

To: J3 J3/23-124

From: R. Bleikamp & JOR

Subject: List and status of JOR’s (potential) work items for F202y

Date: 2022-February-20

Reference: https://j3-fortran.org/forum/viewtopic.php?f=9&t=106&p=525#p525

Recent updates are in dark red.

Work item name Status / recent activity References

Pre-processor Straw vote results below
See next table line below
for current plans:

See https://j3-fortran.org/doc/year/22/22-186.pdf
(or newest revision thereof)

Straw vote results: (yes/no/undecided)
Is a very cpp like preprocessor acceptable (2/9/6)
Is a preprocessor mostly similar to existing fpp’s acceptable (14/0/3)
Is a somewhat more Fortran friendly preprocessor acceptable (12/3/2)
Is an extremely Fortran friendly acceptable (5/5/7)

JoR is actively attempting to decide how Fortran friendly the preprocessor should be and pondering other high level
decisions. Active investigations include:

1. Understand what is being used in real codes. Gary K. has analyzed many Fortran benchmarks/applications
and has collected stats on which cpp directives are used (frequency), …

2. How to add fpp to the standard. Jon S. will be looking into this.
3. What are the implications of using Fortran tokens as the basis for token replacement, rather than C/C++

tokens? Lorri M. will be researching this.
Future steps:

4. Flesh out the potential requirement set, based both on what we learn above, and the features that have
been proposed.

5. Flesh out the potential phases of the preprocessor, in a kind of functional programming way. That is, have
some view of a shell-like pipeline: collecting-input | process-directives | expand-macros | reformat-output.
Again, it doesn't have to be implemented this way, but it helps us describe the activities independently.

6. Map the requirement set to the phases.
7. Outline the consequences to the requirements to the implementation of the phases. There will be both

plusses and minuses in terms of what the users get, and what the implementers have to do.
8. Begin documenting individual directives. Steve L. has volunteered to help with this.
9. Figure out if a looping construct is needed.

JOR will be soliciting input from J3 along the way. Volunteers may be needed too.

fpp Update: Feb 2023 – JoR has decided to proceed with a “somewhat more Fortran Friendly” approach. More or
less adopting what existing existing fpp’s do today, when the most Fortran friendly flags are used. This includes:

- Better handling of fixed form. Token expansion will not cause expanded lines to treat text beyond col 72 as
commentary.

- Fortran tokens will be the recognized tokens for token replacement, not C language tokens. This makes the
definition of the preprocessor easier. Case will be ignored when identifying tokens. This also implies
insignificant blanks are ignored when scanning for tokens (fixed form).

- We believe this enhanced functionality will not adversely affect many users who are using a less Fortran friendly
pre-processor now, and will provide a much more portable preprocessor that will be widely adopted by the user
community. Comments are welcome. Send them to Lorri M.

- Gary K has gathered about 34 million lines of Fortran, with 400,000+ cpp-like preprocessor directives and is
analyzing these codes.

https://j3-fortran.org/forum/viewtopic.php?f=9&t=106&p=525#p525
https://j3-fortran.org/doc/year/22/22-186.pdf

Other Work items JoR will
pursue

Status / recent activity References

change F.P. model to be IEEE 754 Not started. Easy to do,
low priority.

https://github.com/j3-
fortran/fortran_proposals/issues/268

Remove some processor
dependencies from Annex A

Not started. This will be a low priority background task.

Immutable values Not started. https://github.com/j3-
fortran/fortran_proposals/issues/221

scan/prefix sum Brad Richardson is actively
working this item.

https://github.com/j3-
fortran/fortran_proposals/issues/273
Latest: https://j3-fortran.org/doc/year/23/23-
113.txt

log2: just log2, or survey math.h
and see what other base 2
intrinsics are missing from
fortran.

