
WD 1539-1

J3/25-007
(Fortran 2028 Working Draft)

29th December 2024 12:55

This is an internal working document of INCITS/Fortran and
ISO/IEC JTC1/SC22/WG5.

NOTE: This Working Draft is only available as a PDF ϐile.

This page intentionally left nonblank.

2024‑12‑29 WD 1539‑1 J3/25‑007

Contents

Foreword . xiv

Introduction . xv

1 Scope . 1

2 Normative references . 2

3 Terms and deϐinitions . 3

4 Notation, conformance, and compatibility . 33
4.1 Notation, symbols and abbreviated terms . 33

4.1.1 Syntax rules . 33
4.1.2 Constraints . 34
4.1.3 Assumed syntax rules . 34
4.1.4 Syntax conventions and characteristics . 34
4.1.5 Text conventions . 35

4.2 Conformance . 35
4.3 Compatibility . 36

4.3.1 Previous Fortran standards . 36
4.3.2 New intrinsic procedures . 36
4.3.3 Fortran 2023 compatibility . 36
4.3.4 Fortran 2018 compatibility . 36
4.3.5 Fortran 2008 compatibility . 37
4.3.6 Fortran 2003 compatibility . 38
4.3.7 Fortran 95 compatibility . 39
4.3.8 Fortran 90 compatibility . 40
4.3.9 FORTRAN 77 compatibility . 40

4.4 Deleted and obsolescent features . 41
4.4.1 General . 41
4.4.2 Nature of deleted features . 41
4.4.3 Nature of obsolescent features . 41

5 Fortran concepts . 42
5.1 High level syntax . 42
5.2 Program unit concepts . 45

5.2.1 Program units and scoping units . 45
5.2.2 Program . 46
5.2.3 Procedure . 46
5.2.4 Module . 46
5.2.5 Submodule . 46

J3/25‑007 iii

J3/25‑007 WD 1539‑1 2024‑12‑29

5.3 Execution concepts . 46
5.3.1 Statement classiϐication . 46
5.3.2 Statement order . 47
5.3.3 The END statement . 48
5.3.4 Program execution . 48
5.3.5 Execution sequence . 48
5.3.6 Image execution states . 49
5.3.7 Termination of execution . 49

5.4 Data concepts . 50
5.4.1 Type . 50
5.4.2 Data value . 50
5.4.3 Data entity . 51
5.4.4 Deϐinition of objects and pointers . 52
5.4.5 Reference . 52
5.4.6 Array . 53
5.4.7 Coarray . 53
5.4.8 Established coarrays . 54
5.4.9 Pointer . 54
5.4.10 Allocatable variables . 54
5.4.11 Storage . 55

5.5 Fundamental concepts . 55
5.5.1 Names and designators . 55
5.5.2 Statement keyword . 55
5.5.3 Other keywords . 55
5.5.4 Association . 55
5.5.5 Intrinsic . 56
5.5.6 Operator . 56
5.5.7 Companion processors . 56

6 Lexical tokens and source form . 57
6.1 Processor character set . 57

6.1.1 Characters . 57
6.1.2 Letters . 57
6.1.3 Digits . 57
6.1.4 Underscore . 57
6.1.5 Special characters . 58
6.1.6 Other characters . 58

6.2 Low‑level syntax . 58
6.2.1 Tokens . 58
6.2.2 Names . 58
6.2.3 Constants . 59
6.2.4 Operators . 59
6.2.5 Statement labels . 60
6.2.6 Delimiters . 61

6.3 Source form . 61
6.3.1 Program units, statements, and lines . 61
6.3.2 Free source form . 61
6.3.3 Fixed source form (obsolescent) . 63

6.4 Including source text . 64

iv J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

7 Types . 65
7.1 Characteristics of types . 65

7.1.1 The concept of type . 65
7.1.2 Type classiϐication . 65
7.1.3 Set of values . 65
7.1.4 Constants . 65
7.1.5 Operations . 65

7.2 Type parameters . 66
7.3 Types, type speciϐiers, and values . 67

7.3.1 Relationship of types and values to objects . 67
7.3.2 Type speciϐiers . 67
7.3.3 Type compatibility . 69

7.4 Intrinsic types . 70
7.4.1 Classiϐication and speciϐication . 70
7.4.2 Intrinsic operations on intrinsic types . 70
7.4.3 Numeric intrinsic types . 70
7.4.4 Character type . 74
7.4.5 Logical type . 78

