank13
of the dummy argument, and the actual argument shall not be an assumed-size array.14

17 An actual argument of any rank may correspond to an assumed-rank dummy argument. The rank and extents of15
the dummy argument are the rank and extents of the corresponding actual argument. The lower bound of each16
dimension of the dummy argument is equal to one. The upper bound is equal to the extent, except for the last17
dimension when the actual argument is assumed-size.18

18 Except when a procedure reference is elemental (15.9), each element of an array actual argument or of a sequence19
in a sequence association (15.5.2.12) is associated with the element of the dummy array that has the same position20
in array element order (9.5.3.3).21

NOTE 2
For default character sequence associations, the interpretation of element is provided in 15.5.2.12.

19 A scalar dummy argument of a nonelemental procedure shall correspond only to a scalar actual argument.22

20 If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument shall be definable. If a23
dummy argument has INTENT (OUT), the effective argument becomes undefined at the time the association is24
established, except for direct components of an object of derived type for which default initialization has been25
specified.26

21 If the procedure is nonelemental, the dummy argument does not have the VALUE attribute, and the actual27
argument is an array section having a vector subscript, the dummy argument is not definable and shall not have28
the ASYNCHRONOUS, INTENT (OUT), INTENT (INOUT), or VOLATILE attributes.29

22 If the dummy argument has a coarray potential subobject component, the corresponding actual argument shall30
have the VOLATILE attribute if and only if the dummy argument has the VOLATILE attribute. If the dummy31
argument is an array with a coarray potential subobject component, the corresponding actual argument shall be32
simply contiguous or an element of a simply contiguous array.33

NOTE 3
Argument intent specifications serve several purposes. See 8.5.10, NOTE 4.

NOTE 4
For more explanatory information on targets as dummy arguments, see C.11.4.

C1546 An actual argument that is a coindexed object with the ASYNCHRONOUS or VOLATILE attribute34
shall not correspond to a dummy argument that has the ASYNCHRONOUS attribute, unless the dummy35
argument has the VALUE attribute.36

320 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C1547 An actual argument that is a coindexed object with the ASYNCHRONOUS or VOLATILE attribute1
shall not correspond to a dummy argument that has the VOLATILE attribute.2

C1548 (R1524) If an actual argument is a nonpointer array that has the ASYNCHRONOUS or VOLATILE3
attribute but is not simply contiguous (9.5.4), and the corresponding dummy argument has either the4
ASYNCHRONOUS or VOLATILE attribute, but does not have the VALUE attribute, that dummy5
argument shall be assumed-shape or assumed-rank and shall not have the CONTIGUOUS attribute.6

C1549 (R1524) If an actual argument is an array pointer that has the ASYNCHRONOUS or VOLATILE7
attribute but does not have the CONTIGUOUS attribute, and the corresponding dummy argument8
has either the ASYNCHRONOUS or VOLATILE attribute, but does not have the VALUE attribute,9
that dummy argument shall be an array pointer, an assumed-shape array without the CONTIGUOUS10
attribute, or an assumed-rank entity without the CONTIGUOUS attribute.11

NOTE 5
The constraints on an actual argument with the ASYNCHRONOUS or VOLATILE attribute that corresponds
to a dummy argument with either the ASYNCHRONOUS or VOLATILE attribute are designed to avoid forcing
a processor to use the so-called copy-in/copy-out argument passing mechanism. Making a copy of an actual
argument whose value is likely to change due to an asynchronous input/output operation completing or in some
unpredictable manner will cause the new value to be lost when a called procedure returns and the copy-out
overwrites the actual argument.

NOTE 6
If an effective argument is a discontiguous array, and the dummy argument is an assumed-shape array with the
CONTIGUOUS attribute, an assumed-rank dummy data object with the CONTIGUOUS attribute, an explicit-
shape array, or an assumed-size array, the processor might need to use the so-called copy-in/copy-out argument
passing mechanism, so as to ensure that the dummy array is contiguous even when the actual argument is not.

15.5.2.6 Allocatable and pointer dummy variables12

1 The requirements in this subclause apply to an actual argument with the ALLOCATABLE or POINTER attribute13
that corresponds to a dummy argument with the same attribute.14

2 The actual argument shall be polymorphic if and only if the associated dummy argument is polymorphic, and15
either both the actual and dummy arguments shall be unlimited polymorphic, or the declared type of the actual16
argument shall be the same as the declared type of the dummy argument.17

NOTE
The dynamic type of a polymorphic allocatable or pointer dummy argument can change as a result of execution
of an ALLOCATE statement or pointer assignment in the subprogram. Because of this the corresponding
actual argument needs to be polymorphic and have a declared type that is the same as the declared type of the
dummy argument or an extension of that type. However, type compatibility requires that the declared type
of the dummy argument be the same as, or an extension of, the type of the actual argument. Therefore, the
dummy and actual arguments need to have the same declared type.

Dynamic type information is not maintained for a nonpolymorphic allocatable or pointer dummy argument.
However, allocating or pointer-assigning such a dummy argument would require maintenance of this information
if the corresponding actual argument is polymorphic. Therefore, the corresponding actual argument needs to
be nonpolymorphic.

3 The rank of the actual argument shall be the same as that of the dummy argument, unless the dummy argument18
is assumed-rank. The type parameter values of the actual argument shall agree with the corresponding ones of19
the dummy argument that are not assumed or deferred. The values of assumed type parameters of the dummy20
argument are assumed from the corresponding type parameters of its effective argument.21

4 The actual argument shall have deferred the same type parameters as the dummy argument.22

J3/23-007 321

J3/23-007 WD 1539-1 2023-02-17

15.5.2.7 Allocatable dummy variables1

1 The requirements in this subclause apply to actual arguments that correspond to allocatable dummy data objects.2

2 The actual argument shall be allocatable. It is permissible for the actual argument to have an allocation status3
of unallocated.4

3 The corank of the actual argument shall be the same as that of the dummy argument.5

4 If the actual argument is a coindexed object, the dummy argument shall have the INTENT (IN) attribute.6

5 If the dummy argument does not have the TARGET attribute, any pointers associated with the actual argument7
do not become associated with the corresponding dummy argument on invocation of the procedure. If such a8
dummy argument is used as an actual argument that is associated with a dummy argument with the TARGET9
attribute, whether any pointers associated with the original actual argument become associated with the dummy10
argument with the TARGET attribute is processor dependent.11

6 If the dummy argument has the TARGET attribute, does not have the INTENT (OUT) or VALUE attribute,12
and the corresponding actual argument has the TARGET attribute then13

• any pointers associated with the actual argument become associated with the corresponding dummy argu-14
ment on invocation of the procedure, and15

• when execution of the procedure completes, any pointers that do not become undefined (19.5.2.5) and are16
associated with the dummy argument remain associated with the actual argument.17

7 If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument shall be definable. If a18
dummy argument has INTENT (OUT) and its associated actual argument is allocated, the actual argument is19
deallocated on procedure invocation (9.7.3.2).20

15.5.2.8 Pointer dummy variables21

1 The requirements in this subclause apply to actual arguments that correspond to dummy data pointers.22

C1550 The actual argument corresponding to a dummy pointer with the CONTIGUOUS attribute shall be23
simply contiguous (9.5.4).24

C1551 The actual argument corresponding to a dummy pointer shall not be a coindexed object.25

NOTE 1
Constraint C1551 does not apply to any intrinsic procedure because an intrinsic procedure is defined in terms
of its actual arguments.

2 If the dummy argument does not have INTENT (IN), the actual argument shall be a pointer. Otherwise, the26
actual argument shall be a pointer or a valid target for the dummy pointer in a pointer assignment statement. If27
the actual argument is not a pointer, the dummy pointer becomes pointer associated with the actual argument.28

3 If the dummy argument has INTENT (OUT), the pointer association status of the actual argument becomes29
undefined on invocation of the procedure.30

NOTE 2
For more explanatory information on pointers as dummy arguments, see C.11.4.

15.5.2.9 Coarray dummy variables31

1 If the dummy argument is a coarray, the corresponding actual argument shall be a coarray and shall have the32
VOLATILE attribute if and only if the dummy argument has the VOLATILE attribute.33

322 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 If the dummy argument is an array coarray that has the CONTIGUOUS attribute or is not of assumed shape,1
the corresponding actual argument shall be simply contiguous or an element of a simply contiguous array.2

NOTE 1
The requirements on an actual argument that corresponds to a dummy coarray that is not of assumed-shape or
has the CONTIGUOUS attribute are designed to avoid forcing a processor to use the so-called copy-in/copy-out
argument passing mechanism.

NOTE 2
Consider the invocation of a procedure on a particular image. Each dummy coarray is associated with its
ultimate argument on the image. In addition, during this execution of the procedure, this image can access the
coarray corresponding to the ultimate argument on any other image. For example, consider

INTERFACE
SUBROUTINE SUB(X)

REAL :: X[*]
END SUBROUTINE SUB

END INTERFACE
REAL :: A(1000)[*]
. . .
CALL SUB(A(10))

During execution of this invocation of SUB, the executing image has access through the syntax X[P] to A(10)
on image P.

NOTE 3
Each invocation of a procedure with a nonallocatable coarray dummy argument establishes a dummy coarray
for the image with its own bounds and cobounds. During this execution of the procedure, this image can use its
own bounds and cobounds to access the coarray corresponding to the ultimate argument on any other image.
For example, consider

INTERFACE
SUBROUTINE SUB(X,N)

INTEGER :: N
REAL :: X(N,N)[N,*]

END SUBROUTINE SUB
END INTERFACE
REAL :: A(1000)[*]
. . .
CALL SUB(A,10)

During execution of this invocation of SUB, the executing image has access through the syntax X(1,2)[3,4] to
A(11) on the image with image index 33.

15.5.2.10 Actual arguments associated with dummy procedure entities3

1 If the interface of a dummy procedure is explicit, its characteristics as a procedure (15.3.1) shall be the same as4
those of its effective argument, except that a pure effective argument may be associated with a dummy argument5
that is not pure, a simple effective argument may be associated with a dummy argument that is not simple, and6
an elemental intrinsic actual procedure may be associated with a dummy procedure (which cannot be elemental).7

2 If the interface of a dummy procedure is implicit and either the dummy argument is explicitly typed or referenced8
as a function, it shall not be referenced as a subroutine and any corresponding actual argument shall be a function,9
function procedure pointer, or dummy procedure. If both the actual argument and dummy argument are known10
to be functions, they shall have the same type and type parameters. If only the dummy argument is known to11
be a function, the function that would be invoked by a reference to the dummy argument shall have the same12

J3/23-007 323

J3/23-007 WD 1539-1 2023-02-17

type and type parameters, except that an external function with assumed character length may be associated with a dummy1
argument with explicit character length.2

3 If the interface of a dummy procedure is implicit and a reference to it appears as a subroutine reference, any3
corresponding actual argument shall be a subroutine, subroutine procedure pointer, or dummy procedure.4

4 If a dummy argument is a dummy procedure without the POINTER attribute, its effective argument shall be an5
external, internal, module, or dummy procedure, or a specific intrinsic procedure listed in Table 16.2. If the specific name6
is also a generic name, only the specific procedure is associated with the dummy argument.7

5 If a dummy argument is a procedure pointer, the corresponding actual argument shall be a procedure pointer, a8
reference to a function that returns a procedure pointer, a reference to the intrinsic function NULL, or a valid9
target for the dummy pointer in a pointer assignment statement. If the actual argument is not a pointer, the10
dummy argument shall have INTENT (IN); if the actual argument is not a dummy argument it becomes pointer11
associated with the actual argument, otherwise it becomes pointer associated with the ultimate argument of the12
actual argument.13

6 When the actual argument is a procedure, the host instance of the dummy argument is the host instance of the14
actual argument (15.6.2.4).15

7 If an external procedure or a dummy procedure is used as an actual argument, its interface shall be explicit or it16
shall be explicitly declared to have the EXTERNAL attribute.17

15.5.2.11 Actual arguments and alternate return indicators18

1 If a dummy argument is an asterisk (15.6.2.3), the corresponding actual argument shall be an alternate return specifier (R1525).19

15.5.2.12 Sequence association20

1 Sequence association only applies when the dummy argument is an explicit-shape or assumed-size array. The21
rest of this subclause only applies in that case.22

2 An actual argument represents an element sequence if it is an array expression, an array element designator, a23
default character scalar, or a scalar of type character with the C character kind (18.2.2).24

3 If the dummy argument is not of type character with default or C character kind:25
• if the actual argument is an array expression, the element sequence consists of the elements in array element26

order;27

• if the actual argument is an array element designator of a simply contiguous array, the element sequence28
consists of that array element and each element that follows it in array element order;29

• otherwise, if the actual argument is scalar, the element sequence consists of that scalar.30

4 If the dummy argument is of type character with default or C character kind, and has nonzero character length,31
the storage unit sequence is as follows:32

• if the actual argument is an array expression, the storage units of the array;33

• if the actual argument is an array element or array element substring designator of a simply contiguous34
array, the storage units starting from the first storage unit of the designator and continuing to the end of35
the array;36

• otherwise, if the actual argument is scalar, the storage units of the scalar object.37

The element sequence is the sequence of consecutive groups of storage units in the storage unit sequence, grouped38
by the character length of the dummy array. The sequence terminates when the number of storage units left is39
less than the character length of the dummy array.40

NOTE
Some of the elements in the element sequence might consist of storage units from different elements of the
original array.

324 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 If the dummy argument is of type character with default or C character kind, and has zero character length,1
the element sequence consists of a sequence of elements each with zero character length, the number of elements2
being the maximum number that is supported by the processor.3

6 An actual argument that represents an element sequence and corresponds to a dummy argument that is an array4
is sequence associated with the dummy argument. The rank and shape of the actual argument need not agree5
with the rank and shape of the dummy argument, but the number of elements in the dummy argument shall6
not exceed the number of elements in the element sequence of the actual argument. If the dummy argument is7
assumed-size, the number of elements in the dummy argument is exactly the number of elements in the element8
sequence.9

15.5.2.13 Argument presence and restrictions on arguments not present10

1 A dummy argument or an entity that is host associated with a dummy argument is not present if the dummy11
argument12

• does not correspond to an actual argument,13

• corresponds to an actual argument that is not present, or14

• does not have the ALLOCATABLE or POINTER attribute, and corresponds to an actual argument that15

– has the ALLOCATABLE attribute and is not allocated, or16

– has the POINTER attribute and is disassociated;17

otherwise, it is present.18

2 A nonoptional dummy argument shall be present. If an optional nonpointer dummy argument corresponds to a19
present pointer actual argument, the pointer association status of the actual argument shall not be undefined.20

3 An optional dummy argument that is not present is subject to the following restrictions.21

(1) If it is a data object, it shall not be referenced or be defined. If it is of a type that has default22
initialization, the initialization has no effect.23

(2) It shall not be used as the data-target or proc-target of a pointer assignment.24

(3) If it is a procedure or procedure pointer, it shall not be invoked.25

(4) It shall not be supplied as an actual argument corresponding to a nonoptional dummy argument26
other than as the argument of the intrinsic function PRESENT or as an argument of a function27
reference that is a constant expression.28

(5) A designator with it as the base object and with one or more subobject selectors shall not be supplied29
as an actual argument.30

(6) If it is an array, it shall not be supplied as an actual argument to an elemental procedure unless an31
array of the same rank is supplied as an actual argument corresponding to a nonoptional dummy32
argument of that elemental procedure.33

(7) If it is a pointer, it shall not be allocated, deallocated, nullified, pointer-assigned, or supplied as an34
actual argument corresponding to an optional nonpointer dummy argument.35

(8) If it is allocatable, it shall not be allocated, deallocated, or supplied as an actual argument corres-36
ponding to an optional nonallocatable dummy argument.37

(9) If it has length type parameters, they shall not be the subject of an inquiry.38

(10) It shall not be used as a selector in an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT39
TYPE construct.40

(11) It shall not be supplied as the data-ref in a procedure-designator .41

(12) If shall not be supplied as the scalar-variable in a proc-component-ref .42

4 Except as noted in the list above, it may be supplied as an actual argument corresponding to an optional dummy43
argument, which is then also considered not to be present.44

J3/23-007 325

J3/23-007 WD 1539-1 2023-02-17

15.5.2.14 Restrictions on entities associated with dummy arguments1

1 While an entity is associated with a dummy argument, the following restrictions hold.2

(1) Action that affects the allocation status of the entity or a subobject thereof shall be taken through3
the dummy argument.4

(2) If the allocation status of the entity or a subobject thereof is affected through the dummy argument,5
then at any time during the invocation and execution of the procedure, either before or after the6
allocation or deallocation, it shall be referenced only through the dummy argument.7

(3) Action that affects the value of the entity or any subobject of it shall be taken only through the8
dummy argument unless9

(a) the dummy argument has the POINTER attribute,10

(b) the dummy argument is a scalar, assumed-shape, or assumed-rank object, and has the TAR-11
GET attribute but not the INTENT (IN) or CONTIGUOUS attributes, and the actual argu-12
ment is a target other than a coindexed object or an array section with a vector subscript,13

(c) the dummy argument is an assumed-rank object with the TARGET attribute and not the14
INTENT (IN) attribute, and the actual argument is a scalar target,15

(d) the dummy argument is a coarray and the action is a coindexed definition of the corresponding16
ultimate argument coarray by a different image, or17

(e) the dummy argument has a coarray ultimate component and the action is a coindexed definition18
of the corresponding coarray by a different image.19

(4) If the value of the entity or any subobject of it is affected through the dummy argument, then at20
any time during the invocation and execution of the procedure, either before or after the definition,21
it shall be referenced only through that dummy argument unless22

(a) the dummy argument has the POINTER attribute,23

(b) the dummy argument is a scalar, assumed-shape, or assumed-rank object, and has the TAR-24
GET attribute but not the INTENT (IN) or CONTIGUOUS attributes, and the actual argu-25
ment is a target other than a coindexed object or an array section with a vector subscript,26

(c) the dummy argument is an assumed-rank object with the TARGET attribute and not the27
INTENT (IN) attribute, and the actual argument is a scalar target,28

(d) the dummy argument is a coarray and the reference is a coindexed reference of its corresponding29
ultimate argument coarray by a different image, or30

(e) the dummy argument has a coarray ultimate component and the reference is a coindexed31
reference of the corresponding coarray by a different image.32

NOTE 1
In

SUBROUTINE OUTER
REAL, POINTER :: A (:)
. . .
ALLOCATE (A (1:N))
. . .
CALL INNER (A)
. . .

CONTAINS
SUBROUTINE INNER (B)

REAL :: B (:)
. . .

END SUBROUTINE INNER
SUBROUTINE SET (C, D)

REAL, INTENT (OUT) :: C
REAL, INTENT (IN) :: D
C = D

326 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1 (cont.)
END SUBROUTINE SET

END SUBROUTINE OUTER

an assignment statement such as
A (1) = 1.0

would not be permitted during the execution of INNER because this would be changing A without using B,
but statements such as

B (1) = 1.0

or
CALL SET (B (1), 1.0)

would be allowed. Similarly,
DEALLOCATE (A)

would not be allowed because this affects the allocation of B without using B. In this case,
DEALLOCATE (B)

also would not be permitted. If B were declared with the POINTER attribute, either of the statements
DEALLOCATE (A)

and
DEALLOCATE (B)

would be permitted, but not both.

NOTE 2
If there is a partial or complete overlap between the effective arguments of two different dummy arguments
of the same procedure and the dummy arguments have neither the POINTER nor TARGET attribute, the
overlapped portions cannot be defined, redefined, or become undefined during the execution of the procedure.
For example, in

CALL SUB (A (1:5), A (3:9))

the array section A (3:5) cannot be defined, redefined, or become undefined through the first dummy argument
because it is part of the argument associated with the second dummy argument and cannot be defined, redefined,
or become undefined through the second dummy argument because it is part of the argument associated with
the first dummy argument. The array section A (1:2) remains definable through the first dummy argument and
A (6:9) remains definable through the second dummy argument.

This restriction applies equally to pointer targets. In
REAL, DIMENSION (10), TARGET :: A
REAL, DIMENSION (:), POINTER :: B, C
B => A (1:5)
C => A (3:9)
CALL SUB (B, C) ! The dummy arguments of SUB are neither pointers nor targets.

the array section B (3:5) cannot be defined because it is part of the argument associated with the second dummy
argument. The array section C (1:3) cannot be defined because it is part of the argument associated with the
first dummy argument. The array section A (1:2), which is associated with B (1:2), remains definable through
the first dummy argument and A (6:9), which is associated with C (4:7), remains definable through the second
dummy argument.

J3/23-007 327

J3/23-007 WD 1539-1 2023-02-17

NOTE 3
In

MODULE DATA
REAL :: W, X, Y, Z

END MODULE DATA

PROGRAM MAIN
USE DATA

...
CALL INIT (X)

...
END PROGRAM MAIN
SUBROUTINE INIT (V)

USE DATA
...

READ (*, *) V
...

END SUBROUTINE INIT

variable X cannot be directly referenced at any time during the execution of INIT because it is being defined
through the dummy argument V. X can be (indirectly) referenced through V. W, Y, and Z can be directly
referenced. X can, of course, be directly referenced once execution of INIT is complete.

NOTE 4
The restrictions on entities associated with dummy arguments are intended to facilitate a variety of optimizations
in the translation of the subprogram, including implementations of argument association in which the value of
an actual argument that is neither a pointer nor a target is maintained in a register or in local storage.

NOTE 5
The exceptions to the aliasing restrictions for dummy arguments that are coarrays or have coarray ultimate
components enable cross-image access while the procedure is executing. Because nonatomic accesses from
different images typically need to be separated by an image control statement, code optimization within segments
is not unduly inhibited.

15.5.3 Function reference1

1 A function is invoked during expression evaluation by a function-reference or by a defined operation (10.1.6).2
When it is invoked, all actual argument expressions are evaluated, then the arguments are associated, and then3
the function is executed. When execution of the function is complete, the value of the function result is available4
for use in the expression that caused the function to be invoked. The characteristics of the function result (15.3.3)5
are determined by the interface of the function. If a reference to an elemental function (15.9) is an elemental6
reference, all array arguments shall have the same shape.7

15.5.4 Subroutine reference8

1 A subroutine is invoked by execution of a CALL statement, execution of a defined assignment statement (10.2.1.4),9
defined input/output (12.6.4.8.3), or finalization(7.5.6). When a subroutine is invoked, all actual argument10
expressions are evaluated, then the arguments are associated, and then the subroutine is executed. When the11
actions specified by the subroutine are completed, the execution of the CALL statement, the execution of the12
defined assignment statement, the processing of an effective item, or finalization of an object is also completed. If13
a CALL statement includes one or more alternate return specifiers among its arguments, a branch to one of the statements indicated14
might occur, depending on the action specified by the subroutine. If a reference to an elemental subroutine (15.9) is an15
elemental reference, at least one actual argument shall correspond to an INTENT (OUT) or INTENT (INOUT)16
dummy argument, all such actual arguments shall be arrays, and all actual arguments shall be conformable.17

328 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

15.5.5 Resolving named procedure references1

15.5.5.1 Establishment of procedure names2

1 The rules for interpreting a procedure reference depend on whether the procedure name in the reference is3
established by the available declarations and specifications to be generic in the scoping unit containing the4
reference, is established to be only specific in the scoping unit containing the reference, or is not established.5

2 A procedure name is established to be generic in a scoping unit6

(1) if that scoping unit contains an interface block with that name;7

(2) if that scoping unit contains a GENERIC statement with a generic-spec that is that name;8

(3) if that scoping unit contains an INTRINSIC attribute specification for that name and it is the generic9
name of an intrinsic procedure;10

(4) if that scoping unit contains a USE statement that makes that procedure name accessible and the11
corresponding name in the module is established to be generic; or12

(5) if that scoping unit contains no declarations of that name, that scoping unit has a host scoping unit,13
and that name is established to be generic in the host scoping unit.14

3 A procedure name is established to be only specific in a scoping unit if it is established to be specific and not15
established to be generic. It is established to be specific16

(1) if that scoping unit contains a module subprogram, internal subprogram, or statement function statement17
that defines a procedure with that name;18

(2) if that scoping unit is of a subprogram that defines a procedure with that name;19

(3) if that scoping unit contains an INTRINSIC attribute specification for that name and it is the name of a specific20
intrinsic procedure;21

(4) if that scoping unit contains an explicit EXTERNAL attribute specification for that name;22

(5) if that scoping unit contains a USE statement that makes that procedure name accessible and the23
corresponding name in the module is established to be specific; or24

(6) if that scoping unit contains no declarations of that name, that scoping unit has a host scoping unit,25
and that name is established to be specific in the host scoping unit.26

4 A procedure name is not established in a scoping unit if it is neither established to be generic nor established to27
be specific.28

15.5.5.2 Resolving procedure references to names established to be generic29

1 If the reference is consistent with a nonelemental reference to one of the specific interfaces of a generic interface30
that has that name and either is defined in the scoping unit in which the reference appears or is made accessible31
by a USE statement in the scoping unit, the reference is to the specific procedure in the interface block that32
provides that interface. The rules in 15.4.3.4.5 ensure that there can be at most one such specific procedure.33

2 Otherwise, if the reference is consistent with an elemental reference to one of the specific interfaces of a generic34
interface that has that name and either is defined in the scoping unit in which the reference appears or is made35
accessible by a USE statement in the scoping unit, the reference is to the specific elemental procedure in the36
interface block that provides that interface. The rules in 15.4.3.4.5 ensure that there can be at most one such37
specific elemental procedure.38

3 Otherwise, if the scoping unit contains either an INTRINSIC attribute specification for that name or a USE39
statement that makes that name accessible from a module in which the corresponding name is specified to have40
the INTRINSIC attribute, and if the reference is consistent with the interface of that intrinsic procedure, the41
reference is to that intrinsic procedure.42

4 Otherwise, if the scoping unit has a host scoping unit, the name is established to be generic in that host scoping43
unit, and there is agreement between the scoping unit and the host scoping unit as to whether the name is a44

J3/23-007 329

J3/23-007 WD 1539-1 2023-02-17

function name or a subroutine name, the name is resolved by applying the rules in this subclause to the host1
scoping unit as if the reference appeared there.2

5 Otherwise, if the name is that of an intrinsic procedure and the reference is consistent with that intrinsic procedure,3
the reference is to that intrinsic procedure.4

NOTE 1
Because of the renaming facility of the USE statement, the name in the reference can be different from the
usual name of the intrinsic procedure.

NOTE 2
These rules allow particular specific procedures with the same generic identifier to be used for particular array
ranks and a general elemental version to be used for other ranks. For example, given an interface block such as

INTERFACE RANF
ELEMENTAL FUNCTION SCALAR_RANF(X)

REAL, INTENT(IN) :: X
END FUNCTION SCALAR_RANF
FUNCTION VECTOR_RANDOM(X)

REAL X(:)
REAL VECTOR_RANDOM(SIZE(X))

END FUNCTION VECTOR_RANDOM
END INTERFACE RANF

and a declaration such as:
REAL A(10,10), AA(10,10)

then the statement
A = RANF(AA)

is an elemental reference to SCALAR_RANF. The statement
A(6:10,2) = RANF(AA(6:10,2))

is a nonelemental reference to VECTOR_RANDOM.

15.5.5.3 Resolving procedure references to names established to be only specific5

1 If the name has the EXTERNAL attribute,6

• if it is a procedure pointer, the reference is to its target;7

• if it is a dummy procedure that is not a procedure pointer, the reference is to the effective argument8
corresponding to that name;9

• otherwise, the reference is to the external procedure with that name.10

2 If the name is that of an accessible external procedure, internal procedure, module procedure, intrinsic procedure,11
or statement function, the reference is to that procedure.12

NOTE
Because of the renaming facility of the USE statement, the name in the reference can be different from the
original name of the procedure.

15.5.5.4 Resolving procedure references to names not established13

1 If the name is the name of a dummy argument of the scoping unit, the dummy argument is a dummy procedure14
and the reference is to that dummy procedure. That is, the procedure invoked by executing that reference is the15
effective argument corresponding to that dummy procedure.16

330 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 Otherwise, if the name is the name of an intrinsic procedure, and if there is agreement between the reference and1
the status of the intrinsic procedure as being a function or subroutine, the reference is to that intrinsic procedure.2

3 Otherwise, the reference is to an external procedure with that name.3

15.5.6 Resolving type-bound procedure references4

1 If the binding-name in a procedure-designator (R1522) is that of a specific type-bound procedure, the procedure5
referenced is the one bound to that name in the dynamic type of the data-ref .6

2 If the binding-name in a procedure-designator is that of a generic type-bound procedure, the generic binding with7
that name in the declared type of the data-ref is used to select a specific binding using the following criteria.8

• If the reference is consistent with one of the specific bindings of that generic binding, that specific binding9
is selected.10

• Otherwise, the reference shall be consistent with an elemental reference to one of the specific bindings of11
that generic binding; that specific binding is selected.12

3 The reference is to the procedure bound to the same name as the selected specific binding in the dynamic type13
of the data-ref .14

15.6 Procedure definition15

15.6.1 Intrinsic procedure definition16

1 Intrinsic procedures are defined as an inherent part of the processor. A standard-conforming processor shall17
include the intrinsic procedures described in Clause 16, but may include others. However, a standard-conforming18
program shall not make use of intrinsic procedures other than those described in Clause 16.19

15.6.2 Procedures defined by subprograms20

15.6.2.1 General21

1 A procedure is defined by the initial SUBROUTINE or FUNCTION statement of a subprogram, and each ENTRY22
statement defines an additional procedure (15.6.2.6).23

2 A subprogram is specified to have the NON_RECURSIVE attribute, or to be elemental (15.9), pure (15.7), or a24
separate module subprogram (15.6.2.5) by a prefix in its initial SUBROUTINE or FUNCTION statement.25

R1529 prefix is prefix-spec [prefix-spec] ...26

R1530 prefix-spec is declaration-type-spec27
or ELEMENTAL28
or IMPURE29
or MODULE30
or NON_RECURSIVE31
or PURE32
or RECURSIVE33
or SIMPLE34

C1552 (R1529) A prefix shall contain at most one of each prefix-spec.35

C1553 (R1529) A prefix that specifies IMPURE shall specify neither PURE nor SIMPLE.36

C1554 (R1529) A prefix shall not specify both NON_RECURSIVE and RECURSIVE.37

C1555 An elemental procedure shall not have the BIND attribute.38

J3/23-007 331

J3/23-007 WD 1539-1 2023-02-17

C1556 (R1529) MODULE shall appear only in the function-stmt or subroutine-stmt of a module subprogram or1
of a nonabstract interface body that is declared in the scoping unit of a module or submodule.2

C1557 (R1529) If MODULE appears in the prefix of a module subprogram, it shall have been declared to be a3
separate module procedure in the containing program unit or an ancestor of that program unit.4

C1558 (R1529) If MODULE appears in the prefix of a module subprogram, the subprogram shall specify the5
same characteristics and dummy argument names as its corresponding module procedure interface body.6

C1559 (R1529) If MODULE appears in the prefix of a module subprogram and a binding label is specified, it7
shall be the same as the binding label specified in the corresponding module procedure interface body.8

C1560 (R1529) If MODULE appears in the prefix of a module subprogram, NON_RECURSIVE shall appear9
if and only if NON_RECURSIVE appears in the prefix in the corresponding module procedure interface10
body.11

3 The NON_RECURSIVE prefix-spec shall not appear if any procedure defined by the subprogram directly or12
indirectly invokes itself or any other procedure defined by the subprogram. If a subprogram defines a function whose name is13
declared with an asterisk type-param-value, no procedure defined by the subprogram shall directly or indirectly invoke itself or any14
other procedure defined by the subprogram. The RECURSIVE prefix-spec is advisory only.15

4 If the prefix-spec PURE or the prefix-spec SIMPLE appears, or the prefix-spec ELEMENTAL appears and IM-16
PURE does not appear, the subprogram is a pure subprogram and shall meet the additional constraints of 15.7. If17
the prefix-spec SIMPLE appears, the subprogram is a simple subprogram and shall meet the additional constraints18
of 15.8.19

5 If the prefix-spec ELEMENTAL appears, the subprogram is an elemental subprogram and shall meet the additional20
constraints of 15.9.1.21

R1531 proc-language-binding-spec is language-binding-spec22

6 A proc-language-binding-spec specifies that the procedure defined or declared by the statement is interoperable23
(18.3.7).24

C1561 A proc-language-binding-spec with a NAME= specifier shall not be specified in the function-stmt or25
subroutine-stmt of an internal procedure, or of an interface body for an abstract interface or a dummy26
procedure.27

C1562 If proc-language-binding-spec is specified for a function, the function result shall be an interoperable scalar28
variable.29

C1563 If proc-language-binding-spec is specified for a procedure, each of its dummy arguments shall be an inter-30
operable procedure (18.3.7) or a variable that is interoperable (18.3.5, 18.3.6), assumed-shape, assumed-31
rank, assumed-type, of type CHARACTER with assumed length, or that has the ALLOCATABLE or32
POINTER attribute.33

C1564 If proc-language-binding-spec is specified for a procedure, each dummy argument of type CHARACTER34
with the ALLOCATABLE or POINTER attribute shall have deferred character length.35

C1565 A variable that is a dummy argument of a procedure that has a proc-language-binding-spec shall be36
assumed-type or of interoperable type and kind type parameters.37

C1566 If proc-language-binding-spec is specified for a procedure, it shall not have a default-initialized dummy38
argument with the ALLOCATABLE or POINTER attribute.39

C1567 If proc-language-binding-spec is specified for a procedure, it shall not have a dummy argument that is a40
coarray.41

C1568 If proc-language-binding-spec is specified for a procedure, it shall not have an array dummy argument42
with the VALUE attribute.43

332 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

15.6.2.2 Function subprogram1

1 A function subprogram is a subprogram that has a FUNCTION statement as its first statement.2

R1532 function-subprogram is function-stmt3
[specification-part]4
[execution-part]5
[internal-subprogram-part]6
end-function-stmt7

R1533 function-stmt is [prefix] FUNCTION function-name8
([dummy-arg-name-list]) [suffix]9

C1569 (R1533) If RESULT appears, result-name shall not be the same as function-name and shall not be the same10
as the entry-name in any ENTRY statement in the subprogram.11

C1570 (R1533) If RESULT appears, the function-name shall not appear in any specification statement in the12
scoping unit of the function subprogram.13

R1534 dummy-arg-name is name14

C1571 (R1534) A dummy-arg-name shall be the name of a dummy argument.15

R1535 suffix is proc-language-binding-spec [RESULT (result-name)]16
or RESULT (result-name) [proc-language-binding-spec]17

R1536 end-function-stmt is END [FUNCTION [function-name]]18

C1572 (R1532) An internal function subprogram shall not contain an internal-subprogram-part.19

C1573 (R1536) If a function-name appears in the end-function-stmt, it shall be identical to the function-name20
specified in the function-stmt.21

2 The name of the function is function-name.22

3 The type and type parameters (if any) of the result of the function defined by a function subprogram may be23
specified by a type specification in the FUNCTION statement or by the name of the function result appearing24
in a type declaration statement in the specification part of the function subprogram. They shall not be specified25
both ways. If they are not specified either way, they are determined by the implicit typing rules in effect within26
the function subprogram. If the function result is an array, allocatable, or a pointer, this shall be specified by27
specifications of the name of the function result within the function body. The specifications of the function result28
attributes, the specification of dummy argument attributes, and the information in the FUNCTION statement29
collectively define the characteristics of the function (15.3.1).30

4 If RESULT appears, the name of the function result of the function is result-name and all occurrences of the31
function name in execution-part statements in its scope refer to the function itself. If RESULT does not appear,32
the name of the function result is function-name and all occurrences of the function name in execution-part33
statements in its scope are references to the function result. On completion of execution of the function, the value34
returned is that of its function result. If the function result is a data pointer, the shape of the value returned by35
the function is determined by the shape of the function result when the execution of the function is completed. If36
the function result is not a pointer, its value shall be defined by the function. If the function result is a pointer,37
on return the pointer association status of the function result shall not be undefined.38

NOTE 1
The function result is similar to any other entity (variable or procedure pointer) local to a function subprogram.
Its existence begins when execution of the function is initiated and ends when execution of the function is
terminated. However, because the final value of this entity is used subsequently in the evaluation of the
expression that invoked the function, an implementation might defer releasing the storage occupied by that

J3/23-007 333

J3/23-007 WD 1539-1 2023-02-17

NOTE 1 (cont.)
entity until after its value has been used in expression evaluation.

NOTE 2
The following is an example of the declaration of an interface body with the BIND attribute, and a reference
to the procedure declared.

USE, INTRINSIC :: ISO_C_BINDING

INTERFACE
FUNCTION JOE (I, J, R) BIND(C,NAME="FrEd")

USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT) :: JOE
INTEGER(C_INT), VALUE :: I, J
REAL(C_FLOAT), VALUE :: R

END FUNCTION JOE
END INTERFACE

INT = JOE(1_C_INT, 3_C_INT, 4.0_C_FLOAT)
END PROGRAM

The invocation of the function JOE results in a reference to a function with a binding label "FrEd". FrEd could
be a C function described by the C prototype

int FrEd(int n, int m, float x);

15.6.2.3 Subroutine subprogram1

1 A subroutine subprogram is a subprogram that has a SUBROUTINE statement as its first statement.2

R1537 subroutine-subprogram is subroutine-stmt3
[specification-part]4
[execution-part]5
[internal-subprogram-part]6
end-subroutine-stmt7

R1538 subroutine-stmt is [prefix] SUBROUTINE subroutine-name8
[([dummy-arg-list]) [proc-language-binding-spec]]9

C1574 (R1538) The prefix of a subroutine-stmt shall not contain a declaration-type-spec.10

R1539 dummy-arg is dummy-arg-name11
or *12

R1540 end-subroutine-stmt is END [SUBROUTINE [subroutine-name]]13

C1575 (R1537) An internal subroutine subprogram shall not contain an internal-subprogram-part.14

C1576 (R1540) If a subroutine-name appears in the end-subroutine-stmt, it shall be identical to the subroutine-15
name specified in the subroutine-stmt.16

2 The name of the subroutine is subroutine-name.17

15.6.2.4 Instances of a subprogram18

1 When a procedure defined by a subprogram is invoked, an instance of that subprogram is created. Each instance19
has an independent sequence of execution and an independent set of dummy arguments, unsaved local variables,20
and unsaved local procedure pointers. Saved local entities are shared by all instances of the subprogram.21

334 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 When a statement function is invoked, an instance of that statement function is created.1

3 When execution of an instance completes it ceases to exist.2

4 The caller of an instance of a procedure is the instance of the main program, subprogram, or statement function3
that invoked it. The call sequence of an instance of a procedure is its caller, followed by the call sequence of its4
caller. The call sequence of the main program is empty. The host instance of an instance of a statement function5
or an internal procedure that is invoked by its name is the first element of the call sequence that is an instance6
of the host of the statement function or internal subprogram. The host instance of an internal procedure that is7
invoked via a dummy procedure or procedure pointer is the host instance of the associating entity from when the8
argument association or pointer association was established (19.5.5). The host instance of a module procedure is9
the module or submodule in which it is defined. A main program or external subprogram has no host instance.10

15.6.2.5 Separate module procedures11

1 A separate module procedure is a module procedure defined by a separate-module-subprogram, by a function-12
subprogram whose initial statement contains the keyword MODULE, or by a subroutine-subprogram whose initial13
statement contains the keyword MODULE.14

R1541 separate-module-subprogram is mp-subprogram-stmt15
[specification-part]16
[execution-part]17
[internal-subprogram-part]18
end-mp-subprogram-stmt19

R1542 mp-subprogram-stmt is MODULE PROCEDURE procedure-name20

R1543 end-mp-subprogram-stmt is END [PROCEDURE [procedure-name]]21

C1577 (R1541) The procedure-name shall have been declared to be a separate module procedure in the containing22
program unit or an ancestor of that program unit.23

C1578 (R1543) If a procedure-name appears in the end-mp-subprogram-stmt, it shall be identical to the procedure-24
name in the mp-subprogram-stmt.25

2 A separate module procedure shall not be defined more than once.26

3 The interface of a procedure defined by a separate-module-subprogram is explicitly declared by the mp-subprogram-27
stmt to be the same as its module procedure interface body. It has the NON_RECURSIVE attribute if and only28
if it was declared to have that attribute by the interface body. If it is a function its result name is determined29
by the FUNCTION statement in the interface body.30

NOTE
A separate module procedure can be accessed by use association only if its interface body is declared in the
specification part of a module and is public.

15.6.2.6 ENTRY statement31

1 An ENTRY statement permits a procedure reference to begin with a particular executable statement within the function or subroutine32
subprogram in which the ENTRY statement appears.33

R1544 entry-stmt is ENTRY entry-name [([dummy-arg-list]) [suffix]]34

C1579 (R1544) If RESULT appears, the entry-name shall not appear in any specification or type declaration statement in the35
scoping unit of the function subprogram.36

C1580 (R1544) An entry-stmt shall appear only in an external-subprogram or a module-subprogram that does not define a separate37
module procedure. An entry-stmt shall not appear within an executable-construct.38

C1581 (R1544) RESULT shall appear only if the entry-stmt is in a function subprogram.39

J3/23-007 335

J3/23-007 WD 1539-1 2023-02-17

C1582 (R1544) A dummy-arg shall not be an alternate return indicator if the ENTRY statement is in a function subprogram.1

C1583 (R1544) If RESULT appears, result-name shall not be the same as the function-name in the FUNCTION statement and2
shall not be the same as the entry-name in any ENTRY statement in the subprogram.3

2 Optionally, a subprogram may have one or more ENTRY statements.4

3 If the ENTRY statement is in a function subprogram, an additional function is defined by that subprogram. The name of the5
function is entry-name and the name of its result is result-name or is entry-name if no result-name is provided. The dummy6
arguments of the function are those specified in the ENTRY statement. If the characteristics of the result of the function named in7
the ENTRY statement are the same as the characteristics of the result of the function named in the FUNCTION statement, their8
result names identify the same entity, although their names need not be the same. Otherwise, they are storage associated and shall9
all be nonpointer, nonallocatable scalar variables that are default integer, default real, double precision real, default complex, or10
default logical.11

4 If the ENTRY statement is in a subroutine subprogram, an additional subroutine is defined by that subprogram. The name of the12
subroutine is entry-name. The dummy arguments of the subroutine are those specified in the ENTRY statement.13

5 The order, number, types, kind type parameters, and names of the dummy arguments in an ENTRY statement may differ from the14
order, number, types, kind type parameters, and names of the dummy arguments in the FUNCTION or SUBROUTINE statement15
in the containing subprogram.16

6 Because an ENTRY statement defines an additional function or an additional subroutine, it is referenced in the same manner as any17
other function or subroutine (15.5).18

7 In a subprogram, a dummy argument specified in an ENTRY statement shall not appear in an executable statement preceding that19
ENTRY statement, unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the executable20
statement. A function result specified by a result-name in an ENTRY statement shall not appear in any executable statement that21
precedes the first RESULT clause with that name.22

8 In a subprogram, a dummy argument specified in an ENTRY statement shall not appear in the expression of a statement function23
that precedes the first dummy-arg with that name in the subprogram. A function result specified by a result-name in an ENTRY24
statement shall not appear in the expression of a statement function that precedes the first RESULT clause with that name.25

9 If a dummy argument appears in an executable statement, the execution of the executable statement is permitted during the26
execution of a reference to the function or subroutine only if the dummy argument appears in the dummy argument list of the27
referenced procedure.28

10 If a dummy argument is used in a specification expression to specify an array bound or character length of an object, the appearance29
of the object in a statement that is executed during a procedure reference is permitted only if the dummy argument appears in the30
dummy argument list of the referenced procedure and it is present (15.5.2.13).31

11 The NON_RECURSIVE and RECURSIVE keywords are not used in an ENTRY statement. Instead, the presence or absence of32
NON_RECURSIVE in the initial SUBROUTINE or FUNCTION statement controls whether the procedure defined by an ENTRY33
statement is permitted to reference itself or another procedure defined by the subprogram.34

12 The keywords PURE and IMPURE are not used in an ENTRY statement. Instead, the procedure defined by an ENTRY statement35
is pure if and only if the subprogram is a pure subprogram.36

13 The keyword ELEMENTAL is not used in an ENTRY statement. Instead, the procedure defined by an ENTRY statement is elemental37
if and only if ELEMENTAL is specified in the SUBROUTINE or FUNCTION statement.38

15.6.2.7 RETURN statement39

R1545 return-stmt is RETURN [scalar-int-expr]40

C1584 (R1545) The return-stmt shall be in the inclusive scope of a function or subroutine subprogram.41

C1585 (R1545) The scalar-int-expr is allowed only in the inclusive scope of a subroutine subprogram.42

336 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

1 Execution of the RETURN statement completes execution of the instance of the subprogram in which it appears.1
If the expression appears and has a value n between 1 and the number of asterisks in the dummy argument list, the CALL statement2
that invoked the subroutine branches (11.2) to the branch target statement identified by the nth alternate return specifier in the3
actual argument list of the referenced procedure. If the expression is omitted or has a value outside the required range, there is no4
transfer of control to an alternate return.5

2 Execution of an end-function-stmt, end-mp-subprogram-stmt, or end-subroutine-stmt is equivalent to execution6
of a RETURN statement with no expression.7

15.6.2.8 CONTAINS statement8

R1546 contains-stmt is CONTAINS9

1 The CONTAINS statement separates the body of a main program, module, submodule, or subprogram from any10
internal or module subprograms it might contain, or it introduces the type-bound procedure part of a derived-type11
definition (7.5.5). The CONTAINS statement is not executable.12

15.6.3 Definition and invocation of procedures by means other than Fortran13

1 A procedure may be defined by means other than Fortran. The interface of a procedure defined by means other14
than Fortran may be specified by an interface body or procedure declaration statement. A reference to such a15
procedure is made as though it were defined by an external subprogram.16

2 A procedure defined by means other than Fortran that is invoked by a Fortran procedure and does not cause17
termination of execution shall return to its caller.18

NOTE 1
Examples of code that might cause a transfer of control that bypasses the normal return mechanism of a
Fortran procedure are setjmp and longjmp in C and exception handling in other languages. No such behavior
is permitted by this document.

3 If the interface of a procedure has a proc-language-binding-spec, the procedure is interoperable (18.10).19

4 Interoperation with C functions is described in 18.10.20

NOTE 2
For explanatory information on definition of procedures by means other than Fortran, see C.11.2.

15.6.4 Statement function21

1 A statement function is a function defined by a single statement.22

R1547 stmt-function-stmt is function-name ([dummy-arg-name-list]) = scalar-expr23

C1586 (R1547) Each primary in scalar-expr shall be a constant (literal or named), a reference to a variable, a reference to a24
function, or an expression in parentheses. Each operation shall be intrinsic. If scalar-expr contains a reference to a25
function, the reference shall not require an explicit interface, the function shall not require an explicit interface unless it is26
an intrinsic function, the function shall not be a transformational intrinsic, and the result shall be scalar. If an argument to27
a function is an array, it shall be an array name. If a reference to a statement function appears in scalar-expr , its definition28
shall have been provided earlier in the scoping unit and shall not be the name of the statement function being defined.29

C1587 (R1547) Named constants in scalar-expr shall have been declared earlier in the scoping unit or made accessible by use30
or host association. If array elements appear in scalar-expr , the array shall have been declared as an array earlier in the31
scoping unit or made accessible by use or host association.32

C1588 (R1547) If a dummy-arg-name, variable, function reference, or dummy function reference is typed by the implicit typing33
rules, its appearance in any subsequent type declaration statement shall confirm this implied type and the values of any34
implied type parameters.35

C1589 (R1547) The function-name and each dummy-arg-name shall be specified, explicitly or implicitly, to be scalar.36

J3/23-007 337

J3/23-007 WD 1539-1 2023-02-17

C1590 (R1547) A given dummy-arg-name shall not appear more than once in a given dummy-arg-name-list.1

C1591 A statement function shall not be of a parameterized derived type.2

2 The definition of a statement function with the same name as an accessible entity from the host shall be preceded by the declaration3
of its type in a type declaration statement.4

3 The dummy arguments have a scope of the statement function statement. Each dummy argument has the same type and type5
parameters as the entity of the same name in the scoping unit containing the statement function statement.6

4 A statement function shall not be supplied as an actual argument.7

5 Execution of a statement function consists of evaluating the expression using the values of the actual arguments for the values of the8
corresponding dummy arguments and, if necessary, converting the result to the declared type and type parameters of the function.9

6 A function reference in the scalar expression shall not cause a dummy argument of the statement function to become redefined or10
undefined.11

15.7 Pure procedures12

1 A pure procedure is13

• a simple procedure,14

• a pure intrinsic procedure (16.1),15

• a module procedure in an intrinsic module, if it is specified to be pure,16

• defined by a pure subprogram,17

• a dummy procedure that has been specified to be PURE,18

• a procedure pointer that has been specified to be PURE,19

• a type-bound procedure that is bound to a pure procedure, or20

• a statement function that references only pure functions and does not contain the designator of a variable with the VOLATILE21
attribute.22

2 A pure subprogram is a subprogram that has the prefix-spec PURE or the prefix-spec SIMPLE, or that has the23
prefix-spec ELEMENTAL and does not have the prefix-spec IMPURE. The following additional constraints apply24
to pure subprograms.25

C1592 The specification-part of a pure function subprogram shall specify that all its nonpointer dummy data26
objects have the INTENT (IN) or the VALUE attribute.27

C1593 The function result of a pure function shall not be such that finalization of a reference to the function28
would reference an impure procedure.29

C1594 The function result of a pure function shall not be both polymorphic and allocatable, or have a poly-30
morphic allocatable ultimate component.31

C1595 The specification-part of a pure subroutine subprogram shall specify the intents of all its nonpointer32
dummy data objects that do not have the VALUE attribute.33

C1596 An INTENT (OUT) dummy argument of a pure procedure shall not be such that finalization of the34
actual argument would reference an impure procedure.35

C1597 An INTENT (OUT) dummy argument of a pure procedure shall not be polymorphic or have a poly-36
morphic allocatable ultimate component.37

C1598 A local variable of a pure subprogram, or of a BLOCK construct within a pure subprogram, shall not38
have the SAVE or VOLATILE attribute.39

338 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
Variable initialization in a type-declaration-stmt or a data-stmt implies the SAVE attribute; therefore, such
initialization is also disallowed.

C1599 A named local entity or construct entity of a pure subprogram shall not be of a type that has default1
initialization of a data pointer component to a target at any level of component selection.2

C15100 The specification-part of a pure subprogram shall specify that all its dummy procedures are pure.3

C15101 If a procedure that is neither an intrinsic procedure nor a statement function is used in a context that4
requires it to be pure, then its interface shall be explicit in the scope of that use. The interface shall5
specify that the procedure is pure.6

C15102 All internal subprograms in a pure subprogram shall be pure.7

C15103 A designator of a variable with the VOLATILE attribute shall not appear in a pure subprogram.8

C15104 In a pure subprogram any designator with a base object that is in common or accessed by use or host9
association, is a pointer dummy argument of a pure function, is a dummy argument with the INTENT10
(IN) attribute, is a coindexed object, or an object that is storage associated with any such variable, shall11
not be used12

(1) in a variable definition context (19.6.7),13

(2) in a pointer association context (19.6.8),14

(3) as the data-target in a pointer-assignment-stmt,15

(4) as the expr corresponding to a component in a structure-constructor if the component has the16
POINTER attribute or has a pointer component at any level of component selection,17

(5) as the expr of an intrinsic assignment statement in which the variable is of a derived type if the18
derived type has a pointer component at any level of component selection,19

(6) as the source-expr in a SOURCE= specifier if the designator is of a derived type that has a pointer20
component at any level of component selection,21

(7) as an actual argument corresponding to a dummy argument with the POINTER attribute, or22

(8) as the actual argument to the function C_LOC from the intrinsic module ISO_C_BINDING.23

NOTE 2
Item 5 requires that processors be able to determine if entities with the PRIVATE attribute or with private
components have a pointer component.

C15105 Any procedure referenced in a pure subprogram, including one referenced via a defined operation, defined24
assignment, defined input/output, or finalization, shall be pure.25

C15106 A statement that might result in the deallocation of a polymorphic entity is not permitted in a pure26
procedure.27

NOTE 3
This includes intrinsic assignment to a variable that has a potential subobject component that is polymorphic
and allocatable.

C15107 A pure subprogram shall not contain a print-stmt, open-stmt, close-stmt, backspace-stmt, endfile-stmt,28
rewind-stmt, flush-stmt, wait-stmt, or inquire-stmt.29

C15108 A pure subprogram shall not contain a read-stmt or write-stmt whose io-unit is a file-unit-number or *.30

C15109 A pure subprogram shall not contain an image control statement (11.7.1).31

C15110 A reference to the function C_FUNLOC from the intrinsic module ISO_C_BINDING shall not appear32
in a pure subprogram if its argument is impure.33

J3/23-007 339

J3/23-007 WD 1539-1 2023-02-17

NOTE 4
The above constraints are designed to guarantee that a pure procedure is free from side effects (modifications
of data visible outside the procedure), which means that it is safe to reference it in constructs such as DO
CONCURRENT and FORALL, where there is no explicit order of evaluation.

The constraints on pure subprograms appear to be complicated, but it is not necessary for a programmer to
be intimately familiar with them. From the programmer’s point of view, these constraints can be summarized
as follows: a pure subprogram cannot contain any operation that could conceivably result in an assignment
or pointer assignment to a common variable, a variable accessed by use or host association, or an INTENT (IN)
dummy argument; nor can a pure subprogram contain any operation that could conceivably perform any external
file input/output or execute an image control statement (including a STOP statement). Note the use of the
word conceivably; it is not sufficient for a pure subprogram merely to be side-effect free in practice. For example,
a function that contains an assignment to a global variable but in a block that is not executed in any invocation
of the function is nevertheless not a pure function. The exclusion of functions of this nature is required if strict
compile-time checking is to be used.

It is expected that most library procedures will conform to the constraints required of pure procedures, and so
can be declared pure and referenced in DO CONCURRENT constructs, FORALL statements and constructs, and
within user-defined pure procedures.

NOTE 5
Pure subroutines are included to allow subroutine calls from pure procedures in a safe way, and to allow forall-
assignment-stmts to be defined assignments. The constraints for pure subroutines are based on the same principles
as for pure functions, except that side effects to INTENT (OUT), INTENT (INOUT), and pointer dummy
arguments are permitted.

15.8 Simple procedures1

1 A simple procedure is2

• an intrinsic procedure (16.1), if it is specified to be simple,3

• a module procedure, if it is specified to be simple,4

• a procedure defined by a simple subprogram,5

• a dummy procedure that has been specified to be simple,6

• a procedure pointer that has been specified to be simple,7

• a type-bound procedure that is bound to a simple procedure,8

• a deferred type-bound procedure whose interface specifies it to be simple,9

• a statement function defined in a simple subprogram.10

2 A simple procedure is also a pure procedure and is subject to the constraints for pure procedures (15.7). A simple11
procedure can also be an elemental procedure.12

3 A simple subprogram is a subprogram that has the prefix-spec SIMPLE. The following additional constraints13
apply to simple subprograms.14

C15111 The specification-part of a simple subprogram shall specify that all of its dummy procedures are simple.15

C15112 If a procedure that is not an intrinsic procedure, a module procedure of an intrinsic module, or a statement16
function is used in a context that requires it to be simple, then its interface shall be explicit in the scope17
of that use. The interface shall specify that the procedure is simple.18

C15113 All internal subprograms in a simple subprogram shall be simple.19

C15114 Any procedure referenced in a simple subprogram shall be simple.20

340 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C15115 A simple subprogram shall not contain a designator of a variable that is accessed by use or host associ-1
ation, unless the designator is part of a specification inquiry (10.1.11) that is a constant expression.2

C15116 A simple subprogram shall not contain a reference to a variable in a common block.3

C15117 A simple subprogram shall not contain an ENTRY statement.4

15.9 Elemental procedures5

15.9.1 Elemental procedure declaration and interface6

1 An elemental procedure is7
• an elemental intrinsic procedure (16.1),8

• a module procedure in an intrinsic module, if it is specified to be elemental,9

• a procedure that is defined by an elemental subprogram, or10

• a type-bound procedure that is bound to an elemental procedure.11
An elemental procedure has only scalar dummy arguments, but may have array actual arguments.12

2 A dummy procedure or procedure pointer shall not be specified to be ELEMENTAL.13

3 An elemental subprogram has the prefix-spec ELEMENTAL. An elemental subprogram is a pure subprogram14
unless it has the prefix-spec IMPURE. The following additional constraints apply to elemental subprograms.15

C15118 All dummy arguments of an elemental procedure shall be scalar noncoarray dummy data objects and16
shall not have the POINTER or ALLOCATABLE attribute.17

C15119 The result of an elemental function shall be scalar, and shall not have the POINTER or ALLOCATABLE18
attribute.19

C15120 The specification-part of an elemental subprogram shall specify the intents of all of its dummy arguments20
that do not have the VALUE attribute.21

C15121 In the specification-expr that specifies a type parameter value of the result of an elemental function, an22
object designator with a dummy argument of the function as the base object shall appear only as the23
subject of a specification inquiry (10.1.11), and that specification inquiry shall not depend on a property24
that is deferred.25

4 In a reference to an elemental procedure, if any argument is an array, each actual argument that corresponds to26
an INTENT (OUT) or INTENT (INOUT) dummy argument shall be an array. All actual arguments shall be27
conformable. An array actual argument is considered to be associated with the scalar dummy arguments of the28
procedure throughout the entire execution of the elemental reference; thus, the restrictions on actions specified29
in 15.5.2.14 apply to the entirety of the actual array argument.30

15.9.2 Elemental function actual arguments and results31

1 If a generic name or a specific name is used to reference an elemental function, the shape of the result is the32
same as the shape of the actual argument with the greatest rank. If there are no actual arguments or the actual33
arguments are all scalar, the result is scalar. In the array case, the values of the elements, if any, of the result are34
the same as would have been obtained if the scalar function had been applied separately, in array element order,35
to corresponding elements of each array actual argument.36

NOTE
An example of an elemental reference to the intrinsic function MAX: if X and Y are arrays with bounds
(1:M, 1:N), then

MAX (X, 0.0, Y)

is an array expression of shape [M, N] whose elements in order have the values of

J3/23-007 341

J3/23-007 WD 1539-1 2023-02-17

NOTE (cont.)
[((MAX (X(I, J), 0.0, Y(I, J)), I = 1, M), J = 1, N)]

15.9.3 Elemental subroutine actual arguments1

1 In a reference to an elemental subroutine, if the actual arguments corresponding to INTENT (OUT) and INTENT2
(INOUT) dummy arguments are arrays, the values of the elements, if any, of the results are the same as would3
be obtained if the subroutine had been applied separately, in array element order, to corresponding elements of4
each array actual argument.5

342 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16 Intrinsic procedures and modules1

16.1 Classes of intrinsic procedures2

1 Intrinsic procedures are divided into eight classes: inquiry functions, elemental functions, transformational func-3
tions, elemental subroutines, simple subroutines, atomic subroutines, collective subroutines, and (impure) sub-4
routines.5

2 An intrinsic inquiry function is one whose result depends on the properties of one or more of its arguments instead6
of their values; in fact, these argument values may be undefined. Unless the description of an intrinsic inquiry7
function states otherwise, these arguments are permitted to be unallocated allocatable variables or pointers that8
are undefined or disassociated. An elemental intrinsic function is one that is specified for scalar arguments,9
but may be applied to array arguments as described in 15.9. All other intrinsic functions are transformational10
functions; they almost all have one or more array arguments or an array result. All standard intrinsic functions11
are simple.12

3 An atomic subroutine is an intrinsic subroutine that performs an atomic action. The semantics of atomic actions13
are described in 16.5.14

4 A collective subroutine is an intrinsic subroutine that performs a cooperative calculation on a team of images15
without requiring synchronization. The semantics of collective subroutines are described in 16.6.16

5 The subroutine MOVE_ALLOC with noncoarray argument FROM, the subroutine SPLIT, the subroutine17
TOKENIZE, and the elemental subroutine MVBITS, are simple. No other standard intrinsic subroutine is18
pure or simple.19

6 Generic names of standard intrinsic procedures are listed in 16.7. In most cases, generic functions accept argu-20
ments of more than one type and the type of the result is the same as the type of the arguments. Specific names of21
standard intrinsic functions with corresponding generic names are listed in 16.8.22

7 If an intrinsic procedure is used as an actual argument to a procedure, its specific name shall be used and it shall be referenced in23
the called procedure only with scalar arguments. If an intrinsic procedure does not have a specific name, it shall not be used as an24
actual argument (15.5.2.10).25

8 Elemental intrinsic procedures behave as described in 15.9.26

16.2 Arguments to intrinsic procedures27

16.2.1 General rules28

1 All intrinsic procedures can be invoked with either positional arguments or argument keywords (15.5). The29
descriptions in 16.7 through 16.9 give the argument keyword names and positional sequence for standard intrinsic30
procedures.31

2 Many of the intrinsic procedures have optional arguments. These arguments are identified by the notation32
“optional” in the argument descriptions. In addition, the names of the optional arguments are enclosed in square33
brackets in description headings and in lists of procedures. The valid forms of reference for procedures with34
optional arguments are described in 15.5.2.35

NOTE 1
The text CMPLX (X [, Y, KIND]) indicates that Y and KIND are both optional arguments. Valid ref-
erence forms include CMPLX(x), CMPLX(x, y), CMPLX(x, KIND=kind), CMPLX(x, y, kind), and CM-

J3/23-007 343

J3/23-007 WD 1539-1 2023-02-17

NOTE 1 (cont.)
PLX(KIND=kind, X=x, Y=y).

NOTE 2
Some intrinsic procedures impose additional requirements on their optional arguments. For example, SELEC-
TED_REAL_KIND requires that at least one of its optional arguments be present, and RANDOM_SEED
requires that at most one of its optional arguments be present.

3 The dummy arguments of the specific intrinsic procedures in 16.8 have INTENT (IN). The dummy arguments of the intrinsic1
procedures in 16.9 have INTENT (IN) if the intent is not stated explicitly.2

4 The actual argument corresponding to an intrinsic function dummy argument named KIND shall be a scalar3
integer constant expression and its value shall specify a representation method for the function result that exists4
on the processor.5

5 Intrinsic subroutines that assign values to arguments of type character do so in accordance with the rules of6
intrinsic assignment (10.2.1.3).7

6 In a reference to the intrinsic subroutine MVBITS, the actual arguments corresponding to the TO and FROM8
dummy arguments may be the same variable and may be associated scalar variables or associated array variables9
all of whose corresponding elements are associated. Apart from this, the actual arguments in a reference to an10
intrinsic subroutine shall be such that the execution of the intrinsic subroutine would satisfy the restrictions of11
15.5.2.14.12

7 An argument to an intrinsic procedure other than ASSOCIATED, NULL, or PRESENT shall be a data object.13

16.2.2 The shape of array arguments14

1 Unless otherwise specified, the intrinsic inquiry functions accept array arguments for which the shape need not15
be defined. The shape of array arguments to transformational and elemental intrinsic functions shall be defined.16

16.2.3 Mask arguments17

1 Some array intrinsic functions have an optional MASK argument of type logical that is used by the function to18
select the elements of one or more arguments to be operated on by the function. Any element not selected by the19
mask need not be defined at the time the function is invoked.20

2 The MASK affects only the value of the function, and does not affect the evaluation, prior to invoking the21
function, of arguments that are array expressions.22

16.2.4 DIM arguments and reduction functions23

1 Some array intrinsic functions are “reduction” functions; that is, they reduce the rank of an array by collapsing24
one dimension (or all dimensions, usually producing a scalar result). These functions have a DIM argument that25
can specify the dimension to be reduced.26

2 The process of reducing a dimension usually combines the selected elements with a simple operation such as27
addition or an intrinsic function such as MAX, but more sophisticated reductions are also provided, e.g. by28
COUNT and MAXLOC.29

344 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.3 Bit model1

16.3.1 General2

1 The bit manipulation procedures are described in terms of a model for the representation and behavior of bits3
on a processor.4

2 For the purposes of these procedures, a bit is defined to be a binary digit w located at position k of a nonnegative5
integer scalar object based on a model nonnegative integer defined by6

j =
z−1∑
k=0

wk × 2k

and for which wk has the value 0 or 1. This defines a sequence of bits wz−1 . . . w0, with wz−1 the leftmost bit and7
w0 the rightmost bit. The positions of bits in the sequence are numbered from right to left, with the position of8
the rightmost bit being zero. The length of a sequence of bits is z. An example of a model number compatible9
with the examples used in 16.4 would have z = 32, thereby defining a 32-bit integer.10

3 The interpretation of a negative integer as a sequence of bits is processor dependent.11

4 The inquiry function BIT_SIZE provides the value of the parameter z of the model.12

5 Effectively, this model defines an integer object to consist of z bits in sequence numbered from right to left from13
0 to z − 1. This model is valid only in the context of the use of such an object as the argument or result of an14
intrinsic procedure that interprets that object as a sequence of bits. In all other contexts, the model defined for15
an integer in 16.4 applies. In particular, whereas the models are identical for r = 2 and wz−1 = 0, they do not16
correspond for r ̸= 2 or wz−1 = 1 and the interpretation of bits in such objects is processor dependent.17

16.3.2 Bit sequence comparisons18

1 When bit sequences of unequal length are compared, the shorter sequence is considered to be extended to the19
length of the longer sequence by padding with zero bits on the left.20

2 Bit sequences are compared from left to right, one bit at a time, until unequal bits are found or all bits have been21
compared and found to be equal. If unequal bits are found, the sequence with zero in the unequal position is22
considered to be less than the sequence with one in the unequal position. Otherwise the sequences are considered23
to be equal.24

16.3.3 Bit sequences as arguments to INT and REAL25

1 When a boz-literal-constant is the argument A of the intrinsic function INT or REAL,26

• if the length of the sequence of bits specified by A is less than the size in bits of a scalar variable of the27
same type and kind type parameter as the result, the boz-literal-constant is treated as if it were extended28
to a length equal to the size in bits of the result by padding on the left with zero bits, and29

• if the length of the sequence of bits specified by A is greater than the size in bits of a scalar variable of the30
same type and kind type parameter as the result, the boz-literal-constant is treated as if it were truncated31
from the left to a length equal to the size in bits of the result.32

C1601 If a boz-literal-constant is truncated as an argument to the intrinsic function REAL, the discarded bits33
shall all be zero.34

NOTE
The result values of the intrinsic functions CMPLX and DBLE are defined by references to the intrinsic function
REAL with the same arguments. Therefore, the padding and truncation of boz-literal-constant arguments to
those intrinsic functions is the same as for the intrinsic function REAL.

J3/23-007 345

J3/23-007 WD 1539-1 2023-02-17

16.4 Numeric models1

1 The numeric manipulation and inquiry functions are described in terms of a model for the representation and2
behavior of numbers on a processor. The model has parameters that are determined so as to make the model3
best fit the machine on which the program is executed.4

2 The model set for integer i is defined by5

i = s ×
q−1∑
k=0

wk × rk

where r is an integer exceeding one, q is a positive integer, each wk is a nonnegative integer less than r, and s is6
+1 or −1. The integer parameters r and q determine the set of model integers.7

3 The model set for real x is defined by8

x =


0 or

s × be ×
p∑

k=1
fk × b−k

where b and p are integers exceeding one; each fk is a nonnegative integer less than b, with f1 nonzero; s is9
+1 or −1; and e is an integer that lies between some integer maximum emax and some integer minimum emin10
inclusively. For x = 0, its exponent e and digits fk are defined to be zero. The integer parameters b, p, emin, and11
emax determine the set of model floating-point numbers.12

4 The parameters of the integer and real models are available for each representation method of the integer and13
real types. The parameters characterize the set of available numbers in the definition of the model. Intrinsic14
functions provide the values of some parameters and other values related to the models.15

5 There is also an extended model set for each kind of real x; this extended model is the same as the ordinary16
model except that there are no limits on the range of the exponent e.17

NOTE
Some of the function descriptions use the models

i = s ×
30∑

k=0
wk × 2k

and

x = 0 or s × 2e ×

(
1
2 +

24∑
k=2

fk × 2−k

)
, −126 ≤ e ≤ 127

16.5 Atomic subroutines18

1 An atomic subroutine is an intrinsic subroutine that performs an action on its ATOM argument, and if it has an19
OLD argument, determination of the value to be assigned to that argument, atomically. Definition or evaluation20
of any argument other than ATOM is not performed atomically.21

2 For any two executions in unordered segments of atomic subroutines whose ATOM argument is the same object,22
the effect is as if one of the executions is performed completely before the other execution begins. Which execution23
is performed first is processor dependent. The sequence of atomic actions within ordered segments is specified in24
5.3.5. If successive atomic subroutine invocations on image P redefine a variable atomically in segments Pi and25

346 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Pj , atomic references to that variable from image Q in a segment Qk that is unordered relative to Pi and Pj may1
observe the changes in the value of that variable in any order.2

3 Atomic operations shall make asynchronous progress. If a variable X on image P is defined by an atomic3
subroutine on image Q, image R repeatedly references X [P] by an atomic subroutine in an unordered segment,4
and no other image defines X [P] in an unordered segment, image R shall eventually receive the value assigned5
by image Q, even if none of the images P , Q, or R execute an image control statement until after the definition6
of X [P] by image Q and the reception of that value by image R.7

4 If the STAT argument is present in an invocation of an atomic subroutine and no error condition occurs, it is8
assigned the value zero.9

5 If the STAT argument is present in an invocation of an atomic subroutine and an error condition occurs, any10
other argument that is not INTENT (IN) becomes undefined. If the ATOM argument is on a failed image, an11
error condition occurs and the value STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_-12
ENV is assigned to the STAT argument. If any other error condition occurs, the STAT argument is assigned a13
processor-dependent positive value that is different from the value of STAT_FAILED_IMAGE.14

6 If the STAT argument is not present in an invocation of an atomic subroutine and an error condition occurs,15
error termination is initiated.16

NOTE
The properties of atomic subroutines are intended to support custom synchronization mechanisms. The program
will need to handle all possible orderings of sequences of atomic subroutine executions that can arise as a
consequence of the above rules; note that the orderings can appear to be different on different images even in
the same program execution.

16.6 Collective subroutines17

1 Successful execution of a collective subroutine performs a calculation on all the images of the current team and18
assigns a computed value on one or all of them. If it is invoked by one image, it shall be invoked by the same19
statement on all active images of its current team in segments that are not ordered with respect to each other;20
corresponding references participate in the same collective computation.21

2 Before execution of the first CHANGE TEAM statement on an image, in between executions of CHANGE22
TEAM and/or END TEAM statements, and after the last execution of an END TEAM statement, the sequence23
of invocations of collective subroutines shall be the same on all active images of a team. A collective subroutine24
shall not be referenced when an image control statement is not permitted to be executed (for example, in a25
procedure invoked from a CRITICAL construct).26

C1602 A reference to a collective subroutine shall not appear in a context where an image control statement is27
not permitted to appear.28

3 If the A argument in a reference to a collective subroutine is a coarray, the corresponding ultimate arguments on29
all active images of the current team shall be corresponding coarrays as described in 5.4.7.30

4 If the STAT argument is present in a reference to a collective subroutine on one image:31
• it shall be present on all the corresponding references;32

• if no error condition occurs on that image, it is assigned the value zero;33

• if an error condition occurs on that image, the A argument becomes undefined;34

• if an error condition occurs other than that an image in the current team has stopped or failed, the STAT35
argument is assigned a processor-dependent positive value that is different from the value of STAT_-36
STOPPED_IMAGE or STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV.37

5 A reference to a collective subroutine on an image may be successful even if an error condition occurs during the38
corresponding reference on another image. If error conditions occur on more than one image, the error conditions39
may be different.40

J3/23-007 347

J3/23-007 WD 1539-1 2023-02-17

6 If the current team contains an image that is known to have stopped, an error condition occurs, and if the1
STAT argument is present it is assigned the value STAT_STOPPED_IMAGE from the intrinsic module ISO_-2
FORTRAN_ENV. Otherwise, if the current team contained an image that is known to have failed, an error3
condition occurs, and if the STAT argument is present it is assigned the value STAT_FAILED_IMAGE from4
the intrinsic module ISO_FORTRAN_ENV.5

7 If the STAT argument is not present in a reference to a collective subroutine and an error condition occurs, error6
termination is initiated.7

8 If the ERRMSG argument is present in a reference to a collective subroutine and an error condition occurs, it is8
assigned an explanatory message by intrinsic assignment. If no error condition occurs, the definition status and9
value of ERRMSG are unchanged.10

NOTE 1
The argument A becomes undefined if an error condition occurs during execution of a collective subroutine
because it is intended to allow the processor to use A for intermediate values during calculation.

NOTE 2
Although the calculations performed by a collective subroutine have some internal synchronizations, a reference
to a collective subroutine is not an image control statement.

16.7 Standard generic intrinsic procedures11

1 For all of the standard intrinsic procedures, the arguments shown are the names that shall be used for argument12
keywords if the keyword form is used for actual arguments.13

NOTE 1
For example, a reference to CMPLX can be written in the form CMPLX (A, B, M) or in the form CM-
PLX (Y = B, KIND = M, X = A).

NOTE 2
Many of the argument keywords have names that are indicative of their usage. For example:

KIND Describes the kind type parameter of the result
STRING, STRING_A An arbitrary character string
BACK Controls the direction of string scan

(forward or backward)
MASK A mask to be applied to the arguments
DIM A selected dimension of an array argument

2 In the Class column of Table 16.1,14

A indicates that the procedure is an atomic subroutine,15

C indicates that the procedure is a collective subroutine,16

E indicates that the procedure is an elemental function,17

ES indicates that the procedure is a simple elemental subroutine,18

I indicates that the procedure is an inquiry function,19

PS indicates that the procedure is a simple subroutine when the FROM argument is not a coarray,20

S indicates that the procedure is an impure subroutine,21

SS indicates that the procedure is a simple subroutine, and22

T indicates that the procedure in a transformational function.23

348 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Table 16.1: Standard generic intrinsic procedure summary
Procedure (arguments) Class Description
ABS (A) E Absolute value.
ACHAR (I [, KIND]) E Character from ASCII code value.
ACOS (X) E Arccosine (inverse cosine) function.
ACOSD (X) E Arc cosine function in degrees.
ACOSH (X) E Inverse hyperbolic cosine function.
ACOSPI (X) E Circular arc cosine function.
ADJUSTL (STRING) E Left-justified string value.
ADJUSTR (STRING) E Right-justified string value.
AIMAG (Z) E Imaginary part of a complex number.
AINT (A [, KIND]) E Truncation toward 0 to a whole number.
ALL (MASK) or ALL (MASK, DIM) T Array reduced by .AND. operator.
ALLOCATED (ARRAY) or ALLOCATED (SCALAR) I Allocation status of allocatable variable.
ANINT (A [, KIND]) E Nearest whole number.
ANY (MASK) or ANY (MASK, DIM) T Array reduced by .OR. operator.
ASIN (X) E Arcsine (inverse sine) function.
ASIND (X) E Arc sine function in degrees.
ASINH (X) E Inverse hyperbolic sine function.
ASINPI (X) E Circular arc sine function.
ASSOCIATED (POINTER [, TARGET]) I Pointer association status inquiry.
ATAN (X) or ATAN (Y, X) E Arctangent (inverse tangent) function.
ATAN2 (Y, X) E Arctangent (inverse tangent) function.
ATAN2D (Y, X) E Arc tangent function in degrees.
ATAN2PI (Y, X) E Circular arc tangent function.
ATAND (X) or ATAND (Y, X) E Arc tangent function in degrees.
ATANH (X) E Inverse hyperbolic tangent function.
ATANPI (X) or ATANPI (Y, X) E Circular arc tangent function.
ATOMIC_ADD (ATOM, VALUE [, STAT]) A Atomic addition.
ATOMIC_AND (ATOM, VALUE [, STAT]) A Atomic bitwise AND.
ATOMIC_CAS (ATOM, OLD, COMPARE, NEW[, STAT]) A Atomic compare and swap.
ATOMIC_DEFINE (ATOM, VALUE [, STAT]) A Define a variable atomically.
ATOMIC_FETCH_ADD (ATOM, VALUE, OLD [, STAT]) A Atomic fetch and add.
ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT]) A Atomic fetch and bitwise AND.
ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT]) A Atomic fetch and bitwise OR.
ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT]) A Atomic fetch and bitwise exclusive OR.
ATOMIC_OR (ATOM, VALUE [, STAT]) A Atomic bitwise OR.
ATOMIC_REF (VALUE, ATOM [, STAT]) A Reference a variable atomically.
ATOMIC_XOR (ATOM, VALUE [, STAT]) A Atomic bitwise exclusive OR.
BESSEL_J0 (X) E Bessel function of the 1st kind, order 0.
BESSEL_J1 (X) E Bessel function of the 1st kind, order 1.
BESSEL_JN (N, X) E Bessel function of the 1st kind, order N.
BESSEL_JN (N1, N2, X) T Bessel functions of the 1st kind.
BESSEL_Y0 (X) E Bessel function of the 2nd kind, order 0.
BESSEL_Y1 (X) E Bessel function of the 2nd kind, order 1.
BESSEL_YN (N, X) E Bessel function of the 2nd kind, order N.
BESSEL_YN (N1, N2, X) T Bessel functions of the 2nd kind.
BGE (I, J) E Bitwise greater than or equal to.
BGT (I, J) E Bitwise greater than.
BIT_SIZE (I) I Number of bits in integer model 16.3.
BLE (I, J) E Bitwise less than or equal to.
BLT (I, J) E Bitwise less than.
BTEST (I, POS) E Test single bit in an integer.
CEILING (A [, KIND]) E Least integer greater than or equal to A.
CHAR (I [, KIND]) E Character from code value.

J3/23-007 349

J3/23-007 WD 1539-1 2023-02-17

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure (arguments) Class Description
CMPLX (X [, KIND]) or CMPLX (X [, Y, KIND]) E Conversion to complex type.
CO_BROADCAST (A, SOURCE_IMAGE [, STAT, C Broadcast value to images.

ERRMSG])
CO_MAX (A [, RESULT_IMAGE, STAT, ERRMSG]) C Compute maximum value across images.
CO_MIN (A [, RESULT_IMAGE, STAT, ERRMSG]) C Compute minimum value across images.
CO_REDUCE (A, OPERATION [, RESULT_IMAGE, C Generalized reduction across images.

STAT, ERRMSG])
CO_SUM (A [, RESULT_IMAGE, STAT, ERRMSG]) C Compute sum across images.
COMMAND_ARGUMENT_COUNT () T Number of command arguments.
CONJG (Z) E Conjugate of a complex number.
COS (X) E Cosine function.
COSD (X) E Degree cosine function.
COSH (X) E Hyperbolic cosine function.
COSHAPE (COARRAY [, KIND]) I Sizes of codimensions of a coarray.
COSPI (X) E Circular cosine function.
COUNT (MASK [, DIM, KIND]) T Array reduced by counting true values.
CPU_TIME (TIME) S Processor time used.
CSHIFT (ARRAY, SHIFT [, DIM]) T Circular shift of an array.
DATE_AND_TIME ([DATE, TIME, ZONE, VALUES]) S Date and time.
DBLE (A) E Conversion to double precision real.
DIGITS (X) I Significant digits in numeric model.
DIM (X, Y) E Maximum of X − Y and zero.
DOT_PRODUCT (VECTOR_A, VECTOR_B) T Dot product of two vectors.
DPROD (X, Y) E Double precision real product.
DSHIFTL (I, J, SHIFT) E Combined left shift.
DSHIFTR (I, J, SHIFT) E Combined right shift.
EOSHIFT (ARRAY, SHIFT [, BOUNDARY, DIM]) T End-off shift of the elements of an array.
EPSILON (X) I Model number that is small compared to 1.
ERF (X) E Error function.
ERFC (X) E Complementary error function.
ERFC_SCALED (X) E Scaled complementary error function.
EVENT_QUERY (EVENT, COUNT [, STAT]) S Query event count.
EXECUTE_COMMAND_LINE (COMMAND [, WAIT, S Execute a command line.

EXITSTAT, CMDSTAT, CMDMSG])
EXP (X) E Exponential function.
EXPONENT (X) E Exponent of floating-point number.
EXTENDS_TYPE_OF (A, MOLD) I Dynamic type extension inquiry.
FAILED_IMAGES ([TEAM, KIND]) T Indices of failed images.
FINDLOC (ARRAY, VALUE [, MASK, KIND, BACK]) or T Location(s) of a specified value.
FINDLOC (ARRAY, VALUE, DIM [, MASK, KIND, BACK])
FLOOR (A [, KIND]) E Greatest integer less than or equal to A.
FRACTION (X) E Fractional part of number.
GAMMA (X) E Gamma function.
GET_COMMAND ([COMMAND, LENGTH, STATUS, S Get program invocation command.

ERRMSG])
GET_COMMAND_ARGUMENT (NUMBER [, VALUE, S Get program invocation argument.

LENGTH, STATUS, ERRMSG])
GET_ENVIRONMENT_VARIABLE (NAME [, VALUE, S Get environment variable.

LENGTH, STATUS, TRIM_NAME, ERRMSG])
GET_TEAM ([LEVEL]) T Team.
HUGE (X) I Largest model value or last enumeration

value.
HYPOT (X, Y) E Euclidean distance function.

350 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure (arguments) Class Description
IACHAR (C [, KIND]) E ASCII code value for character.
IALL (ARRAY, DIM [, MASK]) or IALL (ARRAY [, MASK]) T Array reduced by IAND function.
IAND (I, J) E Bitwise AND.
IANY (ARRAY, DIM [, MASK]) or IANY (ARRAY [, MASK]) T Array reduced by IOR function.
IBCLR (I, POS) E I with bit POS replaced by zero.
IBITS (I, POS, LEN) E Specified sequence of bits.
IBSET (I, POS) E I with bit POS replaced by one.
ICHAR (C [, KIND]) E Code value for character.
IEOR (I, J) E Bitwise exclusive OR.
IMAGE_INDEX (COARRAY, SUB, TEAM_NUMBER) or T Image index from cosubscripts.
IMAGE_INDEX (COARRAY, SUB, TEAM) or
IMAGE_INDEX (COARRAY, SUB)
IMAGE_STATUS (IMAGE [, TEAM]) E Image execution state.
INDEX (STRING, SUBSTRING [, BACK, KIND]) E Character string search.
INT (A [, KIND]) E Conversion to integer type.
IOR (I, J) E Bitwise inclusive OR.
IPARITY (ARRAY, DIM [, MASK]) or T Array reduced by IEOR function.
IPARITY (ARRAY [, MASK])
ISHFT (I, SHIFT) E Logical shift.
ISHFTC (I, SHIFT [, SIZE]) E Circular shift of the rightmost bits.
IS_CONTIGUOUS (ARRAY) I Array contiguity test (8.5.7).
IS_IOSTAT_END (I) E IOSTAT value test for end of file.
IS_IOSTAT_EOR (I) E IOSTAT value test for end of record.
KIND (X) I Value of the kind type parameter of X.
LBOUND (ARRAY [, DIM, KIND]) I Lower bound(s).
LCOBOUND (COARRAY [, DIM, KIND]) I Lower cobound(s) of a coarray.
LEADZ (I) E Number of leading zero bits.
LEN (STRING [, KIND]) I Length of a character entity.
LEN_TRIM (STRING [, KIND]) E Length without trailing blanks.
LGE (STRING_A, STRING_B) E ASCII greater than or equal.
LGT (STRING_A, STRING_B) E ASCII greater than.
LLE (STRING_A, STRING_B) E ASCII less than or equal.
LLT (STRING_A, STRING_B) E ASCII less than.
LOG (X) E Natural logarithm.
LOG_GAMMA (X) E Logarithm of the absolute value of the

gamma function.
LOG10 (X) E Common logarithm.
LOGICAL (L [, KIND]) E Conversion between kinds of logical.
MASKL (I [, KIND]) E Left justified mask.
MASKR (I [, KIND]) E Right justified mask.
MATMUL (MATRIX_A, MATRIX_B) T Matrix multiplication.
MAX (A1, A2 [, A3, ...]) E Maximum value.
MAXEXPONENT (X) I Maximum exponent of a real model.
MAXLOC (ARRAY, DIM [, MASK, KIND, BACK]) or T Location(s) of maximum value.
MAXLOC (ARRAY [, MASK, KIND, BACK])
MAXVAL (ARRAY, DIM [, MASK]) or T Maximum value(s) of array.
MAXVAL (ARRAY [, MASK])
MERGE (TSOURCE, FSOURCE, MASK) E Expression value selection.
MERGE_BITS (I, J, MASK) E Merge of bits under mask.
MIN (A1, A2 [, A3, ...]) E Minimum value.
MINEXPONENT (X) I Minimum exponent of a real model.
MINLOC (ARRAY, DIM [, MASK, KIND, BACK]) or T Location(s) of minimum value.
MINLOC (ARRAY [, MASK, KIND, BACK])

J3/23-007 351

J3/23-007 WD 1539-1 2023-02-17

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure (arguments) Class Description
MINVAL (ARRAY, DIM [, MASK]) or T Minimum value(s) of array.
MINVAL (ARRAY [, MASK])
MOD (A, P) E Remainder function.
MODULO (A, P) E Modulo function.
MOVE_ALLOC (FROM, TO [, STAT, ERRMSG]) PS Move an allocation.
MVBITS (FROM, FROMPOS, LEN, TO, TOPOS) ES Copy a sequence of bits.
NEAREST (X, S) E Adjacent machine number.
NEW_LINE (A) I Newline character.
NEXT (A [, STAT]) E Next enumeration value.
NINT (A [, KIND]) E Nearest integer.
NORM2 (X) or NORM2 (X, DIM) T L2 norm of an array.
NOT (I) E Bitwise complement.
NULL ([MOLD]) T Disassociated pointer or unallocated

allocatable entity.
NUM_IMAGES () or NUM_IMAGES (TEAM) or T Number of images.
NUM_IMAGES (TEAM_NUMBER)
OUT_OF_RANGE (X, MOLD [, ROUND]) E Whether a value cannot be converted

safely.
PACK (ARRAY, MASK [, VECTOR]) T Array packed into a vector.
PARITY (MASK) or PARITY (MASK, DIM) T Array reduced by .NEQV. operator.
POPCNT (I) E Number of one bits.
POPPAR (I) E Parity expressed as 0 or 1.
PRECISION (X) I Decimal precision of a real model.
PRESENT (A) I Presence of optional argument.
PREVIOUS (A [, STAT]) E Previous enumeration value.
PRODUCT (ARRAY, DIM [, MASK]) or T Array reduced by multiplication.
PRODUCT (ARRAY [, MASK])
RADIX (X) I Base of a numeric model.
RANDOM_INIT (REPEATABLE, IMAGE_DISTINCT) S Initialize pseudorandom number generator.
RANDOM_NUMBER (HARVEST) S Generate pseudorandom number(s).
RANDOM_SEED ([SIZE, PUT, GET]) S Pseudorandom number generator control.
RANGE (X) I Decimal exponent range of a numeric

model (16.4).
RANK (A) I Rank of a data object.
REAL (A [, KIND]) E Conversion to real type.
REDUCE (ARRAY, OPERATION [, MASK, IDENTITY, T General reduction of array

ORDERED]) or REDUCE (ARRAY, OPERATION, DIM
[, MASK, IDENTITY, ORDERED])

REPEAT (STRING, NCOPIES) T Repetitive string concatenation.
RESHAPE (SOURCE, SHAPE [, PAD, ORDER]) T Arbitrary shape array construction.
RRSPACING (X) E Reciprocal of relative spacing of model

numbers.
SAME_TYPE_AS (A, B) I Dynamic type equality test.
SCALE (X, I) E Real number scaled by radix power.
SCAN (STRING, SET [, BACK, KIND]) E Character set membership search.
SELECTED_CHAR_KIND (NAME) T Character kind selection.
SELECTED_INT_KIND (R) T Integer kind selection.
SELECTED_LOGICAL_KIND (BITS) T Logical kind selection.
SELECTED_REAL_KIND ([P, R, RADIX]) T Real kind selection.
SET_EXPONENT (X, I) E Real value with specified exponent.
SHAPE (SOURCE [, KIND]) I Shape of an array or a scalar.
SHIFTA (I, SHIFT) E Right shift with fill.
SHIFTL (I, SHIFT) E Left shift.

352 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure (arguments) Class Description
SHIFTR (I, SHIFT) E Right shift.
SIGN (A, B) E Magnitude of A with the sign of B.
SIN (X) E Sine function.
SIND (X) E Degree sine function.
SINH (X) E Hyperbolic sine function.
SINPI (X) E Circular sine function.
SIZE (ARRAY [, DIM, KIND]) I Size of an array or one extent.
SPACING (X) E Spacing of model numbers.
SPLIT (STRING, SET, POS [, BACK]) SS Parse a string into tokens, one at a time.
SPREAD (SOURCE, DIM, NCOPIES) T Value replicated in a new dimension.
SQRT (X) E Square root.
STOPPED_IMAGES ([TEAM, KIND]) T Indices of stopped images.
STORAGE_SIZE (A [, KIND]) I Storage size in bits.
SUM (ARRAY, DIM [, MASK]) or SUM (ARRAY [, MASK]) T Array reduced by addition.
SYSTEM_CLOCK ([COUNT, COUNT_RATE, S Query system clock.

COUNT_MAX])
TAN (X) E Tangent function.
TAND (X) E Degree tangent function.
TANH (X) E Hyperbolic tangent function.
TANPI (X) E Circular tangent function.
TEAM_NUMBER ([TEAM]) T Team number.
THIS_IMAGE ([TEAM]) T Index of the invoking image.
THIS_IMAGE (COARRAY [, TEAM]) or T Cosubscript(s) for this image.
THIS_IMAGE (COARRAY, DIM [, TEAM])
TINY (X) I Smallest positive model number.
TOKENIZE (STRING, SET, TOKENS [, SEPARATOR]) or SS Parse a string into tokens.
TOKENIZE (STRING, SET, FIRST, LAST)
TRAILZ (I) E Number of trailing zero bits.
TRANSFER (SOURCE, MOLD [, SIZE]) T Transfer physical representation.
TRANSPOSE (MATRIX) T Transpose of an array of rank two.
TRIM (STRING) T String without trailing blanks.
UBOUND (ARRAY [, DIM, KIND]) I Upper bound(s).
UCOBOUND (COARRAY [, DIM, KIND]) I Upper cobound(s) of a coarray.
UNPACK (VECTOR, MASK, FIELD) T Vector unpacked into an array.
VERIFY (STRING, SET [, BACK, KIND]) E Character set non-membership search.

3 The effect of calling EXECUTE_COMMAND_LINE on any image other than image 1 in the initial team is1
processor dependent.2

4 The use of all other standard intrinsic procedures in unordered segments is subject only to their argument use3
following the rules in 11.7.2.4

16.8 Specific names for standard intrinsic functions5

1 Except for AMAX0, AMIN0, MAX1, and MIN1, the result type of the specific function is the same that the result type of the6
corresponding generic function reference would be if it were invoked with the same arguments as the specific function.7

2 A function listed in Table 16.3 is not permitted to be used as an actual argument (15.5.1, C1534), as a target in a procedure8
pointer assignment statement (10.2.2.2, C1033), as an initial target in a procedure declaration statement (15.4.3.6, C1519), or to9
specify an interface (15.4.3.6, C1515).10

J3/23-007 353

J3/23-007 WD 1539-1 2023-02-17

Table 16.2: Unrestricted specific intrinsic functions

Specific name Generic name Argument type and kind

ABS ABS default real
ACOS ACOS default real
AIMAG AIMAG default complex
AINT AINT default real
ALOG LOG default real
ALOG10 LOG10 default real
AMOD MOD default real
ANINT ANINT default real
ASIN ASIN default real
ATAN ATAN (X) default real
ATAN2 ATAN2 default real
CABS ABS default complex
CCOS COS default complex
CEXP EXP default complex
CLOG LOG default complex
CONJG CONJG default complex
COS COS default real
COSH COSH default real
CSIN SIN default complex
CSQRT SQRT default complex
DABS ABS double precision real
DACOS ACOS double precision real
DASIN ASIN double precision real
DATAN ATAN double precision real
DATAN2 ATAN2 double precision real
DCOS COS double precision real
DCOSH COSH double precision real
DDIM DIM double precision real
DEXP EXP double precision real
DIM DIM default real
DINT AINT double precision real
DLOG LOG double precision real
DLOG10 LOG10 double precision real
DMOD MOD double precision real
DNINT ANINT double precision real
DPROD DPROD default real
DSIGN SIGN double precision real
DSIN SIN double precision real
DSINH SINH double precision real
DSQRT SQRT double precision real
DTAN TAN double precision real
DTANH TANH double precision real
EXP EXP default real
IABS ABS default integer
IDIM DIM default integer
IDNINT NINT double precision real
INDEX INDEX default character
ISIGN SIGN default integer
LEN LEN default character
MOD MOD default integer
NINT NINT default real
SIGN SIGN default real
SIN SIN default real
SINH SINH default real
SQRT SQRT default real
TAN TAN default real
TANH TANH default real

Table 16.3: Restricted specific intrinsic functions

Specific name Generic name Argument type and kind

AMAX0 (. . .) REAL (MAX (. . .)) default integer
AMAX1 MAX default real
AMIN0 (. . .) REAL (MIN (. . .)) default integer
AMIN1 MIN default real
CHAR CHAR default integer

354 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Restricted specific intrinsic functions (cont.)

Specific name Generic name Argument type and kind

DMAX1 MAX double precision real
DMIN1 MIN double precision real
FLOAT REAL default integer
ICHAR ICHAR default character
IDINT INT double precision real
IFIX INT default real
INT INT default real
LGE LGE default character
LGT LGT default character
LLE LLE default character
LLT LLT default character
MAX0 MAX default integer
MAX1 (. . .) INT (MAX (. . .)) default real
MIN0 MIN default integer
MIN1 (. . .) INT (MIN (. . .)) default real
REAL REAL default integer
SNGL REAL double precision real

16.9 Specifications of the standard intrinsic procedures1

16.9.1 General2

1 Detailed specifications of the standard generic intrinsic procedures are provided in 16.9 in alphabetical order.3

2 The types and type parameters of standard intrinsic procedure arguments and function results are determined4
by these specifications. The “Argument(s)” paragraphs specify requirements on the actual arguments of the5
procedures. The result characteristics are sometimes specified in terms of the characteristics of the arguments. A6
program shall not invoke an intrinsic procedure under circumstances where a value to be assigned to a subroutine7
argument or returned as a function result is not representable by objects of the specified type and type parameters.8

3 When an allocatable deferred-length character scalar corresponding to an INTENT (INOUT) or INTENT (OUT)9
argument is assigned a value, the value is assigned as if by intrinsic assignment.10

4 If an IEEE infinity is assigned or returned by an intrinsic procedure, the intrinsic module IEEE_ARITHMETIC11
is accessible, and the actual arguments were finite numbers, the flag IEEE_OVERFLOW or IEEE_DIVIDE_-12
BY_ZERO shall signal. If an IEEE NaN is assigned or returned, the actual arguments were finite numbers, the13
intrinsic module IEEE_ARITHMETIC is accessible, and the exception IEEE_INVALID is supported, the flag14
IEEE_INVALID shall signal. If no IEEE infinity or NaN is assigned or returned, these flags shall have the same15
status as when the intrinsic procedure was invoked.16

5 The result values of some functions are described using pseudo-subscripts (s1 to sn) of the argument array(s).17
These should be interpreted as if the lower bounds of the arrays were all equal to one.18

16.9.2 ABS (A)19

1 Description. Absolute value.20

2 Class. Elemental function.21

3 Argument. A shall be of type integer, real, or complex.22

4 Result Characteristics. The same as A except that if A is complex, the result is real.23

5 Result Value. If A is of type integer or real, the value of the result is |A|; if A is complex with value (x, y),24
the result is equal to a processor-dependent approximation to

√
x2 + y2 computed without undue overflow or25

underflow.26

J3/23-007 355

J3/23-007 WD 1539-1 2023-02-17

6 Example. ABS ((3.0, 4.0)) has the value 5.0 (approximately).1

16.9.3 ACHAR (I [, KIND])2

1 Description. Character from ASCII code value.3

2 Class. Elemental function.4

3 Arguments.5

I shall be of type integer.6

KIND (optional) shall be a scalar integer constant expression.7

4 Result Characteristics. Character of length one. If KIND is present, the kind type parameter is that specified8
by the value of KIND; otherwise, the kind type parameter is that of default character.9

5 Result Value. If I has a value in the range 0 ≤ I ≤ 127, the result is the character in position I of the ASCII10
collating sequence, provided the processor is capable of representing that character in the character kind of the11
result; otherwise, the result is processor dependent. ACHAR (IACHAR (C)) shall have the value C for any12
character C capable of representation as a default character.13

6 Example. ACHAR (88) has the value ’X’.14

16.9.4 ACOS (X)15

1 Description. Arccosine (inverse cosine) function.16

2 Class. Elemental function.17

3 Argument. X shall be of type real with a value that satisfies the inequality |X| ≤ 1, or of type complex.18

4 Result Characteristics. Same as X.19

5 Result Value. The result has a value equal to a processor-dependent approximation to arccos(X). If it is real20
it is expressed in radians and lies in the range 0 ≤ ACOS (X) ≤ π. If it is complex the real part is expressed in21
radians and lies in the range 0 ≤ REAL (ACOS (X)) ≤ π.22

6 Example. ACOS (0.54030231) has the value 1.0 (approximately).23

16.9.5 ACOSD (X)24

1 Description. Arc cosine function in degrees.25

2 Class. Elemental function.26

3 Argument. X shall be of type real with a value that satisfies the inequality |X| ≤ 1.27

4 Result Characteristics. Same as X.28

5 Result Value. The result has a value equal to a processor-dependent approximation to the arc cosine of X. It29
is expressed in degrees and lies in the range 0 ≤ ACOSD (X) ≤ 180.30

6 Example. ACOSD (−1.0) has the value 180.0 (approximately).31

16.9.6 ACOSH (X)32

1 Description. Inverse hyperbolic cosine function.33

2 Class. Elemental function.34

3 Argument. X shall be of type real or complex.35

356 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Result Characteristics. Same as X.1

5 Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic2
cosine function of X. If the result is complex the real part is nonnegative, and the imaginary part is expressed in3
radians and lies in the range −π ≤ AIMAG (ACOSH (X)) ≤ π4

6 Example. ACOSH (1.5430806) has the value 1.0 (approximately).5

16.9.7 ACOSPI (X)6

1 Description. Circular arc cosine function.7

2 Class. Elemental function.8

3 Argument. X shall be of type real with a value that satisfies the inequality |X| ≤ 1.9

4 Result Characteristics. Same as X.10

5 Result Value. The result has a value equal to a processor-dependent approximation to the arc cosine of X. It11
is expressed in half-revolutions and lies in the range 0 ≤ ACOSPI (X) ≤ 1.12

6 Example. ACOSPI (−1.0) has the value 1.0 (approximately).13

16.9.8 ADJUSTL (STRING)14

1 Description. Left-justified string value.15

2 Class. Elemental function.16

3 Argument. STRING shall be of type character.17

4 Result Characteristics. Character of the same length and kind type parameter as STRING.18

5 Result Value. The value of the result is the same as STRING except that any leading blanks have been deleted19
and the same number of trailing blanks have been inserted.20

6 Example. ADJUSTL (’ WORD’) has the value ’WORD ’.21

16.9.9 ADJUSTR (STRING)22

1 Description. Right-justified string value.23

2 Class. Elemental function.24

3 Argument. STRING shall be of type character.25

4 Result Characteristics. Character of the same length and kind type parameter as STRING.26

5 Result Value. The value of the result is the same as STRING except that any trailing blanks have been deleted27
and the same number of leading blanks have been inserted.28

6 Example. ADJUSTR (’WORD ’) has the value ’ WORD’.29

16.9.10 AIMAG (Z)30

1 Description. Imaginary part of a complex number.31

2 Class. Elemental function.32

3 Argument. Z shall be of type complex.33

J3/23-007 357

J3/23-007 WD 1539-1 2023-02-17

4 Result Characteristics. Real with the same kind type parameter as Z.1

5 Result Value. If Z has the value (x, y), the result has the value y.2

6 Example. AIMAG ((2.0, 3.0)) has the value 3.0.3

16.9.11 AINT (A [, KIND])4

1 Description. Truncation toward 0 to a whole number.5

2 Class. Elemental function.6

3 Arguments.7

A shall be of type real.8

KIND (optional) shall be a scalar integer constant expression.9

4 Result Characteristics. The result is of type real. If KIND is present, the kind type parameter is that specified10
by the value of KIND; otherwise, the kind type parameter is that of A.11

5 Result Value. If |A| < 1, AINT (A) has the value 0; if |A| ≥ 1, AINT (A) has a value equal to the integer12
whose magnitude is the largest integer that does not exceed the magnitude of A and whose sign is the same as13
the sign of A.14

6 Examples. AINT (2.783) has the value 2.0. AINT (−2.783) has the value −2.0.15

16.9.12 ALL (MASK) or ALL (MASK, DIM)16

1 Description. Array reduced by .AND. operator.17

2 Class. Transformational function.18

3 Arguments.19

MASK shall be a logical array.20

DIM shall be an integer scalar with value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.21

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar22
if DIM does not appear or n = 1; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1,23
. . . , dn] where [d1, d2, . . . , dn] is the shape of MASK.24

5 Result Value.25

Case (i): The result of ALL (MASK) has the value true if all elements of MASK are true or if MASK has26
size zero, and the result has value false if any element of MASK is false.27

Case (ii): If MASK has rank one, ALL (MASK, DIM) is equal to ALL (MASK). Otherwise, the value of28
element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of ALL (MASK, DIM) is equal to ALL (MASK (s1,29
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).30

6 Examples.31

Case (i): The value of ALL ([.TRUE., .FALSE., .TRUE.]) is false.32

Case (ii): If B is the array
[

1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ALL (B /= C, DIM = 1) is33

[true, false, false] and ALL (B /= C, DIM = 2) is [false, false].34

358 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.13 ALLOCATED (ARRAY) or ALLOCATED (SCALAR)1

1 Description. Allocation status of allocatable variable.2

2 Class. Inquiry function.3

3 Arguments.4

ARRAY shall be an allocatable array.5

SCALAR shall be an allocatable scalar.6

4 Result Characteristics. Default logical scalar.7

5 Result Value. The result has the value true if the argument (ARRAY or SCALAR) is allocated and has the8
value false if the argument is unallocated.9

16.9.14 ANINT (A [, KIND])10

1 Description. Nearest whole number.11

2 Class. Elemental function.12

3 Arguments.13

A shall be of type real.14

KIND (optional) shall be a scalar integer constant expression.15

4 Result Characteristics. The result is of type real. If KIND is present, the kind type parameter is that specified16
by the value of KIND; otherwise, the kind type parameter is that of A.17

5 Result Value. The result is the integer nearest A, or if there are two integers equally near A, the result is18
whichever such integer has the greater magnitude.19

6 Examples. ANINT (2.783) has the value 3.0. ANINT (−2.783) has the value −3.0.20

16.9.15 ANY (MASK) or ANY (MASK, DIM)21

1 Description. Array reduced by .OR. operator.22

2 Class. Transformational function.23

3 Arguments.24

MASK shall be a logical array.25

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.26

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar27
if DIM does not appear or n = 1; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1,28
. . . , dn] where [d1, d2, . . . , dn] is the shape of MASK.29

5 Result Value.30

Case (i): The result of ANY (MASK) has the value true if any element of MASK is true and has the value31
false if no elements are true or if MASK has size zero.32

Case (ii): If MASK has rank one, ANY (MASK, DIM) is equal to ANY (MASK). Otherwise, the value of33
element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of ANY (MASK, DIM) is equal to ANY (MASK (s1,34
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).35

6 Examples.36

Case (i): The value of ANY ([.TRUE., .FALSE., .TRUE.]) is true.37

J3/23-007 359

J3/23-007 WD 1539-1 2023-02-17

Case (ii): If B is the array
[

1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ANY (B /= C, DIM = 1) is1

[true, false, true] and ANY (B /= C, DIM = 2) is [true, true].2

16.9.16 ASIN (X)3

1 Description. Arcsine (inverse sine) function.4

2 Class. Elemental function.5

3 Argument. X shall be of type real with a value that satisfies the inequality |X| ≤ 1, or of type complex.6

4 Result Characteristics. Same as X.7

5 Result Value. The result has a value equal to a processor-dependent approximation to arcsin(X). If it is real it8
is expressed in radians and lies in the range −π/2 ≤ ASIN (X) ≤ π/2. If it is complex the real part is expressed9
in radians and lies in the range −π/2 ≤ REAL (ASIN (X)) ≤ π/2.10

6 Example. ASIN (0.84147098) has the value 1.0 (approximately).11

16.9.17 ASIND (X)12

1 Description. Arc sine function in degrees.13

2 Class. Elemental function.14

3 Argument. X shall be of type real with a value that satisfies the inequality |X| ≤ 1.15

4 Result Characteristics. Same as X.16

5 Result Value. The result has a value equal to a processor-dependent approximation to the arc sine of X. It is17
expressed in degrees and lies in the range −90 ≤ ASIND (X) ≤ 90.18

6 Example. ASIND (1.0) has the value 90.0 (approximately).19

16.9.18 ASINH (X)20

1 Description. Inverse hyperbolic sine function.21

2 Class. Elemental function.22

3 Argument. X shall be of type real or complex.23

4 Result Characteristics. Same as X.24

5 Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic25
sine function of X. If the result is complex the imaginary part is expressed in radians and lies in the range26
−π/2 ≤ AIMAG (ASINH (X)) ≤ π/2.27

6 Example. ASINH (1.1752012) has the value 1.0 (approximately).28

16.9.19 ASINPI (X)29

1 Description. Circular arc sine function.30

2 Class. Elemental function.31

3 Argument. X shall be of type real with a value that satisfies the inequality |X| ≤ 1.32

4 Result Characteristics. Same as X.33

360 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 Result Value. The result has a value equal to a processor-dependent approximation to the arc sine of X. It is1
expressed in half-revolutions and lies in the range − 1

2 ≤ ASINPI (X) ≤ 1
2 .2

6 Example. ASINPI (1.0) has the value 0.5 (approximately).3

16.9.20 ASSOCIATED (POINTER [, TARGET])4

1 Description. Pointer association status inquiry.5

2 Class. Inquiry function.6

3 Arguments.7

POINTER shall be a pointer. It may be of any type or may be a procedure pointer. Its pointer association8
status shall not be undefined.9

TARGET (optional) shall be allowable as the data-target or proc-target in a pointer assignment statement (10.2.2)10
in which POINTER is data-pointer-object or proc-pointer-object. If TARGET is a pointer then its11
pointer association status shall not be undefined.12

4 Result Characteristics. Default logical scalar.13

5 Result Value.14

Case (i): If TARGET is absent, the result is true if and only if POINTER is associated with a target.15

Case (ii): If TARGET is present and is a procedure other than a dummy procedure or procedure pointer, the16
result is true if and only if POINTER is associated with TARGET and, if TARGET is an internal17
procedure, they have the same host instance.18

Case (iii): If TARGET is present and is a dummy procedure that is not a procedure pointer, the result is true19
if and only if POINTER is associated with the procedure that is the ultimate argument of TARGET20
and, if the procedure is an internal procedure, they have the same host instance.21

Case (iv): If TARGET is present and is a procedure pointer, the result is true if and only if POINTER and22
TARGET are associated with the same procedure and, if the procedure is an internal procedure,23
they have the same host instance.24

Case (v): If TARGET is present and is a scalar target, the result is true if and only if TARGET is not a zero-25
sized storage sequence and POINTER is associated with a target that occupies the same storage26
units as TARGET.27

Case (vi): If TARGET is present and is an array target, the result is true if and only if POINTER is associated28
with a target that has the same shape as TARGET, is neither of size zero nor an array whose elements29
are zero-sized storage sequences, and occupies the same storage units as TARGET in array element30
order.31

Case (vii): If TARGET is present and is a scalar pointer, the result is true if and only if POINTER and32
TARGET are associated, the targets are not zero-sized storage sequences, and they occupy the33
same storage units.34

Case (viii): If TARGET is present and is an array pointer, the result is true if and only if POINTER and35
TARGET are both associated, have the same shape, are neither of size zero nor arrays whose36
elements are zero-sized storage sequences, and occupy the same storage units in array element37
order.38

NOTE
The references to TARGET in the above cases are referring to properties that might be possessed by the actual
argument, so the case of TARGET being a disassociated pointer will be covered by case (iv), (vii), or (viii).