Brad Richardson is
pursuing this item. Not
just base 2 intrinsics, but
IEEE-754 more generally.

https://github.com/j3-
fortran/fortran_proposals/issues/222

Van’s paper 22-105 is subsumed by 23-111r1
https://j3-fortran.org/doc/year/23/23-111r1.txt

Work Items JoR is undecided
about for inclusion in F202Y

Status / recent activity References

ASSERT Not started. Need to evaluate
Magne’s comments.

https://github.com/j3-fortran/fortran_p ...
/issues/70;
New details - viewtopic.php?f=9&t=113

scan clause for do concurrent
reduce

Not started. Need use cases, and
possibly a volunteer to drive this
item.

https://github.com/j3-
fortran/fortran_proposals/issues/224

Disallow use of specific new
F202y features in a program
unit that uses any
deprecated/deleted features

JoR is undecided if this is a
desirable feature. Leaning
towards NOT pursuing this.

https://github.com/j3-
fortran/fortran_proposals/issues/280

Work items adopted by other subgroups

Program specified default kinds for constants and intrinsic types. Adopted by DATA

https://github.com/j3-fortran/fortran_proposals/issues/268
https://github.com/j3-fortran/fortran_proposals/issues/268
https://github.com/j3-fortran/fortran_proposals/issues/221
https://github.com/j3-fortran/fortran_proposals/issues/221
https://github.com/j3-fortran/fortran_proposals/issues/273
https://github.com/j3-fortran/fortran_proposals/issues/273
https://j3-fortran.org/doc/year/23/23-113.txt
https://j3-fortran.org/doc/year/23/23-113.txt
https://github.com/j3-fortran/fortran_proposals/issues/222
https://github.com/j3-fortran/fortran_proposals/issues/222
https://j3-fortran.org/doc/year/23/23-111r1.txt
https://github.com/j3-fortran/fortran_proposals/issues/70
https://github.com/j3-fortran/fortran_proposals/issues/70
https://j3-fortran.org/forum/viewtopic.php?f=9&t=113
https://github.com/j3-fortran/fortran_proposals/issues/224
https://github.com/j3-fortran/fortran_proposals/issues/224
https://github.com/j3-fortran/fortran_proposals/issues/280
https://github.com/j3-fortran/fortran_proposals/issues/280

Work items that JoR is NOT planning on recommending (currently) for inclusion in F202y. Interested parties should

contact JoR (rich@bleikamp.net) to arrange a time to present their views to the subgroup.

Work item name Status / recent activity References
Surprising results
for UBOUND and
LBOUND when arg
has zero extent

JoR is leaning towards dropping this
feature. A compelling use case would
change our mind.

https://github.com/j3-
fortran/fortran_proposals/issues/254

intrinsic to return
the name of your
caller, current
procedure name, ...

JoR decided not to pursue this. Again,
a compelling use case might change
our mind. Overhead and possibly
requiring debugging info is a concern.
Seems like a companion processor
(debugger) can do some of this.

https://github.com/j3-
fortran/fortran_proposals/issues/180

Deprecate D format
edit descriptor

the D edit descriptor serves no useful
purpose anymore. But removing it
from the standard may not be trivial.

https://github.com/j3-
fortran/fortran_proposals/issues/226

constexpr JoR needs to research this more. We
want to know when C++ initializes
constexprs. JoR would like to see a
compelling use case. Seems expensive
to implement if initialization happens
at compile time. Until JoR determines
this is easier than we think to
implement, this feature will remain
in the Not Recommended catagory.

https://github.com/j3-fortran/fortran_p ...
issues/214https://fortran-lang.discourse.group/t/
... fortranfan and from a DATA subgroup
item https://github.com/j3-fortran/fortran_p ...
issues/253

comments in list
directed input

similar to namelist, but undelimited
character input data may be a problem
/ incompatibility)

Van's email description:
see the next table row.

 We allow comments in namelist input. In list-directed input, one can put comments after the
last item desired by putting them after the slash that terminates the input. If one is reading
several arrays, say one array per line, with one list-directed input statement, one cannot put
a slash and comment on each line because that terminates the input.
Would there be a problem to allow comments in list-directed input, beginning with "!" as in
namelist input? JOR may reconsider if no backwards compatibility issues exist.

mailto:rich@bleikamp.net
https://github.com/j3-fortran/fortran_proposals/issues/214
https://github.com/j3-fortran/fortran_proposals/issues/214
https://fortran-lang.discourse.group/t/user-defined-functions-in-constant-expressions/1509/2?u=fortranfan
https://fortran-lang.discourse.group/t/user-defined-functions-in-constant-expressions/1509/2?u=fortranfan
https://github.com/j3-fortran/fortran_proposals/issues/253
https://github.com/j3-fortran/fortran_proposals/issues/253