7.5 Derived types . 78
7.5.1 Derived type concepts . 78
7.5.2 Derived‑type deϐinition . 79
7.5.3 Derived‑type parameters . 82
7.5.4 Components . 84
7.5.5 Type‑bound procedures . 91
7.5.6 Final subroutines . 93
7.5.7 Type extension . 95
7.5.8 Derived‑type values . 97
7.5.9 Derived‑type speciϐier . 97
7.5.10 Construction of derived‑type values . 98
7.5.11 Derived‑type operations and assignment . 100

7.6 Other nonintrinsic types . 101
7.6.1 Interoperable enumerations and enum types . 101
7.6.2 Enumeration types . 103

7.7 Binary, octal, and hexadecimal literal constants . 105
7.8 Construction of array values . 106

8 Attribute declarations and speciϐications . 109
8.1 Attributes of procedures and data objects . 109
8.2 Type declaration statement . 109
8.3 Automatic data objects . 111
8.4 Initialization . 111
8.5 Attributes . 112

8.5.1 Attribute speciϐication . 112
8.5.2 Accessibility attribute . 112
8.5.3 ALLOCATABLE attribute . 112
8.5.4 ASYNCHRONOUS attribute . 113
8.5.5 BIND attribute for data entities . 113
8.5.6 CODIMENSION attribute . 114
8.5.7 CONTIGUOUS attribute . 115

J3/25‑007 v

J3/25‑007 WD 1539‑1 2024‑12‑29

8.5.8 DIMENSION attribute . 117
8.5.9 EXTERNAL attribute . 121
8.5.10 INTENT attribute . 121
8.5.11 INTRINSIC attribute . 123
8.5.12 OPTIONAL attribute . 123
8.5.13 PARAMETER attribute . 123
8.5.14 POINTER attribute . 124
8.5.15 PROTECTED attribute . 124
8.5.16 SAVE attribute . 125
8.5.17 RANK clause . 125
8.5.18 TARGET attribute . 126
8.5.19 VALUE attribute . 126
8.5.20 VOLATILE attribute . 127

8.6 Attribute speciϐication statements . 127
8.6.1 Accessibility statement . 127
8.6.2 ALLOCATABLE statement . 128
8.6.3 ASYNCHRONOUS statement . 129
8.6.4 BIND statement . 129
8.6.5 CODIMENSION statement . 129
8.6.6 CONTIGUOUS statement . 129
8.6.7 DATA statement . 129
8.6.8 DIMENSION statement . 132
8.6.9 INTENT statement . 132
8.6.10 OPTIONAL statement . 132
8.6.11 PARAMETER statement . 133
8.6.12 POINTER statement . 133
8.6.13 PROTECTED statement . 133
8.6.14 SAVE statement . 134
8.6.15 TARGET statement . 134
8.6.16 VALUE statement . 134
8.6.17 VOLATILE statement . 134

8.7 IMPLICIT statement . 135
8.8 IMPORT statement . 137
8.9 NAMELIST statement . 139
8.10 Storage association of data objects (obsolescent) . 140

8.10.1 Obsolescence . 140
8.10.2 EQUIVALENCE statement . 140
8.10.3 COMMON statement . 142
8.10.4 Restrictions on common and equivalence . 144

9 Use of data objects . 145
9.1 Designator . 145
9.2 Variable . 145
9.3 Constants . 146
9.4 Scalars . 146

9.4.1 Substrings . 146
9.4.2 Structure components . 147
9.4.3 Coindexed named objects . 148
9.4.4 Complex parts . 148

vi J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

9.4.5 Type parameter inquiry . 149
9.5 Arrays . 149

9.5.1 Order of reference . 149
9.5.2 Whole arrays . 149
9.5.3 Array elements and array sections . 149
9.5.4 Simply contiguous array designators . 153

9.6 Image selectors . 154
9.7 Dynamic association . 155

9.7.1 ALLOCATE statement . 155
9.7.2 NULLIFY statement . 160
9.7.3 DEALLOCATE statement . 161
9.7.4 STAT= speciϐier . 163
9.7.5 ERRMSG= speciϐier . 164