6 Examples. ASSOCIATED (CURRENT, HEAD) is true if CURRENT is associated with the target HEAD.39
After the execution of40

A_PART => A (:N)41
ASSOCIATED (A_PART, A) is true if N is equal to UBOUND (A, DIM = 1). After the execution of42

J3/23-007 361

J3/23-007 WD 1539-1 2023-02-17

NULLIFY (CUR); NULLIFY (TOP)1
ASSOCIATED (CUR, TOP) is false.2

16.9.21 ATAN (X) or ATAN (Y, X)3

1 Description. Arctangent (inverse tangent) function.4

2 Class. Elemental function.5

3 Arguments.6

Y shall be of type real.7

X If Y appears, X shall be of type real with the same kind type parameter as Y. If Y has the value8
zero, X shall not have the value zero. If Y does not appear, X shall be of type real or complex.9

4 Result Characteristics. Same as X.10

5 Result Value. If Y appears, the result is the same as the result of ATAN2 (Y,X). If Y does not appear, the11
result has a value equal to a processor-dependent approximation to arctan(X) whose real part is expressed in12
radians and lies in the range −π/2 ≤ ATAN (X) ≤ π/2.13

6 Example. ATAN (1.5574077) has the value 1.0 (approximately).14

16.9.22 ATAN2 (Y, X)15

1 Description. Arctangent (inverse tangent) function.16

2 Class. Elemental function.17

3 Arguments.18

Y shall be of type real.19

X shall be of the same type and kind type parameter as Y. If Y has the value zero, X shall not have20
the value zero.21

4 Result Characteristics. Same as X.22

5 Result Value. The result has a value equal to a processor-dependent approximation to the principal value of23
the argument of the complex number (X, Y), expressed in radians. It lies in the range −π ≤ ATAN2 (Y,X)24
≤ π and is equal to a processor-dependent approximation to a value of arctan(Y/X) if X ̸= 0. If Y > 0, the25
result is positive. If Y = 0 and X > 0, the result is Y. If Y = 0 and X < 0, then the result is approximately26
π if Y is positive real zero or the processor does not distinguish between positive and negative real zero, and27
approximately −π if Y is negative real zero. If Y < 0, the result is negative. If X = 0, the absolute value of the28
result is approximately π/2.29

6 Examples. ATAN2 (1.5574077, 1.0) has the value 1.0 (approximately). If Y has the value
[

1 1
−1 −1

]
and X30

has the value
[

−1 1
−1 1

]
, the value of ATAN2 (Y, X) is approximately

[
3π/4 π/4

−3π/4 −π/4

]
.31

16.9.23 ATAN2D (Y, X)32

1 Description. Arc tangent function in degrees.33

2 Class. Elemental function.34

3 Arguments.35

Y shall be of type real.36

362 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

X shall be of the same type and kind type parameter as Y. If Y has the value zero, X shall not have1
the value zero.2

4 Result Characteristics. Same as X.3

5 Result Value. The result is expressed in degrees and lies in the range −180 ≤ ATAN2D (Y, X) ≤ 180. It has4
a value equal to a processor-dependent approximation to ATAN2 (Y, X)×180/π.5

6 Examples. ATAN2D (1.0, 1.0) has the value 45.0 (approximately). If Y has the value
[

1 1
−1 −1

]
and X has6

the value
[

−1 1
−1 1

]
, the value of ATAN2D (Y, X) is approximately

[
135.0 45.0

−135.0 −45.0

]
.7

16.9.24 ATAN2PI (Y, X)8

1 Description. Circular arc tangent function.9

2 Class. Elemental function.10

3 Arguments.11

Y shall be of type real.12

X shall be of the same type and kind type parameter as Y. If Y has the value zero, X shall not have13
the value zero.14

4 Result Characteristics. Same as X.15

5 Result Value. The result is expressed in degrees and lies in the range −1 ≤ ATAN2PI (Y, X) ≤ 1. It has a16
value equal to a processor-dependent approximation to ATAN2 (Y, X)÷π.17

6 Examples. ATAN2PI (1.0, 1.0) has the value 0.25 (approximately). If Y has the value
[

1 1
−1 −1

]
and X has18

the value
[

−1 1
−1 1

]
, the value of ATAN2PI (Y, X) is approximately

[
0.75 0.25

−0.75 −0.25

]
.19

16.9.25 ATAND (X) or ATAND (Y, X)20

1 Description. Arc tangent function in degrees.21

2 Class. Elemental function.22

3 Arguments.23

Y shall be of type real.24

X If Y appears, X shall be of type real with the same kind type parameter as Y. If Y has the value25
zero, X shall not have the value zero. If Y does not appear, X shall be of type real.26

4 Result Characteristics. Same as X.27

5 Result Value. If Y appears, the result is the same as the result of ATAN2D (Y, X). If Y does not appear,28
the result has a value equal to a processor-dependent approximation to the arc tangent of X; it is expressed in29
degrees and lies in the range −90 ≤ ATAND (X) ≤ 90.30

6 Example. ATAND (1.0) has the value 45.0 (approximately).31

J3/23-007 363

J3/23-007 WD 1539-1 2023-02-17

16.9.26 ATANH (X)1

1 Description. Inverse hyperbolic tangent function.2

2 Class. Elemental function.3

3 Argument. X shall be of type real or complex.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic6
tangent function of X. If the result is complex the imaginary part is expressed in radians and lies in the range7
−π/2 ≤ AIMAG (ATANH (X)) ≤ π/2.8

6 Example. ATANH (0.76159416) has the value 1.0 (approximately).9

16.9.27 ATANPI (X) or ATANPI (Y, X)10

1 Description. Circular arc tangent function.11

2 Class. Elemental function.12

3 Arguments.13

Y shall be of type real.14

X If Y appears, X shall be of type real with the same kind type parameter as Y. If Y has the value15
zero, X shall not have the value zero. If Y does not appear, X shall be of type real.16

4 Result Characteristics. Same as X.17

5 Result Value. If Y appears, the result is the same as the result of ATAN2PI (Y, X). If Y does not appear,18
the result has a value equal to a processor-dependent approximation to the arc tangent of X; it is expressed in19
half-revolutions and lies in the range −0.5 ≤ ATANPI (X) ≤ 0.5.20

6 Example. ATANPI (1.0) has the value 0.25 (approximately).21

16.9.28 ATOMIC_ADD (ATOM, VALUE [, STAT])22

1 Description. Atomic addition.23

2 Class. Atomic subroutine.24

3 Arguments.25

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-26
KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument. If27
an error condition occurs, ATOM becomes undefined; otherwise, it becomes defined with the value28
of ATOM + VALUE.29

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The values of VALUE and ATOM +30
VALUE shall be representable in kind ATOMIC_INT_KIND.31

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an32
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs33
and STAT is not present, error termination is initiated.34

4 Example. CALL ATOMIC_ADD (I [3], 42) will cause I on image 3 to become defined with the value 46 if the35
value of I [3] is 4 when the atomic operation is executed.36

364 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.29 ATOMIC_AND (ATOM, VALUE [, STAT])1

1 Description. Atomic bitwise AND.2

2 Class. Atomic subroutine.3

3 Arguments.4

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-5
KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument. If6
an error condition occurs, ATOM becomes undefined; otherwise, it becomes defined with the value7
of IAND (ATOM, INT (VALUE, ATOMIC_INT_KIND)).8

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres-9
entable in kind ATOMIC_INT_KIND.10

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an11
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs12
and STAT is not present, error termination is initiated.13

4 Example. CALL ATOMIC_AND (I [3], 6) will cause I on image 3 to become defined with the value 4 if the14
value of I [3] is 5 when the atomic operation is executed.15

16.9.30 ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])16

1 Description. Atomic compare and swap.17

2 Class. Atomic subroutine.18

3 Arguments.19

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-20
KIND from the intrinsic module ISO_FORTRAN_ENV, or of type logical with kind ATOMIC_-21
LOGICAL_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT)22
argument. If an error condition occurs, ATOM becomes undefined; otherwise, if ATOM is of type23
integer and equal to COMPARE, or of type logical and equivalent to COMPARE, it becomes defined24
with the value of NEW.25

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If26
an error condition occurs, it becomes undefined; otherwise, it becomes defined with the value that27
ATOM had at the start of the atomic operation.28

COMPARE shall be scalar and of the same type and kind as ATOM. It is an INTENT (IN) argument.29

NEW shall be scalar and of the same type and kind as ATOM. It is an INTENT (IN) argument.30

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an31
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs32
and STAT is not present, error termination is initiated.33

4 Example. If the value of I on image 3 is equal to 13 at the beginning of the atomic operation performed by34
CALL ATOMIC_CAS (I [3], OLD, 0, 1), the value of I on image 3 will be unchanged, and OLD will become35
defined with the value 13. If the value of I on image 3 is equal to 0 at the beginning of the atomic operation36
performed by CALL ATOMIC_CAS (I [3], OLD, 0, 1), I on image 3 will become defined with the value 1, and37
OLD will become defined with the value 0.38

16.9.31 ATOMIC_DEFINE (ATOM, VALUE [, STAT])39

1 Description. Define a variable atomically.40

2 Class. Atomic subroutine.41

J3/23-007 365

J3/23-007 WD 1539-1 2023-02-17

3 Arguments.1

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-2
KIND from the intrinsic module ISO_FORTRAN_ENV, or of type logical with kind ATOMIC_-3
LOGICAL_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (OUT)4
argument. On successful execution, it becomes defined with the value of VALUE. If an error5
condition occurs, it becomes undefined.6

VALUE shall be scalar and of the same type as ATOM. It is an INTENT (IN) argument.7

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an8
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs9
and STAT is not present, error termination is initiated.10

4 Example. CALL ATOMIC_DEFINE (I [3], 4) causes I on image 3 to become defined with the value 4.11

16.9.32 ATOMIC_FETCH_ADD (ATOM, VALUE, OLD [, STAT])12

1 Description. Atomic fetch and add.13

2 Class. Atomic subroutine.14

3 Arguments.15

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-16
KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument. If17
an error condition occurs, ATOM becomes undefined; otherwise, it becomes defined with the value18
of ATOM + VALUE.19

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The values of VALUE and ATOM +20
VALUE shall be representable in kind ATOMIC_INT_KIND.21

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If22
an error condition occurs, it becomes undefined; otherwise, it becomes defined with the value that23
ATOM had at the start of the atomic operation.24

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an25
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs26
and STAT is not present, error termination is initiated.27

4 Example. CALL ATOMIC_FETCH_ADD (I [3], 7, J) will cause I on image 3 to become defined with the value28
12, and J to become defined with the value 5, if the value of I [3] is 5 when the atomic operation is executed.29

16.9.33 ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])30

1 Description. Atomic fetch and bitwise AND.31

2 Class. Atomic subroutine.32

3 Arguments.33

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-34
KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument. If35
an error condition occurs, ATOM becomes undefined; otherwise, it becomes defined with the value36
of IAND (ATOM, INT (VALUE, ATOMIC_INT_KIND)).37

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres-38
entable in kind ATOMIC_INT_KIND.39

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If40
an error condition occurs, it becomes undefined; otherwise, it becomes defined with the value that41
ATOM had at the start of the atomic operation.42

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an43
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs44
and STAT is not present, error termination is initiated.45

366 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Example. CALL ATOMIC_FETCH_AND (I [3], 6, J) will cause I on image 3 to become defined with the value1
4, and J to become defined with the value 5, if the value of I [3] is 5 when the atomic operation is executed.2

16.9.34 ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])3

1 Description. Atomic fetch and bitwise OR.4

2 Class. Atomic subroutine.5

3 Arguments.6

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-7
KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument. If8
an error condition occurs, ATOM becomes undefined; otherwise, it becomes defined with the value9
of IOR (ATOM, INT (VALUE, ATOMIC_INT_KIND)).10

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres-11
entable in kind ATOMIC_INT_KIND.12

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If13
an error condition occurs, it becomes undefined; otherwise, it becomes defined with the value that14
ATOM had at the start of the atomic operation.15

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an16
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs17
and STAT is not present, error termination is initiated.18

4 Example. CALL ATOMIC_FETCH_OR (I [3], 1, J) will cause I on image 3 to become defined with the value19
3, and J to become defined with the value 2, if the value of I [3] is 2 when the atomic operation is executed.20

16.9.35 ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])21

1 Description. Atomic fetch and bitwise exclusive OR.22

2 Class. Atomic subroutine.23

3 Arguments.24

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-25
KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument. If26
an error condition occurs, ATOM becomes undefined; otherwise, it becomes defined with the value27
of IEOR (ATOM, INT (VALUE, ATOMIC_INT_KIND)).28

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres-29
entable in kind ATOMIC_INT_KIND.30

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If31
an error condition occurs, it becomes undefined; otherwise, it becomes defined with the value that32
ATOM had at the start of the atomic operation.33

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an34
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs35
and STAT is not present, error termination is initiated.36

4 Example. CALL ATOMIC_FETCH_XOR (I [3], 1, J) will cause I on image 3 to become defined with the value37
2, and J to become defined with the value 3, if the value of I [3] is 3 when the atomic operation is executed.38

16.9.36 ATOMIC_OR (ATOM, VALUE [, STAT])39

1 Description. Atomic bitwise OR.40

2 Class. Atomic subroutine.41

J3/23-007 367

J3/23-007 WD 1539-1 2023-02-17

3 Arguments.1

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-2
KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument. If3
an error condition occurs, ATOM becomes undefined; otherwise, it becomes defined with the value4
of IOR (ATOM, INT (VALUE, ATOMIC_INT_KIND)).5

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres-6
entable in kind ATOMIC_INT_KIND.7

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an8
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs9
and STAT is not present, error termination is initiated.10

4 Example. CALL ATOMIC_OR (I [3], 1) will cause I on image 3 to become defined with the value 3 if the value11
of I [3] is 2 when the atomic operation is executed.12

16.9.37 ATOMIC_REF (VALUE, ATOM [, STAT])13

1 Description. Reference a variable atomically.14

2 Class. Atomic subroutine.15

3 Arguments.16

VALUE shall be scalar and of the same type as ATOM. It is an INTENT (OUT) argument. On successful17
execution, it becomes defined with the value of ATOM. If an error condition occurs, it becomes18
undefined.19

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-20
KIND from the intrinsic module ISO_FORTRAN_ENV, or of type logical with kind ATOMIC_LO-21
GICAL_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (IN) argument.22

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an23
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs24
and STAT is not present, error termination is initiated.25

4 Example. CALL ATOMIC_REF (VAL, I [3]) causes VAL to become defined with the value of I on image 3.26

16.9.38 ATOMIC_XOR (ATOM, VALUE [, STAT])27

1 Description. Atomic bitwise exclusive OR.28

2 Class. Atomic subroutine.29

3 Arguments.30

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_INT_-31
KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument. If32
an error condition occurs, ATOM becomes undefined; otherwise, it becomes defined with the value33
of IEOR (ATOM, INT (VALUE, ATOMIC_INT_KIND)).34

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres-35
entable in kind ATOMIC_INT_KIND.36

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an37
INTENT (OUT) argument. It is assigned a value as specified in 16.5. If an error condition occurs38
and STAT is not present, error termination is initiated.39

4 Example. CALL ATOMIC_XOR (I [3], 1) will cause I on image 3 to become defined with the value 2 if the40
value of I [3] is 3 when the atomic operation is executed.41

368 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.39 BESSEL_J0 (X)1

1 Description. Bessel function of the 1st kind, order 0.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor-dependent approximation to the Bessel function of6
the first kind and order zero of X.7

6 Example. BESSEL_J0 (1.0) has the value 0.765 (approximately).8

16.9.40 BESSEL_J1 (X)9

1 Description. Bessel function of the 1st kind, order 1.10

2 Class. Elemental function.11

3 Argument. X shall be of type real.12

4 Result Characteristics. Same as X.13

5 Result Value. The result has a value equal to a processor-dependent approximation to the Bessel function of14
the first kind and order one of X.15

6 Example. BESSEL_J1 (1.0) has the value 0.440 (approximately).16

16.9.41 BESSEL_JN (N, X) or BESSEL_JN (N1, N2, X)17

1 Description. Bessel functions of the 1st kind.18

2 Class.19

Case (i): BESSEL_JN (N,X) is an elemental function.20

Case (ii): BESSEL_JN (N1,N2,X) is a transformational function.21

3 Arguments.22

N shall be of type integer and nonnegative.23

N1 shall be an integer scalar with a nonnegative value.24

N2 shall be an integer scalar with a nonnegative value.25

X shall be of type real; if the function is transformational, X shall be scalar.26

4 Result Characteristics. Same type and kind as X. The result of BESSEL_JN (N1, N2, X) is a rank-one array27
with extent MAX (N2−N1+1, 0).28

5 Result Value.29

Case (i): The result value of BESSEL_JN (N, X) is a processor-dependent approximation to the Bessel30
function of the first kind and order N of X.31

Case (ii): Element i of the result value of BESSEL_JN (N1, N2, X) is a processor-dependent approximation32
to the Bessel function of the first kind and order N1+i − 1 of X.33

6 Example. BESSEL_JN (2, 1.0) has the value 0.115 (approximately).34

J3/23-007 369

J3/23-007 WD 1539-1 2023-02-17

16.9.42 BESSEL_Y0 (X)1

1 Description. Bessel function of the 2nd kind, order 0.2

2 Class. Elemental function.3

3 Argument. X shall be of type real. Its value shall be greater than zero.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor-dependent approximation to the Bessel function of6
the second kind and order zero of X.7

6 Example. BESSEL_Y0 (1.0) has the value 0.088 (approximately).8

16.9.43 BESSEL_Y1 (X)9

1 Description. Bessel function of the 2nd kind, order 1.10

2 Class. Elemental function.11

3 Argument. X shall be of type real. Its value shall be greater than zero.12

4 Result Characteristics. Same as X.13

5 Result Value. The result has a value equal to a processor-dependent approximation to the Bessel function of14
the second kind and order one of X.15

6 Example. BESSEL_Y1 (1.0) has the value −0.781 (approximately).16

16.9.44 BESSEL_YN (N, X) or BESSEL_YN (N1, N2, X)17

1 Description. Bessel functions of the 2nd kind.18

2 Class.19

Case (i): BESSEL_YN (N, X) is an elemental function.20

Case (ii): BESSEL_YN (N1, N2, X) is a transformational function.21

3 Arguments.22

N shall be of type integer and nonnegative.23

N1 shall be an integer scalar with a nonnegative value.24

N2 shall be an integer scalar with a nonnegative value.25

X shall be of type real; if the function is transformational, X shall be scalar. Its value shall be greater26
than zero.27

4 Result Characteristics. Same type and kind as X. The result of BESSEL_YN (N1, N2, X) is a rank-one array28
with extent MAX (N2−N1+1, 0).29

5 Result Value.30

Case (i): The result value of BESSEL_YN (N, X) is a processor-dependent approximation to the Bessel31
function of the second kind and order N of X.32

Case (ii): Element i of the result value of BESSEL_YN (N1, N2, X) is a processor-dependent approximation33
to the Bessel function of the second kind and order N1+i − 1 of X.34

6 Example. BESSEL_YN (2, 1.0) has the value −1.651 (approximately).35

370 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.45 BGE (I, J)1

1 Description. Bitwise greater than or equal to.2

2 Class. Elemental function.3

3 Arguments.4

I shall be of type integer or a boz-literal-constant.5

J shall be of type integer or a boz-literal-constant.6

4 Result Characteristics. Default logical.7

5 Result Value. The result is true if the sequence of bits represented by I is greater than or equal to the sequence8
of bits represented by J, according to the method of bit sequence comparison in 16.3.2; otherwise the result is9
false.10

6 The interpretation of a boz-literal-constant as a sequence of bits is described in 7.7. The interpretation of an11
integer value as a sequence of bits is described in 16.3.12

7 Example. If BIT_SIZE (J) has the value 8, BGE (Z’FF’, J) has the value true for any value of J. BGE (0, −1)13
has the value false.14

16.9.46 BGT (I, J)15

1 Description. Bitwise greater than.16

2 Class. Elemental function.17

3 Arguments.18

I shall be of type integer or a boz-literal-constant.19

J shall be of type integer or a boz-literal-constant.20

4 Result Characteristics. Default logical.21

5 Result Value. The result is true if the sequence of bits represented by I is greater than the sequence of bits22
represented by J, according to the method of bit sequence comparison in 16.3.2; otherwise the result is false.23

6 The interpretation of a boz-literal-constant as a sequence of bits is described in 7.7. The interpretation of an24
integer value as a sequence of bits is described in 16.3.25

7 Example. BGT (Z’FF’, Z’FC’) has the value true. BGT (0, −1) has the value false.26

16.9.47 BIT_SIZE (I)27

1 Description. Number of bits in integer model 16.3.28

2 Class. Inquiry function.29

3 Argument. I shall be of type integer. It may be a scalar or an array.30

4 Result Characteristics. Scalar integer with the same kind type parameter as I.31

5 Result Value. The result has the value of the number of bits z of the model integer defined for bit manipulation32
contexts in 16.3.33

6 Example. BIT_SIZE (1) has the value 32 if z of the model is 32.34

J3/23-007 371

J3/23-007 WD 1539-1 2023-02-17

16.9.48 BLE (I, J)1

1 Description. Bitwise less than or equal to.2

2 Class. Elemental function.3

3 Arguments.4

I shall be of type integer or a boz-literal-constant.5

J shall be of type integer or a boz-literal-constant.6

4 Result Characteristics. Default logical.7

5 Result Value. The result is true if the sequence of bits represented by I is less than or equal to the sequence of8
bits represented by J, according to the method of bit sequence comparison in 16.3.2; otherwise the result is false.9

6 The interpretation of a boz-literal-constant as a sequence of bits is described in 7.7. The interpretation of an10
integer value as a sequence of bits is described in 16.3.11

7 Example. BLE (0, J) has the value true for any value of J. BLE (−1, 0) has the value false.12

16.9.49 BLT (I, J)13

1 Description. Bitwise less than.14

2 Class. Elemental function.15

3 Arguments.16

I shall be of type integer or a boz-literal-constant.17

J shall be of type integer or a boz-literal-constant.18

4 Result Characteristics. Default logical.19

5 Result Value. The result is true if the sequence of bits represented by I is less than the sequence of bits20
represented by J, according to the method of bit sequence comparison in 16.3.2; otherwise the result is false.21

6 The interpretation of a boz-literal-constant as a sequence of bits is described in 7.7. The interpretation of an22
integer value as a sequence of bits is described in 16.3.23

7 Example. BLT (0, −1) has the value true. BLT (Z’FF’, Z’FC’) has the value false.24

16.9.50 BTEST (I, POS)25

1 Description. Test single bit in an integer.26

2 Class. Elemental function.27

3 Arguments.28

I shall be of type integer.29

POS shall be of type integer. It shall be nonnegative and be less than BIT_SIZE (I).30

4 Result Characteristics. Default logical.31

5 Result Value. The result has the value true if bit POS of I has the value 1 and has the value false if bit POS32
of I has the value 0. The model for the interpretation of an integer value as a sequence of bits is in 16.3.33

6 Examples. BTEST (8, 3) has the value true. If A has the value
[

1 2
3 4

]
, the value of BTEST (A, 2) is34

372 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

[
false false
false true

]
and the value of BTEST (2, A) is

[
true false
false false

]
.1

16.9.51 CEILING (A [, KIND])2

1 Description. Least integer greater than or equal to A.3

2 Class. Elemental function.4

3 Arguments.5

A shall be of type real.6

KIND (optional) shall be a scalar integer constant expression.7

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of8
KIND; otherwise, the kind type parameter is that of default integer type.9

5 Result Value. The result has a value equal to the least integer greater than or equal to A.10

6 Examples. CEILING (3.7) has the value 4. CEILING (−3.7) has the value −3.11

16.9.52 CHAR (I [, KIND])12

1 Description. Character from code value.13

2 Class. Elemental function.14

3 Arguments.15

I shall be of type integer with a value in the range 0 ≤ I ≤ n − 1, where n is the number of characters16
in the collating sequence associated with the specified kind type parameter.17

KIND (optional) shall be a scalar integer constant expression.18

4 Result Characteristics. Character of length one. If KIND is present, the kind type parameter is that specified19
by the value of KIND; otherwise, the kind type parameter is that of default character.20

5 Result Value. The result is the character in position I of the collating sequence associated with the spe-21
cified kind type parameter. ICHAR (CHAR (I, KIND (C))) shall have the value I for 0 ≤ I ≤ n − 1 and22
CHAR (ICHAR (C), KIND (C)) shall have the value C for any character C capable of representation in the23
processor.24

6 Example. CHAR (88) has the value ’X’ on a processor using the ASCII collating sequence for default characters.25

16.9.53 CMPLX (X [, KIND]) or CMPLX (X [, Y, KIND])26

1 Description. Conversion to complex type.27

2 Class. Elemental function.28

3 Arguments for CMPLX(X [, KIND]).29

X shall be of type complex.30

KIND (optional) shall be a scalar integer constant expression.31

4 Arguments for CMPLX(X [, Y, KIND]).32

X shall be of type integer or real, or a boz-literal-constant.33

Y (optional) shall be of type integer or real, or a boz-literal-constant.34

KIND (optional) shall be a scalar integer constant expression.35

J3/23-007 373

J3/23-007 WD 1539-1 2023-02-17

5 Result Characteristics. The result is of type complex. If KIND is present, the kind type parameter is that1
specified by the value of KIND; otherwise, the kind type parameter is that of default real kind.2

6 Result Value. If Y is absent and X is not complex, it is as if Y were present with the value zero. If KIND is3
absent, it is as if KIND were present with the value KIND (0.0). If X is complex, the result is the same as that4
of CMPLX (REAL (X), AIMAG (X), KIND). The result of CMPLX (X, Y, KIND) has the complex value whose5
real part is REAL (X, KIND) and whose imaginary part is REAL (Y, KIND).6

7 Example. CMPLX (−3) has the value (−3.0, 0.0).7

16.9.54 CO_BROADCAST (A, SOURCE_IMAGE [, STAT, ERRMSG])8

1 Description. Broadcast value to images.9

2 Class. Collective subroutine.10

3 Arguments.11

A shall have the same shape, type, and type parameter values, in corresponding references. It shall not12
be polymorphic or a coindexed object. It is an INTENT (INOUT) argument. If no error condition13
occurs, A becomes defined, as if by intrinsic assignment, on all images in the current team with14
the value of A on image SOURCE_IMAGE, including (re)allocation of any allocatable ultimate15
component, and setting the dynamic type of any polymorphic allocatable ultimate component.16

SOURCE_IMAGE shall be an integer scalar. It is an INTENT (IN) argument. Its value shall be that of an17
image index of an image in the current team. The value shall be the same in all corresponding18
references.19

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an20
INTENT (OUT) argument.21

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.22

4 The semantics of STAT and ERRMSG are described in 16.6.23

5 Example. If A is the array [1, 5, 3] on image one, after execution of24

CALL CO_BROADCAST (A, 1)25

the value of A on all images of the current team is [1, 5, 3].26

16.9.55 CO_MAX (A [, RESULT_IMAGE, STAT, ERRMSG])27

1 Description. Compute maximum value across images.28

2 Class. Collective subroutine.29

3 Arguments.30

A shall be of type integer, real, or character. It shall have the same shape, type, and type parameter31
values, in corresponding references. It shall not be a coindexed object. It is an INTENT (INOUT)32
argument. If it is scalar, the computed value is equal to the maximum value of A in all corresponding33
references. If it is an array each element of the computed value is equal to the maximum value of34
all corresponding elements of A in all corresponding references.35

The computed value is assigned to A if no error condition occurs, and either RESULT_IMAGE is36
absent, or the executing image is the one identified by RESULT_IMAGE. Otherwise, A becomes37
undefined.38

RESULT_IMAGE (optional) shall be an integer scalar. It is an INTENT (IN) argument. Its presence, and value39
if present, shall be the same in all corresponding references. If it is present, its value shall be that40
of an image index in the current team.41

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an42
INTENT (OUT) argument.43

374 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.1

4 The semantics of STAT and ERRMSG are described in 16.6.2

5 Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and [4,3
1, 6] on the other image, the value of A after executing the statement CALL CO_MAX (A) is [4, 5, 6] on both4
images.5

16.9.56 CO_MIN (A [, RESULT_IMAGE, STAT, ERRMSG])6

1 Description. Compute minimum value across images.7

2 Class. Collective subroutine.8

3 Arguments.9

A shall be of type integer, real, or character. It shall have the same shape, type, and type parameter10
values, in corresponding references. It shall not be a coindexed object. It is an INTENT (INOUT)11
argument. If it is scalar, the computed value is equal to the minimum value of A in all corresponding12
references. If it is an array each element of the computed value is equal to the minimum value of13
all corresponding elements of A in all corresponding references.14

The computed value is assigned to A if no error condition occurs, and either RESULT_IMAGE is15
absent, or the executing image is the one identified by RESULT_IMAGE. Otherwise, A becomes16
undefined.17

RESULT_IMAGE (optional) shall be an integer scalar. It is an INTENT (IN) argument. Its presence, and value18
if present, shall be the same in all corresponding references. If it is present, its value shall be that19
of an image index in the current team.20

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an21
INTENT (OUT) argument.22

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.23

4 The semantics of STAT and ERRMSG are described in 16.6.24

5 Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and [4,25
1, 6] on the other image, the value of A after executing the statement CALL CO_MIN (A) is [1, 1, 3] on both26
images.27

16.9.57 CO_REDUCE (A, OPERATION [, RESULT_IMAGE, STAT, ERRMSG])28

1 Description. Generalized reduction across images.29

2 Class. Collective subroutine.30

3 Arguments.31

A shall not be polymorphic. It shall not be of a type with an ultimate component that is allocatable32
or a pointer. It shall have the same shape, type, and type parameter values, in corresponding33
references. It shall not be a coindexed object. It is an INTENT (INOUT) argument. If A is scalar,34
the computed value is the result of the reduction operation of applying OPERATION to the values35
of A in all corresponding references. If A is an array, each element of the computed value is equal36
to the result of the reduction operation of applying OPERATION to corresponding elements of A37
in all corresponding references.38

The computed value is assigned to A if no error condition occurs, and either RESULT_IMAGE is39
absent, or the executing image is the one identified by RESULT_IMAGE. Otherwise, A becomes40
undefined.41

OPERATION shall be a pure function with exactly two arguments; the result and each argument shall be a scalar,42
nonallocatable, noncoarray, nonpointer, nonpolymorphic data object with the same type and type43

J3/23-007 375

J3/23-007 WD 1539-1 2023-02-17

parameters as A. The arguments shall not be optional. If one argument has the ASYNCHRONOUS,1
TARGET, or VALUE attribute, the other shall have that attribute. OPERATION shall implement2
a mathematically associative operation. OPERATION shall be the same function on all images in3
corresponding references.4

The computed value of a reduction operation over a set of values is the result of an iterative process.5
Each iteration involves the evaluation of OPERATION (x, y) for x and y in the set, the removal of6
x and y from the set, and the addition of the value of OPERATION (x, y) to the set. The process7
terminates when the set has only one element; this is the computed value.8

RESULT_IMAGE (optional) shall be an integer scalar. It is an INTENT (IN) argument. Its presence, and value9
if present, shall be the same in all corresponding references. If it is present, its value shall be that10
of an image index in the current team.11

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an12
INTENT (OUT) argument.13

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.14

4 The semantics of STAT and ERRMSG are described in 16.6.15

5 Example. The subroutine below demonstrates how to use CO_REDUCE to create a collective counterpart to16
the intrinsic function ALL:17

SUBROUTINE co_all(boolean)18

LOGICAL, INTENT(INOUT) :: boolean19

CALL CO_REDUCE(boolean,both)20

CONTAINS21

PURE FUNCTION both(lhs,rhs) RESULT(lhs_and_rhs)22

LOGICAL, INTENT(IN) :: lhs,rhs23

LOGICAL :: lhs_and_rhs24

lhs_and_rhs = lhs .AND. rhs25

END FUNCTION both26

END SUBROUTINE co_all27

NOTE
If the OPERATION function is not mathematically commutative, the result of calling CO_REDUCE can
depend on the order of evaluations.

16.9.58 CO_SUM (A [, RESULT_IMAGE, STAT, ERRMSG])28

1 Description. Compute sum across images.29

2 Class. Collective subroutine.30

3 Arguments.31

A shall be of numeric type. It shall have the same shape, type, and type parameter values, in cor-32
responding references. It shall not be a coindexed object. It is an INTENT (INOUT) argument.33
If it is scalar, the computed value is equal to a processor-dependent approximation to the sum of34
the values of A in corresponding references. If it is an array, each element of the computed value35
is equal to a processor-dependent approximation to the sum of all corresponding elements of A in36
corresponding references.37

The computed value is assigned to A if no error condition occurs, and either RESULT_IMAGE is38
absent, or the executing image is the one identified by RESULT_IMAGE. Otherwise, A becomes39
undefined.40

376 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

RESULT_IMAGE (optional) shall be an integer scalar. It is an INTENT (IN) argument. Its presence, and value1
if present, shall be the same in all corresponding references. If it is present, its value shall be that2
of an image index in the current team.3

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an4
INTENT (OUT) argument.5

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.6

4 The semantics of STAT and ERRMSG are described in 16.6.7

5 Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and [4,8
1, 6] on the other image, the value of A after executing the statement CALL CO_SUM(A) is [5, 6, 9] on both9
images.10

16.9.59 COMMAND_ARGUMENT_COUNT ()11

1 Description. Number of command arguments.12

2 Class. Transformational function.13

3 Argument. None.14

4 Result Characteristics. Default integer scalar.15

5 Result Value. The result value is equal to the number of command arguments available. If there are no16
command arguments available or if the processor does not support command arguments, then the result has the17
value zero. If the processor has a concept of a command name, the command name does not count as one of the18
command arguments.19

6 Example. See 16.9.93.20

16.9.60 CONJG (Z)21

1 Description. Conjugate of a complex number.22

2 Class. Elemental function.23

3 Argument. Z shall be of type complex.24

4 Result Characteristics. Same as Z.25

5 Result Value. If Z has the value (x, y), the result has the value (x, −y).26

6 Example. CONJG ((2.0, 3.0)) has the value (2.0, −3.0).27

16.9.61 COS (X)28

1 Description. Cosine function.29

2 Class. Elemental function.30

3 Argument. X shall be of type real or complex.31

4 Result Characteristics. Same as X.32

5 Result Value. The result has a value equal to a processor-dependent approximation to cos(X). If X is of type33
real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in radians.34

6 Example. COS (1.0) has the value 0.54030231 (approximately).35

J3/23-007 377

J3/23-007 WD 1539-1 2023-02-17

16.9.62 COSD (X)1

1 Description. Degree cosine function.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor-dependent approximation to the cosine of X, which6
is regarded as a value in degrees.7

6 Example. COSD (180.0) has the value −1.0 (approximately).8

16.9.63 COSH (X)9

1 Description. Hyperbolic cosine function.10

2 Class. Elemental function.11

3 Argument. X shall be of type real or complex.12

4 Result Characteristics. Same as X.13

5 Result Value. The result has a value equal to a processor-dependent approximation to cosh(X). If X is of type14
complex its imaginary part is regarded as a value in radians.15

6 Example. COSH (1.0) has the value 1.5430806 (approximately).16

16.9.64 COSHAPE (COARRAY [, KIND])17

1 Description. Sizes of codimensions of a coarray.18

2 Class. Inquiry function.19

3 Arguments.20

COARRAY shall be a coarray of any type. It shall not be an unallocated allocatable coarray. If its designator21
has more than one part-ref , the rightmost part-ref shall have nonzero corank.22

KIND (optional) shall be a scalar integer constant expression.23

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value24
of KIND; otherwise the kind type parameter is that of default integer type. The result is an array of rank one25
whose size is equal to the corank of COARRAY.26

5 Result Value. The result has a value whose ith element is equal to the size of the ith codimension of COARRAY,27
as given by UCOBOUND (COARRAY, i) − LCOBOUND (COARRAY, i) +1.28

6 Example.29
The following code allocates the coarray D with the same size in each codimension as that of the coarray C, with30
the lower cobound 1.31

REAL, ALLOCATABLE :: C[:,:], D[:,:]32

INTEGER, ALLOCATABLE :: COSHAPE_C(:)33

...34

COSHAPE_C = COSHAPE(C)35

ALLOCATE (D[COSHAPE_C(1),*])36

378 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.65 COSPI (X)1

1 Description. Circular cosine function.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor-dependent approximation to the cosine of X, which6
is regarded as a value in half-revolutions; thus COSPI (X) is approximately equal to COS (X×π).7

6 Example. COSPI (1.0) has the value −1.0 (approximately).8

16.9.66 COUNT (MASK [, DIM, KIND])9

1 Description. Array reduced by counting true values.10

2 Class. Transformational function.11

3 Arguments.12

MASK shall be a logical array.13

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.14
The corresponding actual argument shall not be an optional dummy argument, a disassociated15
pointer, or an unallocated allocatable.16

KIND (optional) shall be a scalar integer constant expression.17

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of18
KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is absent or19
n = 1; otherwise, the result has rank n−1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn]20
is the shape of MASK.21

5 Result Value.22

Case (i): If DIM is absent or MASK has rank one, the result has a value equal to the number of true elements23
of MASK or has the value zero if MASK has size zero.24

Case (ii): If DIM is present and MASK has rank n > 1, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . ,25
sn) of the result is equal to the number of true elements of MASK (s1, s2, . . . , sDIM−1, :, sDIM+1,26
. . . , sn).27

6 Examples.28

Case (i): The value of COUNT ([.TRUE., .FALSE., .TRUE.]) is 2.29

Case (ii): If B is the array
[

1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
, COUNT (B /= C, DIM = 1) is30

[2, 0, 1] and COUNT (B /= C, DIM = 2) is [1, 2].31

16.9.67 CPU_TIME (TIME)32

1 Description. Processor time used.33

2 Class. Subroutine.34

3 Argument. TIME shall be a real scalar. It is an INTENT (OUT) argument. If the processor cannot provide35
a meaningful value for the time, it is assigned a processor-dependent negative value; otherwise, it is assigned a36
processor-dependent approximation to the processor time in seconds. Whether the value assigned is an approx-37
imation to the amount of time used by the invoking image, or the amount of time used by the whole program, is38
processor dependent.39

J3/23-007 379

J3/23-007 WD 1539-1 2023-02-17

4 Example.1

REAL T1, T22

. . .3

CALL CPU_TIME(T1)4

. . . Code to be timed.5

CALL CPU_TIME(T2)6

WRITE (*,*) ’Time taken by code was ’, T2-T1, ’ seconds’7

writes the processor time taken by a piece of code.8

NOTE
A processor for which a single result is inadequate (for example, a parallel processor) might choose to provide
an additional version for which time is an array.

The exact definition of time is left imprecise because of the variability in what different processors are able to
provide. The primary purpose is to compare different algorithms on the same processor or discover which parts
of a calculation are the most expensive.

The start time is left imprecise because the purpose is to time sections of code, as in the example.

Most computer systems have multiple concepts of time. One common concept is that of time expended by the
processor for a given program. This might or might not include system overhead, and has no obvious connection
to elapsed “wall clock” time.

16.9.68 CSHIFT (ARRAY, SHIFT [, DIM])9

1 Description. Circular shift of an array.10

2 Class. Transformational function.11

3 Arguments.12

ARRAY may be of any type. It shall be an array.13

SHIFT shall be of type integer and shall be scalar if ARRAY has rank one; otherwise, it shall be scalar or14
of rank n − 1 and of shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn] is the shape15
of ARRAY.16

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.17
If DIM is absent, it is as if it were present with the value 1.18

4 Result Characteristics. The result is of the type and type parameters of ARRAY, and has the shape of19
ARRAY.20

5 Result Value.21

Case (i): If ARRAY has rank one, element i of the result is ARRAY (LBOUND (ARRAY, 1) + MODULO (i+22
SHIFT − 1, SIZE (ARRAY))).23

Case (ii): If ARRAY has rank greater than one, section (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) of the result24
has a value equal to CSHIFT (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn), sh, 1), where sh is25
SHIFT or SHIFT (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn).26

6 Examples.27

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V circularly to the left by two positions is28
achieved by CSHIFT (V, SHIFT = 2) which has the value [3, 4, 5, 6, 1, 2]; CSHIFT (V, SHIFT =29
−2) achieves a circular shift to the right by two positions and has the value [5, 6, 1, 2, 3, 4].30

380 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Case (ii): The rows of an array of rank two may all be shifted by the same amount or by different amounts.1

If M is the array

 1 2 3
4 5 6
7 8 9

, the value of2

CSHIFT (M, SHIFT = −1, DIM = 2) is

 3 1 2
6 4 5
9 7 8

, and the value of3

CSHIFT (M, SHIFT = [−1, 1, 0], DIM = 2) is

 3 1 2
5 6 4
7 8 9

.4

16.9.69 DATE_AND_TIME ([DATE, TIME, ZONE, VALUES])5

1 Description. Date and time.6

2 Class. Subroutine.7

3 Arguments.8

DATE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value9
of the form YYYYMMDD, where YYYY is the year in the Gregorian calendar, MM is the month10
within the year, and DD is the day within the month. The characters of this value shall all be11
decimal digits. If there is no date available, DATE is assigned all blanks.12

TIME (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value13
of the form hhmmss.sss, where hh is the hour of the day, mm is the minutes of the hour, and ss.sss14
is the seconds and milliseconds of the minute. Except for the decimal point, the characters of this15
value shall all be decimal digits. If there is no clock available, TIME is assigned all blanks.16

ZONE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value of17
the form +hhmm or -hhmm, where hh and mm are the time difference with respect to Coordinated18
Universal Time (UTC) in hours and minutes, respectively. The characters of this value following19
the sign character shall all be decimal digits. If this information is not available, ZONE is assigned20
all blanks.21

VALUES (optional) shall be a rank-one array of type integer with a decimal exponent range of at least four. It22
is an INTENT (OUT) argument. Its size shall be at least 8. The values assigned to VALUES are23
as follows:24

VALUES (1) the year, including the century (for example, 2008), or −HUGE (VALUES) if there is no date25
available;26

VALUES (2) the month of the year, or −HUGE (VALUES) if there is no date available;27

VALUES (3) the day of the month, or −HUGE (VALUES) if there is no date available;28

VALUES (4) the time difference from Coordinated Universal Time (UTC) in minutes, or −HUGE (VALUES)29
if this information is not available;30

VALUES (5) the hour of the day, in the range of 0 to 23, or −HUGE (VALUES) if there is no clock;31

VALUES (6) the minutes of the hour, in the range 0 to 59, or −HUGE (VALUES) if there is no clock;32

VALUES (7) the seconds of the minute, in the range 0 to 60, or −HUGE (VALUES) if there is no clock;33

VALUES (8) the milliseconds of the second, in the range 0 to 999, or −HUGE (VALUES) if there is no clock.34

4 The date, clock, and time zone information might be available on some images and not others. If the date, clock,35
or time zone information is available on more than one image, it is processor dependent whether or not those36
images share the same information.37

5 Example. If run in Geneva, Switzerland on April 12, 2008 at 15:27:35.5 with a system configured for the38
local time zone, this example would have assigned the value 20080412 to BIG_BEN (1), the value 152735.500 to39
BIG_BEN (2), the value +0100 to BIG_BEN (3), and the value [2008, 4, 12, 60, 15, 27, 35, 500] to DATE_TIME.40

J3/23-007 381

J3/23-007 WD 1539-1 2023-02-17

INTEGER DATE_TIME (8)1

CHARACTER (LEN = 10) BIG_BEN (3)2

CALL DATE_AND_TIME (BIG_BEN (1), BIG_BEN (2), BIG_BEN (3), DATE_TIME)3

NOTE
These forms are compatible with the representations defined in ISO 8601:2004. UTC is established by the
International Bureau of Weights and Measures (BIPM, i.e. Bureau International des Poids et Mesures) and the
International Earth Rotation Service (IERS).

16.9.70 DBLE (A)4

1 Description. Conversion to double precision real.5

2 Class. Elemental function.6

3 Argument. A shall be of type integer, real, complex, or a boz-literal-constant.7

4 Result Characteristics. Double precision real.8

5 Result Value. The result has the value REAL (A, KIND (0.0D0)).9

6 Example. DBLE (−3) has the value −3.0D0.10

16.9.71 DIGITS (X)11

1 Description. Significant digits in numeric model.12

2 Class. Inquiry function.13

3 Argument. X shall be of type integer or real. It may be a scalar or an array.14

4 Result Characteristics. Default integer scalar.15

5 Result Value. The result has the value q if X is of type integer and p if X is of type real, where q and p are as16
defined in 16.4 for the model representing numbers of the same type and kind type parameter as X.17

6 Example. DIGITS (X) has the value 24 for real X whose model is as in 16.4, NOTE.18

16.9.72 DIM (X, Y)19

1 Description. Maximum of X − Y and zero.20

2 Class. Elemental function.21

3 Arguments.22

X shall be of type integer or real.23

Y shall be of the same type and kind type parameter as X.24

4 Result Characteristics. Same as X.25

5 Result Value. The value of the result is the maximum of X − Y and zero.26

6 Example. DIM (−3.0, 2.0) has the value 0.0.27

382 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.73 DOT_PRODUCT (VECTOR_A, VECTOR_B)1

1 Description. Dot product of two vectors.2

2 Class. Transformational function.3

3 Arguments.4

VECTOR_A shall be of numeric type (integer, real, or complex) or of logical type. It shall be a rank-one array.5

VECTOR_B shall be of numeric type if VECTOR_A is of numeric type or of type logical if VECTOR_A is of6
type logical. It shall be a rank-one array. It shall be of the same size as VECTOR_A.7

4 Result Characteristics. If the arguments are of numeric type, the type and kind type parameter of the result8
are those of the expression VECTOR_A * VECTOR_B determined by the types and kinds of the arguments9
according to 10.1.9.3. If the arguments are of type logical, the result is of type logical with the kind type parameter10
of the expression VECTOR_A .AND. VECTOR_B according to 10.1.9.3. The result is scalar.11

5 Result Value.12

Case (i): If VECTOR_A is of type integer or real, the result has the value SUM (VECTOR_A*VECTOR_-13
B). If the vectors have size zero, the result has the value zero.14

Case (ii): If VECTOR_A is of type complex, the result has the value SUM (CONJG (VECTOR_A)*VECT-15
OR_B). If the vectors have size zero, the result has the value zero.16

Case (iii): If VECTOR_A is of type logical, the result has the value ANY (VECTOR_A .AND. VECTOR_B).17
If the vectors have size zero, the result has the value false.18

6 Example. DOT_PRODUCT ([1, 2, 3], [2, 3, 4]) has the value 20.19

16.9.74 DPROD (X, Y)20

1 Description. Double precision real product.21

2 Class. Elemental function.22

3 Arguments.23

X shall be default real.24

Y shall be default real.25

4 Result Characteristics. Double precision real.26

5 Result Value. The result has a value equal to a processor-dependent approximation to the product of X and27
Y. DPROD (X, Y) should have the same value as DBLE (X) * DBLE (Y).28

6 Example. DPROD (−3.0, 2.0) has the value −6.0D0.29

16.9.75 DSHIFTL (I, J, SHIFT)30

1 Description. Combined left shift.31

2 Class. Elemental function.32

3 Arguments.33

I shall be of type integer or a boz-literal-constant.34

J shall be of type integer or a boz-literal-constant. If both I and J are of type integer, they shall have35
the same kind type parameter. I and J shall not both be boz-literal-constants.36

SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I) if I is of37
type integer; otherwise, it shall be less than or equal to BIT_SIZE (J).38

J3/23-007 383

J3/23-007 WD 1539-1 2023-02-17

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.1

5 Result Value. If either I or J is a boz-literal-constant, it is first converted as if by the intrinsic function INT to2
type integer with the kind type parameter of the other. The rightmost SHIFT bits of the result value are the same3
as the leftmost bits of J, and the remaining bits of the result value are the same as the rightmost bits of I. This4
is equal to IOR (SHIFTL (I, SHIFT), SHIFTR (J, BIT_SIZE (J)−SHIFT)). The model for the interpretation of5
an integer value as a sequence of bits is in 16.3.6

6 Examples. DSHIFTL (1, 2**30, 2) has the value 5 if default integer has 32 bits. DSHIFTL (I, I, SHIFT) has7
the same result value as ISHFTC (I, SHIFT).8

16.9.76 DSHIFTR (I, J, SHIFT)9

1 Description. Combined right shift.10

2 Class. Elemental function.11

3 Arguments.12

I shall be of type integer or a boz-literal-constant.13

J shall be of type integer or a boz-literal-constant. If both I and J are of type integer, they shall have14
the same kind type parameter. I and J shall not both be boz-literal-constants.15

SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I) if I is of16
type integer; otherwise, it shall be less than or equal to BIT_SIZE (J).17

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.18

5 Result Value. If either I or J is a boz-literal-constant, it is first converted as if by the intrinsic function INT to19
type integer with the kind type parameter of the other. The leftmost SHIFT bits of the result value are the same20
as the rightmost bits of I, and the remaining bits of the result value are the same as the leftmost bits of J. This21
is equal to IOR (SHIFTL (I, BIT_SIZE (I)−SHIFT), SHIFTR (J, SHIFT)). The model for the interpretation of22
an integer value as a sequence of bits is in 16.3.23

6 Examples. DSHIFTR (1, 16, 3) has the value 229 + 2 if default integer has 32 bits. DSHIFTR (I, I, SHIFT) has24
the same result value as ISHFTC (I,−SHIFT).25

16.9.77 EOSHIFT (ARRAY, SHIFT [, BOUNDARY, DIM])26

1 Description. End-off shift of the elements of an array.27

2 Class. Transformational function.28

3 Arguments.29

ARRAY shall be an array be of any type.30

SHIFT shall be of type integer and shall be scalar if ARRAY has rank one; otherwise, it shall be scalar or31
of rank n − 1 and of shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn] is the shape32
of ARRAY.33

BOUNDARY (optional) shall be of the same type and type parameters as ARRAY and shall be scalar if ARRAY34
has rank one; otherwise, it shall be either scalar or of rank n − 1 and of shape [d1, d2, . . . , dDIM−1,35
dDIM+1, . . . , dn]. BOUNDARY is permitted to be absent only for the types in Table 16.4, and in36
this case it is as if it were present with the scalar value shown, converted if necessary to the kind37
type parameter value of ARRAY.38

Table 16.4: Default BOUNDARY values for EOSHIFT
Type of ARRAY Value of BOUNDARY

Integer 0
Real 0.0

384 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Default BOUNDARY values for EOSHIFT(cont.)

Type of ARRAY Value of BOUNDARY
Complex (0.0, 0.0)
Logical .FALSE.

Character (len) len blanks

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.1
If DIM is absent, it is as if it were present with the value 1.2

4 Result Characteristics. The result has the type, type parameters, and shape of ARRAY.3

5 Result Value. Element (s1, s2, . . . , sn) of the result has the value ARRAY (s1, s2, . . . , sDIM−1, sDIM + sh,4
sDIM+1, . . . , sn) where sh is SHIFT or SHIFT (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) provided the inequality5
LBOUND (ARRAY, DIM) ≤ sDIM + sh ≤ UBOUND (ARRAY, DIM) holds and is otherwise BOUNDARY or6
BOUNDARY (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn).7

6 Examples.8

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V end-off to the left by 3 positions is achieved9
by EOSHIFT (V, SHIFT = 3), which has the value [4, 5, 6, 0, 0, 0]; EOSHIFT (V, SHIFT = −2,10
BOUNDARY = 99) achieves an end-off shift to the right by 2 positions with the boundary value of11
99 and has the value [99, 99, 1, 2, 3, 4].12

Case (ii): The rows of an array of rank two may all be shifted by the same amount or by different amounts13

and the boundary elements can be the same or different. If M is the array

 A B C
D E F
G H I

, then the14

value of EOSHIFT (M, SHIFT = −1, BOUNDARY = ’*’, DIM = 2) is

 * A B
* D E
∗ G H

, and the value15

of EOSHIFT (M, SHIFT = [−1, 1, 0], BOUNDARY = [’*’, ’/’, ’?’], DIM = 2) is

 * A B
E F /
G H I

.16

16.9.78 EPSILON (X)17

1 Description. Model number that is small compared to 1.18

2 Class. Inquiry function.19

3 Argument. X shall be of type real. It may be a scalar or an array.20

4 Result Characteristics. Scalar of the same type and kind type parameter as X.21

5 Result Value. The result has the value b1−p where b and p are as defined in 16.4 for the model representing22
numbers of the same type and kind type parameter as X.23

6 Example. EPSILON (X) has the value 2−23 for real X whose model is as in 16.4, NOTE.24

16.9.79 ERF (X)25

1 Description. Error function.26

2 Class. Elemental function.27

3 Argument. X shall be of type real.28

4 Result Characteristics. Same as X.29

J3/23-007 385

J3/23-007 WD 1539-1 2023-02-17

5 Result Value. The result has a value equal to a processor-dependent approximation to the error function of X,1
2√
π

∫X

0 exp(−t2) dt.2

6 Example. ERF (1.0) has the value 0.843 (approximately).3

16.9.80 ERFC (X)4

1 Description. Complementary error function.5

2 Class. Elemental function.6

3 Argument. X shall be of type real.7

4 Result Characteristics. Same as X.8

5 Result Value. The result has a value equal to a processor-dependent approximation to the complementary error9
function of X, 1 − ERF (X); this is equivalent to 2√

π

∫∞
X

exp(−t2)dt.10

6 Example. ERFC (1.0) has the value 0.157 (approximately).11

16.9.81 ERFC_SCALED (X)12

1 Description. Scaled complementary error function.13

2 Class. Elemental function.14

3 Argument. X shall be of type real.15

4 Result Characteristics. Same as X.16

5 Result Value. The result has a value equal to a processor-dependent approximation to the exponentially-scaled17
complementary error function of X, exp(X2) 2√

π

∫∞
X

exp(−t2) dt.18

6 Example. ERFC_SCALED (20.0) has the value 0.02817434874 (approximately).19

NOTE
The complementary error function is asymptotic to exp(−X2)/(X

√
π). As such it underflows for X >≈ 9 when

using ISO/IEC/IEEE 60559:2020 single precision arithmetic. The exponentially-scaled complementary error
function is asymptotic to 1/(X

√
π). As such it does not underflow until X > HUGE (X)/

√
π.

16.9.82 EVENT_QUERY (EVENT, COUNT [, STAT])20

1 Description. Query event count.21

2 Class. Subroutine.22

3 Arguments.23

EVENT shall be an event variable (16.10.2.10). It shall not be coindexed. It is an INTENT (IN) argument.24
The EVENT argument is accessed atomically with respect to the execution of EVENT POST25
statements in unordered segments, in exact analogy to atomic subroutines.26

COUNT shall be an integer scalar with a decimal exponent range no smaller than that of default integer. It27
is an INTENT (OUT) argument. If no error condition occurs, COUNT is assigned the value of the28
count of EVENT; otherwise, it is assigned the value −1.29

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an30
INTENT (OUT) argument. If the STAT argument is present, it is assigned a processor-dependent31
positive value if an error condition occurs; otherwise it is assigned the value zero. If the STAT32
argument is not present and an error condition occurs, error termination is initiated.33

386 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Example. If EVENT is an event variable for which there have been no successful posts or waits in preceding1
segments, and for which there are no posts or waits in an unordered segment, after execution of2

CALL EVENT_QUERY (EVENT, COUNT)3

the integer variable COUNT will have the value zero. If there have been ten successful posts to EVENT and two4
successful waits without an UNTIL_COUNT= specifier in preceding segments, and for which there are no posts5
or waits in an unordered segment, after execution of6

CALL EVENT_QUERY (EVENT, COUNT)7

the variable COUNT will have the value eight.8

NOTE
Execution of EVENT_QUERY does not imply any synchronization.

16.9.83 EXECUTE_COMMAND_LINE (COMMAND [, WAIT, EXITSTAT,
CMDSTAT, CMDMSG])

9

1 Description. Execute a command line.10

2 Class. Subroutine.11

3 Arguments.12

COMMAND shall be a default character scalar. It is an INTENT (IN) argument. Its value is the command line13
to be executed. The interpretation is processor dependent.14

WAIT (optional) shall be a logical scalar. It is an INTENT (IN) argument. If WAIT is present with the value15
false, and the processor supports asynchronous execution of the command, the command is executed16
asynchronously; otherwise it is executed synchronously.17

EXITSTAT (optional) shall be a scalar of type integer with a decimal exponent range of at least nine. It is an18
INTENT (INOUT) argument. If the command is executed synchronously, it is assigned the value19
of the processor-dependent exit status. Otherwise, the value of EXITSTAT is unchanged.20

CMDSTAT (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an21
INTENT (OUT) argument. It is assigned the value −1 if the processor does not support command22
line execution, a processor-dependent positive value if an error condition occurs, or the value −223
if no error condition occurs but WAIT is present with the value false and the processor does not24
support asynchronous execution. Otherwise it is assigned the value 0.25

CMDMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. If an error condi-26
tion occurs, it is assigned a processor-dependent explanatory message. Otherwise, it is unchanged.27

4 If the processor supports command line execution, it shall support synchronous and may support asynchronous28
execution of the command line.29

5 When the command is executed synchronously, EXECUTE_COMMAND_LINE returns after the command line30
has completed execution. Otherwise, EXECUTE_COMMAND_LINE returns without waiting.31

6 If a condition occurs that would assign a nonzero value to CMDSTAT but the CMDSTAT variable is not present,32
error termination is initiated.33

16.9.84 EXP (X)34

1 Description. Exponential function.35

2 Class. Elemental function.36

3 Argument. X shall be of type real or complex.37

J3/23-007 387

J3/23-007 WD 1539-1 2023-02-17

4 Result Characteristics. Same as X.1

5 Result Value. The result has a value equal to a processor-dependent approximation to eX. If X is of type2
complex, its imaginary part is regarded as a value in radians.3

6 Example. EXP (1.0) has the value 2.7182818 (approximately).4

16.9.85 EXPONENT (X)5

1 Description. Exponent of floating-point number.6

2 Class. Elemental function.7

3 Argument. X shall be of type real.8

4 Result Characteristics. Default integer.9

5 Result Value. The result has a value equal to the exponent e of the representation for the value of X in the10
extended real model for the kind of X (16.4), provided X is nonzero and e is within the range for default integers.11
If X has the value zero, the result has the value zero. If X is an IEEE infinity or NaN, the result has the value12
HUGE (0).13

6 Examples. EXPONENT (1.0) has the value 1 and EXPONENT (4.1) has the value 3 for reals whose model is14
as in 16.4, NOTE.15

16.9.86 EXTENDS_TYPE_OF (A, MOLD)16

1 Description. Dynamic type extension inquiry.17

2 Class. Inquiry function.18

3 Arguments.19

A shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic20
pointer, it shall not have an undefined association status.21

MOLD shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic22
pointer, it shall not have an undefined association status.23

4 Result Characteristics. Default logical scalar.24

5 Result Value. If MOLD is unlimited polymorphic and is either a disassociated pointer or unallocated allocatable25
variable, the result is true; otherwise if A is unlimited polymorphic and is either a disassociated pointer or26
unallocated allocatable variable, the result is false; otherwise if the dynamic type of A or MOLD is extensible, the27
result is true if and only if the dynamic type of A is an extension type of the dynamic type of MOLD; otherwise28
the result is processor dependent.29

NOTE 1
The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type.

NOTE 2
The test performed by EXTENDS_TYPE_OF is not the same as the test performed by the type guard CLASS
IS. The test performed by EXTENDS_TYPE_OF does not consider kind type parameters.

6 Example. Given the declarations and assignments30

TYPE T131

REAL C32

END TYPE33

388 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

TYPE, EXTENDS(T1) :: T21

END TYPE2

CLASS(T1), POINTER :: P, Q3

ALLOCATE (P)4

ALLOCATE (T2 :: Q)5

the result of EXTENDS_TYPE_OF (P, Q) will be false, and the result of EXTENDS_TYPE_OF (Q, P) will6
be true.7

16.9.87 FAILED_IMAGES ([TEAM, KIND])8

1 Description. Indices of failed images.9

2 Class. Transformational function.10

3 Arguments.11

TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV. Its12
value shall be that of the current or an ancestor team. If TEAM is absent, the team specified is the13
current team.14

KIND (optional) shall be a scalar integer constant expression.15

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value16
of KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank one17
whose size is equal to the number of images in the specified team that are known by the invoking image to have18
failed.19

5 Result Value. The elements of the result are the values of the image indices of the known failed images in the20
specified team, in numerically increasing order. If the executing image has previously executed an image control21
statement whose STAT= specifier assigned the value STAT_FAILED_IMAGE from the intrinsic module ISO_-22
FORTRAN_ENV, or referenced a collective subroutine whose STAT argument was set to STAT_FAILED_-23
IMAGE, at least one image in the set of images participating in that image control statement or collective24
subroutine reference shall be known to have failed.25

6 Examples. If image 3 is the only image in the current team that is known by the invoking image to have failed,26
FAILED_IMAGES() will have the value [3]. If there are no images in the current team that are known by the27
invoking image to have failed, the value of FAILED_IMAGES() will be a zero-sized array.28

16.9.88 FINDLOC (ARRAY, VALUE, DIM [, MASK, KIND, BACK]) or
FINDLOC (ARRAY, VALUE [, MASK, KIND, BACK])

29

1 Description. Location(s) of a specified value.30

2 Class. Transformational function.31

3 Arguments.32

ARRAY shall be an array of intrinsic type.33

VALUE shall be scalar and in type conformance with ARRAY, as specified in Table 10.2 for the operator34
== or the operator .EQV..35

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.36

MASK (optional) shall be of type logical and shall be conformable with ARRAY.37

KIND (optional) shall be a scalar integer constant expression.38

BACK (optional) shall be a logical scalar.39

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of40
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result is41

J3/23-007 389

J3/23-007 WD 1539-1 2023-02-17

an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and shape1
[d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn], where [d1, d2, . . . , dn] is the shape of ARRAY.2

5 Result Value.3

Case (i): The result of FINDLOC (ARRAY, VALUE) is a rank-one array whose element values are the values4
of the subscripts of an element of ARRAY whose value matches VALUE. If there is such a value,5
the ith element value is in the range 1 to ei, where ei is the extent of the ith dimension of ARRAY.6
If no elements match VALUE or ARRAY has size zero, all elements of the result are zero.7

Case (ii): The result of FINDLOC (ARRAY, VALUE, MASK = MASK) is a rank-one array whose element8
values are the values of the subscripts of an element of ARRAY, corresponding to a true element9
of MASK, whose value matches VALUE. If there is such a value, the ith element value is in the10
range 1 to ei, where ei is the extent of the ith dimension of ARRAY. If no elements match VALUE,11
ARRAY has size zero, or every element of MASK has the value false, all elements of the result are12
zero.13

Case (iii): If ARRAY has rank one, the result of14
FINDLOC (ARRAY, VALUE, DIM=DIM [, MASK = MASK]) is a scalar whose value is equal to15
that of the first element of FINDLOC (ARRAY, VALUE [, MASK = MASK]). Otherwise, the value16
of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to FINDLOC (ARRAY (s1,17
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn), VALUE, DIM=1 [, MASK = MASK (s1, s2, . . . , sDIM−1, :,18
sDIM+1, . . . , sn)]).19

6 If both ARRAY and VALUE are of type logical, the comparison is performed with the .EQV. operator; otherwise,20
the comparison is performed with the == operator. If the value of the comparison is true, that element of ARRAY21
matches VALUE.22

7 If DIM is not present, more than one element matches VALUE, and BACK is absent or present with the value23
false, the value returned indicates the first such element, taken in array element order. If DIM is not present and24
BACK is present with the value true, the value returned indicates the last such element, taken in array element25
order.26

8 Examples.27

Case (i): The value of FINDLOC ([2, 6, 4, 6], VALUE = 6) is [2], and the value of FINDLOC ([2, 6, 4, 6],28
VALUE = 6, BACK = .TRUE.) is [4].29

Case (ii): If A has the value

 0 −5 7 7
3 4 −1 2
1 5 6 7

, and M has the value

 T T F T
T T F T
T T F T

, FINDLOC (A, 7,30

MASK = M) has the value [1, 4] and FINDLOC (A, 7, MASK = M, BACK = .TRUE.) has the31
value [3, 4]. This is independent of the declared lower bounds for A.32

Case (iii): The value of FINDLOC ([2, 6, 4], VALUE = 6, DIM = 1) is 2. If B has the value33 [
1 2 −9
2 2 6

]
, FINDLOC (B, VALUE = 2, DIM = 1) has the value [2, 1, 0] and FINDLOC (B,34

VALUE = 2, DIM = 2) has the value [2, 1]. This is independent of the declared lower bounds for B.35

16.9.89 FLOOR (A [, KIND])36

1 Description. Greatest integer less than or equal to A.37

2 Class. Elemental function.38

3 Arguments.39

A shall be of type real.40

KIND (optional) shall be a scalar integer constant expression.41

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of42
KIND; otherwise, the kind type parameter is that of default integer type.43

390 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 Result Value. The result has a value equal to the greatest integer less than or equal to A.1

6 Examples. FLOOR (3.7) has the value 3. FLOOR (−3.7) has the value −4.2

16.9.90 FRACTION (X)3

1 Description. Fractional part of number.4

2 Class. Elemental function.5

3 Argument. X shall be of type real.6

4 Result Characteristics. Same as X.7

5 Result Value. The result has the value X × b−e, where b and e are as defined in 16.4 for the representation of8
X in the extended real model for the kind of X. If X has the value zero, the result is zero. If X is an IEEE NaN,9
the result is that NaN. If X is an IEEE infinity, the result is an IEEE NaN.10

6 Example. FRACTION (3.0) has the value 0.75 for reals whose model is as in 16.4, NOTE.11

16.9.91 GAMMA (X)12

1 Description. Gamma function.13

2 Class. Elemental function.14

3 Argument. X shall be of type real. Its value shall not be a negative integer or zero.15

4 Result Characteristics. Same as X.16

5 Result Value. The result has a value equal to a processor-dependent approximation to the gamma function of
X,

Γ(X) =


∫∞

0 tX−1 exp(−t) dt X > 0

∫∞
0 tX−1

(
exp(−t) −

∑n
k=0

(−t)k

k!

)
dt −n − 1 < X < −n, n an integer ≥ 0

6 Example. GAMMA (1.0) has the value 1.000 (approximately).17

16.9.92 GET_COMMAND ([COMMAND, LENGTH, STATUS, ERRMSG])18

1 Description. Get program invocation command.19

2 Class. Subroutine.20

3 Arguments.21

COMMAND (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned22
the entire command by which the program was invoked. If the command cannot be determined,23
COMMAND is assigned all blanks.24

LENGTH (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an25
INTENT (OUT) argument. It is assigned the significant length of the command by which the26
program was invoked. The significant length may include trailing blanks if the processor allows27
commands with significant trailing blanks. This length does not consider any possible truncation or28
padding in assigning the command to the COMMAND argument; in fact the COMMAND argument29
need not even be present. If the command length cannot be determined, a length of 0 is assigned.30

STATUS (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an31
INTENT (OUT) argument. It is assigned the value −1 if the COMMAND argument is present and32

J3/23-007 391

J3/23-007 WD 1539-1 2023-02-17

has a length less than the significant length of the command. It is assigned a processor-dependent1
positive value if the command retrieval fails. Otherwise it is assigned the value 0.2

ERRMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. It is assigned a3
processor-dependent explanatory message if the command retrieval fails. Otherwise, it is unchanged.4

4 Example. If the program below is invoked with the command “example” on a processor that supports command5
retrieval, it will display “Hello example”.6

PROGRAM hello7

CHARACTER(:), ALLOCATABLE :: cmd8

CALL GET_COMMAND(cmd)9

PRINT *, ’Hello ’, cmd10

END PROGRAM11

16.9.93 GET_COMMAND_ARGUMENT (NUMBER [, VALUE, LENGTH,
STATUS, ERRMSG])

12

1 Description. Get program invocation argument.13

2 Class. Subroutine.14

3 Arguments.15

NUMBER shall be an integer scalar. It is an INTENT (IN) argument that specifies the number of the command16
argument that the other arguments give information about.17

Command argument 0 always exists, and is the command name by which the program was invoked18
if the processor has such a concept; otherwise, the value of command argument 0 is processor19
dependent. The remaining command arguments are numbered consecutively from 1 to the argument20
count in an order determined by the processor.21

VALUE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. If the command22
argument specified by NUMBER exists, its value is assigned to VALUE; otherwise, VALUE is23
assigned all blanks.24

LENGTH (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an25
INTENT (OUT) argument. If the command argument specified by NUMBER exists, its significant26
length is assigned to LENGTH; otherwise, LENGTH is assigned the value zero. It is processor27
dependent whether the significant length includes trailing blanks. This length does not consider any28
possible truncation or padding in assigning the command argument value to the VALUE argument;29
in fact the VALUE argument need not even be present.30

STATUS (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an31
INTENT (OUT) argument. If NUMBER is less than zero or greater than the argument count that32
would be returned by the intrinsic function COMMAND_ARGUMENT_COUNT, or command33
retrieval fails, STATUS is assigned a processor-dependent positive value. Otherwise, if VALUE is34
present and has a length less than the significant length of the specified command argument, it is35
assigned the value −1. Otherwise it is assigned the value 0.36

ERRMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. It is assigned37
a processor-dependent explanatory message if the optional argument STATUS is, or would be if38
present, assigned a positive value. Otherwise, it is unchanged.39

4 Example. On a processor that supports command arguments, the following program displays the arguments of40
the command by which it was invoked.41

PROGRAM show_arguments42

INTEGER :: i43

CHARACTER :: command*32, arg*12844

392 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

CALL get_command_argument(0, command)1

WRITE (*,*) "Command name is: ", command2

DO i = 1, command_argument_count()3

CALL get_command_argument(i, arg)4

WRITE (*,*) "Argument ", i, " is ", arg5

END DO6

END PROGRAM show_arguments7

16.9.94 GET_ENVIRONMENT_VARIABLE (NAME [, VALUE, LENGTH,
STATUS, TRIM_NAME, ERRMSG])

8

1 Description. Get environment variable.9

2 Class. Subroutine.10

3 Arguments.11

NAME shall be a default character scalar. It is an INTENT (IN) argument. The interpretation of case is12
processor dependent.13

VALUE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned the value14
of the environment variable specified by NAME. VALUE is assigned all blanks if the environment15
variable does not exist or does not have a value, or if the processor does not support environment16
variables.17

LENGTH (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an18
INTENT (OUT) argument. If the specified environment variable exists and has a value, LENGTH19
is assigned the value of its length. Otherwise LENGTH is assigned the value zero.20

STATUS (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an21
INTENT (OUT) argument. If the environment variable exists and either has no value, its value is22
successfully assigned to VALUE, or the VALUE argument is not present, STATUS is assigned the23
value zero. STATUS is assigned the value −1 if the VALUE argument is present and has a length24
less than the significant length of the environment variable. It is assigned the value 1 if the specified25
environment variable does not exist, or 2 if the processor does not support environment variables.26
Processor-dependent values greater than 2 may be assigned for other error conditions.27

TRIM_NAME (optional) shall be a logical scalar. It is an INTENT (IN) argument. If TRIM_NAME is present28
with the value false then trailing blanks in NAME are considered significant if the processor sup-29
ports trailing blanks in environment variable names. Otherwise trailing blanks in NAME are not30
considered part of the environment variable’s name.31

ERRMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. It is assigned32
a processor-dependent explanatory message if the optional argument STATUS is, or would be if33
present, assigned a positive value. Otherwise, it is unchanged.34

4 It is processor dependent whether an environment variable that exists on an image also exists on another image,35
and if it does exist on both images, whether the values are the same or different.36

5 Example. If the value of the environment variable DATAFILE is datafile.dat, executing the statement sequence37
below will assign the value ’datafile.dat’ to FILENAME.38

CHARACTER(:),ALLOCATABLE :: FILENAME39

CALL GET_ENVIRONMENT_VARIABLE("DATAFILE", FILENAME)40

J3/23-007 393

J3/23-007 WD 1539-1 2023-02-17

16.9.95 GET_TEAM ([LEVEL])1

1 Description. Team.2

2 Class. Transformational function.3

3 Argument. LEVEL (optional) shall be a scalar integer whose value is equal to one of the named constants4
INITIAL_TEAM, PARENT_TEAM, or CURRENT_TEAM from the intrinsic module ISO_FORTRAN_ENV.5

4 Result Characteristics. Scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.6

5 Result Value. The result is a TEAM_TYPE value that identifies the current team if LEVEL is not present,7
present with the value CURRENT_TEAM, or if the current team is the initial team. Otherwise, the result8
identifies the parent team if LEVEL is present with the value PARENT_TEAM, and identifies the initial team9
if LEVEL is present with the value INITIAL_TEAM.10

6 Examples.11

PROGRAM EXAMPLE112

USE,INTRINSIC :: ISO_FORTRAN_ENV, ONLY: TEAM_TYPE13

TYPE(TEAM_TYPE) :: WORLD_TEAM, TEAM214

15

! Define a team variable representing the initial team16

WORLD_TEAM = GET_TEAM()17

END PROGRAM18

19

SUBROUTINE EXAMPLE2 (A)20

USE,INTRINSIC :: ISO_FORTRAN_ENV, ONLY: TEAM_TYPE21

REAL A[*]22

TYPE(TEAM_TYPE) :: NEW_TEAM, PARENT_TEAM23

24

... ! Form NEW_TEAM25

26

PARENT_TEAM = GET_TEAM ()27

28

CHANGE TEAM (NEW_TEAM)29

30

! Reference image 1 in parent’s team31

A [1,TEAM=PARENT_TEAM] = 4.232

33

! Reference image 1 in current team34

A [1] = 9.035

END TEAM36

END SUBROUTINE EXAMPLE237

NOTE
Because the result of GET_TEAM is of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV,
a program unit that assigns the result of a reference to GET_TEAM to a local variable will also need access
to the definition of TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.

394 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.96 HUGE (X)1

1 Description. Largest model value or last enumeration value.2

2 Class. Inquiry function.3

3 Argument. X shall be of type integer or real, or of enumeration type. It may be a scalar or an array.4

4 Result Characteristics. Scalar of the same type and kind type parameter as X.5

5 Result Value. The result has the value rq − 1 if X is of type integer and (1 − b−p)bemax if X is of type real,6
where r, q, b, p, and emax are as defined in 16.4 for the model representing numbers of the same type and kind7
type parameter as X. If X is of enumeration type, the result has the value of the last enumerator in the type8
definition.9

6 Example. HUGE (X) has the value (1 − 2−24) × 2127 for real X whose model is as in 16.4, NOTE.10

16.9.97 HYPOT (X, Y)11

1 Description. Euclidean distance function.12

2 Class. Elemental function.13

3 Arguments.14

X shall be of type real.15

Y shall be of type real with the same kind type parameter as X.16

4 Result Characteristics. Same as X.17

5 Result Value. The result has a value equal to a processor-dependent approximation to the Euclidean distance,18 √
X2 + Y2, without undue overflow or underflow.19

6 Example. HYPOT (3.0, 4.0) has the value 5.0 (approximately).20

16.9.98 IACHAR (C [, KIND])21

1 Description. ASCII code value for character.22

2 Class. Elemental function.23

3 Arguments.24

C shall be of type character and of length one.25

KIND (optional) shall be a scalar integer constant expression.26

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of27
KIND; otherwise, the kind type parameter is that of default integer type.28

5 Result Value. If C is in the collating sequence defined by the codes specified in ISO/IEC 646:1991 (International29
Reference Version), the result is the position of C in that sequence; it is nonnegative and less than or equal to30
127. The value of the result is processor dependent if C is not in the ASCII collating sequence. The results31
are consistent with the LGE, LGT, LLE, and LLT comparison functions. For example, if LLE (C, D) is true,32
IACHAR (C) <= IACHAR (D) is true where C and D are any two characters representable by the processor.33

6 Example. IACHAR (’X’) has the value 88.34

J3/23-007 395

J3/23-007 WD 1539-1 2023-02-17

16.9.99 IALL (ARRAY, DIM [, MASK]) or IALL (ARRAY [, MASK])1

1 Description. Array reduced by IAND function.2

2 Class. Transformational function.3

3 Arguments.4

ARRAY shall be an array of type integer.5

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.6

MASK (optional) shall be of type logical and shall be conformable with ARRAY.7

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if8
DIM does not appear or if ARRAY has rank one; otherwise, the result is an array of rank n − 1 and shape [d1,9
d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn] is the shape of ARRAY.10

5 Result Value.11

Case (i): If ARRAY has size zero the result value is equal to NOT (INT (0, KIND (ARRAY))). Otherwise,12
the result of IALL (ARRAY) has a value equal to the bitwise AND of all the elements of ARRAY.13

Case (ii): The result of IALL (ARRAY, MASK=MASK) has a value equal to14
IALL (PACK (ARRAY, MASK)).15

Case (iii): The result of IALL (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of IALL (AR-16
RAY [, MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element (s1, s2, . . . ,17
sDIM−1, sDIM+1, . . . , sn) of the result is equal to IALL (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1,18
. . . , sn) [, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)]).19

6 Examples. IALL ([14, 13, 11]) has the value 8. IALL ([14, 13, 11], MASK=[.true., .false., .true.]) has the value20
10.21

16.9.100 IAND (I, J)22

1 Description. Bitwise AND.23

2 Class. Elemental function.24

3 Arguments.25

I shall be of type integer or a boz-literal-constant.26

J shall be of type integer or a boz-literal-constant. If both I and J are of type integer, they shall have27
the same kind type parameter. I and J shall not both be boz-literal-constants.28

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.29

5 Result Value. If either I or J is a boz-literal-constant, it is first converted as if by the intrinsic function INT to30
type integer with the kind type parameter of the other. The result has the value obtained by combining I and J31
bit-by-bit according to the following table:32

I J IAND (I, J)
1 1 1
1 0 0
0 1 0
0 0 0

6 The model for the interpretation of an integer value as a sequence of bits is in 16.3.33

7 Example. IAND (1, 3) has the value 1.34

396 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.101 IANY (ARRAY, DIM [, MASK]) or IANY (ARRAY [, MASK])1

1 Description. Reduce array with bitwise OR operation.2

2 Class. Transformational function.3

3 Arguments.4

ARRAY shall be of type integer. It shall be an array.5

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.6

MASK (optional) shall be of type logical and shall be conformable with ARRAY.7

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if8
DIM does not appear or if ARRAY has rank one; otherwise, the result is an array of rank n − 1 and shape [d1,9
d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn] is the shape of ARRAY.10

5 Result Value.11

Case (i): The result of IANY (ARRAY) is the bitwise OR of all the elements of ARRAY. If ARRAY has size12
zero the result value is equal to zero.13

Case (ii): The result of IANY (ARRAY, MASK=MASK) has a value equal to14
IANY (PACK (ARRAY, MASK)).15

Case (iii): The result of IANY (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of IANY (AR-16
RAY [, MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element (s1, s2, . . . ,17
sDIM−1, sDIM+1, . . . , sn) of the result is equal to IANY (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1,18
. . . , sn) [, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)]).19

6 Examples. IANY ([14, 13, 8]) has the value 15. IANY ([14, 13, 8], MASK=[.true., .false., .true.]) has the value20
14.21

16.9.102 IBCLR (I, POS)22

1 Description. I with bit POS replaced by zero.23

2 Class. Elemental function.24

3 Arguments.25

I shall be of type integer.26

POS shall be of type integer. It shall be nonnegative and less than BIT_SIZE (I).27

4 Result Characteristics. Same as I.28

5 Result Value. The result has the value of the sequence of bits of I, except that bit POS is zero. The model for29
the interpretation of an integer value as a sequence of bits is in 16.3.30

6 Examples. IBCLR (14, 1) has the value 12. If V has the value [1, 2, 3, 4], the value of IBCLR (POS = V, I = 31)31
is [29, 27, 23, 15].32

16.9.103 IBITS (I, POS, LEN)33

1 Description. Specified sequence of bits.34

2 Class. Elemental function.35

3 Arguments.36

I shall be of type integer.37

POS shall be of type integer. It shall be nonnegative and POS + LEN shall be less than or equal to38
BIT_SIZE (I).39

J3/23-007 397

J3/23-007 WD 1539-1 2023-02-17

LEN shall be of type integer and nonnegative.1

4 Result Characteristics. Same as I.2

5 Result Value. The result has the value of the sequence of LEN bits in I beginning at bit POS, right-adjusted3
and with all other bits zero. The model for the interpretation of an integer value as a sequence of bits is in 16.3.4

6 Example. IBITS (14, 1, 3) has the value 7.5

16.9.104 IBSET (I, POS)6

1 Description. I with bit POS replaced by one.7

2 Class. Elemental function.8

3 Arguments.9

I shall be of type integer.10

POS shall be of type integer. It shall be nonnegative and less than BIT_SIZE (I).11

4 Result Characteristics. Same as I.12

5 Result Value. The result has the value of the sequence of bits of I, except that bit POS is one. The model for13
the interpretation of an integer value as a sequence of bits is in 16.3.14

6 Examples. IBSET (12, 1) has the value 14. If V has the value [1, 2, 3, 4], the value of IBSET (POS = V, I = 0)15
is [2, 4, 8, 16].16

16.9.105 ICHAR (C [, KIND])17

1 Description. Code value for character.18

2 Class. Elemental function.19

3 Arguments.20

C shall be of type character and of length one. Its value shall be that of a character capable of21
representation in the processor.22

KIND (optional) shall be a scalar integer constant expression.23

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of24
KIND; otherwise, the kind type parameter is that of default integer type.25

5 Result Value. The result is the position of C in the processor collating sequence associated with the kind type26
parameter of C; it is nonnegative and less than n, where n is the number of characters in the collating sequence.27
The kind type parameter of the result shall specify an integer kind that is capable of representing n. For any char-28
acters C and D capable of representation in the processor, C <= D is true if and only if ICHAR (C) <= ICHAR (D)29
is true and C == D is true if and only if ICHAR (C) == ICHAR (D) is true.30

6 Example. ICHAR (’X’) has the value 88 on a processor using the ASCII collating sequence for default characters.31

16.9.106 IEOR (I, J)32

1 Description. Bitwise exclusive OR.33

2 Class. Elemental function.34

3 Arguments.35

I shall be of type integer or a boz-literal-constant.36

398 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

J shall be of type integer or a boz-literal-constant. If both I and J are of type integer, they shall have1
the same kind type parameter. I and J shall not both be boz-literal-constants.2

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.3

5 Result Value. If either I or J is a boz-literal-constant, it is first converted as if by the intrinsic function INT to4
type integer with the kind type parameter of the other. The result has the value obtained by combining I and J5
bit-by-bit according to the following table:6

I J IEOR (I, J)
1 1 0
1 0 1
0 1 1
0 0 0

6 The model for the interpretation of an integer value as a sequence of bits is in 16.3.7

7 Example. IEOR (1, 3) has the value 2.8

16.9.107 IMAGE_INDEX (COARRAY, SUB) or (COARRAY, SUB, TEAM) or
(COARRAY, SUB, TEAM_NUMBER)

9

1 Description. Image index from cosubscripts.10

2 Class. Transformational function.11

3 Arguments.12

COARRAY shall be a coarray of any type. If its designator has more than one part-ref , the rightmost part-ref13
shall have nonzero corank. If TEAM_NUMBER appears and the current team is not the initial14
team, it shall be established in the parent of the current team. If TEAM appears, it shall be15
established in that team. If neither TEAM nor TEAM_NUMBER appears, it shall be established16
in the current team.17

SUB shall be a rank-one integer array of size equal to the corank of COARRAY.18

TEAM shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, with a19
value that identifies the current or an ancestor team.20

TEAM_NUMBER shall be an integer scalar. It shall identify the initial team or a sibling team of the current21
team.22

4 Result Characteristics. Default integer scalar.23

5 Result Value. If the value of SUB is a valid sequence of cosubscripts for COARRAY in the team specified by24
TEAM or TEAM_NUMBER, or the current team if neither TEAM nor TEAM_NUMBER appears, the result25
is the index of the corresponding image in that team. Otherwise, the result is zero.26

6 Examples. If A and B are declared as A [0:*] and B (10, 20) [10, 0:9, 0:*] respectively, IMAGE_INDEX (A, [0])27
has the value 1 and IMAGE_INDEX (B, [3, 1, 2]) has the value 213 (on any image, provided the number of28
images is at least 213).29

16.9.108 IMAGE_STATUS (IMAGE [, TEAM])30

1 Description. Image execution state.31

2 Class. Elemental function.32

J3/23-007 399

J3/23-007 WD 1539-1 2023-02-17

3 Arguments.1

IMAGE shall be of type integer. Its value shall be positive and less than or equal to the number of images2
in the specified team.3

TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV. Its4
value shall represent the current or an ancestor team. If TEAM is absent, the team specified is the5
current team.6

4 Result Characteristics. Default integer.7

5 Result Value. The result value is STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV8
if the specified image has failed, STAT_STOPPED_IMAGE from the intrinsic module ISO_FORTRAN_ENV9
if that image has initiated normal termination, and zero otherwise.10

6 Example. If image 3 of the current team has failed, IMAGE_STATUS (3) has the value STAT_FAILED_-11
IMAGE.12

16.9.109 INDEX (STRING, SUBSTRING [, BACK, KIND])13

1 Description. Character string search.14

2 Class. Elemental function.15

3 Arguments.16

STRING shall be of type character.17

SUBSTRING shall be of type character with the same kind type parameter as STRING.18

BACK (optional) shall be of type logical.19

KIND (optional) shall be a scalar integer constant expression.20

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of21
KIND; otherwise the kind type parameter is that of default integer type.22

5 Result Value.23

Case (i): If STRING % LEN < SUBSTRING % LEN, the result has the value zero.24

Case (ii): Otherwise, if there is an integer I in the range 1 ≤ I ≤ STRING % LEN − SUBSTRING % LEN25
+ 1, such that STRING(I : I + SUBSTRING % LEN − 1) is equal to SUBSTRING, the result has26
the value of the smallest such I if BACK is absent or present with the value false, and the greatest27
such I if BACK is present with the value true.28

Case (iii): Otherwise, the result has the value zero.29

6 Examples. INDEX (’FORTRAN’, ’R’) has the value 3.30
INDEX (’FORTRAN’, ’R’, BACK = .TRUE.) has the value 5.31

16.9.110 INT (A [, KIND])32

1 Description. Conversion to integer type.33

2 Class. Elemental function.34

3 Arguments.35

A shall be of type integer, real, or complex, or of enum or enumeration type, or a boz-literal-constant.36

KIND (optional) shall be a scalar integer constant expression.37

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of38
KIND; otherwise, the kind type parameter is that of default integer type.39

400 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 Result Value.1

Case (i): If A is of type integer, INT (A) = A.2

Case (ii): If A is of type real, there are two cases: if |A| < 1, INT (A) has the value 0; if |A| ≥ 1, INT (A)3
is the integer whose magnitude is the largest integer that does not exceed the magnitude of A and4
whose sign is the same as the sign of A.5

Case (iii): If A is of type complex, INT (A) = INT (REAL (A, KIND (A))).6

Case (iv): If A is of enum type, INT (A) has the value of the corresponding integer value.7

Case (v): If A is of enumeration type, INT (A) has the value of the ordinal position of A.8

Case (vi): If A is a boz-literal-constant, the value of the result is the value whose bit sequence according to the9
model in 16.3 is the same as that of A as modified by padding or truncation according to 16.3.3.10
The interpretation of a bit sequence whose most significant bit is 1 is processor dependent.11

6 Example. INT (−3.7) has the value −3.12

16.9.111 IOR (I, J)13

1 Description. Bitwise inclusive OR.14

2 Class. Elemental function.15

3 Arguments.16

I shall be of type integer or a boz-literal-constant.17

J shall be of type integer or a boz-literal-constant. If both I and J are of type integer, they shall have18
the same kind type parameter. I and J shall not both be boz-literal-constants.19

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.20

5 Result Value. If either I or J is a boz-literal-constant, it is first converted as if by the intrinsic function INT to21
type integer with the kind type parameter of the other. The result has the value obtained by combining I and J22
bit-by-bit according to the following table:23

I J IOR (I, J)
1 1 1
1 0 1
0 1 1
0 0 0

6 The model for the interpretation of an integer value as a sequence of bits is in 16.3.24

7 Example. IOR (5, 3) has the value 7.25

16.9.112 IPARITY (ARRAY, DIM [, MASK]) or IPARITY (ARRAY [, MASK])26

1 Description. Array reduced by IEOR function.27

2 Class. Transformational function.28

3 Arguments.29

ARRAY shall be of type integer. It shall be an array.30

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.31

MASK (optional) shall be of type logical and shall be conformable with ARRAY.32

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if33
DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where34
[d1, d2, . . . , dn] is the shape of ARRAY.35

J3/23-007 401

J3/23-007 WD 1539-1 2023-02-17

5 Result Value.1

Case (i): The result of IPARITY (ARRAY) has a value equal to the bitwise exclusive OR of all the elements2
of ARRAY. If ARRAY has size zero the result has the value zero.3

Case (ii): The result of IPARITY (ARRAY, MASK=MASK) has a value equal to that of IPARITY (PACK4
(ARRAY, MASK)).5

Case (iii): The result of IPARITY (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of6
IPARITY (ARRAY [, MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element7
(s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to IPARITY (ARRAY (s1, s2, . . . ,8
sDIM−1, :, sDIM+1, . . . , sn) [, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)]).9

6 Examples. IPARITY ([14, 13, 8]) has the value 11. IPARITY ([14, 13, 8], MASK=[.true., .false., .true.]) has10
the value 6.11

16.9.113 ISHFT (I, SHIFT)12

1 Description. Logical shift.13

2 Class. Elemental function.14

3 Arguments.15

I shall be of type integer.16

SHIFT shall be of type integer. The absolute value of SHIFT shall be less than or equal to BIT_SIZE (I).17

4 Result Characteristics. Same as I.18

5 Result Value. The result has the value obtained by shifting the bits of I by SHIFT positions. If SHIFT is19
positive, the shift is to the left; if SHIFT is negative, the shift is to the right; if SHIFT is zero, no shift is20
performed. Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in from the21
opposite end. The model for the interpretation of an integer value as a sequence of bits is in 16.3.22

6 Example. ISHFT (3, 1) has the value 6.23

16.9.114 ISHFTC (I, SHIFT [, SIZE])24

1 Description. Circular shift of the rightmost bits.25

2 Class. Elemental function.26

3 Arguments.27

I shall be of type integer.28

SHIFT shall be of type integer. The absolute value of SHIFT shall be less than or equal to SIZE.29

SIZE (optional) shall be of type integer. The value of SIZE shall be positive and shall not exceed BIT_SIZE (I).30
If SIZE is absent, it is as if it were present with the value of BIT_SIZE (I).31

4 Result Characteristics. Same as I.32

5 Result Value. The result has the value obtained by shifting the SIZE rightmost bits of I circularly by SHIFT33
positions. If SHIFT is positive, the shift is to the left; if SHIFT is negative, the shift is to the right; and if SHIFT34
is zero, no shift is performed. No bits are lost. The unshifted bits are unaltered. The model for the interpretation35
of an integer value as a sequence of bits is in 16.3.36

6 Example. ISHFTC (3, 2, 3) has the value 5.37

402 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.115 IS_CONTIGUOUS (ARRAY)1

1 Description. Array contiguity test (8.5.7).2

2 Class. Inquiry function.3

3 Argument. ARRAY may be of any type. It shall be assumed-rank or an array. If it is a pointer it shall be4
associated.5

4 Result Characteristics. Default logical scalar.6

5 Result Value. The result has the value true if ARRAY has rank zero or is contiguous, and false otherwise.7

6 Example. After the pointer assignment AP => TARGET (1:10:2), IS_CONTIGUOUS (AP) has the value8
false.9

16.9.116 IS_IOSTAT_END (I)10

1 Description. IOSTAT value test for end of file.11

2 Class. Elemental function.12

3 Argument. I shall be of type integer.13

4 Result Characteristics. Default logical.14

5 Result Value. The result has the value true if and only if I is a value for the stat-variable in an IOSTAT=15
specifier (12.11.5) that would indicate an end-of-file condition.16

16.9.117 IS_IOSTAT_EOR (I)17

1 Description. IOSTAT value test for end of record.18

2 Class. Elemental function.19

3 Argument. I shall be of type integer.20

4 Result Characteristics. Default logical.21

5 Result Value. The result has the value true if and only if I is a value for the stat-variable in an IOSTAT=22
specifier (12.11.5) that would indicate an end-of-record condition.23

16.9.118 KIND (X)24

1 Description. Value of the kind type parameter of X.25

2 Class. Inquiry function.26

3 Argument. X may be of any intrinsic type. It may be a scalar or an array.27

4 Result Characteristics. Default integer scalar.28

5 Result Value. The result has a value equal to the kind type parameter value of X.29

6 Example. KIND (0.0) has the kind type parameter value of default real.30

16.9.119 LBOUND (ARRAY [, DIM, KIND])31

1 Description. Lower bound(s).32

2 Class. Inquiry function.33

J3/23-007 403

J3/23-007 WD 1539-1 2023-02-17

3 Arguments.1

ARRAY shall be assumed-rank or an array. It shall not be an unallocated allocatable variable or a pointer2
that is not associated.3

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.4
The corresponding actual argument shall not be an optional dummy argument, a disassociated5
pointer, or an unallocated allocatable.6

KIND (optional) shall be a scalar integer constant expression.7

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of8
KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is present;9
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.10

5 Result Value.11

Case (i): If DIM is present, ARRAY is a whole array, and either ARRAY is an assumed-size array of rank12
DIM or dimension DIM of ARRAY has nonzero extent, the result has a value equal to the lower13
bound for subscript DIM of ARRAY. Otherwise, if DIM is present, the result value is 1.14

Case (ii): LBOUND (ARRAY) has a value whose ith element is equal to LBOUND (ARRAY, i), for i = 1, 2,15
. . . , n, where n is the rank of ARRAY. LBOUND (ARRAY, KIND=KIND) has a value whose ith16
element is equal to LBOUND (ARRAY, i, KIND), for i = 1, 2, . . . , n, where n is the rank of17
ARRAY.18

NOTE
If ARRAY is assumed-rank and has rank zero, DIM cannot be present since it cannot satisfy the requirement
1 ≤ DIM ≤ 0.

6 Examples. If A is declared by the statement19

REAL A (2:3, 7:10)20

then LBOUND (A) is [2, 7] and LBOUND (A, DIM=2) is 7.21

16.9.120 LCOBOUND (COARRAY [, DIM, KIND])22

1 Description. Lower cobound(s) of a coarray.23

2 Class. Inquiry function.24

3 Arguments.25

COARRAY shall be a coarray and may be of any type. It may be a scalar or an array. If it is allocatable it26
shall be allocated. If its designator has more than one part-ref , the rightmost part-ref shall have27
nonzero corank.28

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the corank29
of COARRAY. The corresponding actual argument shall not be an optional dummy argument, a30
disassociated pointer, or an unallocated allocatable.31

KIND (optional) shall be a scalar integer constant expression.32

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of33
KIND; otherwise, the kind type parameter is that of default integer type. The result is scalar if DIM is present;34
otherwise, the result is an array of rank one and size n, where n is the corank of COARRAY.35

5 Result Value.36

Case (i): If DIM is present, the result has a value equal to the lower cobound for codimension DIM of37
COARRAY.38

Case (ii): If DIM is absent, the result has a value whose ith element is equal to the lower cobound for codi-39
mension i of COARRAY, for i = 1, 2,. . . , n, where n is the corank of COARRAY.40

404 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

6 Examples. If A is allocated by the statement ALLOCATE (A [2:3, 7:*]) then LCOBOUND (A) is [2, 7] and1
LCOBOUND (A, DIM=2) is 7.2

16.9.121 LEADZ (I)3

1 Description. Number of leading zero bits.4

2 Class. Elemental function.5

3 Argument. I shall be of type integer.6

4 Result Characteristics. Default integer.7

5 Result Value. If all of the bits of I are zero, the result has the value BIT_SIZE (I). Otherwise, the result has8
the value BIT_SIZE (I)−1−k, where k is the position of the leftmost 1 bit in I. The model for the interpretation9
of an integer value as a sequence of bits is in 16.3.10

6 Examples. LEADZ (1) has the value 31 if BIT_SIZE (1) has the value 32.11

16.9.122 LEN (STRING [, KIND])12

1 Description. Length of a character entity.13

2 Class. Inquiry function.14

3 Arguments.15

STRING shall be of type character. If it is an unallocated allocatable variable or a pointer that is not16
associated, its length type parameter shall not be deferred.17

KIND (optional) shall be a scalar integer constant expression.18

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that specified by the19
value of KIND; otherwise the kind type parameter is that of default integer type.20

5 Result Value. The result has a value equal to the number of characters in STRING if it is scalar or in an21
element of STRING if it is an array.22

6 Example. If C is declared by the statement23

7 CHARACTER (11) C (100)24

8 LEN (C) has the value 11.25

16.9.123 LEN_TRIM (STRING [, KIND])26

1 Description. Length without trailing blanks.27

2 Class. Elemental function.28

3 Arguments.29

STRING shall be of type character.30

KIND (optional) shall be a scalar integer constant expression.31

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of32
KIND; otherwise the kind type parameter is that of default integer type.33

5 Result Value. The result has a value equal to the number of characters remaining after any trailing blanks in34
STRING are removed. If the argument contains no nonblank characters, the result is zero.35

J3/23-007 405

J3/23-007 WD 1539-1 2023-02-17

6 Examples. LEN_TRIM (’ A B ’) has the value 4 and LEN_TRIM (’ ’) has the value 0.1

16.9.124 LGE (STRING_A, STRING_B)2

1 Description. ASCII greater than or equal.3

2 Class. Elemental function.4

3 Arguments.5

STRING_A shall be default character or ASCII character.6

STRING_B shall be of type character with the same kind type parameter as STRING_A.7

4 Result Characteristics. Default logical.8

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were extended9
on the right with blanks to the length of the longer string. If either string contains a character not in the ASCII10
character set, the result is processor dependent. The result is true if the strings are equal or if STRING_A follows11
STRING_B in the ASCII collating sequence; otherwise, the result is false.12

NOTE
The result is true if both STRING_A and STRING_B are of zero length.

6 Example. LGE (’ONE’, ’TWO’) has the value false.13

16.9.125 LGT (STRING_A, STRING_B)14

1 Description. ASCII greater than.15

2 Class. Elemental function.16

3 Arguments.17

STRING_A shall be default character or ASCII character.18

STRING_B shall be of type character with the same kind type parameter as STRING_A.19

4 Result Characteristics. Default logical.20

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were extended21
on the right with blanks to the length of the longer string. If either string contains a character not in the ASCII22
character set, the result is processor dependent. The result is true if STRING_A follows STRING_B in the23
ASCII collating sequence; otherwise, the result is false.24

NOTE
The result is false if both STRING_A and STRING_B are of zero length.

6 Example. LGT (’ONE’, ’TWO’) has the value false.25

16.9.126 LLE (STRING_A, STRING_B)26

1 Description. ASCII less than or equal.27

2 Class. Elemental function.28

3 Arguments.29

STRING_A shall be default character or ASCII character.30

STRING_B shall be of type character with the same kind type parameter as STRING_A.31

406 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Result Characteristics. Default logical.1

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were extended2
on the right with blanks to the length of the longer string. If either string contains a character not in the ASCII3
character set, the result is processor dependent. The result is true if the strings are equal or if STRING_A4
precedes STRING_B in the ASCII collating sequence; otherwise, the result is false.5

NOTE
The result is true if both STRING_A and STRING_B are of zero length.

6 Example. LLE (’ONE’, ’TWO’) has the value true.6

16.9.127 LLT (STRING_A, STRING_B)7

1 Description. ASCII less than.8

2 Class. Elemental function.9

3 Arguments.10

STRING_A shall be default character or ASCII character.11

STRING_B shall be of type character with the same kind type parameter as STRING_A.12

4 Result Characteristics. Default logical.13

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were extended14
on the right with blanks to the length of the longer string. If either string contains a character not in the ASCII15
character set, the result is processor dependent. The result is true if STRING_A precedes STRING_B in the16
ASCII collating sequence; otherwise, the result is false.17

NOTE
The result is false if both STRING_A and STRING_B are of zero length.

6 Example. LLT (’ONE’, ’TWO’) has the value true.18

16.9.128 LOG (X)19

1 Description. Natural logarithm.20

2 Class. Elemental function.21

3 Argument. X shall be of type real or complex. If X is real, its value shall be greater than zero. If X is complex,22
its value shall not be zero.23

4 Result Characteristics. Same as X.24

5 Result Value. The result has a value equal to a processor-dependent approximation to logeX. A result of type25
complex is the principal value with imaginary part ω in the range −π ≤ ω ≤ π. If the real part of X is less26
than zero and the imaginary part of X is zero, then the imaginary part of the result is approximately π if the27
imaginary part of X is positive real zero or the processor does not distinguish between positive and negative real28
zero, and approximately −π if the imaginary part of X is negative real zero.29

6 Example. LOG (10.0) has the value 2.3025851 (approximately).30

J3/23-007 407

J3/23-007 WD 1539-1 2023-02-17

16.9.129 LOG_GAMMA (X)1

1 Description. Logarithm of the absolute value of the gamma function.2

2 Class. Elemental function.3

3 Argument. X shall be of type real. Its value shall not be a negative integer or zero.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor-dependent approximation to the natural logarithm6
of the absolute value of the gamma function of X.7

6 Example. LOG_GAMMA (3.0) has the value 0.693 (approximately).8

16.9.130 LOG10 (X)9

1 Description. Common logarithm.10

2 Class. Elemental function.11

3 Argument. X shall be of type real. The value of X shall be greater than zero.12

4 Result Characteristics. Same as X.13

5 Result Value. The result has a value equal to a processor-dependent approximation to log10X.14

6 Example. LOG10 (10.0) has the value 1.0 (approximately).15

16.9.131 LOGICAL (L [, KIND])16

1 Description. Conversion between kinds of logical.17

2 Class. Elemental function.18

3 Arguments.19

L shall be of type logical.20

KIND (optional) shall be a scalar integer constant expression.21

4 Result Characteristics. Logical. If KIND is present, the kind type parameter is that specified by the value of22
KIND; otherwise, the kind type parameter is that of default logical.23

5 Result Value. The value is that of L.24

6 Example. LOGICAL (L .OR. .NOT. L) has the value true and is default logical, regardless of the kind type25
parameter of the logical variable L.26

16.9.132 MASKL (I [, KIND])27

1 Description. Left justified mask.28

2 Class. Elemental function.29

3 Arguments.30

I shall be of type integer. It shall be nonnegative and less than or equal to the number of bits z of31
the model integer defined for bit manipulation contexts in 16.3 for the kind of the result.32

KIND (optional) shall be a scalar integer constant expression.33

408 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of1
KIND; otherwise, the kind type parameter is that of default integer type.2

5 Result Value. The result value has its leftmost I bits set to 1 and the remaining bits set to 0. The model for3
the interpretation of an integer value as a sequence of bits is in 16.3.4

6 Example. MASKL (3) has the value SHIFTL (7, BIT_SIZE (0) − 3).5

16.9.133 MASKR (I [, KIND])6

1 Description. Right justified mask.7

2 Class. Elemental function.8

3 Arguments.9

I shall be of type integer. It shall be nonnegative and less than or equal to the number of bits z of10
the model integer defined for bit manipulation contexts in 16.3 for the kind of the result.11

KIND (optional) shall be a scalar integer constant expression.12

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of13
KIND; otherwise, the kind type parameter is that of default integer type.14

5 Result Value. The result value has its rightmost I bits set to 1 and the remaining bits set to 0. The model for15
the interpretation of an integer value as a sequence of bits is in 16.3.16

6 Example. MASKR (3) has the value 7.17

16.9.134 MATMUL (MATRIX_A, MATRIX_B)18

1 Description. Matrix multiplication.19

2 Class. Transformational function.20

3 Arguments.21

MATRIX_A shall be a rank-one or rank-two array of numeric type or logical type.22

MATRIX_B shall be of numeric type if MATRIX_A is of numeric type and of logical type if MATRIX_A is of23
logical type. It shall be an array of rank one or two. MATRIX_A and MATRIX_B shall not both24
have rank one. The size of the first (or only) dimension of MATRIX_B shall equal the size of the25
last (or only) dimension of MATRIX_A.26

4 Result Characteristics. If the arguments are of numeric type, the type and kind type parameter of the result27
are determined by the types of the arguments as specified in 10.1.9.3 for the * operator. If the arguments are of28
type logical, the result is of type logical with the kind type parameter of the arguments as specified in 10.1.9.329
for the .AND. operator. The shape of the result depends on the shapes of the arguments as follows:30

Case (i): If MATRIX_A has shape [n, m] and MATRIX_B has shape [m, k], the result has shape [n, k].31

Case (ii): If MATRIX_A has shape [m] and MATRIX_B has shape [m, k], the result has shape [k].32

Case (iii): If MATRIX_A has shape [n, m] and MATRIX_B has shape [m], the result has shape [n].33

5 Result Value.34

Case (i): Element (i, j) of the result has the value SUM (MATRIX_A (i, :) * MATRIX_B (:, j)) if the35
arguments are of numeric type and has the value ANY (MATRIX_A (i, :) .AND. MATRIX_B (:,36
j)) if the arguments are of logical type.37

Case (ii): Element (j) of the result has the value SUM (MATRIX_A (:) * MATRIX_B (:, j)) if the arguments38
are of numeric type and has the value ANY (MATRIX_A (:) .AND. MATRIX_B (:, j)) if the39
arguments are of logical type.40

J3/23-007 409

J3/23-007 WD 1539-1 2023-02-17

Case (iii): Element (i) of the result has the value SUM (MATRIX_A (i, :) * MATRIX_B (:)) if the arguments1
are of numeric type and has the value ANY (MATRIX_A (i, :) .AND. MATRIX_B (:)) if the2
arguments are of logical type.3

6 Examples. Let A and B be the matrices
[

1 2 3
2 3 4

]
and

 1 2
2 3
3 4

; let X and Y be the vectors [1, 2] and4

[1, 2, 3].5

Case (i): The result of MATMUL (A, B) is the matrix-matrix product AB with the value
[

14 20
20 29

]
.6

Case (ii): The result of MATMUL (X, A) is the vector-matrix product XA with the value [5, 8, 11].7

Case (iii): The result of MATMUL (A, Y) is the matrix-vector product AY with the value [14, 20].8

16.9.135 MAX (A1, A2 [, A3, ...])9

1 Description. Maximum value.10

2 Class. Elemental function.11

3 Arguments. The arguments shall all have the same type which shall be integer, real, or character and they shall12
all have the same kind type parameter.13

4 Result Characteristics. The type and kind type parameter of the result are the same as those of the arguments.14
For arguments of character type, the length of the result is the length of the longest argument.15

5 Result Value. The value of the result is that of the largest argument. For arguments of character type, the16
result is the value that would be selected by application of intrinsic relational operators; that is, the collating17
sequence for characters with the kind type parameter of the arguments is applied. If the selected argument is18
shorter than the longest argument, the result is extended with blanks on the right to the length of the longest19
argument.20

6 Examples. MAX (−9.0, 7.0, 2.0) has the value 7.0, MAX (’Z’, ’BB’) has the value ’Z ’, and MAX ([’A’, ’Z’],21
[’BB’, ’Y ’]) has the value [’BB’, ’Z ’].22

16.9.136 MAXEXPONENT (X)23

1 Description. Maximum exponent of a real model.24

2 Class. Inquiry function.25

3 Argument. X shall be of type real. It may be a scalar or an array.26

4 Result Characteristics. Default integer scalar.27

5 Result Value. The result has the value emax, as defined in 16.4 for the model representing numbers of the same28
type and kind type parameter as X.29

6 Example. MAXEXPONENT (X) has the value 127 for real X whose model is as in 16.4, NOTE.30

16.9.137 MAXLOC (ARRAY, DIM [, MASK, KIND, BACK]) or
MAXLOC (ARRAY [, MASK, KIND, BACK])

31

1 Description. Location(s) of maximum value.32

2 Class. Transformational function.33

3 Arguments.34

ARRAY shall be an array of type integer, real, or character.35

410 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.1

MASK (optional) shall be of type logical and shall be conformable with ARRAY.2

KIND (optional) shall be a scalar integer constant expression.3

BACK (optional) shall be a logical scalar.4

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of5
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result is6
an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and shape7
[d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn], where [d1, d2, . . . , dn] is the shape of ARRAY.8

5 Result Value.9

Case (i): If DIM does not appear and MASK is absent, the result is a rank-one array whose element values10
are the values of the subscripts of an element of ARRAY whose value equals the maximum value of11
all of the elements of ARRAY. The ith subscript returned lies in the range 1 to ei, where ei is the12
extent of the ith dimension of ARRAY. If ARRAY has size zero, all elements of the result are zero.13

Case (ii): If DIM does not appear and MASK is present, the result is a rank-one array whose element values14
are the values of the subscripts of an element of ARRAY, corresponding to a true element of MASK,15
whose value equals the maximum value of all such elements of ARRAY. The ith subscript returned16
lies in the range 1 to ei, where ei is the extent of the ith dimension of ARRAY. If ARRAY has size17
zero or every element of MASK has the value false, all elements of the result are zero.18

Case (iii): If ARRAY has rank one and DIM is specified, the result has a value equal to that of the first element19
of MAXLOC (ARRAY [, MASK = MASK, KIND = KIND, BACK = BACK]). Otherwise, if DIM20
is specified, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to21

MAXLOC (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn),
DIM = 1
[, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn),
KIND = KIND,
BACK = BACK]).

22

6 If only one element has the maximum value, that element’s subscripts are returned. Otherwise, if more than23
one element has the maximum value and BACK is absent or present with the value false, the element whose24
subscripts are returned is the first such element, taken in array element order. If BACK is present with the value25
true, the element whose subscripts are returned is the last such element, taken in array element order.26

7 If ARRAY has type character, the result is the value that would be selected by application of intrinsic relational27
operators; that is, the collating sequence for characters with the kind type parameter of the arguments is applied.28

8 Examples.29

Case (i): The value of MAXLOC ([2, 6, 4, 6]) is [2] and the value of MAXLOC ([2, 6, 4, 6], BACK=.TRUE.)30
is [4].31

Case (ii): If A has the value

 0 −5 8 −3
3 4 −1 2
1 5 6 −4

, MAXLOC (A, MASK = A < 6) has the value [3, 2]. This32

is independent of the declared lower bounds for A.33

Case (iii): The value of MAXLOC ([5, −9, 3], DIM = 1) is 1. If B has the value
[

1 3 −9
2 2 6

]
, MAXLOC34

(B, DIM = 1) is [2, 1, 2] and MAXLOC (B, DIM = 2) is [2, 3]. This is independent of the declared35
lower bounds for B.36

16.9.138 MAXVAL (ARRAY, DIM [, MASK]) or MAXVAL (ARRAY [, MASK])37

1 Description. Maximum value(s) of array.38

2 Class. Transformational function.39

J3/23-007 411

J3/23-007 WD 1539-1 2023-02-17

3 Arguments.1

ARRAY shall be an array of type integer, real, or character.2

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.3

MASK (optional) shall be of type logical and shall be conformable with ARRAY.4

4 Result Characteristics. The result is of the same type and type parameters as ARRAY. It is scalar if DIM5
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where6
[d1, d2, . . . , dn] is the shape of ARRAY.7

5 Result Value.8

Case (i): The result of MAXVAL (ARRAY) has a value equal to the maximum value of all the elements of9
ARRAY if the size of ARRAY is not zero. If ARRAY has size zero and type integer or real, the10
result has the value of the negative number of the largest magnitude supported by the processor11
for numbers of the type and kind type parameter of ARRAY. If ARRAY has size zero and type12
character, the result has the value of a string of characters of length LEN (ARRAY), with each13
character equal to CHAR (0, KIND (ARRAY)).14

Case (ii): The result of MAXVAL (ARRAY, MASK = MASK) has a value equal to that of MAXVAL (PACK15
(ARRAY, MASK)).16

Case (iii): The result of MAXVAL (ARRAY, DIM = DIM [,MASK = MASK]) has a value equal to that of17
MAXVAL (ARRAY [,MASK = MASK]) if ARRAY has rank one. Otherwise, the value of element18
(s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to19

MAXVAL (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)20
[, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)]).21

6 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic relational22
operators; that is, the collating sequence for characters with the kind type parameter of the arguments is applied.23

7 Examples.24

Case (i): The value of MAXVAL ([1, 2, 3]) is 3.25

Case (ii): MAXVAL (C, MASK = C < 0.0) is the maximum of the negative elements of C.26

Case (iii): If B is the array
[

1 3 5
2 7 6

]
, MAXVAL (B, DIM = 1) is [2, 7, 6] and MAXVAL (B, DIM = 2) is27

[5, 7].28

16.9.139 MERGE (TSOURCE, FSOURCE, MASK)29

1 Description. Expression value selection.30

2 Class. Elemental function.31

3 Arguments.32

TSOURCE may be of any type.33

FSOURCE shall be of the same type and type parameters as TSOURCE.34

MASK shall be of type logical.35

4 Result Characteristics. Same type and type parameters as TSOURCE. Because TSOURCE and FSOURCE36
are required to have the same type and type parameters (for both the declared and dynamic types), the result is37
polymorphic if and only if both TSOURCE and FSOURCE are polymorphic.38

5 Result Value. The result is TSOURCE if MASK is true and FSOURCE otherwise.39

6 Examples. If TSOURCE is the array
[

1 6 5
2 4 6

]
, FSOURCE is the array

[
0 3 2
7 4 8

]
and MASK is the40

412 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

array
[

T . T
. . T

]
, where “T” represents true and “.” represents false, then MERGE (TSOURCE, FSOURCE,1

MASK) is
[

1 3 5
7 4 6

]
. The value of MERGE (1.0, 0.0, K > 0) is 1.0 for K = 5 and 0.0 for K = −2.2

16.9.140 MERGE_BITS (I, J, MASK)3

1 Description. Merge of bits under mask.4

2 Class. Elemental function.5

3 Arguments.6

I shall be of type integer or a boz-literal-constant.7

J shall be of type integer or a boz-literal-constant. If both I and J are of type integer they shall have8
the same kind type parameter. I and J shall not both be boz-literal-constants.9

MASK shall be of type integer or a boz-literal-constant. If MASK is of type integer, it shall have the same10
kind type parameter as each other argument of type integer.11

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.12

5 Result Value. If any argument is a boz-literal-constant, it is first converted as if by the intrinsic function13
INT to the type and kind type parameter of the result. The result has the value of IOR (IAND (I, MASK),14
IAND (J, NOT (MASK))).15

6 Example. MERGE_BITS (13, 18, 22) has the value 4.16

16.9.141 MIN (A1, A2 [, A3, ...])17

1 Description. Minimum value.18

2 Class. Elemental function.19

3 Arguments. The arguments shall all be of the same type which shall be integer, real, or character and they20
shall all have the same kind type parameter.21

4 Result Characteristics. The type and kind type parameter of the result are the same as those of the arguments.22
For arguments of character type, the length of the result is the length of the longest argument.23

5 Result Value. The value of the result is that of the smallest argument. For arguments of character type, the24
result is the value that would be selected by application of intrinsic relational operators; that is, the collating25
sequence for characters with the kind type parameter of the arguments is applied. If the selected argument is26
shorter than the longest argument, the result is extended with blanks on the right to the length of the longest27
argument.28

6 Examples. MIN (−9.0, 7.0, 2.0) has the value −9.0, MIN (’A’, ’YY’) has the value ’A ’, and29
MIN ([’Z’, ’A’], [’YY’, ’B ’]) has the value [’YY’, ’A ’].30

16.9.142 MINEXPONENT (X)31

1 Description. Minimum exponent of a real model.32

2 Class. Inquiry function.33

3 Argument. X shall be of type real. It may be a scalar or an array.34

4 Result Characteristics. Default integer scalar.35

5 Result Value. The result has the value emin, as defined in 16.4 for the model representing numbers of the same36
type and kind type parameter as X.37

J3/23-007 413

J3/23-007 WD 1539-1 2023-02-17

6 Example. MINEXPONENT (X) has the value −126 for real X whose model is as in 16.4, NOTE.1

16.9.143 MINLOC (ARRAY, DIM [, MASK, KIND, BACK]) or
MINLOC (ARRAY [, MASK, KIND, BACK])

2

1 Description. Location(s) of minimum value.3

2 Class. Transformational function.4

3 Arguments.5

ARRAY shall be an array of type integer, real, or character.6

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.7

MASK (optional) shall be of type logical and shall be conformable with ARRAY.8

KIND (optional) shall be a scalar integer constant expression.9

BACK (optional) shall be a logical scalar.10

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of11
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result is12
an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and shape13
[d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn], where [d1, d2, . . . , dn] is the shape of ARRAY.14

5 Result Value.15

Case (i): If DIM does not appear and MASK is absent the result is a rank-one array whose element values16
are the values of the subscripts of an element of ARRAY whose value equals the minimum value17
of all the elements of ARRAY. The ith subscript returned lies in the range 1 to ei, where ei is the18
extent of the ith dimension of ARRAY. If ARRAY has size zero, all elements of the result are zero.19

Case (ii): If DIM does not appear and MASK is present, the result is a rank-one array whose element values20
are the values of the subscripts of an element of ARRAY, corresponding to a true element of MASK,21
whose value equals the minimum value of all such elements of ARRAY. The ith subscript returned22
lies in the range 1 to ei, where ei is the extent of the ith dimension of ARRAY. If ARRAY has size23
zero or every element of MASK has the value false, all elements of the result are zero.24

Case (iii): If ARRAY has rank one and DIM is specified, the result has a value equal to that of the first element25
of MINLOC (ARRAY [, MASK = MASK, KIND = KIND, BACK = BACK]). Otherwise, if DIM26
is specified, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to27

MINLOC (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn),
DIM = 1
[, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn),
KIND = KIND,
BACK = BACK]).

28

6 If only one element has the minimum value, that element’s subscripts are returned. Otherwise, if more than one29
element has the minimum value and BACK is absent or present with the value false, the element whose subscripts30
are returned is the first such element, taken in array element order. If BACK is present with the value true, the31
element whose subscripts are returned is the last such element, taken in array element order.32

7 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic relational33
operators; that is, the collating sequence for characters with the kind type parameter of the arguments is applied.34

8 Examples.35

Case (i): The value of MINLOC ([4, 3, 6, 3]) is [2] and the value of MINLOC ([4, 3, 6, 3], BACK = .TRUE.)36
is [4].37

Case (ii): If A has the value

 0 −5 8 −3
3 4 −1 2
1 5 6 −4

, MINLOC (A, MASK = A > −4) has the value [1, 4].38

This is independent of the declared lower bounds for A.39

414 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Case (iii): The value of MINLOC ([5, −9, 3], DIM = 1) is 2. If B has the value
[

1 3 −9
2 2 6

]
, MIN-1

LOC (B, DIM = 1) is [1, 2, 1] and MINLOC (B, DIM = 2) is [3, 1]. This is independent of2
the declared lower bounds for B.3

16.9.144 MINVAL (ARRAY, DIM [, MASK]) or MINVAL (ARRAY [, MASK])4

1 Description. Minimum value(s) of array.5

2 Class. Transformational function.6

3 Arguments.7

ARRAY shall be an array of type integer, real, or character.8

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.9

MASK (optional) shall be of type logical and shall be conformable with ARRAY.10

4 Result Characteristics. The result is of the same type and type parameters as ARRAY. It is scalar if DIM11
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where12
[d1, d2, . . . , dn] is the shape of ARRAY.13

5 Result Value.14

Case (i): The result of MINVAL (ARRAY) has a value equal to the minimum value of all the elements of15
ARRAY if the size of ARRAY is not zero. If ARRAY has size zero and type integer or real, the16
result has the value of the positive number of the largest magnitude supported by the processor17
for numbers of the type and kind type parameter of ARRAY. If ARRAY has size zero and type18
character, the result has the value of a string of characters of length LEN (ARRAY), with each19
character equal to CHAR (n − 1, KIND (ARRAY)), where n is the number of characters in the20
collating sequence for characters with the kind type parameter of ARRAY.21

Case (ii): The result of MINVAL (ARRAY, MASK = MASK) has a value equal to that of MINVAL (PACK22
(ARRAY, MASK)).23

Case (iii): The result of MINVAL (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal to that of24
MINVAL (ARRAY [, MASK = MASK]) if ARRAY has rank one. Otherwise, the value of element25
(s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to26

MINVAL (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)27
[, MASK= MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)]).28

6 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic relational29
operators; that is, the collating sequence for characters with the kind type parameter of the arguments is applied.30

7 Examples.31

Case (i): The value of MINVAL ([1, 2, 3]) is 1.32

Case (ii): MINVAL (C, MASK = C > 0.0) is the minimum of the positive elements of C.33

Case (iii): If B is the array
[

1 3 5
2 4 6

]
, MINVAL (B, DIM = 1) is [1, 3, 5] and MINVAL (B, DIM = 2) is34

[1, 2].35

16.9.145 MOD (A, P)36

1 Description. Remainder function.37

2 Class. Elemental function.38

3 Arguments.39

A shall be of type integer or real.40

P shall be of the same type and kind type parameter as A. P shall not be zero.41

J3/23-007 415

J3/23-007 WD 1539-1 2023-02-17

4 Result Characteristics. Same as A.1

5 Result Value. The value of the result is A − INT (A/P) * P.2

6 Examples. MOD (3.0, 2.0) has the value 1.0 (approximately). MOD (8, 5) has the value 3. MOD (−8, 5) has3
the value −3. MOD (8, −5) has the value 3. MOD (−8, −5) has the value −3.4

16.9.146 MODULO (A, P)5

1 Description. Modulo function.6

2 Class. Elemental function.7

3 Arguments.8

A shall be of type integer or real.9

P shall be of the same type and kind type parameter as A. P shall not be zero.10

4 Result Characteristics. Same as A.11

5 Result Value.12

Case (i): A is of type integer. MODULO (A, P) has the value R such that A = Q × P + R, where Q is an13
integer, the inequalities 0 ≤ R < P hold if P > 0, and P < R ≤ 0 hold if P < 0.14

Case (ii): A is of type real. The value of the result is A − FLOOR (A / P) * P.15

6 Examples. MODULO (8, 5) has the value 3. MODULO (−8, 5) has the value 2. MODULO (8, −5) has the16
value −2. MODULO (−8, −5) has the value −3.17

16.9.147 MOVE_ALLOC (FROM, TO [, STAT, ERRMSG])18

1 Description. Move an allocation.19

2 Class. Subroutine, simple if and only if FROM is not a coarray.20

3 Arguments.21

FROM may be of any type, rank, and corank. It shall be allocatable and shall not be a coindexed object.22
It is an INTENT (INOUT) argument.23

TO shall be type compatible (7.3.3) with FROM and have the same rank and corank. It shall be24
allocatable and shall not be a coindexed object. It shall be polymorphic if FROM is polymorphic.25
It is an INTENT (OUT) argument. Each nondeferred parameter of the declared type of TO shall26
have the same value as the corresponding parameter of the declared type of FROM.27

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is an28
INTENT (OUT) argument.29

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.30

4 If execution of MOVE_ALLOC is successful, or if STAT_FAILED_IMAGE is assigned to STAT,31

• On invocation of MOVE_ALLOC, if the allocation status of TO is allocated, it is deallocated. Then,32
if FROM has an allocation status of allocated on entry to MOVE_ALLOC, TO becomes allocated with33
dynamic type, type parameters, bounds, cobounds, and value identical to those that FROM had on entry34
to MOVE_ALLOC. Note that if FROM and TO are the same variable, it shall be unallocated when35
MOVE_ALLOC is invoked.36

• If TO has the TARGET attribute, any pointer associated with FROM on entry to MOVE_ALLOC becomes37
correspondingly associated with TO. If TO does not have the TARGET attribute, the pointer association38
status of any pointer associated with FROM on entry becomes undefined.39

• The allocation status of FROM becomes unallocated.40

416 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 When a reference to MOVE_ALLOC is executed for which the FROM argument is a coarray, there is an implicit1
synchronization of all active images of the current team. On those images, execution of the segment (11.7.2)2
following the CALL statement is delayed until all other active images of the current team have executed the same3
statement the same number of times. When such a reference is executed, if any image of the current team has4
stopped or failed, an error condition occurs.5

6 If STAT is present and execution is successful, it is assigned the value zero.6

7 If an error condition occurs,7

• if STAT is absent, error termination is initiated;8

• otherwise, if FROM is a coarray and the current team contains a stopped image, STAT is assigned the value9
STAT_STOPPED_IMAGE from the intrinsic module ISO_FORTRAN_ENV;10

• otherwise, if FROM is a coarray and the current team contains a failed image, and no other error condition11
occurs, STAT is assigned the value STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_-12
ENV;13

• otherwise, STAT is assigned a processor-dependent positive value that differs from that of STAT_STOP-14
PED_IMAGE or STAT_FAILED_IMAGE.15

8 If the ERRMSG argument is present and an error condition occurs, it is assigned an explanatory message. If no16
error condition occurs, the definition status and value of ERRMSG are unchanged.17

9 Example. The example below demonstrates reallocation of GRID to twice its previous size, with its previous18
contents evenly distributed over the new elements so that intermediate points can be inserted.19

REAL,ALLOCATABLE :: GRID(:),TEMPGRID(:)20

. . .21

ALLOCATE(GRID(-N:N)) ! initial allocation of GRID22

. . .23

ALLOCATE(TEMPGRID(-2*N:2*N)) ! allocate bigger grid24

TEMPGRID(::2)=GRID ! distribute values to new locations25

CALL MOVE_ALLOC(TO=GRID,FROM=TEMPGRID)26

The old grid is deallocated because TO is INTENT (OUT), and GRID then takes over the new grid allocation.27

NOTE
It is expected that the implementation of allocatable objects will typically involve descriptors to locate the
allocated storage; MOVE_ALLOC could then be implemented by transferring the contents of the descriptor
for FROM to the descriptor for TO and clearing the descriptor for FROM.

16.9.148 MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)28

1 Description. Copy a sequence of bits.29

2 Class. Simple elemental subroutine.30

3 Arguments.31

FROM shall be of type integer. It is an INTENT (IN) argument.32

FROMPOS shall be of type integer and nonnegative. It is an INTENT (IN) argument. FROMPOS + LEN33
shall be less than or equal to BIT_SIZE (FROM). The model for the interpretation of an integer34
value as a sequence of bits is in 16.3.35

LEN shall be of type integer and nonnegative. It is an INTENT (IN) argument.36

TO shall be a variable of the same type and kind type parameter value as FROM and may be associated37
with FROM (15.9.3). It is an INTENT (INOUT) argument. TO is defined by copying the sequence38

J3/23-007 417

J3/23-007 WD 1539-1 2023-02-17

of bits of length LEN, starting at position FROMPOS of FROM to position TOPOS of TO. No1
other bits of TO are altered. On return, the LEN bits of TO starting at TOPOS are equal to2
the value that the LEN bits of FROM starting at FROMPOS had on entry. The model for the3
interpretation of an integer value as a sequence of bits is in 16.3.4

TOPOS shall be of type integer and nonnegative. It is an INTENT (IN) argument. TOPOS + LEN shall5
be less than or equal to BIT_SIZE (TO).6

4 Example. If TO has the initial value 6, its value after the statement CALL MVBITS (7, 2, 2, TO, 0) is 5.7

16.9.149 NEAREST (X, S)8

1 Description. Adjacent machine number.9

2 Class. Elemental function.10

3 Arguments.11

X shall be of type real.12

S shall be of type real and not equal to zero.13

4 Result Characteristics. Same as X.14

5 Result Value. The result has a value equal to the machine-representable number distinct from X and nearest15
to it in the direction of the ∞ with the same sign as S.16

6 Example. NEAREST (3.0, 2.0) has the value 3 + 2−22 on a machine whose representation for default real is17
that of the model in 16.4, NOTE.18

NOTE
Unlike other floating-point manipulation functions, NEAREST operates on machine-representable numbers
rather than model numbers. On many systems there are machine-representable numbers that lie between
adjacent model numbers.

16.9.150 NEW_LINE (A)19

1 Description. Newline character.20

2 Class. Inquiry function.21

3 Argument. A shall be of type character. It may be a scalar or an array.22

4 Result Characteristics. Character scalar of length one with the same kind type parameter as A.23

5 Result Value.24

Case (i): If A is default character and the character in position 10 of the ASCII collating sequence is repres-25
entable in the default character set, then the result is ACHAR (10).26

Case (ii): If A is ASCII character or ISO 10646 character, then the result is CHAR (10, KIND (A)).27

Case (iii): Otherwise, the result is a processor-dependent character that represents a newline in output to files28
connected for formatted stream output if there is such a character.29

Case (iv): Otherwise, the result is the blank character.30

6 Example. If there is a suitable newline character, and unit 10 is connected for formatted stream output, the31
statement32

WRITE (10, ’(A)’) ’New’//NEW_LINE(’a’)//’Line’33

will write a record containing “New” and then a record containing “Line”.34

418 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.151 NEXT (A [, STAT])1

1 Description. Next enumeration value.2

2 Class. Elemental function.3

3 Arguments.4

A shall be of enumeration type.5

STAT (optional) shall be an integer scalar with a decimal exponent range of at least four. It is an INTENT (OUT)6
argument. If A is equal to the last enumerator of its type, it is assigned a processor-dependent7
positive value; otherwise, it is assigned the value zero. If STAT would have been assigned a nonzero8
value but is not present, error termination is initiated.9

4 Result Characteristics. Same as A.10

5 Result Value. If A is equal to the last enumerator of its type, the value of the result is that of A. Otherwise,11
the value of the result is the next enumerator following the value of A.12

6 Example. If the enumerators of an enumeration type are EN1, EN2, EN3, and EN4, NEXT (EN1) is equal to13
EN2, and NEXT (EN4, ISTAT) is equal to EN4 and a positive value is assigned to ISTAT.14

16.9.152 NINT (A [, KIND])15

1 Description. Nearest integer.16

2 Class. Elemental function.17

3 Arguments.18

A shall be of type real.19

KIND (optional) shall be a scalar integer constant expression.20

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of21
KIND; otherwise, the kind type parameter is that of default integer type.22

5 Result Value. The result is the integer nearest A, or if there are two integers equally near A, the result is23
whichever such integer has the greater magnitude.24

6 Example. NINT (2.783) has the value 3.25

16.9.153 NORM2 (X) or NORM2 (X, DIM)26

1 Description. L2 norm of an array.27

2 Class. Transformational function.28

3 Arguments.29

X shall be a real array.30

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of X.31

4 Result Characteristics. The result is of the same type and type parameters as X. It is scalar if DIM does not32
appear; otherwise the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn], where n is the rank33
of X and [d1, d2, . . . , dn] is the shape of X.34

5 Result Value.35

Case (i): The result of NORM2 (X) has a value equal to a processor-dependent approximation to the gener-36
alized L2 norm of X, which is the square root of the sum of the squares of the elements of X. If X37
has size zero, the result has the value zero.38

J3/23-007 419

J3/23-007 WD 1539-1 2023-02-17

Case (ii): The result of NORM2 (X, DIM=DIM) has a value equal to that of NORM2 (X) if X has rank1
one. Otherwise, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . sn) of the result is equal to2
NORM2 (X(s1, s2, . . . , sDIM−1, :, sDIM+1, . . . sn)).3

6 It is recommended that the processor compute the result without undue overflow or underflow.4

7 Example. The value of NORM2 ([3.0, 4.0]) is 5.0 (approximately). If X has the value
[

1.0 2.0
3.0 4.0

]
then the5

value of NORM2 (X, DIM=1) is [3.162, 4.472] (approximately) and the value of NORM2 (X, DIM=2) is [2.236,6
5.0] (approximately).7

16.9.154 NOT (I)8

1 Description. Bitwise complement.9

2 Class. Elemental function.10

3 Argument. I shall be of type integer.11

4 Result Characteristics. Same as I.12

5 Result Value. The result has the value obtained by complementing I bit-by-bit according to the following table:13

I NOT (I)
1 0
0 1

6 The model for the interpretation of an integer value as a sequence of bits is in 16.3.14

7 Example. If I is represented by the string of bits 01010101, NOT (I) has the binary value 10101010.15

16.9.155 NULL ([MOLD])16

1 Description. Disassociated pointer or unallocated allocatable entity.17

2 Class. Transformational function.18

3 Argument. MOLD shall be a pointer or allocatable. It may be of any type or may be a procedure pointer.19
If MOLD is a pointer its pointer association status may be undefined, disassociated, or associated. If MOLD is20
allocatable its allocation status may be allocated or unallocated. It need not be defined with a value.21

4 Result Characteristics. If MOLD is present, the characteristics are the same as MOLD. If MOLD has deferred22
type parameters, those type parameters of the result are deferred.23

5 If MOLD is absent, the characteristics of the result are determined by the entity with which the reference is24
associated. See Table 16.5. MOLD shall not be absent in any other context. If any type parameters of the25
contextual entity are deferred, those type parameters of the result are deferred. If any type parameters of the26
contextual entity are assumed, MOLD shall be present.27

6 If the context of the reference to NULL is an actual argument in a generic procedure reference, MOLD shall be28
present if the type, type parameters, or rank are required to resolve the generic reference. If the context of the29
reference to NULL is an actual argument corresponding to an assumed-rank dummy argument, MOLD shall be30
present.31

420 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Table 16.5: Characteristics of the result of NULL ()

Appearance of NULL () Type, type parameters, and rank of result:
right side of a pointer assignment pointer on the left side
initialization for an object in a declaration the object
default initialization for a component the component
in a structure constructor the corresponding component
as an actual argument the corresponding dummy argument
in a DATA statement the corresponding pointer object

7 Result. The result is a disassociated pointer or an unallocated allocatable entity.1

8 Examples.2

Case (i): REAL, POINTER, DIMENSION (:) :: VEC => NULL () defines the initial association status of3
VEC to be disassociated.4

Case (ii): The MOLD argument is required in the following:5

INTERFACE GEN6

SUBROUTINE S1 (J, PI)7

INTEGER J8

INTEGER, POINTER :: PI9

END SUBROUTINE S110

SUBROUTINE S2 (K, PR)11

INTEGER K12

REAL, POINTER :: PR13

END SUBROUTINE S214

END INTERFACE15

REAL, POINTER :: REAL_PTR16

CALL GEN (7, NULL (REAL_PTR)) ! Invokes S217

16.9.156 NUM_IMAGES () or NUM_IMAGES (TEAM) or
NUM_IMAGES (TEAM_NUMBER)

18

1 Description. Number of images.19

2 Class. Transformational function.20

3 Arguments.21

TEAM shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, with a22
value that identifies the current or an ancestor team.23

TEAM_NUMBER shall be an integer scalar. It shall identify the initial team or a sibling team of the current24
team.25

4 Result Characteristics. Default integer scalar.26

5 Result Value. The number of images in the specified team, or in the current team if no team is specified.27

6 Example. The following code uses image 1 to read data and broadcast it to other images.28

REAL :: P[*]29

IF (THIS_IMAGE()==1) THEN30

READ (6,*) P31

J3/23-007 421

J3/23-007 WD 1539-1 2023-02-17

DO I = 2, NUM_IMAGES()1

P[I] = P2

END DO3

END IF4

SYNC ALL5

16.9.157 OUT_OF_RANGE (X, MOLD [, ROUND])6

1 Description. Whether a value cannot be converted safely.7

2 Class. Elemental function.8

3 Arguments.9

X shall be of type integer or real.10

MOLD shall be an integer or real scalar. If it is a variable, it need not be defined.11

ROUND (optional) shall be a logical scalar. ROUND shall be present only if X is of type real and MOLD is of12
type integer.13

4 Result Characteristics. Default logical.14

5 Result Value.15

Case (i): If MOLD is of type integer, and ROUND is absent or present with the value false, the result is true16
if and only if the value of X is an IEEE infinity or NaN, or if the integer with largest magnitude17
that lies between zero and X inclusive is not representable by objects with the type and kind of18
MOLD.19

Case (ii): If MOLD is of type integer, and ROUND is present with the value true, the result is true if and only20
if the value of X is an IEEE infinity or NaN, or if the integer nearest X, or the integer of greater21
magnitude if two integers are equally near to X, is not representable by objects with the type and22
kind of MOLD.23

Case (iii): Otherwise, the result is true if and only if the value of X is an IEEE infinity or NaN that is not24
supported by objects of the type and kind of MOLD, or if X is a finite number and the result of25
rounding the value of X (according to the IEEE rounding mode if appropriate) to the extended26
model for the kind of MOLD has magnitude larger than that of the largest finite number with the27
same sign as X that is representable by objects with the type and kind of MOLD.28

6 Examples. If INT8 is the kind value for an 8-bit binary integer type, OUT_OF_RANGE (−128.5, 0_INT8)29
will have the value false and OUT_OF_RANGE (−128.5, 0_INT8, .TRUE.) will have the value true.30

NOTE
MOLD is required to be a scalar because the only information taken from it is its type and kind. Allowing
an array MOLD would require that it be conformable with X. ROUND is scalar because allowing an array
rounding mode would have severe performance difficulties on many processors.

16.9.158 PACK (ARRAY, MASK [, VECTOR])31

1 Description. Array packed into a vector.32

2 Class. Transformational function.33

3 Arguments.34

ARRAY shall be an array of any type.35

MASK shall be of type logical and shall be conformable with ARRAY.36

422 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

VECTOR (optional) shall be of the same type and type parameters as ARRAY and shall have rank one. VEC-1
TOR shall have at least as many elements as there are true elements in MASK. If MASK is scalar2
with the value true, VECTOR shall have at least as many elements as there are in ARRAY.3

4 Result Characteristics. The result is an array of rank one with the same type and type parameters as4
ARRAY. If VECTOR is present, the result size is that of VECTOR; otherwise, the result size is the number t5
of true elements in MASK unless MASK is scalar with the value true, in which case the result size is the size of6
ARRAY.7

5 Result Value. Element i of the result is the element of ARRAY that corresponds to the ith true element of8
MASK, taking elements in array element order, for i = 1, 2, . . . , t. If VECTOR is present and has size n > t,9
element i of the result has the value VECTOR (i), for i = t + 1, . . . , n.10

6 Examples. The nonzero elements of an array M with the value

 0 0 0
9 0 0
0 0 7

 can be “gathered” by the func-11

tion PACK. The result of PACK (M, MASK = M /= 0) is [9, 7] and the result of PACK (M, M /= 0, VEC-12
TOR = [2, 4, 6, 8, 10, 12]) is [9, 7, 6, 8, 10, 12].13

16.9.159 PARITY (MASK) or PARITY (MASK, DIM)14

1 Description. Array reduced by .NEQV. operation.15

2 Class. Transformational function.16

3 Arguments.17

MASK shall be a logical array.18

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.19

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar20
if DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn]21
where [d1, d2, . . . , dn] is the shape of MASK.22

5 Result Value.23

Case (i): The result of PARITY (MASK) has the value true if an odd number of the elements of MASK are24
true, and false otherwise.25

Case (ii): If MASK has rank one, PARITY (MASK, DIM) is equal to PARITY (MASK). Otherwise, the26
value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of PARITY (MASK, DIM) is equal to27
PARITY (MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).28

6 Examples.29

Case (i): The value of PARITY ([T, T, T, F]) is true if T has the value true and F has the value false.30

Case (ii): If B is the array
[

T T F
T T T

]
, where T has the value true and F has the value false, then31

PARITY (B, DIM=1) has the value [F, F, T] and PARITY (B, DIM=2) has the value [F, T].32

16.9.160 POPCNT (I)33

1 Description. Number of one bits.34

2 Class. Elemental function.35

3 Argument. I shall be of type integer.36

4 Result Characteristics. Default integer.37

J3/23-007 423

J3/23-007 WD 1539-1 2023-02-17

5 Result Value. The result value is equal to the number of one bits in the sequence of bits of I. The model for1
the interpretation of an integer value as a sequence of bits is in 16.3.2

6 Examples. POPCNT ([1, 2, 3, 4, 5, 6]) has the value [1, 1, 2, 1, 2, 2].3

16.9.161 POPPAR (I)4

1 Description. Parity expressed as 0 or 1.5

2 Class. Elemental function.6

3 Argument. I shall be of type integer.7

4 Result Characteristics. Default integer.8

5 Result Value. POPPAR (I) has the value 1 if POPCNT (I) is odd, and 0 if POPCNT (I) is even.9

6 Examples. POPPAR ([1, 2, 3, 4, 5, 6]) has the value [1, 1, 0, 1, 0, 0].10

16.9.162 PRECISION (X)11

1 Description. Decimal precision of a real model.12

2 Class. Inquiry function.13

3 Argument. X shall be of type real or complex. It may be a scalar or an array.14

4 Result Characteristics. Default integer scalar.15

5 Result Value. The result has the value INT ((p − 1) * LOG10 (b)) + k, where b and p are as defined in 16.416
for the model representing real numbers with the same value for the kind type parameter as X, and where k is 117
if b is an integral power of 10 and 0 otherwise.18

6 Example. PRECISION (X) has the value INT (23 * LOG10 (2.)) = INT (6.92. . .) = 6 for real X whose model19
is as in 16.4, NOTE.20

16.9.163 PRESENT (A)21

1 Description. Presence of optional argument.22

2 Class. Inquiry function.23

3 Argument. A shall be the name of an optional dummy argument that is accessible in the subprogram in which24
the PRESENT function reference appears. There are no other requirements on A.25

4 Result Characteristics. Default logical scalar.26

5 Result Value. The result has the value true if A is present (15.5.2.13) and otherwise has the value false.27

16.9.164 PREVIOUS (A [, STAT])28

1 Description. Previous enumeration value.29

2 Class. Elemental function.30

3 Arguments.31

A shall be of enumeration type.32

STAT (optional) shall be an integer scalar with a decimal exponent range of at least four. It is an INTENT (OUT)33
argument. If A is equal to the first enumerator of its type, it is assigned a processor-dependent34

424 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

positive value; otherwise, it is assigned the value zero. If STAT would have been assigned a nonzero1
value but is not present, error termination is initiated.2

4 Result Characteristics. Same as A.3

5 Result Value. If A is equal to the first enumerator of its type, the value of the result is that of A. Otherwise,4
the value of the result is the enumerator preceding the value of A.5

6 Example. If the enumerators of an enumeration type are EN1, EN2, EN3, and EN4, PREVIOUS (EN3) is equal6
to EN2, and PREVIOUS (EN1, ISTAT) is equal to EN1 and a positive value is assigned to ISTAT.7

16.9.165 PRODUCT (ARRAY, DIM [, MASK]) or
PRODUCT (ARRAY [, MASK])

8

1 Description. Array reduced by multiplication.9

2 Class. Transformational function.10

3 Arguments.11

ARRAY shall be an array of numeric type.12

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.13

MASK (optional) shall be of type logical and shall be conformable with ARRAY.14

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if15
DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where16
[d1, d2, . . . , dn] is the shape of ARRAY.17

5 Result Value.18

Case (i): The result of PRODUCT (ARRAY) has a value equal to a processor-dependent approximation to19
the product of all the elements of ARRAY or has the value one if ARRAY has size zero.20

Case (ii): The result of PRODUCT (ARRAY, MASK = MASK) has a value equal to a processor-dependent21
approximation to the product of the elements of ARRAY corresponding to the true elements of22
MASK or has the value one if there are no true elements.23

Case (iii): If ARRAY has rank one, PRODUCT (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal24
to that of PRODUCT (ARRAY [, MASK = MASK]). Otherwise, the value of element (s1, s2, . . . ,25
sDIM−1, sDIM+1, . . . , sn) of PRODUCT (ARRAY, DIM = DIM [, MASK = MASK]) is equal to26

PRODUCT (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) [, MASK = MASK (s1, s2, . . . ,27
sDIM−1, :, sDIM+1, . . . , sn)]).28

6 Examples.29

Case (i): The value of PRODUCT ([1, 2, 3]) is 6.30

Case (ii): PRODUCT (C, MASK = C > 0.0) forms the product of the positive elements of C.31

Case (iii): If B is the array
[

1 3 5
2 4 6

]
, PRODUCT (B, DIM = 1) is [2, 12, 30] and PRODUCT (B, DIM = 2)32

is [15, 48].33

16.9.166 RADIX (X)34

1 Description. Base of a numeric model.35

2 Class. Inquiry function.36

3 Argument. X shall be of type integer or real. It may be a scalar or an array.37

4 Result Characteristics. Default integer scalar.38

J3/23-007 425

J3/23-007 WD 1539-1 2023-02-17

5 Result Value. The result has the value r if X is of type integer and the value b if X is of type real, where r and1
b are as defined in 16.4 for the model representing numbers of the same type and kind type parameter as X.2

6 Example. RADIX (X) has the value 2 for real X whose model is as in 16.4, NOTE.3

16.9.167 RANDOM_INIT (REPEATABLE, IMAGE_DISTINCT)4

1 Description. Initialize pseudorandom number generator.5

2 Class. Subroutine.6

3 Arguments.7

REPEATABLE shall be a logical scalar. It is an INTENT (IN) argument.8

IMAGE_DISTINCT shall be a logical scalar. It is an INTENT (IN) argument.9

4 The effect of calling RANDOM_INIT depends on the values of the REPEATABLE and IMAGE_DISTINCT10
arguments:11

Case (i): CALL RANDOM_INIT (REPEATABLE=true, IMAGE_DISTINCT=true) is equivalent to invok-12
ing RANDOM_SEED with a processor-dependent value for PUT that is different on every invoking13
image. In each execution of the program with the same execution environment, if the invoking14
image index value in the initial team is the same, the value for PUT shall be the same.15

Case (ii): CALL RANDOM_INIT(REPEATABLE=true, IMAGE_DISTINCT=false) is equivalent to invok-16
ing RANDOM_SEED with a processor-dependent value for PUT that is the same on every invoking17
image. In each execution of the program with the same execution environment, the value for PUT18
shall be the same.19

Case (iii): CALL RANDOM_INIT(REPEATABLE=false, IMAGE_DISTINCT=true) is equivalent to invok-20
ing RANDOM_SEED with a processor-dependent value for PUT that is different on every invoking21
image. Different values for PUT shall be used for subsequent invocations, and for each execution of22
the program.23

Case (iv): CALL RANDOM_INIT(REPEATABLE=false, IMAGE_DISTINCT=false) is equivalent to invok-24
ing RANDOM_SEED with a processor-dependent value for PUT that is the same on every invoking25
image. Different values for PUT shall be used for subsequent invocations, and for each execution of26
the program.27

5 In each of these cases, a different processor-dependent value for PUT shall result in a different sequence of28
pseudorandom numbers.29

6 Example. The following statement initializes the pseudorandom number generator of the invoking image so that30
the pseudorandom number sequence will differ from that of other images that execute a similar statement, and31
will be different on subsequent execution of the program.32

CALL RANDOM_INIT (REPEATABLE=.FALSE., IMAGE_DISTINCT=.TRUE.)33

16.9.168 RANDOM_NUMBER (HARVEST)34

1 Description. Generate pseudorandom number(s).35

2 Class. Subroutine.36

3 Argument. HARVEST shall be of type real. It is an INTENT (OUT) argument. It may be a scalar or an array.37
It is assigned pseudorandom numbers from the uniform distribution in the interval 0 ≤ x < 1.38

4 Example.39

REAL X, Y (10, 10)40

! Initialize X with a pseudorandom number41

426 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

CALL RANDOM_NUMBER (HARVEST = X)1

CALL RANDOM_NUMBER (Y)2

! X and Y contain uniformly distributed random numbers3

16.9.169 RANDOM_SEED ([SIZE, PUT, GET])4

1 Description. Pseudorandom number generator control.5

2 Class. Subroutine.6

3 Arguments. There shall either be exactly one or no arguments present.7

SIZE (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. It is assigned the number8
N of integers that the processor uses to hold the value of the seed.9

PUT (optional) shall be a default integer array of rank one and size ≥ N . It is an INTENT (IN) argument. It10
is used in a processor-dependent manner to compute the seed value accessed by the pseudorandom11
number generator.12

GET (optional) shall be a default integer array of rank one and size ≥ N . It is an INTENT (OUT) argument.13
It is assigned the value of the seed.14

4 If no argument is present, the processor assigns a processor-dependent value to the seed.15

5 The pseudorandom number generator used by RANDOM_NUMBER maintains a seed on each image that is16
updated during the execution of RANDOM_NUMBER and that can be retrieved or changed by RANDOM_INIT17
or RANDOM_SEED1. Computation of the seed from the argument PUT is performed in a processor-dependent18
manner. The value assigned to GET need not be the same as the value of PUT in an immediately preceding19
reference to RANDOM_SEED. For example, following execution of the statements20

CALL RANDOM_SEED (PUT=SEED1)21

CALL RANDOM_SEED (GET=SEED2)22

SEED2 need not equal SEED1. When the values differ, the use of either value as the PUT argument in a23
subsequent call to RANDOM_SEED shall result in the same sequence of pseudorandom numbers being generated.24
For example, after execution of the statements25

CALL RANDOM_SEED (PUT=SEED1)26

CALL RANDOM_SEED (GET=SEED2)27

CALL RANDOM_NUMBER (X1)28

CALL RANDOM_SEED (PUT=SEED2)29

CALL RANDOM_NUMBER (X2)30

X2 equals X1.31

6 Examples.32

CALL RANDOM_SEED ! Processor-dependent initialization33

CALL RANDOM_SEED (SIZE = K) ! Puts size of seed in K34

CALL RANDOM_SEED (PUT = SEED (1 : K)) ! Define seed35

CALL RANDOM_SEED (GET = OLD (1 : K)) ! Read current seed36

1These three procedures only affect the value of the seed on the invoking image.

J3/23-007 427

J3/23-007 WD 1539-1 2023-02-17

16.9.170 RANGE (X)1

1 Description. Decimal exponent range of a numeric model (16.4).2

2 Class. Inquiry function.3

3 Argument. X shall be of type integer, real, or complex. It may be a scalar or an array.4

4 Result Characteristics. Default integer scalar.5

5 Result Value.6

Case (i): If X is of type integer, the result has the value INT (LOG10 (HUGE (X))).7

Case (ii): If X is of type real, the result has the value INT (MIN (LOG10 (HUGE (X)), −LOG10 (TINY (X)))).8

Case (iii): If X is of type complex, the result has the value RANGE (REAL (X)).9

6 Examples. RANGE (X) has the value 38 for real X whose model is as in 16.4, NOTE, because in this case10
HUGE (X) = (1 − 2−24) × 2127 and TINY (X) = 2−127.11

16.9.171 RANK (A)12

1 Description. Rank of a data object.13

2 Class. Inquiry function.14

3 Argument. A shall be a data object of any type.15

4 Result Characteristics. Default integer scalar.16

5 Result Value. The value of the result is the rank of A.17

6 Example. If X is an assumed-rank dummy argument and its associated effective argument is an array of rank18
3, RANK(X) has the value 3.19

16.9.172 REAL (A [, KIND])20

1 Description. Conversion to real type.21

2 Class. Elemental function.22

3 Arguments.23

A shall be of type integer, real, or complex, or a boz-literal-constant.24

KIND (optional) shall be a scalar integer constant expression.25

4 Result Characteristics. Real.26

Case (i): If A is of type integer or real and KIND is present, the kind type parameter is that specified by the27
value of KIND. If A is of type integer or real and KIND is not present, the kind type parameter is28
that of default real kind.29

Case (ii): If A is of type complex and KIND is present, the kind type parameter is that specified by the value30
of KIND. If A is of type complex and KIND is not present, the kind type parameter is the kind31
type parameter of A.32

Case (iii): If A is a boz-literal-constant and KIND is present, the kind type parameter is that specified by the33
value of KIND. If A is a boz-literal-constant and KIND is not present, the kind type parameter is34
that of default real kind.35

5 Result Value.36

Case (i): If A is of type integer or real, the result is equal to a processor-dependent approximation to A.37

428 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Case (ii): If A is of type complex, the result is equal to a processor-dependent approximation to the real part1
of A.2

Case (iii): If A is a boz-literal-constant, the value of the result is the value whose internal representation as a3
bit sequence is the same as that of A as modified by padding or truncation according to 16.3.3. The4
interpretation of the bit sequence is processor dependent.5

6 Examples. REAL (−3) has the value −3.0. REAL (Z) has the same kind type parameter and the same value6
as the real part of the complex variable Z.7

16.9.173 REDUCE (ARRAY, OPERATION [, MASK, IDENTITY, ORDERED]) or
REDUCE (ARRAY, OPERATION, DIM [, MASK, IDENTITY,
ORDERED])

8

1 Description. General reduction of array.9

2 Class. Transformational function.10

3 Arguments.11

ARRAY shall be an array of any type.12

OPERATION shall be a pure function with exactly two arguments; each argument shall be a scalar, nonalloc-13
atable, noncoarray, nonpointer, nonpolymorphic, nonoptional dummy data object with the same14
declared type and type parameters as ARRAY. If one argument has the ASYNCHRONOUS, TAR-15
GET, or VALUE attribute, the other shall have that attribute. Its result shall be a nonpolymorphic16
scalar and have the same declared type and type parameters as ARRAY. OPERATION should17
implement a mathematically associative operation. It need not be commutative.18

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.19

MASK (optional) shall be of type logical and shall be conformable with ARRAY.20

IDENTITY (optional) shall be scalar with the same declared type and type parameters as ARRAY.21

ORDERED (optional) shall be a logical scalar.22

4 Result Characteristics. The result is of the same declared type and type parameters as ARRAY. It is scalar23
if DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn]24
where [d1, d2, . . . , dn] is the shape of ARRAY.25

5 Result Value.26

Case (i): The result of REDUCE (ARRAY, OPERATION [, IDENTITY = IDENTITY, ORDERED =27
ORDERED]) over the sequence of values in ARRAY is the result of an iterative process. The28
initial order of the sequence is array element order. While the sequence has more than one element,29
each iteration involves the execution of r = OPERATION(x, y) for adjacent x and y in the sequence,30
with x immediately preceding y, and the subsequent replacement of x and y with r; if ORDERED31
is present with the value true, x and y shall be the first two elements of the sequence. The process32
continues until the sequence has only one element which is the value of the reduction. If the initial33
sequence is empty, the result has the value IDENTITY if IDENTITY is present, and otherwise,34
error termination is initiated.35

Case (ii): The result of REDUCE (ARRAY, OPERATION, MASK = MASK [, IDENTITY = IDENTITY,36
ORDERED = ORDERED]) is as for Case (i) except that the initial sequence is only those elements37
of ARRAY for which the corresponding elements of MASK are true.38

Case (iii): If ARRAY has rank one, REDUCE (ARRAY, OPERATION, DIM = DIM [, MASK = MASK,39
IDENTITY = IDENTITY, ORDERED = ORDERED]) has a value equal to that of REDUCE (AR-40
RAY, OPERATION [, MASK = MASK, IDENTITY = IDENTITY, ORDERED = ORDERED]).41
Otherwise, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of REDUCE (ARRAY, OPER-42
ATION, DIM = DIM [, MASK = MASK, IDENTITY = IDENTITY, ORDERED = ORDERED])43
is equal to44

J3/23-007 429

J3/23-007 WD 1539-1 2023-02-17

REDUCE (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn),
OPERATION = OPERATION,
DIM=1
[, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn),
IDENTITY = IDENTITY,
ORDERED = ORDERED]).

1

6 Examples. The following examples all use the function MY_MULT, which returns the product of its two integer2
arguments.3

Case (i): The value of REDUCE ([1, 2, 3], MY_MULT) is 6.4

Case (ii): REDUCE (C, MY_MULT, MASK= C > 0, IDENTITY=1) forms the product of the positive5
elements of C.6

Case (iii): If B is the array
[

1 3 5
2 4 6

]
, REDUCE (B, MY_MULT, DIM = 1) is [2, 12, 30] and REDUCE (B,7

MY_MULT, DIM = 2) is [15, 48].8

NOTE
If OPERATION is not computationally associative, REDUCE without ORDERED=.TRUE. with the same
argument values might not always produce the same result, as the processor can apply the associative law to
the evaluation.

16.9.174 REPEAT (STRING, NCOPIES)9

1 Description. Repetitive string concatenation.10

2 Class. Transformational function.11

3 Arguments.12

STRING shall be a character scalar.13

NCOPIES shall be an integer scalar. Its value shall not be negative.14

4 Result Characteristics. Character scalar of length NCOPIES times that of STRING, with the same kind type15
parameter as STRING.16

5 Result Value. The value of the result is the concatenation of NCOPIES copies of STRING.17

6 Examples. REPEAT (’H’, 2) has the value HH. REPEAT (’XYZ’, 0) has the value of a zero-length string.18

16.9.175 RESHAPE (SOURCE, SHAPE [, PAD, ORDER])19

1 Description. Arbitrary shape array construction.20

2 Class. Transformational function.21

3 Arguments.22

SOURCE shall be an array of any type. If PAD is absent or of size zero, the size of SOURCE shall be greater23
than or equal to PRODUCT (SHAPE). The size of the result is the product of the values of the24
elements of SHAPE.25

SHAPE shall be a rank-one integer array. SIZE (x), where x is the actual argument corresponding to26
SHAPE, shall be a constant expression whose value is positive and less than 16. It shall not have27
an element whose value is negative.28

PAD (optional) shall be an array of the same type and type parameters as SOURCE.29

ORDER (optional) shall be of type integer, shall have the same shape as SHAPE, and its value shall be a30
permutation of (1, 2, . . . , n), where n is the size of SHAPE. If absent, it is as if it were present with31
value (1, 2, . . . , n).32

430 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Result Characteristics. The result is an array of shape SHAPE (that is, SHAPE (RESHAPE (SOURCE,1
SHAPE, PAD, ORDER)) is equal to SHAPE) with the same type and type parameters as SOURCE.2

5 Result Value. The elements of the result, taken in permuted subscript order ORDER (1), . . . , ORDER (n), are3
those of SOURCE in normal array element order followed if necessary by those of PAD in array element order,4
followed if necessary by additional copies of PAD in array element order.5

6 Examples. RESHAPE ([1, 2, 3, 4, 5, 6], [2, 3]) has the value
[

1 3 5
2 4 6

]
.6

RESHAPE ([1, 2, 3, 4, 5, 6], [2, 4], [0, 0], [2, 1]) has the value
[

1 2 3 4
5 6 0 0

]
.7

16.9.176 RRSPACING (X)8

1 Description. Reciprocal of relative spacing of model numbers.9

2 Class. Elemental function.10

3 Argument. X shall be of type real.11

4 Result Characteristics. Same as X.12

5 Result Value. The result has the value |Y×b−e|×bp = ABS (FRACTION (Y)) * RADIX (X) / EPSILON (X),13
where b, e, and p are as defined in 16.4 for Y, the value nearest to X in the model for real values whose kind type14
parameter is that of X; if there are two such values, the value of greater absolute value is taken. If X is an IEEE15
infinity, the result is an IEEE NaN. If X is an IEEE NaN, the result is that NaN.16

6 Example. RRSPACING (−3.0) has the value 0.75 × 224 for reals whose model is as in 16.4, NOTE.17

16.9.177 SAME_TYPE_AS (A, B)18

1 Description. Dynamic type equality test.19

2 Class. Inquiry function.20

3 Arguments.21

A shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic22
pointer, it shall not have an undefined association status.23

B shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic24
pointer, it shall not have an undefined association status.25

4 Result Characteristics. Default logical scalar.26

5 Result Value. If the dynamic type of A or B is extensible, the result is true if and only if the dynamic type of27
A is the same as the dynamic type of B. If neither A nor B has extensible dynamic type, the result is processor28
dependent.29

NOTE 1
The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type. An unlimited
polymorphic entity has no declared type.

NOTE 2
The test performed by SAME_TYPE_AS is not the same as the test performed by the type guard TYPE IS.
The test performed by SAME_TYPE_AS does not consider kind type parameters.

J3/23-007 431

J3/23-007 WD 1539-1 2023-02-17

6 Example. Given the declarations and assignments1

TYPE T12

REAL C3

END TYPE4

TYPE, EXTENDS(T1) :: T25

END TYPE6

CLASS(T1), POINTER :: P, Q, R7

ALLOCATE(P, Q)8

ALLOCATE(T2 :: R)9

the value of SAME_TYPE_AS (P, Q) will be true, and the value of SAME_TYPE_AS (P, R) will be false.10

16.9.178 SCALE (X, I)11

1 Description. Real number scaled by radix power.12

2 Class. Elemental function.13

3 Arguments.14

X shall be of type real.15

I shall be of type integer.16

4 Result Characteristics. Same as X.17

5 Result Value. The result has the value X × bI, where b is defined in 16.4 for model numbers representing values18
of X, provided this result is representable; if not, the result is processor dependent.19

6 Example. SCALE (3.0, 2) has the value 12.0 for reals whose model is as in 16.4, NOTE.20

16.9.179 SCAN (STRING, SET [, BACK, KIND])21

1 Description. Character set membership search.22

2 Class. Elemental function.23

3 Arguments.24

STRING shall be of type character.25

SET shall be of type character with the same kind type parameter as STRING.26

BACK (optional) shall be of type logical.27

KIND (optional) shall be a scalar integer constant expression.28

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of29
KIND; otherwise the kind type parameter is that of default integer type.30

5 Result Value.31

Case (i): If BACK is absent or is present with the value false and if STRING contains at least one character32
that is in SET, the value of the result is the position of the leftmost character of STRING that is33
in SET.34

Case (ii): If BACK is present with the value true and if STRING contains at least one character that is in35
SET, the value of the result is the position of the rightmost character of STRING that is in SET.36

Case (iii): The value of the result is zero if no character of STRING is in SET or if the length of STRING or37
SET is zero.38

432 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

6 Examples.1

Case (i): SCAN (’FORTRAN’, ’TR’) has the value 3.2

Case (ii): SCAN (’FORTRAN’, ’TR’, BACK = .TRUE.) has the value 5.3

Case (iii): SCAN (’FORTRAN’, ’BCD’) has the value 0.4

16.9.180 SELECTED_CHAR_KIND (NAME)5

1 Description. Character kind selection.6

2 Class. Transformational function.7

3 Argument. NAME shall be default character scalar.8

4 Result Characteristics. Default integer scalar.9

5 Result Value. If NAME has the value DEFAULT, then the result has a value equal to that of the kind type10
parameter of default character. If NAME has the value ASCII, then the result has a value equal to that of the11
kind type parameter of ASCII character if the processor supports such a kind; otherwise the result has the value12
−1. If NAME has the value ISO_10646, then the result has a value equal to that of the kind type parameter of13
the ISO 10646 character kind (corresponding to UCS-4 as specified in ISO/IEC 10646) if the processor supports14
such a kind; otherwise the result has the value −1. If NAME is a processor-defined name of some other character15
kind supported by the processor, then the result has a value equal to that kind type parameter value. If NAME is16
not the name of a supported character type, then the result has the value −1. The NAME is interpreted without17
respect to case or trailing blanks.18

6 Examples. SELECTED_CHAR_KIND (’ASCII’) has the value 1 on a processor that uses 1 as the kind type19
parameter for the ASCII character set. The following subroutine produces a Japanese date stamp.20

SUBROUTINE create_date_string(string)21

INTRINSIC date_and_time,selected_char_kind22

INTEGER,PARAMETER :: ucs4 = selected_char_kind("ISO_10646")23

CHARACTER(1,UCS4),PARAMETER :: nen=CHAR(INT(Z’5e74’),UCS4), & !year24

gatsu=CHAR(INT(Z’6708’),UCS4), & !month25

nichi=CHAR(INT(Z’65e5’),UCS4) !day26

CHARACTER(len= *, kind= ucs4) string27

INTEGER values(8)28

CALL date_and_time(values=values)29

WRITE(string,1) values(1),nen,values(2),gatsu,values(3),nichi30

1 FORMAT(I0,A,I0,A,I0,A)31

END SUBROUTINE32

16.9.181 SELECTED_INT_KIND (R)33

1 Description. Integer kind selection.34

2 Class. Transformational function.35

3 Argument. R shall be an integer scalar.36

4 Result Characteristics. Default integer scalar.37

5 Result Value. The result has a value equal to the value of the kind type parameter of an integer type that38
represents all values n in the range −10R < n < 10R, or if no such kind type parameter is available on the39
processor, the result is −1. If more than one kind type parameter meets the criterion, the value returned is the40

J3/23-007 433

J3/23-007 WD 1539-1 2023-02-17

one with the smallest decimal exponent range, unless there are several such values, in which case the smallest of1
these kind values is returned.2

6 Example. Assume a processor supports two integer kinds, 32 with representation method r = 2 and q = 31,3
and 64 with representation method r = 2 and q = 63. On this processor SELECTED_INT_KIND (9) has the4
value 32 and SELECTED_INT_KIND (10) has the value 64.5

16.9.182 SELECTED_LOGICAL_KIND (BITS)6

1 Description. Logical kind selection.7

2 Class. Transformational function.8

3 Argument. BITS shall be an integer scalar.9

4 Result Characteristics. Default integer scalar.10

5 Result Value. The result has a value equal to the value of the kind type parameter of a logical type whose11
storage size in bits is at least BITS, or if no such kind type parameter is available on the processor, the result is12
−1. If more than one kind type parameter meets the criterion, the value returned is the one with the smallest13
storage size, unless there are several such values, in which case the smallest of these kind values is returned.14

6 Example. Assume a processor supports four logical kinds with kind type parameter values 8, 16, 32, and 64 for15
representations with those storage sizes. On this processor, SELECTED_LOGICAL_KIND (1) has the value 8,16
SELECTED_LOGICAL_KIND (12) has the value 16, and SELECTED_LOGICAL_KIND (128) has the value17
−1.18

16.9.183 SELECTED_REAL_KIND ([P, R, RADIX])19

1 Description. Real kind selection.20

2 Class. Transformational function.21

3 Arguments. At least one argument shall be present.22

P (optional) shall be an integer scalar.23

R (optional) shall be an integer scalar.24

RADIX (optional) shall be an integer scalar.25

4 Result Characteristics. Default integer scalar.26

5 Result Value. If P or R is absent, the result value is the same as if it were present with the value zero. If27
RADIX is absent, there is no requirement on the radix of the selected kind.28

6 The result has a value equal to a value of the kind type parameter of a real type with decimal precision, as29
returned by the function PRECISION, of at least P digits, a decimal exponent range, as returned by the function30
RANGE, of at least R, and a radix, as returned by the function RADIX, of RADIX, if such a kind type parameter31
is available on the processor.32

7 Otherwise, the result is −1 if the processor supports a real type with radix RADIX and exponent range of at least33
R but not with precision of at least P, −2 if the processor supports a real type with radix RADIX and precision of34
at least P but not with exponent range of at least R, −3 if the processor supports a real type with radix RADIX35
but with neither precision of at least P nor exponent range of at least R, −4 if the processor supports a real type36
with radix RADIX and either precision of at least P or exponent range of at least R but not both together, and37
−5 if the processor supports no real type with radix RADIX.38

8 If more than one kind type parameter value meets the criteria, the value returned is the one with the smallest39
decimal precision, unless there are several such values, in which case the smallest of these kind values is returned.40

434 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

9 Example. SELECTED_REAL_KIND (6, 70) has the value KIND (0.0) on a machine that supports a default1
real approximation method with b = 16, p = 6, emin = −64, and emax = 63 and does not have a less precise2
approximation method.3

16.9.184 SET_EXPONENT (X, I)4

1 Description. Real value with specified exponent.5

2 Class. Elemental function.6

3 Arguments.7

X shall be of type real.8

I shall be of type integer.9

4 Result Characteristics. Same as X.10

5 Result Value. If X has the value zero, the result has the same value as X. If X is an IEEE infinity, the result is11
an IEEE NaN. If X is an IEEE NaN, the result is the same NaN. Otherwise, the result has the value X × bI−e,12
where b and e are as defined in 16.4 for the representation for the value of X in the extended real model for the13
kind of X.14

6 Example. SET_EXPONENT (3.0, 1) has the value 1.5 for reals whose model is as in 16.4, NOTE.15

16.9.185 SHAPE (SOURCE [, KIND])16

1 Description. Shape of an array or a scalar.17

2 Class. Inquiry function.18

3 Arguments.19

SOURCE shall be a scalar or array of any type. It shall not be an unallocated allocatable variable or a pointer20
that is not associated. It shall not be an assumed-size array.21

KIND (optional) shall be a scalar integer constant expression.22

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value23
of KIND; otherwise the kind type parameter is that of default integer type. The result is an array of rank one24
whose size is equal to the rank of SOURCE.25

5 Result Value. The result has a value whose ith element is equal to the extent of dimension i of SOURCE,26
except that if SOURCE is assumed-rank, and associated with an assumed-size array, the last element is equal to27
−1.28

6 Examples. The value of SHAPE (A (2:5, −1:1)) is [4, 3]. The value of SHAPE (3) is the rank-one array of size29
zero.30

16.9.186 SHIFTA (I, SHIFT)31

1 Description. Right shift with fill.32

2 Class. Elemental function.33

3 Arguments.34

I shall be of type integer.35

SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I).36

4 Result Characteristics. Same as I.37

J3/23-007 435

J3/23-007 WD 1539-1 2023-02-17

5 Result Value. The result has the value obtained by shifting the bits of I to the right SHIFT bits and replicating1
the leftmost bit of I in the left SHIFT bits.2

6 If SHIFT is zero the result is I. Bits shifted out from the right are lost. The model for the interpretation of an3
integer value as a sequence of bits is in 16.3.4

7 Example. SHIFTA (IBSET (0, BIT_SIZE (0) − 1), 2) is equal to SHIFTL (7, BIT_SIZE (0) − 3).5

16.9.187 SHIFTL (I, SHIFT)6

1 Description. Left shift.7

2 Class. Elemental function.8

3 Arguments.9

I shall be of type integer.10

SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I).11

4 Result Characteristics. Same as I.12

5 Result Value. The value of the result is ISHFT (I, SHIFT).13

6 Examples. SHIFTL (3, 1) has the value 6.14

16.9.188 SHIFTR (I, SHIFT)15

1 Description. Right shift.16

2 Class. Elemental function.17

3 Arguments.18

I shall be of type integer.19

SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I).20

4 Result Characteristics. Same as I.21

5 Result Value. The value of the result is ISHFT (I, −SHIFT).22

6 Examples. SHIFTR (3, 1) has the value 1.23

16.9.189 SIGN (A, B)24

1 Description. Magnitude of A with the sign of B.25

2 Class. Elemental function.26

3 Arguments.27

A shall be of type integer or real.28

B shall be of the same type as A.29

4 Result Characteristics. Same as A.30

5 Result Value.31

Case (i): If B > 0, the value of the result is |A|.32

Case (ii): If B < 0, the value of the result is -|A|.33

Case (iii): If B is of type integer and B=0, the value of the result is |A|.34

436 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Case (iv): If B is of type real and is zero, then:1

• if the processor does not distinguish between positive and negative real zero, or if B is positive2
real zero, the value of the result is |A|;3

• if the processor distinguishes between positive and negative real zero, and B is negative real4
zero, the value of the result is -|A|.5

6 Example. SIGN (−3.0, 2.0) has the value 3.0.6

16.9.190 SIN (X)7

1 Description. Sine function.8

2 Class. Elemental function.9

3 Argument. X shall be of type real or complex.10

4 Result Characteristics. Same as X.11

5 Result Value. The result has a value equal to a processor-dependent approximation to sin(X). If X is of type12
real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in radians.13

6 Example. SIN (1.0) has the value 0.84147098 (approximately).14

16.9.191 SIND (X)15

1 Description. Degree sine function.16

2 Class. Elemental function.17

3 Argument. X shall be of type real.18

4 Result Characteristics. Same as X.19

5 Result Value. The result has a value equal to a processor-dependent approximation to the sine of X, which is20
regarded as a value in degrees.21

6 Example. SIND (180.0) has the value 0.0 (approximately).22

16.9.192 SINH (X)23

1 Description. Hyperbolic sine function.24

2 Class. Elemental function.25

3 Argument. X shall be of type real or complex.26

4 Result Characteristics. Same as X.27

5 Result Value. The result has a value equal to a processor-dependent approximation to sinh(X). If X is of type28
complex its imaginary part is regarded as a value in radians.29

6 Example. SINH (1.0) has the value 1.1752012 (approximately).30

16.9.193 SINPI (X)31

1 Description. Circular sine function.32

2 Class. Elemental function.33

3 Argument. X shall be of type real.34

J3/23-007 437

J3/23-007 WD 1539-1 2023-02-17

4 Result Characteristics. Same as X.1

5 Result Value. The result has a value equal to a processor-dependent approximation to the sine of X, which is2
regarded as a value in half-revolutions; thus, SINPI (X) is approximately equal to SIN (X×π).3

6 Example. SINPI (1.0) has the value 0.0 (approximately).4

16.9.194 SIZE (ARRAY [, DIM, KIND])5

1 Description. Size of an array or one extent.6

2 Class. Inquiry function.7

3 Arguments.8

ARRAY shall be assumed-rank or an array. It shall not be an unallocated allocatable variable or a pointer9
that is not associated. If ARRAY is an assumed-size array, DIM shall be present with a value less10
than the rank of ARRAY.11

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.12

KIND (optional) shall be a scalar integer constant expression.13

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that specified by the14
value of KIND; otherwise the kind type parameter is that of default integer type.15

5 Result Value. If DIM is present, the result has a value equal to the extent of dimension DIM of ARRAY, except16
that if ARRAY is assumed-rank and associated with an assumed-size array and DIM is present with a value equal17
to the rank of ARRAY, the value is −1.18

6 If DIM is absent and ARRAY is assumed-rank, the result has a value equal to PRODUCT(SHAPE(ARRAY,19
KIND)). Otherwise, the result has a value equal to the total number of elements of ARRAY.20

7 Examples. The value of SIZE (A (2:5, −1:1), DIM=2) is 3. The value of SIZE (A (2:5, −1:1)) is 12.21

NOTE
If ARRAY is assumed-rank and has rank zero, DIM cannot be present since it cannot satisfy the requirement
1 ≤ DIM ≤ 0.

16.9.195 SPACING (X)22

1 Description. Spacing of model numbers.23

2 Class. Elemental function.24

3 Argument. X shall be of type real.25

4 Result Characteristics. Same as X.26

5 Result Value. If X does not have the value zero and is not an IEEE infinity or NaN, the result has the value27
be−p, where b, e, and p are as defined in 16.4 for the value nearest to X in the model for real values whose kind28
type parameter is that of X, provided this result is representable; otherwise, the result is the same as that of29
TINY (X). If there are two extended model values equally near to X, the value of greater absolute value is taken.30
If X has the value zero, the result is the same as that of TINY (X). If X is an IEEE infinity, the result is an IEEE31
NaN. If X is an IEEE NaN, the result is that NaN.32

6 Example. SPACING (3.0) has the value 2−22 for reals whose model is as in 16.4, NOTE.33

438 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.9.196 SPLIT (STRING, SET, POS [, BACK])1

1 Description. Parse a string into tokens, one at a time.2

2 Class. Simple subroutine.3

3 Arguments.4

STRING shall be a scalar of type character. It is an INTENT (IN) argument.5

SET shall be a scalar of type character with the same kind type parameter as STRING. It is an INTENT6
(IN) argument. Each character in SET is a token delimiter. A sequence of zero or more characters7
in STRING delimited by any token delimiter, or the beginning or end of STRING, comprise a token.8
Thus, two consecutive token delimiters in STRING, or a token delimiter in the first or last character9
of STRING, indicate a token with zero length.10

POS shall be an integer scalar. It is an INTENT (INOUT) argument. If BACK is present with the value11
true, the value of POS shall be in the range 0 < POS ≤ LEN (STRING) + 1; otherwise it shall be12
in the range 0 ≤ POS ≤ LEN (STRING).13

If BACK is absent or is present with the value false, POS is assigned the position of the leftmost14
token delimiter in STRING whose position is greater than POS, or if there is no such character, it15
is assigned a value one greater than the length of STRING. This identifies a token with starting16
position one greater than the value of POS on invocation, and ending position one less than the17
value of POS on return.18

If BACK is present with the value true, POS is assigned the position of the rightmost token delimiter19
in STRING whose position is less than POS, or if there is no such character, it is assigned the value20
zero. This identifies a token with ending position one less than the value of POS on invocation, and21
starting position one greater than the value of POS on return.22

If SPLIT is invoked with a value for POS in the range 1 ≤ POS ≤ LEN (STRING), and the value23
of STRING (POS:POS) is not equal to any character in SET, the token identified by SPLIT will24
not comprise a complete token as described in the description of the SET argument, but rather a25
partial token.26

BACK (optional) shall be a logical scalar. It is an INTENT (IN) argument.27

4 Example.28

Execution of29

CHARACTER (LEN=:), ALLOCATABLE :: INPUT30

CHARACTER (LEN=2) :: SET = ’, ’31

INTEGER P32

INPUT = "one,last example"33

P = 034

DO35

IF (P > LEN (INPUT)) EXIT36

ISTART = P + 137

CALL SPLIT (INPUT, SET, P)38

IEND = P - 139

PRINT ’(T7,A)’, INPUT (ISTART:IEND)40

END DO41

will print42

one43

last44

example45

J3/23-007 439

J3/23-007 WD 1539-1 2023-02-17

16.9.197 SPREAD (SOURCE, DIM, NCOPIES)1

1 Description. Value replicated in a new dimension.2

2 Class. Transformational function.3

3 Arguments.4

SOURCE shall be a scalar or array of any type. The rank of SOURCE shall be less than 15.5

DIM shall be an integer scalar with value in the range 1 ≤ DIM ≤ n+1, where n is the rank of SOURCE.6

NCOPIES shall be an integer scalar.7

4 Result Characteristics. The result is an array of the same type and type parameters as SOURCE and of rank8
n + 1, where n is the rank of SOURCE.9

Case (i): If SOURCE is scalar, the shape of the result is (MAX (NCOPIES, 0)).10

Case (ii): If SOURCE is an array with shape [d1, d2, . . . , dn], the shape of the result is [d1, d2, . . . , dDIM−1,11
MAX (NCOPIES, 0), dDIM, . . . , dn].12

5 Result Value.13

Case (i): If SOURCE is scalar, each element of the result has a value equal to SOURCE.14

Case (ii): If SOURCE is an array, the element of the result with subscripts (r1, r2, . . . , rn+1) has the value15
SOURCE (r1, r2, . . . , rDIM−1, rDIM+1, . . . , rn+1).16

6 Examples. If A is the array [2, 3, 4], SPREAD (A, DIM=1, NCOPIES=NC) is the array

 2 3 4
2 3 4
2 3 4

 if NC17

has the value 3 and is a zero-sized array if NC has the value 0.18

16.9.198 SQRT (X)19

1 Description. Square root.20

2 Class. Elemental function.21

3 Argument. X shall be of type real or complex. If X is real, its value shall be greater than or equal to zero.22

4 Result Characteristics. Same as X.23

5 Result Value. The result has a value equal to a processor-dependent approximation to the square root of X. A24
result of type complex is the principal value with the real part greater than or equal to zero. When the real part25
of the result is zero, the imaginary part has the same sign as the imaginary part of X.26

6 Example. SQRT (4.0) has the value 2.0 (approximately).27

16.9.199 STOPPED_IMAGES ([TEAM, KIND])28

1 Description. Indices of stopped images.29

2 Class. Transformational function.30

3 Arguments.31

TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV,32
whose value identifies the current or an ancestor team. If TEAM is absent the team specified is the33
current team.34

KIND (optional) shall be a scalar integer constant expression.35

440 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value1
of KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank one2
whose size is equal to the number of images in the specified team that have initiated normal termination.3

5 Result Value. The elements of the result are the values of the indices of the images that are known to have4
initiated normal termination in the specified team, in numerically increasing order. If the executing image has5
previously executed an image control statement whose STAT= specifier assigned the value STAT_STOPPED_-6
IMAGE from the intrinsic module ISO_FORTRAN_ENV or invoked a collective subroutine whose STAT argu-7
ment was assigned STAT_STOPPED_IMAGE, at least one of the images participating in that image control8
statement or collective invocation shall be known to have initiated normal termination.9

6 Examples. If image 3 is the only image in the current team that is known to have initiated normal termination,10
STOPPED_IMAGES() will have the value [3]. If there are no images in the current team that have initiated11
normal termination, the value of STOPPED_IMAGES() will be a zero-sized array.12

16.9.200 STORAGE_SIZE (A [, KIND])13

1 Description. Storage size in bits.14

2 Class. Inquiry function.15

3 Arguments.16

A shall be a data object of any type. If it is polymorphic it shall not be an undefined pointer. If17
it is unlimited polymorphic or has any deferred type parameters, it shall not be an unallocated18
allocatable variable or a disassociated or undefined pointer.19

KIND (optional) shall be a scalar integer constant expression.20

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that specified by the21
value of KIND; otherwise, the kind type parameter is that of default integer type.22

5 Result Value. The result value is the size expressed in bits for an element of an array that has the dynamic23
type and type parameters of A. If the type and type parameters are such that storage association (19.5.3) applies,24
the result is consistent with the named constants defined in the intrinsic module ISO_FORTRAN_ENV.25

NOTE 1
An array element might take more bits to store than an isolated scalar, since any hardware-imposed alignment
requirements for array elements might not apply to a simple scalar variable.

NOTE 2
This is intended to be the size in memory that an object takes when it is stored; this might differ from the
size it takes during expression handling (which might be the native register size) or when stored in a file. If an
object is never stored in memory but only in a register, this function nonetheless returns the size it would take
if it were stored in memory.

6 Example. STORAGE_SIZE (1.0) has the same value as the named constant NUMERIC_STORAGE_SIZE in26
the intrinsic module ISO_FORTRAN_ENV.27

16.9.201 SUM (ARRAY, DIM [, MASK]) or SUM (ARRAY [, MASK])28

1 Description. Array reduced by addition.29

2 Class. Transformational function.30

3 Arguments.31

ARRAY shall be an array of numeric type.32

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.33

J3/23-007 441

J3/23-007 WD 1539-1 2023-02-17

MASK (optional) shall be of type logical and shall be conformable with ARRAY.1

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if2
DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where3
[d1, d2, . . . , dn] is the shape of ARRAY.4

5 Result Value.5

Case (i): The result of SUM (ARRAY) has a value equal to a processor-dependent approximation to the sum6
of all the elements of ARRAY or has the value zero if ARRAY has size zero.7

Case (ii): The result of SUM (ARRAY, MASK = MASK) has a value equal to a processor-dependent approx-8
imation to the sum of the elements of ARRAY corresponding to the true elements of MASK or has9
the value zero if there are no true elements.10

Case (iii): If ARRAY has rank one, SUM (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal to that11
of SUM (ARRAY [,MASK = MASK]). Otherwise, the value of element (s1, s2, . . . , sDIM−1, sDIM+1,12
. . . , sn) of SUM (ARRAY, DIM = DIM [, MASK = MASK]) is equal to13

SUM (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) [, MASK= MASK (s1, s2, . . . , sDIM−1,14
:, sDIM+1, . . . , sn)]).15

6 Examples.16

Case (i): The value of SUM ([1, 2, 3]) is 6.17

Case (ii): SUM (C, MASK= C > 0.0) forms the sum of the positive elements of C.18

Case (iii): If B is the array
[

1 3 5
2 4 6

]
, SUM (B, DIM = 1) is [3, 7, 11] and SUM (B, DIM = 2) is [9, 12].19

16.9.202 SYSTEM_CLOCK ([COUNT, COUNT_RATE, COUNT_MAX])20

1 Description. Query system clock.21

2 Class. Subroutine.22

3 Arguments.23

COUNT (optional) shall be an integer scalar with a decimal exponent range no smaller than that of default24
integer. It is an INTENT (OUT) argument. It is assigned a processor-dependent value based on25
the value of a processor clock, or −HUGE (COUNT) if there is no clock for the invoking image. The26
processor-dependent value is incremented by one for each clock count until the value COUNT_-27
MAX is reached and is reset to zero at the next count. It lies in the range 0 to COUNT_MAX if28
there is a clock.29

COUNT_RATE (optional) shall be an integer or real scalar. If it is of type integer, it shall have a decimal30
exponent range no smaller than that of default integer It is an INTENT (OUT) argument. It is31
assigned a processor-dependent approximation to the number of processor clock counts per second,32
or zero if there is no clock for the invoking image.33

COUNT_MAX (optional) shall be an integer scalar with a decimal exponent range no smaller than that of default34
integer. It is an INTENT (OUT) argument. It is assigned the maximum value that COUNT can35
have, or zero if there is no clock for the invoking image.36

4 In a reference to SYSTEM_CLOCK, all integer arguments shall have the same kind type parameter.37

5 Whether an image has no clock, has one or more clocks of its own, or shares a clock with another image, is38
processor dependent.39

6 If more than one clock is available, the types and kinds of the arguments to SYSTEM_CLOCK determine which40
clock is accessed. The processor should document the relationship between the clock selection and the argument41
characteristics.42

442 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7 Different invocations of SYSTEM_CLOCK should use the same types and kinds for the arguments, to ensure1
that any timing calculations are based on the same clock.2

8 It it recommended that all references to SYSTEM_CLOCK use integer arguments with a decimal exponent range3
of at least 18. This lets the processor select the most accurate clock available while minimizing how often the4
COUNT value resets to zero.5

9 Example. If the processor clock is a 24-hour clock that registers time at approximately 18.20648193 ticks per6
second, at 11:30 A.M. the reference7

CALL SYSTEM_CLOCK (COUNT = C, COUNT_RATE = R, COUNT_MAX = M)8
defines C = (11×3600+30×60)×18.20648193 = 753748, R = 18.20648193, and M = 24×3600×18.20648193−1 =9
1573039.10

16.9.203 TAN (X)11

1 Description. Tangent function.12

2 Class. Elemental function.13

3 Argument. X shall be of type real or complex.14

4 Result Characteristics. Same as X.15

5 Result Value. The result has a value equal to a processor-dependent approximation to tan(X). If X is of type16
real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in radians.17

6 Example. TAN (1.0) has the value 1.5574077 (approximately).18

16.9.204 TAND (X)19

1 Description. Degree tangent function.20

2 Class. Elemental function.21

3 Argument. X shall be of type real.22

4 Result Characteristics. Same as X.23

5 Result Value. The result has a value equal to a processor-dependent approximation to the tangent of X, which24
is regarded as a value in degrees.25

6 Example. TAND (180.0) has the value 0.0 (approximately).26

16.9.205 TANH (X)27

1 Description. Hyperbolic tangent function.28

2 Class. Elemental function.29

3 Argument. X shall be of type real or complex.30

4 Result Characteristics. Same as X.31

5 Result Value. The result has a value equal to a processor-dependent approximation to tanh(X). If X is of type32
complex its imaginary part is regarded as a value in radians.33

6 Example. TANH (1.0) has the value 0.76159416 (approximately).34

J3/23-007 443

J3/23-007 WD 1539-1 2023-02-17

16.9.206 TANPI (X)1

1 Description. Circular tangent function.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor-dependent approximation to the tangent of X, which6
is regarded as a value in half-revolutions; thus, TANPI (X) is approximately equal to TAN (X×π).7

6 Example. TAND (1.0) has the value 0.0 (approximately).8

16.9.207 TEAM_NUMBER ([TEAM])9

1 Description. Team number.10

2 Class. Transformational function.11

3 Argument. TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FOR-12
TRAN_ENV, whose value identifies the current or an ancestor team. If TEAM is absent, the team specified is13
the current team.14

4 Result Characteristics. Default integer scalar.15

5 Result Value. The result has the value −1 if the specified team is the initial team; otherwise, the result value16
is equal to the positive integer that identifies the specified team among its sibling teams.17

6 Example. The team number can be used to control which statements get executed, for example:18

TYPE(TEAM_TYPE) :: ODD_EVEN19

...20

FORM TEAM (2-MOD(ME,2), ODD_EVEN)21

...22

CHANGE TEAM (ODD_EVEN)23

SELECT CASE (TEAM_NUMBER())24

CASE (1)25

! Case for images with odd image indices in the parent team.26

CASE (2)27

! Case for images with even image indices in the parent team.28

END SELECT29

END TEAM30

16.9.208 THIS_IMAGE ([TEAM]) or THIS_IMAGE (COARRAY [, TEAM]) or
THIS_IMAGE (COARRAY, DIM [, TEAM])

31

1 Description. Cosubscript(s) for this image.32

2 Class. Transformational function.33

3 Arguments.34

COARRAY shall be a coarray of any type. If it is allocatable it shall be allocated. If its designator has more35
than one part-ref , the rightmost part-ref shall have nonzero corank.36

444 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

DIM shall be an integer scalar. Its value shall be in the range 1 ≤ DIM ≤ n, where n is the corank of1
COARRAY.2

TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV,3
whose value identifies the current or an ancestor team. If COARRAY appears, it shall be established4
in that team.5

4 Result Characteristics. Default integer. It is scalar if COARRAY does not appear or DIM appears; otherwise,6
the result has rank one and its size is equal to the corank of COARRAY.7

5 Result Value.8

Case (i): The result of THIS_IMAGE ([TEAM]) is a scalar with a value equal to the index of the invoking9
image in the team specified by TEAM, if present, or in the current team if absent.10

Case (ii): The result of THIS_IMAGE (COARRAY [, TEAM = TEAM]) is the sequence of cosubscript values11
for COARRAY that would specify the invoking image in the team specified by TEAM, if present,12
or in the current team if absent.13

Case (iii): The result of THIS_IMAGE (COARRAY, DIM [, TEAM = TEAM]) is the value of cosubscript14
DIM in the sequence of cosubscript values for COARRAY that would specify the invoking image in15
the team specified by TEAM, if present, or in the current team if absent.16

6 Examples. If A is declared by the statement17
REAL A (10, 20) [10, 0:9, 0:*]18

then on image 5, THIS_IMAGE () has the value 5 and THIS_IMAGE (A) has the value [5, 0, 0]. For the same19
coarray on image 213, THIS_IMAGE (A) has the value [3, 1, 2].20

7 The following code uses image 1 to read data. The other images then copy the data.21

IF (THIS_IMAGE()==1) READ (*,*) P22

SYNC ALL23

P = P[1]24

16.9.209 TINY (X)25

1 Description. Smallest positive model number.26

2 Class. Inquiry function.27

3 Argument. X shall be a real scalar or array.28

4 Result Characteristics. Scalar with the same type and kind type parameter as X.29

5 Result Value. The result has the value bemin−1 where b and emin are as defined in 16.4 for the model representing30
numbers of the same type and kind type parameter as X.31

6 Example. TINY (X) has the value 2−127 for real X whose model is as in 16.4, NOTE.32

16.9.210 TOKENIZE (STRING, SET, TOKENS [, SEPARATOR]) or
TOKENIZE (STRING, SET, FIRST, LAST)

33

1 Description. Parse a string into tokens.34

2 Class. Simple subroutine.35

3 Arguments.36

STRING shall be a scalar of type character. It is an INTENT (IN) argument.37

SET shall be a scalar of type character with the same kind type parameter as STRING. It is an INTENT38
(IN) argument. Each character in SET is a token delimiter. A sequence of zero or more characters39

J3/23-007 445

J3/23-007 WD 1539-1 2023-02-17

in STRING delimited by any token delimiter, or the beginning or end of STRING, comprise a token.1
Thus, two consecutive token delimiters in STRING, or a token delimiter in the first or last character2
of STRING, indicate a token with zero length.3

TOKENS shall be of type character with the same kind type parameter as STRING. It is an INTENT (OUT)4
argument. It shall not be a coarray or a coindexed object. It shall be an allocatable array of rank5
one with deferred length. It is allocated with the lower bound equal to one and the upper bound6
equal to the number of tokens in STRING, and with character length equal to the length of the7
longest token.8

The tokens in STRING are assigned by intrinsic assignment, in the order found, to the elements of9
TOKENS, in array element order.10

SEPARATOR (optional) shall be of type character with the same kind type parameter as STRING. It is an11
INTENT (OUT) argument. It shall not be a coarray or a coindexed object. It shall be an allocatable12
array of rank one with deferred length. It is allocated with the lower bound equal to one and the13
upper bound equal to one less than the number of tokens in STRING, and with character length14
equal to one. Each element SEPARATOR(i) is assigned the value of the ith token delimiter in15
STRING.16

FIRST shall be an allocatable array of type integer and rank one. It is an INTENT (OUT) argument. It17
shall not be a coarray or a coindexed object. It is allocated with the lower bound equal to one and18
the upper bound equal to the number of tokens in STRING. Each element is assigned, in array19
element order, the starting position of each token in STRING, in the order found. If a token has20
zero length, the starting position is equal to one if the token is at the beginning of STRING, and21
one greater than the position of the preceding delimitor otherwise.22

LAST shall be an allocatable array of type integer and rank one. It is an INTENT (OUT) argument. It23
shall not be a coarray or a coindexed object. It is allocated with the lower bound equal to one and24
the upper bound equal to the number of tokens in STRING. Each element is assigned, in array25
element order, the ending position of each token in STRING, in the order found. If a token has zero26
length, the ending position is one less than the starting position.27

4 Examples.28

Execution of29

CHARACTER (LEN=:), ALLOCATABLE :: STRING30

CHARACTER (LEN=:), ALLOCATABLE, DIMENSION(:) :: TOKENS31

CHARACTER (LEN=2) :: SET = ’,;’32

STRING = ’first,second,third’33

CALL TOKENIZE (STRING, SET, TOKENS)34

will assign the value [’first ’, ’second’, ’third ’] to TOKENS.35

Execution of36

CHARACTER (LEN=:), ALLOCATABLE :: STRING37

CHARACTER (LEN=2) :: SET = ’,;’38

INTEGER, DIMENSION(:):: FIRST, LAST39

STRING = ’first,second,,forth’40

CALL TOKENIZE (STRING, SET, FIRST, LAST)41

will assign the value [1, 7, 14, 15] to FIRST, and the value [5, 12, 13, 19] to LAST.42

16.9.211 TRAILZ (I)43

1 Description. Number of trailing zero bits.44

2 Class. Elemental function.45

3 Argument. I shall be of type integer.46

446 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Result Characteristics. Default integer.1

5 Result Value. If all of the bits of I are zero, the result value is BIT_SIZE (I). Otherwise, the result value is the2
position of the rightmost 1 bit in I. The model for the interpretation of an integer value as a sequence of bits is3
in 16.3.4

6 Examples. TRAILZ (8) has the value 3.5

16.9.212 TRANSFER (SOURCE, MOLD [, SIZE])6

1 Description. Transfer physical representation.7

2 Class. Transformational function.8

3 Arguments.9

SOURCE shall be a scalar or array of any type.10

MOLD shall be a scalar or array of any type. If it is a variable, it need not be defined. If the storage size of11
SOURCE is greater than zero and MOLD is an array, a scalar with the type and type parameters12
of MOLD shall not have a storage size equal to zero.13

SIZE (optional) shall be an integer scalar. The corresponding actual argument shall not be an optional dummy14
argument.15

4 Result Characteristics. The result is of the same type and type parameters as MOLD.16

Case (i): If MOLD is a scalar and SIZE is absent, the result is a scalar.17

Case (ii): If MOLD is an array and SIZE is absent, the result is an array and of rank one. Its size is as small18
as possible such that its physical representation is not shorter than that of SOURCE.19

Case (iii): If SIZE is present, the result is an array of rank one and size SIZE.20

5 Result Value. If the physical representation of the result has the same length as that of SOURCE, the physical21
representation of the result is that of SOURCE. If the physical representation of the result is longer than that22
of SOURCE, the physical representation of the leading part is that of SOURCE and the remainder is processor23
dependent. If the physical representation of the result is shorter than that of SOURCE, the physical representation24
of the result is the leading part of SOURCE. If D and E are scalar variables such that the physical representation25
of D is as long as or longer than that of E, the value of TRANSFER (TRANSFER (E, D), E) shall be the value26
of E. IF D is an array and E is an array of rank one, the value of TRANSFER (TRANSFER (E, D), E, SIZE (E))27
shall be the value of E.28

6 Examples.29

Case (i): TRANSFER (1082130432, 0.0) has the value 4.0 on a processor that represents the values 4.0 and30
1082130432 as the string of binary digits 0100 0000 1000 0000 0000 0000 0000 0000.31

Case (ii): TRANSFER ([1.1, 2.2, 3.3], [(0.0, 0.0)])) is a complex rank-one array of length two whose first32
element has the value (1.1, 2.2) and whose second element has a real part with the value 3.3. The33
imaginary part of the second element is processor dependent.34

Case (iii): TRANSFER ([1.1, 2.2, 3.3], [(0.0, 0.0)], 1) is a complex rank-one array of length one whose only35
element has the value (1.1, 2.2).36

16.9.213 TRANSPOSE (MATRIX)37

1 Description. Transpose of an array of rank two.38

2 Class. Transformational function.39

3 Argument. MATRIX shall be a rank-two array of any type.40

4 Result Characteristics. The result is an array of the same type and type parameters as MATRIX and with41
rank two and shape [n, m] where [m, n] is the shape of MATRIX.42

J3/23-007 447

J3/23-007 WD 1539-1 2023-02-17

5 Result Value. Element (i, j) of the result has the value MATRIX (j + LBOUND (MATRIX, 1) − 1, i +1
LBOUND (MATRIX, 2) − 1).2

6 Example. If A is the array

 1 2 3
4 5 6
7 8 9

, then TRANSPOSE (A) has the value

 1 4 7
2 5 8
3 6 9

.3

16.9.214 TRIM (STRING)4

1 Description. String without trailing blanks.5

2 Class. Transformational function.6

3 Argument. STRING shall be a character scalar.7

4 Result Characteristics. Character with the same kind type parameter value as STRING and with a length8
that is the length of STRING less the number of trailing blanks in STRING. If STRING contains no nonblank9
characters, the result has zero length.10

5 Result Value. The value of the result is the same as STRING except any trailing blanks are removed.11

6 Example. TRIM (’ A B ’) has the value ’ A B’.12

16.9.215 UBOUND (ARRAY [, DIM, KIND])13

1 Description. Upper bound(s).14

2 Class. Inquiry function.15

3 Arguments.16

ARRAY shall be assumed-rank or an array. It shall not be an unallocated allocatable array or a pointer that17
is not associated. If ARRAY is an assumed-size array, DIM shall be present with a value less than18
the rank of ARRAY.19

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.20
The corresponding actual argument shall not be an optional dummy argument, a disassociated21
pointer, or an unallocated allocatable.22

KIND (optional) shall be a scalar integer constant expression.23

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of24
KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is present;25
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.26

5 Result Value.27

Case (i): If DIM is present, ARRAY is a whole array, and dimension DIM of ARRAY has nonzero extent,28
the result has a value equal to the upper bound for subscript DIM of ARRAY. Otherwise, if DIM29
is present and ARRAY is assumed-rank, the value of the result is as if ARRAY were a whole array,30
with the extent of the final dimension of ARRAY when ARRAY is associated with an assumed-size31
array being considered to be −1. Otherwise, if DIM is present, the result has a value equal to the32
number of elements in dimension DIM of ARRAY.33

Case (ii): If ARRAY has rank zero, UBOUND (ARRAY) has a value that is a zero-sized array. Otherwise,34
UBOUND (ARRAY) has a value whose ith element is equal to UBOUND (ARRAY, i), for i = 1, 2,35
. . . , n, where n is the rank of ARRAY. UBOUND (ARRAY, KIND=KIND) has a value whose ith36
element is equal to UBOUND (ARRAY, i, KIND=KIND), for i = 1, 2, . . . , n, where n is the37
rank of ARRAY.38

6 Examples. If A is declared by the statement39
REAL A (2:3, 7:10)40

448 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

then UBOUND (A) is [3, 10] and UBOUND (A, DIM = 2) is 10.1

NOTE
If ARRAY is assumed-rank and has rank zero, DIM cannot be present since it cannot satisfy the requirement
1 ≤ DIM ≤ 0.

16.9.216 UCOBOUND (COARRAY [, DIM, KIND])2

1 Description. Upper cobound(s) of a coarray.3

2 Class. Inquiry function.4

3 Arguments.5

COARRAY shall be a coarray of any type. It may be a scalar or an array. If it is allocatable it shall be allocated.6
If its designator has more than one part-ref , the rightmost part-ref shall have nonzero corank.7

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the corank8
of COARRAY. The corresponding actual argument shall not be an optional dummy argument, a9
disassociated pointer, or an unallocated allocatable.10

KIND (optional) shall be a scalar integer constant expression.11

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of12
KIND; otherwise, the kind type parameter is that of default integer type. The result is scalar if DIM is present;13
otherwise, the result is an array of rank one and size n, where n is the corank of COARRAY.14

5 Result Value. The final upper cobound is the final cosubscript in the cosubscript list for the coarray that selects15
the image whose index is equal to the number of images in the current team.16

Case (i): If DIM is present, the result has a value equal to the upper cobound for codimension DIM of17
COARRAY.18

Case (ii): If DIM is absent, the result has a value whose ith element is equal to the upper cobound for19
codimension i of COARRAY, for i = 1, 2,. . . , n, where n is the corank of COARRAY.20

6 Examples. If NUM_IMAGES() has the value 30 and A is allocated by the statement21

ALLOCATE (A [2:3, 0:7, *])22

then UCOBOUND (A) is [3, 7, 2] and UCOBOUND (A, DIM=2) is 7. Note that the cosubscripts [3, 7, 2] do23
not correspond to an actual image.24

16.9.217 UNPACK (VECTOR, MASK, FIELD)25

1 Description. Vector unpacked into an array.26

2 Class. Transformational function.27

3 Arguments.28

VECTOR shall be a rank-one array of any type. Its size shall be at least t where t is the number of true29
elements in MASK.30

MASK shall be a logical array.31

FIELD shall be of the same type and type parameters as VECTOR and shall be conformable with MASK.32

4 Result Characteristics. The result is an array of the same type and type parameters as VECTOR and the33
same shape as MASK.34

5 Result Value. The element of the result that corresponds to the ith true element of MASK, in array element35
order, has the value VECTOR (i) for i = 1, 2, . . . , t, where t is the number of true values in MASK. Each other36
element has a value equal to FIELD if FIELD is scalar or to the corresponding element of FIELD if it is an array.37

J3/23-007 449

J3/23-007 WD 1539-1 2023-02-17

6 Examples. Particular values can be “scattered” to particular positions in an array by using UNPACK. If M is the1

array

 1 0 0
0 1 0
0 0 1

, V is the array [1, 2, 3], and Q is the logical mask

 . T .
T . .
. . T

, where “T” represents true2

and “.” represents false, then the result of UNPACK (V, MASK = Q, FIELD = M) has the value

 1 2 0
1 1 0
0 0 3

3

and the result of UNPACK (V, MASK = Q, FIELD = 0) has the value

 0 2 0
1 0 0
0 0 3

.4

16.9.218 VERIFY (STRING, SET [, BACK, KIND])5

1 Description. Character set non-membership search.6

2 Class. Elemental function.7

3 Arguments.8

STRING shall be of type character.9

SET shall be of type character with the same kind type parameter as STRING.10

BACK (optional) shall be of type logical.11

KIND (optional) shall be a scalar integer constant expression.12

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of13
KIND; otherwise the kind type parameter is that of default integer type.14

5 Result Value.15

Case (i): If BACK is absent or has the value false and if STRING contains at least one character that is not16
in SET, the value of the result is the position of the leftmost character of STRING that is not in17
SET.18

Case (ii): If BACK is present with the value true and if STRING contains at least one character that is not19
in SET, the value of the result is the position of the rightmost character of STRING that is not in20
SET.21

Case (iii): The value of the result is zero if each character in STRING is in SET or if STRING has zero length.22

6 Examples.23

Case (i): VERIFY (’ABBA’, ’A’) has the value 2.24

Case (ii): VERIFY (’ABBA’, ’A’, BACK = .TRUE.) has the value 3.25

Case (iii): VERIFY (’ABBA’, ’AB’) has the value 0.26

16.10 Standard intrinsic modules27

16.10.1 General28

1 This document defines five standard intrinsic modules: a Fortran environment module, a set of three modules29
to support floating-point exceptions and IEEE arithmetic, and a module to support interoperability with the C30
programming language.31

2 The intrinsic modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES are described in32
Clause 17. The intrinsic module ISO_C_BINDING is described in Clause 18. The module procedures described33
in 16.10.2 are simple.34

450 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
The types and procedures defined in standard intrinsic modules are not themselves intrinsic.

3 A processor may extend the standard intrinsic modules to provide public entities in them in addition to those1
specified in this document.2

16.10.2 The ISO_FORTRAN_ENV intrinsic module3

16.10.2.1 General4

1 The intrinsic module ISO_FORTRAN_ENV provides public entities relating to the Fortran environment.5

2 The processor shall provide the named constants, derived types, and procedures described in 16.10.2. In the6
detailed descriptions below, procedure names are generic and not specific.7

16.10.2.2 ATOMIC_INT_KIND8

1 The value of the default integer scalar constant ATOMIC_INT_KIND is the kind type parameter value of type9
integer variables for which the processor supports atomic operations specified by atomic subroutines.10

16.10.2.3 ATOMIC_LOGICAL_KIND11

1 The value of the default integer scalar constant ATOMIC_LOGICAL_KIND is the kind type parameter value12
of type logical variables for which the processor supports atomic operations specified by atomic subroutines.13

16.10.2.4 CHARACTER_KINDS14

1 The values of the elements of the default integer array constant CHARACTER_KINDS are the kind values15
supported by the processor for variables of type character. The order of the values is processor dependent. The16
rank of the array is one, its lower bound is one, and its size is the number of character kinds supported.17

16.10.2.5 CHARACTER_STORAGE_SIZE18

1 The value of the default integer scalar constant CHARACTER_STORAGE_SIZE is the size expressed in bits19
of the character storage unit (19.5.3.2).20

16.10.2.6 COMPILER_OPTIONS ()21

1 Description. Processor-dependent string describing the options that controlled the program translation phase.22

2 Class. Transformational function.23

3 Argument. None.24

4 Result Characteristics. Default character scalar with processor-dependent length.25

5 Result Value. A processor-dependent value which describes the options that controlled the translation phase of26
program execution. This value should include relevant information that could be useful for diagnosing problems27
at a later date.28

6 Example. COMPILER_OPTIONS () might have the value ’/OPTIMIZE /FLOAT=IEEE’.29

16.10.2.7 COMPILER_VERSION ()30

1 Description. Processor-dependent string identifying the program translation phase.31

J3/23-007 451

J3/23-007 WD 1539-1 2023-02-17

2 Class. Transformational function.1

3 Argument. None.2

4 Result Characteristics. Default character scalar with processor-dependent length.3

5 Result Value. A processor-dependent value that identifies the name and version of the program translation4
phase of the processor. This value should include relevant information that could be useful for diagnosing problems5
at a later date.6

6 Example. COMPILER_VERSION () might have the value ’Fast KL-10 Compiler Version 7’.7

NOTE
Relevant information that could be useful for diagnosing problems at a later date might include compiler release
and patch level, default compiler arguments, environment variable values, and run time library requirements.
A processor might include this information in an object file automatically, without the user needing to save the
result of this function in a variable.

16.10.2.8 CURRENT_TEAM8

1 The value of the default integer scalar constant CURRENT_TEAM identifies the current team when it is used9
as the LEVEL argument to GET_TEAM.10

16.10.2.9 ERROR_UNIT11

1 The value of the default integer scalar constant ERROR_UNIT identifies the processor-dependent preconnected12
external unit used for the purpose of error reporting (12.5). This unit may be the same as OUTPUT_UNIT.13
The value shall not be −1.14

16.10.2.10 EVENT_TYPE15

1 EVENT_TYPE is a derived type with private components. It is an extensible type with no type parameters.16
Each nonallocatable component is fully default-initialized.17

2 A scalar variable of type EVENT_TYPE is an event variable. The value of an event variable includes its event18
count, which is updated by execution of a sequence of EVENT POST or EVENT WAIT statements. The effect19
of each change is as if the intrinsic subroutine ATOMIC_ADD were executed with a variable that stores the20
event count as its ATOM argument. A coarray that is of type EVENT_TYPE may be referenced or defined21
during execution of a segment that is unordered relative to the execution of another segment in which that22
coarray is defined. The event count is of type integer with kind ATOMIC_INT_KIND from the intrinsic module23
ISO_FORTRAN_ENV. The initial value of the event count of an event variable is zero.24

C1603 A named entity with declared type EVENT_TYPE, or which has a noncoarray potential subobject25
component with declared type EVENT_TYPE, shall be a variable. A component that is of such a type26
shall be a data component.27

C1604 A named variable with declared type EVENT_TYPE shall be a coarray. A named variable with a28
noncoarray potential subobject component of type EVENT_TYPE shall be a coarray.29

C1605 An event variable shall not appear in a variable definition context except as the event-variable in an30
EVENT POST or EVENT WAIT statement, as an allocate-object, or as an actual argument in a reference31
to a procedure with an explicit interface if the corresponding dummy argument has INTENT (INOUT).32

C1606 A variable with a nonpointer subobject of type EVENT_TYPE shall not appear in a variable definition33
context except as an allocate-object in an ALLOCATE statement without a SOURCE= specifier, as an34
allocate-object in a DEALLOCATE statement, or as an actual argument in a reference to a procedure35
with an explicit interface if the corresponding dummy argument has INTENT (INOUT).36

452 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1
The restrictions against changing an event variable except via EVENT POST and EVENT WAIT statements
ensure the integrity of its value and facilitate efficient implementation, particularly when special synchronization
is needed for correct event handling.

NOTE 2
Updates to variables via atomic subroutines are coherent but not necessarily consistent, so a processor might
have to use extra synchronization to obtain the consistency required for the segments ordered by EVENT POST
and EVENT WAIT statements.

16.10.2.11 FILE_STORAGE_SIZE1

1 The value of the default integer scalar constant FILE_STORAGE_SIZE is the size expressed in bits of the file2
storage unit (12.3.5).3

16.10.2.12 INITIAL_TEAM4

1 The value of the default integer scalar constant INITIAL_TEAM identifies the initial team when it is used as5
the LEVEL argument to GET_TEAM.6

16.10.2.13 INPUT_UNIT7

1 The value of the default integer scalar constant INPUT_UNIT identifies the same processor-dependent external8
unit as the one identified by an asterisk in a READ statement; this unit is the one used for a READ statement9
that does not contain an input/output control list (12.6.4.3). This unit is preconnected for sequential formatted10
input on image one in the initial team only, and is not preconnected on any other image. The value shall not be11
−1.12

16.10.2.14 INT8, INT16, INT32, and INT6413

1 The values of these default integer scalar named constants shall be those of the kind type parameters that specify14
an INTEGER type whose storage size expressed in bits is 8, 16, 32, and 64 respectively. If, for any of these15
constants, the processor supports more than one kind of that size, it is processor dependent which kind value is16
provided. If the processor supports no kind of a particular size, that constant shall be equal to −2 if the processor17
supports a kind with larger size and −1 otherwise.18

16.10.2.15 INTEGER_KINDS19

1 The values of the elements of the default integer array constant INTEGER_KINDS are the kind values supported20
by the processor for variables of type integer. The order of the values is processor dependent. The rank of the21
array is one, its lower bound is one, and its size is the number of integer kinds supported.22

16.10.2.16 IOSTAT_END23

1 The value of the default integer scalar constant IOSTAT_END is assigned to the variable specified in an IOSTAT=24
specifier (12.11.5) if an end-of-file condition occurs during execution of an input statement and no error condition25
occurs. This value shall be negative.26

16.10.2.17 IOSTAT_EOR27

1 The value of the default integer scalar constant IOSTAT_EOR is assigned to the variable specified in an IOSTAT=28
specifier (12.11.5) if an end-of-record condition occurs during execution of an input statement and no end-of-file29
or error condition occurs. This value shall be negative and different from the value of IOSTAT_END.30

J3/23-007 453

J3/23-007 WD 1539-1 2023-02-17

16.10.2.18 IOSTAT_INQUIRE_INTERNAL_UNIT1

1 The value of the default integer scalar constant IOSTAT_INQUIRE_INTERNAL_UNIT is assigned to the2
variable specified in an IOSTAT= specifier in an INQUIRE statement (12.10) if a file-unit-number identifies an3
internal unit in that statement.4

NOTE
This can only occur when a defined input/output procedure is called by the processor as the result of executing
a parent data transfer statement (12.6.4.8.3) for an internal unit.

16.10.2.19 LOCK_TYPE5

1 LOCK_TYPE is a derived type with private components; no component is allocatable or a pointer. It is an6
extensible type with no type parameters. All components have default initialization.7

2 A scalar variable of type LOCK_TYPE is a lock variable. A lock variable can have one of two states: locked and8
unlocked. The unlocked state is represented by the one value that is the default value of a LOCK_TYPE variable;9
this is the value specified by the structure constructor LOCK_TYPE (). The locked state is represented by all10
other values. The value of a lock variable can be changed with the LOCK and UNLOCK statements (11.7.10).11

C1607 A named entity with declared type LOCK_TYPE, or which has a noncoarray potential subobject com-12
ponent with declared type LOCK_TYPE, shall be a variable. A component that is of such a type shall13
be a data component.14

C1608 A named variable with declared type LOCK_TYPE shall be a coarray. A named variable with a15
noncoarray potential subobject component of type LOCK_TYPE shall be a coarray.16

C1609 A lock variable shall not appear in a variable definition context except as the lock-variable in a LOCK or17
UNLOCK statement, as an allocate-object, or as an actual argument in a reference to a procedure with18
an explicit interface where the corresponding dummy argument has INTENT (INOUT).19

C1610 A variable with a subobject of type LOCK_TYPE shall not appear in a variable definition context except20
as an allocate-object or as an actual argument in a reference to a procedure with an explicit interface21
where the corresponding dummy argument has INTENT (INOUT).22

NOTE
The restrictions against changing a lock variable except via the LOCK and UNLOCK statements ensure the
integrity of its value and facilitate efficient implementation, particularly when special synchronization is needed
for correct lock operation.

16.10.2.20 LOGICAL_KINDS23

1 The values of the elements of the default integer array constant LOGICAL_KINDS are the kind values supported24
by the processor for variables of type logical. The order of the values is processor dependent. The rank of the25
array is one, its lower bound is one, and its size is the number of logical kinds supported.26

16.10.2.21 LOGICAL8, LOGICAL16, LOGICAL32, and LOGICAL6427

1 The values of these default integer scalar named constants shall be those of the kind type parameters that specify28
a LOGICAL type whose storage size expressed in bits is 8, 16, 32, and 64 respectively. If, for any of these29
constants, the processor supports more than one kind of that size, it is processor dependent which kind value is30
provided. If the processor supports no kind of a particular size, that constant shall be equal to −2 if the processor31
supports a kind with larger size and −1 otherwise.32

454 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.10.2.22 NOTIFY_TYPE1

1 NOTIFY_TYPE is a derived type with private components. It is an extensible type with no type parameters.2
Each nonallocatable component is fully default-initialized.3

2 A scalar variable of type NOTIFY_TYPE is a notify variable. The value of a notify variable includes its notify4
count, which is updated by execution of assignment statements that have a NOTIFY= specifier and NOTIFY5
WAIT statements.6

3 The effect of each update is as if the intrinsic subroutine ATOMIC_ADD were executed with a variable that7
stores the notify count as its ATOM argument. A coarray that is of type NOTIFY_TYPE may be referenced8
or defined during execution of a segment that is unordered relative to the execution of another segment in which9
that coarray is defined. The notify count is of type integer with kind ATOMIC_INT_KIND from the intrinsic10
module ISO_FORTRAN_ENV. The initial value of the notify count of a notify variable is zero.11

C1611 A named entity with declared type NOTIFY_TYPE, or which has a noncoarray potential subobject12
component with declared type NOTIFY_TYPE, shall be a variable. A component that is of such a type13
shall be a data component.14

C1612 A named variable with declared type NOTIFY_TYPE shall be a coarray. A named variable with a15
noncoarray potential subobject component of type NOTIFY_TYPE shall be a coarray.16

C1613 A notify variable shall not appear in a variable definition context except as the notify-variable of a17
NOTIFY= specifier or NOTIFY WAIT statement, as an allocate-object, or as an actual argument in a18
reference to a procedure with an explicit interface if the corresponding dummy argument has INTENT19
(INOUT).20

C1614 A variable with a nonpointer subobject of type NOTIFY_TYPE shall not appear in a variable definition21
context except as an allocate-object in an ALLOCATE statement without a SOURCE= specifier, as an22
allocate-object in a DEALLOCATE statement, or as an actual argument in a reference to a procedure23
with an explicit interface if the corresponding dummy argument has INTENT (INOUT).24

NOTE
The restrictions on changing a notify variable ensure the integrity of its value and facilitate efficient implement-
ation, particularly when special synchronization is needed for correct notify handling.

16.10.2.23 NUMERIC_STORAGE_SIZE25

1 The value of the default integer scalar constant NUMERIC_STORAGE_SIZE is the size expressed in bits of the26
numeric storage unit (19.5.3.2).27

16.10.2.24 OUTPUT_UNIT28

1 The value of the default integer scalar constant OUTPUT_UNIT identifies the same processor-dependent external29
unit preconnected for sequential formatted output as the one identified by an asterisk in a WRITE statement30
(12.6.4.3); this unit is the one used by a PRINT statement. The value shall not be −1.31

16.10.2.25 PARENT_TEAM32

1 The value of the default integer scalar constant PARENT_TEAM identifies the parent team when it is used as33
the LEVEL argument to GET_TEAM.34

16.10.2.26 REAL_KINDS35

1 The values of the elements of the default integer array constant REAL_KINDS are the kind values supported by36
the processor for variables of type real. The order of the values is processor dependent. The rank of the array is37
one, its lower bound is one, and its size is the number of real kinds supported.38

J3/23-007 455

J3/23-007 WD 1539-1 2023-02-17

16.10.2.27 REAL16, REAL32, REAL64, and REAL1281

1 The values of these default integer scalar named constants shall be those of the kind type parameters that specify2
a REAL type whose storage size expressed in bits is 16, 32, 64, and 128 respectively. If, for any of these constants,3
the processor supports more than one kind of that size, it is processor dependent which kind value is provided. If4
the processor supports no kind of a particular size, that constant shall be equal to −2 if the processor supports5
kinds of a larger size and −1 otherwise.6

16.10.2.28 STAT_FAILED_IMAGE7

1 If the processor has the ability to detect that an image has failed, the value of the default integer scalar constant8
STAT_FAILED_IMAGE is positive; otherwise, the value of STAT_FAILED_IMAGE is negative. If an image9
involved in execution of an image control statement, a reference to a coindexed object, or execution of a collective10
or atomic subroutine has failed, and no other error condition occurs, the value of STAT_FAILED_IMAGE is11
assigned to the variable specified in a STAT= specifier in the execution of an image control statement or reference12
to a coindexed object, or to the STAT argument in an invocation of a collective or atomic subroutine.13

16.10.2.29 STAT_LOCKED14

1 The value of the default integer scalar constant STAT_LOCKED is assigned to the variable specified in a STAT=15
specifier (11.7.11) of a LOCK statement if the lock variable is locked by the executing image.16

16.10.2.30 STAT_LOCKED_OTHER_IMAGE17

1 The value of the default integer scalar constant STAT_LOCKED_OTHER_IMAGE is assigned to the variable18
specified in a STAT= specifier (11.7.11) of an UNLOCK statement if the lock variable is locked by another image.19

16.10.2.31 STAT_STOPPED_IMAGE20

1 The value of the default integer scalar constant STAT_STOPPED_IMAGE is assigned to the variable specified21
in a STAT= specifier (9.7.4, 11.7.11), if execution of the statement with that specifier requires synchronization22
with an image that has initiated normal termination. It is assigned to a STAT argument in a reference to a23
collective subroutine if any image of the current team has initiated normal termination. This value shall be24
positive.25

16.10.2.32 STAT_UNLOCKED26

1 The value of the default integer scalar constant STAT_UNLOCKED is assigned to the variable specified in a27
STAT= specifier (11.7.11) of an UNLOCK statement if the lock variable is unlocked.28

16.10.2.33 STAT_UNLOCKED_FAILED_IMAGE29

1 The value of the default integer scalar constant STAT_UNLOCKED_FAILED_IMAGE is assigned to the vari-30
able specified in a STAT= specifier (11.7.11) of a LOCK statement if the lock variable is unlocked because of the31
failure of the image that locked it.32

16.10.2.34 TEAM_TYPE33

1 TEAM_TYPE is a derived type with private components. It is an extensible type with no type parameters.34
Each nonallocatable component is fully default-initialized.35

2 A scalar variable of type TEAM_TYPE is a team variable, and can identify a team. The default initial value of36
a team variable does not identify any team.37

456 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16.10.2.35 Uniqueness of named constant values1

1 The values of these named constants shall be distinct:2

IOSTAT_INQUIRE_INTERNAL_UNIT STAT_STOPPED_IMAGE
STAT_FAILED_IMAGE STAT_UNLOCKED
STAT_LOCKED STAT_UNLOCKED_FAILED_IMAGE
STAT_LOCKED_OTHER_IMAGE

3

J3/23-007 457

J3/23-007 WD 1539-1 2023-02-17

17 Exceptions and IEEE arithmetic1

17.1 Overview of IEEE arithmetic support2

1 The intrinsic modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES provide support3
for the facilities defined by ISO/IEC 60559:2020∗. Whether the modules are provided is processor dependent. If4
the module IEEE_FEATURES is provided, which of the named constants defined in this document are included5
is processor dependent. The module IEEE_ARITHMETIC behaves as if it contained a USE statement for6
IEEE_EXCEPTIONS; everything that is public in IEEE_EXCEPTIONS is public in IEEE_ARITHMETIC.7

NOTE 1
The types and procedures defined in these modules are not themselves intrinsic.

2 If IEEE_EXCEPTIONS or IEEE_ARITHMETIC is accessible in a scoping unit, the exceptions IEEE_OVER-8
FLOW and IEEE_DIVIDE_BY_ZERO are supported in the scoping unit for all kinds of real and complex9
IEEE floating-point data. Which other exceptions are supported in the scoping unit can be determined by the10
function IEEE_SUPPORT_FLAG (17.11.55); whether control of halting is supported can be determined by11
the function IEEE_SUPPORT_HALTING. The extent of support of the other exceptions can be influenced by12
the accessibility of the named constants IEEE_INEXACT_FLAG, IEEE_INVALID_FLAG, and IEEE_UN-13
DERFLOW_FLAG of the module IEEE_FEATURES. If IEEE_UNDERFLOW_FLAG is accessible, within14
the scoping unit the processor shall support underflow for at least one kind of real. Similarly, if IEEE_INEX-15
ACT_FLAG or IEEE_INVALID_FLAG is accessible, within the scoping unit the processor shall support the16
exception for at least one kind of real. If IEEE_HALTING is accessible, within the scoping unit the processor17
shall support control of halting.18

NOTE 2
IEEE_INVALID is not required to be supported whenever IEEE_EXCEPTIONS is accessed. This is to allow
a processor whose arithmetic does not conform to ISO/IEC 60559:2020 to provide support for overflow and
divide_by_zero. On a processor which does support ISO/IEC 60559:2020, invalid is an equally serious condition.

3 If a scoping unit does not access IEEE_FEATURES, IEEE_EXCEPTIONS, or IEEE_ARITHMETIC, the level19
of support is processor dependent, and need not include support for any exceptions. If a flag is signaling on entry20
to such a scoping unit, the processor ensures that it is signaling on exit. If a flag is quiet on entry to such a21
scoping unit, whether it is signaling on exit is processor dependent.22

4 Additional ISO/IEC/IEEE 60559:2020 facilities are available from the module IEEE_ARITHMETIC. The extent23
of support can be influenced by the accessibility of the named constants of the module IEEE_FEATURES. If24
IEEE_DATATYPE of IEEE_FEATURES is accessible, within the scoping unit the processor shall support25
IEEE arithmetic for at least one kind of real. Similarly, if IEEE_DENORMAL, IEEE_DIVIDE, IEEE_INF,26
IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT, or IEEE_SUBNORMAL is accessible, within the scoping unit27
the processor shall support the feature for at least one kind of real. In the case of IEEE_ROUNDING, it shall28
support the rounding modes IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, and IEEE_DOWN; support for29
IEEE_AWAY is also required if there is at least one kind of real X for which IEEE_SUPPORT_DATATYPE30
(X) is true and RADIX (X) is equal to ten. Note that the effect of IEEE_DENORMAL is the same as that of31
IEEE_SUBNORMAL.32

5 Execution might be slowed on some processors by the support of some features. If IEEE_EXCEPTIONS or33
IEEE_ARITHMETIC is accessed but IEEE_FEATURES is not accessed, the supported subset of features is34

∗ Because ISO/IEC 60559:2020 was originally an IEEE standard, its facilities are widely known as “IEEE arithmetic”, and this
terminology is used by this document.