10 Expressions and assignment . 165
10.1 Expressions . 165

10.1.1 Expression semantics . 165
10.1.2 Form of an expression . 165
10.1.3 Precedence of operators . 169
10.1.4 Evaluation of operations . 170
10.1.5 Intrinsic operations . 172
10.1.6 Deϐined operations . 178
10.1.7 Evaluation of operands . 180
10.1.8 Integrity of parentheses . 180
10.1.9 Type, type parameters, and shape of an expression 181
10.1.10 Conformability rules for elemental operations . 182
10.1.11 Speciϐication expression . 183
10.1.12 Constant expression . 185

10.2 Assignment . 186
10.2.1 Assignment statement . 186
10.2.2 Pointer assignment . 191
10.2.3 Masked array assignment – WHERE . 196
10.2.4 FORALL . 198

11 Execution control . 202
11.1 Executable constructs containing blocks . 202

11.1.1 Blocks . 202
11.1.2 Rules governing blocks . 202
11.1.3 ASSOCIATE construct . 203
11.1.4 BLOCK construct . 205
11.1.5 CHANGE TEAM construct . 206
11.1.6 CRITICAL construct . 208
11.1.7 DO construct . 209
11.1.8 IF construct and statement . 218
11.1.9 SELECT CASE construct . 219
11.1.10 SELECT RANK construct . 222
11.1.11 SELECT TYPE construct . 224
11.1.12 EXIT statement . 227

11.2 Branching . 227

J3/25‑007 vii

J3/25‑007 WD 1539‑1 2024‑12‑29

11.2.1 Branch concepts . 227
11.2.2 GO TO statement . 227
11.2.3 Computed GO TO statement . 228

11.3 CONTINUE statement . 228
11.4 STOP and ERROR STOP statements . 228
11.5 FAIL IMAGE statement . 229
11.6 NOTIFY WAIT statement . 229
11.7 Image execution control . 230

11.7.1 Image control statements . 230
11.7.2 Segments . 231
11.7.3 SYNC ALL statement . 232
11.7.4 SYNC IMAGES statement . 233
11.7.5 SYNC MEMORY statement . 234
11.7.6 SYNC TEAM statement . 235
11.7.7 EVENT POST statement . 236
11.7.8 EVENTWAIT statement . 236
11.7.9 FORM TEAM statement . 237
11.7.10 LOCK and UNLOCK statements . 238
11.7.11 STAT= and ERRMSG= speciϐiers in image control statements 239

12 Input/output statements . 242
12.1 Input/output concepts . 242
12.2 Records . 242

12.2.1 Deϐinition of a record . 242
12.2.2 Formatted record . 242
12.2.3 Unformatted record . 243
12.2.4 Endϐile record . 243

12.3 External ϐiles . 243
12.3.1 External ϐile concepts . 243
12.3.2 File existence . 244
12.3.3 File access . 244
12.3.4 File position . 246
12.3.5 File storage units . 248

12.4 Internal ϐiles . 248
12.5 File connection . 249

12.5.1 Referring to a ϐile . 249
12.5.2 Connection modes . 250
12.5.3 Unit existence . 251
12.5.4 Connection of a ϐile to a unit . 251
12.5.5 Preconnection . 252
12.5.6 OPEN statement . 252
12.5.7 CLOSE statement . 257

12.6 Data transfer statements . 258
12.6.1 Form of input and output statements . 258
12.6.2 Control information list . 259
12.6.3 Data transfer input/output list . 264
12.6.4 Execution of a data transfer input/output statement 266
12.6.5 Termination of data transfer statements . 277

12.7 Waiting on pending data transfer . 277

viii J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.7.1 Wait operation . 277
12.7.2 WAIT statement . 278

12.8 File positioning statements . 279
12.8.1 Syntax . 279
12.8.2 BACKSPACE statement . 279
12.8.3 ENDFILE statement . 280
12.8.4 REWIND statement . 280