458 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

processor dependent. The processor’s fullest support is provided when all of IEEE_FEATURES is accessed as in1

USE, INTRINSIC :: IEEE_ARITHMETIC; USE, INTRINSIC :: IEEE_FEATURES2

but execution might then be slowed by the presence of a feature that is not needed.3

17.2 Derived types, constants, and operators defined in the modules4

1 The modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES define derived types whose5
components are all private. No direct component of any of these types is allocatable or a pointer.6

2 The module IEEE_EXCEPTIONS defines the following types and constants.7

• IEEE_FLAG_TYPE is for identifying a particular exception flag. Its only possible values are those of8
named constants defined in the module: IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_-9
ZERO, IEEE_UNDERFLOW, and IEEE_INEXACT. The module also defines the array named constants10
IEEE_USUAL = [IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_INVALID] and IEEE_-11
ALL = [IEEE_USUAL, IEEE_UNDERFLOW, IEEE_INEXACT].12

• IEEE_MODES_TYPE is for representing the floating-point modes.13

• IEEE_STATUS_TYPE is for representing the floating-point status.14

3 The module IEEE_ARITHMETIC defines the following types, constants, and operators.15

• The type IEEE_CLASS_TYPE, for identifying a class of floating-point values. Its only possible values16
are those of named constants defined in the module: IEEE_SIGNALING_NAN, IEEE_QUIET_NAN,17
IEEE_NEGATIVE_INF, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_SUBNORMAL, IEEE_-18
NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_SUBNORMAL, IEEE_POSITIVE_-19
NORMAL, IEEE_POSITIVE_INF, and IEEE_OTHER_VALUE. The named constants IEEE_NEGAT-20
IVE_DENORMAL and IEEE_POSITIVE_DENORMAL are defined with the same value as IEEE_NEG-21
ATIVE_SUBNORMAL and IEEE_POSITIVE_SUBNORMAL respectively.22

• The type IEEE_ROUND_TYPE, for identifying a particular rounding mode. Its only possible values23
are those of named constants defined in the module: IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP,24
IEEE_DOWN, IEEE_AWAY and IEEE_OTHER for the rounding modes specified in this document.25

• The simple elemental operator == for two values of one of these types to return true if the values are the26
same and false otherwise.27

• The simple elemental operator /= for two values of one of these types to return true if the values differ and28
false otherwise.29

4 The module IEEE_FEATURES defines the following types and constants.30

• The type IEEE_FEATURES_TYPE, for expressing the need for particular ISO/IEC/IEEE 60559:202031
features. Its only possible values are those of named constants defined in the module: IEEE_DATATYPE,32
IEEE_DENORMAL, IEEE_DIVIDE, IEEE_HALTING, IEEE_INEXACT_FLAG, IEEE_INF, IEEE_-33
INVALID_FLAG, IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT, IEEE_SUBNORMAL, and IEEE_-34
UNDERFLOW_FLAG.35

17.3 The exceptions36

1 The exceptions are the following.37

• IEEE_OVERFLOW occurs in an intrinsic real addition, subtraction, multiplication, division, or conversion38
by the intrinsic function REAL, as specified by ISO/IEC/IEEE 60559:2020 if IEEE_SUPPORT_DATA-39
TYPE is true for the operands of the operation or conversion, and as determined by the processor otherwise.40

J3/23-007 459

J3/23-007 WD 1539-1 2023-02-17

It occurs in an intrinsic real exponentiation as determined by the processor. It occurs in a complex op-1
eration, or conversion by the intrinsic function CMPLX, if it is caused by the calculation of the real or2
imaginary part of the result.3

• IEEE_DIVIDE_BY_ZERO occurs in a real division as specified by ISO/IEC/IEEE 60559:2020 if IEEE_-4
SUPPORT_DATATYPE is true for the operands of the division, and as determined by the processor5
otherwise. It is processor-dependent whether it occurs in a real exponentiation with a negative exponent.6
It occurs in a complex division if it is caused by the calculation of the real or imaginary part of the result.7

• IEEE_INVALID occurs when a real or complex operation or assignment is invalid; possible examples are8
SQRT (X) when X is real and has a nonzero negative value, and conversion to an integer (by assignment,9
an intrinsic procedure, or a procedure defined in an intrinsic module) when the result is too large to be10
representable. IEEE_INVALID occurs for numeric relational intrinsic operations as specified below.11

• IEEE_UNDERFLOW occurs when the result for an intrinsic real operation or assignment has an absolute12
value less than a processor-dependent limit, or the real or imaginary part of the result for an intrinsic13
complex operation or assignment has an absolute value less than a processor-dependent limit.14

• IEEE_INEXACT occurs when the result of a real or complex operation or assignment is not exact.15

2 Each exception has a flag whose value is either quiet or signaling. The value can be determined by the subroutine16
IEEE_GET_FLAG. Its initial value is quiet. It is set to signaling when the associated exception occurs, except17
that the flag for IEEE_UNDERFLOW is not set if the result of the operation that caused the exception was exact18
and default ISO/IEC/IEEE 60559:2020 exception handling is in effect for IEEE_UNDERFLOW. Its status can19
also be changed by the subroutine IEEE_SET_FLAG or the subroutine IEEE_SET_STATUS. Once signaling20
within a procedure, it remains signaling unless set quiet by an invocation of the subroutine IEEE_SET_FLAG21
or the subroutine IEEE_SET_STATUS.22

3 If a flag is signaling on entry to a procedure other than IEEE_GET_FLAG or IEEE_GET_STATUS, the23
processor will set it to quiet on entry and restore it to signaling on return. If a flag signals during execution of a24
procedure, the processor shall not set it to quiet on return.25

4 Evaluation of a specification expression might cause an exception to signal.26

5 In a scoping unit that has access to IEEE_EXCEPTIONS or IEEE_ARITHMETIC, if an intrinsic procedure27
or a procedure defined in an intrinsic module executes normally, the values of the flags IEEE_OVERFLOW,28
IEEE_DIVIDE_BY_ZERO, and IEEE_INVALID shall be as on entry to the procedure, even if one or more of29
them signals during the calculation. If a real or complex result is too large for the procedure to handle, IEEE_-30
OVERFLOW may signal. If a real or complex result is a NaN because of an invalid operation (for example,31
LOG (−1.0)), IEEE_INVALID may signal. Similar rules apply to format processing and to intrinsic operations:32
no signaling flag shall be set quiet and no quiet flag shall be set signaling because of an intermediate calculation33
that does not affect the result.34

6 In a scoping unit that has access to IEEE_EXCEPTIONS or IEEE_ARITHMETIC, if x1 and x2 are numeric35
entities, the type of x1 + x2 is real, and IEEE_SUPPORT_NAN (x1 + x2) is true, the relational intrinsic oper-36
ation x1 rel-op x2 shall signal IEEE_INVALID as specified for the conditional predicate of ISO/IEC 60559:202037
corresponding to rel-op indicated by Table 17.1. If the types or kind type parameters of x1 or x2 differ, the con-38
versions (10.1.5.5.1) might signal exceptions instead of or in addition to an IEEE_INVALID exception signaled39
by the comparison.40

NOTE
Each comparison predicate defined by ISO/IEC 60559:2020 is either unordered signaling or unordered quiet.
An unordered signaling predicate signals an invalid operation exception if and only if one of the values being
compared is a NaN. An unordered quiet predicate signals an invalid operation exception if and only if one of
the values being compared is a signaling NaN. The comparison predicates do not signal any other exceptions.

460 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Table 17.1: IEEE relational operator correspondence
Operator ISO/IEC/IEEE 60559:2020 comparison predicate
.LT. or < compareSignalingLess

.LE. or <= compareSignalingLessEqual
.GT. or > compareSignalingGreater

.GE. or >= compareSignalingGreaterEqual

.EQ. or == compareQuietEqual
.NE. or /= compareQuietNotEqual

7 In a scoping unit that has access to IEEE_EXCEPTIONS or IEEE_ARITHMETIC, if x1 or x2 are numeric1
entities, the type of x1 + x2 is complex, and IEEE_SUPPORT_NAN (REAL (x1 + x2)) is true, the intrinsic2
equality or inequality operation between x1 and x2 may signal IEEE_INVALID if the value of the real or3
imaginary part of either operand is a signaling NaN. If any conversions are done before the values are compared,4
those conversions might signal exceptions instead of or in addition to an IEEE_INVALID exception signaled by5
the comparison.6

8 In a sequence of statements that has no invocations of IEEE_GET_FLAG, IEEE_SET_FLAG, IEEE_GET_-7
STATUS, IEEE_SET_HALTING_MODE, or IEEE_SET_STATUS, if the execution of an operation would8
cause an exception to signal but after execution of the sequence no value of a variable depends on the operation,9
whether the exception is signaling is processor dependent. For example, when Y has the value zero, whether the10
code11

X = 1.0/Y12

X = 3.013

signals IEEE_DIVIDE_BY_ZERO is processor dependent. Another example is the following:14

REAL, PARAMETER :: X=0.0, Y=6.015

IF (1.0/X == Y) PRINT *,’Hello world’16

where the processor is permitted to discard the IF statement because the logical expression can never be true17
and no value of a variable depends on it.18

9 An exception shall not signal if this could arise only during execution of an operation beyond those required or19
permitted by the standard. For example, the statement20

IF (F (X) > 0.0) Y = 1.0/Z21

shall not signal IEEE_DIVIDE_BY_ZERO when both F (X) and Z are zero and the statement22

WHERE (A > 0.0) A = 1.0/A23

shall not signal IEEE_DIVIDE_BY_ZERO. On the other hand, when X has the value 1.0 and Y has the value24
0.0, the expression25

X>0.00001 .OR. X/Y>0.0000126

is permitted to cause the signaling of IEEE_DIVIDE_BY_ZERO.27

10 The processor need not support IEEE_INVALID, IEEE_UNDERFLOW, and IEEE_INEXACT. If an exception28
is not supported, its flag is always quiet.29

J3/23-007 461

J3/23-007 WD 1539-1 2023-02-17

17.4 The rounding modes1

1 This document specifies a binary rounding mode that affects floating-point arithmetic with radix two, and a2
decimal rounding mode that affects floating-point arithmetic with radix ten. Unqualified references to the round-3
ing mode with respect to a particular arithmetic operation or operands refers to the mode for the radix of the4
operation or operands, and other unqualified references to the rounding mode refers to both binary and decimal5
rounding modes.6

2 ISO/IEC 60559:2020 specifies five possible rounding-direction attributes: roundTiesToEven, roundTowardZero,7
roundTowardPositive, roundTowardNegative, and roundTiesToAway. These correspond to the rounding modes8
IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, IEEE_DOWN, and IEEE_AWAY respectively. The rounding9
mode IEEE_OTHER does not correspond to any ISO/IEC/IEEE 60559:2020 rounding-direction attribute; if10
supported, the effect of this rounding mode is processor dependent.11

3 The subroutine IEEE_GET_ROUNDING_MODE can be used to get the rounding modes. The initial rounding12
modes are processor dependent.13

4 If the processor supports the alteration of the rounding modes during execution, the subroutine IEEE_SET_-14
ROUNDING_MODE can be used to alter them.15

5 In a procedure other than IEEE_SET_ROUNDING_MODE or IEEE_SET_STATUS, the processor shall not16
change the rounding modes on entry, and on return shall ensure that the rounding modes are the same as they17
were on entry.18

NOTE 1
ISO/IEC 60559:2020 requires support for roundTiesToAway only for decimal floating-point.

NOTE 2
ISO/IEC 60559:2020 requires that there is a language-defined means to specify a constant value for the rounding-
direction attribute for all standard operations in a block. The means provided by this document are a CALL
to IEEE_GET_ROUNDING_MODE at the beginning of the block followed by a CALL to IEEE_SET_-
ROUNDING_MODE with constant arguments, together with another CALL to IEEE_SET_ROUNDING_-
MODE at the end of the block to restore the rounding mode.

NOTE 3
Within a program, all literal constants that have the same form have the same value (7.1.4). Therefore, the
value of a literal constant is not affected by the rounding modes.

17.5 Underflow mode19

1 Some processors allow control during program execution of whether underflow produces a subnormal number in20
conformance with ISO/IEC 60559:2020 (gradual underflow) or produces zero instead (abrupt underflow). On some21
processors, floating-point performance is typically better in abrupt underflow mode than in gradual underflow22
mode.23

2 Control over the underflow mode is exercised by invocation of IEEE_SET_UNDERFLOW_MODE. The sub-24
routine IEEE_GET_UNDERFLOW_MODE can be used to get the underflow mode. The inquiry function25
IEEE_SUPPORT_UNDERFLOW_CONTROL can be used to inquire whether this facility is available. The26
initial underflow mode is processor dependent. In a procedure other than IEEE_SET_UNDERFLOW_MODE27
or IEEE_SET_STATUS, the processor shall not change the underflow mode on entry, and on return shall ensure28
that the underflow mode is the same as it was on entry.29

3 The underflow mode affects only floating-point calculations whose type is that of an X for which IEEE_SUP-30
PORT_UNDERFLOW_CONTROL returns true.31

462 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

17.6 Halting1

1 Some processors allow control during program execution of whether to abort or continue execution after an2
exception. Such control is exercised by invocation of the subroutine IEEE_SET_HALTING_MODE. Halting3
is not precise and may occur any time after the exception has occurred. The initial halting mode is processor4
dependent. In a procedure other than IEEE_SET_HALTING_MODE or IEEE_SET_STATUS, the processor5
shall not change the halting mode on entry, and on return shall ensure that the halting mode is the same as it6
was on entry.7

17.7 The floating-point modes and status8

1 The values of the rounding modes, underflow mode, and halting mode are collectively called the floating-point9
modes. The values of all the supported flags for exceptions and the floating-point modes are collectively called the10
floating-point status. The floating-point modes can be stored in a scalar variable of type IEEE_MODES_TYPE11
with the subroutine IEEE_GET_MODES and restored with the subroutine IEEE_SET_MODES. The floating-12
point status can be stored in a scalar variable of type IEEE_STATUS_TYPE with the subroutine IEEE_GET_-13
STATUS and restored with the subroutine IEEE_SET_STATUS. There are no facilities for finding the values of14
particular flags represented by such a variable.15

NOTE 1
Each image has its own floating-point status (5.3.4).

NOTE 2
Some processors hold all these flags and modes in one or two status registers that can be obtained and set as
a whole faster than all individual flags and modes can be obtained and set. These procedures are provided to
exploit this feature.

NOTE 3
The processor is required to ensure that a call to a Fortran procedure does not change the floating-point status
other than by setting exception flags to signaling.

17.8 Exceptional values16

1 ISO/IEC 60559:2020 specifies the following exceptional floating-point values.17

• Subnormal values have very small absolute values and reduced precision.18

• Infinite values (+infinity and −infinity) are created by overflow or division by zero.19

• Not-a-Number (NaN) values are undefined values or values created by an invalid operation.20

2 A value that does not fall into the above classes is called a normal number.21

3 The functions IEEE_IS_FINITE, IEEE_IS_NAN, IEEE_IS_NEGATIVE, and IEEE_IS_NORMAL are22
provided to test whether a value is finite, NaN, negative, or normal. The function IEEE_VALUE is provided to23
generate an IEEE number of any class, including an infinity or a NaN. The inquiry functions IEEE_SUPPORT_-24
SUBNORMAL, IEEE_SUPPORT_INF, and IEEE_SUPPORT_NAN are provided to determine whether these25
facilities are available for a particular kind of real.26

17.9 IEEE arithmetic27

1 The inquiry function IEEE_SUPPORT_DATATYPE can be used to inquire whether IEEE arithmetic is sup-28
ported for a particular kind of real. Complete conformance with ISO/IEC 60559:2020 is not required, but29

J3/23-007 463

J3/23-007 WD 1539-1 2023-02-17

• the normal numbers shall be exactly those of an ISO/IEC/IEEE 60559:2020 floating-point format,1

• for at least one rounding mode, the intrinsic operations of addition, subtraction and multiplication shall2
conform whenever the operands and result specified by ISO/IEC 60559:2020 are normal numbers,3

• the IEEE function abs shall be provided by the intrinsic function ABS,4

• the IEEE operation remainder shall be provided by the function IEEE_REM, and5

• the IEEE functions copySign, logB, and compareQuietUnordered shall be provided by the functions IEEE_-6
COPY_SIGN, IEEE_LOGB, and IEEE_UNORDERED, respectively,7

for that kind of real.8

2 The inquiry function IEEE_SUPPORT_NAN is provided to inquire whether the processor supports IEEE NaNs.9
Where these are supported, the result of the intrinsic operations +, −, and *, and the functions IEEE_REM and10
IEEE_RINT from the intrinsic module IEEE_ARITHMETIC, shall conform to ISO/IEC 60559:2020 when the11
result is an IEEE NaN.12

3 The inquiry function IEEE_SUPPORT_INF is provided to inquire whether the processor supports IEEE infinit-13
ies. Where these are supported, the result of the intrinsic operations +, −, and *, and the functions IEEE_REM14
and IEEE_RINT from the intrinsic module IEEE_ARITHMETIC, shall conform to ISO/IEC 60559:2020 when15
exactly one operand or the result specified by ISO/IEC 60559:2020 is an IEEE infinity.16

4 The inquiry function IEEE_SUPPORT_SUBNORMAL is provided to inquire whether the processor supports17
subnormal numbers. Where these are supported, the result of the intrinsic operations +, −, and *, and the func-18
tions IEEE_REM and IEEE_RINT from the intrinsic module IEEE_ARITHMETIC, shall conform to ISO/IEC19
60559:2020 when the result specified by ISO/IEC 60559:2020 is subnormal, or any operand is subnormal and20
either the result is not an IEEE infinity or IEEE_SUPPORT_INF is true.21

5 The inquiry function IEEE_SUPPORT_DIVIDE is provided to inquire whether, on kinds of real for which22
IEEE_SUPPORT_DATATYPE returns true, the intrinsic division operation conforms to ISO/IEC 60559:202023
when both operands and the result specified by ISO/IEC 60559:2020 are normal numbers. If IEEE_SUPPORT_-24
NAN is also true for a particular kind of real, the intrinsic division operation on that kind conforms to ISO/IEC25
60559:2020 when the result specified by ISO/IEC 60559:2020 is a NaN. If IEEE_SUPPORT_INF is also true for26
a particular kind of real, the intrinsic division operation on that kind conforms to ISO/IEC 60559:2020 when one27
operand or the result specified by ISO/IEC 60559:2020 is an IEEE infinity. If IEEE_SUPPORT_SUBNORMAL28
is also true for a particular kind of real, the intrinsic division operation on that kind conforms to ISO/IEC29
60559:2020 when the result specified by ISO/IEC 60559:2020 is subnormal, or when any operand is subnormal30
and either the result specified by ISO/IEC 60559:2020 is not an infinity or IEEE_SUPPORT_INF is true.31

6 ISO/IEC 60559:2020 specifies a square root function that returns negative real zero for the square root of neg-32
ative real zero and has certain accuracy requirements. The inquiry function IEEE_SUPPORT_SQRT can be33
used to inquire whether the intrinsic function SQRT conforms to ISO/IEC 60559:2020 for a particular kind of34
real. If IEEE_SUPPORT_NAN is also true for a particular kind of real, the intrinsic function SQRT on that35
kind conforms to ISO/IEC 60559:2020 when the result specified by ISO/IEC 60559:2020 is a NaN. If IEEE_-36
SUPPORT_INF is also true for a particular kind of real, the intrinsic function SQRT on that kind conforms37
to ISO/IEC 60559:2020 when the result specified by ISO/IEC 60559:2020 is an IEEE infinity. If IEEE_SUP-38
PORT_SUBNORMAL is also true for a particular kind of real, the intrinsic function SQRT on that kind conforms39
to ISO/IEC 60559:2020 when the argument is subnormal.40

7 The inquiry function IEEE_SUPPORT_STANDARD is provided to inquire whether the processor supports all41
the ISO/IEC/IEEE 60559:2020 facilities defined in this document for a particular kind of real.42

17.10 Summary of the procedures43

1 For all of the procedures defined in the modules, the arguments shown are the names that shall be used for44
argument keywords if the keyword form is used for the actual arguments.45

464 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 A procedure classified in 17.10 as an inquiry function depends on the properties of one or more of its arguments1
instead of their values; in fact, these argument values may be undefined. Unless the description of one of these2
inquiry functions states otherwise, these arguments are permitted to be unallocated allocatable variables or3
pointers that are undefined or disassociated. A procedure that is classified as a transformational function is4
neither an inquiry function nor elemental.5

3 In the Class column of Tables 17.2 and 17.3,6

E indicates that the procedure is an elemental function,7

ES indicates that the procedure is a simple elemental subroutine,8

I indicates that the procedure is an inquiry function,9

SS indicates that the procedure is a simple subroutine, and10

T indicates that the procedure in a transformational function.11

Table 17.2: IEEE_ARITHMETIC module procedure summary
Procedure (arguments) Class Description
IEEE_CLASS (X) E Classify number.
IEEE_COPY_SIGN (X, Y) E Copy sign.
IEEE_FMA (A, B, C) E Fused multiply-add operation.
IEEE_GET_ROUNDING_MODE (ROUND_VALUE SS Get rounding mode.

[, RADIX])
IEEE_GET_UNDERFLOW_MODE (GRADUAL) SS Get underflow mode.
IEEE_INT (A, ROUND [, KIND]) E Conversion to integer type.
IEEE_IS_FINITE (X) E Whether a value is finite.
IEEE_IS_NAN (X) E Whether a value is an IEEE NaN.
IEEE_IS_NEGATIVE (X) E Whether a value is negative.
IEEE_IS_NORMAL (X) E Whether a value is a normal number.
IEEE_LOGB (X) E Exponent.
IEEE_MAX (X, Y) E Maximum value.
IEEE_MAX_MAG (X, Y) E Maximum magnitude value.
IEEE_MAX_NUM (X, Y) E Maximum numeric value.
IEEE_MAX_NUM_MAG (X, Y) E Maximum magnitude numeric value.
IEEE_MIN (X, Y) E Minimum value.
IEEE_MIN_MAG (X, Y) E Minimum magnitude value.
IEEE_MIN_NUM (X, Y) E Minimum numeric value.
IEEE_MIN_NUM_MAG (X, Y) E Minimum magnitude numeric value.
IEEE_NEXT_AFTER (X, Y) E Adjacent machine number.
IEEE_NEXT_DOWN (X) E Adjacent lower machine number.
IEEE_NEXT_UP (X) E Adjacent higher machine number.
IEEE_QUIET_EQ (A, B) E Quiet compares equal.
IEEE_QUIET_GE (A, B) E Quiet compares greater than or equal.
IEEE_QUIET_GT (A, B) E Quiet compares greater than.
IEEE_QUIET_LE (A, B) E Quiet compares less than or equal.
IEEE_QUIET_LT (A, B) E Quiet compares less than.
IEEE_QUIET_NE (A, B) E Quiet compares not equal.
IEEE_REAL (A [, KIND]) E Conversion to real type.
IEEE_REM (X, Y) E Exact remainder.
IEEE_RINT (X) E Round to integer.
IEEE_SCALB (X, I) E X × 2I .
IEEE_SELECTED_REAL_KIND ([P, R, RADIX]) T IEEE kind type parameter value.
IEEE_SET_ROUNDING_MODE (ROUND_VALUE SS Set rounding mode.

[, RADIX])
IEEE_SET_UNDERFLOW_MODE (GRADUAL) SS Set underflow mode.
IEEE_SIGNALING_EQ (A, B) E Signaling compares equal.
IEEE_SIGNALING_GE (A, B) E Signaling compares greater than or equal.
IEEE_SIGNALING_GT (A, B) E Signaling compares greater than.

J3/23-007 465

J3/23-007 WD 1539-1 2023-02-17

Table 17.2: IEEE_ARITHMETIC module procedure summary (cont.)
Procedure (arguments) Class Description
IEEE_SIGNALING_LE (A, B) E Signaling compares less than or equal.
IEEE_SIGNALING_LT (A, B) E Signaling compares less than.
IEEE_SIGNALING_NE (A, B) E Signaling compares not equal.
IEEE_SIGNBIT (X) E Test sign bit.
IEEE_SUPPORT_DATATYPE ([X]) I Query IEEE arithmetic support.
IEEE_SUPPORT_DENORMAL ([X]) I Query subnormal number support.
IEEE_SUPPORT_DIVIDE ([X]) I Query IEEE division support.
IEEE_SUPPORT_INF ([X]) I Query IEEE infinity support.
IEEE_SUPPORT_IO ([X]) I Query IEEE formatting support.
IEEE_SUPPORT_NAN ([X]) I Query IEEE NaN support.
IEEE_SUPPORT_ROUNDING (ROUND_VALUE [, X]) T Query IEEE rounding support.
IEEE_SUPPORT_SQRT ([X]) I Query IEEE square root support.
IEEE_SUPPORT_SUBNORMAL ([X]) I Query subnormal number support.
IEEE_SUPPORT_STANDARD ([X]) I Query IEEE standard support.
IEEE_SUPPORT_UNDERFLOW_CONTROL ([X]) I Query underflow control support.
IEEE_UNORDERED (X, Y) E Whether two values are unordered.
IEEE_VALUE (X, CLASS) E Return number in a class.

Table 17.3: IEEE_EXCEPTIONS module procedure summary
Procedure (arguments) Class Description
IEEE_GET_FLAG (FLAG, FLAG_VALUE) ES Get an exception flag.
IEEE_GET_HALTING_MODE (FLAG, HALTING) ES Get a halting mode.
IEEE_GET_MODES (MODES) SS Get floating-point modes.
IEEE_GET_STATUS (STATUS_VALUE) SS Get floating-point status.
IEEE_SET_FLAG (FLAG, FLAG_VALUE) SS Set an exception flag.
IEEE_SET_HALTING_MODE (FLAG, HALTING) SS Set a halting mode.
IEEE_SET_MODES (MODES) SS Set floating-point modes.
IEEE_SET_STATUS (STATUS_VALUE) SS Restore floating-point status.
IEEE_SUPPORT_FLAG (FLAG [, X]) T Query exception support.
IEEE_SUPPORT_HALTING (FLAG) T Query halting mode support.

4 In the intrinsic module IEEE_ARITHMETIC, the elemental functions listed are provided for all reals X and Y.1

17.11 Specifications of the procedures2

17.11.1 General3

1 In the detailed descriptions in 17.11, procedure names are generic and are not specific. All the functions are4
simple and all the subroutines are impure unless otherwise stated. All dummy arguments have INTENT (IN) if5
the intent is not stated explicitly. In the examples, it is assumed that the processor supports IEEE arithmetic6
for default real.7

2 For the elemental functions of IEEE_ARITHMETIC that return a floating-point result, if X or Y has a value8
that is an infinity or a NaN, the result shall be consistent with the general rules in 6.1 and 6.2 of ISO/IEC9
60559:2020. For example, the result for an infinity shall be constructed as the limiting case of the result with a10
value of arbitrarily large magnitude, if such a limit exists.11

3 A program may contain statements that, if executed, would violate the requirements listed in a Restriction12
paragraph.13

466 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
A program can avoid violating those requirements by using IF constructs to check whether particular features
are supported. For example,

IF (IEEE_SUPPORT_DATATYPE (X)) THEN
C = IEEE_CLASS (X)

ELSE
. . .

END IF

avoids invoking IEEE_CLASS except on a processor which supports that facility.

17.11.2 IEEE_CLASS (X)1

1 Description. Classify number.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Restriction. IEEE_CLASS (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.5

5 Result Characteristics. IEEE_CLASS_TYPE.6

6 Result Value. The result value shall be IEEE_SIGNALING_NAN or IEEE_QUIET_NAN if IEEE_SUP-7
PORT_NAN (X) has the value true and the value of X is a signaling or quiet NaN, respectively. The result8
value shall be IEEE_NEGATIVE_INF or IEEE_POSITIVE_INF if IEEE_SUPPORT_INF (X) has the value9
true and the value of X is negative or positive infinity, respectively. The result value shall be IEEE_NEG-10
ATIVE_SUBNORMAL or IEEE_POSITIVE_SUBNORMAL if IEEE_SUPPORT_SUBNORMAL (X) has the11
value true and the value of X is a negative or positive subnormal value, respectively. The result value shall12
be IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, or IEEE_POSIT-13
IVE_NORMAL if the value of X is negative normal, negative zero, positive zero, or positive normal, respectively.14
Otherwise, the result value shall be IEEE_OTHER_VALUE.15

7 Example. IEEE_CLASS (−1.0) has the value IEEE_NEGATIVE_NORMAL.16

NOTE
The result value IEEE_OTHER_VALUE is useful on systems that are almost IEEE-compatible, but do not
implement all of it. For example, if a subnormal value is encountered on a system that does not support them.

17.11.3 IEEE_COPY_SIGN (X, Y)17

1 Description. Copy sign.18

2 Class. Elemental function.19

3 Arguments. The arguments shall be of type real.20

4 Restriction. IEEE_COPY_SIGN (X, Y) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) or21
IEEE_SUPPORT_DATATYPE (Y) has the value false.22

5 Result Characteristics. Same as X.23

6 Result Value. The result has the absolute value of X with the sign of Y. This is true even for IEEE special24
values, such as a NaN or an infinity (on processors supporting such values).25

7 Example. The value of IEEE_COPY_SIGN (X, 1.0) is ABS (X) even when X is a NaN.26

J3/23-007 467

J3/23-007 WD 1539-1 2023-02-17

17.11.4 IEEE_FMA (A, B, C)1

1 Description. Fused multiply-add operation.2

2 Class. Elemental function.3

3 Arguments.4

A shall be of type real.5

B shall be of the same type and kind type parameter as A.6

C shall be of the same type and kind type parameter as A.7

4 Restriction. IEEE_FMA (A, B, C) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value8
false.9

5 Result Characteristics. Same as A.10

6 Result Value. The result has the value specified by ISO/IEC 60559:2020 for the fusedMultiplyAdd operation;11
that is, when the result is in range, its value is equal to the mathematical value of (A × B) + C rounded to the12
representation method of A according to the rounding mode. IEEE_OVERFLOW, IEEE_UNDERFLOW, and13
IEEE_INEXACT shall be signaled according to the final step in the calculation and not by any intermediate14
calculation.15

7 Example. The value of IEEE_FMA (TINY (0.0), TINY (0.0), 1.0), when the rounding mode is IEEE_-16
NEAREST, is equal to 1.0; only the IEEE_INEXACT exception is signaled.17

17.11.5 IEEE_GET_FLAG (FLAG, FLAG_VALUE)18

1 Description. Get an exception flag.19

2 Class. Simple elemental subroutine.20

3 Arguments.21

FLAG shall be of type IEEE_FLAG_TYPE. It specifies the exception flag to be obtained.22

FLAG_VALUE shall be of type logical. It is an INTENT (OUT) argument. If the value of FLAG is IEEE_-23
INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_-24
INEXACT, FLAG_VALUE is assigned the value true if the corresponding exception flag is signaling25
and is assigned the value false otherwise.26

4 Example. Following CALL IEEE_GET_FLAG (IEEE_OVERFLOW, FLAG_VALUE), FLAG_VALUE is27
true if the IEEE_OVERFLOW flag is signaling and is false if it is quiet.28

17.11.6 IEEE_GET_HALTING_MODE (FLAG, HALTING)29

1 Description. Get a halting mode.30

2 Class. Simple elemental subroutine.31

3 Arguments.32

FLAG shall be of type IEEE_FLAG_TYPE. It specifies the exception flag. It shall have one of the val-33
ues IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW,34
or IEEE_INEXACT.35

HALTING shall be of type logical. It is an INTENT (OUT) argument. It is assigned the value true if the36
exception specified by FLAG will cause halting. Otherwise, it is assigned the value false.37

4 Example. To store the halting mode for IEEE_OVERFLOW, do a calculation without halting, and restore the38
halting mode later:39

468 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

USE, INTRINSIC :: IEEE_ARITHMETIC1

LOGICAL HALTING2

. . .3

CALL IEEE_GET_HALTING_MODE (IEEE_OVERFLOW, HALTING) ! Store halting mode4

CALL IEEE_SET_HALTING_MODE (IEEE_OVERFLOW, .FALSE.) ! No halting5

. . . ! calculation without halting6

CALL IEEE_SET_HALTING_MODE (IEEE_OVERFLOW, HALTING) ! Restore halting mode7

17.11.7 IEEE_GET_MODES (MODES)8

1 Description. Get floating-point modes.9

2 Class. Simple subroutine.10

3 Argument. MODES shall be a scalar of type IEEE_MODES_TYPE. It is an INTENT (OUT) argument that11
is assigned the value of the floating-point modes.12

4 Example. To save the floating-point modes, do a calculation with specific rounding and underflow modes, and13
restore them later:14

USE, INTRINSIC :: IEEE_ARITHMETIC15

TYPE (IEEE_MODES_TYPE) SAVE_MODES16

. . .17

CALL IEEE_GET_MODES (SAVE_MODES) ! Save all modes.18

CALL IEEE_SET_ROUNDING_MODE (IEEE_TO_ZERO)19

CALL IEEE_SET_UNDERFLOW_MODE (GRADUAL=.FALSE.)20

. . . ! calculation with abrupt round-to-zero.21

CALL IEEE_SET_MODES (SAVE_MODES) ! Restore all modes.22

17.11.8 IEEE_GET_ROUNDING_MODE (ROUND_VALUE [, RADIX])23

1 Description. Get rounding mode.24

2 Class. Simple subroutine.25

3 Arguments.26

ROUND_VALUE shall be a scalar of type IEEE_ROUND_TYPE. It is an INTENT (OUT) argument. It is27
assigned the value IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, IEEE_DOWN, or IEEE_-28
AWAY if the corresponding rounding mode is in operation and IEEE_OTHER otherwise.29

RADIX (optional) shall be an integer scalar with the value two or ten. If RADIX is present with the value ten,30
the rounding mode queried is the decimal rounding mode, otherwise it is the binary rounding mode.31

4 Example. To save the binary rounding mode, do a calculation with round to nearest, and restore the rounding32
mode later:33

USE, INTRINSIC :: IEEE_ARITHMETIC34

TYPE (IEEE_ROUND_TYPE) ROUND_VALUE35

. . .36

CALL IEEE_GET_ROUNDING_MODE (ROUND_VALUE) ! Store the rounding mode37

CALL IEEE_SET_ROUNDING_MODE (IEEE_NEAREST)38

. . . ! calculation with round to nearest39

CALL IEEE_SET_ROUNDING_MODE (ROUND_VALUE) ! Restore the rounding mode40

J3/23-007 469

J3/23-007 WD 1539-1 2023-02-17

17.11.9 IEEE_GET_STATUS (STATUS_VALUE)1

1 Description. Get floating-point status.2

2 Class. Simple subroutine.3

3 Argument. STATUS_VALUE shall be a scalar of type IEEE_STATUS_TYPE. It is an INTENT (OUT)4
argument. It is assigned the value of the floating-point status.5

4 Example. To store all the exception flags, do a calculation involving exception handling, and restore them later:6

USE, INTRINSIC :: IEEE_ARITHMETIC7

TYPE (IEEE_STATUS_TYPE) STATUS_VALUE8

. . .9

CALL IEEE_GET_STATUS (STATUS_VALUE) ! Get the flags10

CALL IEEE_SET_FLAG (IEEE_ALL, .FALSE.) ! Set the flags quiet.11

. . . ! calculation involving exception handling12

CALL IEEE_SET_STATUS (STATUS_VALUE) ! Restore the flags13

17.11.10 IEEE_GET_UNDERFLOW_MODE (GRADUAL)14

1 Description. Get underflow mode.15

2 Class. Simple subroutine.16

3 Argument. GRADUAL shall be a logical scalar. It is an INTENT (OUT) argument. It is assigned the value17
true if the underflow mode is gradual underflow, and false if the underflow mode is abrupt underflow.18

4 Restriction. IEEE_GET_UNDERFLOW_MODE shall not be invoked unless IEEE_SUPPORT_UNDER-19
FLOW_CONTROL (X) is true for some X.20

5 Example. After CALL IEEE_SET_UNDERFLOW_MODE (.FALSE.), a subsequent CALL IEEE_GET_-21
UNDERFLOW_MODE (GRADUAL) will set GRADUAL to false.22

17.11.11 IEEE_INT (A, ROUND [, KIND])23

1 Description. Conversion to integer type.24

2 Class. Elemental function.25

3 Arguments.26

A shall be of type real.27

ROUND shall be of type IEEE_ROUND_TYPE.28

KIND (optional) shall be a scalar integer constant expression.29

4 Restriction. IEEE_INT (A, ROUND, KIND) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has30
the value false.31

5 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of32
KIND; otherwise, the kind type parameter is that of default integer.33

6 Result Value. The result has the value specified by ISO/IEC 60559:2020 for the convertToInteger{round} or34
the convertToIntegerExact{round} operation; the processor shall consistently choose which operation it provides.35
That is, the value of A is converted to an integer according to the rounding mode specified by ROUND; if this36
value is representable in the representation method of the result, the result has this value, otherwise IEEE_-37
INVALID is signaled and the result is processor dependent. If the processor provides the convertToIntegerExact38

470 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

operation, IEEE_INVALID did not signal, and the value of the result differs from that of A, IEEE_INEXACT1
will be signaled.2

7 Example. The value of IEEE_INT (12.5, IEEE_UP) is 13; IEEE_INEXACT will be signaled if the processor3
provides the convertToIntegerExact operation.4

17.11.12 IEEE_IS_FINITE (X)5

1 Description. Whether a value is finite.6

2 Class. Elemental function.7

3 Argument. X shall be of type real.8

4 Restriction. IEEE_IS_FINITE (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value9
false.10

5 Result Characteristics. Default logical.11

6 Result Value. The result has the value true if the value of X is finite, that is, IEEE_CLASS (X) has one12
of the values IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_SUBNORMAL, IEEE_NEGATIVE_ZERO,13
IEEE_POSITIVE_ZERO, IEEE_POSITIVE_SUBNORMAL, or IEEE_POSITIVE_NORMAL; otherwise, the14
result has the value false.15

7 Example. IEEE_IS_FINITE (1.0) has the value true.16

17.11.13 IEEE_IS_NAN (X)17

1 Description. Whether a value is an IEEE NaN.18

2 Class. Elemental function.19

3 Argument. X shall be of type real.20

4 Restriction. IEEE_IS_NAN (X) shall not be invoked if IEEE_SUPPORT_NAN (X) has the value false.21

5 Result Characteristics. Default logical.22

6 Result Value. The result has the value true if the value of X is an IEEE NaN; otherwise, it has the value false.23

7 Example. IEEE_IS_NAN (SQRT (−1.0)) has the value true if IEEE_SUPPORT_SQRT (1.0) has the value24
true.25

17.11.14 IEEE_IS_NEGATIVE (X)26

1 Description. Whether a value is negative.27

2 Class. Elemental function.28

3 Argument. X shall be of type real.29

4 Restriction. IEEE_IS_NEGATIVE (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the30
value false.31

5 Result Characteristics. Default logical.32

6 Result Value. The result has the value true if IEEE_CLASS (X) has one of the values IEEE_NEGATIVE_-33
NORMAL, IEEE_NEGATIVE_SUBNORMAL, IEEE_NEGATIVE_ZERO or IEEE_NEGATIVE_INF; oth-34
erwise, the result has the value false.35

J3/23-007 471

J3/23-007 WD 1539-1 2023-02-17

7 Example. IEEE_IS_NEGATIVE (0.0) has the value false.1

17.11.15 IEEE_IS_NORMAL (X)2

1 Description. Whether a value is a normal number.3

2 Class. Elemental function.4

3 Argument. X shall be of type real.5

4 Restriction. IEEE_IS_NORMAL (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the6
value false.7

5 Result Characteristics. Default logical.8

6 Result Value. The result has the value true if IEEE_CLASS (X) has one of the values IEEE_NEGATIVE_-9
NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO or IEEE_POSITIVE_NORMAL; otherwise,10
the result has the value false.11

7 Example. IEEE_IS_NORMAL (SQRT (−1.0) has the value false if IEEE_SUPPORT_SQRT (1.0) has the12
value true.13

17.11.16 IEEE_LOGB (X)14

1 Description. Exponent.15

2 Class. Elemental function.16

3 Argument. X shall be of type real.17

4 Restriction. IEEE_LOGB (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.18

5 Result Characteristics. Same as X.19

6 Result Value.20

Case (i): If the value of X is neither zero, infinity, nor NaN, the result has the value of the unbiased exponent21
of X. Note: this value is equal to EXPONENT (X)− 1.22

Case (ii): If X==0, the result is −infinity if IEEE_SUPPORT_INF (X) is true and −HUGE (X) otherwise;23
IEEE_DIVIDE_BY_ZERO signals.24

Case (iii): If IEEE_SUPPORT_INF (X) is true and X is infinite, the result is +infinity.25

Case (iv): If IEEE_SUPPORT_NAN (X) is true and X is a NaN, the result is a NaN.26

7 Example. IEEE_LOGB (−1.1) has the value 0.0.27

17.11.17 IEEE_MAX (X, Y)28

1 Description. Maximum value.29

2 Class. Elemental function.30

3 Arguments.31

X shall be of type real.32

Y shall be of the same type and kind type parameter as X.33

4 Restriction. IEEE_MAX shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.34

5 Result Characteristics. Same as X.35

472 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

6 Result Value. The result has the value specified for the maximum operation in ISO/IEC 60559:2020; that is,1
• if X > Y the result has the value of X;2

• if Y > X the result has the value of Y;3

• if either operand is a NaN, the result is a quiet Nan;4

• if X = Y and the signs are the same, the result is the value of either X or Y;5

• otherwise (one argument is negative zero and the other is positive zero), the result is positive zero.6

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals; otherwise, no exception is signaled.7

7 Example. The value of IEEE_MAX (1.5, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) is a quiet NaN.8

17.11.18 IEEE_MAX_MAG (X, Y)9

1 Description. Maximum magnitude value.10

2 Class. Elemental function.11

3 Arguments.12

X shall be of type real.13

Y shall be of the same type and kind type parameter as X.14

4 Restriction. IEEE_MAX_MAG shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value15
false.16

5 Result Characteristics. Same as X.17

6 Result Value.18

7 The result has the value specified for the maximumMagnitude operation in ISO/IEC 60559:2020; that is,19
• if |X| > |Y| the result has the value of X;20

• if |Y| > |X| the result has the value of Y;21

• otherwise, the result has the value of IEEE_MAX (X, Y).22

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals; otherwise, no exception is signaled.23

8 Example. The value of IEEE_MAX_MAG (1.5, −2.5) is −2.5.24

17.11.19 IEEE_MAX_NUM (X, Y)25

1 Description. Maximum numeric value.26

2 Class. Elemental function.27

3 Arguments.28

X shall be of type real.29

Y shall be of the same type and kind type parameter as X.30

4 Restriction. IEEE_MAX_NUM shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value31
false.32

5 Result Characteristics. Same as X.33

6 Result Value. The result has the value specified for the maximumNumber operation in ISO/IEC 60559:2020;34
that is,35

• if X > Y the result has the value of X;36

• if Y > X the result has the value of Y;37

• if exactly one of X and Y is a NaN the result has the value of the other argument;38

J3/23-007 473

J3/23-007 WD 1539-1 2023-02-17

• if both X and Y are NaNs, the result is a quiet NaN;1

• if X = Y and the signs are the same, the result is either X or Y;2

• otherwise (one argument is negative zero and the other is positive zero), the result is positive zero.3

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals, but unless X and Y are both signaling4
NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN. No other exceptions are signaled.5

7 Example. The value of IEEE_MAX_NUM (1.5, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) is 1.5.6

17.11.20 IEEE_MAX_NUM_MAG (X, Y)7

1 Description. Maximum magnitude numeric value.8

2 Class. Elemental function.9

3 Arguments.10

X shall be of type real.11

Y shall be of the same type and kind type parameter as X.12

4 Restriction. IEEE_MAX_NUM_MAG shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the13
value false.14

5 Result Characteristics. Same as X.15

6 Result Value. The result has the value specified for the maximumMagnitudeNumber operation in ISO/IEC16
60559:2020; that is,17

• if |X| > |Y| the result has the value of X;18

• if |Y| > |X| the result has the value of Y;19

• otherwise, the result has the value of IEEE_MAX_NUM (X, Y).20

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals, but unless X and Y are both signaling21
NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN. No other exceptions are signaled.22

7 Example. The value of IEEE_MAX_NUM_MAG (1.5, −2.5) is −2.5.23

17.11.21 IEEE_MIN (X, Y)24

1 Description. Minimum value.25

2 Class. Elemental function.26

3 Arguments.27

X shall be of type real.28

Y shall be of the same type and kind type parameter as X.29

4 Restriction. IEEE_MIN shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.30

5 Result Characteristics. Same as X.31

6 Result Value. The result has the value specified for the minimum operation in ISO/IEC 60559:2020; that is,32

• if X < Y the result has the value of X;33

• if Y < X the result has the value of Y;34

• if either operand is a NaN, the result is a quiet NaN;35

• if X = Y and the signs are the same, the result is the value of either X or Y;36

• otherwise (one argument is negative zero and the other is positive zero), the result is negative zero.37

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals; otherwise, no exception is signaled.38

474 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7 Example. The value of IEEE_MIN (1.5, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) is a quiet NaN.1

17.11.22 IEEE_MIN_MAG (X, Y)2

1 Description. Minimum magnitude value.3

2 Class. Elemental function.4

3 Arguments.5

X shall be of type real.6

Y shall be of the same type and kind type parameter as X.7

4 Restriction. IEEE_MIN_MAG shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.8

5 Result Characteristics. Same as X.9

6 Result Value.10

7 The result has the value specified for the minimumMagnitude operation in ISO/IEC 60559:2020; that is,11

• if |X| < |Y| the result has the value of X;12

• if |Y| < |X| the result has the value of Y;13

• otherwise, the result has the value of IEEE_MIN (X, Y).14

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals; otherwise, no exception is signaled.15

8 Example. The value of IEEE_MIN_MAG (1.5, −2.5) is 1.5.16

17.11.23 IEEE_MIN_NUM (X, Y)17

1 Description. Minimum numeric value.18

2 Class. Elemental function.19

3 Arguments.20

X shall be of type real.21

Y shall be of the same type and kind type parameter as X.22

4 Restriction. IEEE_MIN_NUM shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.23

5 Result Characteristics. Same as X.24

6 Result Value. The result has the value specified for the minimumNumber operation in ISO/IEC 60559:2020;25
that is,26

• if X < Y the result has the value of X;27

• if Y < X the result has the value of Y;28

• if exactly one of X and Y is a NaN the result has the value of the other argument;29

• if both X and Y are NaNs, the result is a quiet NaN;30

• if X = Y and the signs are the same, the result is either X or Y;31

• otherwise (one argument is negative zero and the other is positive zero), the result is positive zero.32

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals, but unless X and Y are both signaling33
NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN. No other exceptions are signaled.34

7 Example. The value of IEEE_MIN_NUM (1.5, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) is 1.5.35

J3/23-007 475

J3/23-007 WD 1539-1 2023-02-17

17.11.24 IEEE_MIN_NUM_MAG (X, Y)1

1 Description. Minimum magnitude numeric value.2

2 Class. Elemental function.3

3 Arguments.4

X shall be of type real.5

Y shall be of the same type and kind type parameter as X.6

4 Restriction. IEEE_MIN_NUM_MAG shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the7
value false.8

5 Result Characteristics. Same as X.9

6 Result Value. The result has the value specified for the minimumMagnitudeNumber operation in ISO/IEC10
60559:2020; that is,11

• if |X| < |Y| the result has the value of X;12

• if |Y| < |X| the result has the value of Y;13

• otherwise, the result has the value of IEEE_MIN_NUM (X, Y).14

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals, but unless X and Y are both signaling15
NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN. No other exceptions are signaled.16

7 Example. The value of IEEE_MIN_NUM_MAG (1.5, −2.5) is 1.5.17

17.11.25 IEEE_NEXT_AFTER (X, Y)18

1 Description. Adjacent machine number.19

2 Class. Elemental function.20

3 Arguments. The arguments shall be of type real.21

4 Restriction. IEEE_NEXT_AFTER (X, Y) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) or22
IEEE_SUPPORT_DATATYPE (Y) has the value false.23

5 Result Characteristics. Same as X.24

6 Result Value.25

Case (i): If X == Y, the result is X and no exception is signaled.26

Case (ii): If X ̸= Y, the result has the value of the next representable neighbor of X in the direction of Y.27
The neighbors of zero (of either sign) are both nonzero. IEEE_OVERFLOW is signaled when28
X is finite but IEEE_NEXT_AFTER (X, Y) is infinite; IEEE_UNDERFLOW is signaled when29
IEEE_NEXT_AFTER (X, Y) is subnormal; in both cases, IEEE_INEXACT signals.30

7 Example. The value of IEEE_NEXT_AFTER (1.0, 2.0) is 1.0 + EPSILON (X).31

17.11.26 IEEE_NEXT_DOWN (X)32

1 Description. Adjacent lower machine number.33

2 Class. Elemental function.34

3 Argument. X shall be of type real.35

4 Restriction. IEEE_NEXT_DOWN (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the36
value false. IEEE_NEXT_DOWN (−HUGE (X)) shall not be invoked if IEEE_SUPPORT_INF (X) has the37
value false.38

476 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 Result Characteristics. Same as X.1

6 Result Value. The result has the value specified for the nextDown operation in ISO/IEC 60559:2020; that is, it2
is the greatest value in the representation method of X that compares less than X, except when X is equal to −∞3
the result has the value −∞, and when X is a NaN the result is a NaN. If X is a signaling NaN, IEEE_INVALID4
signals; otherwise, no exception is signaled.5

7 Example. If IEEE_SUPPORT_SUBNORMAL (0.0) is true, the value of IEEE_NEXT_DOWN (+0.0) is the6
negative subnormal number with least magnitude.7

17.11.27 IEEE_NEXT_UP (X)8

1 Description. Adjacent higher machine number.9

2 Class. Elemental function.10

3 Argument. X shall be of type real.11

4 Restriction. IEEE_NEXT_UP (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value12
false. IEEE_NEXT_UP (HUGE (X)) shall not be invoked if IEEE_SUPPORT_INF (X) has the value false.13

5 Result Characteristics. Same as X.14

6 Result Value. The result has the value specified for the nextUp operation in ISO/IEC 60559:2020; that is,15
it is the least value in the representation method of X that compares greater than X, except when X is equal16
to +∞ the result has the value +∞, and when X is a NaN the result is a NaN. If X is a signaling NaN,17
IEEE_INVALID_signals; otherwise, no exception is signaled.18

7 Example. If IEEE_SUPPORT_INF (X) is true, the value of IEEE_NEXT_UP (HUGE (X)) is +∞.19

17.11.28 IEEE_QUIET_EQ (A, B)20

1 Description. Quiet compares equal.21

2 Class. Elemental function.22

3 Arguments.23

A shall be of type real.24

B shall have the same type and kind type parameter as A.25

4 Restriction. IEEE_QUIET_EQ (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the26
value false.27

5 Result Characteristics. Default logical.28

6 Result Value. The result has the value specified for the compareQuietEqual operation in ISO/IEC 60559:2020;29
that is, it is true if and only if A compares equal to B. If A or B is a NaN, the result will be false. If A or B is a30
signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.31

7 Example. IEEE_QUIET_EQ (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no32
exception is signaled.33

17.11.29 IEEE_QUIET_GE (A, B)34

1 Description. Quiet compares greater than or equal.35

2 Class. Elemental function.36

J3/23-007 477

J3/23-007 WD 1539-1 2023-02-17

3 Arguments.1

A shall be of type real.2

B shall have the same type and kind type parameter as A.3

4 Restriction. IEEE_QUIET_GE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the4
value false.5

5 Result Characteristics. Default logical.6

6 Result Value. The result has the value specified for the compareQuietGreaterEqual operation in ISO/IEC7
60559:2020; that is, it is true if and only if A compares greater than or equal to B. If A or B is a NaN, the result8
will be false. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.9

7 Example. IEEE_QUIET_GE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no10
exception is signaled.11

17.11.30 IEEE_QUIET_GT (A, B)12

1 Description. Quiet compares greater than.13

2 Class. Elemental function.14

3 Arguments.15

A shall be of type real.16

B shall have the same type and kind type parameter as A.17

4 Restriction. IEEE_QUIET_GT (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the18
value false.19

5 Result Characteristics. Default logical.20

6 Result Value. The result has the value specified for the compareQuietGreater operation in ISO/IEC 60559:2020;21
that is, it is true if and only if A compares greater than B. If A or B is a NaN, the result will be false. If A or B22
is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.23

7 Example. IEEE_QUIET_GT (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no24
exception is signaled.25

17.11.31 IEEE_QUIET_LE (A, B)26

1 Description. Quiet compares less than or equal.27

2 Class. Elemental function.28

3 Arguments.29

A shall be of type real.30

B shall have the same type and kind type parameter as A.31

4 Restriction. IEEE_QUIET_LE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the32
value false.33

5 Result Characteristics. Default logical.34

6 Result Value. The result has the value specified for the compareQuietLessEqual operation in ISO/IEC35
60559:2020; that is, it is true if and only if A compares less than or equal to B. If A or B is a NaN, the36
result will be false. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.37

7 Example. IEEE_QUIET_LE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no38
exception is signaled.39

478 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

17.11.32 IEEE_QUIET_LT (A, B)1

1 Description. Quiet compares less than.2

2 Class. Elemental function.3

3 Arguments.4

A shall be of type real.5

B shall have the same type and kind type parameter as A.6

4 Restriction. IEEE_QUIET_LT (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the7
value false.8

5 Result Characteristics. Default logical.9

6 Result Value. The result has the value specified for the compareQuietLess operation in ISO/IEC 60559:2020;10
that is, it is true if and only if A compares less than B. If A or B is a NaN, the result will be false. If A or B is a11
signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.12

7 Example. IEEE_QUIET_LT (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no13
exception is signaled.14

17.11.33 IEEE_QUIET_NE (A, B)15

1 Description. Quiet compares not equal.16

2 Class. Elemental function.17

3 Arguments.18

A shall be of type real.19

B shall have the same type and kind type parameter as A.20

4 Restriction. IEEE_QUIET_NE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the21
value false.22

5 Result Characteristics. Default logical.23

6 Result Value. The result has the value specified for the compareQuietNotEqual operation in ISO/IEC24
60559:2020; that is, it is true if and only if A compares not equal to B. If A or B is a NaN, the result will25
be true. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.26

7 Example. IEEE_QUIET_NE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value true and no27
exception is signaled.28

17.11.34 IEEE_REAL (A [, KIND])29

1 Description. Conversion to real type.30

2 Class. Elemental function.31

3 Arguments.32

A shall be of type integer or real.33

KIND (optional) shall be a scalar integer constant expression.34

4 Restriction. IEEE_REAL shall not be invoked if A is of type real and IEEE_SUPPORT_DATATYPE (A)35
has the value false, or if IEEE_SUPPORT_DATATYPE (IEEE_REAL (A, KIND)) has the value false.36

5 Result Characteristics. Real. If KIND is present, the kind type parameter is that specified by the value of37
KIND; otherwise, the kind type parameter is that of default real.38

J3/23-007 479

J3/23-007 WD 1539-1 2023-02-17

6 Result Value. The result has the same value as A if that value is representable in the representation method1
of the result, and is rounded according to the rounding mode otherwise. This shall be consistent with the2
specification of ISO/IEC 60559:2020 for the convertFromInt operation when A is of type integer, and with the3
convertFormat operation otherwise.4

7 Example. The value of IEEE_REAL (123) is 123.0.5

17.11.35 IEEE_REM (X, Y)6

1 Description. Exact remainder.7

2 Class. Elemental function.8

3 Arguments. The arguments shall be of type real and have the same radix.9

4 Restriction. IEEE_REM (X, Y) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) or IEEE_SUP-10
PORT_DATATYPE (Y) has the value false.11

5 Result Characteristics. Real with the kind type parameter of whichever argument has the greater precision.12

6 Result Value. This function computes the remainder operation specified in ISO/IEC 60559:2020.13

7 The result value when X and Y are finite, and Y is nonzero, regardless of the rounding mode, shall be exactly X14
− Y*N, where N is the integer nearest to the exact value X/Y; whenever |N − X/Y| = 1

2 , N shall be even. If the15
result value is zero, the sign shall be that of X.16

8 When X is finite and Y is infinite, the result value is X. If Y is zero or X is infinite, and neither is a NaN, the17
IEEE_INVALID exception shall occur; if IEEE_SUPPORT_NAN(X+Y) is true, the result is a NaN. If X is18
subnormal and Y is infinite, the IEEE_UNDERFLOW exception shall occur. No exception shall signal if X is19
finite and normal, and Y is infinite.20

9 Examples. The value of IEEE_REM (4.0, 3.0) is 1.0, the value of IEEE_REM (3.0, 2.0) is −1.0, and the value21
of IEEE_REM (5.0, 2.0) is 1.0.22

17.11.36 IEEE_RINT (X [, ROUND])23

1 Description. Round to integer.24

2 Class. Elemental function.25

3 Arguments.26

X shall be of type real.27

ROUND (optional) shall be of type IEEE_ROUND_TYPE.28

4 Restriction. IEEE_RINT (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.29

5 Result Characteristics. Same as X.30

6 Result Value. If ROUND is present, the value of the result is the value of X rounded to an integer according31
to the mode specified by ROUND; this is the ISO/IEC/IEEE 60559:2020 operation roundToInteger{rounding}.32
Otherwise, the value of the result is that specified for the operation roundIntegralToExact in ISO/IEC 60559:2020;33
this is the value of X rounded to an integer according to the rounding mode. If the result has the value zero, the34
sign is that of X.35

7 Examples. If the rounding mode is round to nearest, the value of IEEE_RINT (1.1) is 1.0. The value of36
IEEE_RINT (1.1, IEEE_UP) is 2.0.37

480 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

17.11.37 IEEE_SCALB (X, I)1

1 Description. X × 2I .2

2 Class. Elemental function.3

3 Arguments.4

X shall be of type real.5

I shall be of type integer.6

4 Restriction. IEEE_SCALB (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.7

5 Result Characteristics. Same as X.8

6 Result Value.9

Case (i): If X × 2I is representable as a normal number, the result has this value.10

Case (ii): If X is finite and X × 2I is too large, the IEEE_OVERFLOW exception shall occur. If IEEE_-11
SUPPORT_INF (X) is true, the result value is infinity with the sign of X; otherwise, the result12
value is SIGN (HUGE (X), X).13

Case (iii): If X ×2I is too small and there is loss of accuracy, the IEEE_UNDERFLOW exception shall occur.14
The result is the representable number having a magnitude nearest to |2I | and the same sign as X.15

Case (iv): If X is infinite, the result is the same as X; no exception signals.16

7 Example. The value of IEEE_SCALB (1.0, 2) is 4.0.17

17.11.38 IEEE_SELECTED_REAL_KIND ([P, R, RADIX])18

1 Description. IEEE kind type parameter value.19

2 Class. Transformational function.20

3 Arguments. At least one argument shall be present.21

P (optional) shall be an integer scalar.22

R (optional) shall be an integer scalar.23

RADIX (optional) shall be an integer scalar.24

4 Result Characteristics. Default integer scalar.25

5 Result Value. If P or R is absent, the result value is the same as if it were present with the value zero. If26
RADIX is absent, there is no requirement on the radix of the selected kind. The result has a value equal to a27
value of the kind type parameter of an ISO/IEC/IEEE 60559:2020 floating-point format with decimal precision,28
as returned by the intrinsic function PRECISION, of at least P digits, a decimal exponent range, as returned29
by the intrinsic function RANGE, of at least R, and a radix, as returned by the intrinsic function RADIX, of30
RADIX, if such a kind type parameter is available on the processor.31

6 Otherwise, the result is −1 if the processor supports an IEEE real type with radix RADIX and exponent range32
of at least R but not with precision of at least P, −2 if the processor supports an IEEE real type with radix33
RADIX and precision of at least P but not with exponent range of at least R, −3 if the processor supports an34
IEEE real type with radix RADIX but with neither precision of at least P nor exponent range of at least R, −4 if35
the processor supports an IEEE real type with radix RADIX and either precision of at least P or exponent range36
of at least R but not both together, and −5 if the processor supports no IEEE real type with radix RADIX.37

7 If more than one kind type parameter value meets the criteria, the value returned is the one with the smallest38
decimal precision, unless there are several such values, in which case the smallest of these kind values is returned.39

8 Example. IEEE_SELECTED_REAL_KIND (6, 30) has the value KIND (0.0) on a machine that supports40
ISO/IEC/IEEE 60559:2020 binary32 arithmetic for its default real approximation method.41

J3/23-007 481

J3/23-007 WD 1539-1 2023-02-17

17.11.39 IEEE_SET_FLAG (FLAG, FLAG_VALUE)1

1 Class. Simple subroutine.2

2 Class. Simple subroutine.3

3 Arguments.4

FLAG shall be a scalar or array of type IEEE_FLAG_TYPE. If a value of FLAG is IEEE_INVALID,5
IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT,6
the corresponding exception flag is assigned a value. No two elements of FLAG shall have the same7
value.8

FLAG_VALUE shall be a logical scalar or array. It shall be conformable with FLAG. If an element has the value9
true, the corresponding flag is set to be signaling; otherwise, the flag is set to be quiet.10

4 Example. CALL IEEE_SET_FLAG (IEEE_OVERFLOW, .TRUE.) sets the IEEE_OVERFLOW flag to be11
signaling.12

17.11.40 IEEE_SET_HALTING_MODE (FLAG, HALTING)13

1 Description. Set a halting mode.14

2 Class. Simple subroutine.15

3 Arguments.16

FLAG shall be a scalar or array of type IEEE_FLAG_TYPE. It shall have only the values IEEE_-17
INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_-18
INEXACT. No two elements of FLAG shall have the same value.19

HALTING shall be a logical scalar or array. It shall be conformable with FLAG. If an element has the value20
true, the corresponding exception specified by FLAG will cause halting. Otherwise, execution will21
continue after this exception.22

4 Restriction. IEEE_SET_HALTING_MODE (FLAG, HALTING) shall not be invoked if IEEE_SUPPORT_-23
HALTING (FLAG) has the value false.24

5 Example. CALL IEEE_SET_HALTING_MODE (IEEE_DIVIDE_BY_ZERO, .TRUE.) causes halting after25
a divide_by_zero exception.26

17.11.41 IEEE_SET_MODES (MODES)27

1 Description. Set floating-point modes.28

2 Class. Simple subroutine.29

3 Argument. MODES shall be a scalar of type IEEE_MODES_TYPE. Its value shall be one that was assigned30
by a previous invocation of IEEE_GET_MODES to its MODES argument. The floating-point modes (17.7) are31
restored to the state at that invocation.32

4 Example.33
To save the floating-point modes, do a calculation with specific rounding and underflow modes, and restore them34
later:35

USE, INTRINSIC :: IEEE_ARITHMETIC36

TYPE (IEEE_MODES_TYPE) SAVE_MODES37

. . .38

CALL IEEE_GET_MODES (SAVE_MODES) ! Save all modes.39

CALL IEEE_SET_ROUNDING_MODE (IEEE_TO_ZERO))40

482 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

CALL IEEE_SET_UNDERFLOW_MODE (GRADUAL=.FALSE.)1

. . . ! calculation with abrupt round-to-zero.2

CALL IEEE_SET_MODES (SAVE_MODES) ! Restore all modes.3

17.11.42 IEEE_SET_ROUNDING_MODE (ROUND_VALUE [, RADIX])4

1 Description. Set rounding mode.5

2 Class. Simple subroutine.6

3 Arguments.7

ROUND_VALUE shall be a scalar of type IEEE_ROUND_TYPE. It specifies the rounding mode to be set.8

RADIX (optional) shall be an integer scalar with the value two or ten. If RADIX is present with the value ten,9
the rounding mode set is the decimal rounding mode; otherwise it is the binary rounding mode.10

4 Restriction. IEEE_SET_ROUNDING_MODE (ROUND_VALUE) shall not be invoked unless IEEE_SUP-11
PORT_ROUNDING (ROUND_VALUE, X) is true for some X such that IEEE_SUPPORT_DATATYPE (X)12
is true. IEEE_SET_ROUNDING_MODE (ROUND_VALUE, RADIX) shall not be invoked unless IEEE_-13
SUPPORT_ROUNDING (ROUND_VALUE, X) is true for some X with radix RADIX such that IEEE_SUP-14
PORT_DATATYPE (X) is true.15

5 Example. To save the binary rounding mode, do a calculation with round to nearest, and restore the rounding16
mode later:17

USE, INTRINSIC :: IEEE_ARITHMETIC18

TYPE (IEEE_ROUND_TYPE) ROUND_VALUE19

. . .20

CALL IEEE_GET_ROUNDING_MODE (ROUND_VALUE) ! Store the rounding mode21

CALL IEEE_SET_ROUNDING_MODE (IEEE_NEAREST)22

. . . ! calculation with round to nearest23

CALL IEEE_SET_ROUNDING_MODE (ROUND_VALUE) ! Restore the rounding mode24

17.11.43 IEEE_SET_STATUS (STATUS_VALUE)25

1 Description. Restore floating-point status.26

2 Class. Simple subroutine.27

3 Argument. STATUS_VALUE shall be a scalar of type IEEE_STATUS_TYPE. Its value shall be one that was28
assigned by a previous invocation of IEEE_GET_STATUS to its STATUS_VALUE argument. The floating-29
point status (17.7 is restored to the state at that invocation).30

4 Example. To store all the exceptions flags, do a calculation involving exception handling, and restore them31
later:32

USE, INTRINSIC :: IEEE_EXCEPTIONS33

TYPE (IEEE_STATUS_TYPE) STATUS_VALUE34

. . .35

CALL IEEE_GET_STATUS (STATUS_VALUE) ! Store the flags36

CALL IEEE_SET_FLAG (IEEE_ALL, .FALSE.) ! Set them quiet37

. . . ! calculation involving exception handling38

CALL IEEE_SET_STATUS (STATUS_VALUE) ! Restore the flags39

J3/23-007 483

J3/23-007 WD 1539-1 2023-02-17

17.11.44 IEEE_SET_UNDERFLOW_MODE (GRADUAL)1

1 Description. Set underflow mode.2

2 Class. Simple subroutine.3

3 Argument. GRADUAL shall be a logical scalar. If it is true, the underflow mode is set to gradual underflow.4
If it is false, the underflow mode is set to abrupt underflow.5

4 Restriction. IEEE_SET_UNDERFLOW_MODE shall not be invoked unless IEEE_SUPPORT_UNDER-6
FLOW_CONTROL (X) is true for some X.7

5 Example. To perform some calculations with abrupt underflow and then restore the previous mode:8

USE, INTRINSIC :: IEEE_ARITHMETIC9

LOGICAL SAVE_UNDERFLOW_MODE10

. . .11

CALL IEEE_GET_UNDERFLOW_MODE (SAVE_UNDERFLOW_MODE)12

CALL IEEE_SET_UNDERFLOW_MODE (GRADUAL=.FALSE.)13

. . . ! Perform some calculations with abrupt underflow14

CALL IEEE_SET_UNDERFLOW_MODE (SAVE_UNDERFLOW_MODE)15

17.11.45 IEEE_SIGNALING_EQ (A, B)16

1 Description. Signaling compares equal.17

2 Class. Elemental function.18

3 Arguments.19

A shall be of type real.20

B shall be of the same type and kind type parameter as A.21

4 Restriction. IEEE_SIGNALING_EQ (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has22
the value false.23

5 Result Characteristics. Default logical.24

6 Result Value. The result has the value specified for the compareSignalingEqual operation in ISO/IEC25
60559:2020; that is, it is true if and only if A compares equal to B. If A or B is a NaN, the result will be26
false and IEEE_INVALID signals; otherwise, no exception is signaled.27

7 Example. IEEE_SIGNALING_EQ (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and28
signals IEEE_INVALID.29

17.11.46 IEEE_SIGNALING_GE (A, B)30

1 Description. Signaling compares greater than or equal.31

2 Class. Elemental function.32

3 Arguments.33

A shall be of type real.34

B shall be of the same type and kind type parameter as A.35

4 Restriction. IEEE_SIGNALING_GE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has36
the value false.37

484 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 Result Characteristics. Default logical.1

6 Result Value. The result has the value specified for the compareSignalingGreaterEqual operation in ISO/IEC2
60559:2020; that is, it is true if and only if A compares greater than or equal to B. If A or B is a NaN, the result3
will be false and IEEE_INVALID signals; otherwise, no exception is signaled.4

7 Example. IEEE_SIGNALING_GE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and5
signals IEEE_INVALID.6

17.11.47 IEEE_SIGNALING_GT (A, B)7

1 Description. Signaling compares greater than.8

2 Class. Elemental function.9

3 Arguments.10

A shall be of type real.11

B shall be of the same type and kind type parameter as A.12

4 Restriction. IEEE_SIGNALING_GT (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has13
the value false.14

5 Result Characteristics. Default logical.15

6 Result Value. The result has the value specified for the compareSignalingGreater operation in ISO/IEC16
60559:2020; that is, it is true if and only if A compares greater than B. If A or B is a NaN, the result will17
be false and IEEE_INVALID signals; otherwise, no exception is signaled.18

7 Example. IEEE_SIGNALING_GT (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and19
signals IEEE_INVALID.20

17.11.48 IEEE_SIGNALING_LE (A, B)21

1 Description. Signaling compares less than or equal.22

2 Class. Elemental function.23

3 Arguments.24

A shall be of type real.25

B shall be of the same type and kind type parameter as A.26

4 Restriction. IEEE_SIGNALING_LE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has27
the value false.28

5 Result Characteristics. Default logical.29

6 Result Value. The result has the value specified for the compareSignalingLessEqual operation in ISO/IEC30
60559:2020; that is, it is true if and only if A compares less than or equal to B. If A or B is a NaN, the result will31
be false and IEEE_INVALID signals; otherwise, no exception is signaled.32

7 Example. IEEE_SIGNALING_LE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and33
signals IEEE_INVALID.34

17.11.49 IEEE_SIGNALING_LT (A, B)35

1 Description. Signaling compares less than.36

2 Class. Elemental function.37

J3/23-007 485

J3/23-007 WD 1539-1 2023-02-17

3 Arguments.1

A shall be of type real.2

B shall be of the same type and kind type parameter as A.3

4 Restriction. IEEE_SIGNALING_LT (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has4
the value false.5

5 Result Characteristics. Default logical.6

6 Result Value. The result has the value specified for the compareSignalingLess operation in ISO/IEC 60559:2020;7
that is, it is true if and only if A compares less than B. If A or B is a NaN, the result will be false and IEEE_-8
INVALID signals; otherwise, no exception is signaled.9

7 Example. IEEE_SIGNALING_LT (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and10
signals IEEE_INVALID.11

17.11.50 IEEE_SIGNALING_NE (A, B)12

1 Description. Signaling compares not equal.13

2 Class. Elemental function.14

3 Arguments.15

A shall be of type real.16

B shall be of the same type and kind type parameter as A.17

4 Restriction. IEEE_SIGNALING_NE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has18
the value false.19

5 Result Characteristics. Default logical.20

6 Result Value. The result has the value specified for the compareSignalingNotEqual operation in ISO/IEC21
60559:2020; that is, it is true if and only if A compares not equal to B. If A or B is a NaN, the result will be true22
and IEEE_INVALID signals; otherwise, no exception is signaled.23

7 Example. IEEE_SIGNALING_NE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value true and24
signals IEEE_INVALID.25

17.11.51 IEEE_SIGNBIT (X)26

1 Description. Test sign bit.27

2 Class. Elemental function.28

3 Argument. X shall be of type real.29

4 Restriction. IEEE_SIGNBIT (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value30
false.31

5 Result Characteristics. Default logical.32

6 Result Value. The result has the value specified for the isSignMinus operation in ISO/IEC 60559:2020; that is,33
it is true if and only if the sign bit of X is nonzero. No exception is signaled even if X is a signaling NaN.34

7 Example. IEEE_SIGNBIT (−1.0) has the value true.35

486 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

17.11.52 IEEE_SUPPORT_DATATYPE () or
IEEE_SUPPORT_DATATYPE (X)

1

1 Description. Query IEEE arithmetic support.2

2 Class. Inquiry function.3

3 Argument. X shall be of type real. It may be a scalar or an array.4

4 Result Characteristics. Default logical scalar.5

5 Result Value. The result has the value true if the processor supports IEEE arithmetic for all reals (X does6
not appear) or for real variables of the same kind type parameter as X; otherwise, it has the value false. Here,7
support is as defined in the first paragraph of 17.9.8

6 Example. If default real kind conforms to ISO/IEC 60559:2020 except that underflow values flush to zero instead9
of being subnormal, IEEE_SUPPORT_DATATYPE (1.0) has the value true.10

17.11.53 IEEE_SUPPORT_DENORMAL () or
IEEE_SUPPORT_DENORMAL (X)

11

1 Description. Query subnormal number support.12

2 Class. Inquiry function.13

3 Argument. X shall be of type real. It may be a scalar or an array.14

4 Result Characteristics. Default logical scalar.15

5 Result Value.16

Case (i): IEEE_SUPPORT_DENORMAL (X) has the value true if IEEE_SUPPORT_DATATYPE (X) has17
the value true and the processor supports arithmetic operations and assignments with subnormal18
numbers (biased exponent e = 0 and fraction f ̸= 0, see ISO/IEC 60559:2020, 3.2) for real variables19
of the same kind type parameter as X; otherwise, it has the value false.20

Case (ii): IEEE_SUPPORT_DENORMAL () has the value true if IEEE_SUPPORT_DENORMAL (X) has21
the value true for all real X; otherwise, it has the value false.22

6 Example. IEEE_SUPPORT_DENORMAL (X) has the value true if the processor supports subnormal values23
for X.24

NOTE
A reference to IEEE_SUPPORT_DENORMAL will have the same result value as a reference to IEEE_-
SUPPORT_SUBNORMAL with the same argument list.

17.11.54 IEEE_SUPPORT_DIVIDE () or IEEE_SUPPORT_DIVIDE (X)25

1 Description. Query IEEE division support.26

2 Class. Inquiry function.27

3 Argument. X shall be of type real. It may be a scalar or an array.28

4 Result Characteristics. Default logical scalar.29

5 Result Value.30

Case (i): IEEE_SUPPORT_DIVIDE (X) has the value true if the processor supports division with the31
accuracy specified by ISO/IEC 60559:2020 for real variables of the same kind type parameter as X;32
otherwise, it has the value false.33

J3/23-007 487

J3/23-007 WD 1539-1 2023-02-17

Case (ii): IEEE_SUPPORT_DIVIDE () has the value true if IEEE_SUPPORT_DIVIDE (X) has the value1
true for all real X; otherwise, it has the value false.2

6 Example. IEEE_SUPPORT_DIVIDE (X) has the value true if division of operands with the same kind as X3
conforms to ISO/IEC 60559:2020.4

17.11.55 IEEE_SUPPORT_FLAG (FLAG) or IEEE_SUPPORT_FLAG (FLAG,
X)

5

1 Description. Query exception support.6

2 Class. Transformational function.7

3 Arguments.8

FLAG shall be a scalar of type IEEE_FLAG_TYPE. Its value shall be one of IEEE_INVALID, IEEE_-9
OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT.10

X shall be of type real. It may be a scalar or an array.11

4 Result Characteristics. Default logical scalar.12

5 Result Value.13

Case (i): IEEE_SUPPORT_FLAG (FLAG, X) has the value true if the processor supports detection of the14
specified exception for real variables of the same kind type parameter as X; otherwise, it has the15
value false.16

Case (ii): IEEE_SUPPORT_FLAG (FLAG) has the value true if IEEE_SUPPORT_FLAG (FLAG, X) has17
the value true for all real X; otherwise, it has the value false.18

6 Example. IEEE_SUPPORT_FLAG (IEEE_INEXACT) has the value true if the processor supports the inexact19
exception.20

17.11.56 IEEE_SUPPORT_HALTING (FLAG)21

1 Description. Query halting mode support.22

2 Class. Transformational function.23

3 Argument. FLAG shall be a scalar of type IEEE_FLAG_TYPE. Its value shall be one of IEEE_INVALID,24
IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT.25

4 Result Characteristics. Default logical scalar.26

5 Result Value. The result has the value true if the processor supports the ability to control during program27
execution whether to abort or continue execution after the exception specified by FLAG; otherwise, it has the28
value false. Support includes the ability to change the mode by CALL IEEE_SET_HALTING_MODE (FLAG).29

6 Example. IEEE_SUPPORT_HALTING (IEEE_OVERFLOW) has the value true if the processor supports30
control of halting after an overflow.31

17.11.57 IEEE_SUPPORT_INF () or IEEE_SUPPORT_INF (X)32

1 Description. Query IEEE infinity support.33

2 Class. Inquiry function.34

3 Argument. X shall be of type real. It may be a scalar or an array.35

4 Result Characteristics. Default logical scalar.36

488 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 Result Value.1

Case (i): IEEE_SUPPORT_INF (X) has the value true if the processor supports IEEE infinities (positive2
and negative) for real variables of the same kind type parameter as X; otherwise, it has the value3
false.4

Case (ii): IEEE_SUPPORT_INF () has the value true if IEEE_SUPPORT_INF (X) has the value true for5
all real X; otherwise, it has the value false.6

6 Example. IEEE_SUPPORT_INF (X) has the value true if the processor supports IEEE infinities for X.7

17.11.58 IEEE_SUPPORT_IO () or IEEE_SUPPORT_IO (X)8

1 Description. Query IEEE formatting support.9

2 Class. Inquiry function.10

3 Argument. X shall be of type real. It may be a scalar or an array.11

4 Result Characteristics. Default logical scalar.12

5 Result Value.13

Case (i): IEEE_SUPPORT_IO (X) has the value true if base conversion during formatted input/output14
(12.5.6.17, 12.6.2.14, 13.7.2.3.8) conforms to ISO/IEC 60559:2020 for the modes UP, DOWN, ZERO,15
and NEAREST for real variables of the same kind type parameter as X; otherwise, it has the value16
false.17

Case (ii): IEEE_SUPPORT_IO () has the value true if IEEE_SUPPORT_IO (X) has the value true for all18
real X; otherwise, it has the value false.19

6 Example. IEEE_SUPPORT_IO (X) has the value true if formatted input/output base conversions conform to20
ISO/IEC 60559:2020.21

17.11.59 IEEE_SUPPORT_NAN () or IEEE_SUPPORT_NAN (X)22

1 Description. Query IEEE NaN support.23

2 Class. Inquiry function.24

3 Argument. X shall be of type real. It may be a scalar or an array.25

4 Result Characteristics. Default logical scalar.26

5 Result Value.27

Case (i): IEEE_SUPPORT_NAN (X) has the value true if the processor supports IEEE NaNs for real28
variables of the same kind type parameter as X; otherwise, it has the value false.29

Case (ii): IEEE_SUPPORT_NAN () has the value true if IEEE_SUPPORT_NAN (X) has the value true30
for all real X; otherwise, it has the value false.31

6 Example. IEEE_SUPPORT_NAN (X) has the value true if the processor supports IEEE NaNs for X.32

17.11.60 IEEE_SUPPORT_ROUNDING (ROUND_VALUE) or
IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X)

33

1 Description. Query IEEE rounding support.34

2 Class. Transformational function.35

3 Arguments.36

ROUND_VALUE shall be of type IEEE_ROUND_TYPE.37

J3/23-007 489

J3/23-007 WD 1539-1 2023-02-17

X shall be of type real. It may be a scalar or an array.1

4 Result Characteristics. Default logical scalar.2

5 Result Value.3
Case (i): IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X) has the value true if the processor supports4

the rounding mode defined by ROUND_VALUE for real variables of the same kind type parameter5
as X; otherwise, it has the value false. Support includes the ability to change the mode by CALL6
IEEE_SET_ROUNDING_MODE (ROUND_VALUE).7

Case (ii): IEEE_SUPPORT_ROUNDING (ROUND_VALUE) has the value true if IEEE_SUPPORT_-8
ROUNDING (ROUND_VALUE, X) has the value true for all real X; otherwise, it has the value9
false.10

6 Example. IEEE_SUPPORT_ROUNDING (IEEE_TO_ZERO) has the value true if the processor supports11
rounding to zero for all reals.12

17.11.61 IEEE_SUPPORT_SQRT () or IEEE_SUPPORT_SQRT (X)13

1 Description. Query IEEE square root support.14

2 Class. Inquiry function.15

3 Argument. X shall be of type real. It may be a scalar or an array.16

4 Result Characteristics. Default logical scalar.17

5 Result Value.18
Case (i): IEEE_SUPPORT_SQRT (X) has the value true if the intrinsic function SQRT conforms to19

ISO/IEC 60559:2020 for real variables of the same kind type parameter as X; otherwise, it has20
the value false.21

Case (ii): IEEE_SUPPORT_SQRT () has the value true if IEEE_SUPPORT_SQRT (X) has the value true22
for all real X; otherwise, it has the value false.23

6 Example. If IEEE_SUPPORT_SQRT (1.0) has the value true, SQRT (−0.0) will have the value −0.0.24

17.11.62 IEEE_SUPPORT_STANDARD () or
IEEE_SUPPORT_STANDARD (X)

25

1 Description. Query IEEE standard support.26

2 Class. Inquiry function.27

3 Argument. X shall be of type real. It may be a scalar or an array.28

4 Result Characteristics. Default logical scalar.29

5 Result Value.30
Case (i): IEEE_SUPPORT_STANDARD (X) has the value true if the results of all the func-31

tions IEEE_SUPPORT_DATATYPE (X), IEEE_SUPPORT_DIVIDE (X), IEEE_SUPPORT_-32
FLAG (FLAG, X) for valid FLAG, IEEE_SUPPORT_HALTING (FLAG) for valid FLAG, IEEE_-33
SUPPORT_INF (X), IEEE_SUPPORT_NAN (X), IEEE_SUPPORT_ROUNDING (ROUND_-34
VALUE, X) for valid ROUND_VALUE, IEEE_SUPPORT_SQRT (X), and IEEE_SUPPORT_-35
SUBNORMAL (X) are all true; otherwise, it has the value false.36

Case (ii): IEEE_SUPPORT_STANDARD () has the value true if IEEE_SUPPORT_STANDARD (X) has37
the value true for all real X; otherwise, it has the value false.38

6 Example. IEEE_SUPPORT_STANDARD () has the value false if some but not all kinds of reals conform to39
ISO/IEC 60559:2020.40

490 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

17.11.63 IEEE_SUPPORT_SUBNORMAL () or
IEEE_SUPPORT_SUBNORMAL (X)

1

1 Description. Query subnormal number support.2

2 Class. Inquiry function.3

3 Argument. X shall be of type real. It may be a scalar or an array.4

4 Result Characteristics. Default logical scalar.5

5 Result Value.6

Case (i): IEEE_SUPPORT_SUBNORMAL (X) has the value true if IEEE_SUPPORT_DATATYPE (X)7
has the value true and the processor supports arithmetic operations and assignments with subnormal8
numbers (biased exponent e = 0 and fraction f ̸= 0, see ISO/IEC 60559:2020, 3.2) for real variables9
of the same kind type parameter as X; otherwise, it has the value false.10

Case (ii): IEEE_SUPPORT_SUBNORMAL () has the value true if IEEE_SUPPORT_SUBNORMAL (X)11
has the value true for all real X; otherwise, it has the value false.12

6 Example. IEEE_SUPPORT_SUBNORMAL (X) has the value true if the processor supports subnormal values13
for X.14

NOTE
The subnormal numbers are not included in the 16.4 model for real numbers; they satisfy the inequality ABS (X)
< TINY (X). They usually occur as a result of an arithmetic operation whose exact result is less than TINY (X).
Such an operation causes IEEE_UNDERFLOW to signal unless the result is exact. IEEE_SUPPORT_-
SUBNORMAL (X) is false if the processor never returns a subnormal number as the result of an arithmetic
operation.

17.11.64 IEEE_SUPPORT_UNDERFLOW_CONTROL () or
IEEE_SUPPORT_UNDERFLOW_CONTROL (X)

15

1 Description. Query underflow control support.16

2 Class. Inquiry function.17

3 Argument. X shall be of type real. It may be a scalar or an array.18

4 Result Characteristics. Default logical scalar.19

5 Result Value.20

Case (i): IEEE_SUPPORT_UNDERFLOW_CONTROL (X) has the value true if the processor supports21
control of the underflow mode for floating-point calculations with the same type as X, and false22
otherwise.23

Case (ii): IEEE_SUPPORT_UNDERFLOW_CONTROL () has the value true if the processor supports24
control of the underflow mode for all floating-point calculations, and false otherwise.25

6 Example. IEEE_SUPPORT_UNDERFLOW_CONTROL (2.5) has the value true if the processor supports26
underflow mode control for default real calculations.27

17.11.65 IEEE_UNORDERED (X, Y)28

1 Description. Whether two values are unordered.29

2 Class. Elemental function.30

3 Arguments. The arguments shall be of type real.31

J3/23-007 491

J3/23-007 WD 1539-1 2023-02-17

4 Restriction. IEEE_UNORDERED (X, Y) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) or1
IEEE_SUPPORT_DATATYPE (Y) has the value false.2

5 Result Characteristics. Default logical.3

6 Result Value. The result has the value true if X or Y is a NaN or both are NaNs; otherwise, it has the value4
false. If X or Y is a signaling NaN, IEEE_INVALID may signal.5

7 Example. IEEE_UNORDERED (0.0, SQRT (−1.0)) has the value true if IEEE_SUPPORT_SQRT (1.0) has6
the value true.7

17.11.66 IEEE_VALUE (X, CLASS)8

1 Description. Return number in a class.9

2 Class. Elemental function.10

3 Arguments.11

X shall be of type real.12

CLASS shall be of type IEEE_CLASS_TYPE. The value is permitted to be: IEEE_SIGNALING_NAN or13
IEEE_QUIET_NAN if IEEE_SUPPORT_NAN (X) has the value true, IEEE_NEGATIVE_INF14
or IEEE_POSITIVE_INF if IEEE_SUPPORT_INF (X) has the value true, IEEE_NEGATIVE_-15
SUBNORMAL or IEEE_POSITIVE_SUBNORMAL if IEEE_SUPPORT_SUBNORMAL (X) has16
the value true, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_-17
ZERO or IEEE_POSITIVE_NORMAL.18

4 Restriction. IEEE_VALUE (X, CLASS) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the19
value false.20

5 Result Characteristics. Same as X.21

6 Result Value. The result value is an IEEE value as specified by CLASS. Although in most cases the value is22
processor dependent, the value shall not vary between invocations for any particular X kind type parameter and23
CLASS value.24

7 Example. IEEE_VALUE (1.0, IEEE_NEGATIVE_INF) has the value −infinity.25

8 Whenever IEEE_VALUE returns a signaling NaN, it is processor dependent whether or not invalid is raised and26
processor dependent whether or not the signaling NaN is converted into a quiet NaN.27

NOTE
If the expr in an assignment statement is a reference to the IEEE_VALUE function that returns a signaling
NaN and the variable is of the same type and kind as the function result, it is recommended that the signaling
NaN be preserved.

17.12 Examples28

NOTE 1

MODULE DOT
! Module for dot product of two real arrays of rank 1.
! The caller needs to ensure that exceptions do not cause halting.
USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL :: MATRIX_ERROR = .FALSE.

492 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE 1 (cont.)
INTERFACE OPERATOR(.dot.)

MODULE PROCEDURE MULT
END INTERFACE

CONTAINS
REAL FUNCTION MULT (A, B)

REAL, INTENT (IN) :: A(:), B(:)
INTEGER I
LOGICAL OVERFLOW
IF (SIZE(A) /= SIZE(B)) THEN

MATRIX_ERROR = .TRUE.
RETURN

END IF
! The processor ensures that IEEE_OVERFLOW is quiet.
MULT = 0.0
DO I = 1, SIZE (A)

MULT = MULT + A(I)*B(I)
END DO
CALL IEEE_GET_FLAG (IEEE_OVERFLOW, OVERFLOW)
IF (OVERFLOW) MATRIX_ERROR = .TRUE.

END FUNCTION MULT
END MODULE DOT

This module provides a function that computes the dot product of two real arrays of rank 1. If the sizes of the
arrays are different, an immediate return occurs with MATRIX_ERROR true. If overflow occurs during the
actual calculation, the IEEE_OVERFLOW flag will signal and MATRIX_ERROR will be true.

NOTE 2

USE, INTRINSIC :: IEEE_EXCEPTIONS
USE, INTRINSIC :: IEEE_FEATURES, ONLY: IEEE_INVALID_FLAG
! The other exceptions of IEEE_USUAL (IEEE_OVERFLOW and
! IEEE_DIVIDE_BY_ZERO) are always available with IEEE_EXCEPTIONS
TYPE (IEEE_STATUS_TYPE) STATUS_VALUE
LOGICAL, DIMENSION(3) :: FLAG_VALUE
. . .
CALL IEEE_GET_STATUS (STATUS_VALUE)
CALL IEEE_SET_HALTING_MODE (IEEE_USUAL, .FALSE.) ! Needed in case the
! default on the processor is to halt on exceptions
CALL IEEE_SET_FLAG (IEEE_USUAL, .FALSE.)
! First try the "fast" algorithm for inverting a matrix:
MATRIX1 = FAST_INV (MATRIX) ! This shall not alter MATRIX.
CALL IEEE_GET_FLAG (IEEE_USUAL, FLAG_VALUE)
IF (ANY(FLAG_VALUE)) THEN

! "Fast" algorithm failed; try "slow" one:
CALL IEEE_SET_FLAG (IEEE_USUAL, .FALSE.)
MATRIX1 = SLOW_INV (MATRIX)

J3/23-007 493

J3/23-007 WD 1539-1 2023-02-17

NOTE 2 (cont.)
CALL IEEE_GET_FLAG (IEEE_USUAL, FLAG_VALUE)
IF (ANY (FLAG_VALUE)) THEN

WRITE (*, *) ’Cannot invert matrix’
STOP

END IF
END IF
CALL IEEE_SET_STATUS (STATUS_VALUE)

In this example, the function FAST_INV might cause a condition to signal. If it does, another try is made with
SLOW_INV. If this still fails, a message is printed and the program stops. Note, also, that it is important to
set the flags quiet before the second try. The state of all the flags is stored and restored.

NOTE 3

USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL FLAG_VALUE
. . .
CALL IEEE_SET_HALTING_MODE (IEEE_OVERFLOW, .FALSE.)
! First try a fast algorithm for inverting a matrix.
CALL IEEE_SET_FLAG (IEEE_OVERFLOW, .FALSE.)
DO K = 1, N

. . .
CALL IEEE_GET_FLAG (IEEE_OVERFLOW, FLAG_VALUE)
IF (FLAG_VALUE) EXIT

END DO
IF (FLAG_VALUE) THEN
! Alternative code which knows that K-1 steps have executed normally.
. . .
END IF

Here the code for matrix inversion is in line and the transfer is made more precise by adding extra tests of the
flag.

494 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

18 Interoperability with C1

18.1 General2

1 Fortran provides a means of referencing procedures that are defined by means of the C programming language or3
procedures that can be described by C prototypes as defined in ISO/IEC 9899:2018, 6.7.6.3, even if they are not4
actually defined by means of C. Conversely, there is a means of specifying that a procedure defined by a Fortran5
subprogram can be referenced from a function defined by means of C. In addition, there is a means of declaring6
global variables that are associated with C variables whose names have external linkage as defined in ISO/IEC7
9899:2018, 6.2.2.8

2 The ISO_C_BINDING module provides access to named constants that represent kind type parameters of data9
representations compatible with C types. Fortran also provides facilities for defining derived types (7.5) and10
interoperable enumerations (7.6.1) that correspond to C types.11

3 The source file ISO_Fortran_binding.h provides definitions and prototypes to enable a C function to interoperate12
with a Fortran procedure that has a dummy data object that is allocatable, assumed-shape, assumed-rank, pointer,13
or is of type character with an assumed length.14

4 The conditions under which a Fortran entity is interoperable are defined in 18.3. If a Fortran entity is interoper-15
able, an equivalent entity could be defined by means of C and the Fortran entity would interoperate with the C16
entity. There does not have to be such an interoperating C entity.17

NOTE
A Fortran entity can be interoperable with more than one C entity.

18.2 The ISO_C_BINDING intrinsic module18

18.2.1 Summary of contents19

1 The processor shall provide the intrinsic module ISO_C_BINDING. This module shall make accessible the20
following entities: the named constants C_NULL_PTR, C_NULL_FUNPTR, and those with names listed in21
the first column of Table 18.1 and the second column of Table 18.2, the types C_PTR and C_FUNPTR, and the22
procedures in 18.2.3. A processor may provide other public entities in the ISO_C_BINDING intrinsic module23
in addition to those listed here.24

18.2.2 Named constants and derived types in the module25

1 The entities listed in the second column of Table 18.2 shall be default integer named constants.26

2 A Fortran intrinsic type whose kind type parameter is one of the values in the module shall have the same27
representation as the C type with which it interoperates, for each value that a variable of that type can have.28
For C_BOOL, the internal representation of .TRUE._C_BOOL and .FALSE._C_BOOL shall be the same as those of29
the C values (_Bool)1 and (_Bool)0 respectively.30

3 The value of C_INT shall be a valid value for an integer kind parameter on the processor. The values of31
C_SHORT, C_LONG, C_LONG_LONG, C_SIGNED_CHAR, C_SIZE_T, C_INT8_T, C_INT16_T,32
C_INT32_T, C_INT64_T, C_INT_LEAST8_T, C_INT_LEAST16_T, C_INT_LEAST32_T, C_INT_-33
LEAST64_T, C_INT_FAST8_T, C_INT_FAST16_T, C_INT_FAST32_T, C_INT_FAST64_T, C_INT-34
MAX_T, C_INTPTR_T, and C_PTRDIFF_T shall each be a valid value for an integer kind type parameter35

J3/23-007 495

J3/23-007 WD 1539-1 2023-02-17

on the processor or shall be −1 if the companion processor (5.5.7) defines the corresponding C type and there is1
no interoperating Fortran processor kind, or −2 if the companion processor does not define the corresponding C2
type.3

4 The values of C_FLOAT, C_DOUBLE, and C_LONG_DOUBLE shall each be a valid value for a real kind4
type parameter on the processor or shall be −1 if the companion processor’s type does not have a precision equal5
to the precision of any of the Fortran processor’s real kinds, −2 if the companion processor’s type does not have6
a range equal to the range of any of the Fortran processor’s real kinds, −3 if the companion processor’s type7
has neither the precision nor range of any of the Fortran processor’s real kinds, and equal to −4 if there is no8
interoperating Fortran processor kind for other reasons. The values of C_FLOAT_COMPLEX, C_DOUBLE_-9
COMPLEX, and C_LONG_DOUBLE_COMPLEX shall be the same as those of C_FLOAT, C_DOUBLE, and10
C_LONG_DOUBLE, respectively.11

5 The value of C_BOOL shall be a valid value for a logical kind parameter on the processor or shall be −1.12

6 The value of C_CHAR shall be a valid value for a character kind type parameter on the processor or shall be −1.13
If the value of C_CHAR is nonnegative, the character kind specified is the C character kind; otherwise, there is14
no C character kind.15

7 The following entities shall be named constants of type character with a length parameter of one. The kind16
parameter value shall be equal to the value of C_CHAR unless C_CHAR = −1, in which case the kind parameter17
value shall be the same as for default kind. The values of these constants are specified in Table 18.1. In the18
case that C_CHAR ̸= −1 the value is specified using C syntax. The semantics of these values are explained in19
ISO/IEC 9899:2018, 5.2.1 and 5.2.2.20

Table 18.1: Names of C characters with special semantics
Value

Name C definition C_CHAR = −1 C_CHAR ̸= −1
C_NULL_CHAR null character CHAR(0) ’\0’
C_ALERT alert ACHAR(7) ’\a’
C_BACKSPACE backspace ACHAR(8) ’\b’
C_FORM_FEED form feed ACHAR(12) ’\f’
C_NEW_LINE new line ACHAR(10) ’\n’
C_CARRIAGE_RETURN carriage return ACHAR(13) ’\r’
C_HORIZONTAL_TAB horizontal tab ACHAR(9) ’\t’
C_VERTICAL_TAB vertical tab ACHAR(11) ’\v’

8 The entities C_PTR and C_FUNPTR are described in 18.3.2.21

9 The entity C_NULL_PTR shall be a named constant of type C_PTR. The value of C_NULL_PTR shall be the22
same as the value NULL in C. The entity C_NULL_FUNPTR shall be a named constant of type C_FUNPTR.23
The value of C_NULL_FUNPTR shall be that of a null pointer to a function in C.24

NOTE
The value of NEW_LINE (C_NEW_LINE) is C_NEW_LINE (16.9.150).

18.2.3 Procedures in the module25

18.2.3.1 General26

1 In the detailed descriptions below, procedure names are generic and not specific. The C_F_POINTER, C_-27
F_PROCPOINTER, and C_F_STRPOINTER subroutines are impure; all other procedures in the module are28
simple.29

496 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

18.2.3.2 C_ASSOCIATED (C_PTR_1 [, C_PTR_2])1

1 Description. Query C pointer status.2

2 Class. Transformational function.3

3 Arguments.4

C_PTR_1 shall be a scalar of type C_PTR or C_FUNPTR.5

C_PTR_2 (optional) shall be a scalar of the same type as C_PTR_1.6

4 Result Characteristics. Default logical scalar.7

5 Result Value.8

Case (i): If C_PTR_2 is absent, the result is false if C_PTR_1 is a C null pointer and true otherwise.9

Case (ii): If C_PTR_2 is present, the result is false if C_PTR_1 is a C null pointer. If C_PTR_1 is not a C10
null pointer, the result is true if C_PTR_1 compares equal to C_PTR_2 in the sense of ISO/IEC11
9899:2018, 6.3.2.3 and 6.5.9, and false otherwise.12

6 Examples.13

Case (i): If variable P of type C_PTR has been assigned the value of C_NULL_PTR, the value of C_-14
ASSOCIATED (P) is false.15

Case (ii): For the interoperable variable REAL (C_DOUBLE), TARGET, BIND (C) :: X, if variable P of16
type C_PTR has been assigned the address of X, perhaps by a C function that used “&x”, the17
value of C_ASSOCIATED (P, C_LOC (X)) is true.18

18.2.3.3 C_F_POINTER (CPTR, FPTR [, SHAPE, LOWER])19

1 Description. Associate a data pointer with the target of a C pointer and specify its shape.20

2 Class. Subroutine.21

3 Arguments.22

CPTR shall be a scalar of type C_PTR. It is an INTENT (IN) argument. Its value shall be23

• the C address of an interoperable data entity,24

• the result of a reference to C_LOC with a noninteroperable argument, or25

• the C address of a storage sequence that is not in use by any other Fortran entity.26

The value of CPTR shall not be the C address of a Fortran variable that does not have the TARGET27
attribute.28

FPTR shall be a pointer, shall not have a deferred type parameter, and shall not be a coindexed object. It29
is an INTENT (OUT) argument. If FPTR is an array, its shape is specified by SHAPE; the lower30
bounds are specified by LOWER if it is present, otherwise each lower bound is equal to 1.31

Case (i): If the value of CPTR is the C address of an interoperable data entity, FPTR32
shall be a data pointer with type and type parameter values interoperable with33
the type of the entity. If the target T of CPTR is scalar, FPTR becomes pointer34
associated with T; if FPTR is an array, SHAPE shall specify a size of 1. If T is35
an array, and FPTR is scalar, FPTR becomes associated with the first element of36
T. If both T and FPTR are arrays, SHAPE shall specify a size that is less than or37
equal to the size of T, and FPTR becomes associated with the first PRODUCT38
(SHAPE) elements of T (this could be the entirety of T).39

Case (ii): If the value of CPTR is the result of a reference to C_LOC with a noninter-40
operable effective argument X, FPTR shall be a nonpolymorphic pointer with41
the same type and type parameters as X. In this case, X shall not have been42
deallocated or have become undefined due to execution of a RETURN or END43
statement since the reference. If X is scalar, FPTR becomes pointer associated44

J3/23-007 497

J3/23-007 WD 1539-1 2023-02-17

with X; if FPTR is an array, SHAPE shall specify a size of 1. If X is an array and1
FPTR is scalar, FPTR becomes associated with the first element of X. If both X2
and FPTR are arrays, SHAPE shall specify a size that is less than or equal to3
the size of X, and FPTR becomes associated with the first PRODUCT (SHAPE)4
elements of X (this could be the entirety of X).5

Case (iii): If the value of CPTR is the C address of a storage sequence that is not in use by6
any other Fortran entity, FPTR becomes associated with that storage sequence.7
The storage sequence shall be large enough to contain the target object described8
by FPTR and shall satisfy any other processor-dependent requirement for asso-9
ciation.10

SHAPE (optional) shall be a rank-one integer array. It is an INTENT (IN) argument. SHAPE shall be present11
if and only if FPTR is an array; its size shall be equal to the rank of FPTR.12

LOWER (optional) shall be a rank-one integer array. It is an INTENT (IN) argument. It shall not be present if13
SHAPE is not present. If LOWER is present, its size shall be equal to the rank of FPTR.14

4 Examples.15

Case (i): extern double c_x;16

void *address_of_x (void)17

{18

return &c_x;19

}20

21

! Assume interface to "address_of_x" is available.22

Real (C_double), Pointer :: xp23

Call C_F_Pointer (address_of_x (), xp)24

Case (ii): Type t25

Real, Allocatable :: v(:,:)26

End Type27

Type(t), Target :: x(0:2)28

Type(C_ptr) :: xloc29

xloc = C_Loc (x)30

...31

Type(t), Pointer :: y(:)32

Call C_F_Pointer (xloc, y, [3], [0])33

Case (iii): void *getmem (int nbits)34

{35

return malloc ((nbits+CHAR_BIT-1)/CHAR_BIT);36

}37

38

! Assume interface to "getmem" is available,39

! and there is a derived type "mytype" accessible.40

Type(mytype), Pointer :: x41

Call C_F_Pointer (getmem (Storage_Size (x)), x)42

Case (iv): The following statements illustrate the use of C_F_POINTER when the pointer to be set has a43
deferred type parameter:44

Character(42), Pointer :: C145

Character(:), Pointer :: C246

Call C_F_Pointer (CPTR, C1)47

C2 => C148

498 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

This will associate C2 with the entity at the C address specified by CPTR, and specify its length1
to be the same as that of C1.2

NOTE
In the case of associating FPTR with a storage sequence, there might be processor-dependent requirements such
as alignment of the memory address or placement in memory.

18.2.3.4 C_F_PROCPOINTER (CPTR, FPTR)3

1 Description. Associate a procedure pointer with the target of a C function pointer.4

2 Class. Subroutine.5

3 Arguments.6

CPTR shall be a scalar of type C_FUNPTR. It is an INTENT (IN) argument. Its value shall be the C7
address of a procedure that is interoperable, or the result of a reference to the function C_FUNLOC8
from the intrinsic module ISO_C_BINDING.9

FPTR shall be a procedure pointer, and shall not be a component of a coindexed object. It is an INTENT10
(OUT) argument. If the target of CPTR is interoperable, the interface for FPTR shall be interoper-11
able with the prototype that describes the target of CPTR; otherwise, the interface for FPTR shall12
have the same characteristics as that target. FPTR becomes pointer associated with the target of13
CPTR.14

4 Example.15
The following C code provides a function, dispatch, that returns a C function pointer to the C library cube root16
function:17

#include <math.h>18

typedef double (*simplefun)(double);19

20

simplefun dispatch (void) {21

return &cbrt;22

}23

The following Fortran interface interoperates with dispatch:24

Interface25

Type(C_FUNPTR) Function dispatch () Bind(C)26

Use Iso_C_Binding, Only: C_FUNPTR27

End Function dispatch28

End Interface29

With the abstract interface SIMPLE_FUNCTION (analogous to simplefun), a procedure pointer suitable for30
referring to the C library function cbrt can be created:31

Abstract Interface32

Real (C_double) Function simple_function (x) Bind(C)33

Use Iso_C_Binding, Only: C_double34

Real (C_double), Value :: x35

End Function simple_function36

End Interface37

Procedure (simple_function), Pointer :: psimp38

J3/23-007 499

J3/23-007 WD 1539-1 2023-02-17

Once the procedure pointer is associated, it can be used to invoke cbrt:1

Call C_F_Procpointer (dispatch (), psimp)2

Write (*,*) psimp (4.5_C_double)3

NOTE
The term “target” in the descriptions of C_F_POINTER and C_F_PROCPOINTER denotes the entity
referenced by a C pointer, as described in ISO/IEC 9899:2018, 6.2.5.

18.2.3.5 C_F_STRPOINTER (CSTRARRAY, FSTRPTR [, NCHARS]) or
C_F_STRPOINTER (CSTRPTR, FSTRPTR [, NCHARS])

4

1 Description. Associate a character pointer with a C string.5

2 Class. Subroutine.6

3 Arguments.7

CSTRARRAY shall be a rank one character array of kind C_CHAR, with a length type parameter equal to8
one. It is an INTENT (IN) argument. Its actual argument shall be simply contiguous and have the9
TARGET attribute.10

CSTRPTR shall be a scalar of type C_PTR. It is an INTENT (IN) argument. Its value shall be the C address11
of a contiguous array S of NCHARS characters. Its value shall not be the C address of a Fortran12
variable that does not have the TARGET attribute.13

FSTRPTR shall be a scalar deferred-length character pointer of kind C_CHAR. It is an INTENT (OUT) argu-14
ment. FSTRPTR becomes pointer associated with the leftmost characters of the actual argument15
element sequence (15.5.2.12) of CSTRARRAY if it appears, or with the leftmost characters (in array16
element order) of the array S if CSTRPTR appears.17

The length type parameter of FSTRPTR becomes the largest value for which no C null characters18
appear in the sequence, and which is less than or equal to NCHARS if present, and the size of19
CSTRARRAY otherwise.20

NCHARS (optional) shall be an integer scalar with a nonnegative value. It is an INTENT (IN) argument.21
NCHARS shall be present if CSTRARRAY is assumed-size, or if CSTRPTR appears. If CSTRAR-22
RAY appears, NCHARS shall not be greater than the size of CSTRARRAY.23

4 If C_CHAR has the value −1, indicating that there is no C character kind, the generic subroutine C_F_-24
STRPOINTER does not have any specific procedure.25

5 Example.26

Case (i): This interoperable procedure prints a C string to a Fortran file.27

Subroutine logstring (str) Bind (C)28

Use Iso_C_Binding29

Character (Kind=C_char), Dimension(*), Target :: str30

Character (:, C_char), Pointer :: sval31

Integer, Parameter :: logunit = 1732

Call C_F_Strpointer (str, sval, 1020) ! Limit result to 1020 characters.33

Write (logunit, *) ’C: ’, sval34

End Subroutine35

Case (ii): This program shows how to use C_F_STRPOINTER to display the result of calling the C library36
function getenv.37

Program cfs_example38

Use Iso_C_Binding39

500 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Character (:, C_char), Pointer :: evalue1

Type (C_ptr) :: envptr2

Interface3

Function getenv (name) Bind (C)4

Import C_char, C_ptr5

Character (Kind=C_char), Intent (In) :: name (*)6

Type (C_ptr) :: getenv7

End Function8

End Interface9

envptr = getenv ("CFS")10

If (C_associated (envptr)) Then11

Call C_F_Strpointer (envptr, evalue, 1023) ! Max length 1023.12

Print *, ’CFS value is "’, evalue, ’"’13

Else14

Print *, ’CFS has no value’15

End If16

End Program17

18.2.3.6 C_FUNLOC (X)18

1 Description. C address of the argument.19

2 Class. Transformational function.20

3 Argument. X shall be a procedure; if it is a procedure pointer it shall be associated. It shall not be a coindexed21
object.22

4 Result Characteristics. Scalar of type C_FUNPTR.23

5 Result Value. The result value is described using the result name FUNPTR. The result is determined as if24
C_FUNPTR were a derived type containing a procedure pointer component PX with an implicit interface and25
the pointer assignment FUNPTR%PX => X were executed. The result value can be used as an actual CPTR26
argument in a call to C_F_PROCPOINTER where the FPTR argument has attributes that would allow the27
pointer assignment FPTR => X. Such a call to C_F_PROCPOINTER shall have the effect of the pointer28
assignment FPTR => X.29

6 Example. This code fragment shows how C_FUNLOC can be used to register an “atexit” procedure with the30
C library.31

Use Iso_C_Binding32

Interface33

Function atexit (func) Bind (C)34

Import35

Integer (C_int) :: atexit36

Type (C_funptr), Value :: func37

End Function38

Subroutine my_atexit_sub() Bind(C)39

End Subroutine40

End Interface41

Integer (C_int) :: errno42

errno = atexit (C_funloc (my_atexit_sub))43

If (errno==0) Then44

J3/23-007 501

J3/23-007 WD 1539-1 2023-02-17

Print *, ’At exit sub registered’1

Else2

Print *, ’Error’, errno, ’from atexit’3

End If4

18.2.3.7 C_LOC (X)5

1 Description. C address of the argument.6

2 Class. Transformational function.7

3 Argument. X shall have either the POINTER or TARGET attribute. It shall not be a coindexed object. It shall8
be a variable with interoperable type and kind type parameters, an assumed-type variable, or a nonpolymorphic9
variable that has no length type parameter. If it is allocatable, it shall be allocated. If it is a pointer, it shall be10
associated. If it is an array, it shall be contiguous and have nonzero size. It shall not be a zero-length string.11

4 Result Characteristics. Scalar of type C_PTR.12

5 Result Value. The result value is described using the result name CPTR.13

Case (i): If X is a scalar data entity, the result is determined as if C_PTR were a derived type containing14
a scalar pointer component PX of the type and type parameters of X and the pointer assignment15
CPTR%PX => X were executed.16

Case (ii): If X is an array data entity, the result is determined as if C_PTR were a derived type containing a17
scalar pointer component PX of the type and type parameters of X and the pointer assignment of18
CPTR%PX to the first element of X were executed.19

Case (iii): If X is a data entity that is interoperable or has interoperable type and type parameters, the result20
is the value that the C processor returns as the result of applying the unary “&” operator (as defined21
in ISO/IEC 9899:2018, 6.5.3.2) to the target of CPTR%PX.22

The result value can be used as an actual CPTR argument in a call to C_F_POINTER where FPTR has23
attributes that would allow the pointer assignment FPTR => X. Such a call to C_F_POINTER shall have the24
effect of the pointer assignment FPTR => X.25

6 Example. This function uses C_LOC to return the address of a Fortran floating-point vector to a C caller.26

Function new_fortran_float_vec (n) Bind (C) Result (r)27

Use Iso_C_Binding28

Integer (C_size_t), Value :: n29

Type (C_ptr) :: r30

Real (C_float), Pointer :: rp (:)31

Allocate (rp (n), Stat=istat)32

If (istat==0) Then33

r = C_loc (rp (1))34

Else35

r = C_null_ptr36

End If37

End Function38

An example using C_LOC on an array of noninteroperable type appears in Case (ii) of the Examples paragraph39
of 18.2.3.3.40

502 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

NOTE
Where the actual argument is of noninteroperable type or type parameters, the result of C_LOC provides an
opaque “handle” for it. In an actual implementation, this handle might be the C address of the argument;
however, only a C function that treats it as a void (generic) C pointer that cannot be dereferenced (ISO/IEC
9899:2018, 6.5.3.2) is likely to be portable.

18.2.3.8 C_SIZEOF (X)1

1 Description. Size of X in bytes.2

2 Class. Inquiry function.3

3 Argument. X shall be a data entity with interoperable type and type parameters, and shall not be an assumed-4
size array, an assumed-rank array that is associated with an assumed-size array, an unallocated allocatable5
variable, or a pointer that is not associated.6

4 Result Characteristics. Scalar integer of kind C_SIZE_T (18.3.1).7

5 Result Value.8

Case (i): If X is scalar, the result value is the value that the companion processor returns as the result of9
applying the sizeof operator (ISO/IEC 9899:2018, 6.5.3.4) to an object of a type that interoperates10
with the type and type parameters of X.11

Case (ii): If X is an array, the result value is the value that the companion processor returns as the result12
of applying the sizeof operator to an object of a type that interoperates with the type and type13
parameters of X, multiplied by the number of elements in X.14

6 Example. With eight-bit bytes and the declaration INTEGER (C_INT32_T) :: X (3), the result value of15
C_SIZEOF (X) is twelve.16

18.2.3.9 F_C_STRING (STRING [, ASIS])17

1 Description. String with appended null character.18

2 Class. Transformational function.19

3 Arguments.20

STRING shall be a character scalar of kind C_CHAR. If C_CHAR has the value −1, indicating that there21
is no C character kind, the generic function F_C_STRING has no specific procedure.22

ASIS (optional) shall be a logical scalar.23

4 Result Characteristics. Character scalar of kind C_CHAR. If ASIS is present with the value true, the length24
type parameter of the result is equal to one plus the length of STRING, otherwise it is equal to one plus the25
length of STRING without trailing blanks.26

5 Result Value. The leftmost characters of the result, up to the penultimate character, are equal to the corres-27
ponding characters of STRING. The final character of the result is equal to C_NULL_CHAR.28

6 Example. If X is declared as CHARACTER(6,C_CHAR), and has the value ’abc ’ (with three trailing29
blanks), then F_C_STRING (X, .TRUE.) has length seven and the value ’abc ’//C_NULL_CHAR, and F_C_-30
STRING (X) has length four and the value ’abc’//C_NULL_CHAR.31

J3/23-007 503

J3/23-007 WD 1539-1 2023-02-17

18.3 Interoperability between Fortran and C entities1

18.3.1 Interoperability of intrinsic types2

1 Table 18.2 shows the interoperability between Fortran intrinsic types and C types. A Fortran intrinsic type with3
particular type parameter values is interoperable with a C type if the type and kind type parameter value are listed4
in the table on the same row as that C type. If the type is character, the length type parameter is interoperable5
if and only if its value is one. A combination of Fortran type and type parameters that is interoperable with a6
C type listed in the table is also interoperable with any unqualified C type that is compatible with the listed C7
type.8

2 The second column of the table refers to the named constants made accessible by the ISO_C_BINDING intrinsic9
module. If the value of any of these named constants is negative, there is no combination of Fortran type and10
type parameters interoperable with the C type shown in that row.11

3 A combination of intrinsic type and type parameters is interoperable if it is interoperable with a C type. The C12
types mentioned in Table 18.2 are defined in ISO/IEC 9899:2018, 6.2.5, 7.19, and 7.20.1.13

Table 18.2: Interoperability between Fortran and C types
Fortran type Named constant from the ISO_C_BINDING module

(kind type parameter if value is positive)
C type

C_INT int
C_SHORT short int
C_LONG long int
C_LONG_LONG long long int

C_SIGNED_CHAR signed char
unsigned char

C_SIZE_T size_t
C_INT8_T int8_t
C_INT16_T int16_t
C_INT32_T int32_t
C_INT64_T int64_t
C_INT_LEAST8_T int_least8_t
C_INT_LEAST16_T int_least16_t
C_INT_LEAST32_T int_least32_t

INTEGER C_INT_LEAST64_T int_least64_t
C_INT_FAST8_T int_fast8_t
C_INT_FAST16_T int_fast16_t
C_INT_FAST32_T int_fast32_t
C_INT_FAST64_T int_fast64_t
C_INTMAX_T intmax_t
C_INTPTR_T intptr_t
C_PTRDIFF_T ptrdiff_t
C_FLOAT float

REAL C_DOUBLE double
C_LONG_DOUBLE long double
C_FLOAT_COMPLEX float _Complex

COMPLEX C_DOUBLE_COMPLEX double _Complex
C_LONG_DOUBLE_COMPLEX long double _Complex

LOGICAL C_BOOL _Bool

504 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Interoperability between Fortran and C types (cont.)

Fortran type Named constant from the ISO_C_BINDING module
(kind type parameter if value is positive)

C type

CHARACTER C_CHAR char

NOTE
ISO/IEC 9899:2018 specifies that the representations for nonnegative signed integers are the same as the cor-
responding values of unsigned integers. Because Fortran does not provide direct support for unsigned kinds of
integers, the ISO_C_BINDING module does not make accessible named constants for their kind type parameter
values. A user can use the signed kinds of integers to interoperate with the unsigned types and all their qualified
versions as well. This has the potentially surprising side effect that the C type unsigned char is interoperable
with the type integer with a kind type parameter of C_SIGNED_CHAR.

18.3.2 Interoperability with C pointer types1

1 C_PTR and C_FUNPTR shall be derived types with only private components. No direct component of either2
of these types is allocatable or a pointer. C_PTR is interoperable with any C object pointer type. C_FUNPTR3
is interoperable with any C function pointer type.4

NOTE 1
This means that only a C processor with the same representation method for all C object pointer types, and the
same representation method for all C function pointer types, can be the target of interoperability of a Fortran
processor. ISO/IEC 9899:2018 does not require this to be the case.

NOTE 2
The function C_LOC can be used to return a value of type C_PTR that is the C address of an allocated
allocatable variable. The function C_FUNLOC can be used to return a value of type C_FUNPTR that is the
C address of a procedure. For C_LOC and C_FUNLOC the returned value is of an interoperable type and
thus can be used in contexts where the procedure or allocatable variable is not directly allowed. For example,
it could be passed as an actual argument to a C function.

Similarly, type C_FUNPTR or C_PTR can be used in a dummy argument or structure component and can
have a value that is the C address of a procedure or allocatable variable, even in contexts where a procedure or
allocatable variable is not directly allowed.

18.3.3 Interoperability of enum types5

1 An enum type interoperates with its corresponding C enumerated type. It also interoperates with the C integer6
type that interoperates with its enumerators.7

18.3.4 Interoperability of derived types and C structure types8

1 Interoperability between a derived type in Fortran and a structure type in C is provided by the BIND attribute9
on the Fortran type.10

C1801 (R726) A derived type with the BIND attribute shall not have the SEQUENCE attribute.11

C1802 (R726) A derived type with the BIND attribute shall not have type parameters.12

C1803 (R726) A derived type with the BIND attribute shall not have the EXTENDS attribute.13

C1804 (R726) A derived-type-def that defines a derived type with the BIND attribute shall not have a type-14
bound-procedure-part.15

J3/23-007 505

J3/23-007 WD 1539-1 2023-02-17

C1805 (R726) A derived type with the BIND attribute shall have at least one component.1

C1806 (R726) Each component of a derived type with the BIND attribute shall be a nonpointer, nonallocatable2
data component with interoperable type and type parameters.3

NOTE 1
The syntax rules and their constraints require that a derived type that is interoperable with a C structure type
have components that are all data entities that are interoperable. No component is permitted to be allocatable
or a pointer, but the value of a component of type C_FUNPTR or C_PTR can be the C address of such an
entity.

2 A derived type is interoperable with a C structure type if and only if the derived type has the BIND attribute4
(7.5.2), the derived type and the C structure type have the same number of components, and the components of5
the derived type would interoperate with corresponding components of the C structure type as described in 18.3.56
and 18.3.6 if the components were variables. A component of a derived type and a component of a C structure7
type correspond if they are declared in the same relative position in their respective type definitions.8

NOTE 2
The names of the corresponding components of the derived type and the C structure type need not be the same.

3 There is no Fortran type that is interoperable with a C structure type that contains a bit field or that contains9
a flexible array member. There is no Fortran type that is interoperable with a C union type.10

NOTE 3
For example, the C type myctype, declared below, is interoperable with the Fortran type myftype, declared
below.

typedef struct {
int m, n;
float r;

} myctype;

USE, INTRINSIC :: ISO_C_BINDING
TYPE, BIND(C) :: MYFTYPE

INTEGER(C_INT) :: I, J
REAL(C_FLOAT) :: S

END TYPE MYFTYPE

The names of the types and the names of the components are not significant for the purposes of determining
whether a Fortran derived type is interoperable with a C structure type.

NOTE 4
ISO/IEC 9899:2018 requires the names and component names to be the same in order for the types to be
compatible (ISO/IEC 9899:2018, 6.2.7). This is similar to Fortran’s rule describing when different derived type
definitions describe the same sequence type. This rule was not extended to determine whether a Fortran derived
type is interoperable with a C structure type because the case of identifiers is significant in C but not in Fortran.

18.3.5 Interoperability of scalar variables11

1 A named scalar Fortran variable is interoperable if and only if its type and type parameters are interoperable, it12
is not a coarray, it has neither the ALLOCATABLE nor the POINTER attribute, and if it is of type character13
its length is not assumed or declared by an expression that is not a constant expression.14

506 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 An interoperable scalar Fortran variable is interoperable with a scalar C entity if their types and type parameters1
are interoperable.2

18.3.6 Interoperability of array variables3

1 A Fortran variable that is a named array is interoperable if and only if its type and type parameters are interop-4
erable, it is not a coarray, it is of explicit shape or assumed size, and if it is of type character its length is not5
assumed or declared by an expression that is not a constant expression.6

2 An explicit-shape or assumed-size array of rank r, with a shape of
[

e1 . . . er

]
is interoperable with a C array7

if its size is nonzero and8

(1) either9

(a) the array is assumed-size, and the C array does not specify a size, or10

(b) the array is an explicit-shape array, and the extent of the last dimension (er) is the same as11
the size of the C array, and12

(2) either13

(a) r is equal to one, and an element of the array is interoperable with an element of the C array,14
or15

(b) r is greater than one, and an explicit-shape array with shape of
[

e1 . . . er−1
]
, with the16

same type and type parameters as the original array, is interoperable with a C array of a type17
equal to the element type of the original C array.18

NOTE 1
An element of a multi-dimensional C array is an array type, so a Fortran array of rank one is not interoperable
with a multidimensional C array.

NOTE 2
An allocatable array or array pointer is never interoperable. Such an array does not meet the requirement of
being an explicit-shape or assumed-size array.

NOTE 3
For example, a Fortran array declared as

INTEGER(C_INT) :: A(18, 3:7, *)

is interoperable with a C array declared as

int b[][5][18];

NOTE 4
The C programming language defines null-terminated strings, which are actually arrays of the C type char that
have a C null character in them to indicate the last valid element. A Fortran array of type character with a
kind type parameter equal to C_CHAR is interoperable with a C string.

Fortran’s rules of sequence association (15.5.2.12) permit a character scalar actual argument to correspond to
a dummy argument array. This makes it possible to argument associate a Fortran character string with a C
string.

18.3.7, NOTE 4 has an example of interoperation between Fortran and C strings.

18.3.7 Interoperability of procedures and procedure interfaces19

1 A Fortran procedure is interoperable if and only if it has the BIND attribute, that is, if its interface is specified20
with a proc-language-binding-spec.21

J3/23-007 507

J3/23-007 WD 1539-1 2023-02-17

2 A Fortran procedure interface is interoperable with a C function prototype if1

(1) the interface has the BIND attribute,2

(2) either3

(a) the interface describes a function whose result is a scalar variable that is interoperable with4
the result of the prototype or5

(b) the interface describes a subroutine and the prototype has a result type of void,6

(3) the number of dummy arguments of the interface is equal to the number of formal parameters of the7
prototype,8

(4) any scalar dummy argument with the VALUE attribute is interoperable with the corresponding9
formal parameter of the prototype,10

(5) any dummy argument without the VALUE attribute corresponds to a formal parameter of the pro-11
totype that is of a pointer type, and either12

• the dummy argument is interoperable with an entity of the referenced type (ISO/IEC 9899:2018,13
6.2.5, 7.19, and 7.20.1) of the formal parameter,14

• the dummy argument is a nonallocatable nonpointer variable of type CHARACTER with15
assumed character length and the formal parameter is a pointer to CFI_cdesc_t,16

• the dummy argument is allocatable, assumed-shape, assumed-rank, or a pointer without the17
CONTIGUOUS attribute, and the formal parameter is a pointer to CFI_cdesc_t, or18

• the dummy argument is assumed-type and not allocatable, assumed-shape, assumed-rank, or19
a pointer, and the formal parameter is a pointer to void,20

(6) each allocatable or pointer dummy argument of type CHARACTER has deferred character length,21
and22

(7) the prototype does not have variable arguments as denoted by the ellipsis (...).23

NOTE 1
The referenced type of a C pointer type is the C type of the object that the C pointer type points to. For
example, the referenced type of the pointer type int * is int.

NOTE 2
The C language allows specification of a C function that can take a variable number of arguments (ISO/IEC
9899:2018, 7.16). This document does not provide a mechanism for Fortran procedures to interoperate with
such C functions.

3 A formal parameter of a C function prototype corresponds to a dummy argument of a Fortran interface if they24
are in the same relative positions in the C parameter list and the dummy argument list, respectively.25

4 In a reference from C to a Fortran procedure with an interoperable interface, a C actual argument shall be the26
address of a C descriptor for the intended effective argument if the corresponding dummy argument interoperates27
with a C formal parameter that is a pointer to CFI_cdesc_t. In this C descriptor, the members other than28
attribute and type shall describe an object with the same characteristics as the intended effective argument.29
The value of the attribute member of the C descriptor shall be compatible with the characteristics of the dummy30
argument. The type member shall have a value that depends on the intended effective argument as follows:31

• if the dynamic type of the intended effective argument is an interoperable type listed in Table 18.4, the32
corresponding value for that type;33

• if the dynamic type of the intended effective argument is an intrinsic type for which the processor defines34
a nonnegative type specifier value not listed in Table 18.4, that type specifier value;35

• otherwise, CFI_type_other.36

5 When an interoperable Fortran procedure that is invoked from C has a dummy argument with the CONTIGU-37
OUS attribute or that is an assumed-length CHARACTER explicit-shape or assumed-size array, and the actual38

508 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

argument is the address of a C descriptor for a discontiguous object, the Fortran processor shall handle the1
difference in contiguity.2

6 When an interoperable C procedure whose Fortran interface has a dummy argument with the CONTIGUOUS3
attribute or that is an assumed-length CHARACTER explicit-shape or assumed-size array is invoked from Fortran4
and the effective argument is discontiguous, the Fortran processor shall ensure that the C procedure receives a5
descriptor for a contiguous object.6

7 If an interoperable procedure defined by means other than Fortran has an optional dummy argument, and the7
corresponding actual argument in a reference from Fortran is absent, the procedure is invoked with a null pointer8
for that argument. If an interoperable procedure defined by means of Fortran is invoked by a C function, an9
optional dummy argument is absent if and only if the corresponding argument in the invocation is a null pointer.10

NOTE 3
For example, a Fortran procedure interface described by

INTERFACE
FUNCTION FUNC(I, J, K, L, M) BIND(C)

USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_SHORT) :: FUNC
INTEGER(C_INT), VALUE :: I
REAL(C_DOUBLE) :: J
INTEGER(C_INT) :: K, L(10)
TYPE(C_PTR), VALUE :: M

END FUNCTION FUNC
END INTERFACE

is interoperable with the C function prototype

short func(int i, double *j, int *k, int l[10], void *m);

A C pointer can correspond to a Fortran dummy argument of type C_PTR with the VALUE attribute or
to a Fortran scalar that does not have the VALUE attribute. In the above example, the C pointers j and k
correspond to the Fortran scalars J and K, respectively, and the C pointer m corresponds to the Fortran dummy
argument M of type C_PTR.

NOTE 4
The interoperability of Fortran procedure interfaces with C function prototypes is only one part of invocation
of a C function from Fortran. There are four pieces to consider in such an invocation: the procedure reference,
the Fortran procedure interface, the C function prototype, and the C function. Conversely, the invocation of
a Fortran procedure from C involves the function reference, the C function prototype, the Fortran procedure
interface, and the Fortran procedure. In order to determine whether a reference is allowed, it is necessary to
consider all four pieces.

For example, consider a C function that can be described by the C function prototype

void copy(char in[], char out[]);

Such a function can be invoked from Fortran as follows:

USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_CHAR, C_NULL_CHAR
INTERFACE

SUBROUTINE COPY(IN, OUT) BIND(C)
IMPORT C_CHAR
CHARACTER(KIND=C_CHAR), DIMENSION(*) :: IN, OUT

END SUBROUTINE COPY
END INTERFACE

J3/23-007 509

J3/23-007 WD 1539-1 2023-02-17

NOTE 4 (cont.)

CHARACTER(LEN=10, KIND=C_CHAR) :: &
& DIGIT_STRING = C_CHAR_’123456789’ // C_NULL_CHAR
CHARACTER(KIND=C_CHAR) :: DIGIT_ARR(10)

CALL COPY(DIGIT_STRING, DIGIT_ARR)
PRINT ’(1X, A1)’, DIGIT_ARR(1:9)
END

The procedure reference has character string actual arguments. These correspond to character array dummy
arguments in the procedure interface body as allowed by Fortran’s rules of sequence association (15.5.2.12).
Those array dummy arguments in the procedure interface are interoperable with the formal parameters of the
C function prototype. The C function is not shown here, but is assumed to be compatible with the C function
prototype.

NOTE 5
If an interoperable C procedure whose Fortran interface has a dummy argument which has the CONTIGUOUS
attribute, or is an assumed-length CHARACTER explicit-shape or assumed-size array, is invoked from C,
because the invoking routine is responsible for the contents of the C descriptor, it therefore might not describe
a contiguous data object.

18.4 C descriptors1

1 A C descriptor is a C structure of type CFI_cdesc_t. Together with library functions that have standard2
prototypes, it provides a means for describing and manipulating Fortran data objects from within a C function.3
This C structure is defined in the source file ISO_Fortran_binding.h.4

18.5 The source file ISO_Fortran_binding.h5

18.5.1 Summary of contents6

1 The source file ISO_Fortran_binding.h shall contain the C structure definitions, typedef declarations, macro7
definitions, and function prototypes specified in 18.5.2 to 18.5.5. The definitions and declarations in ISO_-8
Fortran_binding.h can be used by a C function to interpret and manipulate a C descriptor. These provide a9
means to specify a C prototype that interoperates with a Fortran interface that has a non-interoperable dummy10
variable (18.3.7).11

2 The source file ISO_Fortran_binding.h may be included in any order relative to the standard C headers, and12
may be included more than once in a given scope, with no effect different from being included only once, other13
than the effect on line numbers.14

3 A C source file that includes the ISO_Fortran_binding.h header file shall not use any names starting with15
CFI_ that are not defined in the header, and shall not define any of the structure names defined in the header16
as macro names. All names other than structure member names defined in the header begin with CFI_ or an17
underscore character, or are defined by a standard C header that it includes.18

18.5.2 The CFI_dim_t structure type19

1 CFI_dim_t is a typedef name for a C structure. It is used to represent lower bound, extent, and memory stride20
information for one dimension of an array. The type CFI_index_t is described in 18.5.4. CFI_dim_t contains21
at least the following members in any order.22

510 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

CFI_index_t lower_bound; The value is equal to the value of the lower bound for the dimension being1
described.2

CFI_index_t extent; The value is equal to the number of elements in the dimension being described, or −13
for the final dimension of an assumed-size array.4

CFI_index_t sm; The value is equal to the memory stride for a dimension; this is the difference in bytes5
between the addresses of successive elements in the dimension being described.6

18.5.3 The CFI_cdesc_t structure type7

1 CFI_cdesc_t is a typedef name for a C structure, which contains a flexible array member. It shall contain at least8
the members described in this subclause. The values of these members of a structure of type CFI_cdesc_t that9
is produced by the functions and macros specified in this document, or received by a C function when invoked10
by a Fortran procedure, shall have the properties described in this subclause.11

2 The first three members of the structure shall be base_addr, elem_len, and version in that order. The final12
member shall be dim. All other members shall be between version and dim, in any order. The types CFI_-13
attribute_t, CFI_rank_t, and CFI_type_t are described in 18.5.4. The type CFI_dim_t is described in 18.5.2.14

void * base_addr; If the object is an unallocated allocatable variable or a pointer that is disassociated, the15
value is a null pointer; otherwise, if the object has zero size, the value is not a null pointer but is otherwise16
processor-dependent. Otherwise, the value is the base address of the object being described. The base17
address of a scalar is its C address. The base address of an array is the C address of the first element in18
Fortran array element order.19

size_t elem_len; If the object is scalar, the value is the storage size in bytes of the object; otherwise, the value20
is the storage size in bytes of an element of the object.21

int version; The value is equal to the value of CFI_VERSION in the source file ISO_Fortran_binding.h that22
defined the format and meaning of this C descriptor.23

CFI_rank_t rank; The value is equal to the number of dimensions of the Fortran object being described; if24
the object is scalar, the value is zero.25

CFI_type_t type; The value is equal to the specifier for the type of the object. Each interoperable intrinsic C26
type has a specifier. Specifiers are also provided to indicate that the type of the object is an interoperable27
structure, or is unknown. The macros listed in Table 18.4 provide values that correspond to each specifier.28

CFI_attribute_t attribute; The value is equal to the value of an attribute code that indicates whether the29
object described is allocatable, a data pointer, or a nonallocatable nonpointer data object. The macros30
listed in Table 18.3 provide values that correspond to each code.31

CFI_dim_t dim; The number of elements in the dim array is equal to the rank of the object. Each element of32
the array contains the lower bound, extent, and memory stride information for the corresponding dimension33
of the Fortran object.34

3 For a C descriptor of an array pointer or allocatable array, the value of the lower_bound member of each element35
of the dim member of the descriptor is determined by argument association, allocation, or pointer association.36
For a C descriptor of a nonallocatable nonpointer object, the value of the lower_bound member of each element37
of the dim member of the descriptor is zero.38

4 There shall be an ordering of the dimensions such that the absolute value of the sm member of the first dimension39
is not less than the elem_len member of the C descriptor and the absolute value of the sm member of each40
subsequent dimension is not less than the absolute value of the sm member of the previous dimension multiplied41
by the extent of the previous dimension.42

5 In a C descriptor of an assumed-size array, the extent member of the last element of the dim member has the43
value −1.44

J3/23-007 511

J3/23-007 WD 1539-1 2023-02-17

NOTE 1
The reason for the restriction on the absolute values of the sm members is to ensure that there is no overlap
between the elements of the array that is being described, while allowing for the reordering of subscripts. Within
Fortran, such a reordering can be achieved with the intrinsic function TRANSPOSE or the intrinsic function
RESHAPE with the optional argument ORDER, and an optimizing compiler can accommodate it without
making a copy by constructing the appropriate descriptor whenever it can determine that a copy is not needed.

NOTE 2
The value of elem_len for a Fortran CHARACTER object is equal to the character length times the number
of bytes of a single character of that kind. If the kind is C_CHAR, this value will be equal to the character
length.

18.5.4 Macros and typedefs in ISO_Fortran_binding.h1

1 Except for CFI_CDESC_T, each macro defined in ISO_Fortran_binding.h expands to an integer constant2
expression that is either a single token or a parenthesized expression that is suitable for use in #if preprocessing3
directives.4

2 CFI_CDESC_T is a function-like macro that takes one argument, which is the rank of the C descriptor to create,5
and evaluates to an unqualified type of suitable size and alignment for defining a variable to use as a C descriptor6
of that rank. The argument shall be an integer constant expression with a value that is greater than or equal to7
zero and less than or equal to CFI_MAX_RANK. A pointer to a variable declared using CFI_CDESC_T can8
be cast to CFI_cdesc_t *. A variable declared using CFI_CDESC_T shall not have an initializer.9

NOTE 1
The CFI_CDESC_T macro provides the memory for a C descriptor. The address of an entity declared using
the macro is not usable as an actual argument corresponding to a formal parameter of type CFI_cdesc_t *
without an explicit cast. For example, the following code uses CFI_CDESC_T to declare a C descriptor of
rank 5 and pass it to CFI_deallocate (18.5.5.4).

CFI_CDESC_T(5) object;
int ind;
. . . Code to define and use C descriptor.
ind = CFI_deallocate((CFI_cdesc_t *)&object);

3 CFI_index_t is a typedef name for a standard signed integer type capable of representing the result of subtracting10
two pointers.11

4 The CFI_MAX_RANK macro has a processor-dependent value equal to the largest rank supported. The value12
shall be greater than or equal to 15. CFI_rank_t is a typedef name for a standard integer type capable of13
representing the largest supported rank.14

5 The CFI_VERSION macro has a processor-dependent value that encodes the version of the ISO_Fortran_-15
binding.h source file containing this macro. This value should be increased if a new version of the source file is16
incompatible with the previous version.17

6 The macros in Table 18.3 are for use as attribute codes. The values shall be nonnegative and distinct. CFI_-18
attribute_t is a typedef name for a standard integer type capable of representing the values of the attribute19
codes.20

Table 18.3: ISO_Fortran_binding.h macros for attribute codes
Macro name Attribute

CFI_attribute_pointer data pointer
CFI_attribute_allocatable allocatable

512 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

ISO_Fortran_binding.h macros for attribute codes(cont.)
Macro name Attribute

CFI_attribute_other nonallocatable nonpointer

7 CFI_attribute_pointer specifies a data object with the Fortran POINTER attribute. CFI_attribute_allocatable1
specifies an object with the Fortran ALLOCATABLE attribute. CFI_attribute_other specifies a nonallocatable2
nonpointer object.3

8 The macros in Table 18.4 are for use as type specifiers. The value for CFI_type_other shall be negative and4
distinct from all other type specifiers. CFI_type_struct specifies a C structure that is interoperable with a5
Fortran derived type; its value shall be positive and distinct from all other type specifiers. If a C type is not6
interoperable with a Fortran type and kind supported by the Fortran processor, its macro shall evaluate to a7
negative value. Otherwise, the value for a macro listed in Table 18.4 shall be positive.8

9 If the processor supports interoperability of a Fortran intrinsic type with a C type not listed in Table 18.4,9
the processor shall define a type specifier value for that type which is positive and distinct from all other type10
specifiers.11

10 CFI_type_t is a typedef name for a standard integer type capable of representing the values for the supported12
type specifiers.13

Table 18.4: ISO_Fortran_binding.h macros for type codes
Macro name C Type

CFI_type_signed_char signed char
CFI_type_short short int
CFI_type_int int
CFI_type_long long int
CFI_type_long_long long long int
CFI_type_size_t size_t
CFI_type_int8_t int8_t
CFI_type_int16_t int16_t
CFI_type_int32_t int32_t
CFI_type_int64_t int64_t
CFI_type_int_least8_t int_least8_t
CFI_type_int_least16_t int_least16_t
CFI_type_int_least32_t int_least32_t
CFI_type_int_least64_t int_least64_t
CFI_type_int_fast8_t int_fast8_t
CFI_type_int_fast16_t int_fast16_t
CFI_type_int_fast32_t int_fast32_t
CFI_type_int_fast64_t int_fast64_t
CFI_type_intmax_t intmax_t
CFI_type_intptr_t intptr_t
CFI_type_ptrdiff_t ptrdiff_t
CFI_type_float float
CFI_type_double double
CFI_type_long_double long double
CFI_type_float_Complex float _Complex
CFI_type_double_Complex double _Complex
CFI_type_long_double_Complex long double _Complex
CFI_type_Bool _Bool
CFI_type_char char

J3/23-007 513

J3/23-007 WD 1539-1 2023-02-17

ISO_Fortran_binding.h macros for type codes (cont.)
Macro name C Type

CFI_type_cptr void *
CFI_type_struct interoperable C structure
CFI_type_other Not otherwise specified

NOTE 2
The values for different C types can be the same; for example, CFI_type_int and CFI_type_int32_t might
have the same value.

11 The macros in Table 18.5 are for use as error codes. The macro CFI_SUCCESS shall be defined to be the1
integer constant zero. The value of each macro other than CFI_SUCCESS shall be nonzero and shall be different2
from the values of the other macros specified in this subclause. Error conditions other than those listed in this3
subclause should be indicated by error codes different from the values of the macros named in this subclause.4

12 The values of the macros in Table 18.5 indicate the error condition described.5

Table 18.5: ISO_Fortran_binding.h macros for error codes
Macro name Error condition
CFI_SUCCESS No error detected.
CFI_ERROR_BASE_ADDR_NULL The base address member of a C descriptor is a null pointer

in a context that requires a non-null pointer value.
CFI_ERROR_BASE_ADDR_NOT_NULL In a context that requires a null pointer value, the base

address member of a C descriptor is not a null pointer.
CFI_INVALID_ELEM_LEN The value supplied for the element length member of a

C descriptor is not valid.
CFI_INVALID_RANK The value supplied for the rank member of a C descriptor is

not valid.
CFI_INVALID_TYPE The value supplied for the type member of a C descriptor is

not valid.
CFI_INVALID_ATTRIBUTE The value supplied for the attribute member of a

C descriptor is not valid.
CFI_INVALID_EXTENT The value supplied for the extent member of a CFI_dim_t

structure is not valid.
CFI_INVALID_DESCRIPTOR A C descriptor is invalid in some way.
CFI_ERROR_MEM_ALLOCATION Memory allocation failed.
CFI_ERROR_OUT_OF_BOUNDS A reference is out of bounds.

18.5.5 Functions declared in ISO_Fortran_binding.h6

18.5.5.1 Arguments and results of the functions7

1 Some of the functions described in 18.5.5 return an error indicator; this is an integer value that indicates whether8
an error condition was detected. The value zero indicates that no error condition was detected, and a nonzero9
value indicates which error condition was detected. Table 18.5 lists standard error conditions and macro names10
for their corresponding error codes. A processor is permitted to detect other error conditions. If an invocation of11
a function defined in 18.5.5 could detect more than one error condition and an error condition is detected, which12
error condition is detected is processor dependent.13

2 In function arguments representing subscripts, bounds, extents, or strides, the ordering of the elements is the14

514 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

same as the ordering of the elements of the dim member of a C descriptor.1

3 Prototypes for these functions, or equivalent macros, are provided in the ISO_Fortran_binding.h file as described2
in 18.5.5. It is unspecified whether the functions defined by this header are macros or identifiers declared with3
external linkage. If a macro definition is suppressed in order to access an actual function, the behavior is undefined.4

NOTE
These functions are allowed to be macros to provide extra implementation flexibility. For example, CFI_-
establish could include the value of CFI_VERSION in the header used to compile the call to CFI_establish as
an extra argument of the actual function used to establish the C descriptor.

18.5.5.2 The CFI_address function5

1 Synopsis. C address of an object described by a C descriptor.6

void *CFI_address(const CFI_cdesc_t *dv, const CFI_index_t subscripts[]);7

2 Formal Parameters.8

dv shall be the address of a C descriptor describing the object. The object shall not be an unallocated9
allocatable variable or a pointer that is not associated.10

subscripts shall be a null pointer or the address of an array of type CFI_index_t. If the object is an array,11
subscripts shall be the address of an array of CFI_index_t with at least n elements, where n12
is the rank of the object. The value of subscripts[i] shall be within the bounds of dimension i13
specified by the dim member of the C descriptor except for the last dimension of a C descriptor for14
an assumed-size array. For the C descriptor of an assumed-size array, the value of the subscript for15
the last dimension shall not be less than the lower bound, and the subscript order value specified16
by the subscripts shall not exceed the size of the array.17

3 Result Value. If the object is an array of rank n, the result is the C address of the element of the object that18
the first n elements of the subscripts argument would specify if used as subscripts. If the object is scalar, the19
result is its C address.20

4 Example. If dv is the address of a C descriptor for the Fortran array A declared as21

REAL(C_FLOAT) :: A(100, 100)22

the following code calculates the C address of A(5, 10):23

CFI_index_t subscripts[2];24

float *address;25

subscripts[0] = 4;26

subscripts[1] = 9;27

address = (float *) CFI_address(dv, subscripts);28

18.5.5.3 The CFI_allocate function29

1 Synopsis. Allocate memory for an object described by a C descriptor.30

int CFI_allocate(CFI_cdesc_t *dv, const CFI_index_t lower_bounds[],31

const CFI_index_t upper_bounds[], size_t elem_len);32

2 Formal Parameters.33

J3/23-007 515

J3/23-007 WD 1539-1 2023-02-17

dv shall be the address of a C descriptor specifying the rank and type of the object. The base_-1
addr member of the C descriptor shall be a null pointer. If the type is not a character type, the2
elem_len member shall specify the element length. The attribute member shall have a value of3
CFI_attribute_allocatable or CFI_attribute_pointer.4

lower_bounds shall be the address of an array with at least dv->rank elements, if dv->rank>0.5

upper_bounds shall be the address of an array with at least dv->rank elements, if dv->rank>0.6

elem_len If the type specified in the C descriptor type is a Fortran character type, the value of elem_len7
shall be the storage size in bytes of an element of the object; otherwise, elem_len is ignored.8

3 Description. Successful execution of CFI_allocate allocates memory for the object described by the C9
descriptor with the address dv using the same mechanism as the Fortran ALLOCATE statement, and assigns the10
address of that memory to dv->base_addr. The first dv->rank elements of the lower_bounds and upper_bounds11
arguments provide the lower and upper Fortran bounds, respectively, for each corresponding dimension of the12
object. The supplied lower and upper bounds override any current dimension information in the C descriptor.13
If the rank is zero, the lower_bounds and upper_bounds arguments are ignored. If the type specified in the C14
descriptor is a character type, the supplied element length overrides the current element-length information in15
the descriptor.16

If an error is detected, the C descriptor is not modified.17

4 Result Value. The result is an error indicator.18

5 Example. If dv is the address of a C descriptor for the Fortran array A declared as19

REAL, ALLOCATABLE :: A(:, :)20

and the array is not allocated, the following code allocates it to be of shape [100, 500]:21

CFI_index_t lower[2], upper[2];22

int ind;23

lower[0] = 1; lower[1] = 1;24

upper[0] = 100; upper[1] = 500;25

ind = CFI_allocate(dv, lower, upper, 0);26

18.5.5.4 The CFI_deallocate function27

1 Synopsis. Deallocate memory for an object described by a C descriptor.28

int CFI_deallocate(CFI_cdesc_t *dv);29

2 Formal Parameter. dv shall be the address of a C descriptor describing the object. It shall have been allocated30
using the same mechanism as the Fortran ALLOCATE statement. If the object is a pointer, it shall be associated31
with a target satisfying the conditions for successful deallocation by the Fortran DEALLOCATE statement32
(9.7.3).33

3 Description. Successful execution of CFI_deallocate deallocates memory for the object using the same mech-34
anism as the Fortran DEALLOCATE statement, and the base_addr member of the C descriptor becomes a null35
pointer.36

If an error is detected, the C descriptor is not modified.37

4 Result Value. The result is an error indicator.38

5 Example. If dv is the address of a C descriptor for the Fortran array A declared as39

REAL, ALLOCATABLE :: A(:, :)40

516 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

and the array is allocated, the following code deallocates it:1

int ind;2

ind = CFI_deallocate(dv);3

18.5.5.5 The CFI_establish function4

1 Synopsis. Establish a C descriptor.5

int CFI_establish(CFI_cdesc_t *dv, void *base_addr, CFI_attribute_t attribute,6

CFI_type_t type, size_t elem_len, CFI_rank_t rank,7

const CFI_index_t extents[]);8

2 Formal Parameters.9

dv shall be the address of a data object large enough to hold a C descriptor of the rank specified by10
rank. It shall not have the same value as either a C formal parameter that corresponds to a Fortran11
actual argument or a C actual argument that corresponds to a Fortran dummy argument. It shall12
not be the address of a C descriptor that describes an allocated allocatable object.13

base_addr shall be a null pointer or the base address of the object to be described. If it is not a null pointer,14
it shall be the address of a storage sequence that is appropriately aligned (ISO/IEC 9899:2018, 3.2)15
for an object of the type specified by type.16

attribute shall be one of the attribute codes in Table 18.3. If it is CFI_attribute_allocatable, base_addr17
shall be a null pointer.18

type shall have the value of one of the type codes in Table 18.4, or have a positive value corresponding19
to an interoperable C type.20

elem_len If type is equal to CFI_type_struct, CFI_type_other, or a Fortran character type code, elem_-21
len shall be greater than zero and equal to the storage size in bytes of an element of the object.22
Otherwise, elem_len will be ignored.23

rank shall have a value in the range 0 ≤ rank ≤ CFI_MAX_RANK. It specifies the rank of the object.24

extents is ignored if rank is equal to zero or if base_addr is a null pointer. Otherwise, it shall be the address25
of an array with rank elements; the value of each element shall be nonnegative, and extents[i]26
specifies the extent of dimension i of the object.27

3 Description. Successful execution of CFI_establish updates the object with the address dv to be an established28
C descriptor for a nonallocatable nonpointer data object of known shape, an unallocated allocatable object, or a29
data pointer. If base_addr is not a null pointer, it is for a nonallocatable entity that is a scalar or a contiguous30
array; if the attribute argument has the value CFI_attribute_pointer, the lower bounds of the object described31
by dv are set to zero. If base_addr is a null pointer, the established C descriptor is for an unallocated allocatable,32
a disassociated pointer, or is a C descriptor that has the attribute CFI_attribute_other but does not describe33
a data object. If base_addr is the C address of a Fortran data object, the type and elem_len arguments shall be34
consistent with the type and type parameters of the Fortran data object. The remaining properties of the object35
are given by the other arguments.36

If an error is detected, the object with the address dv is not modified.37

4 Result Value. The result is an error indicator.38

NOTE 1
CFI_establish is used to initialize a C descriptor declared in C with CFI_CDESC_T before passing it to any
other functions as an actual argument, in order to set the rank, attribute, type and element length.

J3/23-007 517

J3/23-007 WD 1539-1 2023-02-17

NOTE 2
A C descriptor with attribute CFI_attribute_other and base_addr a null pointer can be used as the argument
result in calls to CFI_section or CFI_select_part, which will produce a C descriptor for a nonallocatable
nonpointer data object.

5 Examples.1

Case (i): The following code fragment establishes a C descriptor for an unallocated rank-one allocatable array2
that can be passed to Fortran for allocation there.3

CFI_rank_t rank;4

CFI_CDESC_T(1) field;5

int ind;6

rank = 1;7

ind = CFI_establish((CFI_cdesc_t *)&field, NULL, CFI_attribute_allocatable,8

CFI_type_double, 0, rank, NULL);9

Case (ii): Given the Fortran type definition10

TYPE, BIND(C) :: T11

REAL(C_DOUBLE) :: X12

COMPLEX(C_DOUBLE_COMPLEX) :: Y13

END TYPE14
and a Fortran subprogram that has an assumed-shape dummy argument of type T, the following15
code fragment creates a descriptor a_fortran for an array of size 100 that can be used as the actual16
argument in an invocation of the subprogram from C:17

typedef struct {double x; double _Complex y;} t;18

t a_c[100];19

CFI_CDESC_T(1) a_fortran;20

int ind;21

CFI_index_t extent[1];22

23

extent[0] = 100;24

ind = CFI_establish((CFI_cdesc_t *)&a_fortran, a_c, CFI_attribute_other,25

CFI_type_struct, sizeof(t), 1, extent);26

18.5.5.6 The CFI_is_contiguous function27

1 Synopsis. Test contiguity of an array.28

int CFI_is_contiguous(const CFI_cdesc_t * dv);29

2 Formal Parameter. dv shall be the address of a C descriptor describing an array. The base_addr member of30
the C descriptor shall not be a null pointer.31

3 Result Value. The value of the result is 1 if the array described by dv is contiguous, and 0 otherwise.32

NOTE
Assumed-size and allocatable arrays are always contiguous, and therefore the result of CFI_is_contiguous on
a C descriptor for such an array will be equal to 1.

518 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

18.5.5.7 The CFI_section function1

1 Synopsis. Update a C descriptor for an array section for which each element is an element of a given array.2

int CFI_section(CFI_cdesc_t *result, const CFI_cdesc_t *source,3

const CFI_index_t lower_bounds[], const CFI_index_t upper_bounds[],4

const CFI_index_t strides[]);5

2 Formal Parameters.6

result shall be the address of a C descriptor with rank equal to the rank of source minus the number of7
zero strides. The attribute member shall have the value CFI_attribute_other or CFI_attribute_-8
pointer. If the value of result is the same as either a C formal parameter that corresponds to a9
Fortran actual argument or a C actual argument that corresponds to a Fortran dummy argument,10
the attribute member shall have the value CFI_attribute_pointer.11

source shall be the address of a C descriptor that describes a nonallocatable nonpointer array, an allocated12
allocatable array, or an associated array pointer. The elem_len and type members of source shall13
have the same values as the corresponding members of result.14

lower_bounds shall be a null pointer or the address of an array with at least source->rank elements. If it is not15
a null pointer, and stridei is zero or (upperi − lower_bounds[i] + stridei)/stridei > 0, the value16
of lower_bounds[i] shall be within the bounds of dimension i of SOURCE.17

upper_bounds shall be a null pointer or the address of an array with at least source->rank elements. If source18
describes an assumed-size array, upper_bounds shall not be a null pointer. If it is not a null pointer19
and stridei is zero or (upper_bounds[i] − loweri + stridei)/stridei > 0, the value of upper_-20
bounds[i] shall be within the bounds of dimension i of SOURCE.21

strides shall be a null pointer or the address of an array with at least source->rank elements.22

3 Description. Successful execution of CFI_section updates the base_addr and dim members of the C descriptor23
with the address result to describe the array section determined by source, lower_bounds, upper_bounds, and24
strides, as follows.25

The array section is equivalent to the Fortran array section SOURCE(sectsub1, sectsub2, ... sectsubn), where26
SOURCE is the array described by source, n is the rank of that array, and sectsubi is the subscript loweri if27
stridei is zero, and the section subscript loweri : upperi : stridei otherwise. The value of loweri is the lower28
bound of dimension i of SOURCE if lower_bounds is a null pointer and lower_bounds[i] otherwise. The value29
of upperi is the upper bound of dimension i of SOURCE if upper_bounds is a null pointer and upper_bounds[i]30
otherwise. The value of stridei is 1 if strides is a null pointer and strides[i] otherwise. If stridei has the31
value zero, loweri shall have the same value as upperi.32

If an error is detected, the C descriptor with the address result is not modified.33

4 Result Value. The result is an error indicator.34

5 Examples.35

Case (i): If source is already the address of a C descriptor for the rank-one Fortran array A, the lower36
bounds of A are equal to 1, and the lower bounds in the C descriptor are equal to 0, the following37
code fragment establishes a new C descriptor section and updates it to describe the array section38
A(3::5):39

CFI_index_t lower[1], strides[1];40

CFI_CDESC_T(1) section;41

int ind;42

lower[0] = 2;43

strides[0] = 5;44

ind = CFI_establish((CFI_cdesc_t *)§ion, NULL, CFI_attribute_other,45

J3/23-007 519

J3/23-007 WD 1539-1 2023-02-17

CFI_type_float, 0, 1, NULL);1

ind = CFI_section((CFI_cdesc_t *)§ion, source, lower, NULL, strides);2

Case (ii): If source is already the address of a C descriptor for a rank-two Fortran assumed-shape array A3
with lower bounds equal to 1, the following code fragment establishes a C descriptor and updates4
it to describe the rank-one array section A(:, 42).5

CFI_index_t lower[2], upper[2], strides[2];6

CFI_CDESC_T(1) section;7

int ind;8

lower[0] = source->dim[0].lower_bound;9

upper[0] = source->dim[0].lower_bound + source->dim[0].extent - 1;10

strides[0] = 1;11

lower[1] = upper[1] = source->dim[1].lower_bound + 41;12

strides[1] = 0;13

ind = CFI_establish((CFI_cdesc_t *)§ion, NULL, CFI_attribute_other,14

CFI_type_float, 0, 1, NULL);15

ind = CFI_section((CFI_cdesc_t *)§ion, source, lower, upper, strides);16

18.5.5.8 The CFI_select_part function17

1 Synopsis. Update a C descriptor for an array section for which each element is a part of the corresponding18
element of an array.19

int CFI_select_part(CFI_cdesc_t *result, const CFI_cdesc_t *source, size_t displacement,20

size_t elem_len);21

2 Formal Parameters.22

result shall be the address of a C descriptor; result->rank shall have the same value as source->rank23
and result->attribute shall have the value CFI_attribute_other or CFI_attribute_pointer. If24
the address specified by result is the value of a C formal parameter that corresponds to a For-25
tran actual argument or of a C actual argument that corresponds to a Fortran dummy argument,26
result->attribute shall have the value CFI_attribute_pointer. The value of result->type spe-27
cifies the type of the array section.28

source shall be the address of a C descriptor for an allocated allocatable array, an associated array pointer,29
or a nonallocatable nonpointer array that is not assumed-size.30

displacement shall have a value 0 ≤ displacement ≤ source->elem_len −1, and the sum of the displacement31
and the size in bytes of an element of the array section shall be less than or equal to source->elem_-32
len. The address displacement bytes greater than the value of source->base_addr is the base of33
the array section and shall be appropriately aligned (ISO/IEC 9899:2018, 3.2) for an object of the34
type of the array section.35

elem_len shall have a value equal to the storage size in bytes of an element of the array section if result->type36
specifies a Fortran character type; otherwise, elem_len is ignored.37

3 Description. Successful execution of CFI_select_part updates the base_addr, dim, and elem_len members of38
the C descriptor with the address result for an array section for which each element is a part of the corresponding39
element of the array described by the C descriptor with the address source. The part shall be a component of a40
structure, a substring, or the real or imaginary part of a complex value.41

If an error is detected, the C descriptor with the address result is not modified.42

4 Result Value. The result is an error indicator.43

5 Example. If source is already the address of a C descriptor for the Fortran array A declared with44

520 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

TYPE, BIND(C) :: T1

REAL(C_DOUBLE) :: X2

COMPLEX(C_DOUBLE_COMPLEX) :: Y3

END TYPE4

TYPE(T) A(100)5

the following code fragment establishes a C descriptor for the array A%Y:6

typedef struct {7

double x; double _Complex y;8

} t;9

CFI_CDESC_T(1) component;10

CFI_cdesc_t * comp_cdesc = (CFI_cdesc_t *)&component;11

CFI_index_t extent[] = { 100 };12

(void)CFI_establish(comp_cdesc, NULL, CFI_attribute_other, CFI_type_double_Complex,13

sizeof(double _Complex), 1, extent);14

(void)CFI_select_part(comp_cdesc, source, offsetof(t,y), 0);15

18.5.5.9 The CFI_setpointer function16

1 Synopsis. Update a C descriptor for a Fortran pointer to be associated with the whole of a given object or to17
be disassociated.18

int CFI_setpointer(CFI_cdesc_t *result, CFI_cdesc_t *source,19

const CFI_index_t lower_bounds[]);20

2 Formal Parameters.21

result shall be the address of a C descriptor for a Fortran pointer. It is updated using information from22
the source and lower_bounds arguments.23

source shall be a null pointer or the address of a C descriptor for an allocated allocatable object, a data24
pointer object, or a nonallocatable nonpointer data object that is not an assumed-size array. If25
source is not a null pointer, the corresponding values of the rank and type members shall be the26
same in the C descriptors with the addresses source and result. If source is not a null pointer27
and the C descriptor with the address result does not describe a deferred length character pointer,28
the corresponding values of the elem_len member shall be the same in the C descriptors with the29
addresses source and result.30

lower_bounds If source is not a null pointer and source->rank is nonzero, lower_bounds shall be a null pointer31
or the address of an array with at least source->rank elements.32

3 Description. Successful execution of CFI_setpointer updates the base_addr, dim, and possibly elem_len33
members of the C descriptor with the address result as follows:34

• if source is a null pointer or the address of a C descriptor for a disassociated pointer, the updated C35
descriptor describes a disassociated pointer;36

• otherwise, the C descriptor with the address result becomes a C descriptor for the object described by37
the C descriptor with the address source, except that if source->rank is nonzero and lower_bounds is38
not a null pointer, the lower bounds are replaced by the values of the first source->rank elements of the39
lower_bounds array. If the C descriptor with the address result describes a character pointer with deferred40
length, the value of its elem_len member is set to source->elem_len.41

If an error is detected, the C descriptor with the address result is not modified.42

J3/23-007 521

J3/23-007 WD 1539-1 2023-02-17

4 Result Value. The result is an error indicator.1

5 Example. If ptr is already the address of a C descriptor for an array pointer of rank 1, the following code2
updates it to be a C descriptor for a pointer to the same array with lower bound 0.3

CFI_index_t lower_bounds[1];4

int ind;5

lower_bounds[0] = 0;6

ind = CFI_setpointer(ptr, ptr, lower_bounds);7

18.6 Restrictions on C descriptors8

1 A C descriptor shall not be initialized, updated, or copied other than by calling the functions specified in 18.5.5.9

2 If the address of a C descriptor is a formal parameter that corresponds to a Fortran actual argument or a C10
actual argument that corresponds to a Fortran dummy argument,11

• the C descriptor shall not be modified if either the corresponding dummy argument in the Fortran interface12
has the INTENT (IN) attribute or the C descriptor is for a nonallocatable nonpointer object, and13

• the base_addr member of the C descriptor shall not be accessed before it is given a value if the corresponding14
dummy argument in the Fortran interface has the POINTER and INTENT (OUT) attributes.15

NOTE
In this context, modification refers to any change to the location or contents of the C descriptor, including
establishment and update. The intent of these restrictions is that C descriptors remain intact at all times they
are accessible to an active Fortran procedure, so that the Fortran code is not required to copy them.

3 If the address of a C descriptor is a C actual argument that corresponds to an assumed-shape Fortran dummy16
argument, that descriptor shall not be for an assumed-size array.17

18.7 Restrictions on formal parameters18

1 Within a C function, an allocatable object shall be allocated or deallocated only by execution of the CFI_-19
allocate and CFI_deallocate functions. A Fortran pointer can become associated with a target by execution of20
the CFI_allocate function.21

2 Calling CFI_allocate or CFI_deallocate for a C descriptor changes the allocation status of the Fortran variable22
it describes.23

3 If the address of an object is the value of a formal parameter that corresponds to a nonpointer dummy argument24
in an interface with the BIND attribute, then25

• if the dummy argument has the INTENT (IN) attribute, the object shall not be defined or become undefined,26
and27

• if the dummy argument has the INTENT (OUT) attribute, the object shall not be referenced before it is28
defined.29

4 If a formal parameter that is a pointer to CFI_cdesc_t corresponds to a dummy argument in an interoperable30
procedure interface, a pointer based on the base_addr in that C descriptor shall not be used to access memory31
that is not part of the object described by the C descriptor.32

522 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

18.8 Restrictions on lifetimes1

1 A C descriptor of, or C pointer to, any part of a Fortran object becomes undefined under the same conditions2
that the association status of a Fortran pointer associated with that object would become undefined, and any3
further use of it is undefined behavior (ISO/IEC 9899:2018, 3.4.3).4

2 A C descriptor whose address is a formal parameter that corresponds to a Fortran dummy argument becomes5
undefined on return from a call to the function from Fortran. If the dummy argument does not have either the6
TARGET or ASYNCHRONOUS attribute, all C pointers to any part of the object described by the C descriptor7
become undefined on return from the call, and any further use of them is undefined behavior.8

3 If the address of a C descriptor is passed as an actual argument to a Fortran procedure, the lifetime (ISO/IEC9
9899:2018, 6.2.4) of the C descriptor shall not end before the return from the procedure call. If an object is passed10
to a Fortran procedure as a nonallocatable, nonpointer dummy argument, its lifetime shall not end before the11
return from the procedure call.12

4 If the lifetime of a C descriptor for an allocatable object that was established by C ends before the program exits,13
the object shall be unallocated at that time.14

5 If a Fortran pointer becomes associated with a data object defined by the companion processor, the association15
status of the Fortran pointer becomes undefined when the lifetime of that data object ends.16

NOTE
The following example illustrates how a C descriptor becomes undefined upon returning from a call to a C
function.

REAL, TARGET :: X(1000), B
INTERFACE

REAL FUNCTION CFUN(ARRAY) BIND(C, NAME="Cfun")
REAL ARRAY(:)

END FUNCTION
END INTERFACE
B = CFUN(X)

Cfun is a C function. Before or during the invocation of Cfun, the processor will create a C descriptor for
the array x. On return from Cfun, that C descriptor will become undefined. In addition, because the dummy
argument ARRAY does not have the TARGET or ASYNCHRONOUS attribute, a C pointer whose value was
set during execution of Cfun to be the address of any part of X will become undefined.

18.9 Interoperation with C global variables17

18.9.1 General18

1 A C variable whose name has external linkage may interoperate with a common block or with a variable declared in19
the scope of a module. The common block or variable shall be specified to have the BIND attribute.20

2 At most one variable that is associated with a particular C variable whose name has external linkage is permitted21
to be declared within all the Fortran program units of a program. A variable shall not be initially defined by22
more than one processor.23

3 If a common block is specified in a BIND statement, it shall be specified in a BIND statement with the same binding label in each24
scoping unit in which it is declared. A C variable whose name has external linkage interoperates with a common block that has been25
specified in a BIND statement if26

• the C variable is of a structure type and the variables that are members of the common block are interoperable with corres-27
ponding components of the structure type, or28

J3/23-007 523

J3/23-007 WD 1539-1 2023-02-17

• the common block contains a single variable, and the variable is interoperable with the C variable.1

4 There does not have to be an associated C entity for a Fortran entity with the BIND attribute.2

NOTE
The following are examples of the usage of the BIND attribute for variables and for a common block. The Fortran
variables, C_EXTERN and C2, interoperate with the C variables, c_extern and myVariable, respectively. The
Fortran common blocks, COM and SINGLE, interoperate with the C variables, com and single, respectively.

MODULE LINK_TO_C_VARS
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT), BIND(C) :: C_EXTERN
INTEGER(C_LONG) :: C2
BIND(C, NAME=’myVariable’) :: C2

COMMON /COM/ R, S

REAL(C_FLOAT) :: R, S, T
BIND(C) :: /COM/, /SINGLE/

COMMON /SINGLE/ T
END MODULE LINK_TO_C_VARS

/* Global variables. */
int c_extern;
long myVariable;
struct { float r, s; } com;

float single;

18.9.2 Binding labels for common blocks and variables3

1 The binding label of a variable or common block is a default character value that specifies the name by which the4
variable or common block is known to the companion processor.5

2 If a variable or common block has the BIND attribute with the NAME= specifier and the value of its expression,6
after discarding leading and trailing blanks, has nonzero length, the variable or common block has this as its binding7
label. The case of letters in the binding label is significant. If a variable or common block has the BIND attribute8
specified without a NAME= specifier, the binding label is the same as the name of the entity using lower case9
letters. Otherwise, the variable or common block has no binding label.10

3 The binding label of a C variable whose name has external linkage is the same as the name of the C variable. A11
Fortran variable or common block with the BIND attribute that has the same binding label as a C variable whose12
name has external linkage is linkage associated (19.5.1.5) with that variable.13

18.10 Interoperation with C functions14

18.10.1 Definition and reference of interoperable procedures15

1 A procedure that is interoperable may be defined either by means other than Fortran or by means of a Fortran16
subprogram, but not both. A C function that has an inline definition and no external definition is not considered17
to be defined in this sense.18

2 If the procedure is defined by means other than Fortran,19
• it shall be describable by a C prototype that is interoperable with the interface, and20

524 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

• if it is accessed using its binding label, it shall1
– have a name that has external linkage as defined by ISO/IEC 9899:2018, 6.2.2, and2

– have the same binding label as the interface.3

3 A reference to such a procedure causes the function described by the C prototype to be called as specified in4
ISO/IEC 9899:2018.5

4 A reference in C to a procedure that has the BIND attribute, has the same binding label, and is defined by means6
of Fortran, causes the Fortran procedure to be invoked. A C function shall not invoke a function pointer whose7
value is the result of a reference to C_FUNLOC with a noninteroperable argument.8

5 A procedure defined by means of Fortran shall not invoke setjmp or longjmp (ISO/IEC 9899:2018, 7.13). If a9
procedure defined by means other than Fortran invokes setjmp or longjmp, that procedure shall not cause any10
procedure defined by means of Fortran to be invoked. A procedure defined by means of Fortran shall not be11
invoked as a signal handler (ISO/IEC 9899:2018, 7.14.1).12

6 If a procedure defined by means of Fortran and a procedure defined by means other than Fortran perform13
input/output operations on the same external file, the results are processor dependent (12.5.4).14

7 If the value of a C function pointer will be the result of a reference to C_FUNLOC with a noninteroperable15
argument, it is recommended that the C function pointer be declared to have the type void (*)().16

18.10.2 Binding labels for procedures17

1 The binding label of a procedure is a default character value that specifies the name by which a procedure with18
the BIND attribute is known to the companion processor.19

2 If a procedure has the BIND attribute with the NAME= specifier and the value of its expression, after discarding20
leading and trailing blanks, has nonzero length, the procedure has this as its binding label. The case of letters21
in the binding label is significant. If a procedure has the BIND attribute with no NAME= specifier, and the22
procedure is not a dummy procedure, internal procedure, or procedure pointer, then the binding label of the23
procedure is the same as the name of the procedure using lower case letters. Otherwise, the procedure has no24
binding label.25

C1807 A procedure defined in a submodule shall not have a binding label unless its interface is declared in the26
ancestor module.27

3 The binding label for a C function whose name has external linkage is the same as the C function name.28

NOTE
In the following sample, the binding label of C_SUB is c_sub, and the binding label of C_FUNC is C_funC.

SUBROUTINE C_SUB() BIND(C)
. . .

END SUBROUTINE C_SUB

INTEGER(C_INT) FUNCTION C_FUNC() BIND(C, NAME="C_funC")
USE, INTRINSIC :: ISO_C_BINDING
. . .

END FUNCTION C_FUNC

ISO/IEC 9899:2018 permits functions to have names that are not permitted as Fortran names; it also distin-
guishes between names that would be considered as the same name in Fortran. For example, a C name can
begin with an underscore, and C names that differ in case are distinct names.

The specification of a binding label allows a program to use a Fortran name to refer to a procedure defined by
a companion processor.

J3/23-007 525

J3/23-007 WD 1539-1 2023-02-17

18.10.3 Exceptions and IEEE arithmetic procedures1

1 A procedure defined by means other than Fortran shall not use signal (ISO/IEC 9899:2018, 7.14.1) to change the2
handling of any exception that is being handled by the Fortran processor.3

2 A procedure defined by means other than Fortran shall not alter the floating-point status (17.7) other than by4
setting an exception flag to signaling.5

3 The values of the floating-point exception flags on entry to a procedure defined by means other than Fortran are6
processor dependent.7

18.10.4 Asynchronous communication8

1 Asynchronous communication for a Fortran variable with the ASYNCHRONOUS attribute occurs through the9
action of procedures defined by means other than Fortran. It is initiated by execution of an asynchronous10
communication initiation procedure and completed by execution of an asynchronous communication completion11
procedure. Between the execution of the initiation and completion procedures, any variable of which any part12
is associated with any part of the asynchronous communication variable is a pending communication affector.13
Whether a procedure is an asynchronous communication initiation or completion procedure is processor depend-14
ent.15

2 Asynchronous communication is either input communication or output communication. For input communication,16
a pending communication affector shall not be referenced, become defined, become undefined, become associated17
with a dummy argument that has the VALUE attribute, or have its pointer association status changed. For18
output communication, a pending communication affector shall not be redefined, become undefined, or have its19
pointer association status changed. The restrictions for asynchronous input communication are the same as for20
asynchronous input data transfer. The restrictions for asynchronous output communication are the same as for21
asynchronous output data transfer.22

NOTE
Asynchronous communication can be used for nonblocking MPI calls such as MPI_IRECV and MPI_ISEND.
For example,

REAL :: BUF(100, 100)
. . . Code that involves BUF.
BLOCK

ASYNCHRONOUS :: BUF
CALL MPI_IRECV(BUF,. . . REQ, . . .)
. . . Code that does not involve BUF.
CALL MPI_WAIT(REQ, . . .)

END BLOCK
. . . Code that involves BUF.

In this example, there is asynchronous input communication and BUF is a pending communication affector
between the two calls. MPI_IRECV can return while the communication (reading values into BUF) is still
underway. The intent is that the code between MPI_IRECV and MPI_WAIT can execute without waiting for
this communication to complete.

Similar code with the call of MPI_IRECV replaced by a call of MPI_ISEND is asynchronous output commu-
nication.

526 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

19 Scope, association, and definition1

19.1 Scopes, identifiers, and entities2

1 An entity is identified by an identifier.3

2 The scope of4

• a global identifier is a program (5.2.2),5

• a local identifier is an inclusive scope,6

• an identifier of a construct entity is that construct (10.2.4, 11.1), and7

• an identifier of a statement entity is that statement or part of that statement (6.3),8

excluding any nested scope where the identifier is treated as the identifier of a different entity (19.3, 19.4), or9
where an IMPORT statement (8.8) makes the identifier inaccessible.10

3 An entity may be identified by11

• an image index (3.85),12

• a name (3.103),13

• a statement label (3.136),14

• an external input/output unit number (12.5),15

• an identifier of a pending data transfer operation (12.6.2.9, 12.7),16

• a submodule identifier (14.2.3),17

• a generic identifier (3.79), or18

• a binding label (3.15).19

4 By means of association, an entity may be referred to by the same identifier or a different identifier in a different20
scope, or by a different identifier in the same scope.21

19.2 Global identifiers22

1 Program units, common blocks, external procedures, entities with binding labels, external input/output units,23
pending data transfer operations, and images are global entities of a program. The name of a common block with24
no binding label, external procedure with no binding label, or program unit that is not a submodule is a global25
identifier. The submodule identifier of a submodule is a global identifier. A binding label of an entity of the26
program is a global identifier. An entity of the program shall not be identified by more than one binding label.27

2 The global identifier of an entity shall not be the same as the global identifier of any other entity. Furthermore, a28
binding label shall not be the same as the global identifier of any other global entity, ignoring differences in case.29
A processor may assign a global identifier to an entity that is not specified by this document to have a global30
identifier (such as an intrinsic procedure); in such a case, the processor shall ensure that this assigned global31
identifier differs from all other global identifiers in the program.32

NOTE 1
An intrinsic module is not a program unit, so a global identifier can be the same as the name of an intrinsic
module.

J3/23-007 527

J3/23-007 WD 1539-1 2023-02-17

NOTE 2
Submodule identifiers are global identifiers, but because they consist of a module name and a descendant
submodule name, the name of a submodule can be the same as the name of another submodule so long as they
do not have the same ancestor module.

19.3 Local identifiers1

19.3.1 Classes of local identifiers2

1 Identifiers of entities, other than statement or construct entities (19.4), in the classes3

(1) named variables, named constants, named procedure pointers, named constructs, statement functions,4
internal procedures, module procedures, dummy procedures, intrinsic procedures, external procedures5
that have binding labels, intrinsic modules, abstract interfaces, generic interfaces, nonintrinsic types,6
namelist groups, external procedures accessed via USE, and statement labels,7

(2) type parameters, components, and type-bound procedure bindings, in a separate class for each type,8

(3) argument keywords, in a separate class for each procedure with an explicit interface, and9

(4) common blocks that have binding labels10

are local identifiers.11

2 Within its scope, a local identifier of an entity of class (1) or class (4) shall not be the same as a global identifier12
used in that scope unless the global identifier13

• is used only as the use-name of a rename in a USE statement,14

• is a common block name (19.3.2),15

• is an external procedure name that is also a generic name, or16

• is an external function name and the inclusive scope is its defining subprogram (19.3.3).17

3 Within its scope, a local identifier of one class shall not be the same as another local identifier of the same class,18
except that a generic name may be the same as the name of a procedure as explained in 15.4.3.4 or the same as19
the name of a derived type (7.5.10). A local identifier of one class may be the same as a local identifier of another20
class.21

NOTE
An intrinsic procedure is inaccessible by its own name in a scoping unit that uses the same name as a local
identifier of class (1) for a different entity. For example, in the program fragment

SUBROUTINE SUB
. . .
A = SIN (K)
. . .

CONTAINS
FUNCTION SIN (X)

. . .
END FUNCTION SIN

END SUBROUTINE SUB

any reference to function SIN in subroutine SUB refers to the internal function SIN, not to the intrinsic function
of the same name.

4 A local identifier identifies an entity in a scope and may be used to identify an entity in another scope except in22
the following cases.23

528 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

• The name that appears as a subroutine-name in a subroutine-stmt has limited use within the scope estab-1
lished by the subroutine-stmt. It can be used to identify recursive references of the subroutine or to identify2
a common block (the latter is possible only for internal and module subroutines).3

• The name that appears as a function-name in a function-stmt has limited use within the scope established4
by that function-stmt. It can be used to identify the function result, to identify recursive references of the5
function, or to identify a common block (the latter is possible only for internal and module functions).6

• The name that appears as an entry-name in an entry-stmt has limited use within the scope of the subprogram in which7
the entry-stmt appears. It can be used to identify the function result if the subprogram is a function, to identify recursive8
references, or to identify a common block (the latter is possible only if the entry-stmt is in a module subprogram).9

19.3.2 Local identifiers that are the same as common block names10

1 A name that identifies a common block in a scoping unit shall not be used to identify a constant or an intrinsic procedure in that11
scoping unit. If a local identifier of class (1) is also the name of a common block, the appearance of that name in any context other12
than as a common block name in a BIND, COMMON, or SAVE statement is an appearance of the local identifier.13

19.3.3 Function results14

1 For each FUNCTION statement or ENTRY statement in a function subprogram, there is a function result. A function15

result is either a variable or a procedure pointer, and thus the name of a function result is a local identifier of16

class (1).17

19.3.4 Components, type parameters, and bindings18

1 A component name has the scope of its derived-type definition. Outside the type definition, it may also appear19

within a designator of a component of a structure of that type or as a component keyword in a structure20

constructor for that type.21

2 A type parameter name has the scope of its derived-type definition. Outside the derived-type definition, it may22

also appear as a type parameter keyword in a derived-type-spec for the type or as the type-param-name of a23

type-param-inquiry.24

3 The binding name (7.5.5) of a type-bound procedure has the scope of its derived-type definition. Outside of the25

derived-type definition, it may also appear as the binding-name in a procedure reference.26

4 A generic binding for which the generic-spec is not a generic-name has a scope that consists of all scoping units27

in which an entity of the type is accessible.28

5 A component name or binding name may appear only in a scope in which it is accessible.29

6 The accessibility of components and bindings is specified in 7.5.4.8 and 7.5.5.30

19.3.5 Argument keywords31

1 As an argument keyword, a dummy argument name in an internal procedure, module procedure, or an interface32

body has a scope of the scoping unit of the host of the procedure or interface body. As an argument keyword,33

the name of a dummy argument of a procedure declared by a procedure declaration statement that specifies an34

explicit interface has a scope of the scoping unit containing the procedure declaration statement. It may appear35

only in a procedure reference for the procedure of which it is a dummy argument. If the procedure is accessible36

in another scoping unit by use or host association (19.5.1.3, 19.5.1.4), the argument keyword is accessible for37

procedure references for that procedure in that scoping unit.38

J3/23-007 529

J3/23-007 WD 1539-1 2023-02-17

2 A dummy argument name in an intrinsic procedure has a scope as an argument keyword of the scoping unit1

in which the reference to the procedure occurs. As an argument keyword, it may appear only in a procedure2

reference for the procedure of which it is a dummy argument.3

19.4 Statement and construct entities4

1 A variable that appears as a data-i-do-variable in a DATA statement or an ac-do-variable in an array constructor,5

as a dummy argument in a statement function statement, or as an index-name in a FORALL statement is a statement entity.6

Even if the name of a statement entity is the same as another identifier and the statement is in the scope of that7

identifier, within the scope of the statement entity the name is interpreted as that of the statement entity.8

2 The name of a statement entity shall not be the same as an accessible global identifier or local identifier of class9

(1) (19.3.1), except for a common block name or a scalar variable name. Within the scope of a statement entity,10

another statement entity shall not have the same name.11

3 A variable that appears as an index-name in a FORALL or DO CONCURRENT construct, as an associate-name12

in an ASSOCIATE, SELECT RANK, SELECT TYPE construct, or as a coarray-name in a codimension-decl in13

a CHANGE TEAM construct is a construct entity. A variable that has LOCAL or LOCAL_INIT locality in a14

DO CONCURRENT construct is a construct entity. An entity that is declared in a specification in a BLOCK15

construct, other than only in ASYNCHRONOUS, IMPORT, and VOLATILE statements, is a construct entity.16

A USE statement in a BLOCK construct specifies that all the entities it accesses by use association are construct17

entities. If an entity is a construct entity instead of a host entity only because it is wholly or partially initialized18

in a DATA statement, the construct entity shall not be used prior to the DATA statement.19

4 Two construct entities of the same construct shall not have the same identifier.20

5 The name of a data-i-do-variable in a DATA statement or an ac-do-variable in an array constructor has a scope21

of its data-implied-do or ac-implied-do. It is a scalar variable. If integer-type-spec appears in data-implied-do or22

ac-implied-do-control it has the specified type and type parameters; otherwise it has the type and type parameters23

that it would have if it were the name of a variable in the innermost executable construct or scoping unit that24

includes the DATA statement or array constructor, and this type shall be integer type. It has no other attributes.25

The appearance of a name as a data-i-do-variable of an implied DO in a DATA statement or an ac-do-variable26

in an array constructor is not an implicit declaration of a variable whose scope is the scoping unit that contains27

the statement.28

6 The name of a variable that appears as an index-name in a DO CONCURRENT construct, FORALL statement, or29

FORALL construct has a scope of the statement or construct. It is a scalar variable. If integer-type-spec appears in30

concurrent-header it has the specified type and type parameters; otherwise it has the type and type parameters31

that it would have if it were the name of a variable in the innermost executable construct or scoping unit that32

includes the DO CONCURRENT or FORALL, and this type shall be integer type. It has no other attributes.33

The appearance of a name as an index-name in a DO CONCURRENT construct, FORALL statement, or FORALL34

construct is not an implicit declaration of a variable whose scope is the scoping unit that contains the statement or35

construct.36

7 A variable that has LOCAL or LOCAL_INIT locality in a DO CONCURRENT construct has the scope of that37

construct. Its attributes are specified in 11.1.7.5.38

530 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

8 If integer-type-spec does not appear in a concurrent-header , an index-name shall not be the same as an accessible1

global identifier, local identifier, or identifier of an outer construct entity, except for a common block name or2

a scalar variable name. An index-name of a contained DO CONCURRENT construct, FORALL statement, or3

FORALL construct shall not be the same as an index-name of any of its containing DO CONCURRENT or FORALL4

constructs.5

9 The associate names of an ASSOCIATE construct have the scope of the block. They have the declared type,6

dynamic type, type parameters, rank, and bounds specified in 11.1.3.2.7

10 The associate names of a CHANGE TEAM construct have the scope of the block. They have the declared type,8

dynamic type, type parameters, rank, corank, bounds, and cobounds specified in 11.1.5.9

11 The associate name of a SELECT RANK construct has a separate scope for each block of the construct. It has10

the attributes specified in 11.1.10.3.11

12 The associate name of a SELECT TYPE construct has a separate scope for each block of the construct. Within12

each block, it has the declared type, dynamic type, type parameters, rank, and bounds specified in 11.1.11.2.13

13 The name of a variable that appears as a dummy argument in a statement function statement has a scope of the statement in which14

it appears. It is a scalar that has the type and type parameters that it would have if it were the name of a variable in the scoping15

unit that includes the statement function; it has no other attributes.16

19.5 Association17

19.5.1 Name association18

19.5.1.1 Forms of name association19

1 There are five forms of name association: argument association, use association, host association, linkage asso-20

ciation, and construct association. Argument, use, and host association provide mechanisms by which entities21

known in one scope may be accessed in another scope.22

19.5.1.2 Argument association23

1 The rules governing argument association are given in Clause 15. As explained in 15.5, execution of a procedure24

reference establishes a correspondence between each actual argument and a dummy argument and thus an associ-25

ation between each present dummy argument and its effective argument. Argument association can be sequence26

association (15.5.2.12).27

2 The name of the dummy argument may be different from the name, if any, of its effective argument. The dummy28

argument name is the name by which the effective argument is known, and by which it may be accessed, in the29

referenced procedure.30

NOTE
An effective argument can be a nameless data entity, such as the result of evaluating an expression that is not
simply a variable or constant.

3 Upon termination of execution of a procedure reference, all argument associations established by that reference31

are terminated. A dummy argument of that procedure can be associated with an entirely different effective32

argument in a subsequent invocation of the procedure.33

J3/23-007 531

J3/23-007 WD 1539-1 2023-02-17

19.5.1.3 Use association1

1 Use association is the association of names in different scopes specified by a USE statement. The rules governing2

use association are given in 14.2.2. They allow for renaming of entities being accessed. Use association allows3

access in one scope to entities defined or declared in another scope; it remains in effect throughout the execution4

of the program.5

19.5.1.4 Host association6

1 A derived-type definition, interface body, internal subprogram, module subprogram, or submodule has access7

to entities from its host as specified in 8.8. A host-associated variable is considered to have been previously8

declared; any other host-associated entity is considered to have been previously defined. In the case of an internal9

subprogram, the access is to the entities in its host instance. The accessed entities are identified by the same10

identifier and have the same attributes as in the host, except that a local entity may have the ASYNCHRONOUS11

attribute even if the host entity does not, and a noncoarray local entity may have the VOLATILE attribute even12

if the host entity does not. The accessed entities are named data objects, nonintrinsic types, abstract interfaces,13

procedures, generic identifiers, and namelist groups.14

2 If an entity that is accessed by use association has the same nongeneric name as a host entity, the host entity is15

inaccessible by that name. The name of an external procedure that is given the EXTERNAL attribute (8.5.9)16

within the scoping unit, or a name that appears within the scoping unit as a module-name in a use-stmt is a17

global identifier; any entity of the host that has this as its nongeneric name is inaccessible by that name. A name18

that appears in the scoping unit as19

(1) a function-name in a stmt-function-stmt or in an entity-decl in a type-declaration-stmt, unless it is a20

global identifier,21

(2) an object-name in an entity-decl in a type-declaration-stmt, in a pointer-stmt, in a save-stmt, in an22

allocatable-stmt, or in a target-stmt,23

(3) a type-param-name in a derived-type-stmt,24

(4) a named-constant in a named-constant-def in a parameter-stmt,25

(5) a coarray-name in a codimension-stmt,26

(6) an array-name in a dimension-stmt,27

(7) a variable-name in a common-block-object in a common-stmt,28

(8) a procedure pointer given the EXTERNAL attribute in the scoping unit,29

(9) the name of a variable that is wholly or partially initialized in a data-stmt,30

(10) the name of an object that is wholly or partially equivalenced in an equivalence-stmt,31

(11) a dummy-arg-name in a function-stmt, in a subroutine-stmt, in an entry-stmt, or in a stmt-function-stmt,32

(12) a result-name in a function-stmt or in an entry-stmt,33

(13) the name of an entity declared by an interface body, unless it is a global identifier,34

(14) an intrinsic-procedure-name in an intrinsic-stmt,35

(15) a namelist-group-name in a namelist-stmt,36

(16) an enum-type-name in an enum-def ,37

(17) an enumeration-type-name in an enumeration-type-stmt,38

(18) a generic-name in a generic-spec in an interface-stmt, or39

(19) the name of a named construct40

is a local identifier in the scoping unit and any entity of the host that has this as its nongeneric name is inaccessible41

532 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

by that name by host association. If a scoping unit is the host of a derived-type definition or a subprogram that1

does not define a separate module procedure, the name of the derived type or of any procedure defined by the2

subprogram is a local identifier in the scoping unit; any entity of the host that has this as its nongeneric name is3

inaccessible by that name. Local identifiers of a subprogram are not accessible to its host.4

NOTE 1
A name that appears in an ASYNCHRONOUS or VOLATILE statement is not necessarily the name of a local
variable. In an internal or module procedure, if a variable that is accessible via host association is specified in an
ASYNCHRONOUS or VOLATILE statement, that host variable is given the ASYNCHRONOUS or VOLATILE
attribute in the local scope.

3 If a host entity is inaccessible only because a local variable with the same name is wholly or partially initialized5

in a DATA statement, the local variable shall not be referenced or defined prior to the DATA statement.6

4 If a derived-type name of a host is inaccessible, data entities of that type or subobjects of such data entities still7

can be accessible.8

NOTE 2
An interface body that is not a module procedure interface body accesses by host association only those entities
made accessible by IMPORT statements.

5 If an external or dummy procedure with an implicit interface is accessed via host association, then it shall have9

the EXTERNAL attribute in the host scoping unit; if it is invoked as a function in the inner scoping unit, its type10

and type parameters shall be established in the host scoping unit. The type and type parameters of a function11

with the EXTERNAL attribute are established in a scoping unit if that scoping unit explicitly declares them,12

invokes the function, accesses the function from a module, or accesses the function from its host where its type13

and type parameters are established.14

6 If an intrinsic procedure is accessed via host association, then it shall be established to be intrinsic in the host15

scoping unit. An intrinsic procedure is established to be intrinsic in a scoping unit if that scoping unit explicitly16

gives it the INTRINSIC attribute, invokes it as an intrinsic procedure, accesses it from a module, or accesses it17

from its host where it is established to be intrinsic.18

NOTE 3
A host subprogram and an internal subprogram can contain the same and differing use-associated entities, as
illustrated in the following example.

MODULE B; REAL BX, Q; INTEGER IX, JX; END MODULE B
MODULE C; REAL CX; END MODULE C
MODULE D; REAL DX, DY, DZ; END MODULE D
MODULE E; REAL EX, EY, EZ; END MODULE E
MODULE F; REAL FX; END MODULE F
MODULE G; USE F; REAL GX; END MODULE G
PROGRAM A

USE B; USE C; USE D
. . .

CONTAINS
SUBROUTINE INNER_PROC (Q)

USE C ! Not needed, but prevents CX from being declared locally.

J3/23-007 533

J3/23-007 WD 1539-1 2023-02-17

NOTE 3 (cont.)
USE B, ONLY: BX ! Entities accessible are BX, and also IX and JX if

! no other IX or JX is accessible to INNER_PROC.
! Q is local to INNER_PROC, because it is a dummy argument.

USE D, X => DX ! Entities accessible are DX, DY, and DZ
! X is local name for DX in INNER_PROC; if no other DX is
! accessible in INNER_PROC, X and DX denote the same entity

USE E, ONLY: EX ! EX is accessible in INNER_PROC, not in program A.
! EY and EZ are not accessible in INNER_PROC or program A.

USE G ! FX and GX are accessible in INNER_PROC.
. . .

END SUBROUTINE INNER_PROC
END PROGRAM A

Because program A contains the statement

USE B

all of the entities in module B, except for Q, are accessible in INNER_PROC, even though INNER_PROC
contains the statement

USE B, ONLY: BX

The USE statement with the ONLY option means that this particular statement brings in only the entity
named, not that this is the only variable from the module accessible in this scoping unit.

NOTE 4
For more examples of host association, see C.14.2.

19.5.1.5 Linkage association1

1 Linkage association occurs between a module variable that has the BIND attribute and the C variable with which2

it interoperates, or between a Fortran common block and the C variable with which it interoperates (18.9). Such association3

remains in effect throughout the execution of the program.4

19.5.1.6 Construct association5

1 Execution of a SELECT RANK or SELECT TYPE statement establishes an association between the selector and6

the associate name of the construct. Execution of an ASSOCIATE or CHANGE TEAM statement establishes7

an association between each selector and the corresponding associate name of the construct.8

2 In an ASSOCIATE or SELECT TYPE construct, the following rules apply.9

• If a selector is allocatable, it shall be allocated; the associate name is associated with the data object and10

does not have the ALLOCATABLE attribute.11

• If a selector has the POINTER attribute, it shall be associated; the associate name is associated with the12

target of the pointer and does not have the POINTER attribute.13

3 If the selector is a variable other than an array section having a vector subscript, the association is with the data14

object specified by the selector; otherwise, the association is with the value of the selector expression, which is15

evaluated prior to execution of the block.16

534 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 Each associate name remains associated with the corresponding selector throughout the execution of the executed1

block. Within the block, each selector is known by and may be accessed by the corresponding associate name.2

On completion of execution of the construct, the association is terminated.3

NOTE
The association between the associate name and a data object is established prior to execution of the block
and is not affected by subsequent changes to variables that were used in subscripts or substring ranges in the
selector .

19.5.2 Pointer association4

19.5.2.1 General5

1 Pointer association between a pointer and a target allows the target to be referenced by a reference to the pointer.6

At different times during the execution of a program, a pointer may be undefined, associated with different targets7

on its own image, or be disassociated. The definition status of an associated data pointer is that of its target.8

If the pointer has deferred type parameters or shape, their values are assumed from the target. If the pointer is9

polymorphic, its dynamic type is assumed from the dynamic type of the target.10

19.5.2.2 Pointer association status11

1 A pointer has a pointer association status of associated, disassociated, or undefined. Its association status may12

change during execution of a program. Unless a pointer is initialized (explicitly or by default), it has an initial13

association status of undefined. A pointer may be initialized to have an association status of disassociated or14

associated.15

NOTE
A pointer from a module program unit might be accessible in a subprogram via use association. Such pointers
have a lifetime that is greater than targets that are declared in the subprogram, unless such targets are saved.
Therefore, if such a pointer is associated with a local target, there is the possibility that when a procedure
defined by the subprogram completes execution, the target will cease to exist, leaving the pointer “dangling”.
This document considers such pointers to have an undefined association status. They are neither associated nor
disassociated. They cannot be used again in the program until their status has been reestablished. A processor
is not required to detect when a pointer target ceases to exist.

19.5.2.3 Events that cause pointers to become associated16

1 A pointer becomes associated when any of the following events occur.17

(1) The pointer is allocated (9.7.1) as the result of the successful execution of an ALLOCATE statement18

referencing the pointer.19

(2) The pointer is pointer-assigned to a target (10.2.2) that is associated or is specified with the TARGET20

attribute and, if allocatable, is allocated.21

(3) The pointer is a subobject of an object that is allocated by an ALLOCATE statement in which22

SOURCE= appears and the corresponding subobject of source-expr is associated.23

(4) The pointer is a dummy argument and its corresponding actual argument is not a pointer.24

(5) The pointer is a default-initialized subcomponent of an object, the corresponding initializer is not a25

reference to the intrinsic function NULL, and26

J3/23-007 535

J3/23-007 WD 1539-1 2023-02-17

(a) a procedure is invoked with this object as an actual argument corresponding to a nonpointer1

nonallocatable dummy argument with INTENT (OUT),2

(b) a procedure with this object as an unsaved nonpointer nonallocatable local variable is invoked,3

(c) a BLOCK construct is entered and this object is an unsaved local nonpointer nonallocatable4

local variable of the BLOCK construct, or5

(d) this object is allocated other than by an ALLOCATE statement in which SOURCE= appears.6

19.5.2.4 Events that cause pointers to become disassociated7

1 A pointer becomes disassociated when8

(1) the pointer is nullified (9.7.2),9

(2) the pointer is deallocated (9.7.3),10

(3) the pointer is pointer-assigned (10.2.2) to a disassociated pointer,11

(4) the pointer is a subobject of an object that is allocated by an ALLOCATE statement in which12

SOURCE= appears and the corresponding subobject of source-expr is disassociated, or13

(5) the pointer is a default-initialized subcomponent of an object, the corresponding initializer is a14

reference to the intrinsic function NULL, and15

(a) a procedure is invoked with this object as an actual argument corresponding to a nonpointer16

nonallocatable dummy argument with INTENT (OUT),17

(b) a procedure with this object as an unsaved nonpointer nonallocatable local variable is invoked,18

(c) a BLOCK construct is entered and this object is an unsaved local nonpointer nonallocatable19

local variable of the BLOCK construct, or20

(d) this object is allocated other than by an ALLOCATE statement in which SOURCE= appears.21

19.5.2.5 Events that cause the association status of pointers to become undefined22

1 The association status of a pointer becomes undefined when23

(1) the pointer is pointer-assigned to a target that has an undefined association status,24

(2) the pointer is pointer-assigned to a target on a different image,25

(3) the target of the pointer is deallocated other than through the pointer,26

(4) the target of the pointer is a data object defined by the companion processor and the lifetime of that27

data object ends,28

(5) the allocation transfer procedure (16.9.147) is executed, the pointer is associated with the argument29

FROM, and the argument TO does not have the TARGET attribute,30

(6) completion of execution of an instance of a subprogram causes the pointer’s target to become un-31

defined (item (3) of 19.6.6),32

(7) completion of execution of a BLOCK construct causes the pointer’s target to become undefined (item33

(23) of 19.6.6),34

(8) execution of the host instance of a procedure pointer is completed,35

(9) execution of an instance of a subprogram completes and the pointer is declared or accessed in the36

subprogram that defines the procedure if the pointer37

(a) does not have the SAVE attribute,38

(b) is not in blank common,39

536 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(c) is not in a named common block that is declared in any other scoping unit that is in execution,1

(d) is not accessed by host association, and2

(e) is not the result of a function declared to have the POINTER attribute,3

(10) execution of an instance of a subprogram completes, the pointer is associated with a dummy argument4

of the procedure, and5

(a) the effective argument does not have the TARGET attribute or is an array section with a6

vector subscript, or7

(b) the dummy argument has the VALUE attribute,8

(11) a BLOCK construct completes execution and the pointer is an unsaved construct entity of that9

BLOCK construct,10

(12) a DO CONCURRENT construct is terminated and the pointer’s association status was changed in11

more than one iteration of the construct,12

(13) an iteration of a DO CONCURRENT construct completes and the pointer is associated with a13

variable of that construct that has LOCAL or LOCAL_INIT locality,14

(14) the pointer is a subcomponent of an object that is allocated and either15

(a) the pointer is not default-initialized and SOURCE= does not appear, or16

(b) SOURCE= appears and the association status of the corresponding subcomponent of source-17

expr is undefined,18

(15) the pointer is a subcomponent of an object, the pointer is not default-initialized, and a procedure is19

invoked with this object as an actual argument corresponding to a dummy argument with INTENT20

(OUT),21

(16) a procedure is invoked with the pointer as an actual argument corresponding to a pointer dummy22

argument with INTENT (OUT), or23

(17) evaluation of an expression containing a function reference that need not be evaluated completes, if24

execution of that function would change the association status of the pointer.25

19.5.2.6 Other events that change the association status of pointers26

1 When a pointer becomes associated with another pointer by argument association, construct association, or host27

association, the effects on its association status are specified in 19.5.5.28

2 While two pointers are name associated, storage associated, or inheritance associated, if the association status of29

one pointer changes, the association status of the other changes accordingly.30

3 The association status of a pointer object with the VOLATILE attribute might change by means not specified31

by the program.32

19.5.2.7 Pointer definition status33

1 The definition status of an associated data pointer is that of its target. If a pointer is associated with a definable34

target, it becomes defined or undefined according to the rules for a variable (19.6). The definition status of a35

pointer that is not associated is undefined.36

J3/23-007 537

J3/23-007 WD 1539-1 2023-02-17

19.5.3 Storage association1

19.5.3.1 General2

1 Storage sequences are used to describe relationships that exist among variables and common blocks. Storage asso-3

ciation is the association of two or more data objects that occurs when two or more storage sequences share or4

are aligned with one or more storage units.5

19.5.3.2 Storage sequence6

1 A storage sequence is a sequence of storage units. The size of a storage sequence is the number of storage units7

in the storage sequence. A storage unit is a character storage unit, a numeric storage unit, a file storage unit8

(12.3.5), or an unspecified storage unit. The sizes of the numeric storage unit, the character storage unit and the9

file storage unit are the values of constants in the ISO_FORTRAN_ENV intrinsic module (16.10.2).10

2 In a storage association context11

(1) a nonpointer scalar object that is default integer, default real, or default logical occupies a single12

numeric storage unit,13

(2) a nonpointer scalar object that is double precision real or default complex occupies two contiguous14

numeric storage units,15

(3) a default character nonpointer scalar object of character length len occupies len contiguous character16

storage units,17

(4) if C character kind is not the same as default character kind a nonpointer scalar object of type char-18

acter with the C character kind (18.2.2) and character length len occupies len contiguous unspecified19

storage units,20

(5) a nonpointer scalar object of sequence type occupies a sequence of storage sequences corresponding21

to the sequence of its ultimate components,22

(6) a nonpointer scalar object of any type not specified in items (1)-(5) occupies a single unspecified23

storage unit that is different for each case and each set of type parameter values, and that is different24

from the unspecified storage units of item (4),25

(7) a nonpointer array occupies a sequence of contiguous storage sequences, one for each array element,26

in array element order (9.5.3.3), and27

(8) a data pointer occupies a single unspecified storage unit that is different from that of any nonpointer28

object and is different for each combination of type, type parameters, and rank. A data pointer that29

has the CONTIGUOUS attribute occupies a storage unit that is different from that of a data pointer30

that does not have the CONTIGUOUS attribute.31

3 A sequence of storage sequences forms a storage sequence. The order of the storage units in such a composite32

storage sequence is that of the individual storage units in each of the constituent storage sequences taken in33

succession, ignoring any zero-sized constituent sequences.34

4 Each common block has a storage sequence (8.10.2.2).35

19.5.3.3 Association of storage sequences36

1 Two nonzero-sized storage sequences s1 and s2 are storage associated if the ith storage unit of s1 is the same as37

the jth storage unit of s2. This causes the (i + k)th storage unit of s1 to be the same as the (j + k)th storage38

538 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

unit of s2, for each integer k such that 1 ≤ i + k ≤ size of s1 and 1 ≤ j + k ≤ size of s2 where size of measures1

the number of storage units.2

2 Storage association also is defined between two zero-sized storage sequences, and between a zero-sized storage3

sequence and a storage unit. A zero-sized storage sequence in a sequence of storage sequences is storage associated4

with its successor, if any. If the successor is another zero-sized storage sequence, the two sequences are storage5

associated. If the successor is a nonzero-sized storage sequence, the zero-sized sequence is storage associated with6

the first storage unit of the successor. Two storage units that are each storage associated with the same zero-sized7

storage sequence are the same storage unit.8

19.5.3.4 Association of scalar data objects9

1 Two scalar data objects are storage associated if their storage sequences are storage associated. Two scalar entities10

are totally associated if they have the same storage sequence. Two scalar entities are partially associated if they11

are associated without being totally associated.12

2 The definition status and value of a data object affects the definition status and value of any storage associated13

entity. An EQUIVALENCE statement, a COMMON statement, or an ENTRY statement can cause storage association of storage14

sequences.15

3 An EQUIVALENCE statement causes storage association of data objects only within one scoping unit, unless one of the equivalenced16

entities is also in a common block (8.10.1.2, 8.10.2.2).17

4 COMMON statements cause data objects in one scoping unit to become storage associated with data objects in another scoping unit.18

5 A common block is permitted to contain a sequence of differing storage units. All scoping units that access named common blocks19

with the same name shall specify an identical sequence of storage units. Blank common blocks may be declared with differing sizes20

in different scoping units. For any two blank common blocks, the initial sequence of storage units of the longer blank common block21

shall be identical to the sequence of storage units of the shorter common block. If two blank common blocks are the same length,22

they shall have the same sequence of storage units.23

6 An ENTRY statement in a function subprogram causes storage association of the function results that are variables.24

7 Partial association shall exist only between25

• an object that is default character or of character sequence type and an object that is default character or26

of character sequence type, or27

• an object that is default complex, double precision real, or of numeric sequence type and an object that is28

default integer, default real, default logical, double precision real, default complex, or of numeric sequence29

type.30

8 For noncharacter entities, partial association shall occur only through the use of COMMON, EQUIVALENCE, or ENTRY statements.31

For character entities, partial association shall occur only through argument association or the use of COMMON or32

EQUIVALENCE statements.33

9 Partial association of character entities occurs when some, but not all, of the storage units of the entities are the34

same.35

10 A storage unit shall not be explicitly initialized more than once in a program. Explicit initialization overrides36

default initialization, and default initialization for an object of derived type overrides default initialization for37

a component of the object (7.5.4.6). Default initialization may be specified for a storage unit that is storage38

J3/23-007 539

J3/23-007 WD 1539-1 2023-02-17

associated provided the objects supplying the default initialization are of the same type and type parameters,1

and supply the same value for the storage unit.2

19.5.4 Inheritance association3

1 Inheritance association occurs between components of the parent component and components inherited by type4

extension into an extended type (7.5.7.2). This association is persistent; it is not affected by the accessibility of5

the inherited components.6

19.5.5 Establishing associations7

1 When an association is established between two entities by argument association, host association, or construct8

association, certain properties of the associating entity become those of the pre-existing entity.9

2 For argument association, the pre-existing entity is the effective argument and the associating entity is the dummy10

argument.11

3 For host association, the associating entity is the entity in the contained scoping unit. When a procedure is12

invoked, the pre-existing entity that participates in the association is the one from its host instance (15.6.2.4).13

Otherwise the pre-existing entity that participates in the association is the entity in the host scoping unit.14

4 For construct association, the associating entity is identified by the associate name and the pre-existing entity is15

the selector.16

5 When an association is established by argument association, host association, or construct association, the fol-17

lowing applies.18

• If the entities have the POINTER attribute, the pointer association status of the associating entity becomes19

the same as that of the pre-existing entity. If the pre-existing entity has a pointer association status of20

associated, the associating entity becomes pointer associated with the same target and, if they are arrays,21

the bounds of the associating entity become the same as those of the pre-existing entity.22

• If the associating entity has the ALLOCATABLE attribute, its allocation status becomes the same as that23

of the pre-existing entity. If the pre-existing entity is allocated, the bounds (if it is an array), values of24

deferred type parameters, definition status, and value (if it is defined) become the same as those of the25

pre-existing entity. If the associating entity is polymorphic and the pre-existing entity is allocated, the26

dynamic type of the associating entity becomes the same as that of the pre-existing entity.27

• If the associating entity is neither a pointer nor allocatable, its definition status, value (if it is defined), and28

dynamic type (if it is polymorphic) become the same as those of the pre-existing entity. If the entities are29

arrays and the association is not argument association, the bounds of the associating entity become the30

same as those of the pre-existing entity.31

• If the associating entity is a pointer dummy argument and the pre-existing entity is a nonpointer actual32

argument the associating entity becomes pointer associated with the pre-existing entity and, if the entities33

are arrays, the bounds of the associating entity become the same as those of the pre-existing entity.34

540 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

19.6 Definition and undefinition of variables1

19.6.1 Definition of objects and subobjects2

1 A variable may be defined or may be undefined and its definition status may change during execution of a3

program. An action that causes a variable to become undefined does not imply that the variable was previously4

defined. An action that causes a variable to become defined does not imply that the variable was previously5

undefined.6

2 Arrays, including sections, and variables of derived, character, or complex type are objects that consist of zero7

or more subobjects. Associations may be established between variables and subobjects and between subobjects8

of different variables. These subobjects may become defined or undefined.9

3 An array is defined if and only if all of its elements are defined.10

4 A derived-type scalar object is defined if and only if all of its nonpointer components are defined.11

5 A complex or character scalar object is defined if and only if all of its subobjects are defined.12

6 If an object is undefined, at least one (but not necessarily all) of its subobjects are undefined.13

19.6.2 Variables that are always defined14

1 Zero-sized arrays and zero-length strings are always defined.15

19.6.3 Variables that are initially defined16

1 The following variables are initially defined:17

(1) variables specified to have initial values by DATA statements;18

(2) variables specified to have initial values by type declaration statements;19

(3) nonpointer default-initialized subcomponents of saved variables that do not have the ALLOCAT-20

ABLE or POINTER attribute;21

(4) pointers specified to be initially associated with a variable that is initially defined;22

(5) variables that are always defined;23

(6) variables with the BIND attribute that are initialized by means other than Fortran.24

NOTE
Fortran code:

module mod
integer, bind(c,name="blivet") :: foo

end module mod

C code:

int blivet = 123;

In the above example, the Fortran variable foo is initially defined to have the value 123 by means other than
Fortran.

J3/23-007 541

J3/23-007 WD 1539-1 2023-02-17

19.6.4 Variables that are initially undefined1

1 Variables that are not initially defined are initially undefined.2

19.6.5 Events that cause variables to become defined3

1 Variables become defined by the following events.4

(1) Execution of an intrinsic assignment statement other than a masked array assignment or FORALL5

assignment statement causes the variable that precedes the equals to become defined.6

(2) Execution of a masked array assignment or FORALL assignment statement might cause some or all of7

the array elements in the assignment statement to become defined (10.2.3).8

(3) As execution of an input statement proceeds, each variable that is assigned a value from the input9

file becomes defined at the time that data are transferred to it. (See (4) in 19.6.6.) Execution of a10

WRITE statement whose unit specifier identifies an internal file causes each record that is written11

to become defined.12

(4) Execution of a DO statement causes the DO variable, if any, to become defined.13

(5) Beginning of execution of the action specified by an io-implied-do in a synchronous data transfer14

statement causes the do-variable to become defined.15

(6) A reference to a procedure causes an entire dummy data object to become defined if the dummy data16

object does not have INTENT (OUT) and the entire effective argument is defined.17

A reference to a procedure causes a subobject of a dummy argument to become defined if the dummy18

argument does not have INTENT (OUT) and the corresponding subobject of the effective argument19

is defined.20

(7) Execution of an input/output statement containing an IOSTAT= specifier causes the specified integer21

variable to become defined.22

(8) Execution of a synchronous input statement containing a SIZE= specifier causes the specified integer23

variable to become defined.24

(9) Execution of a wait operation (12.7.1) corresponding to an asynchronous input statement containing25

a SIZE= specifier causes the specified integer variable to become defined.26

(10) Execution of an INQUIRE statement causes any variable that is assigned a value during the execution27

of the statement to become defined if no error condition exists.28

(11) If an error, end-of-file, or end-of-record condition occurs during execution of an input/output state-29

ment that has an IOMSG= specifier, the iomsg-variable becomes defined.30

(12) When a character storage unit becomes defined, all associated character storage units become defined.31

When a numeric storage unit becomes defined, all associated numeric storage units of the same type32

become defined. When an entity of double precision real type becomes defined, all totally associated33

entities of double precision real type become defined.34

When an unspecified storage unit becomes defined, all associated unspecified storage units become35

defined.36

(13) When a default complex entity becomes defined, all partially associated default real entities become37

defined.38

(14) When both parts of a default complex entity become defined as a result of partially associated default39

real or default complex entities becoming defined, the default complex entity becomes defined.40

(15) When all components of a structure of a numeric sequence type or character sequence type become41

defined as a result of partially associated objects becoming defined, the structure becomes defined.42

542 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(16) Execution of a statement with a STAT= specifier causes the variable specified by the STAT= specifier1

to become defined.2

(17) If an error condition occurs during execution of a statement that has an ERRMSG= specifier, the3

variable specified by the ERRMSG= specifier becomes defined.4

(18) Allocation of a zero-sized array or zero-length character variable causes the array or variable to5

become defined.6

(19) Allocation of an object that has a nonpointer default-initialized subcomponent, except by an AL-7

LOCATE statement with a SOURCE= specifier, causes that subcomponent to become defined.8

(20) Successful execution of an ALLOCATE statement with a SOURCE= specifier causes a subobject of9

the allocated object to become defined if the corresponding subobject of the SOURCE= expression10

is defined.11

(21) Invocation of a procedure causes any automatic data object of zero size or zero character length in12

that procedure to become defined.13

(22) When a pointer becomes associated with a target that is defined, the pointer becomes defined.14

(23) Invocation of a procedure that contains an unsaved nonpointer nonallocatable local variable causes15

all nonpointer default-initialized subcomponents of the object to become defined.16

(24) Invocation of a procedure that has a nonpointer nonallocatable INTENT (OUT) dummy argument17

causes all nonpointer default-initialized subcomponents of the dummy argument to become defined.18

(25) In a DO CONCURRENT or FORALL construct, the index-name becomes defined when the index-19

name value set is evaluated.20

(26) In a DO CONCURRENT construct, a variable with LOCAL_INIT locality becomes defined at the21

beginning of each iteration.22

(27) An object with the VOLATILE attribute that is changed by a means not specified by the program23

might become defined (see 8.5.20).24

(28) Execution of the BLOCK statement of a BLOCK construct that has an unsaved nonpointer non-25

allocatable local variable causes all nonpointer default-initialized subcomponents of the variable to26

become defined.27

(29) Execution of an OPEN statement containing a NEWUNIT= specifier causes the specified integer28

variable to become defined.29

(30) Execution of a LOCK statement containing an ACQUIRED_LOCK= specifier causes the specified30

logical variable to become defined. If the logical variable becomes defined with the value true, the31

lock variable in the LOCK statement also becomes defined.32

(31) Successful execution of a LOCK statement that does not contain an ACQUIRED_LOCK= specifier33

causes the lock variable to become defined.34

(32) Successful execution of an UNLOCK statement causes the lock variable to become defined.35

(33) Failure of an image that locked a lock variable without unlocking it causes the lock variable to become36

defined.37

(34) Successful execution of an EVENT POST or EVENT WAIT statement causes the event variable to38

become defined.39

(35) Successful execution of a FORM TEAM statement causes the team variable to become defined.40

(36) Execution of a FORM TEAM statement with a STAT= specifier that assigns the value STAT_-41

FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV to its stat-variable causes the42

team variable to become defined.43

J3/23-007 543

J3/23-007 WD 1539-1 2023-02-17

(37) Execution of a NOTIFY WAIT statement or an assignment statement with a NOTIFY= specifier1

causes the notify variable to become defined.2

19.6.6 Events that cause variables to become undefined3

1 Variables become undefined by the following events.4

(1) When a scalar variable of intrinsic type becomess defined, all totally associated variables of different type become5

undefined. When a double precision scalar variable becomes defined, all partially associated scalar6

variables become undefined. When a scalar variable becomes undefined, all partially associated double7

precision scalar variables become undefined.8

(2) If the evaluation of a function would cause a variable to become defined and if a reference to the9

function appears in an expression in which the value of the function is not needed to determine the10

value of the expression, the variable becomes undefined when the expression is evaluated.11

(3) When execution of an instance of a subprogram completes,12

(a) its unsaved local variables become undefined,13

(b) unsaved variables in a named common block that appears in the subprogram become undefined if they have been14

defined or redefined, unless another active scoping unit is referencing the common block, and15

(c) a variable of type C_PTR from the intrinsic module ISO_C_BINDING whose value is the C16

address of an unsaved local variable of the subprogram becomes undefined.17

(4) When an error condition or end-of-file condition occurs during execution of an input statement, all of18

the variables specified by the input list or namelist group of the statement become undefined.19

(5) When an error condition occurs during execution of an output statement in which the unit is an internal20

file, the internal file becomes undefined.21

(6) When an error condition, end-of-file condition, or end-of-record condition occurs during execution of22

an input/output statement and the statement contains any io-implied-dos, all of the do-variables in23

the statement become undefined (12.11).24

(7) Execution of a direct access input statement that specifies a record that has not been written previously25

causes all of the variables specified by the input list of the statement to become undefined.26

(8) Execution of an INQUIRE statement might cause the NAME=, RECL=, and NEXTREC= variables27

to become undefined (12.10).28

(9) When a character storage unit becomes undefined, all associated character storage units become un-29

defined.30

When a numeric storage unit becomes undefined, all associated numeric storage units become undefined31

unless the undefinition is a result of defining an associated numeric storage unit of different type (see32

(1) above).33

When an entity of double precision real type becomes undefined, all totally associated entities of double34

precision real type become undefined.35

When an unspecified storage unit becomes undefined, all associated unspecified storage units become36

undefined.37

(10) When an allocatable entity is deallocated, it becomes undefined.38

(11) When the allocation transfer procedure (16.9.147) causes the allocation status of an allocatable entity39

to become unallocated, the entity becomes undefined.40

(12) Successful execution of an ALLOCATE statement with no SOURCE= specifier causes a subcomponent41

of an allocated object to become undefined if default initialization has not been specified for that42

subcomponent.43

544 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(13) Successful execution of an ALLOCATE statement with a SOURCE= specifier causes a subobject of1

the allocated object to become undefined if the corresponding subobject of the SOURCE= expression2

is undefined.3

(14) Execution of an INQUIRE statement causes all inquiry specifier variables to become undefined if an4

error condition exists, except for any variable in an IOSTAT= or IOMSG= specifier.5

(15) When a procedure is invoked6

(a) an optional dummy argument that has no corresponding actual argument becomes undefined,7

(b) a dummy argument with INTENT (OUT) becomes undefined except for any nonpointer default-8

initialized subcomponents of the argument,9

(c) an actual argument corresponding to a dummy argument with INTENT (OUT) becomes un-10

defined except for any nonpointer default-initialized subcomponents of the argument,11

(d) a subobject of a dummy argument that does not have INTENT (OUT) becomes undefined if the12

corresponding subobject of the effective argument is undefined, and13

(e) a variable that is the function result of that procedure becomes undefined except for any of its14

nonpointer default-initialized subcomponents.15

(16) When the association status of a pointer becomes undefined or disassociated (19.5.2.4, 19.5.2.5), the16

pointer becomes undefined.17

(17) When a DO CONCURRENT construct terminates, a variable that is defined or becomes undefined18

during more than one iteration of the construct becomes undefined.19

(18) When execution of an iteration of a DO CONCURRENT construct completes, a construct entity of20

that construct which has LOCAL or LOCAL_INIT locality becomes undefined.21

(19) Execution of an asynchronous READ statement causes all of the variables specified by the input list or22

SIZE= specifier to become undefined. Execution of an asynchronous namelist READ statement causes23

any variable in the namelist group to become undefined if that variable will subsequently be defined24

during the execution of the READ statement or the corresponding wait operation (12.7.1).25

(20) When a variable with the TARGET attribute is deallocated, a variable of type C_PTR from the26

intrinsic module ISO_C_BINDING becomes undefined if its value is the C address of any part of the27

variable that is deallocated.28

(21) When a pointer is deallocated, a variable of type C_PTR from the intrinsic module ISO_C_BINDING29

becomes undefined if its value is the C address of any part of the target that is deallocated.30

(22) Execution of the allocation transfer procedure (16.9.147) where the argument TO does not have the31

TARGET attribute causes a variable of type C_PTR from the intrinsic module ISO_C_BINDING to32

become undefined if its value is the C address of any part of the argument FROM.33

(23) When a BLOCK construct completes execution,34

• its unsaved local variables become undefined, and35

• a variable of type C_PTR from the intrinsic module ISO_C_BINDING, whose value is the C36

address of an unsaved local variable of the BLOCK construct, becomes undefined.37

(24) When execution of the host instance of the target of a variable of type C_FUNPTR from the intrinsic38

module ISO_C_BINDING is completed by execution of a RETURN or END statement, the variable39

becomes undefined.40

(25) Execution of an intrinsic assignment of the type C_PTR or C_FUNPTR from the intrinsic module41

ISO_C_BINDING, or of the type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV,42

in which the variable and expr are not on the same image, causes the variable to become undefined.43

J3/23-007 545

J3/23-007 WD 1539-1 2023-02-17

(26) An object with the VOLATILE attribute (8.5.20) might become undefined by means not specified by1

the program.2

(27) When a pointer becomes associated with a target that is undefined, the pointer becomes undefined.3

(28) When an image fails during execution of a segment, a data object on a nonfailed image becomes4

undefined if it is not a lock variable and it might become undefined by execution of a statement of5

the segment other than an invocation of an atomic subroutine with the object as an actual argument6

corresponding to the ATOM dummy argument.7

(29) Execution of a FORM TEAM statement with a STAT= specifier that assigns a nonzero value other8

than that of STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV to the stat-9

variable causes the team variable to become undefined.10

(30) When the STAT argument in a reference to a collective subroutine is assigned a nonzero value, the A11

argument becomes undefined.12

(31) When an image which references a collective subroutine with a present RESULT_IMAGE argument13

is not the image identified by RESULT_IMAGE, the A argument on that image becomes undefined.14

(32) When an error condition occurs during execution of an atomic subroutine whose STAT argument is15

present, any other argument that is not INTENT (IN) becomes undefined.16

NOTE
Execution of a defined assignment statement could leave all or part of the variable undefined.