12.9 FLUSH statement . 281
12.10 File inquiry statement . 281

12.10.1 Forms of the INQUIRE statement . 281
12.10.2 Inquiry speciϐiers . 282
12.10.3 Inquire by output list . 289

12.11 Error, end‑of‑record, and end‑of‑ϐile conditions . 289
12.11.1 Occurrence of input/output conditions . 289
12.11.2 Error conditions and the ERR= speciϐier . 290
12.11.3 End‑of‑ϐile condition and the END= speciϐier . 290
12.11.4 End‑of‑record condition and the EOR= speciϐier . 290
12.11.5 IOSTAT= speciϐier . 291
12.11.6 IOMSG= speciϐier . 292

12.12 Restrictions on input/output statements . 292

13 Input/output editing . 293
13.1 Format speciϐications . 293
13.2 Explicit format speciϐication methods . 293

13.2.1 FORMAT statement . 293
13.2.2 Character format speciϐication . 293

13.3 Form of a format item list . 294
13.3.1 Syntax . 294
13.3.2 Edit descriptors . 294
13.3.3 Fields . 296

13.4 Interaction between input/output list and format . 296
13.5 Positioning by format control . 298
13.6 Decimal symbol . 298
13.7 Data edit descriptors . 298

13.7.1 Purpose of data edit descriptors . 298
13.7.2 Numeric editing . 299
13.7.3 Logical editing . 307
13.7.4 Character editing . 308
13.7.5 Generalized editing . 308
13.7.6 User‑deϐined derived‑type editing . 310

13.8 Control edit descriptors . 310
13.8.1 Position edit descriptors . 310
13.8.2 Slash editing . 311
13.8.3 Colon editing . 311
13.8.4 SS, SP, and S editing . 312
13.8.5 LZS, LZP and LZ editing . 312
13.8.6 P editing . 312
13.8.7 BN and BZ editing . 313
13.8.8 RU, RD, RZ, RN, RC, and RP editing . 313

J3/25‑007 ix

J3/25‑007 WD 1539‑1 2024‑12‑29

13.8.9 DC and DP editing . 313
13.9 Character string edit descriptors . 313
13.10 List‑directed formatting . 314

13.10.1 Purpose of list‑directed formatting . 314
13.10.2 Values and value separators . 314
13.10.3 List‑directed input . 314
13.10.4 List‑directed output . 317

13.11 Namelist formatting . 318
13.11.1 Purpose of namelist formatting . 318
13.11.2 Name‑value subsequences . 318
13.11.3 Namelist input . 319
13.11.4 Namelist output . 322

14 Program units . 324
14.1 Main program . 324
14.2 Modules . 324

14.2.1 Module syntax and semantics . 324
14.2.2 The USE statement and use association . 325
14.2.3 Submodules . 328

14.3 Block data program units . 329

15 Procedures . 330
15.1 Concepts . 330
15.2 Procedure classiϐications . 330

15.2.1 Procedure classiϐication by reference . 330
15.2.2 Procedure classiϐication by means of deϐinition . 330

15.3 Characteristics . 331
15.3.1 Characteristics of procedures . 331
15.3.2 Characteristics of dummy arguments . 331
15.3.3 Characteristics of function results . 332

15.4 Procedure interface . 332
15.4.1 Interface and abstract interface . 332
15.4.2 Implicit and explicit interfaces . 332
15.4.3 Speciϐication of the procedure interface . 333

15.5 Procedure reference . 343
15.5.1 Syntax of a procedure reference . 343
15.5.2 Actual arguments, dummy arguments, and argument association 346
15.5.3 Function reference . 358
15.5.4 Subroutine reference . 358
15.5.5 Resolving named procedure references . 359
15.5.6 Resolving type‑bound procedure references . 361

15.6 Procedure deϐinition . 361
15.6.1 Intrinsic procedure deϐinition . 361
15.6.2 Procedures deϐined by subprograms . 362
15.6.3 Deϐinition and invocation of procedures by means other than Fortran 368
15.6.4 Statement function (obsolescent) . 369

15.7 Pure procedures . 370
15.8 Simple procedures . 372
15.9 Elemental procedures . 373

x J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

15.9.1 Elemental procedure declaration and interface . 373
15.9.2 Elemental function actual arguments and results . 373
15.9.3 Elemental subroutine actual arguments . 374