19.6.7 Variable definition context17

1 Some variables are prohibited from appearing in a syntactic context that would imply definition or undefinition18

of the variable (8.5.10, 8.5.15, 15.7). The following are the contexts in which the appearance of a variable implies19

such definition or undefinition of the variable:20

(1) the variable of an assignment-stmt;21

(2) a do-variable in a do-stmt or io-implied-do;22

(3) an input-item in a read-stmt;23

(4) a variable-name in a namelist-stmt if the namelist-group-name appears in a NML= specifier in a24

read-stmt;25

(5) an internal-file-variable in a write-stmt;26

(6) a SIZE= or IOMSG= specifier in an input/output statement;27

(7) a specifier in an INQUIRE statement other than FILE=, ID=, and UNIT=;28

(8) a NEWUNIT= specifier in an OPEN statement;29

(9) an allocate-object, errmsg-variable, notify-variable, or stat-variable;30

(10) an actual argument in a reference to a procedure with an explicit interface if the corresponding31

dummy argument is not a pointer and has INTENT (OUT) or INTENT (INOUT);32

(11) a variable that is a selector in an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT33

TYPE construct if the corresponding associate name or any subobject thereof appears in a variable34

definition context;35

(12) an event-variable in an EVENT POST or EVENT WAIT statement;36

(13) a lock-variable in a LOCK or UNLOCK statement;37

(14) a scalar-logical-variable in an ACQUIRED_LOCK= specifier;38

(15) a team-variable in a FORM TEAM statement.39

546 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 If a reference to a function appears in a variable definition context the result of the function reference shall be a1

pointer that is associated with a definable target. That target is the variable that becomes defined or undefined.2

19.6.8 Pointer association context3

1 Some pointers are prohibited from appearing in a syntactic context that would imply alteration of the pointer4

association status (19.5.2.2, 8.5.10, 8.5.15, 15.7). The following are the contexts in which the appearance of a5

pointer implies such alteration of its pointer association status:6

• a pointer-object in a nullify-stmt;7

• a data-pointer-object or proc-pointer-object in a pointer-assignment-stmt;8

• an allocate-object in an allocate-stmt or deallocate-stmt;9

• an actual argument in a reference to a procedure if the corresponding dummy argument is a pointer with10

the INTENT (OUT) or INTENT (INOUT) attribute.11

J3/23-007 547

J3/23-007 WD 1539-1 2023-02-17

Annex A1

(Informative)2

Processor dependencies3

A.1 Unspecified items4

1 This document does not specify the following:5

• the properties excluded in 1;6

• a processor’s error detection capabilities beyond those listed in 4.2;7

• which additional intrinsic procedures or modules a processor provides (4.2);8

• the number and kind of companion processors (5.5.7);9

• the number of representation methods and associated kind type parameter values of the intrinsic types10

(7.4), except that there shall be at least two representation methods for type real, and a representation11

method of type complex that corresponds to each representation method for type real.12

A.2 Processor dependencies13

1 According to this document, the following are processor dependent:14

• the order of evaluation of the specification expressions within the specification part of an invoked Fortran15

procedure (5.3.5);16

• how soon an image terminates if another image initiates error termination (5.3.5);17

• the value of a reference to a coindexed object on a failed image (5.3.6);18

• the conditions that cause an image to fail (5.3.6);19

• whether the processor has the ability to detect that an image has failed (5.3.6);20

• whether the processor supports a concept of process exit status, and if so, the process exit status on program21

termination (5.3.7);22

• the mechanism of a companion processor, and the means of selecting between multiple companion processors23

(5.5.7);24

• the processor character set (6.1);25

• the maximum number of unique statement labels in a program unit (6.2.5);26

• the means for specifying the source form of a program unit (6.3);27

• in fixed source form, the maximum number of characters allowed on a source line containing characters not28

of default kind (6.3.3);29

• the maximum depth of nesting of include lines (6.4);30

• the interpretation of the char-literal-constant in the include line (6.4);31

• the set of values supported by an intrinsic type, other than logical (7.1.3);32

• the kind type parameter value of a complex literal constant, if both the real part and imaginary part are of33

type real with the same precision, but have different kind type parameter values (7.4.3.3);34

• the kind of a character length type parameter (7.4.4.1);35

548 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

• the blank padding character for nondefault character kind (7.4.4.2)1

• whether particular control characters can appear within a character literal constant in fixed source form2

(7.4.4.3);3

• the collating sequence for each character set (7.4.4.4);4

• the order of finalization of components of objects of derived type (7.5.6.2);5

• the order of finalization when several objects are finalized as the consequence of a single event (7.5.6.2);6

• whether and when an object is finalized if it is allocated by pointer allocation and it later becomes un-7

reachable due to all pointers associated with the object having their pointer association status changed8

(7.5.6.3);9

• whether an object is finalized by a deallocation in which an error condition occurs (7.5.6.3);10

• the kind type parameter of the enumerators of an interoperable enumeration (7.6.1);11

• whether an array is contiguous, except as specified in 8.5.7;12

• the set of error conditions that can occur in ALLOCATE and DEALLOCATE statements (9.7.1, 9.7.3);13

• the allocation status of a variable after evaluation of an expression if the evaluation of a function would14

change the allocation status of the variable and if a reference to the function appears in the expression in15

which the value of the function is not needed to determine the value of the expression (9.7.1.3);16

• the order of deallocation when several objects are deallocated by a DEALLOCATE statement (9.7.3);17

• the order of deallocation when several objects are deallocated due to the occurence of an event described18

in 9.7.3.2;19

• whether an allocated allocatable subobject is deallocated when an error condition occurs in the deallocation20

of an object (9.7.3.2);21

• the positive integer values assigned to the stat-variable in a STAT= specifier as the result of an error22

condition (9.7.4, 11.7.11);23

• the allocation status or pointer association status of an allocate-object if an error condition occurs during24

execution of an ALLOCATE or DEALLOCATE statement (9.7.4);25

• the value assigned to the errmsg-variable in an ERRMSG= specifier as the result of an error condition26

(9.7.5, 11.7.11);27

• the kind type parameter value of the result of a numeric intrinsic binary operation where28

– both operands are of type integer but with different kind type parameters, and the decimal exponent29

ranges are the same,30

– one operand is of type real or complex and the other is of type real or complex with a different kind31

type parameter, and the decimal precisions are the same,32

and for a logical intrinsic binary operation where the operands have different kind type parameters (10.1.9.3);33

• the character assigned to the variable in an intrinsic assignment statement if the kind of the expression is34

different and the character is not representable in the kind of the variable (10.2.1.3);35

• the order of evaluation of the specification expressions within the specification part of a BLOCK construct36

when the construct is executed (11.1.4);37

• the ordering between records written by different iterations of a DO CONCURRENT construct if the records38

are written to a file connected for sequential access by more than one iteration (11.1.7);39

• the order in which values are combined in a DO CONCURRENT reduction (11.1.7.5);40

• the manner in which the stop code of a STOP or ERROR STOP statement is made available (11.4);41

• the value of the count of the notify variable in a NOTIFY WAIT statement if an error condition occurs42

J3/23-007 549

J3/23-007 WD 1539-1 2023-02-17

(11.6);1

• the mechanisms available for creating dependencies for cooperative synchronization (11.7.5);2

• the value of the count of the event variable in an EVENT POST or EVENT WAIT statement if an error3

condition occurs (11.7.7, 11.7.8);4

• the image index value established for each image in a team by a FORM TEAM statement without a5

NEW_INDEX= specifier (11.7.9);6

• the set of error conditions that can occur in image control statements (11.7.11);7

• the relationship between the file storage units when viewing a file as a stream file, and the records when8

viewing that file as a record file (12);9

• whether particular control characters can appear in a formatted record or a formatted stream file (12.2.2);10

• the form of values in an unformatted record (12.2.3);11

• at any time, the set of allowed access methods, set of allowed forms, set of allowed actions, and set of12

allowed record lengths for a file (12.3);13

• the set of allowable names for a file (12.3);14

• whether a named file on one image is the same as a file with the same name on another image (12.3.1);15

• the set of external files that exist for a program (12.3.2);16

• the relationship between positions of successive file storage units in an external file that is connected for17

formatted stream access (12.3.3.4);18

• the external unit preconnected for sequential formatted input and identified by an asterisk or the named19

constant INPUT_UNIT of the ISO_FORTRAN_ENV intrinsic module (12.5);20

• the external unit preconnected for sequential formatted output and identified by an asterisk or the named21

constant OUTPUT_UNIT of the ISO_FORTRAN_ENV intrinsic module (12.5);22

• the external unit preconnected for sequential formatted output and identified by the named constant ER-23

ROR_UNIT of the ISO_FORTRAN_ENV intrinsic module, and whether this unit is the same as OUT-24

PUT_UNIT (12.5);25

• at any time, the set of external units that exist for an image (12.5.3);26

• whether a unit can be connected to a file that is also connected to a C stream (12.5.4);27

• whether a file can be connected to more than one unit at the same time (12.5.4);28

• the effect of performing input/output operations on multiple units while they are connected to the same29

external file (12.5.4);30

• the result of performing input/output operations on a unit connected to a file that is also connected to a C31

stream (12.5.4);32

• whether the files connected to the units INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT correspond33

to the predefined C text streams standard input, standard output, and standard error, respectively (12.5.4);34

• the results of performing input/output operations on an external file both from Fortran and from a procedure35

defined by means other than Fortran (12.5.4);36

• the default value for the ACTION= specifier in an OPEN statement (12.5.6.4);37

• the encoding of a file opened with ENCODING=’DEFAULT’ (12.5.6.9);38

• the file connected by an OPEN statement with STATUS=’SCRATCH’ (12.5.6.10);39

• the interpretation of case in a file name (12.5.6.10, 12.10.2.2);40

• the position of a file after executing an OPEN statement with a POSITION= specifier of ASIS, when the41

file previously existed but was not connected (12.5.6.15);42

550 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

• the default value for the RECL= specifier in an OPEN statement (12.5.6.16);1

• the effect of RECL= on a record containing any nondefault characters (12.5.6.16);2

• the default input/output rounding mode (12.5.6.17);3

• the default sign mode (12.5.6.18);4

• the file status when STATUS=’UNKNOWN’ is specified in an OPEN statement (12.5.6.19);5

• the value assigned to the variable in the ID= specifier in an asynchronous data transfer statement when6

execution of the statement is successfully completed (12.6.2.9);7

• whether POS= is permitted with particular files, and whether POS= can position a particular file to a8

position prior to its current position (12.6.2.12);9

• the form in which a single value of derived type is treated in an unformatted input/output statement if the10

effective item is not processed by a defined input/output procedure (12.6.3);11

• the result of unformatted input when the type or type parameters of the value stored in the file differ from12

those of the corresponding effective item (12.6.4.5.2);13

• the negative value of the unit argument to a defined input/output procedure if the parent data transfer14

statement accesses an internal file (12.6.4.8.2);15

• the manner in which the processor makes the value of the iomsg argument of a defined input/output16

procedure available if the procedure assigns a nonzero value to the iostat argument and the processor17

therefore terminates execution of the program (12.6.4.8.2);18

• the action caused by the flush operation, whether the processor supports the flush operation for the specified19

unit, and the negative value assigned to the IOSTAT= variable if the processor does not support the flush20

operation for the specified unit (12.9);21

• the case of characters assigned to the variable in a NAME= specifier in an INQUIRE statement (12.10.2.16);22

• which of the connected external unit numbers is assigned to the scalar-int-variable in the NUMBER=23

specifier in an INQUIRE by file statement, if more than one unit on an image is connected to the file24

(12.10.2.19);25

• the value of the variable in a POSITION= specifier in an INQUIRE statement if the file has been repositioned26

since connection (12.10.2.24);27

• the relationship between file size and the data stored in records in a sequential or direct access file28

(12.10.2.31);29

• the number of file storage units needed to store data in an unformatted file (12.10.3);30

• the set of error conditions that can occur in input/output statements (12.11.1);31

• when an input/output error condition occurs or is detected (12.11.1);32

• the positive integer value assigned to the variable in an IOSTAT= specifier as the result of an error condition33

(12.11.5);34

• the value assigned to the variable in an IOMSG= specifier as the result of an error condition (12.11.6);35

• the result of output of non-representable characters to a Unicode file (13.7.1);36

• the interpretation of the optional non-blank characters within the parentheses of a real NaN input field37

(13.7.2.3.2);38

• the interpretation of a sign in a NaN input field (13.7.2.3.2);39

• for output of an IEEE NaN, whether after the letters ’NaN’, the processor produces additional alphanumeric40

characters enclosed in parentheses (13.7.2.3.2);41

• the choice of binary exponent in EX output editing (13.7.2.3.6);42

• the effect of the input/output rounding mode PROCESSOR_DEFINED (13.7.2.3.8);43

J3/23-007 551

J3/23-007 WD 1539-1 2023-02-17

• which value is chosen if the input/output rounding mode is NEAREST and the value to be converted is1

exactly halfway between the two nearest representable values in the result format (13.7.2.3.8);2

• the field width, decimal part width, and exponent width used for the G0 edit descriptor (13.7.5);3

• the file position when position editing skips a character of nondefault kind in an internal file of default4

character kind or an external unit that is not connected to a Unicode file (13.8.1.1);5

• when the sign mode is PROCESSOR_DEFINED, whether a plus sign appears in a numeric output field6

for a nonnegative value (13.8.4);7

• whether a leading zero is produced when the leading zero mode is PROCESSOR_DEFINED (13.8.5);8

• the results of list-directed output (13.10.4);9

• the results of namelist output (13.11.4);10

• the interaction between argument association and pointer association (15.5.2.5);11

• the values returned by some intrinsic functions (16);12

• how the sequences of atomic actions in unordered segments interleave (16.5);13

• the value assigned to a STAT argument in a reference to an atomic subroutine when an error condition14

occurs (16.5);15

• the effect of calling EXECUTE_COMMAND_LINE on any image other than image 1 in the initial team16

(16.7);17

• whether the results returned from CPU_TIME, DATE_AND_TIME and SYSTEM_CLOCK are depend-18

ent on which image calls them (16.7);19

• the set of error conditions that can occur in some intrinsic subroutines (16.9);20

• the value assigned to a CMDSTAT, ERRMSG, EXITSTAT, STAT, or STATUS argument to indicate a21

processor-dependent error condition (16.9);22

• the computed value of the intrinsic subroutine CO_REDUCE (16.9.57) and the intrinsic subroutine CO_-23

SUM (16.9.58);24

• whether command arguments are available (16.9.59, 16.9.93);25

• the value assigned to the TIME argument by the intrinsic subroutine CPU_TIME (16.9.67);26

• whether date, clock, and time zone information is available (16.9.69);27

• whether date, clock, and time zone information on one image is the same as that on another image (16.9.69);28

• whether asynchronous command line execution is available (16.9.83);29

• whether the program invocation command is available (16.9.92);30

• the value of command argument zero, if the processor does not support the concept of a command name31

(16.9.93);32

• the order of command arguments (16.9.93);33

• whether the significant length of a command argument includes trailing blanks (16.9.93);34

• the interpretation of case for the NAME argument of the intrinsic subroutine GET_ENVIRONMENT_-35

VARIABLE (16.9.94);36

• whether an environment variable that exists on an image also exists on another image, and if it does exist37

on both images, whether the values are the same or different (16.9.94);38

• the value assigned to the pseudorandom number seed by the intrinsic subroutine RANDOM_INIT (16.9.167);39

• the computation of the seed value used by the pseudorandom number generator (16.9.169);40

• the value assigned to the seed by the intrinsic subroutine RANDOM_SEED when no argument is present41

(16.9.169);42

552 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

• the values assigned to its arguments by the intrinsic subroutine SYSTEM_CLOCK (16.9.202);1

• the values of the named constants in the intrinsic module ISO_FORTRAN_ENV (16.10.2);2

• the values returned by the functions COMPILER_OPTIONS and COMPILER_VERSION in the intrinsic3

module ISO_FORTRAN_ENV (16.10.2);4

• the extent to which a processor supports IEEE arithmetic (17);5

• whether a flag that is quiet on entry to a scoping unit that does not access IEEE_FEATURES, IEEE_-6

EXCEPTIONS, or IEEE_ARITHMETIC is signaling on exit (17.1);7

• the conditions under which IEEE_OVERFLOW is raised in a calculation involving non-ISO/IEC/IEEE8

60559:2020 floating-point data (17.3);9

• the conditions under which IEEE_OVERFLOW and IEEE_DIVIDE_BY_ZERO are raised in a floating-10

point exponentiation operation (17.3);11

• the conditions under which IEEE_DIVIDE_BY_ZERO is raised in a calculation involving floating-point12

data that do not conform to ISO/IEC/IEEE 60559:2020 (17.3);13

• whether an exception signals at the end of a sequence of statements that has no invocations of IEEE_GET_-14

FLAG, IEEE_SET_FLAG, IEEE_GET_STATUS, IEEE_SET_STATUS, or IEEE_SET_HALTING_-15

MODE, in which execution of an operation would cause it to signal, if no value of a variable depends upon16

the result of the operation (17.3);17

• the initial rounding modes (17.4);18

• whether the processor supports a particular rounding mode (17.4);19

• the effect of the rounding mode IEEE_OTHER, if supported (17.4);20

• the initial underflow mode (17.5);21

• the initial halting mode (17.6);22

• whether IEEE_INT implements the convertToInteger{round} or convertToIntegerExact{round} operation23

specified by ISO/IEC 60559:2020 (17.11.11);24

• which argument is the result value of IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_NUM,25

or IEEE_MIN_NUM_MAG when both arguments are quiet NaNs or are zeros (17.11.19, 17.11.20, 17.11.23,26

17.11.24);27

• the requirements on the storage sequence to be associated with the pointer FPTR by the C_F_POINTER28

subroutine (18.2.3.4);29

• the order of the members of the CFI_dim_t structure defined in the source file CFI_Fortran_binding.h30

(18.5.2);31

• members of the CFI_cdesc_t structure defined in the source file CFI_Fortran_binding.h beyond the re-32

quirements of 18.5.3;33

• the value of CFI_MAX_RANK in the source file CFI_Fortran_binding.h (18.5.4);34

• the value of CFI_VERSION in the source file CFI_Fortran_binding.h (18.5.4);35

• which error condition is detected if more than one error condition could be detected for an invocation of36

one of the functions declared in the source file CFI_Fortran_binding.h (18.5.5.1);37

• the values of the attribute specifier macros defined in the source file CFI_Fortran_binding.h (18.5.4);38

• the values of the type specifier macros defined in the source file CFI_Fortran_binding.h;39

• which additional type specifier values are defined in the source file CFI_Fortran_binding.h (18.5.4);40

• the values of the error code macros other than CFI_SUCCESS that are defined in the source file CFI_-41

Fortran_binding.h (18.5.4);42

• the base address of a zero-sized array (18.5.3);43

J3/23-007 553

J3/23-007 WD 1539-1 2023-02-17

• the values of the floating-point exception flags on entry to a procedure defined by means other than Fortran1

(18.10.3);2

• whether a procedure defined by means other than Fortran is an asynchronous communication initiation or3

completion procedure (18.10.4).4

554 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Annex B1

(Informative)2

Deleted and obsolescent features3

B.1 Deleted features from Fortran 904

1 These deleted features are those features of Fortran 90 that were redundant and considered largely unused.5

2 The following Fortran 90 features are not required.6

(1) Real and double precision DO variables.7

In Fortran 77 and Fortran 90, a DO variable was allowed to be of type real or double precision8

in addition to type integer; this has been deleted. A similar result can be achieved by using a DO9

construct with no loop control and the appropriate exit test.10

(2) Branching to an END IF statement from outside its block.11

In Fortran 77 and Fortran 90, it was possible to branch to an END IF statement from outside the12

IF construct; this has been deleted. A similar result can be achieved by branching to a CONTINUE13

statement that is immediately after the END IF statement.14

(3) PAUSE statement.15

The PAUSE statement, provided in Fortran 66, Fortran 77, and Fortran 90, has been deleted.16

A similar result can be achieved by writing a message to the appropriate unit, followed by reading17

from the appropriate unit.18

(4) ASSIGN and assigned GO TO statements, and assigned format specifiers.19

The ASSIGN statement and the related assigned GO TO statement, provided in Fortran 66,20

Fortran 77, and Fortran 90, have been deleted. Further, the ability to use an assigned integer as a21

format, provided in Fortran 77 and Fortran 90, has been deleted. A similar result can be achieved22

by using other control constructs instead of the assigned GO TO statement and by using a default23

character variable to hold a format specification instead of using an assigned integer.24

(5) H edit descriptor.25

In Fortran 77 and Fortran 90, there was an alternative form of character string edit descriptor,26

which had been the only such form in Fortran 66; this has been deleted. A similar result can be27

achieved by using a character string edit descriptor.28

(6) Vertical format control.29

In Fortran 66, Fortran 77, Fortran 90, and Fortran 95 formatted output to certain units resulted30

in the first character of each record being interpreted as controlling vertical spacing. There was no31

standard way to detect whether output to a unit resulted in this vertical format control, and no32

way to specify that it needs to be applied; this has been deleted. The effect can be achieved by33

post-processing a formatted file.34

3 See ISO/IEC 1539:1991 for detailed rules of how these deleted features worked.35

J3/23-007 555

J3/23-007 WD 1539-1 2023-02-17

B.2 Deleted features from Fortran 20081

1 These deleted features are those features of Fortran 2008 that were redundant and considered largely unused.2

2 The following Fortran 2008 features are not required.3

(1) Arithmetic IF statement.4

The arithmetic IF statement is incompatible with ISO/IEC 60559:2020 and necessarily involves the5

use of statement labels; statement labels can hinder optimization, and make code hard to read and6

maintain. Similar logic can be more clearly encoded using other conditional statements.7

(2) Nonblock DO construct8

The nonblock forms of the DO loop were confusing and hard to maintain. Shared termination and9

dual use of labeled action statements as do termination and branch targets were especially error-10

prone.11

B.3 Obsolescent features12

B.3.1 General13

1 The obsolescent features are those features of Fortran 90 that were redundant and for which better methods were14

available in Fortran 90. The nature of the obsolescent features is described in 4.4.3. The obsolescent features in15

this document are the following.16

(1) Alternate return — see B.3.2.17

(2) Computed GO TO — see B.3.3.18

(3) Statement functions — see B.3.4.19

(4) DATA statements amongst executable statements — see B.3.5.20

(5) Assumed length character functions — see B.3.6.21

(6) Fixed form source — see B.3.7.22

(7) CHARACTER* form of CHARACTER declaration — see B.3.8.23

(8) ENTRY statements — see B.3.9.24

(9) Label form of DO statement – see B.3.10.25

(10) COMMON and EQUIVALENCE statements, and the block data program unit – see B.3.11.26

(11) Specific names for intrinsic functions – see B.3.12.27

(12) FORALL construct and statement – see B.3.1328

B.3.2 Alternate return29

1 An alternate return introduces labels into an argument list to allow the called procedure to direct the execution30

of the caller upon return. The same effect can be achieved with a return code that is used in a SELECT CASE31

construct on return. This avoids an irregularity in the syntax and semantics of argument association. For example,32

CALL SUBR_NAME (X, Y, Z, *100, *200, *300)33

can be replaced by34

CALL SUBR_NAME (X, Y, Z, RETURN_CODE)35

SELECT CASE (RETURN_CODE)36

556 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

CASE (1)1

...2

CASE (2)3

...4

CASE (3)5

...6

CASE DEFAULT7

...8

END SELECT9

B.3.3 Computed GO TO statement10

1 The computed GO TO statement has been superseded by the SELECT CASE construct, which is a generalized,11

easier to use, and clearer means of expressing the same computation.12

B.3.4 Statement functions13

1 Statement functions are subject to a number of nonintuitive restrictions and are a potential source of error because14

their syntax is easily confused with that of an assignment statement.15

2 The internal function is a more generalized form of the statement function and completely supersedes it.16

B.3.5 DATA statements among executables17

1 The statement ordering rules allow DATA statements to appear anywhere in a program unit after the specific-18

ation statements. The ability to position DATA statements amongst executable statements is very rarely used,19

unnecessary, and a potential source of error.20

B.3.6 Assumed character length functions21

1 Assumed character length for functions is an irregularity in the language in that elsewhere in Fortran the philo-22

sophy is that the attributes of a function result depend only on the actual arguments of the invocation and on23

any data accessible by the function through host or use association. Some uses of this facility can be replaced24

with an automatic character length function, where the length of the function result is declared in a specification25

expression. Other uses can be replaced by the use of a subroutine whose arguments correspond to the function26

result and the function arguments.27

2 Note that dummy arguments of a function can have assumed character length.28

B.3.7 Fixed form source29

1 Fixed form source was designed when the principal machine-readable input medium for new programs was punched30

cards. Now that new and amended programs are generally entered via keyboards with screen displays, it is an31

unnecessary overhead, and is potentially error-prone, to have to locate positions 6, 7, or 72 on a line. Free form32

source was designed expressly for this more modern technology.33

2 It is a simple matter for a software tool to convert from fixed to free form source.34

J3/23-007 557

J3/23-007 WD 1539-1 2023-02-17

B.3.8 CHARACTER* form of CHARACTER declaration1

1 In addition to the CHARACTER*char-length form introduced in Fortran 77, Fortran 90 provided the CHAR-2

ACTER([LEN =] type-param-value) form. The older form (CHARACTER*char-length) is redundant.3

B.3.9 ENTRY statements4

1 ENTRY statements allow more than one entry point to a subprogram, facilitating sharing of data items and5

executable statements local to that subprogram.6

2 This can be replaced by a module containing the (private) data items, with a module procedure for each entry7

point and the shared code in a private module procedure.8

B.3.10 Label DO statement9

1 The label in the DO statement is redundant with the construct name. Furthermore, the label allows unrestricted10

branches and, for its main purpose (the target of a conditional branch to skip the rest of the current iteration),11

is redundant with the CYCLE statement, which is clearer.12

B.3.11 COMMON and EQUIVALENCE statements and the block data program unit13

1 Common blocks are error-prone and have largely been superseded by modules. EQUIVALENCE similarly is14

error-prone. Whilst use of these statements was invaluable prior to Fortran 90 they are now redundant and15

can inhibit performance. The block data program unit exists only to serve common blocks and hence is also16

redundant.17

B.3.12 Specific names for intrinsic functions18

1 The specific names of the intrinsic functions are often obscure and hinder portability. They have been redundant19

since Fortran 90. Use generic names for references to intrinsic procedures.20

B.3.13 FORALL construct and statement21

1 The FORALL construct and statement were added to the language in the expectation that they would enable22

highly efficient execution, especially on parallel processors. However, experience indicates that they are too23

complex and have too many restrictions for compilers to take advantage of them. They are redundant with the24

DO CONCURRENT construct, and many of the manipulations for which they might be used can be done more25

effectively using pointers, especially using pointer rank remapping.26

558 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Annex C1

(Informative)2

Extended notes3

C.1 Features that were new in Fortran 20184

• Data declaration:5

Constant properties of an object declared in its entity-decl can be used in its initialization. The EQUIVAL-6

ENCE and COMMON statements and the block data program unit have been redundant since Fortran 907

and are now specified to be obsolescent. Diagnosis of the appearance of a PROTECTED TARGET variable8

accessed by use association as a data-target in a structure constructor is required.9

• Data usage and computation:10

The declared type of the value supplied for a polymorphic allocatable component in a structure constructor11

is no longer required to be the same as the declared type of the component. FORALL is now specified to12

be obsolescent. The type and kind of an implied DO variable in an array constructor or DATA statement13

can be specified within the constructor or statement. The SELECT RANK construct provides structured14

access to the elements of an assumed-rank array. Completing execution of a BLOCK construct can cause15

the association status of a pointer with the PROTECTED attribute to become undefined. The standard16

intrinsic operations <, <=, >, and >= (also known as .LT., .LE., .GT., and .GE.) on IEEE numbers provide17

compareSignaling{relation} operations; the = and /= operations (also known as .EQ. and .NE.) provide18

compareQuiet{relation} operations. Finalization of an allocatable subobject during intrinsic assignment19

has been clarified. The char-length in an executable statement is no longer required to be a specification20

expression.21

• Input/output:22

The SIZE= specifier can be used with advancing input. It is no longer prohibited to open a file on more than23

one unit. The value assigned by the RECL= specifier in an INQUIRE statement has been standardized.24

The values assigned by the POS= and SIZE= specifiers in an INQUIRE statement for a unit that has25

pending asynchronous operations have been standardized. The G0.d edit descriptor can be used for effective26

items of type Integer, Logical, and Character. The D, E, EN, and ES edit descriptors can have a field27

width of zero, analogous to the F edit descriptor. The exponent width e in a data edit descriptor can be28

zero, analogous to a field width of zero. Floating-point formatted input accepts hexadecimal-significand29

numbers that conform to ISO/IEC 60559:2020. The EX edit descriptor provides hexadecimal-significand30

formatted output conforming to ISO/IEC 60559:2020. An error condition occurs if unacceptable characters31

are presented for logical or numeric editing during execution of a formatted input statement.32

• Execution control:33

The arithmetic IF statement has been deleted. Labeled DO loops have been redundant since Fortran 9034

and are now specified to be obsolescent. The nonblock DO construct has been deleted. The locality of a35

variable used in a DO CONCURRENT construct can be explicitly specified. The stop code in a STOP or36

ERROR STOP statement can be nonconstant. Output of the stop code and exception summary from the37

STOP and ERROR STOP statements can be controlled.38

• Intrinsic procedures and modules:39

In a reference to the intrinsic function CMPLX with an actual argument of type complex, no keyword40

J3/23-007 559

J3/23-007 WD 1539-1 2023-02-17

is needed for a KIND argument. In references to the intrinsic functions ALL, ANY, FINDLOC, IALL,1

IANY, IPARITY, MAXLOC, MAXVAL, MINLOC, MINVAL, NORM2, PARITY, PRODUCT, SUM, and2

THIS_IMAGE, the actual argument for DIM can be a present optional dummy argument. The new intrinsic3

function COSHAPE returns the coshape of a coarray. The new intrinsic function OUT_OF_RANGE tests4

whether a numeric value can be safely converted to a different type or kind. The new intrinsic subroutine5

RANDOM_INIT establishes the initial state of the pseudorandom number generator used by RANDOM_-6

NUMBER. The new intrinsic function REDUCE performs user-specified array reductions. A processor is7

required to report use of a nonstandard intrinsic procedure, use of a nonstandard intrinsic module, and use8

of a nonstandard procedure from a standard intrinsic module. Integer and logical arguments to intrinsic pro-9

cedures and intrinsic module procedures that were previously required to be of default kind no longer have10

that requirement, except for RANDOM_SEED. Specific names for intrinsic functions are now deemed ob-11

solescent. All standard procedures in the intrinsic module ISO_C_BINDING, other than C_F_POINTER12

and C_F_PROCPOINTER, are now pure. The arguments to the intrinsic function SIGN can be of dif-13

ferent kind. Nonpolymorphic pointer arguments to the intrinsic functions EXTENDS_TYPE_OF and14

SAME_TYPE_AS need not have defined pointer association status. The effects of invoking the intrinsic15

procedures COMMAND_ARGUMENT_COUNT, GET_COMMAND, and GET_COMMAND_ARGU-16

MENT, on images other than image one, are no longer processor dependent. Access to error messages17

from the intrinsic subroutines GET_COMMAND, GET_COMMAND_ARGUMENT, and GET_ENVIR-18

ONMENT_VARIABLE is provided by an optional ERRMSG argument. The result of NORM2 for a19

zero-sized array argument has been clarified.20

• Program units and procedures:21

The IMPORT statement can appear in a contained subprogram or BLOCK construct, and can restrict22

access via host association; diagnosis of violation of the IMPORT restrictions is required. The GENERIC23

statement can be used to declare generic interfaces. The number of procedure arguments is used in generic24

resolution. In a module, the default accessibility of entities accessed from another module can be controlled25

separately from the default accessibility of entities declared in the using module. An IMPLICIT NONE26

statement can require explicit declaration of the EXTERNAL attribute throughout a scoping unit and its27

contained scoping units. A defined operation need not specify INTENT (IN) for a dummy argument with28

the VALUE. A defined assignment need not specify INTENT (IN) for the second dummy argument if it29

has the VALUE. Procedures that are not declared with an asterisk type-param-value, including elemental30

procedures, can be invoked recursively by default; the RECURSIVE keyword is advisory only. The NON_-31

RECURSIVE keyword specifies that a procedure is not recursive. The ERROR STOP statement can appear32

in a pure subprogram. A dummy argument of a pure function is permitted in a variable definition context,33

if it has the VALUE attribute. A coarray dummy argument, or a coarray ultimate component of a dummy34

argument, can be referenced or defined by another image.35

• Features previously described by ISO/IEC TS 29113:2012:36

A dummy data object can assume its rank from its effective argument. A dummy data object can assume37

the type from its effective argument, without having the ability to perform type selection. An interoper-38

able procedure can have dummy arguments that are assumed-type and/or assumed-rank. An interoperable39

procedure can have dummy data objects that are allocatable, assumed-shape, optional, or pointers. The40

character length of a dummy data object of an interoperable procedure can be assumed. The argument41

to C_LOC can be a noninteroperable array. The FPTR argument to C_F_POINTER can be a noninter-42

operable array pointer. The argument to C_FUNLOC can be a noninteroperable procedure. The FPTR43

argument to C_F_PROCPOINTER can be a noninteroperable procedure pointer. There is a new named44

constant C_PTRDIFF_T to provide interoperability with the C type ptrdiff_t.45

Additionally to ISO/IEC TS 29113:2012, a scalar actual argument can be associated with an assumed-46

560 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

type assumed-size dummy argument, an assumed-rank dummy data object that is not associated with an1

assumed-size array can be used as the argument to the function C_SIZEOF from the intrinsic module2

ISO_C_BINDING, and the type argument to CFI_establish can have a positive value corresponding to3

an interoperable C type.4

• Changes to the intrinsic modules IEEE_ARITHMETIC, IEEE_EXCEPTIONS, and IEEE_FEATURES5

for conformance with ISO/IEC 60559:2020:6

There is a new, optional, rounding mode IEEE_AWAY. The new type IEEE_MODES_TYPE encapsu-7

lates all floating-point modes. Features associated with subnormal numbers can be accessed with func-8

tions and types named . . . SUBNORMAL. . . (the old . . . DENORMAL. . . names remain). The new function9

IEEE_FMA performs fused multiply-add operations. The function IEEE_INT performs rounded conver-10

sions to integer type. The new functions IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_-11

NUM, and IEEE_MIN_NUM_MAG calculate maximum and minimum numeric values. The new func-12

tions IEEE_NEXT_DOWN and IEEE_NEXT_UP return the adjacent machine numbers. The new func-13

tions IEEE_QUIET_EQ, IEEE_QUIET_GE, IEEE_QUIET_GT, IEEE_QUIET_LE, IEEE_QUIET_-14

LT, and IEEE_QUIET_NE perform quiet comparisons. The new functions IEEE_SIGNALING_EQ,15

IEEE_SIGNALING_GE, IEEE_SIGNALING_GT, IEEE_SIGNALING_GE, IEEE_SIGNALING_LE,16

IEEE_SIGNALING_LT, and IEEE_SIGNALING_NE perform signaling comparisons. The decimal round-17

ing mode can be inquired and set independently of the binary rounding mode, using the RADIX argument18

to IEEE_GET_ROUNDING_MODE and IEEE_SET_ROUNDING_MODE. The new function IEEE_-19

REAL performs rounded conversions to real type. The function IEEE_REM now requires its arguments to20

have the same radix. The function IEEE_RINT now has a ROUND argument to perform specific rounding.21

The new function IEEE_SIGNBIT tests the sign bit of an IEEE number.22

• Features previously described by ISO/IEC TS 18508:2015:23

The CRITICAL statement has optional ERRMSG= and STAT= specifiers. The intrinsic subroutines24

ATOMIC_DEFINE and ATOMIC_REF have an optional STAT argument. The new intrinsic subroutines25

ATOMIC_ADD, ATOMIC_AND, ATOMIC_CAS, ATOMIC_FETCH_ADD, ATOMIC_FETCH_AND,26

ATOMIC_FETCH_OR, ATOMIC_FETCH_XOR, ATOMIC_OR, and ATOMIC_XOR perform atomic27

operations. The new intrinsic functions FAILED_IMAGES and STOPPED_IMAGES return indices of im-28

ages known to have failed or stopped respectively. The new intrinsic function IMAGE_STATUS returns the29

image execution status of an image. The intrinsic subroutine MOVE_ALLOC has optional ERRMSG and30

STAT arguments. The intrinsic functions IMAGE_INDEX and NUM_IMAGES have additional forms with31

a TEAM or TEAM_NUMBER argument. The intrinsic function THIS_IMAGE has an optional TEAM32

argument. The EVENT POST and EVENT WAIT statements, the intrinsic subroutine EVENT_QUERY,33

and the type EVENT_TYPE provide an event facility for one-sided segment ordering. The CHANGE34

TEAM construct, derived type TEAM_TYPE, FORM TEAM and SYNC TEAM statements, intrinsic35

functions GET_TEAM and TEAM_NUMBER, and the TEAM= and TEAM_NUMBER= specifiers on36

image selectors, provide a team facility for a subset of the program’s images to act in concert as if it were the37

set of all images. This team facility allows an allocatable coarray to be allocated or deallocated on a sub-38

set of images. The new intrinsic subroutines CO_BROADCAST, CO_MAX, CO_MIN, CO_REDUCE,39

and CO_SUM perform collective reduction operations on the images of the current team. The concept40

of failed images, the FAIL IMAGE statement, the STAT= specifier on image selectors, and the named41

constant STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV provide support for42

fault-tolerant parallel execution.43

• Changes to features previously described by ISO/IEC TS 18508:2015:44

The CHANGE TEAM and SYNC TEAM statements, and the TEAM= specifier on image selectors, permit45

the team to be specified by an expression. The intrinsic functions FAILED_IMAGES and STOPPED_-46

J3/23-007 561

J3/23-007 WD 1539-1 2023-02-17

IMAGES have no restriction on the kind of their result. The name of the function argument to the1

intrinsic function CO_REDUCE is OPERATION instead of OPERATOR; this argument is not required to2

be commutative. The named constant STAT_UNLOCKED_FAILED_IMAGE from the intrinsic module3

ISO_FORTRAN_ENV indicates that a lock variable was locked by an image that failed. The team number4

for the initial team can be used in image selectors, and in the intrinsic functions NUM_IMAGES and5

IMAGE_INDEX. A team variable that appears in a CHANGE TEAM statement can no longer be defined6

or become undefined during execution of the CHANGE TEAM construct. All images of the current team7

are no longer required to execute the same CHANGE TEAM statement. A variable of type TEAM_-8

TYPE from the intrinsic module ISO_FORTRAN_ENV is not permitted to be a coarray. A variable9

of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV can have a pointer component,10

and a team variable becomes undefined if assigned a value from another image. The intrinsic function11

UCOBOUND produces a value for the final upper cobound that is always relative to the current team. An12

EXIT statement can be used to complete execution of a CHANGE TEAM or CRITICAL construct.13

C.2 Fortran 2008 features not mentioned in its Introduction14

1 The following features were new in Fortran 2008 but not originally listed in its Introduction as being new features:15

• An array or object with a nonconstant length type parameter can have the VALUE attribute.16

• Multiple allocations are permitted in a single ALLOCATE statement with the SOURCE= specifier.17

• A PROCEDURE statement can have a double colon before the first procedure name.18

• An argument to a pure procedure can have default INTENT if it has the VALUE attribute.19

• The PROTECTED attribute can be specified by the procedure declaration statement.20

• A defined-operator can be used in a specification expression.21

• All transformational functions from the intrinsic module ISO_C_BINDING can be used in specification22

expressions.23

• A contiguous array variable that is not interoperable but which has interoperable type and kind type24

parameter (if any), and a scalar character variable with length greater than one and kind C_CHAR in the25

intrinsic module ISO_C_BINDING, can be used as the argument of the function C_LOC in the intrinsic26

module ISO_C_BINDING, provided the variable has the POINTER or TARGET attribute.27

• The name of an external procedure that has a binding label is a local identifier and not a global identifier.28

• A procedure that is not a procedure pointer can be an actual argument that corresponds to a procedure29

pointer dummy argument with the INTENT (IN) attribute.30

• An interface body for an external procedure that does not exist in a program can be used to specify an31

explicit specific interface.32

• An internal procedure name can appear in a procedure-stmt in a generic interface block.33

2 All but the last three of the above list were subsequently added to the Introduction by Technical Corrigenda.34

C.3 Clause 7 notes35

C.3.1 Selection of the approximation methods (7.4.3.2)36

1 One can select the real approximation method for an entire program through the use of a module and the37

parameterized real type. This is accomplished by defining a named integer constant to have a particular kind38

562 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

type parameter value and using that named constant in all real, complex, and derived-type declarations. For1

example, the specification statements2

INTEGER, PARAMETER :: LONG_FLOAT = 83

REAL (LONG_FLOAT) X, Y4

COMPLEX (LONG_FLOAT) Z5

specify that the approximation method corresponding to a kind type parameter value of 8 is supplied for the data6

objects X, Y, and Z in the program unit. The kind type parameter value LONG_FLOAT can be made available7

to an entire program by placing the INTEGER specification statement in a module and accessing the named8

constant LONG_FLOAT with a USE statement. Note that by changing 8 to 4 once in the module, a different9

approximation method is selected.10

2 To avoid the use of the processor-dependent values 4 or 8, replace 8 by KIND (0.0) or KIND (0.0D0). Another11

way to avoid these processor-dependent values is to select the kind value using the intrinsic function SELEC-12

TED_REAL_KIND (16.9.183). In the above specification statement, the 8 might be replaced by, for instance,13

SELECTED_REAL_KIND (10, 50), which requires an approximation method to be selected with at least 1014

decimal digits of precision and a range from 10−50 to 1050. There are no magnitude or ordering constraints placed15

on kind values, in order that implementers have flexibility in assigning such values and can add new kinds without16

changing previously assigned kind values.17

3 As kind values have no portable meaning, a good practice is to use them in programs only through named18

constants as described above (for example, SINGLE, IEEE_SINGLE, DOUBLE, and QUAD), rather than using19

the kind values directly.20

C.3.2 Type extension and component accessibility (7.5.2.2, 7.5.4)21

1 The default accessibility of the components of an extended type can be specified in the type definition. The22

accessibility of its components can be specified individually. For example:23

module types24

type base_type25

private !-- Sets default accessibility26

integer :: i !-- a private component27

integer, private :: j !-- another private component28

integer, public :: k !-- a public component29

end type base_type30

31

type, extends(base_type) :: my_type32

private !-- Sets default for components declared in my_type33

integer :: l !-- A private component.34

integer, public :: m !-- A public component.35

end type my_type36

end module types37

38

subroutine sub39

use types40

type (my_type) :: x41

. . .42

J3/23-007 563

J3/23-007 WD 1539-1 2023-02-17

call another_sub(&1

x%base_type, & !-- ok because base_type is a public subobject of x2

x%base_type%k, & !-- ok because x%base_type is ok and has k as a3

!-- public component.4

x%k, & !-- ok because it is shorthand for x%base_type%k5

x%base_type%i, & !-- Invalid because i is private.6

x%i) !-- Invalid because it is shorthand for x%base_type%i7

end subroutine sub8

C.3.3 Generic type-bound procedures (7.5.5)9

Example of a derived type with generic type-bound procedures:10

1 The only difference between this example and the same thing rewritten to use generic interface blocks is that11

with type-bound procedures,12

USE rational_numbers, ONLY: rational13

does not block the type-bound procedures; the user still gets access to the defined assignment and extended14

operations.15

MODULE rational_numbers16

IMPLICIT NONE17

PRIVATE18

TYPE,PUBLIC :: rational19

PRIVATE20

INTEGER n,d21

CONTAINS22

! ordinary type-bound procedure23

PROCEDURE :: real => rat_to_real24

! specific type-bound procedures for generic support25

PROCEDURE,PRIVATE :: rat_asgn_i, rat_plus_i, rat_plus_rat => rat_plus26

PROCEDURE,PRIVATE,PASS(b) :: i_plus_rat27

! generic type-bound procedures28

GENERIC :: ASSIGNMENT(=) => rat_asgn_i29

GENERIC :: OPERATOR(+) => rat_plus_rat, rat_plus_i, i_plus_rat30

END TYPE31

CONTAINS32

ELEMENTAL REAL FUNCTION rat_to_real(this) RESULT(r)33

CLASS(rational),INTENT(IN) :: this34

r = REAL(this%n)/this%d35

END FUNCTION36

ELEMENTAL SUBROUTINE rat_asgn_i(a,b)37

CLASS(rational),INTENT(INOUT) :: a38

INTEGER,INTENT(IN) :: b39

a%n = b40

a%d = 141

END SUBROUTINE42

564 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

ELEMENTAL TYPE(rational) FUNCTION rat_plus_i(a,b) RESULT(r)1

CLASS(rational),INTENT(IN) :: a2

INTEGER,INTENT(IN) :: b3

r%n = a%n + b*a%d4

r%d = a%d5

END FUNCTION6

ELEMENTAL TYPE(rational) FUNCTION i_plus_rat(a,b) RESULT(r)7

INTEGER,INTENT(IN) :: a8

CLASS(rational),INTENT(IN) :: b9

r%n = b%n + a*b%d10

r%d = b%d11

END FUNCTION12

ELEMENTAL TYPE(rational) FUNCTION rat_plus(a,b) RESULT(r)13

CLASS(rational),INTENT(IN) :: a,b14

r%n = a%n*b%d + b%n*a%d15

r%d = a%d*b%d16

END FUNCTION17

END18

C.3.4 Abstract types (7.5.7.1)19

1 The following illustrates how an abstract type can be used as the basis for a collection of related types, and how20

a non-abstract member of that collection can be created by type extension.21

TYPE, ABSTRACT :: DRAWABLE_OBJECT22

REAL, DIMENSION(3) :: RGB_COLOR = (/1.0,1.0,1.0/) ! White23

REAL, DIMENSION(2) :: POSITION = (/0.0,0.0/) ! Centroid24

CONTAINS25

PROCEDURE(RENDER_X), PASS(OBJECT), DEFERRED :: RENDER26

END TYPE DRAWABLE_OBJECT27

28

ABSTRACT INTERFACE29

SUBROUTINE RENDER_X(OBJECT, WINDOW)30

IMPORT DRAWABLE_OBJECT, X_WINDOW31

CLASS(DRAWABLE_OBJECT), INTENT(IN) :: OBJECT32

CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW33

END SUBROUTINE RENDER_X34

END INTERFACE35

36

. . .37

38

TYPE, EXTENDS(DRAWABLE_OBJECT) :: DRAWABLE_TRIANGLE ! Not ABSTRACT39

REAL, DIMENSION(2,3) :: VERTICES ! In relation to centroid40

CONTAINS41

PROCEDURE, PASS(OBJECT) :: RENDER=>RENDER_TRIANGLE_X42

END TYPE DRAWABLE_TRIANGLE43

J3/23-007 565

J3/23-007 WD 1539-1 2023-02-17

2 The actual drawing procedure will draw a triangle in WINDOW with vertices at x and y coordinates at1

OBJECT%POSITION(1)+OBJECT%VERTICES(1,1:3) and OBJECT%POSITION(2)+OBJECT%VERTICES(2,1:3):2

SUBROUTINE RENDER_TRIANGLE_X(OBJECT, WINDOW)3

CLASS(DRAWABLE_TRIANGLE), INTENT(IN) :: OBJECT4

CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW5

. . .6

END SUBROUTINE RENDER_TRIANGLE_X7

C.3.5 Structure constructors and generic names (7.5.10)8

1 A generic name can be the same as a type name. This can be used to emulate user-defined structure constructors9

for that type, even if the type has private components. For example:10

MODULE mytype_module11

TYPE mytype12

PRIVATE13

COMPLEX value14

LOGICAL exact15

END TYPE16

INTERFACE mytype17

MODULE PROCEDURE int_to_mytype18

END INTERFACE19

! Operator definitions etc.20

. . .21

CONTAINS22

TYPE(mytype) FUNCTION int_to_mytype(i)23

INTEGER,INTENT(IN) :: i24

int_to_mytype%value = i25

int_to_mytype%exact = .TRUE.26

END FUNCTION27

! Procedures to support operators etc.28

. . .29

END30

31

PROGRAM example32

USE mytype_module33

TYPE(mytype) x34

x = mytype(17)35

END36

2 The type name can still be used as a generic name if the type has type parameters. For example:37

MODULE m38

TYPE t(kind)39

INTEGER, KIND :: kind40

COMPLEX(kind) value41

END TYPE42

566 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

INTEGER,PARAMETER :: single = KIND(0.0), double = KIND(0d0)1

INTERFACE t2

MODULE PROCEDURE real_to_t1, dble_to_t2, int_to_t1, int_to_t23

END INTERFACE4

. . .5

CONTAINS6

TYPE(t(single)) FUNCTION real_to_t1(x)7

REAL(single) x8

real_to_t1%value = x9

END FUNCTION10

TYPE(t(double)) FUNCTION dble_to_t2(x)11

REAL(double) x12

dble_to_t2%value = x13

END FUNCTION14

TYPE(t(single)) FUNCTION int_to_t1(x,mold)15

INTEGER x16

TYPE(t(single)) mold17

int_to_t1%value = x18

END FUNCTION19

TYPE(t(double)) FUNCTION int_to_t2(x,mold)20

INTEGER x21

TYPE(t(double)) mold22

int_to_t2%value = x23

END FUNCTION24

. . .25

END26

27

PROGRAM example28

USE m29

TYPE(t(single)) x30

TYPE(t(double)) y31

x = t(1.5) ! References real_to_t132

x = t(17,mold=x) ! References int_to_t133

y = t(1.5d0) ! References dble_to_t234

y = t(42,mold=y) ! References int_to_t235

y = t(kind(0d0)) ((0,1)) ! Uses the structure constructor for type t36

END37

C.3.6 Final subroutines (7.5.6, 7.5.6.2, 7.5.6.3, 7.5.6.4)38

Example of a parameterized derived type with final subroutines:39

MODULE m40

TYPE t(k)41

INTEGER, KIND :: k42

REAL(k),POINTER :: vector(:) => NULL()43

CONTAINS44

J3/23-007 567

J3/23-007 WD 1539-1 2023-02-17

FINAL :: finalize_t1s, finalize_t1v, finalize_t2e1

END TYPE2

CONTAINS3

SUBROUTINE finalize_t1s(x)4

TYPE(t(KIND(0.0))) x5

IF (ASSOCIATED(x%vector)) DEALLOCATE(x%vector)6

END SUBROUTINE7

SUBROUTINE finalize_t1v(x)8

TYPE(t(KIND(0.0))) x(:)9

DO i=LBOUND(x,1),UBOUND(x,1)10

IF (ASSOCIATED(x(i)%vector)) DEALLOCATE(x(i)%vector)11

END DO12

END SUBROUTINE13

ELEMENTAL SUBROUTINE finalize_t2e(x)14

TYPE(t(KIND(0.0d0))),INTENT(INOUT) :: x15

IF (ASSOCIATED(x%vector)) DEALLOCATE(x%vector)16

END SUBROUTINE17

END MODULE18

19

SUBROUTINE example(n)20

USE m21

TYPE(t(KIND(0.0))) a,b(10),c(n,2)22

TYPE(t(KIND(0.0d0))) d(n,n)23

. . .24

! Returning from this subroutine will effectively do25

! CALL finalize_t1s(a)26

! CALL finalize_t1v(b)27

! CALL finalize_t2e(d)28

! No final subroutine will be called for variable C because the user29

! omitted to define a suitable specific procedure for it.30

END SUBROUTINE31

Example of extended types with final subroutines:32

MODULE m33

TYPE t134

REAL a,b35

END TYPE36

TYPE,EXTENDS(t1) :: t237

REAL,POINTER :: c(:),d(:)38

CONTAINS39

FINAL :: t2f40

END TYPE41

TYPE,EXTENDS(t2) :: t342

REAL,POINTER :: e43

CONTAINS44

FINAL :: t3f45

568 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

END TYPE1

. . .2

CONTAINS3

SUBROUTINE t2f(x) ! Finalizer for TYPE(t2)’s extra components4

TYPE(t2) :: x5

IF (ASSOCIATED(x%c)) DEALLOCATE(x%c)6

IF (ASSOCIATED(x%d)) DEALLOCATE(x%d)7

END SUBROUTINE8

SUBROUTINE t3f(y) ! Finalizer for TYPE(t3)’s extra components9

TYPE(t3) :: y10

IF (ASSOCIATED(y%e)) DEALLOCATE(y%e)11

END SUBROUTINE12

END MODULE13

14

SUBROUTINE example15

USE m16

TYPE(t1) x117

TYPE(t2) x218

TYPE(t3) x319

. . .20

! Returning from this subroutine will effectively do21

! ! Nothing to x1; it is not finalizable22

! CALL t2f(x2)23

! CALL t3f(x3)24

! CALL t2f(x3%t2)25

END SUBROUTINE26

C.4 Clause 8 notes: The VOLATILE attribute (8.5.20)27

1 The following example shows the use of a variable with the VOLATILE attribute to communicate with an28

asynchronous process, in this case the operating system. The program detects a user keystroke on the terminal29

and reacts at a convenient point in its processing.30

2 The VOLATILE attribute is necessary to prevent an optimizing compiler from storing the communication variable31

in a register or from doing flow analysis and deciding that the EXIT statement can never be executed.32

SUBROUTINE TERMINATE_ITERATIONS33

LOGICAL, VOLATILE :: USER_HIT_ANY_KEY34

35

! Have the OS start to look for a user keystroke and set the variable36

! "USER_HIT_ANY_KEY" to TRUE as soon as it detects a keystroke.37

! This call is operating system dependent.38

39

CALL OS_BEGIN_DETECT_USER_KEYSTROKE(USER_HIT_ANY_KEY)40

USER_HIT_ANY_KEY = .FALSE. ! This will ignore any recent keystrokes.41

PRINT *, " Hit any key to terminate iterations!"42

43

J3/23-007 569

J3/23-007 WD 1539-1 2023-02-17

DO I = 1,1001

. . . Compute a value for R.2

PRINT *, I, R3

IF (USER_HIT_ANY_KEY) EXIT4

ENDDO5

6

! Have the OS stop looking for user keystrokes.7

CALL OS_STOP_DETECT_USER_KEYSTROKE8

END SUBROUTINE TERMINATE_ITERATIONS9

C.5 Clause 9 notes10

C.5.1 Structure components (9.4.2)11

1 Components of a structure are referenced by writing the components of successive levels of the structure hierarchy12

until the desired component is described. For example,13

TYPE ID_NUMBERS14

INTEGER SSN15

INTEGER EMPLOYEE_NUMBER16

END TYPE ID_NUMBERS17

18

TYPE PERSON_ID19

CHARACTER (LEN=30) LAST_NAME20

CHARACTER (LEN=1) MIDDLE_INITIAL21

CHARACTER (LEN=30) FIRST_NAME22

TYPE (ID_NUMBERS) NUMBER23

END TYPE PERSON_ID24

25

TYPE PERSON26

INTEGER AGE27

TYPE (PERSON_ID) ID28

END TYPE PERSON29

30

TYPE (PERSON) GEORGE, MARY31

32

PRINT *, GEORGE % AGE ! Print the AGE component33

PRINT *, MARY % ID % LAST_NAME ! Print LAST_NAME of MARY34

PRINT *, MARY % ID % NUMBER % SSN ! Print SSN of MARY35

PRINT *, GEORGE % ID % NUMBER ! Print SSN and EMPLOYEE_NUMBER of GEORGE36

2 A structure component can be a data object of intrinsic type as in the case of GEORGE % AGE or it can be37

of derived type as in the case of GEORGE % ID % NUMBER. The resultant component can be a scalar or an38

array of intrinsic or derived type.39

TYPE LARGE40

INTEGER ELT (10)41

570 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

INTEGER VAL1

END TYPE LARGE2

3

TYPE (LARGE) A (5) ! 5 element array, each of whose elements4

! includes a 10 element array ELT and5

! a scalar VAL.6

PRINT *, A (1) ! Prints 10 element array ELT and scalar VAL.7

PRINT *, A (1) % ELT (3) ! Prints scalar element 38

! of array element 1 of A.9

PRINT *, A (2:4) % VAL ! Prints scalar VAL for array elements10

! 2 to 4 of A.11

3 Components of an object of extensible type that are inherited from the parent type can be accessed as a whole12

by using the parent component name, or individually, either with or without qualifying them by the parent13

component name. For example:14

TYPE POINT ! A base type15

REAL :: X, Y16

END TYPE POINT17

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)18

! Components X and Y, and component name POINT, inherited from parent19

INTEGER :: COLOR20

END TYPE COLOR_POINT21

22

TYPE(POINT), PARAMETER :: PV = POINT(1.0, 2.0)23

TYPE(COLOR_POINT) :: CPV = COLOR_POINT(POINT=PV, COLOR=3)24

25

PRINT *, CPV%POINT ! Prints 1.0 and 2.026

PRINT *, CPV%POINT%X, CPV%POINT%Y ! And this does, too27

PRINT *, CPV%X, CPV%Y ! And this does, too28

C.5.2 Allocation with dynamic type (9.7.1)29

1 The following example illustrates the use of allocation with the value and dynamic type of the allocated object30

given by another object. The example copies a list of objects of any type. It copies the list starting at IN_LIST.31

After copying, each element of the list starting at LIST_COPY has a polymorphic component, ITEM, for which32

both the value and type are taken from the ITEM component of the corresponding element of the list starting at33

IN_LIST.34

TYPE :: LIST ! A list of anything35

TYPE(LIST), POINTER :: NEXT => NULL()36

CLASS(*), ALLOCATABLE :: ITEM37

END TYPE LIST38

. . .39

TYPE(LIST), POINTER :: IN_LIST, LIST_COPY => NULL()40

TYPE(LIST), POINTER :: IN_WALK, NEW_TAIL41

! Copy IN_LIST to LIST_COPY42

J3/23-007 571

J3/23-007 WD 1539-1 2023-02-17

IF (ASSOCIATED(IN_LIST)) THEN1

IN_WALK => IN_LIST2

ALLOCATE(LIST_COPY)3

NEW_TAIL => LIST_COPY4

DO5

ALLOCATE(NEW_TAIL%ITEM, SOURCE=IN_WALK%ITEM)6

IN_WALK => IN_WALK%NEXT7

IF (.NOT. ASSOCIATED(IN_WALK)) EXIT8

ALLOCATE(NEW_TAIL%NEXT)9

NEW_TAIL => NEW_TAIL%NEXT10

END DO11

END IF12

C.6 Clause 10 notes13

C.6.1 Evaluation of function references (10.1.7)14

1 If more than one function reference appears in a statement, they can be executed in any order (subject to a15

function result being evaluated after the evaluation of its arguments) and their values cannot depend on the order16

of execution. This lack of dependence on order of evaluation enables parallel execution of the function references.17

C.6.2 Pointers in expressions (10.1.9.2)18

1 A data pointer is considered to be like any other variable when it is used as a primary in an expression. If a19

pointer is used as an operand to an operator that expects a value, the pointer will automatically deliver the value20

stored in the space described by the pointer, that is, the value of the target object associated with the pointer.21

C.6.3 Pointers in variable definition contexts (10.2.1.3, 19.6.7)22

1 The appearance of a data pointer in a context that requires its value is a reference to its target. Similarly, where23

a pointer appears in a variable definition context the variable that is defined is the target of the pointer.24

2 Executing the program fragment25

REAL, POINTER :: A26

REAL, TARGET :: B = 10.027

A => B28

A = 42.029

PRINT ’(F4.1)’, B30

produces “42.0” as output.31

C.7 Clause 11 notes32

C.7.1 The SELECT CASE construct (11.1.9)33

1 At most one case block is selected for execution within a SELECT CASE construct, and there is no fall-through34

from one block into another block within a SELECT CASE construct. Thus there is no requirement for the user35

to exit explicitly from a block.36

572 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C.7.2 Loop control (11.1.7)1

1 Fortran provides several forms of loop control:2

(1) With an iteration count and a DO variable. This is the classic Fortran DO loop.3

(2) Test a logical condition before each execution of the loop (DO WHILE).4

(3) DO “forever”.5

C.7.3 Examples of DO constructs (11.1.7)6

1 The following are all valid examples of DO constructs.7

Example 1:8

SUM = 0.09

READ (IUN) N10

OUTER: DO L = 1, N ! A DO with a construct name11

READ (IUN) IQUAL, M, ARRAY (1:M)12

IF (IQUAL < IQUAL_MIN) CYCLE OUTER ! Skip inner loop13

INNER: DO 40 I = 1, M ! A DO with a label and a name14

CALL CALCULATE (ARRAY (I), RESULT)15

IF (RESULT < 0.0) CYCLE16

SUM = SUM + RESULT17

IF (SUM > SUM_MAX) EXIT OUTER18

40 END DO INNER19

END DO OUTER20

2 The outer loop has an iteration count of MAX (N, 0), and will execute that number of times or until SUM exceeds21

SUM_MAX, in which case the EXIT OUTER statement terminates both loops. The inner loop is skipped by22

the first CYCLE statement if the quality flag, IQUAL, is too low. If CALCULATE returns a negative RESULT,23

the second CYCLE statement prevents it from being summed. Both loops have construct names and the inner24

loop also has a label. A construct name is required in the EXIT statement in order to terminate both loops, but25

is optional in the CYCLE statements because each belongs to its innermost loop.26

Example 2:27

N = 028

DO 50, I = 1, 1029

J = I30

DO K = 1, 531

L = K32

N = N + 1 ! This statement executes 50 times33

END DO ! Nonlabeled DO inside a labeled DO34

50 CONTINUE35

3 After execution of the above program fragment, I = 11, J = 10, K = 6, L = 5, and N = 50.36

J3/23-007 573

J3/23-007 WD 1539-1 2023-02-17

Example 3:1

N = 02

DO I = 1, 103

J = I4

DO 60, K = 5, 1 ! This inner loop is never executed5

L = K6

N = N + 17

60 CONTINUE ! Labeled DO inside a nonlabeled DO8

END DO9

4 After execution of the above program fragment, I = 11, J = 10, K = 5, N = 0, and L is not defined by these10

statements.11

C.7.4 Examples of invalid DO constructs (11.1.7)12

1 The following are all examples of invalid skeleton DO constructs:13

Example 1:14

DO I = 1, 1015

. . .16

END DO LOOP ! No matching construct name17

Example 2:18

LOOP: DO 1000 I = 1, 10 ! No matching construct name19

. . .20

1000 CONTINUE21

Example 3:22

LOOP1: DO23

. . .24

END DO LOOP2 ! Construct names don’t match25

Example 4:26

DO I = 1, 10 ! Label required or . . .27

. . .28

1010 CONTINUE ! . . . END DO required29

Example 5:30

DO 1020 I = 1, 1031

. . .32

1021 END DO ! Labels don’t match33

574 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Example 6:1

FIRST: DO I = 1, 102

SECOND: DO J = 1, 53

. . .4

END DO FIRST ! Improperly nested DOs5

END DO SECOND6

C.7.5 Simple example using events7

1 A tree is a graph in which every node except one has a single “parent” node to which it is connected by an edge.8

The node without a parent is the “root” of the tree. The nodes that have a particular node as their parent are9

the “children” of that node. The root is at level 1, its children are at level 2, and so on.10

2 A multifrontal code to solve a sparse set of linear equations involves a tree. Work at a node can start after all of11

its children’s work is complete and their data have been passed to it.12

3 Here we assume that each node has been assigned to an image. Each image has a list of its nodes and these13

are ordered in decreasing tree level (all those at level L preceding those at level L − 1). For each node, array14

elements hold the number of children, details about the parent, and an event variable. This allows the processing15

to proceed asynchronously subject to the rule that a parent has to wait for all its children.16

Outline of example code:17

PROGRAM TREE18

USE, INTRINSIC :: ISO_FORTRAN_ENV19

INTEGER, ALLOCATABLE :: NODE (:) ! Tree nodes that this image handles.20

INTEGER, ALLOCATABLE :: NC (:) ! NODE(I) has NC(I) children.21

INTEGER, ALLOCATABLE :: PARENT (:), SUB (:)22

! The parent of NODE (I) is NODE (SUB (I)) [PARENT (I)].23

TYPE (EVENT_TYPE), ALLOCATABLE :: DONE (:) [:]24

INTEGER :: I, J, STATUS25

! Set up the tree, including allocation of all arrays.26

DO I = 1, SIZE (NODE)27

! Wait for children to complete28

IF (NC (I) > 0) THEN29

EVENT WAIT (DONE (I), UNTIL_COUNT=NC (I), STAT=STATUS)30

IF (STATUS/=0) EXIT31

END IF32

33

! Process node, using data from children.34

IF (PARENT (I)>0) THEN35

! Node is not the root.36

! Place result on image PARENT (I) for node NODE (SUB) [PARENT (I)]37

! Tell PARENT (I) that this has been done.38

EVENT POST (DONE (SUB (I)) [PARENT (I)], STAT=STATUS)39

IF (STATUS/=0) EXIT40

END IF41

END DO42

END PROGRAM TREE43

J3/23-007 575

J3/23-007 WD 1539-1 2023-02-17

C.7.6 Example using three teams1

1 The following example illustrates the structure of a routine that will compute fluxes based on surface properties2

over land, sea, and ice, each in a different team. Each image will deal with areas containing exactly one of the3

three surface types.4

SUBROUTINE COMPUTE_FLUXES (FLUX_MOM, FLUX_SENS, FLUX_LAT)5

USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY: TEAM_TYPE6

REAL, INTENT (OUT) :: FLUX_MOM (:,:), FLUX_SENS (:,:), FLUX_LAT (:,:)7

INTEGER, PARAMETER :: LAND = 1, SEA = 2, ICE = 38

CHARACTER (LEN=10) :: SURFACE_TYPE9

INTEGER :: MY_SURFACE_TYPE, N_IMAGE10

TYPE (TEAM_TYPE) :: TEAM_SURFACE_TYPE11

12

CALL GET_SURFACE_TYPE(THIS_IMAGE (), SURFACE_TYPE)13

SELECT CASE (SURFACE_TYPE)14

CASE ("LAND")15

MY_SURFACE_TYPE = LAND16

CASE ("SEA")17

MY_SURFACE_TYPE = SEA18

CASE ("ICE")19

MY_SURFACE_TYPE = ICE20

CASE DEFAULT21

ERROR STOP22

END SELECT23

FORM TEAM (MY_SURFACE_TYPE, TEAM_SURFACE_TYPE)24

25

CHANGE TEAM (TEAM_SURFACE_TYPE)26

SELECT CASE (TEAM_NUMBER ())27

CASE (LAND) ! Compute fluxes over land surface28

CALL COMPUTE_FLUXES_LAND (FLUX_MOM, FLUX_SENS, FLUX_LAT)29

CASE (SEA) ! Compute fluxes over sea surface30

CALL COMPUTE_FLUXES_SEA (FLUX_MOM, FLUX_SENS, FLUX_LAT)31

CASE (ICE) ! Compute fluxes over ice surface32

CALL COMPUTE_FLUXES_ICE (FLUX_MOM, FLUX_SENS, FLUX_LAT)33

CASE DEFAULT34

ERROR STOP35

END SELECT36

END TEAM37

END SUBROUTINE COMPUTE_FLUXES38

C.7.7 Accessing coarrays in sibling teams39

1 The following program illustrates subdividing a 4 × 4 grid into 2 × 2 teams, and the denotation of sibling teams.40

PROGRAM DEMO41

! Initial team : 16 images. Algorithm design is a 4 by 4 grid.42

! Desire 4 teams, for the upper left (UL), upper right (UR),43

576 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

! lower left (LL), lower right (LR)1

USE,INTRINSIC :: ISO_FORTRAN_ENV, ONLY: TEAM_TYPE2

TYPE (TEAM_TYPE) :: T3

INTEGER, PARAMETER :: UL=11, UR=22, LL=33, LR=444

REAL :: A(10,10)[4,*]5

INTEGER :: MYPE, TEAMNUM, NEWPE6

TYPE TRANS_T7

INTEGER :: NEW_TEAM (16), NEW_INDEX (16)8

END TYPE9

TYPE (TRANS_T) :: TRANS10

TRANS = TRANS_T ([UL, UL, LL, LL, UL, UL, LL, LL, UR, UR, LR, LR, UR, UR, LR, LR], &11

[1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4])12

13

MYPE = THIS_IMAGE ()14

FORM TEAM (TRANS%NEW_TEAM(MYPE), T, NEW_INDEX=TRANS%NEW_INDEX(MYPE))15

16

A = 3.1417

18

CHANGE TEAM (T, B[2,*] => A)19

! Inside change team, image pattern for B is a 2 by 2 grid.20

B (5, 5) = B (1, 1)[2, 1]21

22

! Outside the team addressing:23

24

NEWPE = THIS_IMAGE ()25

SELECT CASE (TEAM_NUMBER ())26

CASE (UL)27

IF (NEWPE==3) THEN28

! Right column of UL gets left column of UR.29

B (:, 10) = B (:, 1)[1, 1, TEAM_NUMBER=UR]30

ELSE IF (NEWPE==4) THEN31

B (:, 10) = B (:, 1)[2, 1, TEAM_NUMBER=UR]32

END IF33

CASE (LL)34

! Similar to complete column exchange across middle of the original grid.35

. . .36

END SELECT37

END TEAM38

END PROGRAM DEMO39

C.7.8 Example involving failed images40

1 Parallel algorithms often use work sharing schemes based on a specific mapping between image indices and global41

data addressing. To allow such programs to continue when one or more images fail, spare images can be used42

to re-establish execution of the algorithm with the failed images replaced by spare images, while retaining the43

previous image mapping for nonfailed images.44

J3/23-007 577

J3/23-007 WD 1539-1 2023-02-17

2 The following example illustrates how this might be done. In this example, failure cannot be tolerated for image1

one in the initial team.2

PROGRAM possibly_recoverable_simulation3

USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY:TEAM_TYPE, STAT_FAILED_IMAGE4

IMPLICIT NONE5

INTEGER, ALLOCATABLE :: failures (:) ! Indices of the failed images.6

INTEGER, ALLOCATABLE :: old_failures(:) ! Previous failures.7

INTEGER, ALLOCATABLE :: map(:) ! For each spare image k in use, map(k) is8

! the index of the failed image it replaces.9

INTEGER :: images_spare ! Initial number of spare images.10

INTEGER :: images_used [*] ! On image 1, max index of image in use.11

INTEGER :: failed ! Index of a failed image.12

INTEGER :: i, j, k ! Temporaries13

INTEGER :: status ! stat= value14

INTEGER :: team_number [*] ! 1 if in working team; 2 otherwise.15

INTEGER :: local_index [*] ! Index of the image in the team.16

TYPE (TEAM_TYPE) :: simulation_team17

LOGICAL :: done [*] ! True if computation finished on the image.18

19

! Keep 1% spare images if we have a lot, just 1 if 10-199 images,20

! 0 if <10.21

images_spare = MAX(NUM_IMAGES()/100,0,MIN(NUM_IMAGES()-9,1))22

images_used = NUM_IMAGES () - images_spare23

ALLOCATE (old_failures(0), map(images_used+1:NUM_IMAGES()))24

SYNC ALL (STAT=status)25

26

outer : DO27

local_index = THIS_IMAGE ()28

team_number = MERGE (1, 2, local_index<=images_used[1])29

SYNC ALL (STAT = status)30

IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer31

IF (IMAGE_STATUS (1) == STAT_FAILED_IMAGE) ERROR STOP "cannot recover"32

IF (THIS_IMAGE () == 1) THEN33

! For each newly failed image in team 1, move into team 1 a34

! non-failed image of team 2.35

failures = FAILED_IMAGES () ! Note that the values returned by36

! FAILED_IMAGES increase monotonically.37

k = images_used38

j = 139

DO i = 1, SIZE (failures)40

IF (failures(i) > images_used) EXIT ! This failed image and all further failed41

! images are in team 2 and do not matter.42

failed = failures(i)43

! Check whether this is an old failed image.44

IF (j <= SIZE (old_failures)) THEN45

IF (failed == old_failures(j)) THEN46

578 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

j = j+11

CYCLE ! No action needed for old failed image.2

END IF3

END IF4

! Allow for the failed image being a replacement image.5

IF (failed > NUM_IMAGES()-images_spare) failed = map(failed)6

! Seek a non-failed image7

DO k = k+1, NUM_IMAGES ()8

IF (IMAGE_STATUS (k) == 0) EXIT9

END DO10

IF (k > NUM_IMAGES ()) ERROR STOP "cannot recover"11

local_index [k] = failed12

team_number [k] = 113

map(k) = failed14

END DO15

old_failures = failures16

images_used = k17

! Find the local indices of team 218

j = 019

DO k = k+1, NUM_IMAGES ()20

IF (IMAGE_STATUS (k) == 0) THEN21

j = j+122

local_index[k] = j23

END IF24

END DO25

END IF26

SYNC ALL (STAT = status)27

IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer28

!29

! Set up a simulation team of constant size.30

! Team 2 is the set of spares, so does not participate.31

FORM TEAM (team_number, simulation_team, NEW_INDEX=local_index, STAT=status)32

IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer33

34

simulation : CHANGE TEAM (simulation_team, STAT=status)35

IF (status == STAT_FAILED_IMAGE) EXIT simulation36

IF (team_number == 1) THEN37

iter : DO38

CALL simulation_procedure (status, done)39

! The simulation_procedure:40

! - sets up and performs some part of the simulation;41

! - starts from checkpoint data if these are available;42

! - stores checkpoint data for all images from time to43

! - time and always before return;44

! - sets status from its internal synchronizations;45

! - sets done to .TRUE. when the simulation has completed.46

J3/23-007 579

J3/23-007 WD 1539-1 2023-02-17

IF (status == STAT_FAILED_IMAGE) THEN1

EXIT simulation2

ELSE IF (done) THEN3

EXIT iter4

END IF5

END DO iter6

END IF7

END TEAM (STAT=status) simulation8

9

SYNC ALL (STAT=status)10

IF (team_number == 2) done = done[1]11

IF (done) EXIT outer12

END DO outer13

IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) PRINT *,’Unexpected failure’,status14

END PROGRAM possibly_recoverable_simulation15

3 Supporting fault-tolerant execution imposes obligations on library writers who use the parallel language facilities.16

Every synchronization statement, allocation or deallocation of coarrays, or invocation of a collective procedure17

will need to be prepared to handle error conditions, and implicit deallocation of coarrays will need to be avoided.18

Also, coarray module variables that are allocated inside the team execution context are not persistent.19

C.7.9 EVENT_QUERY example that tolerates image failure20

1 This example is an adaptation of the later EVENT_QUERY example of C.12.2 to make it able to execute in21

the presence of the failure of one or more of the worker images. The function create_work_item now accepts an22

integer argument to indicate which work item is required. It is assumed that the work items are indexed 1, 2, and23

so on. It is also assumed that if an image fails while processing a work item, that work item can subsequently be24

processed by another image.25

PROGRAM work_share26

USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY: EVENT_TYPE27

USE :: mod_work, ONLY: & ! Module that creates work items28

work, & ! Type for holding a work item29

create_work_item, & ! Function that creates work item30

process_item, & ! Function that processes an item31

work_done ! Logical function that returns true32

! if all work done33

34

TYPE :: worker_type35

TYPE (EVENT_TYPE), ALLOCATABLE :: free (:)36

END TYPE37

TYPE (EVENT_TYPE) :: submit [*] ! Whether work ready for a worker38

TYPE (worker_type) :: worker [*] ! Whether worker is free39

TYPE (work) :: work_item [*] ! Holds the data for a work item40

INTEGER :: count, i, k, kk, nbusy [*], np, status41

INTEGER, ALLOCATABLE :: working (:) ! Items being worked on42

INTEGER, ALLOCATABLE :: pending (:) ! Items pending after image failure43

580 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

1

IF (THIS_IMAGE () == 1) THEN2

! Get started3

ALLOCATE (worker%free (2:NUM_IMAGES ()))4

ALLOCATE (working (2: NUM_IMAGES ()), pending(NUM_IMAGES ()-1))5

nbusy = 0 ! This holds the number of workers working6

k = 1 ! Index of next work item7

np = 0 ! Number of work items in array pending8

DO i = 2, NUM_IMAGES () ! Start the workers working9

IF (work_done ()) EXIT10

working (i) = 011

IF (IMAGE_STATUS (i) == STAT_FAILED_IMAGE) CYCLE12

work_item [i] = create_work_item (k)13

working (i) = k14

k = k + 115

nbusy = nbusy + 116

EVENT POST (submit [i], STAT=status)17

END DO18

! Main work distribution loop19

main : DO20

image : DO i = 2, NUM_IMAGES ()21

IF (IMAGE_STATUS (i) == STAT_FAILED_IMAGE) THEN22

IF (working (i)>0) THEN ! It failed while working23

np = np + 124

pending (np) = working (i)25

working (i) = 026

END IF27

CYCLE image28

END IF29

CALL EVENT_QUERY (worker%free (i), count)30

IF (count == 0) CYCLE image ! Worker is not free31

EVENT WAIT (worker%free (i))32

nbusy = nbusy - 133

IF (np>0) THEN34

kk = pending (np)35

np = np - 136

ELSE37

IF (work_done ()) CYCLE image38

kk = k39

k = k + 140

END IF41

nbusy = nbusy + 142

working (i) = kk43

work_item [i] = create_work_item (kk)44

EVENT POST (submit [i], STAT=status)45

! If image i has failed, the failure will be handled on46

J3/23-007 581

J3/23-007 WD 1539-1 2023-02-17

! the next iteration of the main loop.1

END DO image2

IF (nbusy==0) THEN ! All done. Exit on all images.3

DO i = 2, NUM_IMAGES ()4

EVENT POST (submit [i], STAT=status)5

IF (status == STAT_FAILED_IMAGE) CYCLE6

END DO7

EXIT main8

END IF9

END DO main10

ELSE11

! Work processing loop12

worker : DO13

EVENT WAIT (submit)14

IF (nbusy [1] == 0) EXIT worker15

CALL process_item(work_item)16

EVENT POST (worker[1]%free (THIS_IMAGE ()))17

END DO worker18

END IF19

END PROGRAM work_share20

C.8 Clause 12 notes21

C.8.1 External files (12.3)22

C.8.1.1 File cataloging23

1 This document accommodates, but does not require, file cataloging. To do this, several concepts are introduced.24

C.8.1.2 File existence (12.3.2)25

1 Totally independent of the connection state is the property of existence, this being a file property. The processor26

“knows” of a set of files that exist at a given time for a given program. This set would include tapes ready to27

read, files in a catalog, a keyboard, a printer, etc. The set might exclude files inaccessible to the program because28

of security, because they are already in use by another program, etc. This document does not specify which29

files exist, hence wide latitude is available to a processor to implement security, locks, privilege techniques, etc.30

Existence is a convenient concept to designate all of the files that a program can potentially process.31

2 All four combinations of connection and existence can occur:32

Connect Exist Examples

Yes Yes A card reader loaded and ready to be read
Yes No A printer before the first line is written
No Yes A file named ’JOAN’ in the catalog
No No A file on a reel of tape, not known to the processor

582 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

3 Means are provided to create, delete, connect, and disconnect files.1

C.8.1.3 File access (12.3.3)2

1 This document does not address problems of security, protection, locking, and many other concepts that might3

be part of the concept of “right of access”. Such concepts are considered to be in the province of an operating4

system.5

2 The OPEN and INQUIRE statements can be extended naturally to consider these things.6

3 Possible access methods for a file are: sequential, stream and direct. The processor might implement three7

different types of files, each with its own access method. It might instead implement one type of file with three8

different access methods.9

4 Direct access to files is of a simple and commonly available type, that is, fixed-length records. The key is a10

positive integer.11

C.8.1.4 File connection (12.5)12

1 Before any input/output can be performed on a file, it needs to be connected to a unit. The unit then serves as a13

designator for that file as long as it is connected. To be connected does not imply that “buffers” have or have not14

been allocated, that “file-control tables” have or have not been filled, or that any other method of implementation15

has been used. Connection means that (barring some other fault) a READ or WRITE statement can be executed16

on the unit, hence on the file. Without a connection, a READ or WRITE statement cannot be executed.17

C.8.1.5 File names (12.5.6.10)18

1 A file can have a name. The form of a file name is not specified. If a system does not have some form of cataloging19

or tape labeling for at least some of its files, all file names disappear at the termination of execution. This is a20

valid implementation. Nowhere does this document require names to survive for any period of time longer than21

the execution time span of a program. Therefore, this document does not impose cataloging as a prerequisite.22

The naming feature is intended to enable use of a cataloging system where one exists.23

C.8.2 Nonadvancing input/output (12.3.4.2)24

1 Data transfer statements affect the positioning of an external file. In Fortran 77, if no error or end-of-file25

condition exists, the file is positioned after the record just read or written and that record becomes the preceding26

record. This document contains the ADVANCE= specifier in a data transfer statement that provides the capab-27

ility of maintaining a position within the current record from one formatted data transfer statement to the next28

data transfer statement. The value NO provides this capability. The value YES positions the file after the record29

just read or written. The default is YES.30

2 The tab edit descriptor and the slash are still appropriate for use with this type of record access but the tab31

cannot reposition before the left tab limit.32

3 A BACKSPACE of a file that is positioned within a record causes the specified unit to be positioned before the33

current record.34

4 If the next input/output operation on a file after a nonadvancing write is a rewind, backspace, end file or close35

operation, the file is positioned implicitly after the current record before an ENDFILE record is written to the36

J3/23-007 583

J3/23-007 WD 1539-1 2023-02-17

file, that is, a REWIND, BACKSPACE, or ENDFILE statement following a nonadvancing WRITE statement1

causes the file to be positioned at the end of the current output record before the endfile record is written to the2

file.3

5 This document provides a SIZE= specifier to be used with formatted data transfer statements. The variable in4

the SIZE= specifier is assigned the count of the number of characters that make up the sequence of values read5

by the data edit descriptors in the input statement. The count is especially helpful if there is only one effective6

item in the input list because it is the number of characters that appeared for the item.7

6 The EOR= specifier is provided to indicate when an EOR condition is encountered during nonadvancing input.8

The EOR condition is not an error condition. If this specifier appears, an effective item that requires more9

characters than the record contained is padded with blanks if PAD= ’YES’ is in effect. This means that input of10

the effective item completed successfully. The file is positioned after the current record. If the IOSTAT= specifier11

appears, the specified variable is defined with the value of the named constant IOSTAT_EOR from the intrinsic12

module ISO_FORTRAN_ENV and the data transfer statement is terminated. Program execution continues13

with the statement specified in the EOR= specifier. The EOR= specifier gives the capability of taking control14

of execution when the EOR condition is encountered. The do-variables in io-implied-dos retain their last defined15

value and any remaining items in the input-item-list retain their definition status when an EOR condition occurs.16

If the SIZE= specifier appears, the specified variable is assigned the number of characters read with the data edit17

descriptors during the READ statement.18

7 For nonadvancing input, the processor is not required to read partial records. The processor could read the entire19

record into an internal buffer and make successive portions of the record available to successive input statements.20

8 In an implementation of nonadvancing input/output in which a nonadvancing write to a terminal device causes21

immediate display of the output, such a write can be used as a mechanism to output a prompt. In this case, the22

statement23

WRITE (*, FMT=’(A)’, ADVANCE=’NO’) ’CONTINUE?(Y/N): ’24

would result in the prompt25

CONTINUE?(Y/N):26

being displayed with no subsequent line feed.27

9 The response, which might be read by a statement of the form28

READ (*, FMT=’(A)’) ANSWER29

can then be entered on the same line as the prompt as in30

CONTINUE?(Y/N): Y31

10 This document does not require that an implementation of nonadvancing input/output operate in this manner.32

For example, an implementation of nonadvancing output in which the display of the output is deferred until33

the current record is complete is also standard-conforming. Such an implementation will not, however, allow a34

prompting mechanism of this kind to operate.35

C.8.3 OPEN statement (12.5.6)36

1 A file can become connected to a unit either by preconnection or by execution of an OPEN statement. Precon-37

nection is performed prior to the beginning of execution of a program by means external to Fortran. For example,38

584 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

it could be done by job control action or by processor-established defaults. Execution of an OPEN statement is1

not required in order to access preconnected files (12.5.5).2

2 The OPEN statement provides a means to access existing files that are not preconnected. An OPEN statement3

can be used in either of two ways: with a file name (open-by-name) and without a file name (open-by-unit). A4

unit is given in either case. Open-by-name connects the specified file to the specified unit. Open-by-unit connects5

a processor-dependent default file to the specified unit. (The default file might or might not have a name.)6

3 Therefore, there are three ways a file can become connected and hence processed: preconnection, open-by-name,7

and open-by-unit. Once a file is connected, there is no means in standard Fortran to determine how it became8

connected.9

4 An OPEN statement can also be used to create a new file. In fact, any of the foregoing three connection methods10

can be performed on a file that does not exist. When a unit is preconnected, writing the first record creates the11

file. With the other two methods, execution of the OPEN statement creates the file.12

5 When an OPEN statement is executed, the unit specified in the OPEN statement might or might not already be13

connected to a file. If it is already connected to a file (either through preconnection or by prior execution of an14

OPEN statement), then omitting the FILE= specifier in the OPEN statement implies that the file is to remain15

connected to the unit. Such an OPEN statement can be used to change the values of the blank interpretation16

mode, decimal edit mode, pad mode, input/output rounding mode, delimiter mode, and sign mode.17

6 If the value of the ACTION= specifier is WRITE, then a READ statement cannot refer to the connection.18

ACTION = ’WRITE’ does not restrict positioning by a BACKSPACE statement or positioning specified by the19

POSITION= specifier with the value APPEND. However, a BACKSPACE statement or an OPEN statement20

containing POSITION = ’APPEND’ might fail if the processor needs to read the file to achieve the positioning.21

7 The following examples illustrate these rules. In the first example, unit 10 is preconnected to a SCRATCH file;22

the OPEN statement changes the value of PAD= to YES.23

CHARACTER (LEN = 20) CH124

WRITE (10, ’(A)’) ’THIS IS RECORD 1’25

OPEN (UNIT = 10, STATUS = ’OLD’, PAD = ’YES’)26

REWIND 1027

READ (10, ’(A20)’) CH1 ! CH1 now has the value28

! ’THIS IS RECORD 1 ’29

8 In the next example, unit 12 is first connected to a file named FRED, with a status of OLD. The second OPEN30

statement then opens unit 12 again, retaining the connection to the file FRED, but changing the value of the31

DELIM= specifier to QUOTE.32

CHARACTER (LEN = 25) CH2, CH333

OPEN (12, FILE = ’FRED’, STATUS = ’OLD’, DELIM = ’NONE’)34

CH2 = ’"THIS STRING HAS QUOTES."’35

! Quotes in string CH236

WRITE (12, *) CH2 ! Written with no delimiters37

OPEN (12, DELIM = ’QUOTE’) ! Now quote is the delimiter38

REWIND 1239

READ (12, *) CH3 ! CH3 now has the value40

! ’THIS STRING HAS QUOTES. ’41

J3/23-007 585

J3/23-007 WD 1539-1 2023-02-17

9 The next example is invalid because it attempts to change the value of the STATUS= specifier.1

OPEN (10, FILE = ’FRED’, STATUS = ’OLD’)2

WRITE (10, *) A, B, C3

OPEN (10, STATUS = ’SCRATCH’) ! Attempts to make FRED a SCRATCH file4

10 The previous example could be made valid by closing the unit first, as in the next example.5

OPEN (10, FILE = ’FRED’, STATUS = ’OLD’)6

WRITE (10, *) A, B, C7

CLOSE (10)8

OPEN (10, STATUS = ’SCRATCH’) ! Opens a different SCRATCH file9

C.8.4 Connection properties (12.5.4)10

1 When a unit becomes connected to a file, either by execution of an OPEN statement or by preconnection, the11

following connection properties, among others, are established.12

(1) An access method, which is sequential, direct, or stream, is established for the connection (12.5.6.3).13

(2) A form, which is formatted or unformatted, is established for a connection to a file that exists or14

is created by the connection. For a connection that results from execution of an OPEN statement,15

a default form (which depends on the access method, as described in 12.3.3) is established if no16

form is specified. For a preconnected file that exists, a form is established by preconnection. For a17

preconnected file that does not exist, a form might be established, or the establishment of a form18

might be delayed until the file is created (for example, by execution of a formatted or unformatted19

WRITE statement) (12.5.6.11).20

(3) A record length might be established. If the access method is direct, the connection establishes a21

record length that specifies the length of each record of the file. A direct access file can only contain22

records that are all of equal length.23

(4) A sequential file can contain records of varying lengths. In this case, the record length established24

specifies the maximum length of a record in the file (12.5.6.16).25

2 A processor has wide latitude in adapting these concepts and actions to its own cataloging and job control26

conventions. Some processors might need job control action to specify the set of files that exist or that will27

be created by a program. Some processors might not need any job control action prior to execution. This28

document enables processors to perform dynamic open, close, or file creation operations, but it does not require29

such capabilities of the processor.30

3 The meaning of “open” in contexts other than Fortran might include such things as mounting a tape, console31

messages, spooling, label checking, security checking, etc. These actions might occur upon job control action32

external to Fortran, upon execution of an OPEN statement, or upon execution of the first read or write of the33

file. The OPEN statement describes properties of the connection to the file and might or might not cause physical34

activities to take place.35

C.8.5 Asynchronous input/output (12.6.2.5)36

1 Rather than limit support for asynchronous input/output to what has been traditionally provided by facilities37

such as BUFFERIN/BUFFEROUT, this document builds upon existing Fortran syntax. This permits alternative38

586 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

approaches for implementing asynchronous input/output, and simplifies the task of adapting existing standard-1

conforming programs to use asynchronous input/output.2

2 Not all processors actually perform input/output asynchronously, nor will every processor that does be able to3

handle data transfer statements with complicated input/output item lists in an asynchronous manner. Such4

processors can still be standard-conforming.5

3 This document allows for at least two different conceptual models for asynchronous input/output.6

4 Model 1: the processor performs asynchronous input/output when the item list is simple (perhaps one contiguous7

named array) and the input/output is unformatted. The implementation cost is reduced, and this is the scenario8

most likely to be beneficial on traditional “big-iron” machines.9

5 Model 2: The processor is free to do any of the following:10

(1) on output, create a buffer inside the input/output library, completely formatted, and then start an11

asynchronous write of the buffer, and immediately return to the next statement in the program. The12

processor is free to wait for previously issued WRITEs, or not, or13

(2) pass the input/output list addresses to another processor/process, which processes the list items14

independently of the processor that executes the user’s code. The addresses of the list items will15

need to be computed before the asynchronous READ/WRITE statement completes. There is still16

an ordering requirement on list item processing to handle things like READ (. . .) N,(a(i),i=1,N).17

6 A program can issue a large number of asynchronous input/output requests, without waiting for any of them to18

complete, and then wait for any or all of them. That does not constitute a requirement for the processor to keep19

track of each individual request separately.20

7 It is not necessary for all requests to be tracked by the runtime library. If an ID= specifier does not appear in on a21

READ or WRITE statement, the runtime library can forget about this particular request once it has successfully22

completed. If an error or end-of-file condition occurs for a request, the processor can report this during any23

input/output operation to that unit. If an ID= specifier appears, the processor’s runtime input/output library24

will need to keep track of any end-of-file or error conditions for that particular input/output request. However, if25

the input/output request succeeds without any exceptional conditions occurring, then the runtime can forget that26

ID= value. A runtime library might only keep track of the last request made, or perhaps a very few. Then, when27

a user WAITs for a particular request, either the library will know about it (and does the right thing with respect28

to error handling, etc.), or can assume it is a request that successfully completed and was forgotten about (and29

will just return without signaling any end-of-file or error condition). A standard-conforming program can only30

pass valid ID= values, but there is no requirement on the processor to detect invalid ID= values. There might31

be a processor dependent limit on how many outstanding input/output requests that generate an end-of-file or32

error condition can be handled before the processor runs out of memory to keep track of such conditions. The33

restrictions on the SIZE= variables are designed to enable the processor to update such variables at any time34

(after the request has been processed, but before the wait operation), and then forget about them. Only error and35

end-of-file conditions are expected to be tracked by individual request by the runtime, and then only if an ID=36

specifier appears. The END= and EOR= specifiers have not been added to all statements that can perform wait37

operations. Instead, the IOSTAT variable can be queried after a wait operation to handle this situation. This38

choice was made because the WAIT statement is expected to be the usual method of waiting for input/output39

to complete (and WAIT does support the END= and EOR= specifiers). This particular choice is philosophical,40

and was not based on significant technical difficulties.41

J3/23-007 587

J3/23-007 WD 1539-1 2023-02-17

8 The requirement to set the IOSTAT variable correctly means that a processor will need to remember which1

input/output requests encountered an end-of-record condition, so that a subsequent wait operation can return2

the correct IOSTAT value. Therefor there might be a processor defined limit on the number of outstanding3

nonadvancing input/output requests that have encountered an end-of-record condition (constrained by available4

memory to keep track of this information, similar to end-of-file and error conditions).5

C.9 Clause 13 notes6

C.9.1 Number of records (13.4, 13.5, 13.8.2)7

1 The number of records read by an explicitly formatted advancing input statement can be determined from the8

following rule: a record is read at the beginning of the format scan (even if the input list is empty unless the most9

recently previous operation on the unit was not a nonadvancing read operation), at each slash edit descriptor10

encountered in the format, and when a format rescan occurs at the end of the format.11

2 The number of records written by an explicitly formatted advancing output statement can be determined from12

the following rule: a record is written when a slash edit descriptor is encountered in the format, when a format13

rescan occurs at the end of the format, and at completion of execution of an advancing output statement (even if14

the output list is empty). Thus, the occurrence of n successive slashes between two other edit descriptors causes15

n − 1 blank lines if the records are printed. The occurrence of n slashes at the beginning or end of a complete16

format specification causes n blank lines if the records are printed. However, a complete format specification17

containing n slashes (n > 0) and no other edit descriptors causes n + 1 blank lines if the records are printed. For18

example, the statements19

PRINT 320

3 FORMAT (/)21

will write two records that cause two blank lines if the records are printed.22

C.9.2 List-directed input (13.10.3)23

1 The following examples illustrate list-directed input. A blank character is represented by b.24

2 Example 1:25

Program:26

J = 327

READ *, I28

READ *, J29

Sequential input file:30

record 1: b1b,4bbbbb31

record 2: ,2bbbbbbbb32

3 Result: I = 1, J = 3.33

4 Explanation: The second READ statement reads the second record. The initial comma in the record designates34

a null value; therefore, J is not redefined.35

588 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

5 Example 2:1

Program:2

CHARACTER A *8, B *13

READ *, A, B4

Sequential input file:5

record 1: ’bbbbbbbb’6

record 2: ’QXY’b’Z’7

6 Result: A = ’bbbbbbbb’, B = ’Q’8

7 Explanation: In the first record, the rightmost apostrophe is interpreted as delimiting the constant (it cannot9

be the first of a pair of embedded apostrophes representing a single apostrophe because this would involve10

the prohibited “splitting” of the pair by the end of a record); therefore, A is assigned the character constant11

’bbbbbbbb’. The end of a record acts as a blank, which in this case is a value separator because it occurs between12

two constants.13

C.10 Clause 14 notes14

C.10.1 Main program and block data program unit (14.1, 14.3)15

1 The name of the main program or of a block data program unit has no explicit use within the Fortran language.16

It is available for documentation and for possible use by a processor.17

2 A processor might implement an unnamed program unit by assigning it a global identifier that is not used18

elsewhere in the program. This could be done by using a default name that does not satisfy the rules for Fortran19

names.20

C.10.2 Dependent compilation (14.2)21

C.10.2.1 Separate translation22

1 This document, like its predecessors, is intended to enable the implementation of conforming processors in which23

a program can be broken into multiple units, each of which can be separately translated in preparation for24

execution. Such processors are commonly described as supporting separate compilation. There is an important25

difference between the way separate compilation can be implemented under this document and the way it could be26

implemented under the Fortran 77 International Standard. Under the Fortran 77 standard, any information27

required to translate a program unit was specified in that program unit. Each translation was thus totally28

independent of all others. Under this document, a program unit can use information that was specified in a29

separate module and thus can be dependent on that module. The implementation of this dependency in a30

processor might be that the translation of a program unit depends on the results of translating one or more31

modules. Processors implementing the dependency this way are commonly described as supporting dependent32

compilation.33

2 The dependencies involved here are new only in the sense that the Fortran processor is now aware of them. The34

same information dependencies existed under the Fortran 77 International Standard, but it was the program-35

J3/23-007 589

J3/23-007 WD 1539-1 2023-02-17

mer’s responsibility to transport the information necessary to resolve them by making redundant specifications of1

the information in multiple program units. The availability of separate but dependent compilation offers several2

potential advantages over the redundant textual specification of information.3

(1) Specifying information at a single place in the program ensures that different program units using that4

information are translated consistently. Redundant specification leaves the possibility that different5

information can be erroneously be specified. Even if an INCLUDE line is used to ensure that the6

text of the specifications is identical in all involved program units, the presence of other specifications7

(for example, an IMPLICIT statement) could change the interpretation of that text.8

(2) During the revision of a program, it is possible for a processor to assist in determining whether differ-9

ent program units have been translated using different (incompatible) versions of a module, although10

there is no requirement that a processor provide such assistance. Inconsistencies in redundant textual11

specification of information, on the other hand, tend to be much more difficult to detect.12

(3) Putting information in a module provides a way of packaging it. Without modules, redundant spe-13

cifications frequently are interleaved with other specifications in a program unit, making convenient14

packaging of such information difficult.15

(4) Because a processor can be implemented such that the specifications in a module are translated once16

and then repeatedly referenced, there is the potential for greater efficiency than when the processor17

translates redundant specifications of information in multiple program units.18

3 The exact meaning of the requirement that the public portions of a module be available at the time of reference19

is processor dependent. For example, a processor could consider a module to be available only after it has been20

compiled and require that if the module has been compiled separately, the result of that compilation be identified21

to the compiler when compiling program units that use it.22

C.10.2.2 USE statement and dependent compilation (14.2.2)23

1 Another benefit of the USE statement is its enhanced facilities for name management. If one needs to use only24

selected entities in a module, one can do so without having to worry about the names of all the other entities25

in that module. If one needs to use two different modules that happen to contain entities with the same name,26

there are several ways to deal with the conflict. If none of the entities with the same name are to be used, they27

can simply be ignored. If the name happens to refer to the same entity in both modules (for example, if both28

modules obtained it from a third module), then there is no confusion about what the name denotes and the name29

can be freely used. If the entities are different and one or both is to be used, the local renaming facility in the30

USE statement makes it possible to give those entities different names in the program unit containing the USE31

statements.32

2 A benefit of using the ONLY option consistently, as compared to USE without it, is that the module from which33

each accessed entity is accessed is explicitly specified in each program unit. This means that one need not search34

other program units to find where each one is defined. This reduces maintenance costs.35

3 A typical implementation of dependent but separate compilation might involve storing the result of translating a36

module in a file whose name is derived from the name of the module. Note, however, that the name of a module37

is limited only by the Fortran rules and not by the names allowed in the file system. Thus the processor might38

have to provide a mapping between Fortran names and file system names.39

4 The result of translating a module could reasonably either contain only the information textually specified in the40

module (with “pointers” to information originally textually specified in other modules) or contain all information41

specified in the module (including copies of information originally specified in other modules). Although the former42

590 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

approach would appear to save on storage space, the latter approach can greatly simplify the logic necessary to1

process a USE statement and can avoid the necessity of imposing a limit on the logical “nesting” of modules via2

the USE statement.3

5 There is an increased potential for undetected errors in a scoping unit that uses both implicit typing and the4

USE statement. For example, in the program fragment5

SUBROUTINE SUB6

USE MY_MODULE7

IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)8

X = F (B)9

A = G (X) + H (X + 1)10

END SUBROUTINE SUB11

X could be either an implicitly typed real variable or a variable obtained from the module MY_MODULE and12

might change from one to the other because of changes in MY_MODULE unrelated to the action performed by13

SUB. Logic errors resulting from this kind of situation can be extremely difficult to locate. Thus, the use of these14

features together is discouraged.15

C.10.2.3 Accessibility attributes (8.5.2)16

1 The PUBLIC and PRIVATE attributes, which can be declared only in modules, divide the entities in a module17

into those that are actually relevant to a scoping unit referencing the module and those that are not. This18

information might be used to improve the performance of a Fortran processor. For example, it might be possible19

to discard much of the information about the private entities once a module has been translated, thus saving on20

both storage and the time to search it. Similarly, it might be possible to recognize that two versions of a module21

differ only in the private entities they contain and avoid retranslating program units that use that module when22

switching from one version of the module to the other.23

C.10.3 Examples of the use of modules (14.2.1)24

C.10.3.1 Global data (14.2.1)25

1 A module could contain only data objects, for example:26

MODULE DATA_MODULE27

SAVE28

REAL A (10), B, C (20,20)29

INTEGER :: I=030

INTEGER, PARAMETER :: J=1031

COMPLEX D (J,J)32

END MODULE DATA_MODULE33

2 Data objects made global in this manner can have any combination of data types.34

3 Access to some of these can be made by a USE statement with the ONLY option, such as:35

USE DATA_MODULE, ONLY: A, B, D36

and access to all of them can be made by the following USE statement:37

USE DATA_MODULE38

J3/23-007 591

J3/23-007 WD 1539-1 2023-02-17

4 Access to all of them with some renaming to avoid name conflicts can be made by, for example:1

USE DATA_MODULE, AMODULE => A, DMODULE => D2

C.10.3.2 Derived types (14.2.1)3

1 A derived type can be defined in a module and accessed in a number of program units. For example,4

MODULE SPARSE5

TYPE NONZERO6

REAL A7

INTEGER I, J8

END TYPE NONZERO9

END MODULE SPARSE10

defines a type consisting of a real component and two integer components for holding the numerical value of a11

nonzero matrix element and its row and column indices.12

C.10.3.3 Global allocatable arrays (14.2.1)13

1 Many programs need large global allocatable arrays whose sizes are not known before program execution. A14

simple form for such a program is:15

PROGRAM GLOBAL_WORK16

CALL CONFIGURE_ARRAYS ! Perform the appropriate allocations17

CALL COMPUTE ! Use the arrays in computations18

END PROGRAM GLOBAL_WORK19

MODULE WORK_ARRAYS ! An example set of work arrays20

INTEGER N21

REAL, ALLOCATABLE :: A (:), B (:, :), C (:, :, :)22

END MODULE WORK_ARRAYS23

SUBROUTINE CONFIGURE_ARRAYS ! Process to set up work arrays24

USE WORK_ARRAYS25

READ (*, *) N26

ALLOCATE (A (N), B (N, N), C (N, N, 2 * N))27

END SUBROUTINE CONFIGURE_ARRAYS28

SUBROUTINE COMPUTE29

USE WORK_ARRAYS30

. . . Computations involving arrays A, B, and C.31

END SUBROUTINE COMPUTE32

2 Typically, many subprograms need access to the work arrays, and all such subprograms would contain the33

statement34

USE WORK_ARRAYS35

C.10.3.4 Procedure libraries (14.2.2)36

1 Interface bodies for external procedures in a library can be gathered into a module. An interface body specifies37

an explicit interface (15.4.2.2).38

592 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 An example is the following library module:1

MODULE LIBRARY_LLS2

INTERFACE3

SUBROUTINE LLS (X, A, F, FLAG)4

REAL X (:, :)5

! The SIZE in the next statement is an intrinsic function6

REAL, DIMENSION (SIZE (X, 2)) :: A, F7

INTEGER FLAG8

END SUBROUTINE LLS9

. . .10

END INTERFACE11

. . .12

END MODULE LIBRARY_LLS13

3 This module provides an explicit interface that is necessary for the subroutine LLS to be invoked. for example:14

USE LIBRARY_LLS15

. . .16

CALL LLS (X = ABC, A = D, F = XX, FLAG = IFLAG)17

. . .18

4 Because dummy argument names in an interface body for an external procedure are not required to be the same19

as in the procedure definition, different versions can be constructed for different applications using argument20

keywords appropriate to each application.21

C.10.3.5 Operator extensions (14.2.2)22

1 In order to extend an intrinsic operator symbol to have an additional meaning, an interface block specifying that23

operator symbol in the OPERATOR option of the INTERFACE statement could be placed in a module.24

2 For example, // can be extended to perform concatenation of two derived-type objects serving as varying length25

character strings and + can be extended to specify matrix addition for type MATRIX or interval arithmetic26

addition for type INTERVAL.27

3 A module might contain several such interface blocks. An operator can be defined by an external function (either28

in Fortran or some other language) and its procedure interface placed in the module.29

C.10.3.6 Data abstraction (14.2.2)30

1 In addition to providing a portable means of avoiding the redundant specification of information in multiple31

program units, a module provides a convenient means of “packaging” related entities, such as the definitions of32

the representation and operations of an abstract data type. The following example of a module defines a data33

abstraction for a SET type where the elements of each set are of type integer. The usual set operations of UNION,34

INTERSECTION, and DIFFERENCE are provided. The CARDINALITY function returns the cardinality of35

(number of elements in) its set argument. Two functions returning logical values are included, ELEMENT and36

SUBSET. ELEMENT defines the operator .IN. and SUBSET extends the operator <=. ELEMENT determines37

if a given scalar integer value is an element of a given set, and SUBSET determines if a given set is a subset of38

J3/23-007 593

J3/23-007 WD 1539-1 2023-02-17

another given set. (Two sets can be checked for equality by comparing cardinality and checking that one is a1

subset of the other, or checking to see if each is a subset of the other.)2

2 The transfer function SETF converts a vector of integer values to the corresponding set, with duplicate values3

removed. Thus, a vector of constant values can be used as set constants. An inverse transfer function VECTOR4

returns the elements of a set as a vector of values in ascending order. In this SET implementation, set data5

objects have a maximum cardinality of 200.6

3 Here is the example module:7

MODULE INTEGER_SETS8

! This module is intended to illustrate use of the module facility9

! to define a new type, along with suitable operators.10

11

INTEGER, PARAMETER :: MAX_SET_CARD = 20012

13

TYPE SET ! Define SET type14

PRIVATE15

INTEGER CARD16

INTEGER ELEMENT (MAX_SET_CARD)17

END TYPE SET18

19

INTERFACE OPERATOR (.IN.)20

MODULE PROCEDURE ELEMENT21

END INTERFACE OPERATOR (.IN.)22

23

INTERFACE OPERATOR (<=)24

MODULE PROCEDURE SUBSET25

END INTERFACE OPERATOR (<=)26

27

INTERFACE OPERATOR (+)28

MODULE PROCEDURE UNION29

END INTERFACE OPERATOR (+)30

31

INTERFACE OPERATOR (-)32

MODULE PROCEDURE DIFFERENCE33

END INTERFACE OPERATOR (-)34

35

INTERFACE OPERATOR (*)36

MODULE PROCEDURE INTERSECTION37

END INTERFACE OPERATOR (*)38

39

CONTAINS40

41

INTEGER FUNCTION CARDINALITY (A) ! Returns cardinality of set A42

TYPE (SET), INTENT (IN) :: A43

CARDINALITY = A % CARD44

END FUNCTION CARDINALITY45

594 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

1

LOGICAL FUNCTION ELEMENT (X, A) ! Determines if2

INTEGER, INTENT(IN) :: X ! element X is in set A3

TYPE (SET), INTENT(IN) :: A4

ELEMENT = ANY (A % ELEMENT (1 : A % CARD) == X)5

END FUNCTION ELEMENT6

7

FUNCTION UNION (A, B) ! Union of sets A and B8

TYPE (SET) UNION9

TYPE (SET), INTENT(IN) :: A, B10

INTEGER J11

UNION = A12

DO J = 1, B % CARD13

IF (.NOT. (B % ELEMENT (J) .IN. A)) THEN14

IF (UNION % CARD < MAX_SET_CARD) THEN15

UNION % CARD = UNION % CARD + 116

UNION % ELEMENT (UNION % CARD) = B % ELEMENT (J)17

ELSE18

! Maximum set size exceeded . . .19

END IF20

END IF21

END DO22

END FUNCTION UNION23

24

FUNCTION DIFFERENCE (A, B) ! Difference of sets A and B25

TYPE (SET) DIFFERENCE26

TYPE (SET), INTENT(IN) :: A, B27

INTEGER J, X28

DIFFERENCE % CARD = 0 ! The empty set29

DO J = 1, A % CARD30

X = A % ELEMENT (J)31

IF (.NOT. (X .IN. B)) DIFFERENCE = DIFFERENCE + SET (1, X)32

END DO33

END FUNCTION DIFFERENCE34

35

FUNCTION INTERSECTION (A, B) ! Intersection of sets A and B36

TYPE (SET) INTERSECTION37

TYPE (SET), INTENT(IN) :: A, B38

INTERSECTION = A - (A - B)39

END FUNCTION INTERSECTION40

41

LOGICAL FUNCTION SUBSET (A, B) ! Determines if set A is42

TYPE (SET), INTENT(IN) :: A, B ! a subset of set B43

INTEGER I44

SUBSET = A % CARD <= B % CARD45

IF (.NOT. SUBSET) RETURN ! For efficiency46

J3/23-007 595

J3/23-007 WD 1539-1 2023-02-17

DO I = 1, A % CARD1

SUBSET = SUBSET .AND. (A % ELEMENT (I) .IN. B)2

END DO3

END FUNCTION SUBSET4

5

TYPE (SET) FUNCTION SETF (V) ! Transfer function between a vector6

INTEGER V (:) ! of elements and a set of elements7

INTEGER J ! removing duplicate elements8

SETF % CARD = 09

DO J = 1, SIZE (V)10

IF (.NOT. (V (J) .IN. SETF)) THEN11

IF (SETF % CARD < MAX_SET_CARD) THEN12

SETF % CARD = SETF % CARD + 113

SETF % ELEMENT (SETF % CARD) = V (J)14

ELSE15

! Maximum set size exceeded . . .16

END IF17

END IF18

END DO19

END FUNCTION SETF20

21

FUNCTION VECTOR (A) ! Transfer the values of set A22

TYPE (SET), INTENT (IN) :: A ! into a vector in ascending order23

INTEGER, POINTER :: VECTOR (:)24

INTEGER I, J, K25

ALLOCATE (VECTOR (A % CARD))26

VECTOR = A % ELEMENT (1 : A % CARD)27

DO I = 1, A % CARD - 1 ! Use a better sort if28

DO J = I + 1, A % CARD ! A % CARD is large29

IF (VECTOR (I) > VECTOR (J)) THEN30

K = VECTOR (J); VECTOR (J) = VECTOR (I); VECTOR (I) = K31

END IF32

END DO33

END DO34

END FUNCTION VECTOR35

END MODULE INTEGER_SETS36

4 Examples of using INTEGER_SETS (A, B, and C are variables of type SET; X is an integer variable):37

! Check to see if A has more than 10 elements38

IF (CARDINALITY (A) > 10) . . .39

40

! Check for X an element of A but not of B41

IF (X .IN. (A - B)) . . .42

43

! C is the union of A and the result of B intersected44

! with the integers 1 to 10045

596 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C = A + B * SETF ([(I, I = 1, 100)])1

2

! Does A have any even numbers in the range 1:100?3

IF (CARDINALITY (A * SETF ([(I, I = 2, 100, 2)])) > 0) . . .4

5

PRINT *, VECTOR (B) ! Print out the elements of set B, in ascending order6

C.10.3.7 Public entities renamed (14.2.2)7

1 At times it might be necessary to rename entities that are accessed with USE statements.8

2 The following example illustrates renaming features of the USE statement.9

MODULE J; REAL JX, JY, JZ; END MODULE J10

MODULE K11

USE J, ONLY : KX => JX, KY => JY12

! KX and KY are local names to module K13

REAL KZ ! KZ is local name to module K14

REAL JZ ! JZ is local name to module K15

END MODULE K16

PROGRAM RENAME17

USE J; USE K18

! Module J’s entity JX is accessible under names JX and KX19

! Module J’s entity JY is accessible under names JY and KY20

! Module K’s entity KZ is accessible under name KZ21

! Module J’s entity JZ and K’s entity JZ are different entities22

! and cannot be referenced23

. . .24

END PROGRAM RENAME25

C.10.4 Modules with submodules (14.2.3)26

1 Each submodule specifies that it is the child of exactly one parent module or submodule. Therefore, a module27

and all of its descendant submodules stand in a tree-like relationship one to another.28

2 A separate module procedure that is declared in a module to have public accessibility can be accessed by use29

association even if it is defined in a submodule. No other entity in a submodule can be accessed by use association.30

Each program unit that references a module by use association depends on it, and each submodule depends on31

its ancestor module. Therefore, if one changes a separate module procedure body in a submodule but does not32

change its corresponding module procedure interface, a tool for automatic program translation would not need33

to reprocess program units that reference the module by use association. This is so even if the tool exploits the34

relative modification times of files as opposed to comparing the result of translating the module to the result of35

a previous translation.36

3 By constructing taller trees, one can put entities at intermediate levels that are shared by submodules at lower37

levels; changing these entities cannot change the interpretation of anything that is accessible from the module38

by use association. Developers of modules that embody large complicated concepts can exploit this possibility39

to organize components of the concept into submodules, while preserving the privacy of entities that are shared40

J3/23-007 597

J3/23-007 WD 1539-1 2023-02-17

by the submodules and that ought not to be exposed to users of the module. Putting these shared entities at an1

intermediate level also prevents cascades of reprocessing and testing if some of them are changed.2

4 The following example illustrates a module, color_points, with a submodule, color_points_a, that in turn has3

a submodule, color_points_b. Public entities declared within color_points can be accessed by use association.4

The submodules color_points_a and color_points_b can be changed without causing retranslation of program5

units that reference the module color_points.6

5 The module color_points does not have a module-subprogram-part, but a module-subprogram-part is not pro-7

hibited. The module could be published as definitive specification of the interface, without revealing trade secrets8

contained within color_points_a or color_points_b. Of course, a similar module without the module prefix in9

the interface bodies would serve equally well as documentation – but the procedures would be external procedures.10

It would make little difference to the consumer, but the developer would forfeit all of the advantages of modules.11

module color_points12

13

type color_point14

private15

real :: x, y16

integer :: color17

end type color_point18

19

interface ! Interfaces for procedures with separate20

! bodies in the submodule color_points_a21

module subroutine color_point_del (p) ! Destroy a color_point object22

type(color_point), allocatable :: p23

end subroutine color_point_del24

! Distance between two color_point objects25

real module function color_point_dist (a, b)26

type(color_point), intent(in) :: a, b27

end function color_point_dist28

module subroutine color_point_draw (p) ! Draw a color_point object29

type(color_point), intent(in) :: p30

end subroutine color_point_draw31

module subroutine color_point_new (p) ! Create a color_point object32

type(color_point), allocatable :: p33

end subroutine color_point_new34

end interface35

36

end module color_points37

6 The only entities within color_points_a that can be accessed by use association are the separate module38

procedures that were declared in color_points. If the procedures are changed but their interfaces are not, the39

interface from program units that access them by use association is unchanged. If the module and submodule are40

in separate files, utilities that examine the time of modification of a file would notice that changes in the module41

could affect the translation of its submodules or of program units that reference the module by use association,42

but that changes in submodules could not affect the translation of the parent module or program units that43

reference it by use association.44

598 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

7 The variable instance_count in the following example is not accessible by use association of color_points, but1

is accessible within color_points_a, and its submodules.2

submodule (color_points) color_points_a ! Submodule of color_points3

4

integer :: instance_count = 05

6

interface ! Interface for a procedure with a separate7

! body in submodule color_points_b8

module subroutine inquire_palette (pt, pal)9

use palette_stuff ! palette_stuff, especially submodules thereof,10

! can reference color_points by use association11

! without causing a circular dependence during12

! translation because this use is not in the module.13

! Furthermore, changes in the module palette_stuff14

! do not affect the translation of color_points.15

type(color_point), intent(in) :: pt16

type(palette), intent(out) :: pal17

end subroutine inquire_palette18

end interface19

20

contains ! Invisible bodies for public separate module procedures21

! declared in the module22

module subroutine color_point_del (p)23

type(color_point), allocatable :: p24

instance_count = instance_count - 125

deallocate (p)26

end subroutine color_point_del27

real module function color_point_dist (a, b) result (dist)28

type(color_point), intent(in) :: a, b29

dist = SQRT ((b%x - a%x)**2 + (b%y - a%y)**2)30

end function color_point_dist31

module subroutine color_point_new (p)32

type(color_point), allocatable :: p33

instance_count = instance_count + 134

allocate (p)35

end subroutine color_point_new36

37

end submodule color_points_a38

8 The subroutine inquire_palette is accessible within color_points_a because its interface is declared therein.39

It is not, however, accessible by use association, because its interface is not declared in the module, color_points.40

Since the interface is not declared in the module, changes in the interface cannot affect the translation of program41

units that reference the module by use association.42

module palette_stuff43

type :: palette ; . . . ; end type palette44

J3/23-007 599

J3/23-007 WD 1539-1 2023-02-17

contains1

subroutine test_palette (p)2

! Draw a color wheel using procedures from the color_points module3

use color_points ! This does not cause a circular dependency because4

! the "use palette_stuff" that is logically within5

! color_points is in the color_points_a submodule.6

type(palette), intent(in) :: p7

. . .8

end subroutine test_palette9

end module palette_stuff10

11

submodule (color_points:color_points_a) color_points_b ! Subsidiary**2 submodule12

13

contains14

! Invisible body for interface declared in the ancestor module15

module subroutine color_point_draw (p)16

use palette_stuff, only: palette17

type(color_point), intent(in) :: p18

type(palette) :: MyPalette19

. . . ; call inquire_palette (p, MyPalette); . . .20

end subroutine color_point_draw21

22

! Invisible body for interface declared in the parent submodule23

module procedure inquire_palette24

. . . Implementation of inquire_palette.25

end procedure inquire_palette26

27

subroutine private_stuff ! not accessible from color_points_a28

. . .29

end subroutine private_stuff30

31

end submodule color_points_b32

9 There is a use palette_stuff in color_points_a, and a use color_points in palette_stuff. The use33

palette_stuff would cause a circular reference if it appeared in color_points. In this case, it does not cause34

a circular dependence because it is in a submodule. Submodules cannot be referenced by use association, and35

therefore what would be a circular appearance of use palette_stuff is not accessed.36

program main37

use color_points38

! "instance_count" and "inquire_palette" are not accessible here39

! because they are not declared in the "color_points" module.40

! "color_points_a" and "color_points_b" cannot be referenced by41

! use association.42

interface draw ! just to demonstrate it’s possible43

module procedure color_point_draw44

end interface45

600 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

type(color_point) :: C_1, C_21

real :: RC2

. . .3

call color_point_new (c_1) ! body in color_points_a, interface in color_points4

. . .5

call draw (c_1) ! body in color_points_b, specific interface6

! in color_points, generic interface here.7

. . .8

rc = color_point_dist (c_1, c_2) ! body in color_points_a, interface in color_points9

. . .10

call color_point_del (c_1) ! body in color_points_a, interface in color_points11

. . .12

end program main13

10 A multilevel submodule system can be used to package and organize a large and interconnected concept without14

exposing entities of one subsystem to other subsystems.15

11 Consider a Plasma module from a Tokomak simulator. A plasma simulation requires attention at least to fluid16

flow, thermodynamics, and electromagnetism. Fluid flow simulation requires simulation of subsonic, supersonic,17

and hypersonic flow. This problem decomposition can be reflected in the submodule structure of the Plasma18

module:19

Plasma module
Flow submodule Thermal submodule Electromagnetics submodule

Subsonic Supersonic Hypersonic
submodule submodule submodule

20

12 Entities can be shared among the Subsonic, Supersonic, and Hypersonic submodules by putting them within21

the Flow submodule. One then need not worry about accidental use of these entities by use association or by the22

Thermal or Electromagnetics submodules, or the development of a dependency of correct operation of those23

subsystems upon the representation of entities of the Flow subsystem as a consequence of maintenance. Since24

these entities are not accessible by use association, if any of them are changed, the new values cannot be accessed25

in program units that reference the Plasma module by use association; the answer to the question “where are26

these entities used” is therefore confined to the set of descendant submodules of the Flow submodule.27

C.11 Clause 15 notes28

C.11.1 Portability problems with external procedures (15.4.3.5)29

1 There is a potential portability problem in a scoping unit that references an external procedure without explicitly30

declaring it to have the EXTERNAL attribute (8.5.9). On a different processor, the name of that procedure31

might be the name of a nonstandard intrinsic procedure and in such a case the processor would interpret those32

procedure references as references to that intrinsic procedure. (On that processor, the program would also be33

viewed as not conforming to this document because of the references to the nonstandard intrinsic procedure.)34

Declaration of the EXTERNAL attribute causes the references to be to the external procedure regardless of the35

availability of an intrinsic procedure with the same name. Note that declaration of the type of a procedure is not36

J3/23-007 601

J3/23-007 WD 1539-1 2023-02-17

enough to make it external, even if the type is inconsistent with the type of the result of an intrinsic procedure1

of the same name.2

C.11.2 Procedures defined by means other than Fortran (15.6.3)3

1 A processor is not required to provide any means other than Fortran for defining external procedures. Among the4

means that might be supported are the machine assembly language, other high level languages, the Fortran lan-5

guage extended with nonstandard features, and the Fortran language as supported by another Fortran processor6

(for example, a previously existing Fortran 77 processor). The means other than Fortran for defining external7

procedures, including any restrictions on the structure or organization of those procedures, are not specified by8

this document.9

2 A Fortran processor might limit its support of procedures defined by means other than Fortran such that these10

procedures can affect entities in the Fortran environment only on the same basis as procedures written in Fortran.11

For example, it might not support the value of a local variable from being changed by a procedure reference unless12

that variable were one of the arguments to the procedure.13

C.11.3 Abstract interfaces and procedure pointer components (15.4, 7.5)14

1 This is an example of a library module providing lists of callbacks that the user can register and invoke.15

MODULE callback_list_module16

!17

! Type for users to extend with their own data, if they so desire18

!19

TYPE callback_data20

END TYPE21

!22

! Abstract interface for the callback procedures23

!24

ABSTRACT INTERFACE25

SUBROUTINE callback_procedure(data)26

IMPORT callback_data27

CLASS(callback_data),OPTIONAL :: data28

END SUBROUTINE29

END INTERFACE30

!31

! The callback list type.32

!33

TYPE callback_list34

PRIVATE35

TYPE(callback_record),POINTER :: first => NULL()36

END TYPE37

!38

! Internal: each callback registration creates one of these39

!40

TYPE,PRIVATE :: callback_record41

PROCEDURE(callback_procedure),POINTER,NOPASS :: proc42

602 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

TYPE(callback_record),POINTER :: next1

CLASS(callback_data),POINTER :: data => NULL();2

END TYPE3

PRIVATE invoke,forward_invoke4

CONTAINS5

!6

! Register a callback procedure with optional data7

!8

SUBROUTINE register_callback(list, entry, data)9

TYPE(callback_list),INTENT(INOUT) :: list10

PROCEDURE(callback_procedure) :: entry11

CLASS(callback_data),OPTIONAL :: data12

TYPE(callback_record),POINTER :: new13

ALLOCATE(new)14

new%proc => entry15

IF (PRESENT(data)) ALLOCATE(new%data,SOURCE=data)16

new%next => list%first17

list%first => new18

END SUBROUTINE19

!20

! Internal: Invoke a single callback and destroy its record21

!22

SUBROUTINE invoke(callback)23

TYPE(callback_record),POINTER :: callback24

IF (ASSOCIATED(callback%data)) THEN25

CALL callback%proc(callback%data)26

DEALLOCATE(callback%data)27

ELSE28

CALL callback%proc29

END IF30

DEALLOCATE(callback)31

END SUBROUTINE32

!33

! Call the procedures in reverse order of registration34

!35

SUBROUTINE invoke_callback_reverse(list)36

TYPE(callback_list),INTENT(INOUT) :: list37

TYPE(callback_record),POINTER :: next,current38

current => list%first39

NULLIFY(list%first)40

DO WHILE (ASSOCIATED(current))41

next => current%next42

CALL invoke(current)43

current => next44

END DO45

END SUBROUTINE46

J3/23-007 603

J3/23-007 WD 1539-1 2023-02-17

!1

! Internal: Forward mode invocation2

!3

SUBROUTINE forward_invoke(callback)4

TYPE(callback_record),POINTER :: callback5

IF (ASSOCIATED(callback%next)) CALL forward_invoke(callback%next)6

CALL invoke(callback)7

END SUBROUTINE8

!9

! Call the procedures in forward order of registration10

!11

SUBROUTINE invoke_callback_forward(list)12

TYPE(callback_list),INTENT(INOUT) :: list13

IF (ASSOCIATED(list%first)) CALL forward_invoke(list%first)14

END SUBROUTINE15

END16

C.11.4 Pointers and targets as arguments (15.5.2.5, 15.5.2.7, 15.5.2.8)17

1 If a dummy argument is declared to be a pointer, the corresponding actual argument could be a pointer or could18

be a nonpointer variable or procedure. Consider the two cases separately.19

Case (i): The actual argument is a pointer. When procedure execution commences the pointer association20

status of the dummy argument becomes the same as that of the actual argument. If the pointer21

association status of the dummy argument is changed, the pointer association status of the actual22

argument changes in the same way.23

Case (ii): The actual argument is not a pointer. This only occurs when the actual argument has the TARGET24

attribute or is a procedure, and the dummy argument has the INTENT (IN) attribute. The dummy25

argument becomes pointer associated with the actual argument.26

2 When execution of a procedure completes, any data pointer that remains defined and that is associated with a27

dummy argument that has the TARGET attribute and is either a scalar or an assumed-shape array, remains28

associated with the corresponding actual argument if the actual argument has the TARGET attribute and is not29

an array section with a vector subscript.30

3 For example, consider:31

REAL, POINTER :: PBEST32

REAL, TARGET :: B (10000)33

CALL BEST (PBEST, B) ! On return PBEST is associated with the ‘best’ element of B.34

. . .35

CONTAINS36

SUBROUTINE BEST (P, A)37

REAL, POINTER, INTENT (OUT) :: P38

REAL, TARGET, INTENT (IN) :: A (:)39

. . . Find the ‘‘best’’ element A(I).40

P => A (I)41

END SUBROUTINE BEST42

END43

604 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

When procedure BEST completes, the pointer PBEST is associated with an element of B.1

4 An actual argument without the TARGET attribute can become associated with a dummy argument with the2

TARGET attribute. This enables a pointer to become associated with the dummy argument during execution of3

the procedure that contains the dummy argument. For example:4

INTEGER LARGE(100,100)5

CALL SUB (LARGE)6

. . .7

CALL SUB ()8

CONTAINS9

SUBROUTINE SUB(ARG)10

INTEGER, TARGET, OPTIONAL :: ARG(100,100)11

INTEGER, POINTER, DIMENSION(:,:) :: PARG12

IF (PRESENT(ARG)) THEN13

PARG => ARG14

ELSE15

ALLOCATE (PARG(100,100))16

PARG = 017

ENDIF18

. . . Code with lots of references to PARG.19

IF (.NOT. PRESENT(ARG)) DEALLOCATE(PARG)20

END SUBROUTINE SUB21

END22

Within subroutine SUB the pointer PARG is either associated with the dummy argument ARG or it is associated23

with an allocated target. The bulk of the code can reference PARG without further calls to the intrinsic function24

PRESENT.25

5 If a nonpointer dummy argument has the TARGET attribute and the corresponding actual argument does not,26

any pointers that become associated with the dummy argument, and therefore with the actual argument, during27

execution of the procedure, become undefined when execution of the procedure completes.28

C.11.5 Polymorphic Argument Association (15.5.2.10)29

1 The following example illustrates the polymorphic argument association rules using the derived types defined in30

7.5.7.2, NOTE 4.31

TYPE(POINT) :: T232

TYPE(COLOR_POINT) :: T333

CLASS(POINT) :: P234

CLASS(COLOR_POINT) :: P335

! Dummy argument is polymorphic and actual argument is of fixed type36

SUBROUTINE SUB2 (X2); CLASS(POINT) :: X2; . . .37

SUBROUTINE SUB3 (X3); CLASS(COLOR_POINT) :: X3; . . .38

39

CALL SUB2 (T2) ! Valid -- The declared type of T2 is the same as the40

! declared type of X2.41

CALL SUB2 (T3) ! Valid -- The declared type of T3 is extended from42

J3/23-007 605

J3/23-007 WD 1539-1 2023-02-17

! the declared type of X2.1

CALL SUB3 (T2) ! Invalid -- The declared type of T2 is neither the2

! same as nor extended from the declared type3

! type of X3.4

CALL SUB3 (T3) ! Valid -- The declared type of T3 is the same as the5

! declared type of X3.6

! Actual argument is polymorphic and dummy argument is of fixed type7

SUBROUTINE TUB2 (D2); TYPE(POINT) :: D2; . . .8

SUBROUTINE TUB3 (D3); TYPE(COLOR_POINT) :: D3; . . .9

10

CALL TUB2 (P2) ! Valid -- The declared type of P2 is the same as the11

! declared type of D2.12

CALL TUB2 (P3) ! Invalid -- The declared type of P3 differs from the13

! declared type of D2.14

CALL TUB2 (P3%POINT) ! Valid alternative to the above15

CALL TUB3 (P2) ! Invalid -- The declared type of P2 differs from the16

! declared type of D3.17

SELECT TYPE (P2) ! Valid conditional alternative to the above18

CLASS IS (COLOR_POINT) ! Works if the dynamic type of P2 is the same19

CALL TUB3 (P2) ! as the declared type of D3, or a type20

! extended therefrom.21

CLASS DEFAULT22

! Cannot work if not.23

END SELECT24

CALL TUB3 (P3) ! Valid -- The declared type of P3 is the same as the25

! declared type of D3.26

! Both the actual and dummy arguments are of polymorphic type.27

CALL SUB2 (P2) ! Valid -- The declared type of P2 is the same as the28

! declared type of X2.29

CALL SUB2 (P3) ! Valid -- The declared type of P3 is extended from30

! the declared type of X2.31

CALL SUB3 (P2) ! Invalid -- The declared type of P2 is neither the32

! same as nor extended from the declared33

! type of X3.34

SELECT TYPE (P2) ! Valid conditional alternative to the above35

CLASS IS (COLOR_POINT) ! Works if the dynamic type of P2 is the36

CALL SUB3 (P2) ! same as the declared type of X3, or a37

! type extended therefrom.38

CLASS DEFAULT39

! Cannot work if not.40

END SELECT41

CALL SUB3 (P3) ! Valid -- The declared type of P3 is the same as the42

! declared type of X3.43

606 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C.11.6 Rules ensuring unambiguous generics (15.4.3.4.5)1

1 The rules in 15.4.3.4.5 are intended to ensure2

• that it is possible to reference each specific procedure or binding in the generic collection,3

• that for any valid generic procedure reference, the determination of the specific procedure referenced is4

unambiguous, and5

• that the determination of the specific procedure or binding referenced can be made before execution of the6

program begins (during compilation).7

2 Interfaces of specific procedures or bindings are distinguished by fixed properties of their arguments, specifically8

type, kind type parameters, rank, and whether the dummy argument has the POINTER or ALLOCATABLE9

attribute. A valid reference to one procedure in a generic collection will differ from another because it has an10

argument that the other cannot accept, because it is missing an argument that the other requires, or because one11

of these fixed properties is different.12

3 Although the declared type of a data entity is a fixed property, polymorphic variables allow for a limited degree13

of type mismatch between dummy arguments and actual arguments, so the requirement for distinguishing two14

dummy arguments is type incompatibility, not merely different types. (This is illustrated in the BAD6 example15

later in this subclause.)16

4 That same limited type mismatch means that two dummy arguments that are not type incompatible can be17

distinguished on the basis of the values of the kind type parameters they have in common; if one of them has a18

kind type parameter that the other does not, that is irrelevant in distinguishing them.19

5 Rank is a fixed property, but some forms of array dummy arguments allow rank mismatches when a procedure is20

referenced by its specific name. In order to allow rank to always be usable in distinguishing generics, such rank21

mismatches are disallowed for those arguments when the procedure is referenced as part of a generic. Additionally,22

the fact that elemental procedures can accept array arguments is not taken into account when applying these rules,23

so apparent ambiguity between elemental and nonelemental procedures is possible; in such cases, the reference is24

interpreted as being to the nonelemental procedure.25

6 For procedures referenced as operators or defined-assignment, syntactically distinguished arguments are mapped26

to specific positions in the argument list, so the rule for distinguishing such procedures is that it be possible to27

distinguish the arguments at one of the argument positions.28

7 For defined input/output procedures, only the dtv argument corresponds to something explicitly written in the29

program, so it is the dtv that is required to be distinguished. Because dtv arguments are required to be scalar,30

they cannot differ in rank. Thus this rule effectively involves only type and kind type parameters.31

8 For generic procedure names, the rules are more complicated because optional arguments can be omitted and32

because arguments can be specified either positionally or by name.33

9 In the special case of type-bound procedures with passed-object dummy arguments, the passed-object argument34

is syntactically distinguished in the reference, so rule (3) in 15.4.3.4.5 can be applied. The type of passed-object35

arguments is constrained in ways that prevent passed-object arguments in the same scoping unit from being type36

incompatible. Thus this rule effectively involves only kind type parameters and rank.37

10 The primary means of distinguishing named generics is rule (4). The most common application of that rule is a38

single argument satisfying both (4a) and (4b):39

J3/23-007 607

J3/23-007 WD 1539-1 2023-02-17

INTERFACE GOOD11

FUNCTION F1A(X)2

REAL :: F1A,X3

END FUNCTION F1A4

FUNCTION F1B(X)5

INTEGER :: F1B,X6

END FUNCTION F1B7

END INTERFACE GOOD18

11 Whether one writes GOOD1(1.0) or GOOD1(X=1.0), the reference is to F1A because F1B would require an integer9

argument whereas these references provide the real constant 1.0.10

12 This example and those that follow are expressed using interface bodies, with type as the distinguishing property.11

This was done to make it easier to write and describe the examples. The principles being illustrated are equally12

applicable when the procedures get their explicit interfaces in some other way or when kind type parameters or13

rank are the distinguishing property.14

13 Another common variant is the argument that satisfies (4a) and (4b) by being required in one specific and15

completely missing in the other:16

INTERFACE GOOD217

FUNCTION F2A(X)18

REAL :: F2A,X19

END FUNCTION F2A20

FUNCTION F2B(X,Y)21

COMPLEX :: F2B22

REAL :: X,Y23

END FUNCTION F2B24

END INTERFACE GOOD225

14 Whether one writes GOOD2(0.0,1.0), GOOD2(0.0,Y=1.0), or GOOD2(Y=1.0,X=0.0), the reference is to F2B,26

because F2A has no argument in the second position or with the name Y. This approach is used as an alternative27

to optional arguments when one wants a function to have different result type, kind type parameters, or rank,28

depending on whether the argument is present. In many of the intrinsic functions, the DIM argument works this29

way.30

15 It is possible to construct cases where different arguments are used to distinguish positionally and by name:31

INTERFACE GOOD332

SUBROUTINE S3A(W,X,Y,Z)33

REAL :: W,Y34

INTEGER :: X,Z35

END SUBROUTINE S3A36

SUBROUTINE S3B(X,W,Z,Y)37

REAL :: W,Z38

INTEGER :: X,Y39

END SUBROUTINE S3B40

END INTERFACE GOOD341

608 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

16 If one writes GOOD3(1.0,2,3.0,4) to reference S3A, then the third and fourth arguments are consistent with a1

reference to S3B, but the first and second are not. If one switches to writing the first two arguments as keyword2

arguments in order for them to be consistent with a reference to S3B, the latter two arguments will also need3

to be written as keyword arguments, GOOD3(X=2,W=1.0,Z=4,Y=3.0), and the named arguments Y and Z are4

distinguished.5

17 The ordering requirement in rule (4) is critical:6

INTERFACE BAD4 ! this interface is invalid !7

SUBROUTINE S4A(W,X,Y,Z)8

REAL :: W,Y9

INTEGER :: X,Z10

END SUBROUTINE S4A11

SUBROUTINE S4B(X,W,Z,Y)12

REAL :: X,Y13

INTEGER :: W,Z14

END SUBROUTINE S4B15

END INTERFACE BAD416

18 In this example, the positionally distinguished arguments are Y and Z, and it is W and X that are distinguished by17

name. In this order it is possible to write BAD4(1.0,2,Y=3.0,Z=4), which is a valid reference for both S4A and18

S4B.19

19 Rule (1) can be used to distinguish some cases that are not covered by rule (4):20

INTERFACE GOOD521

SUBROUTINE S5A(X)22

REAL :: X23

END SUBROUTINE S5A24

SUBROUTINE S5B(Y,X)25

REAL :: Y,X26

END SUBROUTINE S5B27

END INTERFACE GOOD528

20 In attempting to apply rule (4), position 2 and name Y are distinguished, but they are in the wrong order, just like29

the BAD4 example. However, when we try to construct a similarly ambiguous reference, we get GOOD5(1.0,X=2.0),30

which can’t be a reference to S5A because it would be attempting to associate two different actual arguments31

with the dummy argument X. Rule (1) catches this case by recognizing that S5B requires two real arguments, and32

S5A cannot possibly accept more than one.33

21 The application of rule (1) becomes more complicated when extensible types are involved. If FRUIT is an extensible34

type, PEAR and APPLE are extensions of FRUIT, and BOSC is an extension of PEAR, then35

INTERFACE BAD6 ! this interface is invalid !36

SUBROUTINE S6A(X,Y)37

CLASS(PEAR) :: X,Y38

END SUBROUTINE S6A39

SUBROUTINE S6B(X,Y)40

CLASS(FRUIT) :: X41

J3/23-007 609

J3/23-007 WD 1539-1 2023-02-17

CLASS(BOSC) :: Y1

END SUBROUTINE S6B2

END INTERFACE BAD63

might, at first glance, seem distinguishable this way, but because of the limited type mismatching allowed,4

BAD6(A_PEAR,A_BOSC) is a valid reference to both S6A and S6B.5

22 It is important to try rule (1) for each type that appears:6

INTERFACE GOOD77

SUBROUTINE S7A(X,Y,Z)8

CLASS(PEAR) :: X,Y,Z9

END SUBROUTINE S7A10

SUBROUTINE S7B(X,Z,W)11

CLASS(FRUIT) :: X12

CLASS(BOSC) :: Z13

CLASS(APPLE),OPTIONAL :: W14

END SUBROUTINE S7B15

END INTERFACE GOOD716

23 Looking at the most general type, S7A has a minimum and maximum of 3 FRUIT arguments, while S7B has a17

minimum of 2 and a maximum of three. Looking at the most specific, S7A has a minimum of 0 and a maximum18

of 3 BOSC arguments, while S7B has a minimum of 1 and a maximum of 2. However, when we look at the19

intermediate, S7A has a minimum and maximum of 3 PEAR arguments, while S7B has a minimum of 1 and a20

maximum of 2. Because S7A’s minimum exceeds S7B’s maximum, they can be distinguished.21

24 In identifying the minimum number of arguments with a particular set of properties, we exclude optional argu-22

ments and test TKR compatibility, so the corresponding actual arguments are required to have those properties.23

In identifying the maximum number of arguments with those properties, we include the optional arguments and24

test not distinguishable, so we include actual arguments which could have those properties but are not required25

to have them.26

25 These rules are sufficient to ensure that references to procedures that meet them are unambiguous, but there27

remain examples that fail to meet these rules but which can be shown to be unambiguous:28

INTERFACE BAD8 ! this interface is invalid !29

! despite the fact that it is unambiguous !30

SUBROUTINE S8A(X,Y,Z)31

REAL,OPTIONAL :: X32

INTEGER :: Y33

REAL :: Z34

END SUBROUTINE S8A35

SUBROUTINE S8B(X,Z,Y)36

INTEGER,OPTIONAL :: X37

INTEGER :: Z38

REAL :: Y39

END SUBROUTINE S8B40

END INTERFACE BAD841

610 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

26 This interface fails rule (4) because there are no required arguments that can be distinguished from the positionally1

corresponding argument, but in order for the mismatch of the optional arguments not to be relevant, the later2

arguments need to be specified as keyword arguments, so distinguishing by name does the trick. This interface is3

nevertheless invalid so a standard-conforming Fortran processor is not required to do such reasoning. The rules4

to cover all cases are too complicated to be useful.5

27 If one dummy argument has the POINTER attribute and a corresponding argument in the other interface body6

has the ALLOCATABLE attribute the generic interface is not ambiguous. If one dummy argument has either the7

POINTER or ALLOCATABLE attribute and a corresponding argument in the other interface body has neither8

attribute, the generic interface might be ambiguous.9

C.12 Clause 16 notes10

C.12.1 Atomic memory consistency11

C.12.1.1 Relaxed memory model12

1 Parallel programs sometimes have apparently impossible behavior because data transfers and other messages can13

be delayed, reordered and even repeated, by hardware, communication software, and caching and other forms14

of optimization. Requiring processors to deliver globally consistent behavior is incompatible with performance15

on many systems. This document specifies that all ordered actions will be consistent (5.3.5 and 11.7), but all16

consistency between unordered segments is deliberately left processor dependent. Depending on the hardware,17

this can be observed even when only two images and one mechanism are involved.18

C.12.1.2 Examples with atomic operations19

1 When variables are being referenced (atomically) from segments that are unordered with respect to the segment20

that is atomically defining or redefining the variables, the results are processor dependent. This supports use21

of so-called “relaxed memory model” architectures, which can enable more efficient execution on some hardware22

implementations.23

2 The following examples assume these declarations:24

MODULE EXAMPLE25

USE,INTRINSIC :: ISO_FORTRAN_ENV26

INTEGER(ATOMIC_INT_KIND) :: X [*] = 0, Y [*] = 0, TMP27

3 Example 128

With X [j] and Y [j] still in their initial state (both zero), image j executes the following sequence of statements:29

CALL ATOMIC_DEFINE (X, 1)30

CALL ATOMIC_DEFINE (Y, 1)31

and a different image, k, executes the following sequence of statements:32

DO33

CALL ATOMIC_REF (TMP, Y [j])34

IF (TMP==1) EXIT35

END DO36

J3/23-007 611

J3/23-007 WD 1539-1 2023-02-17

CALL ATOMIC_REF (TMP, X [j])1

PRINT *, TMP2

4 The final value of TMP on image k could be either 0 or 1. That is, even though image j thinks that it defined X3

[j] before it defined Y [j], this ordering is not guaranteed to be observed on image k. There are many aspects of4

hardware and software implementation that can cause this effect, but conceptually this example can be thought5

of as the change in the value of Y propagating faster through the inter-image connections than the change in the6

value of X.7

5 Even if image j executed the sequence8

CALL ATOMIC_DEFINE (X, 1)9

SYNC MEMORY10

CALL ATOMIC_DEFINE (Y, 1)11

the same effect could be seen. That is because even though X and Y are defined in ordered segments, the12

references from image k are both from a segment that is unordered with respect to image j.13

6 Only if the reference on image k to Y [j] is in a segment that is ordered after the segment on image j that defined14

Y, will TMP be guaranteed to have the value 1.15

7 Example 2:16

With the initial state of X and Y on image j (i.e. X [j] and Y [j]) still being zero, execution of17

CALL ATOMIC_REF (TMP, X [j])18

CALL ATOMIC_DEFINE (Y [j], 1)19

PRINT *, TMP20

on image k1, and execution of21

CALL ATOMIC_REF (TMP, Y [j])22

CALL ATOMIC_DEFINE (X [j], 1)23

PRINT *, TMP24

on image k2, in unordered segments, might print the value 1 both times.25

8 This can happen by such mechanisms as “load buffering”; one might imagine that what is happening is that26

the definitions (ATOMIC_DEFINE) are overtaking the references (ATOMIC_REF). On some processors it is27

possible that insertion of SYNC MEMORY statements between the calls to ATOMIC_REF and ATOMIC_-28

DEFINE might be sufficient to make the output print the value 1 at most one time (or even exactly one time),29

but this is still processor dependent unless the SYNC MEMORY statement executions cause the relevant segments30

on images k1 and k2 to be ordered.31

9 Example 3:32

Because there are no segment boundaries implied by collective subroutines, with the initial state as before,33

execution of34

IF (THIS_IMAGE ()==1) THEN35

CALL ATOMIC_DEFINE (X [3], 23)36

Y = 4237

END IF38

612 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

CALL CO_BROADCAST (Y, 1)1

IF (THIS_IMAGE ()==2) THEN2

CALL ATOMIC_REF (TMP, X [3])3

PRINT *, Y, TMP4

END IF5

could print the values 42 and 0.6

10 Example 4:7

Assuming the declarations8

INTEGER (ATOMIC_INT_KIND) :: X [*] = 0, Z = 09

the statements10

CALL ATOMIC_ADD (X [1], 1) ! (A)11

IF (THIS_IMAGE() == 2) THEN12

wait: DO13

CALL ATOMIC_REF (Z, X [1]) ! (B)14

IF (Z == NUM_IMAGES ()) EXIT wait15

END DO wait ! (C)16

END IF17

will execute the “wait” loop on image 2 until all images have completed statement (A). The updates of X [1] are18

performed by each image in the same manner, but in an arbitrary order. Because the result from the complete19

set of updates will eventually become visible by execution of statement (B) for some loop iteration on image 2,20

the termination condition is guaranteed to be eventually fulfilled, provided that no image failure occurs, every21

image executes the above code, and no other code is executed in an unordered segment that performs an update22

to X [1]. Furthermore, if two SYNC MEMORY statements are inserted in the above code before statement (A)23

and after statement (C), respectively, the segment started by the second SYNC MEMORY on image 2 is ordered24

after the segments on all images that end with the first SYNC MEMORY.25

C.12.2 EVENT_QUERY example26

1 The following example illustrates the use of events via a program in which image one acts as the controlling image,27

distributing work items to the other images. Only one work item at a time can be active on a worker image, and28

each deals with the result (e.g. via input/output) without directly feeding data back to the controlling image.29

2 Because the work items are not expected to be balanced, the controlling image keeps cycling through the other30

images to find one that is waiting for work.31

3 An event is posted by each worker to indicate that it has completed its work item. Since the corresponding32

variables are needed only on the controlling image, we place them in an allocatable array component of a coarray.33

An event on each worker is needed for the controlling image to post the fact that it has made a work item available34

for it.35

Example code:36

PROGRAM work_share37

USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY: EVENT_TYPE38

USE :: mod_work, ONLY: & ! Module that creates work items39

J3/23-007 613

J3/23-007 WD 1539-1 2023-02-17

work, & ! Type for holding a work item1

create_work_item, & ! Function that creates work item2

process_item, & ! Function that processes an item3

work_done ! Logical function that returns true4

! if all work has been done.5

6

TYPE :: worker_type7

TYPE (EVENT_TYPE), ALLOCATABLE :: free (:)8

END TYPE9

TYPE (EVENT_TYPE) :: submit [*] ! Post when work ready for a worker10

TYPE (worker_type) :: worker [*] ! Post when worker is free11

TYPE (work) :: work_item [*] ! Holds the data for a work item12

INTEGER :: count, i, nbusy [*]13

14

IF (THIS_IMAGE ()==1) THEN15

! Get started16

ALLOCATE (worker%free (2:NUM_IMAGES ()))17

nbusy = 0 ! This holds the number of workers working18

DO i = 2, NUM_IMAGES () ! Start the workers working19

IF (work_done ()) EXIT20

nbusy = nbusy + 121

work_item [i] = create_work_item ()22

EVENT POST (submit [i])23

END DO24

! Main work distribution loop25

main: DO26

image: DO i = 2, NUM_IMAGES ()27

CALL EVENT_QUERY (worker%free (i), count)28

IF (count==0) CYCLE image ! Worker is not free29

EVENT WAIT (worker%free (i))30

nbusy = nbusy - 131

IF (work_done ()) CYCLE32

nbusy = nbusy + 133

work_item [i] = create_work_item ()34

EVENT POST (submit [i])35

END DO image36

IF (nbusy==0) THEN37

! All done. Exit on all images.38

DO i = 2, NUM_IMAGES ()39

EVENT POST (submit [i])40

END DO41

EXIT main42

END IF43

END DO main44

ELSE45

! Work processing loop46

614 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

worker: DO1

EVENT WAIT (submit)2

IF (nbusy[1] == 0) EXIT3

CALL process_item (work_item)4

EVENT POST (worker [1]%free (THIS_IMAGE ()))5

END DO worker6

END IF7

END PROGRAM work_share8

C.12.3 Collective subroutine examples9

1 The following example computes a dot product of two scalar coarrays using CO_SUM to store the result in a10

noncoarray scalar variable.11

SUBROUTINE codot (x, y, x_dot_y)12

REAL :: x [*], y [*], x_dot_y13

x_dot_y = x*y14

CALL CO_SUM (x_dot_y)15

END SUBROUTINE codot16

2 The function below demonstrates passing a noncoarray dummy argument to CO_MAX. The function uses CO_-17

MAX to find the maximum value of the dummy argument across all images. Then the function flags all images18

that hold values matching the maximum. The function then returns the maximum image index for an image that19

holds the maximum value.20

FUNCTION find_max (j) RESULT (j_max_location)21

INTEGER, INTENT (IN) :: j22

INTEGER j_max, j_max_location23

j_max = j24

CALL CO_MAX (j_max)25

! Flag images that hold the maximum j.26

IF (j==j_max) THEN27

j_max_location = THIS_IMAGE ()28

ELSE29

j_max_location = 030

END IF31

! Return highest image index associated with a maximal j.32

CALL CO_MAX(j_max_location)33

END FUNCTION find_max34

C.13 Clause 18 notes35

C.13.1 Runtime environments (18.1)36

1 This document allows programs to contain procedures defined by means other than Fortran. That raises the37

issues of initialization of and interaction between the runtime environments involved.38

J3/23-007 615

J3/23-007 WD 1539-1 2023-02-17

2 Implementations are free to solve these issues as they see fit, provided that1

• heap allocation/deallocation (e.g., (DE)ALLOCATE in a Fortran subprogram and malloc/free in a C func-2

tion) can be performed without interference,3

• input/output to and from external files can be performed without interference, as long as procedures defined4

by different means do not do input/output with the same external file,5

• input/output preconnections exist as required by the respective standards, and6

• initialized data are initialized according to the respective standards.7

C.13.2 Example of Fortran calling C (18.3)8

C Function Prototype:9

int C_Library_Function(void* sendbuf, int sendcount, int *recvcounts);10

Fortran Module:11

MODULE CLIBFUN_INTERFACE12

INTERFACE13

INTEGER (C_INT) FUNCTION C_LIBRARY_FUNCTION (SENDBUF, SENDCOUNT, RECVCOUNTS) &14

BIND(C, NAME=’C_Library_Function’)15

USE, INTRINSIC :: ISO_C_BINDING16

IMPLICIT NONE17

TYPE (C_PTR), VALUE :: SENDBUF18

INTEGER (C_INT), VALUE :: SENDCOUNT19

INTEGER (C_INT) :: RECVCOUNTS(*)20

END FUNCTION C_LIBRARY_FUNCTION21

END INTERFACE22

END MODULE CLIBFUN_INTERFACE23

1 The module CLIBFUN_INTERFACE contains the declaration of the Fortran dummy arguments, which corres-24

pond to the C formal parameters. The NAME= is used in the BIND attribute in order to handle the case-sensitive25

name change between Fortran and C from “c_library_function” to “C_Library_Function”.26

2 The first C formal parameter is the pointer to void sendbuf, which corresponds to the Fortran dummy argument27

SENDBUF, which has the type C_PTR and the VALUE attribute.28

3 The second C formal parameter is the int sendcount, which corresponds to the Fortran dummy argument29

SENDCOUNT, which has the type INTEGER (C_INT) and the VALUE attribute.30

4 The third C formal parameter is the pointer to int recvcounts, which corresponds to the Fortran dummy31

argument RECVCOUNTS, which is an assumed-size array of type INTEGER (C_INT).32

5 This example shows how C_Library_Function might be referenced in a Fortran program unit:33

USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_INT, C_FLOAT, C_LOC34

USE CLIBFUN_INTERFACE35

. . .36

REAL (C_FLOAT), TARGET :: SEND(100)37

INTEGER (C_INT) :: SENDCOUNT, RET38

616 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

INTEGER (C_INT), ALLOCATABLE :: RECVCOUNTS(:)1

. . .2

ALLOCATE(RECVCOUNTS(100))3

. . .4

RET = C_LIBRARY_FUNCTION(C_LOC(SEND), SENDCOUNT, RECVCOUNTS)5

. . .6

6 The first Fortran actual argument is a reference to the function C_LOC which returns the value of the C address7

of its argument, SEND. This value becomes the value of the first formal parameter, the pointer sendbuf, in8

C_Library_Function.9

7 The second Fortran actual argument is SENDCOUNT of type INTEGER (C_INT). Its value becomes the initial10

value of the second formal parameter, the int sendcount, in C_Library_Function.11

8 The third Fortran actual argument is the allocatable array RECVCOUNTS of type INTEGER (C_INT). The12

base C address of this array becomes the value of the third formal parameter, the pointer recvcounts, in13

C_Library_Function. Note that interoperability is based on the characteristics of the dummy arguments in14

the specified interface and not on those of the actual arguments. Thus, the fact that the actual argument is15

allocatable is not relevant here.16

C.13.3 Example of C calling Fortran (18.3)17

Fortran Code:18

SUBROUTINE SIMULATION(ALPHA, BETA, GAMMA, DELTA, ARRAYS) BIND(C)19

USE, INTRINSIC :: ISO_C_BINDING20

IMPLICIT NONE21

INTEGER (C_LONG), VALUE :: ALPHA22

REAL (C_DOUBLE), INTENT(INOUT) :: BETA23

INTEGER (C_LONG), INTENT(OUT) :: GAMMA24

REAL (C_DOUBLE),DIMENSION(*),INTENT(IN) :: DELTA25

TYPE, BIND(C) :: PASS26

INTEGER (C_INT) :: LENC, LENF27

TYPE (C_PTR) :: C, F28

END TYPE PASS29

TYPE (PASS), INTENT(INOUT) :: ARRAYS30

REAL (C_FLOAT), ALLOCATABLE, TARGET, SAVE :: ETA(:)31

REAL (C_FLOAT), POINTER :: C_ARRAY(:)32

. . .33

! Associate C_ARRAY with an array allocated in C34

CALL C_F_POINTER (ARRAYS%C, C_ARRAY, [ARRAYS%LENC])35

. . .36

! Allocate an array and make it available in C37

ARRAYS%LENF = 10038

ALLOCATE (ETA(ARRAYS%LENF))39

ARRAYS%F = C_LOC(ETA)40

. . .41

END SUBROUTINE SIMULATION42

J3/23-007 617

J3/23-007 WD 1539-1 2023-02-17

C Structure Declaration:1

struct pass {2

int lenc, lenf;3

float *c, *f;4

};5

C Function Prototype:6

void simulation(long alpha, double *beta, long *gamma, double delta[],7

struct pass *arrays);8

C Calling Sequence:9

simulation(alpha, beta, gamma, delta, arrays);10

1 The above-listed Fortran code specifies a subroutine SIMULATION. This subroutine corresponds to the C void11

function simulation.12

2 The Fortran subroutine references the intrinsic module ISO_C_BINDING.13

3 The first Fortran dummy argument of the subroutine is ALPHA, which has the type INTEGER(C_LONG) and14

the VALUE attribute. This dummy argument corresponds to the C formal parameter alpha, which is a long.15

The C actual argument is also a long.16

4 The second Fortran dummy argument of the subroutine is BETA, which has the type REAL(C_DOUBLE) and17

the INTENT (INOUT) attribute. This dummy argument corresponds to the C formal parameter beta, which is18

a pointer to double. An address is passed as the C actual argument.19

5 The third Fortran dummy argument of the subroutine is GAMMA, which has the type INTEGER(C_LONG)20

and the INTENT (OUT) attribute. This dummy argument corresponds to the C formal parameter gamma, which21

is a pointer to long. An address is passed as the C actual argument.22

6 The fourth Fortran dummy argument is the assumed-size array DELTA, which has the type REAL (C_DOUBLE)23

and the INTENT (IN) attribute. This dummy argument corresponds to the C formal parameter delta, which is24

a double array. The C actual argument is also a double array.25

7 The fifth Fortran dummy argument is ARRAYS, which is a structure for accessing an array allocated in C and26

an array allocated in Fortran. The lengths of these arrays are held in the components LENC and LENF; their C27

addresses are held in components C and F.28

C.13.4 Example of calling C functions with noninteroperable data (18.10)29

1 Many Fortran processors support 16-byte real numbers, which might not be supported by the C processor.30

Assume a Fortran programmer wants to use a C procedure from a message passing library for an array of these31

reals. The C prototype of this procedure is32

void ProcessBuffer(void *buffer, int n_bytes);33

with the corresponding Fortran interface34

618 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

USE, INTRINSIC :: ISO_C_BINDING1

INTERFACE2

SUBROUTINE PROCESS_BUFFER(BUFFER,N_BYTES) BIND(C,NAME="ProcessBuffer")3

IMPORT :: C_PTR, C_INT4

TYPE(C_PTR), VALUE :: BUFFER ! The ‘‘C address’’ of the array buffer5

INTEGER (C_INT), VALUE :: N_BYTES ! Number of bytes in buffer6

END SUBROUTINE PROCESS_BUFFER7

END INTERFACE8

2 This can be done using C_LOC if the particular Fortran processor specifies that C_LOC returns an appropriate9

address:10

REAL(R_QUAD), DIMENSION(:), ALLOCATABLE, TARGET :: QUAD_ARRAY11

. . .12

CALL PROCESS_BUFFER(C_LOC(QUAD_ARRAY), INT(16*SIZE(QUAD_ARRAY),C_INT))13

! One quad real takes 16 bytes on this processor14

C.13.5 Example of opaque communication between C and Fortran (18.3)15

1 The following example demonstrates how a Fortran processor can make a modern object-oriented random number16

generator written in Fortran available to a C program.17

USE, INTRINSIC :: ISO_C_BINDING18

! Assume this code is inside a module19

20

TYPE RANDOM_STREAM21

! A (uniform) random number generator (URNG)22

CONTAINS23

PROCEDURE(RANDOM_UNIFORM), DEFERRED, PASS(STREAM) :: NEXT24

! Generates the next number from the stream25

END TYPE RANDOM_STREAM26

27

ABSTRACT INTERFACE28

! Abstract interface of Fortran URNG29

SUBROUTINE RANDOM_UNIFORM(STREAM, NUMBER)30

IMPORT :: RANDOM_STREAM, C_DOUBLE31

CLASS(RANDOM_STREAM), INTENT(INOUT) :: STREAM32

REAL(C_DOUBLE), INTENT(OUT) :: NUMBER33

END SUBROUTINE RANDOM_UNIFORM34

END INTERFACE35

2 A polymorphic object with declared type RANDOM_STREAM is not interoperable with C. However, we can36

make such a random number generator available to C by packaging it inside another nonpolymorphic, nonpara-37

meterized derived type:38

TYPE :: URNG_STATE ! No BIND(C), as this type is not interoperable39

CLASS(RANDOM_STREAM), ALLOCATABLE :: STREAM40

END TYPE URNG_STATE41

J3/23-007 619

J3/23-007 WD 1539-1 2023-02-17

3 The following two procedures will enable a C program to use our Fortran uniform random number generator:1

! Initialize a uniform random number generator:2

SUBROUTINE INITIALIZE_URNG(STATE_HANDLE, METHOD) &3

BIND(C, NAME="InitializeURNG")4

TYPE(C_PTR), INTENT(OUT) :: STATE_HANDLE5

! An opaque handle for the URNG6

CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: METHOD7

! The algorithm to be used8

9

TYPE(URNG_STATE), POINTER :: STATE10

! An actual URNG object11

12

ALLOCATE(STATE)13

! There needs to be a corresponding finalization14

! procedure to avoid memory leaks, not shown in this example15

! Allocate STATE%STREAM with a dynamic type depending on METHOD16

. . .17

STATE_HANDLE=C_LOC(STATE)18

! Obtain an opaque handle to return to C19

END SUBROUTINE INITIALIZE_URNG20

21

! Generate a random number:22

SUBROUTINE GENERATE_UNIFORM(STATE_HANDLE, NUMBER) &23

BIND(C, NAME="GenerateUniform")24

TYPE(C_PTR), INTENT(IN), VALUE :: STATE_HANDLE25

! An opaque handle: Obtained via a call to INITIALIZE_URNG26

REAL(C_DOUBLE), INTENT(OUT) :: NUMBER27

28

TYPE(URNG_STATE), POINTER :: STATE29

! A pointer to the actual URNG30

31

CALL C_F_POINTER(CPTR=STATE_HANDLE, FPTR=STATE)32

! Convert the opaque handle into a usable pointer33

CALL STATE%STREAM%NEXT(NUMBER)34

! Use the type-bound procedure NEXT to generate NUMBER35

END SUBROUTINE GENERATE_UNIFORM36

C.13.6 Using assumed type to interoperate with C37

C.13.6.1 Overview38

1 The mechanism for handling unlimited polymorphic entities whose dynamic type is interoperable with C is39

designed to handle the following two situations:40

(1) A formal parameter that is a C pointer to void. This is an address, and no further information41

about the entity is provided. The formal parameter corresponds to a dummy argument that is a42

nonallocatable nonpointer scalar or is an assumed-size array.43

620 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

(2) A formal parameter that is the address of a C descriptor. Additional information on the status, type,1

size, and shape is implicitly provided. The formal parameter corresponds to a dummy argument that2

is assumed-shape or assumed-rank.3

2 In the first situation, it is the programmer’s responsibility to explicitly provide any information needed on the4

status, type, size, and shape of the entity.5

C.13.6.2 Mapping of interfaces with void * C parameters to Fortran6

1 A C interface for message passing or input/output functionality could be provided in the form7

int EXAMPLE_send(const void *buffer, size_t buffer_size, const HANDLE_t *handle);8

where the buffer_size argument is given in units of bytes, and the handle argument (which is of a type aliased9

to int) provides information about the target the buffer is to be transferred to. In this example, type resolution10

is not required.11

2 The first method provides a thin binding; a call to EXAMPLE_send from Fortran directly invokes the C function.12

INTERFACE13

INTEGER (C_INT) FUNCTION example_send(buffer, buffer_size, handle) &14

BIND(C, NAME=’EXAMPLE_send’)15

USE, INTRINSIC :: ISO_C_BINDING16

TYPE(*), INTENT (IN) :: buffer(*)17

INTEGER (C_SIZE_T), VALUE :: buffer_size18

INTEGER (C_INT), INTENT (IN) :: handle19

END FUNCTION20

END INTERFACE21

3 It is assumed that this interface is declared in the specification part of the module MOD_EXAMPLE_OLD. An22

example of its use follows:23

USE, INTRINSIC :: ISO_C_BINDING24

USE MOD_EXAMPLE_OLD25

26

REAL(C_FLOAT) :: x(100)27

INTEGER(C_INT) :: y(10,10)28

REAL(C_DOUBLE) :: z29

INTEGER(C_INT) :: status, handle30

. . .31

! Assign values to x, y, z and initialize handle.32

. . .33

! Send values in x, y, and z using EXAMPLE_send.34

status = example_send(x, C_SIZEOF(x), handle)35

status = example_send(y, C_SIZEOF(y), handle)36

status = example_send([z], C_SIZEOF(z), handle)37

4 In those invocations, x and y are passed directly with sequence association, but it is necessary to make an array38

expression containing the value of z to pass it.39

J3/23-007 621

J3/23-007 WD 1539-1 2023-02-17

5 The second method provides a Fortran interface which is easier to use, but requires writing a separate C wrapper1

routine. With this method, a C descriptor is created because the buffer is assumed-rank in the Fortran interface;2

the use of an optional argument is also demonstrated.3

INTERFACE4

SUBROUTINE example_send(buffer, handle, status) BIND(C, NAME="EG_send_fortran")5

USE, INTRINSIC :: ISO_C_BINDING6

TYPE(*), CONTIGUOUS, INTENT (IN) :: buffer(..)7

INTEGER (C_INT), INTENT (IN) :: handle8

INTEGER (C_INT), INTENT(OUT), OPTIONAL :: status9

END SUBROUTINE10

END INTERFACE11

6 It is assumed that this interface is declared in the specification part of a module MOD_EXAMPLE_NEW.12

Example invocations from Fortran are then13

USE, INTRINSIC :: iso_c_binding14

USE mod_example_new15

16

TYPE, BIND(C) :: my_derived17

INTEGER(C_INT) :: len_used18

REAL(C_FLOAT) :: stuff(100)19

END TYPE20

TYPE(my_derived) :: w(3)21

REAL(C_FLOAT) :: x(100)22

INTEGER(C_INT) :: y(10,10)23

REAL(C_DOUBLE) :: z24

INTEGER(C_INT) :: status, handle25

. . .26

! Assign values to w, x, y, z and initialize handle.27

. . .28

! Send values in w, x, y, and z using example_send.29

CALL example_send(w, handle, status)30

CALL example_send(x, handle)31

CALL example_send(y, handle)32

CALL example_send(z, handle)33

CALL example_send(y(:,5), handle) ! Fifth column of y.34

CALL example_send(y(1,5), handle) ! Scalar y(1,5) passed by descriptor.35

7 The wrapper routine can be written in C as follows.36

#include "ISO_Fortran_binding.h"37

38

void EG_send_fortran(const CFI_cdesc_t *buffer, const HANDLE_t *handle,int *status)39

{40

int status_local;41

size_t buffer_size;42

int i;43

622 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

1

buffer_size = buffer->elem_len;2

for (i=0; i<buffer->rank; i++) {3

buffer_size *= buffer->dim[i].extent;4

}5

status_local = EXAMPLE_send(buffer->base_addr,buffer_size, handle);6

if (status != NULL) *status = status_local;7

}8

C.13.7 Using assumed-type variables in Fortran9

1 An assumed-type dummy argument in a Fortran procedure can be used as an actual argument corresponding to an10

assumed-type dummy in a call to another procedure. In the following example, the Fortran subroutine SIMPLE_-11

SEND serves as a wrapper to hide the complications associated with calls to a C function named ACTUAL_Send.12

Module COMM_INFO contains node and address information for the current data transfer operations.13

SUBROUTINE SIMPLE_SEND(buffer, nbytes)14

USE comm_info, ONLY: my_node, r_node, r_addr15

USE, INTRINSIC :: ISO_C_BINDING16

IMPLICIT NONE17

18

TYPE(*), INTENT (IN) :: buffer(*)19

INTEGER :: nbytes, ierr20

21

INTERFACE22

SUBROUTINE actual_Send(buffer, nbytes, node, addr, ierr) &23

BIND(C, NAME="ACTUAL_Send")24

IMPORT :: C_SIZE_T, C_INT, C_INTPTR_T25

TYPE(*), INTENT (IN) :: buffer(*)26

INTEGER(C_SIZE_T), VALUE :: nbytes27

INTEGER(C_INT), VALUE :: node28

INTEGER(C_INTPTR_T), VALUE :: addr29

INTEGER(C_INT), INTENT(OUT) :: ierr30

END SUBROUTINE actual_Send31

END INTERFACE32

33

CALL actual_Send(buffer, INT(nbytes, C_SIZE_T), r_node, r_addr, ierr)34

35

IF (ierr /= 0) THEN36

PRINT *, "Error sending from node", my_node, "to node", r_node37

PRINT *, "Program Aborting" ! Or call a recovery procedure38

ERROR STOP ! Omit in the recovery case39

END IF40

END SUBROUTINE simple_Send41

J3/23-007 623

J3/23-007 WD 1539-1 2023-02-17

C.13.8 Simplifying interfaces for arbitrary rank procedures1

1 There are situations where an assumed-rank dummy argument can be useful in Fortran, although a Fortran2

procedure cannot itself access its value. For example, the IEEE inquiry functions in Clause 14 could be written3

using an assumed-rank dummy argument instead of writing 16 separate specific routines, one for each possible4

rank.5

2 In particular, the specific procedures for the IEEE_SUPPORT_DIVIDE function could possibly be implemented6

in Fortran as follows:7

INTERFACE ieee_support_divide8

MODULE PROCEDURE ieee_support_divide_noarg, ieee_support_divide_onearg_r, &9

ieee_support_divide_onearg_d10

END INTERFACE ieee_support_divide11

12

. . .13

14

LOGICAL FUNCTION ieee_support_divide_noarg ()15

ieee_support_divide_noarg = .TRUE.16

END FUNCTION ieee_support_divide_noarg17

18

LOGICAL FUNCTION ieee_support_divide_onearg_r (x)19

REAL, INTENT (IN) :: x(..)20

ieee_support_divide_onearg_r4 = .TRUE.21

END FUNCTION ieee_support_divide_onearg_r22

23

LOGICAL FUNCTION ieee_support_divide_onearg_d (x)24

DOUBLE PRECISION, INTENT (IN) :: x(..)25

ieee_support_divide_onearg_r8 = .TRUE.26

END FUNCTION ieee_support_divide_onearg_d27

C.13.9 Processing assumed-rank in C28

1 The example shown below calculates the product of individual elements of arrays B and C and returns the result29

in array A. The Fortran interface of elemental_mult will accept arguments of any type and rank. However, the30

C function will return an error code if any argument is not a two-dimensional int array. Note that the arguments31

are permitted to be array sections, so the C function does not assume that any argument is contiguous.32

2 This demonstrates runtime error detection even though these specific errors could have been detected at compile-33

time, if the interface declared the arrays as “INTEGER (C_INT), DIMENSION (:, :)”.34

3 The Fortran interface is:35

INTERFACE36

FUNCTION elemental_mult(a, b, c) BIND(C, NAME="elemental_mult_c") RESULT(err)37

USE, INTRINSIC :: ISO_C_BINDING38

INTEGER(C_INT) :: err39

TYPE(*), DIMENSION(..) :: a, b, c40

END FUNCTION elemental_mult41

END INTERFACE42

624 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

4 The definition of the C function is:1

#include "ISO_Fortran_binding.h"2

3

int elemental_mult_c(CFI_cdesc_t * a_desc, CFI_cdesc_t * b_desc, CFI_cdesc_t * c_desc)4

{5

size_t i, j, ni, nj;6

int err = 1; /* this error code represents all errors */7

char * a_col = (char*) a_desc->base_addr;8

char * b_col = (char*) b_desc->base_addr;9

char * c_col = (char*) c_desc->base_addr;10

char *a_elt, *b_elt, *c_elt;11

12

/* Only support int. */13

if (a_desc->type != CFI_type_int || b_desc->type != CFI_type_int ||14

c_desc->type != CFI_type_int) {15

return err;16

}17

/* Only support two dimensions. */18

if (a_desc->rank != 2 || b_desc->rank != 2 || c_desc->rank != 2) {19

return err;20

}21

22

ni = a_desc->dim[0].extent;23

nj = a_desc->dim[1].extent;24

25

/* Ensure the shapes conform. */26

if (ni != b_desc->dim[0].extent || ni != c_desc->dim[0].extent) return err;27

if (nj != b_desc->dim[1].extent || nj != c_desc->dim[1].extent) return err;28

29

/* Multiply the elements of the two arrays. */30

for (j = 0; j < nj; j++) {31

a_elt = a_col;32

b_elt = b_col;33

c_elt = c_col;34

for (i = 0; i < ni; i++) {35

(int)a_elt = *(int*)b_elt * *(int*)c_elt;36

a_elt += a_desc->dim[0].sm;37

b_elt += b_desc->dim[0].sm;38

c_elt += c_desc->dim[0].sm;39

}40

a_col += a_desc->dim[1].sm;41

b_col += b_desc->dim[1].sm;42

c_col += c_desc->dim[1].sm;43

}44

return 0;45

}46

J3/23-007 625

J3/23-007 WD 1539-1 2023-02-17

C.13.10 Creating a contiguous copy of an array1

1 A C function might need to create a contiguous copy of an array section, for example, to pass the array section2

as an actual argument corresponding to a dummy argument with the CONTIGUOUS attribute. The following3

example provides functions that can be used to copy an array described by a CFI_cdesc_t descriptor to a4

contiguous buffer. The input array need not be contiguous.5

2 The C functions are:6

#include "ISO_Fortran_binding.h"7

/* Other necessary includes omitted. */8

9

/*10

* Returns the number of elements in the object described by desc.11

* If it is an array, it need not be contiguous.12

* (The number of elements could be zero).13

*/14

size_t numElements(const CFI_cdesc_t * desc)15

{16

CFI_rank_t r;17

size_t num = 1;18

19

for (r = 0; r < desc->rank; r++) {20

num *= desc->dim[r].extent;21

}22

return num;23

}24

25

/*26

* Auxiliary recursive function to copy an array of a given rank.27

* Recursion is useful because an array of rank n is composed of an28

* ordered set of arrays of rank n-1.29

*/30

static void *_copyToContiguous (const CFI_cdesc_t *vald, void *output,31

const void *input, CFI_rank_t rank)32

{33

CFI_index_t e;34

35

if (rank == 0) {36

/* Copy scalar element. */37

memcpy (output, input, vald->elem_len);38

output = (void *)((char *)output + vald->elem_len);39

}40

else {41

for (e = 0; e < vald->dim[rank-1].extent; e++) {42

/* Recurse on subarrays of lesser rank. */43

output = _copyToContiguous (vald, output, input, rank-1);44

input = (void *) ((char *)input + vald->dim[rank].sm);45

626 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

}1

}2

return output;3

}4

5

/*6

* General routine to copy the elements in the array described by vald7

* to buffer, as done by sequence association. The array itself can8

* be non-contiguous. This is not the most efficient approach.9

*/10

void copyToContiguous (void * buffer, const CFI_cdesc_t * vald) {11

_copyToContiguous (vald, buffer, vald->base_addr, vald->rank);12

}13

C.13.11 Changing the attributes of an array14

1 A C programmer might want to call more than one Fortran procedure and the attributes of an array involved15

might differ between the procedures. In this case, it is necessary to set up more than one C descriptor for the16

array. For example, this code fragment initializes the first C descriptor for an allocatable entity of rank 2, calls17

a procedure that allocates the array described by the first C descriptor, constructs the second C descriptor by18

invoking CFI_establish with the value CFI_attribute_other for the attribute parameter, then calls a procedure19

that expects an assumed-shape array.20

CFI_CDESC_T(2) loc_alloc, loc_assum;21

CFI_cdesc_t * desc_alloc = (CFI_cdesc_t *)&loc_alloc,22

* desc_assum = (CFI_cdesc_t *)&loc_assum;23

CFI_index_t extents[2];24

CFI_rank_t rank = 2;25

int flag;26

27

flag = CFI_establish(desc_alloc,28

NULL,29

CFI_attribute_allocatable,30

CFI_type_double,31

sizeof(double),32

rank,33

NULL);34

35

Fortran_factor (desc_alloc, . . .); /* Allocates array described by desc_alloc. */36

37

/* Extract extents from descriptor. */38

extents[0] = desc_alloc->dim[0].extent;39

extents[1] = desc_alloc->dim[1].extent;40

41

flag = CFI_establish(desc_assum,42

desc_alloc->base_addr,43

CFI_attribute_other,44

J3/23-007 627

J3/23-007 WD 1539-1 2023-02-17

CFI_type_double,1

sizeof(double),2

rank,3

extents);4

5

Fortran_solve (desc_assum, . . .); /* Uses array allocated in Fortran_factor. */6

2 After invocation of the second CFI_establish, the lower bounds stored in the dim member of desc_assum will7

have the value zero even if the corresponding entries in desc_alloc have different values.8

C.13.12 Creating an array section in C using CFI_section9

1 The C function set_odd sets every second element of an array to a specific value, beginning with the first element.10

It does this by making an array section descriptor for the elements to be set, and calling a Fortran subroutine11

SET_ALL that sets every element of an assumed-shape array to a specific value. An interface block for set_odd12

permits it to be also called from Fortran.13

SUBROUTINE set_all(int_array, val) BIND(C)14

INTEGER(C_INT) :: int_array(:)15

INTEGER(C_INT), VALUE :: val16

int_array = val17

END SUBROUTINE18

19

INTERFACE20

SUBROUTINE set_odd(int_array, val) BIND(C)21

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_INT22

INTEGER(C_INT) :: int_array(:)23

INTEGER(C_INT), VALUE :: val24

END SUBROUTINE25

END INTERFACE26

27

#include "ISO_Fortran_binding.h"28

29

void set_odd(CFI_cdesc_t *int_array, int val)30

{31

CFI_index_t lower_bound[1], upper_bound[1], stride[1];32

CFI_CDESC_T(1) array;33

int status;34

/* Create a new descriptor which will contain the section. */35

status = CFI_establish((CFI_cdesc_t *)&array,36

NULL,37

CFI_attribute_other,38

int_array->type,39

int_array->elem_len,40

/* rank */ 1,41

/* extents is ignored */NULL);42

43

628 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

lower_bound[0] = int_array->dim[0].lower_bound;1

upper_bound[0] = lower_bound[0] + (int_array->dim[0].extent - 1);2

stride[0] = 2;3

4

status = CFI_section((CFI_cdesc_t *)&array,5

int_array,6

lower_bound,7

upper_bound,8

stride);9

10

set_all((CFI_cdesc_t *) &array, val);11

12

/* Here one could make use of int_array and access all its data. */13

}14

2 The set_odd procedure can be called from Fortran as follows:15

INTEGER(C_INT) :: d(5)16

d = (/ 1, 2, 3, 4, 5 /)17

CALL set_odd(d, -1)18

PRINT *, d19

3 This program will print something like:20

-1 2 -1 4 -121

4 During execution of the subroutine SET_ALL, its dummy argument INT_ARRAY would have size (and upper22

bound) 3.23

5 It is also possible to invoke set_odd() from C. However, it would be the C programmer’s responsibility to make24

sure that all members of the C descriptor have the correct value on entry to the function. Inserting additional25

checking into the function could alleviate this problem.26

6 Following is an example C function that dynamically generates a C descriptor for an assumed-shape array and27

calls set_odd.28

#include <stdio.h>29

#include <stdlib.h>30

#include "ISO_Fortran_binding.h"31

32

#define ARRAY_SIZE 533

34

void example_of_calling_set_odd(void)35

{36

CFI_CDESC_T(1) d;37

CFI_index_t extent[1];38

CFI_index_t subscripts[1];39

void *base;40

J3/23-007 629

J3/23-007 WD 1539-1 2023-02-17

int i, status;1

base = malloc(ARRAY_SIZE*sizeof(int));2

extent[0] = ARRAY_SIZE;3

status = CFI_establish((CFI_cdesc_t *)&d,4

base,5

CFI_attribute_other,6

CFI_type_int,7

/* element length is ignored */ 0,8

/* rank */ 1,9

extent);10

set_odd((CFI_cdesc_t *)&d, -1);11

for (i=0; i<ARRAY_SIZE; i++) {12

subscripts[0] = i;13

printf(" %d",*((int *)CFI_address((CFI_cdesc_t *)&d, subscripts)));14

}15

putc(’\n’, stdout);16

free(base);17

}18

The above C function will print similar output to that of the preceding Fortran program.19

C.13.13 Use of CFI_setpointer20

1 The C function change_target modifies a pointer to an integer variable to become associated with a global21

variable defined inside C:22

#include "ISO_Fortran_binding.h"23

24

int y = 2;25

26

void change_target(CFI_cdesc_t *ip) {27

CFI_CDESC_T(0) yp;28

int status;29

/* Make local yp point at y. */30

status = CFI_establish((CFI_cdesc_t *)&yp,31

&y,32

CFI_attribute_pointer,33

CFI_type_int,34

/* elem_len is ignored */ sizeof(int),35

/* rank */ 0,36

/* extents are ignored */ NULL);37

/* Pointer-associate ip with (the target of) yp. */38

status = CFI_setpointer(ip, (CFI_cdesc_t *)&yp, NULL);39

if (status != CFI_SUCCESS) {40

. . . Report run time error.41

}42

}43

630 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

2 The restrictions on the use of CFI_establish prohibit direct modification of the incoming pointer entity ip by1

invoking that function on it.2

3 The following program illustrates the usage of change_target from Fortran.3

PROGRAM change_target_example4

USE, INTRINSIC :: ISO_C_BINDING5

INTERFACE6

SUBROUTINE change_target(ip) BIND(C)7

IMPORT :: C_INT8

INTEGER(C_INT), POINTER :: ip9

END SUBROUTINE10

END INTERFACE11

INTEGER(C_INT), TARGET :: it = 112

INTEGER(C_INT), POINTER :: it_ptr13

it_ptr => it14

WRITE (*,*) it_ptr15

CALL change_target(it_ptr)16

WRITE (*,*) it_ptr17

4 This will print something similar to18

119

220

C.13.14 Mapping of MPI interfaces to Fortran21

1 The Message Passing Interface (MPI) specifies procedures for exchanging data between MPI processes. This22

example shows the usage of MPI_Send and is similar to the second variant of EXAMPLE_Send in C.13.6.2. It also23

shows the usage of assumed-length character dummy arguments and optional dummy arguments.24

2 MPI_Send has the C prototype:25

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag,26

MPI_Comm comm);27

where MPI_Datatype and MPI_Comm are opaque handles. Most MPI C functions return an error code, which in28

Fortran is the last dummy argument to the corresponding subroutine and can be made optional. Thus, the use29

of a Fortran subroutine requires a wrapper function, declared as30

void MPI_Send_f(CFI_cdesc_t *buf, int count, MPI_Datatype_f datatype, int dest,31

int tag, MPI_Datatype_f comm, int *ierror);32

3 This wrapper function will convert MPI_Datatype_f and MPI_Comm_f to MPI_Datatype and MPI_Comm, and pro-33

duce a contiguous void * buffer from CFI_cdesc_t *buf (if necessary).34

4 Similarly, the wrapper function for MPI_Comm_set_name could have the C prototype:35

void MPI_Comm_set_name_f(MPI_Comm comm, CFI_cdesc_t *comm_name, int *ierror);36

J3/23-007 631

J3/23-007 WD 1539-1 2023-02-17

5 The Fortran handle types and interfaces are defined in the module MPI_F08. For example,1

MODULE mpi_f082

. . .3

TYPE, BIND(C) :: mpi_comm4

PRIVATE5

INTEGER(C_INT) :: mpi_val6

END TYPE mpi_comm7

8

INTERFACE9

SUBROUTINE MPI_SEND(buf,count,datatype,dest,tag,comm,ierror) &10

BIND(C, NAME=’MPI_Send_f’)11

USE, INTRINSIC :: ISO_C_BINDING12

IMPORT :: MPI_Datatype, MPI_Comm13

TYPE(*), DIMENSION(..), INTENT (IN) :: buf14

INTEGER(C_INT), VALUE, INTENT (IN) :: count, dest, tag15

TYPE(mpi_datatype), INTENT (IN) :: datatype16

TYPE(mpi_comm), INTENT (IN) :: comm17

INTEGER(C_INT), OPTIONAL, INTENT (OUT) :: ierror18

END SUBROUTINE mpi_send19

20

SUBROUTINE mpi_comm_set_name(comm,comm_name,ierror) &21

BIND(C, NAME=’MPI_Comm_set_name_f’)22

USE, INTRINSIC :: ISO_C_BINDING23

IMPORT :: mpi_comm24

TYPE(mpi_comm), INTENT (IN) :: comm25

CHARACTER(KIND=C_CHAR, LEN=*), INTENT (IN) :: comm_name26

INTEGER(C_INT), OPTIONAL, INTENT (OUT) :: ierror27

END SUBROUTINE mpi_comm_set_name28

END INTERFACE29

. . .30

END MODULE mpi_f0831

6 Some examples of invocation from Fortran are:32

USE, INTRINSIC :: ISO_C_BINDING33

USE :: MPI_f0834

35

TYPE(mpi_comm) :: comm36

REAL :: x(100)37

INTEGER :: y(10,10)38

REAL(KIND(1.0d0)) :: z39

INTEGER :: dest, tag, ierror40

. . .41

! Assign values to x, y, z and initialize MPI variables.42

. . .43

44

632 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

! Set the name of the communicator.1

CALL mpi_comm_set_name(comm, "Communicator Name", ierror)2

3

! Send values in x, y, and z.4

CALL mpi_send(x, 100, MPI_REAL, dest, tag, comm, ierror)5

IF (ierror/=0) PRINT *, ’WARNING: X send error’, ierror6

CALL mpi_send(y(3,:), 10, MPI_INTEGER, dest, tag, comm)7

CALL mpi_send(z, 1, MPI_DOUBLE_PRECISION, dest, tag, comm)8

7 The first example sends the entire array X and includes the optional error argument return value. The second9

example sends a noncontiguous subarray (the third row of Y) and the third example sends a scalar Z. Note the10

differences between the calls in this example and those in C.13.6.2.11

C.14 Clause 19 notes12

C.14.1 Examples of global identifiers and binding labels (19.2)13

Example 1:14

MODULE M115

INTERFACE16

SUBROUTINE S() BIND(C,NAME=’X’)17

END18

END INTERFACE19

END MODULE20

MODULE M221

INTERFACE22

SUBROUTINE S() BIND(C,NAME=’Y’)23

END24

END INTERFACE25

END MODULE26

1 The name S in each module is a local identifier. The two interfaces declare two different external procedures, one27

with the global identifier “X”, the other with the global identifier “Y”.28

Example 2:29

MODULE M130

INTERFACE31

SUBROUTINE S1() BIND(C,NAME=’X’)32

END33

END INTERFACE34

END MODULE35

MODULE M236

INTERFACE37

SUBROUTINE S2() BIND(C,NAME=’X’)38

END39

J3/23-007 633

J3/23-007 WD 1539-1 2023-02-17

END INTERFACE1

END MODULE2

2 The names S1 and S2 are local identifiers. The interfaces declare the same external procedure, which has the3

global identifier “X”.4

C.14.2 Examples of host association (19.5.1.4)5

1 The first two examples are examples of valid host association. The third example is an example of invalid host6

association.7

Example 1:8

PROGRAM A9

INTEGER I, J10

. . .11

CONTAINS12

SUBROUTINE B13

INTEGER I ! Declaration of I hides14

! program A’s declaration of I15

. . .16

I = J ! Use of variable J from program A17

! through host association18

END SUBROUTINE B19

END PROGRAM A20

Example 2:21

PROGRAM A22

TYPE T23

. . .24

END TYPE T25

. . .26

CONTAINS27

SUBROUTINE B28

IMPLICIT TYPE (T) (C) ! Refers to type T declared below29

! in subroutine B, not type T30

! declared above in program A31

. . .32

TYPE T33

. . .34

END TYPE T35

. . .36

END SUBROUTINE B37

END PROGRAM A38

634 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

Example 3:1

PROGRAM Q2

REAL (KIND = 1) :: C3

. . .4

CONTAINS5

SUBROUTINE R6

REAL (KIND = KIND (C)) :: D ! Invalid declaration7

! See below8

REAL (KIND = 2) :: C9

. . .10

END SUBROUTINE R11

END PROGRAM Q12

2 In the declaration of D in subroutine R, the use of C would refer to the declaration of C in subroutine R, not13

program Q. However, it is invalid because the declaration of C is required to occur before it is used in the14

declaration of D (10.1.12).15

J3/23-007 635

J3/23-007 WD 1539-1 2023-02-17

Index

In the index, entries in italics denote BNF terms, and page numbers in bold face denote primary text or
definitions.

Symbols
−, 155
<, 159, 461
<=, 159
>, 159
>=, 159
*, 52, 55, 57, 58, 63, 101, 105, 116, 139, 155, 245, 274,

287, 292, 314, 334
**, 155
+, 155
-stmt, 19
.AND., 150, 151, 154, 158, 158, 358
.EQ., 149, 151, 154, 159, 159–161, 305, 461
.EQV., 150, 151, 154, 158, 158
.FALSE., 66, 495
.GE., 149, 151, 154, 159, 159, 161, 305, 461
.GT., 149, 151, 154, 159, 159, 161, 305, 461
.LE., 149, 151, 154, 159, 159, 161, 305, 461
.LT., 149, 151, 154, 159, 159, 161, 305, 461
.NE., 149, 151, 154, 159, 159–161, 305, 461
.NEQV., 150, 151, 154, 158, 158, 423
.NIL., 47, 315, 315, 317
.NOT., 150, 151, 154, 158, 158
.OR., 150, 151, 154, 158, 158, 359
.TRUE., 66, 495
/, 155
/ edit descriptor, 284
//, 157
/=, 159, 461
: edit descriptor, 285
;, 51
<=, 461
==, 159, 461
>, 461
>=, 461

&, 51, 291

A
A edit descriptor, 281
ABS, 355, 464
ABSTRACT, 67, 67, 83, 305, 306
ABSTRACT attribute, 21, 67, 83
abstract interface, 13, 13, 297, 304, 306, 312, 332, 528,

532
abstract interface block, 13, 13, 306
abstract type, 21, 56, 80, 83, 83, 86, 131, 139
ac-do-variable (R784), 94, 94, 165, 167, 530
ac-implied-do (R782), 94, 94, 153, 530
ac-implied-do-control (R783), 94, 94, 153, 164–167, 530
ac-spec (R778), 93, 93
ac-value (R781), 93, 94, 94
access-id (R831), 113, 113
access-name, 113
access-spec (R807), 67, 72, 73, 78–80, 90, 91, 96, 99, 99,

113, 114, 307, 311
access-stmt (R830), 34, 91, 99, 113, 113, 114
ACCESS= specifier, 231, 231, 258, 259
accessibility attribute, 99, 113, 297
accessibility statement, 113
ACHAR, 66, 171, 356
ACOS, 356
ACOSD, 356
ACOSH, 28, 356
ACOSPI, 357
ACQUIRED_LOCK= specifier, 217, 543, 546
action, 222
action-stmt (R515), 5, 34, 34, 153, 198, 207
ACTION= specifier, 231, 232, 258, 259, 585
active image, 12, 38, 141, 142, 145, 146, 186, 187, 216,

219, 347, 417
actual argument, 3, 14, 28, 29, 38, 42–44, 57, 60, 70,

636 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

81, 82, 103, 105–109, 131, 133, 142, 144, 153,
163, 195, 250, 308–310, 313–326, 328, 337–339,
341–344, 348, 353, 355, 379, 404, 420, 421, 430,
447–449, 452, 464, 500–503, 505, 507, 509, 510,
531, 535–537, 540, 545–547, 557, 562, 604, 605,
607, 609, 610

actual-arg (R1524), 3, 314, 314, 315, 317
actual-arg-spec (R1523), 86, 314, 314
add-op (R1010), 48, 148, 149, 149
add-operand (R1006), 148, 148, 149, 152
ADJUSTL, 357
ADJUSTR, 357
ADVANCE= specifier, 236, 237, 238, 238, 250, 583
advancing input/output statement, 225
AIMAG, 132, 357
AINT, 358
ALL, 122, 358
alloc-opt (R930), 139, 139, 140, 145
allocatable, 3, 3, 18, 28, 42, 43, 55, 58, 68, 69, 74, 75, 77,

82, 85–87, 97, 101, 105, 107, 108, 112, 115, 125,
127, 131, 132, 139, 142–145, 163, 166, 168–174,
195, 210, 242, 243, 247, 288, 303, 304, 314,
315, 319, 321, 322, 325, 333, 339, 343, 359,
378, 388, 404, 405, 416, 417, 420, 421, 431,
435, 438, 441, 444, 448, 449, 459, 465, 495,
502, 505–507, 511, 518, 520–522, 534, 535, 544

ALLOCATABLE attribute, 3, 55–57, 66, 72, 99, 99,
101, 105, 106, 110–112, 114, 131, 134, 184,
190, 194, 202, 301, 304, 309, 310, 315, 317,
321, 325, 332, 341, 506, 534, 540, 541, 607,
611

ALLOCATABLE statement, 114
allocatable-decl (R833), 114, 114
allocatable-stmt (R832), 34, 114, 532
ALLOCATE statement, 55, 57, 63, 64, 102, 105, 139,

142, 145, 146, 174, 209, 452, 455, 516, 535,
536, 543–545, 549, 562

allocate-coarray-spec (R940), 139, 139, 140
allocate-coshape-spec (R941), 139, 139, 140
allocate-object (R934), 63, 64, 139, 139–146, 209, 452,

454, 455, 546, 547, 549
allocate-shape-spec (R935), 139, 139–142
allocate-stmt (R929), 34, 139, 547
ALLOCATED, 142, 146, 166, 359
allocation (R933), 139, 139–142
allocation status, 43, 85–87, 108, 111, 112, 142, 142–

146, 195, 210, 213, 214, 322, 326, 359, 416,
420, 522, 540, 544

alphanumeric-character (R601), 46, 46, 47
alt-return-spec (R1525), 5, 206, 314, 314
ancestor component, 83
ancestor-module-name, 300
and-op (R1020), 48, 150, 150
and-operand (R1015), 150, 150
ANINT, 359
ANY, 359
arg-name, 73, 75, 79
argument

dummy, 319
argument association, 4, 4, 22, 55, 64, 74, 75, 101, 105,

112, 113, 144, 145, 302, 316–318, 328, 335, 511,
531, 537, 539, 540, 556, 605

argument keyword, 10, 14, 44, 304, 307, 316, 343, 348,
464, 528, 529, 530, 593

arithmetic IF statement, 556
array, 3, 5, 11, 18, 43, 103–106, 133–136

assumed-shape, 3, 57, 102–105, 111, 124, 137, 304,
319–321, 323, 326, 332, 495, 508, 522, 604, 621,
627, 629

assumed-size, 3, 103, 105–107, 112, 125, 133, 134,
147, 165, 168, 190, 202, 203, 241, 318–321, 324,
325, 404, 435, 438, 448, 500, 503, 507–511, 515,
518–522, 616, 618, 620

deferred-shape, 3, 105, 111
explicit-shape, 3, 57, 74, 101, 103, 104, 167, 319,

321, 324, 507–510
array bound, 5, 73, 75, 98, 166
array constructor, 93, 93
array element, 3, 42, 134
array element order, 135
array pointer, 3, 3, 102, 105, 163, 361, 507
array section, 3, 102, 115, 116, 132, 134–137, 184, 227,

228, 319, 320, 326, 534, 537
array-constructor (R777), 93, 94, 147
array-element (R917), 115, 116, 125, 129, 130, 133, 195
array-name, 117, 532
array-section (R918), 3, 129, 133, 134, 135, 195
array-spec (R814), 25, 96, 97, 99, 103, 103, 105, 106,

114, 117, 119, 127
ASCII character, 4, 63, 66, 168, 227, 228, 243, 273, 287,

288, 356, 373, 395, 398, 406, 407, 418, 433
ASCII collating sequence, 66, 356, 373, 395, 398, 406,

J3/23-007 637

J3/23-007 WD 1539-1 2023-02-17

407, 418
ASIN, 360
ASIND, 360
ASINH, 360
ASINPI, 360
ASSIGN statement, 555
assigned format, 555
assigned GO TO statement, 555
ASSIGNMENT, 79, 172, 305, 309, 310
assignment, 168–181

defined, 79, 172, 309
elemental, 10, 172
elemental array (FORALL), 179
masked array (WHERE), 176
pointer, 172

assignment statement, 15, 16, 28, 41, 55, 82, 168, 180,
209, 210, 455, 492, 542, 544

assignment-stmt (R1033), 34, 168, 168, 177, 179, 180,
546

ASSOCIATE construct, 43, 183, 186, 325, 530, 531,
534, 546

associate name, 4, 4, 22, 55, 58, 85, 101, 106, 144, 183,
184, 186, 204, 531, 534, 535, 540, 546

ASSOCIATE statement, 43, 183, 534
associate-construct (R1102), 34, 183, 183
associate-construct-name, 183
associate-name, 183, 201, 202, 204, 206, 530
associate-stmt (R1103), 5, 183, 183, 207
ASSOCIATED, 143, 146, 166, 344, 361
associating entity, 4, 43, 64, 138, 183, 184, 186, 188,

205, 335, 540, 540
association, 4

argument, 4, 4, 22, 55, 64, 74, 75, 101, 105, 112,
113, 144, 145, 302, 316–318, 328, 335, 511, 531,
537, 539, 540, 556, 605

common, 128
construct, 4, 4, 144, 145, 531, 534, 537, 540
equivalence, 126
host, 4, 4, 36, 57, 58, 64, 100, 113, 115, 120, 128,

164, 165, 174, 300, 302, 325, 337, 339–341, 529,
531, 533, 534, 537, 540, 634

inheritance, 4, 4, 7, 44, 83, 86, 537, 540
linkage, 4, 4, 524, 531, 534, 534
name, 4, 4, 44, 531, 537
pointer, 4, 4, 8–10, 20, 22, 23, 41, 44, 82, 85, 87,

102, 108, 110, 112, 113, 131, 144, 146, 172, 174,

175, 194, 195, 210, 213, 214, 244, 303, 317–319,
322, 324, 325, 333, 335, 349, 361, 416, 420, 497,
499, 500, 511, 523, 526, 535–604

sequence, 324
storage, 4, 4, 44, 125–127, 336, 339, 441, 537–540
use, 4, 4, 28, 36, 44, 58, 64, 83, 99, 100, 110, 113,

120, 125–127, 164, 165, 174, 297, 296–300,
306, 335, 339, 341, 529–532, 535

association (R1104), 183, 183
association status, see pointer association status
assumed type parameter, 22, 22, 55, 57, 319, 321
assumed-implied-spec (R823), 105, 105, 106
assumed-rank dummy data object, 5, 42, 57, 81, 102,

103, 137, 201, 202, 303, 304, 310, 315, 319–
321, 326, 332, 403, 404, 420, 428, 435, 438,
448, 449, 495, 503, 508, 621, 622, 624

assumed-rank-spec (R827), 103, 106
assumed-shape array, 3, 57, 102–105, 111, 124, 137, 304,

319–321, 323, 326, 332, 495, 508, 522, 604, 621,
627, 629

assumed-shape-bounds-spec (R821), 103, 104, 105
assumed-shape-spec (R820), 103, 104, 105
assumed-size array, 3, 103, 105–107, 112, 125, 133, 134,

147, 165, 168, 190, 202, 203, 241, 318–321, 324,
325, 404, 435, 438, 448, 500, 503, 507–511, 515,
518–522, 616, 618, 620

assumed-size-spec (R824), 103, 105, 105
assumed-type, 5, 57, 319, 320, 332, 502, 508, 623
ASYNCHRONOUS attribute, 99, 99, 100, 114, 184,

190, 194, 239, 297, 299, 303, 304, 320, 321,
376, 429, 523, 526, 532, 533

asynchronous communication, 99, 526
asynchronous input/output, 99, 230, 232, 234, 239–241,

244, 251, 254–257, 260, 262
ASYNCHRONOUS statement, 114, 185, 300, 530, 533
asynchronous-stmt (R834), 34, 114
ASYNCHRONOUS= specifier, 231, 232, 236–238, 239,

258, 260
AT edit descriptor, 281
ATAN, 362
ATAN2, 30, 362
ATAN2D, 362
ATAN2PI, 363
ATAND, 363
ATANH, 364
ATANPI, 364

638 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

atomic subroutine, 20, 38, 210, 211, 343, 346–348, 364–
368, 386, 451, 456, 546

ATOMIC_ADD, 364, 452, 455
ATOMIC_AND, 365
ATOMIC_CAS, 365
ATOMIC_DEFINE, 365, 611, 612
ATOMIC_FETCH_ADD, 366
ATOMIC_FETCH_AND, 366
ATOMIC_FETCH_OR, 367
ATOMIC_FETCH_XOR, 367
ATOMIC_INT_KIND, 364–368, 451
ATOMIC_LOGICAL_KIND, 365, 366, 368, 451
ATOMIC_OR, 367
ATOMIC_REF, 368, 611, 612
ATOMIC_XOR, 368
attr-spec (R802), 96, 96–98, 119
attribute, 5, 56, 66, 70, 96–113, 299

ABSTRACT, 21, 67, 83
accessibility, 99, 113, 297
ALLOCATABLE, 3, 55–57, 66, 72, 99, 99, 101,

105, 106, 110–112, 114, 131, 134, 184, 190,
194, 202, 301, 304, 309, 310, 315, 317, 321,
325, 332, 341, 506, 534, 540, 541, 607, 611

ASYNCHRONOUS, 99, 99, 100, 114, 184, 190,
194, 239, 297, 299, 303, 304, 320, 321, 376,
429, 523, 526, 532, 533

BIND, 4, 5, 41, 67–69, 83, 88, 100, 100, 112, 114,
125, 127, 173, 174, 194, 204, 301, 303, 304,
331, 334, 505–508, 522–525, 534, 541, 616

CODIMENSION, 57, 73, 97, 100, 100, 106, 115
CONTIGUOUS, 72, 75, 102, 102, 103, 115, 137,

175, 194, 303, 319, 321–323, 326, 508–510, 538
DEFERRED, 78, 80, 83
DIMENSION, 73, 97, 103, 103, 111, 117, 127
EXTENDS, 21, 83, 83, 505
EXTERNAL, 26, 27, 107, 107, 110, 119, 120, 122,

174, 297, 301, 306, 311, 324, 329, 330, 532,
533, 601

INTENT, 107, 107–109, 118, 194, 562
INTENT (IN), 107, 107–109, 113, 190, 308–310,

319, 322, 324, 326, 338–340, 344, 364–368,
374–377, 386, 387, 392, 393, 417, 418, 426, 427,
466, 497–500, 522, 546, 562, 604, 618

INTENT (INOUT), 28, 107, 108, 109, 112, 195,
309, 315, 320, 322, 328, 340–342, 355, 364–368,
374–377, 387, 392, 393, 416, 417, 452, 454, 455,

546, 547, 618
INTENT (OUT), 28, 29, 57, 81, 82, 105, 107, 107–

109, 112, 144, 164, 309, 315, 320, 322, 328, 338,
340–342, 355, 364–368, 374–377, 379, 381, 386,
387, 391–393, 416, 417, 419, 424, 426, 427, 442,
468–470, 497, 499, 500, 522, 536, 537, 542, 543,
545–547, 618

INTRINSIC, 107, 109, 109, 110, 297, 313, 329, 533
NON_OVERRIDABLE, 78, 80
NON_RECURSIVE, 304, 331, 331, 332, 335, 336
OPTIONAL, 57, 109, 109, 112, 118, 164, 184, 190,

304
PARAMETER, 8, 41, 89, 98, 109, 109, 110, 118,

130
PASS, 73, 75, 79, 314
POINTER, 3, 15, 55–57, 66, 72, 97, 105, 106, 110,

110–112, 117, 119, 131, 134, 143, 173, 184, 194,
202, 302–304, 306, 309, 310, 312, 315, 317, 321,
324–327, 332, 339, 341, 502, 506, 522, 534, 537,
540, 541, 562, 607, 611

PRIVATE, 69, 84, 99, 99, 113, 339, 591
PROTECTED, 28, 110, 110, 111, 119, 126, 194,

298, 562
PUBLIC, 84, 99, 99, 113, 591
SAVE, 17, 23, 31, 43, 75, 76, 82, 98, 100, 101, 111,

111, 115, 119, 126, 128, 145, 194, 312, 338,
339, 536

SEQUENCE, 18, 67, 68, 68–70, 83, 127, 173, 174,
204, 505

TARGET, 4, 20, 28, 75, 110, 112, 112, 119, 126,
128, 143, 144, 173, 184, 194, 202, 304, 310,
319, 320, 322, 326, 327, 376, 416, 429, 497,
500, 502, 523, 535–537, 545, 562, 604, 605

VALUE, 57, 75, 81, 106, 112, 112, 119, 194, 244,
303, 304, 306, 308, 309, 318–322, 332, 338, 341,
376, 429, 508, 509, 526, 537, 562, 616, 618

VOLATILE, 28, 29, 112, 112, 113, 120, 173, 175,
184, 190, 194, 297, 299, 303, 304, 320–322, 338,
532, 533, 537, 543, 546, 569

attribute specification statements, 113–128
automatic data object, 5, 30, 97, 98, 101, 111, 115, 125,

127, 543, 557

B
B edit descriptor, 280
BACKSPACE statement, 222, 225, 251, 254, 256, 256,

583–585

J3/23-007 639

J3/23-007 WD 1539-1 2023-02-17

backspace-stmt (R1224), 34, 255, 339
base object, 5, 99, 102, 125, 131, 137, 164, 239, 325,

339, 341
BESSEL_J0, 369
BESSEL_J1, 369
BESSEL_JN, 369
BESSEL_Y0, 370
BESSEL_Y1, 370
BESSEL_YN, 370
BGE, 371
BGT, 371
binary-constant (R773), 93, 93
binary-reduce-op (R1132), 190, 190, 195
BIND (C), see BIND attribute
BIND attribute, 4, 5, 41, 67–69, 83, 88, 100, 100, 112,

114, 125, 127, 173, 174, 194, 204, 301, 303,
304, 331, 334, 505–508, 522–525, 534, 541, 616

BIND statement, 114, 300, 523, 529
bind-entity (R836), 114, 114
bind-stmt (R835), 34, 114
binding, 5, 79, 80, 80, 83, 84, 161, 172, 248, 253, 310,

331, 528, 529
binding label, 5, 100, 304, 312, 332, 334, 523–525, 527,

528, 562
binding name, 5, 79, 80, 84, 314, 529
binding-attr (R752), 79, 79
binding-name, 79, 80, 314, 331, 529
binding-private-stmt (R747), 78, 78, 80
bit model, 345
BIT_SIZE, 345, 371, 417, 418
blank common, 7, 97, 115, 127, 128, 536, 539
blank interpretation mode, 232
blank-interp-edit-desc (R1317), 270, 271
BLANK= specifier, 231, 232, 236–238, 239, 251, 258,

260, 286
BLE, 372
block, 5

interface, 298
block (R1101), 5, 182, 183–186, 188, 189, 192, 193, 195–

197, 199, 201, 204
BLOCK construct, 17, 27–29, 38, 41, 82, 98, 100, 102,

104, 110, 111, 113, 120, 122–124, 144, 164,
184, 338, 530, 536, 537, 543, 545, 549

block data program unit, 300
BLOCK DATA statement, 50, 296, 300
block scoping unit, 13, 18

BLOCK statement, 98, 102, 104, 184, 543
block-construct (R1107), 34, 184, 185
block-construct-name, 184, 185
block-data (R1420), 32, 122, 300, 300, 301
block-data-name, 300
block-data-stmt (R1421), 32, 300, 300
block-specification-part (R1109), 19, 184, 185, 185
block-stmt (R1108), 5, 184, 184, 185, 207
BLT, 372
BN edit descriptor, 286
bound, 3, 5, 5, 42, 43, 72, 73, 85, 87, 104, 139, 140, 146,

175, 210, 416, 531
bounds, 104–106, 133–136
bounds-remapping (R1037), 173, 173, 175
bounds-spec (R1036), 173, 173, 175
boz-literal-constant (R772), 48, 89, 92, 93, 93, 94, 117,

168, 170, 243, 280, 345, 371–373, 382–384, 396,
398–401, 413, 428, 429

branch, 206, 337, 555
branch target statement, 5, 37, 49, 177, 193, 206, 207,

207, 231, 235, 237, 255–257, 259, 315, 337
BTEST, 372
BZ edit descriptor, 286

C
C address, 6, 497–503, 505, 506, 511, 515, 517, 544, 545,

618
C descriptor, 6, 144, 508–512, 514–523
C_ALERT, 496
C_ASSOCIATED, 497
C_BACKSPACE, 496
C_BOOL, 495, 496
C_CARRIAGE_RETURN, 496
C_CHAR, 496, 500, 503, 562
C_DOUBLE, 496
C_DOUBLE_COMPLEX, 496
C_F_POINTER, 496, 497, 502
C_F_PROCPOINTER, 496, 499, 501
C_F_STRPOINTER, 496, 500
C_FLOAT, 496
C_FLOAT_COMPLEX, 496
C_FORM_FEED, 496
C_FUNLOC, 339, 499, 501, 525
C_FUNPTR, 6, 72, 83, 100, 131, 139–141, 171, 495–

497, 499, 501, 505, 506, 545
C_HORIZONTAL_TAB, 496
C_INT, 495

640 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

C_INT16_T, 495
C_INT32_T, 495
C_INT64_T, 495
C_INT8_T, 495
C_INT_FAST16_T, 495
C_INT_FAST32_T, 495
C_INT_FAST64_T, 495
C_INT_FAST8_T, 495
C_INT_LEAST16_T, 495
C_INT_LEAST32_T, 495
C_INT_LEAST64_T, 495
C_INT_LEAST8_T, 495
C_INTMAX_T, 495
C_INTPTR_T, 495
C_LOC, 57, 107, 339, 497, 502, 562
C_LONG, 495
C_LONG_DOUBLE, 496
C_LONG_DOUBLE_COMPLEX, 496
C_LONG_LONG, 495
C_NEW_LINE, 496
C_NULL_CHAR, 496, 503
C_NULL_FUNPTR, 495, 496
C_NULL_PTR, 495, 496, 497
C_PTR, 6, 72, 83, 100, 131, 139–141, 171, 495–497,

500, 502, 505, 506, 509, 544, 545, 616
C_PTRDIFF_T, 495
C_SHORT, 495
C_SIGNED_CHAR, 495
C_SIZE_T, 495
C_SIZEOF, 107, 165, 503
C_VERTICAL_TAB, 496
CALL statement, 20, 206, 210, 302, 314, 328, 337, 417
call-stmt (R1521), 34, 314, 315, 317
CASE statement, 199
case-construct (R1142), 34, 199, 199
case-construct-name, 199
case-expr (R1146), 199, 199
case-selector (R1147), 199, 199
case-stmt (R1144), 199, 199
case-value (R1149), 199, 199
case-value-range (R1148), 199, 199
CEILING, 373
CFI_address, 515
CFI_allocate, 515, 522
CFI_cdesc_t, 6, 508, 510, 511, 511, 512, 515–522
CFI_deallocate, 512, 516, 522

CFI_establish, 517, 561, 627, 628, 630, 631
CFI_is_contiguous, 518
CFI_section, 519, 629
CFI_select_part, 520
CFI_setpointer, 521, 630
CHANGE TEAM construct, 21, 43, 138, 183, 184, 186,

193, 206, 325, 530, 531, 546
CHANGE TEAM statement, 21, 37, 43, 186, 209, 219,

347, 534
change-team-construct (R1111), 34, 186, 186
change-team-stmt (R1112), 186, 186
changeable mode, 228
CHAR, 65, 373
char-length (R723), 63, 63, 64, 72, 73, 96–98, 558
char-length, 559
char-literal-constant (R724), 48, 52, 53, 64, 250, 270,

271, 548
char-selector (R721), 59, 63, 64
char-string-edit-desc (R1322), 269, 271
char-variable (R905), 129, 129, 227, 228
character context, 6, 46, 50–52, 65
character literal constant, 64
character sequence type, 18, 69, 126–128, 539, 542
character set, 46
character storage unit, 19, 19, 106, 126, 128, 451, 538,

542, 544
character string edit descriptor, 269, 286
character type, 63–66
CHARACTER_KINDS, 451
CHARACTER_STORAGE_SIZE, 451
characteristics, 6, 84, 175, 247–249, 303, 304, 306, 312,

313, 323, 328, 332, 333, 336, 355, 420
dummy argument, 303
procedure, 303

child data transfer statement, 226, 227, 238, 240, 243,
249, 247–251, 267, 290

CLASS, 56, 56, 58, 248
CLASS DEFAULT statement, 204
CLASS IS statement, 204, 388
CLASSOF, 56, 56
CLOSE statement, 222, 223, 227, 229, 230, 234, 234,

251, 254, 583
close-spec (R1209), 235, 235
close-stmt (R1208), 34, 235, 339
CMPLX, 170, 345, 373, 460
CO_BROADCAST, 374

J3/23-007 641

J3/23-007 WD 1539-1 2023-02-17

CO_MAX, 374
CO_MIN, 375
CO_REDUCE, 375, 552
CO_SUM, 376, 552
coarray, 6, 6, 8, 28, 38, 42, 43, 67, 72, 74, 82, 100–102,

107, 109, 110, 112, 113, 125, 127, 132, 138–142,
145, 146, 168, 169, 171, 173, 175, 184, 186–188,
190, 209–211, 297, 304, 314, 315, 320, 322, 323,
326, 328, 332, 347, 348, 351, 353, 364–368, 378,
399, 404, 416, 417, 444–446, 449, 454, 506, 507

established, 6, 43, 187, 399
coarray-association (R1113), 43, 186, 186
coarray-name, 115, 186, 530, 532
coarray-spec (R809), 72–74, 96, 97, 100, 100, 101, 114,

115, 119
cobound, 6, 42, 43, 100–102, 138, 141, 166, 184, 187,

323, 351, 353, 404, 416, 449, 531
codimension, 6, 6, 8, 42, 102, 138, 184, 303, 378, 404,

449
CODIMENSION attribute, 57, 73, 97, 100, 100, 106,

115
codimension-decl (R838), 115, 115, 184, 186, 187, 530
codimension-stmt (R837), 34, 115, 532
coindexed object, 6, 28, 38, 42, 43, 75, 115, 131, 137,

138, 140, 169, 171, 173, 174, 183, 208, 211, 215,
314, 315, 318–322, 326, 339, 364–368, 374–376,
386, 416, 446, 456, 497, 499, 501, 502

coindexed-named-object (R914), 129, 130, 132, 132
collating sequence, 6, 65, 66, 160, 273, 356, 373, 395,

398, 406, 407, 410–415, 418
collective subroutine, 20, 343, 347, 348, 374–376, 389,

441, 456, 546
COMMAND_ARGUMENT_COUNT, 166, 167, 377,

392
comment, 51, 52, 293
common association, 128
common block, 7, 31, 35, 41, 97, 98, 100, 110, 111, 114,

115, 125, 127, 128, 164, 300, 301, 523, 524,
527–531, 534, 537–539, 544, 558

common block storage sequence, 127
COMMON statement, 7, 127, 127–128, 185, 299, 300,

529, 539, 556
common-block-name, 114, 119, 127, 185, 299
common-block-object (R877), 127, 127, 299, 532
common-stmt (R876), 34, 127, 532
companion processor, 5, 7, 14, 39, 45, 67, 88, 89, 100,

496, 503, 524, 525
compatibility

Fortran 77, 31
Fortran 2003, 29
Fortran 2008, 28
Fortran 2018, 27
Fortran 90, 30
Fortran 95, 30

COMPILER_OPTIONS, 165, 451
COMPILER_VERSION, 165, 451
completion step, 39, 235
complex part designator, 9, 40, 132
complex type, 62
complex-literal-constant (R718), 48, 62
complex-part-designator (R915), 129, 132, 132, 133, 137
component, 6, 7, 9, 13, 14, 18, 20, 42, 66, 68, 72, 86,

120, 529
direct, 7, 7, 66, 67, 76, 320, 459, 505
parent, 4, 7, 77, 81, 83, 86, 540, 571
potential subobject, 7, 28, 66–68, 72, 100, 101, 112,

113, 140, 141, 145, 146, 168, 320, 339, 452, 454,
455

ultimate, 7, 28, 29, 66, 67, 102, 105, 107, 125, 127,
141, 143, 166, 167, 169, 190, 247, 315, 319,
326, 328, 338, 374, 375, 538

component definition statement, 18, 56, 72
component keyword, 14, 44, 77, 86, 529
component order, 7, 77, 86, 242
component specification expression, 18, 72, 166
component-array-spec (R740), 72, 72, 73
component-attr-spec (R738), 72, 72–75
component-data-source (R758), 86, 86, 87
component-decl (R739), 64, 72, 72–75
component-def-stmt (R736), 7, 72, 72
component-initialization (R743), 72, 75, 75, 76
component-name, 72, 75
component-part (R735), 67, 72, 78, 80
component-spec (R757), 85, 86, 86, 166
computed GO TO statement, 5, 206, 207, 556, 557
computed-goto-stmt (R1160), 35, 207, 207
concat-op (R1012), 48, 149, 149
CONCURRENT, 189
concurrent-control (R1126), 179, 180, 189, 190, 190,

192
concurrent-header (R1125), 179–181, 189, 189–191,

530, 531

642 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

concurrent-limit (R1127), 153, 180, 190, 190–192
concurrent-locality (R1129), 189, 190, 190
concurrent-step (R1128), 153, 180, 190, 190–192
conditional-arg (R1526), 314, 315, 315, 317
conditional-expr (R1002), 147, 148, 148, 153
conformable, 7, 42, 142, 154, 161, 168, 172, 328, 341,

389, 396, 397, 401, 411, 412, 414, 415, 422,
425, 442, 449, 482

CONJG, 377
connect-spec (R1205), 230, 230, 231
connected, 7, 11, 14, 16, 222–226, 229, 230, 232, 233,

235, 240, 245–247
connection mode, 228
consequent (R1527), 315, 315, 317
consequent-arg (R1528), 3, 315, 315, 317
constant, 7, 41, 48, 54

integer, 59
named, 118

constant (R604), 48, 48, 116, 130, 147
constant expression, 5, 8, 22, 30, 54, 55, 64, 71, 74,

75, 94, 98, 102, 104, 106, 115, 116, 118, 126,
164, 166, 166, 167, 167, 239, 303, 304, 325,
344, 356, 358, 359, 373, 378, 379, 389, 390,
395, 398, 400, 404, 405, 408, 409, 411, 414,
419, 428, 430, 432, 435, 438, 440, 441, 448–
450, 506, 507

constant-expr (R1030), 22, 55, 75, 76, 97, 98, 106, 109,
118, 167, 167, 199

constant-subobject (R850), 116, 116
construct

ASSOCIATE, 43, 182, 183, 186, 201, 325, 530, 531,
534, 546

BLOCK, 13, 17–19, 27–29, 38, 41, 82, 98, 100, 102,
104, 110, 111, 113, 120, 122–124, 144, 164, 182,
184, 338, 530, 536, 537, 543, 545, 549, 560

CHANGE TEAM, 21, 43, 138, 182–184, 186, 193,
206, 325, 530, 531, 546, 561, 562

CRITICAL, 182, 188, 188, 193, 206, 347
DO, 38, 49, 94, 116, 182, 189, 206, 243, 555, 573,

574
DO CONCURRENT, xiii, 28, 189, 193, 197, 206,

340, 530, 531, 537, 543, 545, 549, 558, 559
FORALL, 179, 340, 530, 531, 543, 556, 558
IF, 38, 182, 197, 467, 555
nonblock DO, 556, 559
SELECT CASE, 38, 182, 199, 556, 557, 572

SELECT RANK, 38, 43, 105, 106, 182, 184, 201,
325, 530, 531, 546, 559

SELECT TYPE, 38, 43, 55, 57, 182–184, 203, 325,
530, 531, 534, 546

WHERE, 15, 176
construct association, 4, 4, 144, 145, 531, 534, 537, 540
construct entity, 4, 8, 113, 123, 183, 185, 186, 191, 194,

203, 527, 528, 530, 537
construct-name, 206
constructor

array, 93
derived-type, 85
structure, 85

CONTAINS statement, 36, 37, 78, 337
contains-stmt (R1546), 33, 78, 297, 337
contiguous, 8, 18, 28, 69, 75, 102, 130, 137, 175, 176,

184, 195, 239, 246, 403, 502, 538, 562
CONTIGUOUS attribute, 72, 75, 102, 102, 103, 115,

137, 175, 194, 303, 319, 321–323, 326, 508–510,
538

CONTIGUOUS statement, 115
contiguous-stmt (R839), 34, 115
continuation, 51, 52
CONTINUE statement, 207, 555
continue-stmt (R1161), 34, 191, 207
control character, 46, 64, 221, 224
control edit descriptor, 269, 283–286
control information list, 236
control mask, 177
control-edit-desc (R1313), 269, 270
conversion

numeric, 170
corank, 8, 42, 43, 74, 100–103, 131, 138, 140, 147, 184,

187, 303, 315, 317, 322, 378, 399, 404, 416,
444, 445, 449, 531

COS, 377
COSD, 378
COSH, 378
COSHAPE, 378
COSPI, 379
cosubscript, 8, 42, 43, 102, 138, 353, 399, 444, 445, 449
cosubscript (R927), 131, 138, 138
COUNT, 344, 379
CPU_TIME, 379
CRITICAL construct, 188, 193, 206
CRITICAL statement, 162, 188, 209, 210, 220

J3/23-007 643

J3/23-007 WD 1539-1 2023-02-17

critical-construct (R1116), 34, 188, 188
critical-construct-name, 188
critical-stmt (R1117), 5, 188, 188, 207
CSHIFT, 380
current record, 225
current team, 21, 82, 138, 141, 142, 145, 146, 186, 187,

211, 212, 214, 216, 219, 347, 348, 374, 389,
394, 399, 400, 417, 421, 440, 441, 444, 445,
449, 452, 456

CURRENT_TEAM, 394, 452
CYCLE statement, 182, 189, 193, 193, 558
cycle-stmt (R1135), 34, 193, 193

D
d (R1310), 270, 270, 275–279, 282, 283, 290
D edit descriptor, 276
data edit descriptor, 269, 273–283
data entity, 7, 8, 15, 17, 23, 40, 41, 503
data object, 5–7, 8, 8–10, 17, 18, 20, 23, 35–37, 40, 42,

44
data object designator, 10, 17, 42, 129
data object reference, 17, 41–43
data pointer, 15, 15, 43, 74, 76, 86, 87, 110, 128, 129,

139, 173, 322, 333, 497, 511, 517, 521, 535,
537, 538, 572, 604

DATA statement, 27, 29, 31, 37, 93, 98, 115, 128, 185,
300, 421, 530, 533, 541, 556, 557

data transfer, 245
data transfer input statement, 236
data transfer output statement, 236
data transfer statement, 31, 49, 221–227, 229, 236,

241, 244–246, 250, 254, 256, 265–269, 280, 285,
287–292, 294, 453, 454, 542, 544, 551, 583, 584,
587, 588

data type, 21, see type
data-component-def-stmt (R737), 72, 72–74
data-edit-desc (R1307), 269, 269
data-i-do-object (R844), 115, 115, 116
data-i-do-variable (R845), 115, 115, 116, 167, 530
data-implied-do (R843), 115, 115–117, 167, 530
data-pointer-component-name, 173
data-pointer-initialization compatible, 75
data-pointer-object (R1035), 173, 173, 174, 180, 361,

547
data-ref (R911), 5, 56, 57, 130, 131–133, 173, 174, 239,

314, 317, 325, 331
data-stmt (R840), 33, 115, 306, 339, 532

data-stmt-constant (R848), 93, 116, 116, 117
data-stmt-object (R842), 115, 115–117
data-stmt-repeat (R847), 116, 116
data-stmt-set (R841), 115, 115
data-stmt-value (R846), 115, 116, 116
data-target (R1038), 86, 87, 110, 173, 173, 174, 180,

325, 339, 361
DATE_AND_TIME, 381
DBLE, 345, 382
DC edit descriptor, 286
dealloc-opt (R945), 143, 144, 144, 145
DEALLOCATE statement, 143, 145, 146, 209, 452,

455, 516, 549
deallocate-stmt (R944), 34, 143, 547
decimal edit descriptor, 286
decimal edit mode, 232
decimal symbol, 8, 232, 239, 260, 273–279, 286, 288
decimal-edit-desc (R1318), 270, 271
DECIMAL= specifier, 231, 232, 236–238, 239, 251,

258, 260, 286
declaration, 8, 36, 96–128
declaration-construct (R507), 33, 33, 185
declaration-type-spec (R703), 56, 56, 57, 64, 72, 73, 96,

98, 120, 164, 311, 312, 331, 334
declared type, 21, 57, 58, 75, 86, 87, 94, 96, 130, 132,

140, 141, 143, 148, 161–163, 168, 171, 172, 174,
175, 183, 202, 204, 205, 253, 309, 314, 315, 317,
318, 321, 331, 338, 388, 412, 416, 431, 452, 454,
531

DEFAULT, 190, 199, 204
default character, 63
default complex, 62
default initialization, 8, 9, 74–77, 86, 87, 98, 105, 107,

115, 126–128, 320, 421, 535, 539, 540, 544
default real, 61
default-char-constant-expr (R1031), 100, 167, 167, 236,

237
default-char-expr (R1026), 163, 163, 167, 207, 231–241
default-char-variable (R906), 129, 129, 139, 231, 258–

264
default-initialized, 9, 76, 108, 332, 535–537, 541, 543,

545
DEFERRED attribute, 78, 80, 83
deferred type parameter, xiii, 22, 22, 28, 55, 57, 64,

87, 110, 128, 132, 139, 140, 142, 146, 168, 169,
175, 195, 210, 288, 303, 321, 332, 355, 405,

644 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

420, 441, 497, 498, 508, 535, 540
deferred-coshape-spec (R810), 72, 100, 101, 101
deferred-shape array, 3, 105, 111
deferred-shape-spec (R822), 72, 103, 105, 105, 118
definable, 9, 108–110, 136, 169, 184, 241, 318, 320, 322,

327, 537, 547
defined, 9, 9, 23, 41, 43
defined assignment, 9, 20, 168, 171, 172, 177, 180, 302,

309, 314, 320, 339, 340
defined assignment statement, 3, 29, 172, 328, 546
defined input/output, 9, 228, 233, 242, 243, 247, 248,

249, 250, 250, 251, 251, 251, 247–253, 264,
283, 290, 294, 295, 302, 308, 310, 314, 328,
339, 454, 607

defined operation, 9, 17, 151, 160, 161, 161–164, 190,
302, 308, 314, 328, 339

defined-binary-op (R1024), 15, 49, 150, 150, 151, 161,
298

defined-io-generic-spec (R1509), 9, 79, 247–249, 253,
305, 305, 308, 310

defined-operator (R609), 49, 79, 299, 305, 562
defined-unary-op (R1004), 15, 49, 148, 148, 151, 160,

298
definition, 9, 9
definition of variables, 541
deleted features, 26, 27, 30, 31, 555, 556
DELIM= specifier, 231, 232, 236–238, 240, 251, 258,

260, 293, 294, 585
delimiter mode, 232
derived type, 9, 20, 21, 40, 54, 66–88, 94, 505, 506
derived type definition statement, see TYPE statement
derived type determination, 69
derived-type type specifier, 57
derived-type-def (R726), 33, 58, 67, 68, 70, 71, 505
derived-type-spec (R754), 22, 56–58, 64, 85, 85, 86, 204,

248, 529
derived-type-stmt (R727), 67, 67, 68, 70, 71, 99, 532
descendant, 9, 36, 68, 78, 80, 110, 300, 528
designator, 6, 9, 10, 44, 106, 107, 112, 115, 125, 127,

133, 133, 163, 165, 166, 291, 292, 324, 325,
339, 341

data object, 129
designator (R901), 75, 115, 116, 129, 129, 131, 132,

147, 173, 183, 195, 291, 338, 339, 378, 399,
404, 444, 449

designator, 147

digit, 24, 46, 46, 49, 60, 93, 288
digit-string (R711), 24, 59, 60, 60, 61, 274, 275, 281
digit-string, 60
DIGITS, 382
DIM, 382
DIMENSION attribute, 73, 97, 103, 103, 111, 117, 127
DIMENSION statement, 117, 300
dimension-stmt (R851), 34, 117, 532
direct access, 223
direct access data transfer statement, 240
direct component, 7, 7, 66, 67, 76, 320, 459, 505
DIRECT= specifier, 258, 260
disassociated, 9, 10, 23, 43, 58, 75–77, 98, 105, 117, 143,

145, 146, 163, 172, 174, 175, 312, 325, 343, 388,
420, 421, 431, 441, 465, 535, 536, 545

distinguishable, 310
DO CONCURRENT construct, 28, 189, 193, 197, 206,

340, 530, 531, 537, 543, 545, 549, 558
DO CONCURRENT statement, 57, 179, 189
DO construct, 38, 49, 94, 116, 189, 206, 243, 555, 573,