16 Intrinsic procedures and modules . 375
16.1 Classes of intrinsic procedures . 375
16.2 Arguments to intrinsic procedures . 375

16.2.1 General rules . 375
16.2.2 The shape of array arguments . 376
16.2.3 Mask arguments . 376
16.2.4 DIM arguments and reduction functions . 376

16.3 Bit model . 377
16.3.1 General . 377
16.3.2 Bit sequence comparisons . 377
16.3.3 Bit sequences as arguments to INT and REAL . 377

16.4 Numeric models . 378
16.5 Atomic subroutines . 379
16.6 Collective subroutines . 379
16.7 Standard generic intrinsic procedures . 380
16.8 Speciϐic names for standard intrinsic functions (obsolescent) 385
16.9 Speciϐications of the standard intrinsic procedures . 387

16.9.1 General . 387
16.10 Standard intrinsic modules . 490

16.10.1 General . 490
16.10.2 The ISO_FORTRAN_ENV intrinsic module . 491

17 Exceptions and IEEE arithmetic . 498
17.1 Overview of IEEE arithmetic support . 498
17.2 Derived types, constants, and operators deϐined in the modules 499
17.3 The exceptions . 500
17.4 The rounding modes . 502
17.5 Underϐlow mode . 503
17.6 Halting . 503
17.7 The ϐloating‑point modes and status . 503
17.8 Exceptional values . 504
17.9 IEEE arithmetic . 504
17.10 Summary of the procedures . 505
17.11 Speciϐications of the procedures . 507

17.11.1 General . 507
17.12 Examples . 535

18 Interoperability with C . 537
18.1 General . 537
18.2 The ISO_C_BINDING intrinsic module . 537

18.2.1 Summary of contents . 537
18.2.2 Named constants and derived types in the module 537
18.2.3 Procedures in the module . 539

18.3 Interoperability between Fortran and C entities . 546
18.3.1 Interoperability of intrinsic types . 546

J3/25‑007 xi

J3/25‑007 WD 1539‑1 2024‑12‑29

18.3.2 Interoperability with C pointer types . 547
18.3.3 Interoperability of enum types . 547
18.3.4 Interoperability of derived types and C structure types 547
18.3.5 Interoperability of scalar variables . 549
18.3.6 Interoperability of array variables . 549
18.3.7 Interoperability of procedures and procedure interfaces 550

18.4 C descriptors . 552
18.5 The source ϐile ISO_Fortran_binding.h . 552

18.5.1 Summary of contents . 552
18.5.2 The CFI_dim_t structure type . 553
18.5.3 The CFI_cdesc_t structure type . 553
18.5.4 Macros and typedefs in ISO_Fortran_binding.h . 554
18.5.5 Functions declared in ISO_Fortran_binding.h . 557

18.6 Restrictions on C descriptors . 565
18.7 Restrictions on formal parameters . 565
18.8 Restrictions on lifetimes . 565
18.9 Interoperation with C global variables . 566

18.9.1 General . 566
18.9.2 Binding labels for common blocks and variables . 567

18.10 Interoperation with C functions . 567
18.10.1 Deϐinition and reference of interoperable procedures 567
18.10.2 Binding labels for procedures . 568
18.10.3 Exceptions and IEEE arithmetic procedures . 569
18.10.4 Asynchronous communication . 569

19 Scope, association, and deϐinition . 570
19.1 Scopes, identiϐiers, and entities . 570
19.2 Global identiϐiers . 570
19.3 Local identiϐiers . 571

19.3.1 Classes of local identiϐiers . 571
19.3.2 Local identiϐiers that are the same as common block names 572
19.3.3 Function results . 572
19.3.4 Components, type parameters, and bindings . 572
19.3.5 Argument keywords . 573

19.4 Statement and construct entities . 573
19.5 Association . 574

19.5.1 Name association . 574
19.5.2 Pointer association . 578
19.5.3 Storage association (obsolescent) . 581
19.5.4 Inheritance association . 583
19.5.5 Establishing associations . 583