574
DO statement, 189, 542, 556, 558
DO WHILE statement, 189
do-construct (R1119), 34, 189, 191, 193, 206
do-construct-name, 189, 191, 193
do-stmt (R1120), 5, 189, 189, 191, 207, 546
do-variable (R1124), 94, 115, 189, 189, 191, 241, 242,

265–267, 289, 542, 544, 546, 584
DOT_PRODUCT, 383
DOUBLE PRECISION, 50, 59, 61, 67
DP edit descriptor, 286
DPROD, 383
DSHIFTL, 383
DSHIFTR, 384
DT edit descriptor, 283
dtv-type-spec (R1221), 248
dummy argument, 3, 4, 6, 10, 10, 14, 16, 22, 23, 28, 38,

43, 44, 47, 55–58, 63, 64, 70, 73, 75, 79, 81,
82, 84, 85, 97, 99, 101, 103–105, 107–109, 111–
113, 115, 118, 119, 124, 125, 127, 139, 141, 142,
144, 145, 160, 161, 163, 164, 172, 175, 190, 195,
210, 244, 249–251, 302–311, 313–325, 332, 336,
338, 339, 341, 342, 420, 452, 508–510, 529–531,
537, 546, 547, 562, 593, 604

characteristics of, 303
restrictions, 326

J3/23-007 645

J3/23-007 WD 1539-1 2023-02-17

dummy data object, 5, 6, 10, 57, 75, 98, 105–107, 111,
112, 303, 308–310

assumed-rank, 5, 42, 57, 81, 102, 103, 137, 201,
202, 303, 304, 310, 315, 319–321, 326, 332,
403, 404, 420, 428, 435, 438, 448, 449, 495,
503, 508, 621, 622, 624

dummy function, 10, 64, 97
dummy procedure, 6, 10, 12, 16, 107, 120, 124, 165,

174, 302, 303, 305, 306, 311, 312, 315, 323,
324, 330, 332, 335, 338–341, 525, 528, 533

dummy-arg (R1539), 334, 334–336
dummy-arg-name (R1534), 118, 119, 302, 333, 333, 334,

337, 338, 532
dynamic type, 16, 21, 23, 57, 58, 81, 83, 85, 87, 94, 112,

141, 143, 145, 161–163, 169, 171, 172, 174, 184,
203, 204, 210, 213, 214, 253, 314, 321, 331, 388,
412, 416, 431, 441, 508, 531, 535, 540, 571, 620

E
e (R1311), 270, 270, 276–279, 282, 283, 290
E edit descriptor, 276
edit descriptor, 269

/, 284
:, 285
A, 281
AT, 281
B, 280
BN, 286
BZ, 286
character string, 269, 286
control, 269, 283–286
D, 276
data, 269, 273–283
DC, 286
decimal, 286
DP, 286
DT, 283
E, 276
EN, 277
ES, 278
EX, 279
F, 275
G, 281, 282
H, 555
I, 274
L, 281
LZ, 285

LZP, 285
LZS, 285
O, 280
P, 285
position, 283
RC, 286
RD, 286
RN, 286
round, 286
RP, 286
RU, 286
RZ, 286
S, 285
SP, 285
SS, 285
T, 284
TL, 284
TR, 284
X, 284
Z, 280

effective argument, 3–5, 10, 22, 55, 57, 58, 64, 102–106,
108, 109, 210, 318–321, 323, 324, 327, 330, 428,
497, 508, 509, 531, 537, 540, 542, 545

effective item, 10, 242, 243, 245, 247, 250, 251, 253, 265,
266, 271, 272, 285, 287–289, 292, 293, 328

effective position, 311
element sequence, 324
ELEMENTAL, 11, 331, 332, 336, 338, 341
elemental, 10, 21, 42, 64, 81, 84, 161, 166, 172, 175, 177,

178, 302–304, 312, 320, 323, 328, 330, 336, 341,
343, 348, 369, 370, 417, 465, 466, 468

elemental array assignment (FORALL), 179
elemental assignment, 10, 172
elemental operation, 10, 153, 164, 178
elemental operator, 11, 153, 459
elemental procedure, 11, 42, 164, 174, 312, 315, 325,

329, 331, 340, 341, 341, 343, 344
elemental reference, 11, 178, 320, 328–331, 341
elemental subprogram, 11, 331, 332, 341
ELSE IF statement, 50, 197
ELSE statement, 197
else-if-stmt (R1138), 197, 197
else-stmt (R1139), 197, 197
ELSEWHERE statement, 50, 177
elsewhere-stmt (R1049), 176, 177, 177
EN edit descriptor, 277

646 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

ENCODING= specifier, 231, 232, 258, 260, 550
END ASSOCIATE statement, 50, 183
END BLOCK DATA statement, 50, 300
END BLOCK statement, 50, 145, 185
END CRITICAL statement, 50, 162, 188, 209, 210
END DO statement, 50, 191
END ENUM statement, 50, 88
END ENUMERATION TYPE statement, 91
END FORALL statement, 50, 179
END FUNCTION statement, 50, 333
END IF statement, 50, 197, 555
END INTERFACE statement, 50, 305
END MODULE statement, 50, 297
END PROCEDURE statement, 50, 335
END PROGRAM statement, 50, 296
END SELECT statement, 50, 199, 204
END statement, 11, 37, 37, 38, 50, 52, 82, 110, 111,

128, 144, 145, 210, 497, 545
END SUBMODULE statement, 50, 300
END SUBROUTINE statement, 50, 334
END TEAM statement, 37, 50, 186, 206, 209, 219, 347
END TYPE statement, 50, 68
END WHERE statement, 50, 177
end-associate-stmt (R1106), 5, 183, 183, 207
end-block-data-stmt (R1422), 11, 33, 37, 300, 300
end-block-stmt (R1110), 5, 184, 185, 185, 207
end-change-team-stmt (R1114), 186, 186, 187
end-critical-stmt (R1118), 5, 188, 188, 207
end-do (R1133), 189, 191, 191, 193
end-do-stmt (R1134), 5, 191, 191, 207
end-enum-stmt (R763), 88, 88
end-enumeration-type-stmt (R769), 90, 91
end-forall-stmt (R1055), 179, 179
end-function-stmt (R1536), 5, 11, 19, 32, 37, 207, 305,

333, 333, 337
end-if-stmt (R1140), 5, 197, 197, 207
end-interface-stmt (R1504), 305, 305
end-module-stmt (R1406), 11, 32, 37, 297, 297
end-mp-subprogram-stmt (R1543), 5, 11, 19, 33, 37, 207,

335, 335, 337
end-program-stmt (R1403), 5, 11, 19, 32, 37, 39, 82, 207,

296, 296
end-select-rank-stmt (R1153), 5, 201, 202, 202, 207
end-select-stmt (R1145), 5, 199, 199, 200, 207
end-select-type-stmt (R1157), 5, 204, 204, 205, 207
end-submodule-stmt (R1419), 11, 32, 37, 300, 300

end-subroutine-stmt (R1540), 5, 11, 19, 32, 37, 207, 305,
334, 334, 337

end-type-stmt (R730), 67, 68
end-where-stmt (R1050), 176, 177, 177
END= specifier, 5, 236, 237, 254, 255, 265
endfile record, 222
ENDFILE statement, 50, 222, 223, 225, 232, 251, 254,

256, 583, 584
endfile-stmt (R1225), 34, 255, 339
entity-decl (R803), 64, 73, 96, 97, 97, 98, 166, 167, 532
entity-name, 114, 119
ENTRY statement, 10, 37, 160, 161, 172, 297, 302, 306,

331, 333, 335, 341, 529, 539, 556, 558
entry-name, 333, 335, 336, 529
entry-stmt (R1544), 33, 297, 300, 306, 335, 335, 529,

532
enum constructor, 89, 93, 163, 165, 166
ENUM statement, 88
enum type, 54, 55, 57, 58, 72, 88, 128, 155, 199, 274,

275, 280, 282, 288, 293, 400, 401, 505
enum-constructor (R765), 89, 89, 116, 147
enum-def (R759), 33, 88, 88, 89, 532
enum-def-stmt (R760), 88, 88
enum-type-name, 88, 171, 532
enum-type-spec (R764), 56, 57, 88, 88, 89
enumeration, 88
enumeration constructor, 163, 165, 166
enumeration type, 54, 55, 57, 72, 90, 99, 125, 127, 155,

160, 199, 242, 274, 280, 395, 400, 401, 419, 424
ENUMERATION TYPE statement, 90
enumeration-constructor (R771), 91, 116, 147
enumeration-enumerator-stmt (R768), 90, 91
enumeration-type-def (R766), 33, 90
enumeration-type-name, 90, 91, 532
enumeration-type-spec (R770), 56, 57, 91, 91
enumeration-type-stmt (R767), 90, 90, 91, 99, 532
enumerator, 88
enumerator (R762), 88, 88
ENUMERATOR statement, 88
enumerator-def-stmt (R761), 88, 88
EOR= specifier, 5, 236, 237, 255, 266, 266, 584
EOSHIFT, 384
EPSILON, 385
equiv-op (R1022), 48, 150, 150
equiv-operand (R1017), 150, 150
equivalence association, 126

J3/23-007 647

J3/23-007 WD 1539-1 2023-02-17

EQUIVALENCE statement, 125, 125–128, 185, 299,
300, 539, 556, 558

equivalence-object (R875), 125, 125–127, 299
equivalence-set (R874), 125, 125, 126
equivalence-stmt (R873), 34, 125, 532
ERF, 385
ERFC, 386
ERFC_SCALED, 386
ERR= specifier, 5, 231, 235, 236, 255–259, 265
errmsg-variable (R931), 139, 139, 140, 144, 146, 206,

208, 209, 211, 212, 215, 217–220, 546, 549
ERRMSG= specifier, 139, 142, 144, 146, 188, 209, 211,

218, 543, 549, 561
error indicator, 514
ERROR STOP statement, 38, 39, 207, 549
error termination, 39, 82, 142, 144, 207, 209, 251, 265,

266, 347, 364–368, 386, 387, 417, 419, 425, 429,
548, 551

error-stop-stmt (R1163), 34, 82, 207
ERROR_UNIT, 228, 229, 233, 452
ES edit descriptor, 278
established coarray, 6, 43, 138, 187, 399
evaluation

operations, 153
optional, 162
parentheses, 162

EVENT POST statement, 209, 215, 215, 216, 219, 386,
452, 453, 543, 546, 550

event variable, 23, 38, 210, 215, 216, 219, 386, 387, 452,
453, 543

EVENT WAIT statement, 209, 215, 215, 219, 452, 453,
543, 546, 550

event-post-stmt (R1174), 34, 215
event-variable (R1175), 215, 215, 218, 219, 452, 546
event-wait-spec (R1177), 208, 215, 215
event-wait-stmt (R1176), 34, 215, 215
EVENT_QUERY, 386, 561, 580, 614
EVENT_TYPE, 23, 68, 107, 140, 141, 215, 452
EX edit descriptor, 279
executable construct, 182
executable statement, 19, 19, 36
executable-construct (R514), 19, 33, 34, 335
EXECUTE_COMMAND_LINE, 353, 387
execution control, 182
execution-part (R509), 32, 33, 33, 296, 333–335
execution-part-construct (R510), 33, 33, 182

exist, 222, 229
EXIST= specifier, 258, 260
EXIT statement, 182, 193, 206
exit-stmt (R1158), 34, 206, 206
EXP, 387
explicit formatting, 268–286
explicit initialization, 11, 76, 77, 97, 98, 115, 535, 539,

541
explicit interface, 13, 29, 74, 79, 120, 124, 175, 303–307,

312–314, 317, 323, 324, 337, 339, 528, 529, 546,
562, 592

explicit-bounds-expr (R819), 104, 104, 105
explicit-coshape-spec (R811), 100, 101, 101
explicit-shape array, 3, 57, 74, 101, 103, 104, 167, 319,

321, 324, 507–510
explicit-shape-bounds-spec (R818), 3, 103, 104, 104
explicit-shape-spec (R815), 3, 72, 73, 99, 103, 104, 104–

106, 127
EXPONENT, 388, 472
exponent (R717), 61, 61
exponent-letter (R716), 61, 61
expr (R1023), 25, 82, 86, 89, 93, 94, 139, 147, 148, 150,

150, 151, 153, 163, 165–174, 178, 180, 183, 186,
195, 199, 241, 314, 315, 317, 337, 339, 492, 545

expression, 147, 147–167
component specification, 18, 72, 166
constant, 5, 8, 22, 30, 54, 55, 64, 71, 74, 75, 94, 98,

102, 104, 106, 115, 116, 118, 126, 164, 166,
166, 167, 167, 239, 303, 304, 325, 344, 356,
358, 359, 373, 378, 379, 389, 390, 395, 398,
400, 404, 405, 408, 409, 411, 414, 419, 428,
430, 432, 435, 438, 440, 441, 448–450, 506, 507

specification, 18, 22, 38, 71, 82, 99, 133, 164, 165,
165, 166, 185, 336, 460, 557

extended real model, 346
extended type, 4, 7, 13, 21, 22, 71, 77, 81, 83, 84, 540,

563, 568
extended-intrinsic-op (R610), 49, 49
EXTENDS attribute, 21, 83, 83, 505
EXTENDS_TYPE_OF, 166, 388
extensible type, 21, 56, 67, 75, 83, 248, 388, 431, 571,

609
extension operation, 151
extension type, 22, 58, 83, 84, 204, 205, 321, 388, 609
extent, 11, 42, 320
EXTERNAL attribute, 26, 27, 107, 107, 110, 119, 120,

648 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

122, 174, 297, 301, 306, 311, 324, 329, 330,
532, 533, 601

external file, 11, 11, 30, 221–226, 228–230, 234, 239,
257, 273, 283, 293, 340, 525, 583, 616

external input/output unit, 11, 527
external linkage, 100, 495, 523–525
external procedure, 16, 26, 35, 79, 107, 120, 174, 214,

302, 303, 305–307, 311, 312, 315, 324, 330, 331,
527, 528, 532, 533, 562, 592, 593, 598, 601, 602

EXTERNAL statement, 107, 311
external subprogram, 17, 20, 35, 302
external unit, 11, 228–230, 245, 250, 251, 261, 267, 452,

453, 455
external-name, 311
external-stmt (R1511), 34, 311
external-subprogram (R503), 32, 32, 122, 335

F
F edit descriptor, 275
F_C_STRING, 503
FAIL IMAGE statement, 208
fail-image-stmt (R1165), 34, 208
failed image, 12, 38, 138, 141, 145, 146, 187, 217, 347,

348, 417
FAILED_IMAGES, 389
field, 271
file

connected, 229
external, 11, 11, 30, 221–226, 228–230, 234, 239,

257, 273, 283, 293, 340, 525, 583, 616
internal, 14, 14, 221, 227–230, 239, 243, 245–247,

250, 251, 265, 266, 283, 284, 542, 544
file access method, 222–224
file connection, 227–235
file inquiry statement, 258
file position, 222, 225
file positioning statement, 222, 255
file storage unit, 11, 19, 221, 224–227, 234, 239, 240,

246, 256, 262–264, 453, 538
file-name-expr (R1206), 231, 231, 232, 258, 259, 261
file-unit-number (R1202), 227, 227, 228, 230, 231, 235,

237, 250, 254, 255, 257–261, 263, 264, 339, 454
FILE= specifier, 230, 231, 232, 233, 234, 258, 259, 259,

546, 585
FILE_STORAGE_SIZE, 453
FINAL statement, 11, 81
final subroutine, 5, 11, 11, 29, 80–82, 136, 319, 567, 568

final-procedure-stmt (R753), 79, 81
final-subroutine-name, 81
finalizable, 11, 29, 81, 105, 107, 145, 190
finalization, 11, 17, 81, 82, 136, 179, 302, 314, 328, 338,

339
FINDLOC, 389
fixed source form, 51, 51
FLOOR, 390
FLUSH statement, 223, 254, 257, 266
flush-spec (R1229), 257, 257
flush-stmt (R1228), 34, 257, 339
FMT= specifier, 236, 238
FORALL construct, 179, 340, 530, 531, 543, 556, 558
FORALL statement, 57, 153, 180, 530, 531, 542
forall-assignment-stmt (R1054), 153, 179, 179, 180, 340
forall-body-construct (R1053), 179, 179, 180
forall-construct (R1051), 34, 179, 179, 180
forall-construct-name, 179
forall-construct-stmt (R1052), 5, 179, 179, 207
forall-stmt (R1056), 35, 179, 180, 180, 207
FORM TEAM statement, 20, 21, 37, 186, 209, 216,

219, 543, 546, 550
form-team-spec (R1182), 216, 216
form-team-stmt (R1179), 34, 216
FORM= specifier, 231, 233, 258, 260
format (R1215), 236, 237, 238, 238, 245, 268, 269
format control, 271
format descriptor, see edit descriptor
FORMAT statement, 26, 37, 49, 185, 238, 268, 268,

297
format-item (R1304), 269, 269
format-items (R1303), 268, 269, 269
format-specification (R1302), 268, 268
format-stmt (R1301), 33, 268, 268, 297, 300, 306
FORMATTED, 248, 305
formatted data transfer, 246
formatted input/output statement, 221, 238
formatted record, 221
FORMATTED= specifier, 258, 261
formatting

explicit, 268–286
list-directed, 247, 287–290
namelist, 247, 291–295

forms, 222
Fortran 2003 compatibility, 29
Fortran 2008 compatibility, 28

J3/23-007 649

J3/23-007 WD 1539-1 2023-02-17

Fortran 2018 compatibility, 27
Fortran 77 compatibility, 31
Fortran 90 compatibility, 30
Fortran 95 compatibility, 30
Fortran character set, 46, 63
FRACTION, 391
free source form, 50, 50
function, 12

intrinsic, 343
intrinsic elemental, 343
intrinsic inquiry, 343

function reference, 17, 40, 41, 328
function result, 12, 29, 64, 96, 120, 125, 127, 144, 303,

333, 336, 341, 508, 529, 539, 545
FUNCTION statement, 10, 57, 58, 120, 160, 161, 164,

296, 331, 333, 335, 336, 529
function-name, 97, 306, 333, 336, 337, 529, 532
function-reference (R1520), 86, 97, 129, 147, 314, 317,

328
function-stmt (R1533), 32, 305, 306, 332, 333, 333, 529,

532
function-subprogram (R1532), 20, 32, 33, 297, 333, 335

G
G edit descriptor, 281, 282
GAMMA, 391
generic identifier, 12, 13, 297, 306–308, 310, 330, 343,

527, 532
generic interface, 13, 80, 83, 88, 109, 160, 161, 172, 253,

298, 299, 307, 307–309, 329, 528, 611
generic interface block, 13, 13, 306, 307, 310, 562
generic procedure reference, 310
GENERIC statement, 79, 80, 307, 307, 310, 329
generic-name, 79, 80, 305, 529, 532
generic-spec (R1508), 13, 14, 79, 80, 83, 113, 161, 172,

298, 299, 305, 305–307, 329, 529, 532
generic-stmt (R1510), 33, 307
GET_COMMAND, 391
GET_COMMAND_ARGUMENT, 392
GET_ENVIRONMENT_VARIABLE, 393, 552
GET_TEAM, 166, 167, 394, 452, 453, 455
global entity, 527
global identifier, 527
GO TO statement, 5, 50, 206, 207
goto-stmt (R1159), 34, 207, 207
graphic character, 46, 64, 293

H
halting mode, 458, 463, 463, 466, 468, 482, 488, 526,

553
hex-constant (R775), 93, 93
hex-digit (R776), 93, 93, 281
hex-digit-string (R1323), 281, 281
host, 12, 13, 35, 300, 338, 529, 532, 533
host association, 4, 4, 16, 36, 57, 58, 64, 100, 113, 115,

120, 128, 164, 165, 174, 300, 302, 325, 337,
339–341, 529, 531, 533, 534, 537, 540, 634

host instance, 12, 175, 315, 316, 324, 335, 361, 532, 536,
540, 545

host scoping unit, 12, 35, 120, 123, 329, 330, 533, 540
HUGE, 395
HYPOT, 395

I
I edit descriptor, 274
IACHAR, 66, 171, 395
IALL, 396
IAND, 190, 194, 365, 396
IANY, 397
IBCLR, 397
IBITS, 397
IBSET, 398
ICHAR, 65, 398
id-variable (R1214), 236, 237
ID= specifier, 236, 237, 240, 254, 258, 259, 261, 546,

587
IEEE infinity, 12
IEEE NaN, 12, 160, 460, 461, 484
IEEE_ALL, 459
IEEE_ARITHMETIC, 165, 167, 194, 355, 458–492
IEEE_AWAY, 462, 469
IEEE_CLASS, 465, 467, 467
IEEE_CLASS_TYPE, 459, 467, 492
IEEE_COPY_SIGN, 464, 465, 467
IEEE_DATATYPE, 459
IEEE_DENORMAL, 459
IEEE_DIVIDE, 459
IEEE_DIVIDE_BY_ZERO, 459
IEEE_DOWN, 459, 462
IEEE_EXCEPTIONS, 165, 167, 194, 458–492
IEEE_FEATURES, 458–459
IEEE_FEATURES_TYPE, 459
IEEE_FLAG_TYPE, 459, 468, 482, 488
IEEE_FMA, 465, 468

650 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

IEEE_GET_FLAG, 194, 461, 466, 468, 493, 494, 553
IEEE_GET_HALTING_MODE, 194, 466, 468, 469
IEEE_GET_MODES, 463, 466, 469, 469, 482
IEEE_GET_ROUNDING_MODE, 462, 465, 469,

469, 483
IEEE_GET_STATUS, 194, 461, 466, 470, 470, 483,

493, 553
IEEE_GET_UNDERFLOW_MODE, 465, 470, 484
IEEE_HALTING, 459
IEEE_INEXACT, 459
IEEE_INEXACT_FLAG, 459
IEEE_INF, 459
IEEE_INT, 465, 470
IEEE_INVALID, 459
IEEE_INVALID_FLAG, 459
IEEE_IS_FINITE, 465, 471
IEEE_IS_NAN, 465, 471
IEEE_IS_NEGATIVE, 465, 471
IEEE_IS_NORMAL, 465, 472
IEEE_LOGB, 464, 465, 472
IEEE_MAX, 465, 472
IEEE_MAX_MAG, 465, 473
IEEE_MAX_NUM, 28, 465, 473
IEEE_MAX_NUM_MAG, 28, 465, 474
IEEE_MIN, 465, 474
IEEE_MIN_MAG, 465, 475
IEEE_MIN_NUM, 28, 465, 475
IEEE_MIN_NUM_MAG, 28, 465, 476
IEEE_MODES_TYPE, 459, 463, 469, 482
IEEE_NAN, 459
IEEE_NEAREST, 459, 462
IEEE_NEGATIVE_DENORMAL, 459
IEEE_NEGATIVE_INF, 459
IEEE_NEGATIVE_NORMAL, 459
IEEE_NEGATIVE_SUBNORMAL, 459, 459, 467,

471
IEEE_NEGATIVE_ZERO, 459
IEEE_NEXT_AFTER, 465, 476
IEEE_NEXT_DOWN, 465, 476, 477
IEEE_NEXT_UP, 465, 477
IEEE_OTHER, 459, 462
IEEE_OTHER_VALUE, 459
IEEE_OVERFLOW, 459
IEEE_POSITIVE_DENORMAL, 459
IEEE_POSITIVE_INF, 459
IEEE_POSITIVE_NORMAL, 459

IEEE_POSITIVE_SUBNORMAL, 459, 459, 467, 471
IEEE_POSITIVE_ZERO, 459
IEEE_QUIET_EQ, 465, 477
IEEE_QUIET_GE, 465, 477
IEEE_QUIET_GT, 465, 478
IEEE_QUIET_LE, 465, 478
IEEE_QUIET_LT, 465, 479
IEEE_QUIET_NAN, 459
IEEE_QUIET_NE, 465, 479
IEEE_REAL, 465, 479
IEEE_REM, 464, 465, 480
IEEE_RINT, 464, 465, 480
IEEE_ROUND_TYPE, 459, 469, 470, 480, 483, 489
IEEE_ROUNDING, 459
IEEE_SCALB, 465, 481
IEEE_SELECTED_REAL_KIND, 465, 481
IEEE_SET_FLAG, 461, 466, 470, 482, 483, 493, 494,

553
IEEE_SET_HALTING_MODE, 194, 461, 466, 469,

482, 488, 493, 494, 553
IEEE_SET_MODES, 194, 463, 466, 469, 482, 483
IEEE_SET_ROUNDING_MODE, 194, 462, 465, 469,

482, 483, 483
IEEE_SET_STATUS, 194, 461, 462, 466, 470, 483,

483, 494, 553
IEEE_SET_UNDERFLOW_MODE, 194, 465, 469,

470, 483, 484
IEEE_SIGNALING_EQ, 465, 484
IEEE_SIGNALING_GE, 465, 484
IEEE_SIGNALING_GT, 465, 485
IEEE_SIGNALING_LE, 466, 485
IEEE_SIGNALING_LT, 466, 485
IEEE_SIGNALING_NAN, 459
IEEE_SIGNALING_NE, 466, 486
IEEE_SIGNBIT, 466, 486
IEEE_SQRT, 459
IEEE_STATUS_TYPE, 459, 463, 470, 483, 493
IEEE_SUBNORMAL, 459
IEEE_SUPPORT_DATATYPE, 458–460, 466–468,

470, 472–480, 483–486, 487, 487, 490–492
IEEE_SUPPORT_DENORMAL, 466, 487
IEEE_SUPPORT_DIVIDE, 466, 487, 490
IEEE_SUPPORT_FLAG, 466, 488, 490
IEEE_SUPPORT_HALTING, 466, 488, 490
IEEE_SUPPORT_INF, 463, 464, 466, 476, 477, 488,

490, 492

J3/23-007 651

J3/23-007 WD 1539-1 2023-02-17

IEEE_SUPPORT_IO, 466, 489
IEEE_SUPPORT_NAN, 460, 461, 463, 466, 489, 490,

492
IEEE_SUPPORT_ROUNDING, 466, 483, 489, 490
IEEE_SUPPORT_SQRT, 466, 490, 490
IEEE_SUPPORT_STANDARD, 464, 466, 490
IEEE_SUPPORT_SUBNORMAL, 463, 464, 466, 467,

477, 487, 490, 491, 492
IEEE_SUPPORT_UNDERFLOW_CONTROL, 466,

491
IEEE_TO_ZERO, 459, 462
IEEE_UNDERFLOW, 459
IEEE_UNDERFLOW_FLAG, 459
IEEE_UNORDERED, 464, 466, 491
IEEE_UP, 459, 462
IEEE_USUAL, 459
IEEE_VALUE, 466, 492
IEOR, 190, 194, 368, 398
IF construct, 38, 197, 555
IF statement, 153, 198
if-construct (R1136), 34, 197, 197
if-construct-name, 197
if-stmt (R1141), 34, 198, 198
if-then-stmt (R1137), 5, 197, 197, 207
imag-part (R720), 62, 62
image, 1, 12, 12, 18, 20, 28, 37–39, 42, 43, 82, 101, 138,

140–142, 145, 171, 173, 174, 187, 188, 207–214,
216–220, 222, 223, 228, 229, 261, 314, 319, 323,
326, 328, 343, 347, 348, 352, 353, 364–368, 379,
381, 393, 399, 400, 417, 421, 426, 427, 442, 444,
445, 449, 453, 456, 463, 527, 535, 536, 543, 545,
546

active, 12, 146
failed, 12, 141, 145, 146, 217, 417
stopped, 12, 141, 145, 146, 417

image control statement, 12, 38, 162, 188, 193, 208,
209, 210, 211, 214, 218–220, 328, 339, 347,
348, 389, 441, 456

image index, 12, 37, 42, 43, 137, 138, 212, 216, 222,
323, 353, 399, 426, 445, 449, 527

image-selector (R926), 6, 8, 37, 130–132, 138, 138, 291
image-selector-spec (R928), 138, 138
image-set (R1171), 212, 212
IMAGE_INDEX, 399
IMAGE_STATUS, 399
imaginary part, 62

implicit interface, 13, 73, 175, 297, 312–314, 323, 324,
501, 533

IMPLICIT NONE statement, 120
IMPLICIT statement, 37, 120, 125, 300
implicit-none-spec (R869), 120, 120
implicit-part (R505), 33, 33
implicit-part-stmt (R506), 33, 33
implicit-spec (R867), 120, 120
implicit-stmt (R866), 33, 120, 120
implied-shape array, 106
implied-shape-or-assumed-size-spec (R825), 103, 105,

105, 106
implied-shape-spec (R826), 103, 106, 106
IMPORT statement, 37, 122, 185, 527, 530, 533
import-name, 122, 123
import-stmt (R870), 33, 122, 185
IMPURE, 331, 332, 336, 338, 341
IN, 107
INCLUDE line, 50, 52
inclusive scope, 13, 185, 206, 207, 231, 235, 237, 238,

255–257, 259, 315, 336, 527, 528
INDEX, 400
index-name, 179–181, 189, 190, 192, 193, 530, 531, 543
inherit, 4, 7, 13, 67, 79–81, 83, 84, 540, 571
inheritance association, 4, 4, 7, 44, 83, 86, 537, 540
initial team, 21, 43, 138, 228, 353, 394, 399, 421, 426,

444, 453
initial-data-target (R744), 28, 75, 75, 76, 97, 98, 110,

116, 117
initial-proc-target (R1518), 76, 312, 312, 313
INITIAL_TEAM, 394, 453
initialization, 98

default, 8, 9, 74–77, 86, 87, 98, 105, 107, 115, 126–
128, 320, 535, 539, 540, 544

explicit, 11, 76, 77, 97, 98, 115, 535, 539, 541
initialization (R805), 93, 97, 97, 98, 167
INOUT, 50, 107
input statement, 236, 237, 584
input-item (R1216), 236, 237, 241, 241, 242, 254, 267,

546
input/output editing, 268–295
input/output list, 241
input/output statement, 542
input/output statements, 221–267
input/output unit, 14, 23, 37
INPUT_UNIT, 228, 229, 233, 250, 453

652 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

INQUIRE statement, 30, 223, 224, 226, 227, 229, 230,
240, 250, 251, 254, 258, 266, 267, 454, 542,
544–546, 551, 583

inquire-spec (R1231), 258, 258, 259, 267
inquire-stmt (R1230), 34, 258, 339
inquiry function, 13, 21, 101, 105, 107, 131, 142, 165,

317, 319, 343–346, 348, 359, 361, 371, 378, 382,
385, 388, 395, 403–405, 410, 413, 418, 424, 425,
428, 431, 435, 438, 441, 445, 448, 449, 462–465,
487–491, 503

inquiry, type parameter, 132
instance, 334
INT, 117, 170, 345, 384, 396, 399, 400, 401, 413
int-constant (R607), 48, 48, 116
int-constant-expr (R1032), 59, 63, 70, 71, 88, 89, 111,

115, 167, 167, 201, 202
int-constant-name, 59, 60
int-constant-subobject (R849), 116, 116
int-expr (R1027), 37, 55, 91, 94, 104, 130, 133, 134,

138, 139, 153, 163, 163–167, 189–191, 207,
209, 212, 215, 216, 227, 228, 231, 236, 241,
244, 255, 258, 336

int-literal-constant (R708), 48, 59, 59, 63, 269, 270
int-variable (R907), 129, 129, 145, 231, 237, 238, 258,

259, 261–266, 551
int-variable-name, 189
INT16, 453
INT32, 453
INT64, 453
INT8, 453
integer constant, 59
integer editing, 274
integer model, 346
integer type, 59–60
integer-type-spec (R705), 57, 59, 59, 70, 94, 115, 189,

530, 531
INTEGER_KINDS, 453
INTENT (IN) attribute, 107, 107–109, 113, 190, 308–

310, 319, 322, 324, 326, 338–340, 344, 364–368,
374–377, 386, 387, 392, 393, 417, 418, 426, 427,
466, 497–500, 522, 546, 562, 604, 618

INTENT (INOUT) attribute, 28, 107, 108, 109, 112,
195, 309, 315, 320, 322, 328, 340–342, 355,
364–368, 374–377, 387, 392, 393, 416, 417, 452,
454, 455, 546, 547, 618

INTENT (OUT) attribute, 28, 29, 57, 81, 82, 105, 107,

107–109, 112, 144, 164, 309, 315, 320, 322, 328,
338, 340–342, 355, 364–368, 374–377, 379, 381,
386, 387, 391–393, 416, 417, 419, 424, 426, 427,
442, 468–470, 497, 499, 500, 522, 536, 537, 542,
543, 545–547, 618

INTENT attribute, 107, 107–109, 118, 194, 562
INTENT statement, 118, 185
intent-spec (R828), 96, 107, 118, 312
intent-stmt (R852), 34, 118
interface, 13, 13, 36, 41, 44, 73, 79, 80, 109, 248, 249,

283, 303, 304, 314, 323, 324, 328, 329, 335,
337, 339, 507–510, 524, 525, 593

abstract, 13, 13, 297, 304, 306, 312, 332, 528, 532
explicit, 13, 29, 74, 79, 120, 124, 175, 303–307,

312–314, 317, 323, 324, 337, 339, 528, 529, 546,
562, 592

generic, 13, 80, 83, 88, 109, 160, 161, 172, 253, 298,
299, 307, 307–309, 329, 528

implicit, 13, 73, 175, 297, 312–314, 323, 324, 501,
533

procedure, 304
specific, 13, 253, 306, 306, 307, 312, 329, 562

interface block, 13, 36, 248, 253, 298, 305–307, 329, 593
interface body, 13, 14, 17, 36, 102, 104, 107, 120, 164,

305, 305, 332, 335, 337, 510, 529, 532, 593
INTERFACE statement, 305, 593
interface-block (R1501), 33, 305, 305
interface-body (R1505), 305, 305, 306
interface-name (R1516), 79, 80, 311, 312, 312
interface-specification (R1502), 305, 305, 306
interface-stmt (R1503), 305, 305–308, 532
internal file, 14, 14, 221, 227–230, 239, 243, 245–247,

250, 251, 265, 266, 283, 284, 542, 544
internal procedure, 12, 16, 35, 174, 302–305, 315, 316,

324, 330, 332, 335, 361, 525, 528, 529, 533, 562
internal subprogram, 20, 35, 37, 120, 123, 302, 329, 532
internal unit, 14, 14, 228, 230, 245, 250, 259, 267, 454
internal-file-variable (R1203), 227, 227, 228, 237, 267,

546
internal-subprogram (R512), 33, 33
internal-subprogram-part (R511), 32, 33, 33, 296, 333–

335
interoperable, 14, 88, 89, 100, 332, 337, 495, 497, 499,

502–510, 523, 524
interoperable enumeration, 88, 495
interoperate, 495

J3/23-007 653

J3/23-007 WD 1539-1 2023-02-17

intrinsic, 7, 10–13, 14, 16, 20, 21, 39, 40, 42–45, 55, 57,
82, 93, 107, 303, 304, 322, 329, 330, 341, 451,
528, 530

intrinsic assignment statement, 29, 86, 138, 144, 146,
163, 168, 172, 174, 195, 220, 227, 258, 267,
293, 339, 348, 355, 542, 549

INTRINSIC attribute, 107, 109, 109, 110, 297, 313,
329, 533

intrinsic function, 343
INTRINSIC module nature, 298
intrinsic operation, 153–160
intrinsic procedure, 343–450
INTRINSIC statement, 300, 313
intrinsic subroutines, 343
intrinsic type, 7, 22, 39, 40, 54, 59–66, 508, 513
intrinsic-operator (R608), 15, 48, 49, 148, 150, 154, 160,

161, 308
intrinsic-procedure-name, 313, 532
intrinsic-stmt (R1519), 34, 313, 532
intrinsic-type-spec (R704), 56, 57, 59, 64
io-control-spec (R1213), 228, 236, 236, 237, 240, 250,

267
io-implied-do (R1218), 241, 241–243, 246, 267, 542,

544, 546, 584
io-implied-do-control (R1220), 241, 241, 244
io-implied-do-object (R1219), 241, 241, 246
io-unit (R1201), 23, 227, 227, 228, 236, 237, 339
IOLENGTH= specifier, 226, 258, 264
iomsg-variable (R1207), 231, 231, 235, 236, 255, 257,

258, 265–267, 542
IOMSG= specifier, 231, 235, 236, 255, 257, 258, 265,

266, 267, 542
IOR, 190, 194, 368, 401
IOSTAT= specifier, 231, 235, 236, 250, 255, 257, 258,

265, 266, 266, 403, 453, 454, 542, 551, 584
IOSTAT_END, 250, 266, 453
IOSTAT_EOR, 250, 266, 453
IOSTAT_INQUIRE_INTERNAL_UNIT, 250, 266,

454, 457
IPARITY, 401
IS_CONTIGUOUS, 57, 403
IS_IOSTAT_END, 403
IS_IOSTAT_EOR, 403
ISHFT, 402
ISHFTC, 402
ISO 10646 character, 14, 63, 66, 168, 227, 228, 232,

243, 273, 287, 288, 418, 433
ISO_C_BINDING, 6, 57, 72, 83, 100, 107, 131, 139–

141, 165, 171, 339, 450, 495–505, 544, 545, 562
ISO_Fortran_binding.h, 510
ISO_FORTRAN_ENV, 23, 28, 68, 72, 100, 107, 131,

138–141, 146, 165, 171, 186, 207–209, 215–217,
219, 226, 228, 233, 245, 250, 266, 347, 348,
364–368, 389, 394, 399, 400, 417, 421, 440, 441,
444, 445, 451–456, 543, 545, 546, 553, 584

K
k (R1314), 270, 270, 277, 282, 283, 285
keyword, 14

argument, 10, 14, 44, 304, 307, 316, 343, 348, 464,
528, 529, 530, 593

component, 14, 44, 77, 86, 529
statement, 14, 44
type parameter, 14, 44, 85

keyword (R516), 44, 44, 85, 86, 314
KIND, 59–63, 66, 71, 89, 132, 133, 170, 171, 403
kind type parameter, 22, 26, 39, 55, 59–64, 66, 71, 81,

89, 94, 148, 166–170, 291, 309, 315, 317, 319,
332, 383, 388, 431, 453, 454, 456, 495, 496,
504, 562

kind-param (R709), 59, 59–61, 63, 64, 66
kind-selector (R706), 25, 59, 59, 66

L
L edit descriptor, 281
label, see statement label
label (R611), 5, 49, 49, 189, 191, 207, 231, 235–238,

254–259, 265, 266, 314, 315
label-do-stmt (R1121), 189, 189, 191
language-binding-spec (R808), 96, 100, 114, 332
LBOUND, 57, 169, 175, 183, 202, 403
lbracket (R779), 72, 93, 93, 96, 97, 114, 115, 119, 138,

139
LCOBOUND, 404
leading zero mode, 233, 240, 285
leading-zero-edit-desc (R1319), 270, 271
LEADING_ZERO= specifier, 231, 233, 236–238, 240,

258, 261, 285
LEADZ, 405
left tab limit, 284
LEN, 132, 133, 405
LEN_TRIM, 405

654 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

length type parameter, 22, 22, 39, 55, 66, 75, 94, 109,
142, 169, 319, 405, 502, 504, 562

length-selector (R722), 25, 63, 63, 64
letter, 46, 46, 47, 49, 120, 148, 150
letter-spec (R868), 120, 120
level-1-expr (R1003), 148, 148, 149, 152
level-2-expr (R1007), 148, 148, 149, 152
level-3-expr (R1011), 149, 149, 150
level-4-expr (R1013), 149, 150
level-5-expr (R1018), 150, 150, 151
lexical token, 12, 15, 24, 47, 49
LGE, 66, 406
LGT, 66, 406
line, 15, 50–53
linkage association, 4, 4, 524, 531, 534, 534
list-directed formatting, 247, 287–290
list-directed input/output statement, 238
literal constant, 8, 41, 130, 163
literal-constant (R605), 48, 48, 147
LLE, 66, 406
LLT, 66, 407
LOCAL, 190, 194, 197, 530, 537, 545
local identifier, 527, 528
local procedure pointer, 16, 334
local variable, 16, 23, 28, 29, 41, 42, 98, 100, 102, 104,

111, 113, 141, 143, 144, 316, 334, 338
local-defined-operator (R1414), 298, 298, 299
local-name, 298, 299
LOCAL_INIT, 190, 194, 530, 537, 543, 545
locality, 194, 195, 530, 537, 543, 545
locality-spec (R1130), 190, 190, 191
LOCK statement, 209, 217, 219, 454, 456, 543, 546
lock variable, 23, 38, 219, 454, 456, 543, 546
lock-stat (R1184), 217, 217
lock-stmt (R1183), 34, 217
lock-variable (R1186), 217, 217–219, 454, 546
LOCK_TYPE, 23, 28, 68, 107, 140, 141, 217, 454
LOG, 30, 407
LOG10, 408
LOG_GAMMA, 408
LOGICAL, 408
logical intrinsic operation, 158
logical type, 66
logical-expr (R1025), 148, 153, 163, 163, 177, 189, 192,

193, 197, 198, 207, 208, 315, 317
logical-literal-constant (R725), 48, 66, 148, 150

logical-variable (R904), 129, 129, 217–219, 258–262, 546
LOGICAL16, 454
LOGICAL32, 454
LOGICAL64, 454
LOGICAL8, 454
LOGICAL_KINDS, 454
loop-control (R1123), 189, 189, 191, 192, 196
lower-bound (R816), 104, 104–106
lower-bound-expr (R936), 139, 139, 173
lower-bounds-expr (R937), 139, 139–141, 173, 175
lower-cobound (R812), 101, 102, 102
LZ edit descriptor, 285
LZP edit descriptor, 285
LZS edit descriptor, 285

M
m (R1309), 269, 270, 270, 274, 275, 280, 281
main program, 15, 17, 20, 35, 38, 41
main-program (R1401), 32, 35, 122, 296, 296
mask-expr (R1047), 176, 177, 177–180, 189–192
masked array assignment, 15, 176, 542
masked array assignment (WHERE), 176
masked-elsewhere-stmt (R1048), 176, 177, 177, 180
MASKL, 408
MASKR, 409
MATMUL, 409
MAX, 190, 194, 341, 344, 410
MAXEXPONENT, 410
MAXLOC, 344, 410
MAXVAL, 411
MERGE, 412
MERGE_BITS, 413
MIN, 190, 194, 413
MINEXPONENT, 413
MINLOC, 414
MINVAL, 415
MOD, 30, 415
mode

blank interpretation, 232
changeable, 228
connection, 228
decimal edit, 232
delimiter, 232
halting, 458, 463, 463, 466, 468, 482, 488, 526, 553
IEEE rounding, 458, 459, 462, 463, 464
input/output rounding, 228, 234, 241, 263, 280,

285, 286, 489

J3/23-007 655

J3/23-007 WD 1539-1 2023-02-17

leading zero, 233, 240, 285
pad, 233
sign, 234, 285
underflow, 462, 463, 465, 470, 484, 491, 553

model
bit, 345
extended real, 346
integer, 346
real, 346

MODULE, 305, 306, 331, 332, 335
module, 15, 15, 17, 20, 35, 36, 41, 296
module (R1404), 32, 122, 297
module procedure, 16, 79, 124, 174, 302–306, 312, 315,

324, 330, 332, 335, 338, 340, 341, 450, 528, 529
module procedure interface body, 123, 306
module reference, 17, 297
MODULE statement, 296, 297
module subprogram, 20, 35, 37, 120, 123, 329, 532
module-name, 297, 298, 532
module-nature (R1410), 298, 298
module-stmt (R1405), 32, 297, 297
module-subprogram (R1408), 33, 297, 297, 335
module-subprogram-part (R1407), 32, 80, 84, 297, 297,

300, 598
MODULO, 30, 416
MOLD= specifier, 139
MOVE_ALLOC, 142, 210, 343, 416
mp-subprogram-stmt (R1542), 33, 335, 335
mult-op (R1009), 48, 148, 148, 149
mult-operand (R1005), 148, 148, 149, 152
multiple-subscript (R920), 133, 133, 134
multiple-subscript-triplet (R923), 133, 134, 134
MVBITS, 343, 344, 417

N
n (R1316), 270, 270, 271, 284
name, 15, 44, 47, 527
name (R603), 25, 44, 47, 47, 48, 97, 119, 129, 190, 195,

204, 246, 312, 333
name association, 4, 4, 44, 531, 537
name-value subsequence, 291, 291
NAME= specifier, 96, 100, 114, 258, 259, 261, 312,

312, 332, 524
named constant, 8, 22, 28, 41, 44, 47, 55, 60, 62–64, 89,

91, 106, 109, 113, 116, 118, 125, 130, 337
named-constant (R606), 48, 48, 52, 62, 88, 118, 532
named-constant-def (R855), 118, 118, 532

NAMED= specifier, 258, 261
namelist formatting, 247, 291–295
namelist input/output statement, 238
NAMELIST statement, 124, 185, 291, 299
namelist-group-name, 125, 236–238, 245, 247, 268, 291,

295, 299, 532, 546
namelist-group-object (R872), 125, 125, 245–247, 254,

267, 291, 295, 299
namelist-stmt (R871), 34, 125, 532, 546
NaN, 15, 275–279, 282, 355, 388, 391, 431, 435, 438,

460, 463, 464, 466, 467, 471, 489
NEAREST, 418
NEW_INDEX= specifier, 216, 550
NEW_LINE, 282, 418
NEWUNIT= specifier, 228, 231, 233, 250, 543, 546
NEXT, 419
NEXTREC= specifier, 259, 261
NINT, 419
NML= specifier, 236, 238, 546
NON_INTRINSIC module nature, 298
NON_OVERRIDABLE attribute, 78, 80
NON_RECURSIVE attribute, 304, 331, 331, 332, 335,

336
nonadvancing input/output statement, 225
nonblock DO construct, 556
NONE, 120, 122, 190
nonexecutable statement, 19, 36
nonlabel-do-stmt (R1122), 189, 189, 191
nonstandard intrinsic, 14, 26, 560, 601
NOPASS, 73, 75, 79
NOPASS attribute, see PASS attribute
NORM2, 419
normal number, 463
normal termination, 12, 37, 38, 39, 82, 207, 208, 222,

234, 235, 400, 441, 456
NOT, 420
not-op (R1019), 48, 150, 150
notify variable, 23, 38, 210, 455
NOTIFY WAIT statement, 138, 208, 210, 455, 544, 549
notify-variable (R1167), 138, 208, 208, 455, 546
notify-wait-stmt (R1166), 34, 208
NOTIFY= specifier, 138, 209, 210, 455, 544
NOTIFY_TYPE, 23, 68, 107, 140, 141, 208, 455
NULL, 87, 97, 163, 166, 167, 324, 344, 420, 535, 536
null-init (R806), 75, 76, 97, 97, 98, 116, 117, 312
NULLIFY statement, 143

656 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

nullify-stmt (R942), 34, 143, 547
NUM_IMAGES, 166, 167, 421, 449
NUMBER= specifier, 259, 261
numeric conversion, 170
numeric editing, 274
numeric intrinsic operation, 155
numeric sequence type, 18, 68, 69, 126–128, 539, 542
numeric storage unit, 19, 19, 128, 455, 538, 542, 544
numeric type, 22, 59–62, 154–156, 159, 162, 170, 383,

409, 410, 425, 441
numeric-expr (R1028), 163, 163
NUMERIC_STORAGE_SIZE, 455

O
O edit descriptor, 280
object, 8, 8, 40–42
object designator, 10, 40, 41, 112, 116, 130, 164, 291
object-name (R804), 97, 97, 114, 115, 118–120, 129,

137, 195, 532
obsolescent feature, 26, 27, 31, 556–558
octal-constant (R774), 93, 93
ONLY, 122, 123, 124, 298, 298, 299, 534, 590, 591
only (R1412), 298, 298, 299
only-use-name (R1413), 298, 298, 299
OPEN statement, 31, 222, 223, 227–229, 230, 230, 234,

239, 246, 247, 251, 261, 264, 280, 293, 543,
546, 550, 551, 583–586

open-stmt (R1204), 35, 230, 339
OPENED= specifier, 259, 262
operand, 15
operation, 54

defined, 9, 17, 79, 151, 160, 161, 161–164, 190,
302, 308, 314, 328, 339

elemental, 10, 153, 164, 178
intrinsic, 153–160

logical, 158
numeric , 155
relational, 159

OPERATOR, 54, 79, 161, 298, 305, 308, 593
operator, 15, 48

character, 149
defined binary, 150
defined unary, 148
elemental, 11, 153, 459
logical, 150
numeric, 148
relational, 149

operator precedence, 151
OPTIONAL attribute, 57, 109, 109, 112, 118, 164, 184,

190, 304
optional dummy argument, 325
OPTIONAL statement, 118, 185
optional-stmt (R853), 34, 118
or-op (R1021), 48, 150, 150
or-operand (R1016), 150, 150
other-specification-stmt (R513), 33, 34
OUT, 107
OUT_OF_RANGE, 422
output statement, 236, 281
output-item (R1217), 236, 237, 241, 241, 254, 258
OUTPUT_UNIT, 228, 229, 233, 250, 455
override, 76, 84, 96, 97, 120, 247, 274, 539

P
P edit descriptor, 285
PACK, 422
pad mode, 233
PAD= specifier, 30, 31, 231, 233, 236–238, 240, 251,

259, 262
padding, 345, 345, 401, 429
PARAMETER attribute, 8, 41, 89, 98, 109, 109, 110,

118, 130
PARAMETER statement, 37, 118, 120, 300
parameter-stmt (R854), 33, 118, 532
parent component, 4, 7, 77, 81, 83, 86, 540, 571
parent data transfer statement, 240, 249, 247–251, 267,

290
parent team, 21, 43, 138, 187, 214, 216, 389, 394, 399,

400, 421, 440, 444, 445, 455
parent type, 7, 22, 67, 68, 71, 77, 81, 83, 84, 310, 571
parent-identifier (R1418), 300, 300
parent-string (R909), 102, 130, 130
parent-submodule-name, 300
parent-type-name, 67
PARENT_TEAM, 394, 455
parentheses, 162
PARITY, 423
part-name, 5, 130–132, 137
part-ref (R912), 102, 116, 125, 130, 130–133, 135, 137,

378, 399, 404, 444, 449
partially associated, 539
PASS attribute, 73, 75, 79, 314
passed-object dummy argument, 15, 75, 79, 80, 84, 311,

316, 317, 607

J3/23-007 657

J3/23-007 WD 1539-1 2023-02-17

PAUSE statement, 555
pending affector, 99, 239, 244, 526
PENDING= specifier, 259, 262
POINTER, 72, 73, 74
pointer, 4, 9, 10, 15, 18, 20, 23, 43, 68, 74, 137, 143–

145, 166, 167, 303, 304, 320, 339, 441, 495,
520, 535, 604

procedure, 499
pointer assignment, 16, 105, 107, 143, 171, 172, 174,

325, 536
pointer assignment statement, 16, 20, 55, 74, 87, 163,

172, 174, 180, 353, 361
pointer association, 4, 4, 8–10, 20, 22, 23, 41, 44, 82,

85, 87, 102, 108, 110, 112, 113, 131, 144, 146,
172, 174, 175, 194, 195, 210, 213, 214, 244, 303,
317–319, 322, 324, 325, 333, 335, 349, 361, 416,
420, 497, 499, 500, 511, 523, 526, 535–604

pointer association context, 107, 110, 339, 547
pointer association status, 535
POINTER attribute, 3, 15, 55–57, 66, 72, 97, 105, 106,

110, 110–112, 117, 119, 131, 134, 143, 173,
184, 194, 202, 302–304, 306, 309, 310, 312, 315,
317, 321, 324–327, 332, 339, 341, 502, 506, 522,
534, 537, 540, 541, 562, 607, 611

POINTER statement, 118, 300
pointer-assignment-stmt (R1034), 35, 173, 173, 179,

180, 339, 547
pointer-decl (R857), 118, 118
pointer-object (R943), 143, 143, 547
pointer-stmt (R856), 34, 118, 532
polymorphic, 16, 28, 29, 58, 75, 87, 105, 107, 131, 143,

162, 168, 169, 174, 183, 184, 190, 193, 202,
204, 205, 242, 247, 303, 304, 314, 317, 318,
320, 321, 338, 339, 374, 388, 412, 416, 431,
441, 535, 540

POPCNT, 423
POPPAR, 424
POS= specifier, 224–226, 236, 237, 240, 240, 259, 262,

551
position edit descriptor, 283
position-edit-desc (R1315), 270, 270
position-spec (R1227), 255, 255
POSITION= specifier, 230, 231, 233, 259, 262, 585
positional arguments, 343
potential subobject component, 7, 28, 66–68, 72, 100,

101, 112, 113, 140, 141, 145, 146, 168, 320,

339, 452, 454, 455
power-op (R1008), 48, 148, 148, 149
pre-existing, 540
precedence of operators, 151
PRECISION, 60, 424, 481
preconnected, 16, 223, 228–230, 233, 239, 245, 452, 453,

455
preconnection, 230
prefix (R1529), 331, 331–334
prefix-spec (R1530), 331, 331, 332, 338, 340, 341
PRESENT, 57, 109, 165, 166, 325, 344, 424, 605
present, 325
PREVIOUS, 424
primary, 147
primary (R1001), 147, 147–149, 337
PRINT statement, 223, 228, 232, 236, 245, 250, 251,

254
print-stmt (R1212), 35, 236, 339
PRIVATE attribute, 69, 84, 99, 99, 113, 339, 591
PRIVATE statement, 78, 80, 113, 299
private-components-stmt (R745), 68, 78, 78
private-or-sequence (R729), 67, 68, 68
proc-attr-spec (R1514), 311, 311, 312
proc-component-attr-spec (R742), 73, 73, 74
proc-component-def-stmt (R741), 72, 73, 73
proc-component-ref (R1040), 174, 174, 314, 325
proc-decl (R1515), 73, 76, 311, 312, 312
proc-interface (R1513), 73, 311, 311, 312
proc-language-binding-spec (R1531), 311, 312, 332,

332–334, 337, 507
proc-pointer-init (R1517), 312, 312
proc-pointer-name (R861), 119, 119, 143, 174
proc-pointer-object (R1039), 173, 174, 174, 180, 361,

547
proc-target (R1041), 86, 87, 173, 174, 174, 180, 325, 361
PROCEDURE, 73, 79, 311, 335
procedure, 9, 16, 17, 45, 109, 305

characteristics of, 303
dummy, 6, 10, 12, 16, 107, 120, 124, 165, 174, 302,

303, 305, 306, 311, 312, 315, 323, 324, 330,
332, 338–341, 525, 528, 533

elemental, 11, 42, 164, 174, 312, 315, 325, 329, 331,
340, 341, 341, 343, 344

external, 16, 26, 35, 79, 107, 120, 174, 214, 302,
303, 305–307, 311, 312, 315, 324, 330, 331, 527,
528, 532, 533, 562, 592, 593, 598, 601, 602

658 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

internal, 12, 16, 35, 174, 302–305, 315, 316, 324,
330, 332, 335, 361, 525, 528, 529, 533, 562

intrinsic, 343–450
module, 16, 79, 124, 174, 302–306, 312, 315, 324,

330, 332, 335, 338, 340, 341, 450, 528, 529
non-Fortran, 337
pure, 16, 28, 29, 84, 175, 179, 190, 303, 304, 306,

312, 323, 331, 332, 336, 338, 340, 340, 343,
429

simple, 16, 84, 175, 303, 304, 306, 312, 323, 332,
338, 340, 343, 348, 416, 417, 439, 445, 450,
459, 465, 466, 496

type-bound, 5, 13, 15, 16, 66–68, 75, 80, 80, 81,
83, 84, 171, 253, 298, 308, 314, 317, 319, 331,
338, 340, 341, 528, 529

procedure declaration statement, 37, 107, 304, 306, 311,
337, 353, 529, 562

procedure designator, 10, 17, 42
procedure interface, 304
procedure pointer, 6, 12, 15, 15, 16, 35, 37, 55, 73–76,

86, 87, 97, 107, 108, 110, 111, 119, 127, 147,
174, 175, 183, 241, 302, 303, 306, 311, 315, 317,
323–325, 330, 333, 335, 338, 340, 341, 361, 420,
499, 501, 525, 529, 532, 536, 562, 604

procedure reference, 17, 29, 42, 109, 133, 250, 302, 308,
314, 316

generic, 310
resolving, 329
type-bound, 331

PROCEDURE statement, 305, 307, 562
procedure-component-name, 174
procedure-declaration-stmt (R1512), 33, 311, 312
procedure-designator (R1522), 314, 314, 325, 331
procedure-entity-name, 312, 313
procedure-name, 79, 80, 174, 175, 305, 306, 312, 314,

315, 335
procedure-stmt (R1506), 305, 305, 306, 562
processor, 16, 26, 27, 45
processor dependent, 16, 27, 45, 548–554
procptr-entity-name, 118, 119
PRODUCT, 425
program, 17, 26, 27, 35
program (R501), 32
PROGRAM statement, 296
program unit, 15, 17, 17, 20, 26, 32, 35–37, 39, 44,

46, 47, 49–52, 70, 111, 120, 228, 234, 296, 300,

394, 523, 527, 535, 557, 563, 589–593, 597–599,
601, 616

program-name, 296
program-stmt (R1402), 32, 296, 296
program-unit (R502), 25, 32, 32, 35
PROTECTED attribute, 28, 110, 110, 111, 119, 126,

194, 298, 562
PROTECTED statement, 119
protected-stmt (R858), 34, 119
PUBLIC attribute, 84, 99, 99, 113, 591
PUBLIC statement, 113, 299
PURE, 331, 332, 336, 338
pure procedure, 16, 28, 29, 84, 175, 179, 190, 303, 304,

306, 312, 323, 331, 332, 336, 338, 340, 340,
343, 429, 562

Q
QUIET= specifier, 207

R
r (R1306), 269, 269–272
RADIX, 60, 425, 458, 481
RANDOM_INIT, 426, 427, 552
RANDOM_NUMBER, 426, 427
RANDOM_SEED, 344, 426, 427
RANGE, 59, 60, 428, 481
RANK, 57, 103, 105, 111, 111, 428
rank, 17, 18, 40–43, 73, 75, 81, 86, 87, 96, 100, 102, 103,

105, 106, 118, 128, 131–135, 137, 140, 142, 161,
163, 168–170, 172, 173, 175, 176, 183, 212, 303,
308–310, 317, 320, 321, 325, 330, 341, 353, 358,
359, 378–381, 384, 385, 389, 390, 396, 397, 401,
402, 404, 409, 411, 412, 414–416, 419, 420, 423,
425, 427, 429, 435, 438, 440–442, 445, 447–449,
493, 498, 507, 531, 538, 607, 608

RANK (*), 105, 201
RANK DEFAULT, 106, 201
rank-clause (R829), 96, 105, 111, 111
rbracket (R780), 72, 93, 93, 96, 97, 114, 115, 119, 138,

139
RC edit descriptor, 286
RD edit descriptor, 286
READ (FORMATTED), 248, 305
READ (UNFORMATTED), 248, 305
READ statement, 31, 41, 224, 228, 232, 236, 245, 250,

251, 254, 257, 265, 545, 583–585, 587, 588
read-stmt (R1210), 35, 236, 237, 339, 546

J3/23-007 659

J3/23-007 WD 1539-1 2023-02-17

READ= specifier, 259, 263
READWRITE= specifier, 259, 263
REAL, 132, 170, 345, 428, 459
real and complex editing, 275
real model, 346
real part, 62
real type, 60–61, 62
real-literal-constant (R714), 48, 61, 61
real-part (R719), 62, 62
REAL128, 456
REAL16, 456
REAL32, 456
REAL64, 456
REAL_KINDS, 455
REC= specifier, 225, 236, 237, 240
RECL= specifier, 231, 233, 246, 247, 259, 263, 264,

544, 551
record, 17, 221
record file, 11, 17, 221, 223, 225–227
record number, 223
RECURSIVE, 64, 331, 332, 336
recursive input/output statement, 267
REDUCE, 190, 194, 195, 429
reduce-operation (R1131), 190, 190, 194, 195
reference, 17, 42

procedure, 29
rel-op (R1014), 48, 149, 149, 160, 460
relational intrinsic operation, 159
rename (R1411), 298, 298, 299, 528
rep-char, 64, 64, 271, 288, 293
REPEAT, 430
repeat specification, 269
representation method, 59, 60, 63, 66
RESHAPE, 95, 430
resolving procedure reference, 329
resolving procedure references

defined input/output, 253
restricted expression, 164
RESULT, 333, 333, 335, 336
result-name, 333, 336, 532
RETURN statement, 38, 82, 110, 111, 128, 144, 145,

186, 188, 193, 336, 497, 545
return-stmt (R1545), 35, 37, 336, 336
REWIND statement, 222, 223, 225, 251, 254, 256, 256,

583, 584
rewind-stmt (R1226), 35, 255, 339

RN edit descriptor, 286
round edit descriptor, 286
round-edit-desc (R1320), 270, 271
ROUND= specifier, 231, 234, 236–238, 241, 251, 259,

263, 286
rounding mode

IEEE, 458, 459, 462, 463, 464, 469, 480, 483, 489
input/output, 228, 234, 241, 263, 280, 285, 286,

489
RP edit descriptor, 286
RRSPACING, 431
RU edit descriptor, 286
RZ edit descriptor, 286

S
S edit descriptor, 285
SAME_TYPE_AS, 166, 431
SAVE attribute, 17, 23, 31, 43, 75, 76, 82, 98, 100, 101,

111, 111, 115, 119, 126, 128, 145, 194, 312,
338, 339, 536

SAVE statement, 119, 185, 300, 529
save-stmt (R859), 34, 119, 532
saved, 17, 535, 541
saved-entity (R860), 119, 119, 185
scalar, 17, 18, 20, 341
scalar-expr, 93
scalar-xyz (R403), 25, 25
SCALE, 432
scale factor, 270, 285
SCAN, 432
scoping unit, 4, 12, 13, 17, 23, 35, 37, 38, 41, 44, 64, 69,

70, 78, 82, 86, 98–100, 107, 109, 111, 113, 119,
120, 122–125, 127, 128, 141, 144, 165, 174, 185,
186, 190, 191, 194, 195, 239, 242, 243, 297–299,
304, 306, 310, 329, 330, 332, 333, 335, 337, 338,
458, 460, 523, 528–534, 537, 539, 540, 544, 591,
601, 607

section subscript, 136
section-subscript (R921), 23, 130, 131, 133, 133–135,

137
segment, 18, 141, 145, 187, 188, 209, 210, 210–217, 346,

347, 387, 417, 452, 453, 455
SELECT CASE construct, 38, 199, 557, 572
SELECT CASE statement, 50, 199
SELECT RANK construct, 38, 43, 105, 106, 184, 201,

325, 530, 531, 546
SELECT RANK statement, 43, 107, 201, 534

660 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

SELECT TYPE construct, 38, 43, 55, 57, 183, 184, 203,
325, 530, 531, 534, 546

SELECT TYPE statement, 43, 50, 204, 534
select-case-stmt (R1143), 5, 199, 199, 207
select-construct-name, 201, 202, 204
select-rank-case-stmt (R1152), 201, 201, 202
select-rank-construct (R1150), 34, 201, 201, 202
select-rank-stmt (R1151), 5, 201, 201, 202, 207
select-type-construct (R1154), 34, 204, 204
select-type-stmt (R1155), 5, 204, 204, 207
SELECTED_CHAR_KIND, 63, 433
SELECTED_INT_KIND, 59, 71, 433
SELECTED_LOGICAL_KIND, 434
SELECTED_REAL_KIND, 60, 344, 434, 563
selector, 183
selector (R1105), 183, 183, 184, 186, 187, 201, 204, 205,

325, 535, 546
separate module procedure, 335
separate module subprogram statement, 335
separate-module-subprogram (R1541), 33, 297, 335, 335
sequence, 18
sequence association, 324
SEQUENCE attribute, 18, 67, 68, 68–70, 83, 127, 173,

174, 204, 505
SEQUENCE statement, 68
sequence structure, 18
sequence type, 18, 18, 29, 67, 68, 68, 125, 126, 506, 538

character, 18, 69, 126–128, 539, 542
numeric, 18, 68, 69, 126–128, 539, 542

sequence-stmt (R731), 68, 68
sequential access, 223
sequential access data transfer statement, 240
SEQUENTIAL= specifier, 259, 263
SET_EXPONENT, 435
SHAPE, 57, 435
shape, 18, 42, 210
SHARED, 190, 194, 195
SHIFTA, 435
SHIFTL, 436
SHIFTR, 436
sibling teams, 21, 21, 216, 399, 421, 444
SIGN, 30, 31, 61, 436
sign (R712), 59, 60, 60, 61, 275
sign mode, 234, 274, 285
sign-edit-desc (R1321), 270, 271
SIGN= specifier, 231, 234, 237, 238, 241, 259, 263,

285
signed-digit-string (R710), 60, 61, 274–276
signed-int-literal-constant (R707), 59, 59, 62, 116, 270
signed-real-literal-constant (R713), 61, 62, 116
significand (R715), 61, 61
SIMPLE, 331, 332, 338
simple procedure, 16, 84, 175, 303, 304, 306, 312, 323,

332, 338, 340, 343, 348, 416, 417, 439, 445,
450, 459, 465, 466, 496

simply contiguous, 18, 137, 137, 175, 317, 319–324, 500
SIN, 437
SIND, 437
SINH, 437
SINPI, 437
SIZE, 57, 438
size, 18, 42
size of a common block, 128
SIZE= specifier, 237, 241, 259, 264, 265, 266, 542, 545,

584
source-expr (R932), 139, 139–143, 339, 535–537
SOURCE= specifier, 139, 141, 143, 339, 452, 455, 543–

545, 562
SP edit descriptor, 285
SPACING, 438
special character, 46
specific interface, 13, 253, 306, 306, 307, 312, 329, 562
specific interface block, 13, 14, 306
specific name, 19
specific-procedure (R1507), 305, 305, 307
specification, 96–128
specification expression, 18, 22, 38, 71, 82, 99, 133, 164,

165, 165, 166, 185, 336, 460, 557, 562
specification function, 165
specification inquiry, 165
specification-construct (R508), 33, 33
specification-expr (R1029), 5, 98, 102, 104, 164, 164,

341
specification-part (R504), 32, 33, 33, 38, 79, 99, 100,

113, 165–167, 296, 297, 300, 301, 305, 333–
335, 338–341

SPLIT, 439
SPREAD, 440
SQRT, 30, 440, 464, 490
SS edit descriptor, 285
standard intrinsic, 14, 26, 451, 560
standard-conforming program, 19, 26

J3/23-007 661

J3/23-007 WD 1539-1 2023-02-17

stat-variable (R946), 38, 138–140, 144, 145, 145, 146,
206, 208, 209, 211, 212, 215–220, 231, 235, 236,
255, 257, 258, 265, 266, 403, 543, 546, 549

STAT= specifier, 138, 138, 139, 142–144, 145, 188, 209,
211, 218, 456, 543, 546, 549, 561

STAT_FAILED_IMAGE, 38, 138, 146, 219, 220, 347,
348, 389, 417, 456, 457

STAT_LOCKED, 219, 456, 457
STAT_LOCKED_OTHER_IMAGE, 219, 456, 457
STAT_STOPPED_IMAGE, 146, 219, 348, 417, 441,

456, 457
STAT_UNLOCKED, 219, 456, 457
STAT_UNLOCKED_FAILED_IMAGE, 219, 456,

457
statement, 19, 50

accessibility, 113
ALLOCATABLE, 114
ALLOCATE, 55, 57, 63, 64, 102, 105, 139, 142,

145, 146, 174, 209, 452, 455, 516, 535, 536,
543–545, 549, 562

arithmetic IF, 556
ASSIGN, 555
assigned GO TO, 555
assignment, 15, 16, 28, 41, 55, 82, 168, 180, 209,

210, 455, 492, 542, 544
ASSOCIATE, 43, 183, 534
ASYNCHRONOUS, 114, 185, 300, 530, 533
attribute specification, 113–128
BACKSPACE, 222, 225, 251, 254, 256, 256, 583–

585
BIND, 114, 300, 523, 529
BLOCK, 98, 102, 104, 184, 543
BLOCK DATA, 50, 296, 300
CALL, 20, 206, 210, 302, 314, 328, 337, 417
CASE, 199
CHANGE TEAM, 21, 37, 43, 186, 209, 219, 347,

534
CLASS DEFAULT, 204
CLASS IS, 204, 388
CLOSE, 222, 223, 227, 229, 230, 234, 234, 251,

254, 583
COMMON, 7, 127, 127–128, 185, 299, 300, 529,

539, 556
component definition, 18, 56, 72
computed GO TO, 5, 206, 207, 556, 557
CONTAINS, 36, 37, 78, 337

CONTIGUOUS, 115
CONTINUE, 207, 555
CRITICAL, 162, 188, 209, 210, 220
CYCLE, 182, 189, 193, 193, 558
DATA, 27, 29, 31, 37, 93, 98, 115, 128, 185, 300,

421, 530, 533, 541, 556, 557
data transfer, 31, 49, 221–227, 229, 236, 241, 244–

246, 250, 254, 256, 265–269, 280, 285, 287–292,
294, 453, 454, 542, 544, 551, 583, 584, 587, 588

DEALLOCATE, 143, 145, 146, 209, 452, 455, 516,
549

defined assignment, 3, 29, 172, 172, 328, 546
derived type definition, see statement, TYPE
DIMENSION, 117, 300
DO, 189, 542, 556, 558
DO CONCURRENT, 57, 179, 189
DO WHILE, 189
ELSE, 197
ELSE IF, 50, 197
ELSEWHERE, 50, 177
END, 11, 37, 110, 111, 128, 144, 145, 210, 497, 545
END ASSOCIATE, 50, 183
END BLOCK, 50, 145, 185
END BLOCK DATA, 50, 300
END CRITICAL, 50, 162, 188, 209, 210
END DO, 50, 191
END ENUM, 50, 88
END ENUMERATION TYPE, 91
END FORALL, 50, 179
END FUNCTION, 50, 333
END IF, 50, 197, 555
END INTERFACE, 50, 305
END MODULE, 50, 297
END PROCEDURE, 50, 335
END PROGRAM, 50, 296
END SELECT, 50, 199, 204
END SUBMODULE, 50, 300
END SUBROUTINE, 50, 334
END TEAM, 37, 50, 186, 206, 209, 219, 347
END TYPE, 50, 68
END WHERE, 50, 177
ENDFILE, 50, 222, 223, 225, 232, 251, 254, 256,

583, 584
ENTRY, 10, 37, 160, 161, 172, 297, 302, 306, 331,

333, 335, 341, 529, 539, 556, 558
ENUM, 88

662 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

ENUMERATION TYPE, 90
ENUMERATOR, 88
EQUIVALENCE, 125, 125–128, 185, 299, 300, 539,

556, 558
ERROR STOP, 38, 39, 207, 549
EVENT POST, 209, 215, 215, 216, 219, 386, 452,

453, 543, 546, 550
EVENT WAIT, 209, 215, 215, 219, 452, 453, 543,

546, 550
executable, 19, 19, 36
EXIT, 182, 193, 206
EXTERNAL, 107, 311
FAIL IMAGE, 208
file inquiry, 258
file positioning, 222, 255
FINAL, 11, 81
FLUSH, 223, 254, 257, 266
FORALL, 57, 153, 180, 530, 531, 542
FORM TEAM, 20, 21, 37, 186, 209, 216, 219, 543,

546, 550
FORMAT, 26, 37, 49, 185, 238, 268, 268, 297
formatted input/output, 221, 238
FUNCTION, 10, 57, 58, 120, 160, 161, 164, 296,

331, 333, 335, 336, 529
GENERIC, 79, 80, 307, 307, 310, 329
GO TO, 5, 50, 206, 207
IF, 153, 198
IMPLICIT, 37, 120, 125, 300
IMPLICIT NONE, 120
IMPORT, 37, 122, 185, 527, 530, 533
input, 236, 237, 584
input/output, 221–267, 542
INQUIRE, 30, 223, 224, 226, 227, 229, 230, 240,

250, 251, 254, 258, 266, 267, 454, 542, 544–
546, 551, 583

INTENT, 118, 185
INTERFACE, 305, 593
INTRINSIC, 300, 313
intrinsic assignment, 29, 86, 138, 144, 146, 163,

168, 172, 174, 195, 220, 227, 258, 267, 293,
339, 348, 355, 542, 549

list-directed input/output, 238
LOCK, 209, 217, 219, 454, 456, 543, 546
MODULE, 296, 297
NAMELIST, 124, 185, 291, 299
namelist input/output, 238

nonexecutable, 19, 36
NOTIFY WAIT, 138, 208, 210, 455, 544, 549
NULLIFY, 143
OPEN, 31, 222, 223, 227–229, 230, 230, 234, 239,

246, 247, 251, 261, 264, 280, 293, 543, 546,
550, 551, 583–586

OPTIONAL, 118, 185
output, 236, 281
PARAMETER, 37, 118, 120, 300
PAUSE, 555
POINTER, 118, 300
pointer assignment, 16, 20, 55, 74, 87, 163, 172,

174, 180, 353, 361
PRINT, 223, 228, 232, 236, 245, 250, 251, 254
PRIVATE, 78, 80, 113, 299
PROCEDURE, 305, 307, 562
procedure declaration, 37, 107, 304, 306, 311, 337,

353, 529, 562
PROGRAM, 296
PROTECTED, 119
PUBLIC, 113, 299
READ, 31, 41, 224, 228, 232, 236, 245, 250, 251,

254, 257, 265, 545, 583–585, 587, 588
RETURN, 38, 82, 110, 111, 128, 144, 145, 186, 188,

193, 336, 497, 545
REWIND, 222, 223, 225, 251, 254, 256, 256, 583,

584
SAVE, 119, 185, 300, 529
SELECT CASE, 50, 199
SELECT RANK, 43, 107, 201, 534
SELECT TYPE, 43, 50, 204, 534
separate module subprogram, 335
SEQUENCE, 68
statement function, 10, 37, 64, 185, 297, 329, 336,

337, 530, 531, 557
STOP, 38, 39, 207, 210, 340, 549
SUBMODULE, 296, 300
SUBROUTINE, 10, 172, 296, 331, 334, 336
SYNC ALL, 187, 209, 211, 212, 213, 219
SYNC IMAGES, 209, 212, 219, 220
SYNC MEMORY, 209, 213, 219, 612
SYNC TEAM, 187, 209, 214, 219
TARGET, 119, 300
TYPE, 67, 70, 71, 99, 532
type declaration, 37, 56–58, 76, 96, 96–98, 107,

120, 125, 128, 165, 297, 300, 301, 333, 335,

J3/23-007 663

J3/23-007 WD 1539-1 2023-02-17

337, 338, 541
type guard, 64, 204
TYPE IS, 204, 431
type parameter definition, 70
type-bound procedure, 79, 80
unformatted input/output, 222, 238
UNLOCK, 209, 217, 219, 454, 456, 543, 546
USE, 4, 17, 37, 70, 113, 297, 300, 329, 330, 528,

530, 532, 534, 590, 591, 597
VALUE, 119, 185
VOLATILE, 120, 185, 300, 530, 533
WAIT, 229, 240, 254, 254, 587
WHERE, 15, 153, 176
WRITE, 28, 29, 223, 228, 232, 236, 245, 250, 251,

254, 267, 542, 583, 584, 586, 587
statement entity, 19, 194, 527, 528, 530
statement function, 337–338, 557
statement function statement, 10, 37, 64, 185, 297, 329,

336, 337, 530, 531, 557
statement keyword, 14, 44
statement label, 5, 19, 49, 49–52, 315, 527
statement order, 36
STATUS= specifier, 230–233, 234, 235, 235, 550, 551,

586
stmt-function-stmt (R1547), 33, 297, 300, 306, 337, 532
STOP statement, 38, 39, 207, 210, 340, 549
stop-code (R1164), 207, 207, 208
stop-stmt (R1162), 35, 82, 207
stopped image, 12, 38, 141, 145, 146, 347, 348, 417
STOPPED_IMAGES, 440
storage association, 4, 4, 44, 125–128, 336, 339, 441,

537–540
storage sequence, 19, 67, 68, 126–128, 301, 361, 497–

499, 517, 538, 538, 539
storage unit, 19, 19, 125–128, 239, 244, 251, 254, 301,

324, 361, 538–540
character, 19, 19, 106, 126, 128, 451, 538, 542, 544
file, 11, 19, 221, 224–227, 234, 239, 240, 246, 256,

262–264, 453, 538
numeric, 19, 19, 128, 455, 538, 542, 544
unspecified, 19, 19, 538, 542, 544

STORAGE_SIZE, 93, 441
stream access, 224
stream access data transfer statement, 240
stream file, 11, 19, 221, 224, 226, 265
STREAM= specifier, 259, 264

stride (R924), 134, 134, 135, 137, 244
structure, 7, 20, 40, 67
structure component, 20, 116, 130–132, 505, 570
structure constructor, 7, 14, 20, 40, 44, 54, 77, 85–87,

116, 117, 163, 164, 166, 421, 454, 529, 566
structure-component (R913), 115, 116, 129, 130, 131,

137, 139, 143
structure-constructor (R756), 20, 85, 86, 116, 147, 339
subcomponent, 7, 9, 76, 86, 173, 535–537, 541, 543–545
submodule, 15, 17, 20, 20, 35, 36, 41, 123, 300, 532
submodule (R1416), 32, 300
submodule identifier, 300
SUBMODULE statement, 296, 300
submodule-name, 300
submodule-stmt (R1417), 32, 300, 300
subobject, 3, 7, 8, 20, 40–42, 107, 131, 319, 535, 536
subprogram, 15, 20, 35–38, 41, 120

elemental, 11, 331, 332, 341
external, 17, 20, 35, 302
internal, 20, 35, 37, 123, 302, 532
module, 20, 35, 37, 123, 532

subroutine, 20
atomic, 20, 38, 210, 211, 343, 346–348, 364–368,

386, 451, 456, 546
collective, 20, 343, 347, 348, 374–376, 389, 441,

456, 546
subroutine reference, 328
SUBROUTINE statement, 10, 172, 296, 331, 334, 336
subroutine-name, 306, 334, 529
subroutine-stmt (R1538), 32, 305, 306, 332, 334, 334,

529, 532
subroutine-subprogram (R1537), 20, 32, 33, 297, 334,

335
subroutines

intrinsic, 343
subscript, 133

section, 136
subscript (R919), 116, 131, 133, 133–135, 137, 244
subscript triplet, 136
subscript-triplet (R922), 133, 134, 134, 137
substring, 130
substring (R908), 125, 126, 129, 130
substring ending point., 130
substring starting point, 130
substring-range (R910), 102, 130, 130, 132–134, 137,

244

664 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

suffix (R1535), 333, 333, 335
SUM, 441
SYNC ALL statement, 187, 209, 211, 212, 213, 219
SYNC IMAGES statement, 209, 212, 219, 220
SYNC MEMORY statement, 209, 213, 219, 612
SYNC TEAM statement, 187, 209, 214, 219
sync-all-stmt (R1168), 35, 211
sync-images-stmt (R1170), 35, 212
sync-memory-stmt (R1172), 35, 213
sync-stat (R1169), 186, 188, 211, 211–220
sync-team-stmt (R1173), 35, 214
synchronous input/output, 232, 239, 241, 243
SYSTEM_CLOCK, 27–30, 442

T
T edit descriptor, 284
TAN, 443
TAND, 443
TANH, 443
TANPI, 444
target, 10, 20, 41, 43, 58, 74–77, 82, 87, 98, 101, 102,

105, 107, 108, 110, 111, 117, 129, 131, 139, 142,
143, 145, 163, 169, 172–175, 180, 241, 242, 246,
247, 312, 315, 317, 318, 320, 322, 324, 497, 499,
502, 534–537, 540, 543, 545, 547

TARGET attribute, 4, 20, 28, 75, 110, 112, 112, 119,
126, 128, 143, 144, 173, 184, 194, 202, 304,
310, 319, 320, 322, 326, 327, 376, 416, 429,
497, 500, 502, 523, 535–537, 545, 562, 604, 605

TARGET statement, 119, 300
target-decl (R863), 119, 119
target-stmt (R862), 34, 119, 532
team, 12, 20, 20, 37, 42, 43, 138, 145, 187, 211, 212, 214,

216, 219, 343, 347, 399, 400, 421, 441, 445
current, 347

team number, 21, 138, 216
team variable, 23, 186, 456, 543, 546
team-construct-name, 186
team-number (R1180), 216, 216
team-value (R1115), 138, 186, 186, 187, 214
team-variable (R1181), 216, 216, 218, 219, 546
TEAM= specifier, 138, 138
TEAM_NUMBER, 166, 167, 444
TEAM_NUMBER= specifier, 138, 138
TEAM_TYPE, 23, 72, 100, 131, 139–141, 171, 186,

216, 389, 394, 399, 400, 421, 440, 444, 445,
456, 545

THEN, 197
THIS_IMAGE, 166, 167, 444
TINY, 438, 445
TKR compatible, 310
TL edit descriptor, 284
TOKENIZE, 445
totally associated, 539
TR edit descriptor, 284
TRAILZ, 446
TRANSFER, 166, 167, 447
transfer of control, 182, 206, 265, 266
transformational function, 21, 167, 337, 343, 343, 344,

348, 369, 370, 451, 452, 465
TRANSPOSE, 447
TRIM, 448
truncation, 345, 401, 429
TYPE, 56
type, 21, 39, 54–94

abstract, 21, 56, 80, 83, 83, 86, 131, 139
character, 63–66
complex, 62
declared, 21, 57, 58, 75, 86, 87, 94, 96, 130, 132,

140, 141, 143, 161–163, 168, 171, 172, 174, 175,
183, 202, 204, 205, 253, 309, 314, 315, 317, 318,
321, 331, 338, 388, 412, 416, 431, 452, 454, 531

derived, 9, 20, 21, 40, 54, 66–88, 94, 505, 506
dynamic, 16, 21, 23, 57, 58, 81, 83, 85, 87, 94, 112,

141, 143, 145, 161–163, 169, 171, 172, 174, 184,
203, 204, 210, 213, 214, 253, 314, 321, 331, 388,
412, 416, 431, 441, 531, 535, 540, 571, 620

expression, 162
extended, 4, 7, 13, 21, 22, 71, 77, 81, 83, 84, 540,

563, 568
extensible, 21, 56, 67, 75, 83, 248, 388, 431, 571,

609
extension, 22, 58, 83, 84, 204, 205, 321, 388, 609
integer, 59–60
intrinsic, 7, 22, 39, 40, 54, 59–66
logical, 66
numeric, 22, 59–62, 154–156, 159, 162, 170, 383,

409, 410, 425, 441
operation, 163
parent, 7, 22, 67, 68, 71, 77, 81, 83, 84, 310, 571
primary, 163
real, 60–61, 62

type compatible, 22, 58, 75, 139, 140, 168, 173, 310,

J3/23-007 665

J3/23-007 WD 1539-1 2023-02-17

318, 416
type conformance, 168
type declaration statement, 37, 56–58, 76, 96, 96–98,

107, 120, 125, 128, 165, 297, 300, 301, 333,
335, 337, 338, 541

type equality, 69
type guard statement, 64, 204
TYPE IS statement, 204, 431
type parameter, 3, 5, 13, 14, 22, 29, 39, 55, 57, 59, 66,

68, 71, 75, 86, 94, 96–98, 118, 128, 163, 166,
168, 184, 186, 202, 210, 303, 319, 341, 412,
416, 447, 497, 505, 529, 531

type parameter definition statement, 70
type parameter inquiry, 22, 132, 163, 165
type parameter keyword, 14, 44, 85
type parameter order, 22, 71
type specifier, 56

CHARACTER, 63
CLASS, 58
COMPLEX, 62
derived type, 57
DOUBLE PRECISION, 61
INTEGER, 59
LOGICAL, 66
REAL, 61
TYPE, 57

TYPE statement, 67, 70, 71, 99, 532
type-attr-spec (R728), 67, 67, 83
type-bound procedure, 5, 13, 15, 16, 66–68, 75, 80, 80,

81, 83, 84, 171, 253, 298, 308, 314, 317, 319,
331, 338, 340, 341, 528, 529

type-bound procedure statement, 79, 80
type-bound-generic-stmt (R751), 79, 79, 308
type-bound-proc-binding (R748), 78, 79
type-bound-proc-decl (R750), 79, 79
type-bound-procedure-part (R746), 67, 68, 78, 80, 505
type-bound-procedure-stmt (R749), 79, 79
type-declaration-stmt (R801), 33, 64, 96, 96, 339, 532
type-guard-stmt (R1156), 204, 204
type-name, 67, 68, 70, 79, 85
type-param-attr-spec (R734), 70, 71, 71
type-param-decl (R733), 70, 70, 71
type-param-def-stmt (R732), 67, 70, 70
type-param-inquiry (R916), 22, 132, 132, 147, 148, 529
type-param-name, 67, 70, 71, 73, 132, 147, 148, 529, 532
type-param-name-list, 71

type-param-spec (R755), 14, 44, 85, 85
type-param-value (R701), 22, 55, 55, 56, 63, 64, 72, 73,

85, 97, 139, 141, 332, 558
type-spec (R702), 56, 56, 57, 63, 64, 93, 94, 139–142,

204
TYPEOF, 56

U
UBOUND, 57, 202, 448
UCOBOUND, 449
ultimate argument, 23, 141, 145, 175, 318, 323, 324,

326, 347
ultimate component, 7, 28, 29, 66, 67, 102, 105, 107,

125, 127, 141, 143, 166, 167, 169, 190, 247,
315, 319, 326, 328, 338, 374, 375, 538

ultimate entity, 299
undefined, 10, 23, 41, 144, 535, 536, 541, 542
undefinition of variables, 541
underflow mode, 462, 463, 465, 470, 484, 491, 553
underscore (R602), 46, 46
UNFORMATTED, 248, 249, 305
unformatted data transfer, 246
unformatted input/output statement, 222, 238
unformatted record, 221
UNFORMATTED= specifier, 259, 264
Unicode file, 232
unit, 7, 16, 23, 222–224, 227, 227–230, 232–235, 240,

243–245, 249, 250, 254–264, 266, 267, 283, 289,
452, 453, 455, 542, 544, 583–588

UNIT= specifier, 230, 235, 236, 254, 255, 257, 258
unlimited polymorphic, 23, 57, 57, 58, 94, 127, 139–

141, 173, 204, 321, 388, 431, 441, 620
unlimited-format-item (R1305), 268, 269, 269, 272
UNLOCK statement, 209, 217, 219, 454, 456, 543, 546
unlock-stmt (R1185), 35, 217
unordered segments, 210, 211, 346, 353, 386
UNPACK, 449
unsaved, 23, 143, 144, 334, 536, 537, 543–545
unspecified storage unit, 19, 19, 538, 542, 544
until-spec (R1178), 215, 215
UNTIL_COUNT= specifier, 215, 387
upper-bound (R817), 104, 104
upper-bound-expr (R938), 139, 139, 173
upper-bounds-expr (R939), 139, 139–142, 173, 175
upper-cobound (R813), 101, 102, 102
use association, 4, 4, 16, 28, 36, 44, 58, 64, 83, 99,

100, 110, 113, 114, 120, 125–127, 164, 165, 174,

666 J3/23-007

2023-02-17 WD 1539-1 J3/23-007

297, 296–300, 306, 335, 339, 341, 529–532, 535
use path, 299
USE statement, 4, 17, 37, 70, 113, 297, 300, 329, 330,

528, 530, 532, 534, 590, 591, 597
use-defined-operator (R1415), 298, 298, 299
use-name, 298, 299, 528
use-stmt (R1409), 33, 185, 298, 298, 532

V
v (R1312), 250, 270, 270, 283
VALUE attribute, 57, 75, 81, 106, 112, 112, 119, 194,

244, 303, 304, 306, 308, 309, 318–322, 332, 338,
341, 376, 429, 508, 509, 526, 537, 562, 616, 618

value separator, 287
VALUE statement, 119, 185
value-stmt (R864), 34, 119
variable, 6, 8, 20, 23, 40–42, 44, 47, 109

definition & undefinition, 541
variable (R902), 3, 86, 93, 115, 116, 129, 129, 137, 168–

171, 173, 174, 178, 180, 183, 195, 204, 208,
215–217, 241, 314, 315, 317, 325, 492, 546

variable-name (R903), 125, 127, 129, 129, 130, 139, 143,
173, 190, 532, 546

vector subscript, 23, 42, 75, 102, 131, 135–137, 183, 204,
227, 228, 291, 319, 320, 326, 534, 537, 604

vector-subscript (R925), 133, 134, 134, 135
VERIFY, 450
VOLATILE attribute, 28, 29, 112, 112, 113, 120, 173,

175, 184, 190, 194, 297, 299, 303, 304, 320–322,
338, 532, 533, 537, 543, 546, 569

VOLATILE statement, 120, 185, 300, 530, 533
volatile-stmt (R865), 34, 120

W
w (R1308), 269, 270, 270, 274–283, 288, 290, 293

wait operation, 230, 234, 241, 243, 244, 254, 254–257,
262, 265, 266

WAIT statement, 229, 240, 254, 254, 587
wait-spec (R1223), 254, 254, 255
wait-stmt (R1222), 35, 254, 339
WHERE construct, 15, 176
WHERE statement, 15, 153, 176
where-assignment-stmt (R1046), 153, 176, 177, 177,

178, 180
where-body-construct (R1045), 176, 177, 177, 178
where-construct (R1043), 34, 176, 177, 179, 180
where-construct-name, 177
where-construct-stmt (R1044), 5, 176, 177, 177, 180,

207
where-stmt (R1042), 35, 176, 177, 179, 180
WHILE, 189, 192
whole array, 23, 133, 133, 134, 404, 448
WRITE (FORMATTED), 248, 305
WRITE (UNFORMATTED), 248, 249, 305
WRITE statement, 28, 29, 223, 228, 232, 236, 245, 250,

251, 254, 267, 542, 583, 584, 586, 587
write-stmt (R1211), 35, 236, 237, 339, 546
WRITE= specifier, 259, 264

X
X edit descriptor, 284
xyz, 25
xyz-list (R401), 25
xyz-name (R402), 25

Z
Z edit descriptor, 280
zero-size array, 42, 104, 116

J3/23-007 667

	Contents
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Notation, conformance, and compatibility
	4.1 Notation, symbols and abbreviated terms
	4.1.1 Syntax rules
	4.1.2 Constraints
	4.1.3 Assumed syntax rules
	4.1.4 Syntax conventions and characteristics
	4.1.5 Text conventions

	4.2 Conformance
	4.3 Compatibility
	4.3.1 Previous Fortran standards
	4.3.2 New intrinsic procedures
	4.3.3 Fortran 2018 compatibility
	4.3.4 Fortran 2008 compatibility
	4.3.5 Fortran 2003 compatibility
	4.3.6 Fortran 95 compatibility
	4.3.7 Fortran 90 compatibility
	4.3.8 FORTRAN 77 compatibility

	4.4 Deleted and obsolescent features
	4.4.1 General
	4.4.2 Nature of deleted features
	4.4.3 Nature of obsolescent features

	5 Fortran concepts
	5.1 High level syntax
	5.2 Program unit concepts
	5.2.1 Program units and scoping units
	5.2.2 Program
	5.2.3 Procedure
	5.2.4 Module
	5.2.5 Submodule

	5.3 Execution concepts
	5.3.1 Statement classification
	5.3.2 Statement order
	5.3.3 The END statement
	5.3.4 Program execution
	5.3.5 Execution sequence
	5.3.6 Image execution states
	5.3.7 Termination of execution

	5.4 Data concepts
	5.4.1 Type
	5.4.2 Data value
	5.4.3 Data entity
	5.4.4 Definition of objects and pointers
	5.4.5 Reference
	5.4.6 Array
	5.4.7 Coarray
	5.4.8 Established coarrays
	5.4.9 Pointer
	5.4.10 Allocatable variables
	5.4.11 Storage

	5.5 Fundamental concepts
	5.5.1 Names and designators
	5.5.2 Statement keyword
	5.5.3 Other keywords
	5.5.4 Association
	5.5.5 Intrinsic
	5.5.6 Operator
	5.5.7 Companion processors

	6 Lexical tokens and source form
	6.1 Processor character set
	6.1.1 Characters
	6.1.2 Letters
	6.1.3 Digits
	6.1.4 Underscore
	6.1.5 Special characters
	6.1.6 Other characters

	6.2 Low-level syntax
	6.2.1 Tokens
	6.2.2 Names
	6.2.3 Constants
	6.2.4 Operators
	6.2.5 Statement labels
	6.2.6 Delimiters

	6.3 Source form
	6.3.1 Program units, statements, and lines
	6.3.2 Free source form
	6.3.3 Fixed source form

	6.4 Including source text

	7 Types
	7.1 Characteristics of types
	7.1.1 The concept of type
	7.1.2 Type classification
	7.1.3 Set of values
	7.1.4 Constants
	7.1.5 Operations

	7.2 Type parameters
	7.3 Types, type specifiers, and values
	7.3.1 Relationship of types and values to objects
	7.3.2 Type specifiers and type compatibility
	7.3.3 Type compatibility

	7.4 Intrinsic types
	7.4.1 Classification and specification
	7.4.2 Intrinsic operations on intrinsic types
	7.4.3 Numeric intrinsic types
	7.4.4 Character type
	7.4.5 Logical type

	7.5 Derived types
	7.5.1 Derived type concepts
	7.5.2 Derived-type definition
	7.5.3 Derived-type parameters
	7.5.4 Components
	7.5.5 Type-bound procedures
	7.5.6 Final subroutines
	7.5.7 Type extension
	7.5.8 Derived-type values
	7.5.9 Derived-type specifier
	7.5.10 Construction of derived-type values
	7.5.11 Derived-type operations and assignment

	7.6 Other nonintrinsic types
	7.6.1 Interoperable enumerations and enum types
	7.6.2 Enumeration types

	7.7 Binary, octal, and hexadecimal literal constants
	7.8 Construction of array values

	8 Attribute declarations and specifications
	8.1 Attributes of procedures and data objects
	8.2 Type declaration statement
	8.3 Automatic data objects
	8.4 Initialization
	8.5 Attributes
	8.5.1 Attribute specification
	8.5.2 Accessibility attribute
	8.5.3 ALLOCATABLE attribute
	8.5.4 ASYNCHRONOUS attribute
	8.5.5 BIND attribute for data entities
	8.5.6 CODIMENSION attribute
	8.5.7 CONTIGUOUS attribute
	8.5.8 DIMENSION attribute
	8.5.9 EXTERNAL attribute
	8.5.10 INTENT attribute
	8.5.11 INTRINSIC attribute
	8.5.12 OPTIONAL attribute
	8.5.13 PARAMETER attribute
	8.5.14 POINTER attribute
	8.5.15 PROTECTED attribute
	8.5.16 SAVE attribute
	8.5.17 RANK clause
	8.5.18 TARGET attribute
	8.5.19 VALUE attribute
	8.5.20 VOLATILE attribute

	8.6 Attribute specification statements
	8.6.1 Accessibility statement
	8.6.2 ALLOCATABLE statement
	8.6.3 ASYNCHRONOUS statement
	8.6.4 BIND statement
	8.6.5 CODIMENSION statement
	8.6.6 CONTIGUOUS statement
	8.6.7 DATA statement
	8.6.8 DIMENSION statement
	8.6.9 INTENT statement
	8.6.10 OPTIONAL statement
	8.6.11 PARAMETER statement
	8.6.12 POINTER statement
	8.6.13 PROTECTED statement
	8.6.14 SAVE statement
	8.6.15 TARGET statement
	8.6.16 VALUE statement
	8.6.17 VOLATILE statement

	8.7 IMPLICIT statement
	8.8 IMPORT statement
	8.9 NAMELIST statement
	8.10 Storage association of data objects
	8.10.1 EQUIVALENCE statement
	8.10.2 COMMON statement
	8.10.3 Restrictions on common and equivalence

	9 Use of data objects
	9.1 Designator
	9.2 Variable
	9.3 Constants
	9.4 Scalars
	9.4.1 Substrings
	9.4.2 Structure components
	9.4.3 Coindexed named objects
	9.4.4 Complex parts
	9.4.5 Type parameter inquiry

	9.5 Arrays
	9.5.1 Order of reference
	9.5.2 Whole arrays
	9.5.3 Array elements and array sections
	9.5.4 Simply contiguous array designators

	9.6 Image selectors
	9.7 Dynamic association
	9.7.1 ALLOCATE statement
	9.7.2 NULLIFY statement
	9.7.3 DEALLOCATE statement
	9.7.4 STAT= specifier
	9.7.5 ERRMSG= specifier

	10 Expressions and assignment
	10.1 Expressions
	10.1.1 Expression semantics
	10.1.2 Form of an expression
	10.1.3 Precedence of operators
	10.1.4 Evaluation of operations
	10.1.5 Intrinsic operations
	10.1.6 Defined operations
	10.1.7 Evaluation of operands
	10.1.8 Integrity of parentheses
	10.1.9 Type, type parameters, and shape of an expression
	10.1.10 Conformability rules for elemental operations
	10.1.11 Specification expression
	10.1.12 Constant expression

	10.2 Assignment
	10.2.1 Assignment statement
	10.2.2 Pointer assignment
	10.2.3 Masked array assignment – WHERE
	10.2.4 FORALL

	11 Execution control
	11.1 Executable constructs containing blocks
	11.1.1 Blocks
	11.1.2 Rules governing blocks
	11.1.3 ASSOCIATE construct
	11.1.4 BLOCK construct
	11.1.5 CHANGE TEAM construct
	11.1.6 CRITICAL construct
	11.1.7 DO construct
	11.1.8 IF construct and statement
	11.1.9 SELECT CASE construct
	11.1.10 SELECT RANK construct
	11.1.11 SELECT TYPE construct
	11.1.12 EXIT statement

	11.2 Branching
	11.2.1 Branch concepts
	11.2.2 GO TO statement
	11.2.3 Computed GO TO statement

	11.3 CONTINUE statement
	11.4 STOP and ERROR STOP statements
	11.5 FAIL IMAGE statement
	11.6 NOTIFY WAIT statement
	11.7 Image execution control
	11.7.1 Image control statements
	11.7.2 Segments
	11.7.3 SYNC ALL statement
	11.7.4 SYNC IMAGES statement
	11.7.5 SYNC MEMORY statement
	11.7.6 SYNC TEAM statement
	11.7.7 EVENT POST statement
	11.7.8 EVENT WAIT statement
	11.7.9 FORM TEAM statement
	11.7.10 LOCK and UNLOCK statements
	11.7.11 STAT= and ERRMSG= specifiers in image control statements

	12 Input/output statements
	12.1 Input/output concepts
	12.2 Records
	12.2.1 Definition of a record
	12.2.2 Formatted record
	12.2.3 Unformatted record
	12.2.4 Endfile record

	12.3 External files
	12.3.1 External file concepts
	12.3.2 File existence
	12.3.3 File access
	12.3.4 File position
	12.3.5 File storage units

	12.4 Internal files
	12.5 File connection
	12.5.1 Referring to a file
	12.5.2 Connection modes
	12.5.3 Unit existence
	12.5.4 Connection of a file to a unit
	12.5.5 Preconnection
	12.5.6 OPEN statement
	12.5.7 CLOSE statement

	12.6 Data transfer statements
	12.6.1 Form of input and output statements
	12.6.2 Control information list
	12.6.3 Data transfer input/output list
	12.6.4 Execution of a data transfer input/output statement
	12.6.5 Termination of data transfer statements

	12.7 Waiting on pending data transfer
	12.7.1 Wait operation
	12.7.2 WAIT statement

	12.8 File positioning statements
	12.8.1 Syntax
	12.8.2 BACKSPACE statement
	12.8.3 ENDFILE statement
	12.8.4 REWIND statement

	12.9 FLUSH statement
	12.10 File inquiry statement
	12.10.1 Forms of the INQUIRE statement
	12.10.2 Inquiry specifiers
	12.10.3 Inquire by output list

	12.11 Error, end-of-record, and end-of-file conditions
	12.11.1 Occurrence of input/output conditions
	12.11.2 Error conditions and the ERR= specifier
	12.11.3 End-of-file condition and the END= specifier
	12.11.4 End-of-record condition and the EOR= specifier
	12.11.5 IOSTAT= specifier
	12.11.6 IOMSG= specifier

	12.12 Restrictions on input/output statements

	13 Input/output editing
	13.1 Format specifications
	13.2 Explicit format specification methods
	13.2.1 FORMAT statement
	13.2.2 Character format specification

	13.3 Form of a format item list
	13.3.1 Syntax
	13.3.2 Edit descriptors
	13.3.3 Fields

	13.4 Interaction between input/output list and format
	13.5 Positioning by format control
	13.6 Decimal symbol
	13.7 Data edit descriptors
	13.7.1 Purpose of data edit descriptors
	13.7.2 Numeric editing
	13.7.3 Logical editing
	13.7.4 Character editing
	13.7.5 Generalized editing
	13.7.6 User-defined derived-type editing

	13.8 Control edit descriptors
	13.8.1 Position edit descriptors
	13.8.2 Slash editing
	13.8.3 Colon editing
	13.8.4 SS, SP, and S editing
	13.8.5 LZS, LZP and LZ editing
	13.8.6 P editing
	13.8.7 BN and BZ editing
	13.8.8 RU, RD, RZ, RN, RC, and RP editing
	13.8.9 DC and DP editing

	13.9 Character string edit descriptors
	13.10 List-directed formatting
	13.10.1 Purpose of list-directed formatting
	13.10.2 Values and value separators
	13.10.3 List-directed input
	13.10.4 List-directed output

	13.11 Namelist formatting
	13.11.1 Purpose of namelist formatting
	13.11.2 Name-value subsequences
	13.11.3 Namelist input
	13.11.4 Namelist output

	14 Program units
	14.1 Main program
	14.2 Modules
	14.2.1 Module syntax and semantics
	14.2.2 The USE statement and use association
	14.2.3 Submodules

	14.3 Block data program units

	15 Procedures
	15.1 Concepts
	15.2 Procedure classifications
	15.2.1 Procedure classification by reference
	15.2.2 Procedure classification by means of definition

	15.3 Characteristics
	15.3.1 Characteristics of procedures
	15.3.2 Characteristics of dummy arguments
	15.3.3 Characteristics of function results

	15.4 Procedure interface
	15.4.1 Interface and abstract interface
	15.4.2 Implicit and explicit interfaces
	15.4.3 Specification of the procedure interface

	15.5 Procedure reference
	15.5.1 Syntax of a procedure reference
	15.5.2 Actual arguments, dummy arguments, and argument association
	15.5.3 Function reference
	15.5.4 Subroutine reference
	15.5.5 Resolving named procedure references
	15.5.6 Resolving type-bound procedure references

	15.6 Procedure definition
	15.6.1 Intrinsic procedure definition
	15.6.2 Procedures defined by subprograms
	15.6.3 Definition and invocation of procedures by means other than Fortran
	15.6.4 Statement function

	15.7 Pure procedures
	15.8 Simple procedures
	15.9 Elemental procedures
	15.9.1 Elemental procedure declaration and interface
	15.9.2 Elemental function actual arguments and results
	15.9.3 Elemental subroutine actual arguments

	16 Intrinsic procedures and modules
	16.1 Classes of intrinsic procedures
	16.2 Arguments to intrinsic procedures
	16.2.1 General rules
	16.2.2 The shape of array arguments
	16.2.3 Mask arguments
	16.2.4 DIM arguments and reduction functions

	16.3 Bit model
	16.3.1 General
	16.3.2 Bit sequence comparisons
	16.3.3 Bit sequences as arguments to INT and REAL

	16.4 Numeric models
	16.5 Atomic subroutines
	16.6 Collective subroutines
	16.7 Standard generic intrinsic procedures
	16.8 Specific names for standard intrinsic functions
	16.9 Specifications of the standard intrinsic procedures
	16.9.1 General

	16.10 Standard intrinsic modules
	16.10.1 General
	16.10.2 The ISO_FORTRAN_ENV intrinsic module

	17 Exceptions and IEEE arithmetic
	17.1 Overview of IEEE arithmetic support
	17.2 Derived types, constants, and operators defined in the modules
	17.3 The exceptions
	17.4 The rounding modes
	17.5 Underflow mode
	17.6 Halting
	17.7 The floating-point modes and status
	17.8 Exceptional values
	17.9 IEEE arithmetic
	17.10 Summary of the procedures
	17.11 Specifications of the procedures
	17.11.1 General

	17.12 Examples

	18 Interoperability with C
	18.1 General
	18.2 The ISO_C_BINDING intrinsic module
	18.2.1 Summary of contents
	18.2.2 Named constants and derived types in the module
	18.2.3 Procedures in the module

	18.3 Interoperability between Fortran and C entities
	18.3.1 Interoperability of intrinsic types
	18.3.2 Interoperability with C pointer types
	18.3.3 Interoperability of enum types
	18.3.4 Interoperability of derived types and C structure types
	18.3.5 Interoperability of scalar variables
	18.3.6 Interoperability of array variables
	18.3.7 Interoperability of procedures and procedure interfaces

	18.4 C descriptors
	18.5 The source file ISO_Fortran_binding.h
	18.5.1 Summary of contents
	18.5.2 The CFI_dim_t structure type
	18.5.3 The CFI_cdesc_t structure type
	18.5.4 Macros and typedefs in ISO_Fortran_binding.h
	18.5.5 Functions declared in ISO_Fortran_binding.h

	18.6 Restrictions on C descriptors
	18.7 Restrictions on formal parameters
	18.8 Restrictions on lifetimes
	18.9 Interoperation with C global variables
	18.9.1 General
	18.9.2 Binding labels for common blocks and variables

	18.10 Interoperation with C functions
	18.10.1 Definition and reference of interoperable procedures
	18.10.2 Binding labels for procedures
	18.10.3 Exceptions and IEEE arithmetic procedures
	18.10.4 Asynchronous communication

	19 Scope, association, and definition
	19.1 Scopes, identifiers, and entities
	19.2 Global identifiers
	19.3 Local identifiers
	19.3.1 Classes of local identifiers
	19.3.2 Local identifiers that are the same as common block names
	19.3.3 Function results
	19.3.4 Components, type parameters, and bindings
	19.3.5 Argument keywords

	19.4 Statement and construct entities
	19.5 Association
	19.5.1 Name association
	19.5.2 Pointer association
	19.5.3 Storage association
	19.5.4 Inheritance association
	19.5.5 Establishing associations

	19.6 Definition and undefinition of variables
	19.6.1 Definition of objects and subobjects
	19.6.2 Variables that are always defined
	19.6.3 Variables that are initially defined
	19.6.4 Variables that are initially undefined
	19.6.5 Events that cause variables to become defined
	19.6.6 Events that cause variables to become undefined
	19.6.7 Variable definition context
	19.6.8 Pointer association context

	Annex A (informative) Processor dependencies
	A.1 Unspecified items
	A.2 Processor dependencies

	Annex B (informative) Deleted and obsolescent features
	B.1 Deleted features from Fortran 90
	B.2 Deleted features from Fortran 2008
	B.3 Obsolescent features
	B.3.1 General
	B.3.2 Alternate return
	B.3.3 Computed GO TO statement
	B.3.4 Statement functions
	B.3.5 DATA statements among executables
	B.3.6 Assumed character length functions
	B.3.7 Fixed form source
	B.3.8 CHARACTER* form of CHARACTER declaration
	B.3.9 ENTRY statements
	B.3.10 Label DO statement
	B.3.11 COMMON and EQUIVALENCE statements and the block data program unit
	B.3.12 Specific names for intrinsic functions
	B.3.13 FORALL construct and statement

	Annex C (informative) Extended notes
	C.1 Features that were new in Fortran 2018
	C.2 Fortran 2008 features not mentioned in its Introduction
	C.3 Clause 7 notes
	C.3.1 Selection of the approximation methods (7.4.3.2)
	C.3.2 Type extension and component accessibility (7.5.2.2, 7.5.4)
	C.3.3 Generic type-bound procedures (7.5.5)
	C.3.4 Abstract types (7.5.7.1)
	C.3.5 Structure constructors and generic names (7.5.10)
	C.3.6 Final subroutines (7.5.6, 7.5.6.2, 7.5.6.3, 7.5.6.4)

	C.4 Clause 8 notes: The VOLATILE attribute (8.5.20)
	C.5 Clause 9 notes
	C.5.1 Structure components (9.4.2)
	C.5.2 Allocation with dynamic type (9.7.1)

	C.6 Clause 10 notes
	C.6.1 Evaluation of function references (10.1.7)
	C.6.2 Pointers in expressions (10.1.9.2)
	C.6.3 Pointers in variable definition contexts (10.2.1.3, 19.6.7)

	C.7 Clause 11 notes
	C.7.1 The SELECT CASE construct (11.1.9)
	C.7.2 Loop control (11.1.7)
	C.7.3 Examples of DO constructs (11.1.7)
	C.7.4 Examples of invalid DO constructs (11.1.7)
	C.7.5 Simple example using events
	C.7.6 Example using three teams
	C.7.7 Accessing coarrays in sibling teams
	C.7.8 Example involving failed images
	C.7.9 EVENT_QUERY example that tolerates image failure

	C.8 Clause 12 notes
	C.8.1 External files (12.3)
	C.8.2 Nonadvancing input/output (12.3.4.2)
	C.8.3 OPEN statement (12.5.6)
	C.8.4 Connection properties (12.5.4)
	C.8.5 Asynchronous input/output (12.6.2.5)

	C.9 Clause 13 notes
	C.9.1 Number of records (13.4, 13.5, 13.8.2)
	C.9.2 List-directed input (13.10.3)

	C.10 Clause 14 notes
	C.10.1 Main program and block data program unit (14.1, 14.3)
	C.10.2 Dependent compilation (14.2)
	C.10.3 Examples of the use of modules (14.2.1)
	C.10.4 Modules with submodules (14.2.3)

	C.11 Clause 15 notes
	C.11.1 Portability problems with external procedures (15.4.3.5)
	C.11.2 Procedures defined by means other than Fortran (15.6.3)
	C.11.3 Abstract interfaces and procedure pointer components (15.4, 7.5)
	C.11.4 Pointers and targets as arguments (15.5.2.5, 15.5.2.7, 15.5.2.8)
	C.11.5 Polymorphic Argument Association (15.5.2.10)
	C.11.6 Rules ensuring unambiguous generics (15.4.3.4.5)

	C.12 Clause 16 notes
	C.12.1 Atomic memory consistency
	C.12.2 EVENT_QUERY example
	C.12.3 Collective subroutine examples

	C.13 Clause 18 notes
	C.13.1 Runtime environments (18.1)
	C.13.2 Example of Fortran calling C (18.3)
	C.13.3 Example of C calling Fortran (18.3)
	C.13.4 Example of calling C functions with noninteroperable data (18.10)
	C.13.5 Example of opaque communication between C and Fortran (18.3)
	C.13.6 Using assumed type to interoperate with C
	C.13.7 Using assumed-type variables in Fortran
	C.13.8 Simplifying interfaces for arbitrary rank procedures
	C.13.9 Processing assumed-rank in C
	C.13.10 Creating a contiguous copy of an array
	C.13.11 Changing the attributes of an array
	C.13.12 Creating an array section in C using CFI_section
	C.13.13 Use of CFI_setpointer
	C.13.14 Mapping of MPI interfaces to Fortran

	C.14 Clause 19 notes
	C.14.1 Examples of global identifiers and binding labels (19.2)
	C.14.2 Examples of host association (19.5.1.4)

	Index