19.6 Deϐinition and undeϐinition of variables . 584
19.6.1 Deϐinition of objects and subobjects . 584
19.6.2 Variables that are always deϐined . 584
19.6.3 Variables that are initially deϐined . 584
19.6.4 Variables that are initially undeϐined . 585
19.6.5 Events that cause variables to become deϐined . 585
19.6.6 Events that cause variables to become undeϐined . 587
19.6.7 Variable deϐinition context . 589

xii J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

19.6.8 Pointer association context . 590

Annex A (informative) Processor dependencies . 591

Annex B (informative) Deleted and obsolescent features . 597

Annex C (informative) Extended notes . 601

Index . 670

J3/25‑007 xiii

J3/25‑007 WD 1539‑1 2024‑12‑29

Foreword
1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com‑

mission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees estab‑
lishedby the respective organization todealwithparticular ϐields of technical activity. ISO and IEC technical
committees collaborate in ϐields of mutual interest. Other international organizations, governmental and
non‑governmental, in liaison with ISO and IEC, also take part in the work.

2 The procedures used to develop this document and those intended for its further maintenance are de‑
scribed in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the dif‑
ferent types of document should be noted. This document was drafted in accordance with the editorial
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_
experts/refdocs).

3 ISO and IEC draw attention to the possibility that the implementation of this document may involve the
use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of any
claimed patent rights in respect thereof. As of the date of publication of this document, ISO and IEC had
not received notice of (a) patent(s) which may be required to implement this document. However, imple‑
menters are cautioned that this may not represent the latest information, which may be obtained from the
patent database available at www.iso.org/patents and patents.iec.ch. ISO and IEC shall not be
held responsible for identifying any or all such patent rights.

4 Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

5 For an explanation of the voluntary nature of standards, themeaning of ISO speciϐic terms and expressions
related to conformity assessment, as well as information about ISO’s adherence to theWorld Trade Organ‑
ization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.
html. In the IEC, see www.iec.ch/understanding-standards.

6 This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Sub‑
committee SC 22, Programming languages, their environments and system software interfaces.

7 This sixth edition cancels and replaces the ϐifth edition (ISO/IEC 1539‑1:2023), which has been technically
revised.

8 The main changes are as follows:
— templates have been added;
— other changes listed in the Introduction.

9 A list of all parts in the ISO/IEC 1539 series can be found on the ISO and IEC websites.

10 Any feedback or questions on this document should be directed to the user’s national standards body.
A complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/
national-committees.

xiv J3/25‑007

www.iso.org/directives
www.iec.ch/members_experts/refdocs
www.iec.ch/members_experts/refdocs
www.iso.org/patents
patents.iec.ch
www.iso.org/iso/foreword.html
www.iso.org/iso/foreword.html
www.iec.ch/understanding-standards
www.iso.org/members.html
www.iec.ch/national-committees
www.iec.ch/national-committees

2024‑12‑29 WD 1539‑1 J3/25‑007

Introduction
1 This document comprises the speciϐicationof thebase Fortran language, informally knownasFortran2028.

With the limitations noted in 4.3.3, the syntax and semantics of Fortran 2023 are contained entirely within
Fortran 2028. Therefore, any standard‑conforming Fortran 2023 program not affected by such limitations
is a standard‑conforming Fortran 2028 program. New features of Fortran 2028 can be compatibly incor‑
porated into such Fortran 2023 programs, with any exceptions indicated in the text of this document.

2 Fortran 2028 contains several extensions to Fortran 2023; these are listed below.

• Source form:
• Data declaration:
• Data usage and computation:
• Input/output:
• Execution control:
• Intrinsic procedures:
• Intrinsic modules:
• Program units and procedures:

3 This document is organized in 19 clauses, dealing with 8 conceptual areas. These 8 areas, and the clauses
in which they are treated, are:

High/low level concepts Clauses 4, 5, 6
Data concepts Clauses 7, 8, 9
Computations Clauses 10, 16, 17
Execution control Clause 11
Input/output Clauses 12, 13
Program units Clauses 14, 15
Interoperability with C Clause 18
Scoping and association rules Clause 19

4 It also contains the following nonnormative material:

Processor dependencies Annex A
Deleted and obsolescent features Annex B
Extended notes Annex C
Index Index

J3/25‑007 xv

J3/25‑007 WD 1539‑1 2024‑12‑29

xvi J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Information technology— Programming languages—1

Fortran—2

Part 1:3

Base language4

1 Scope5

1 This document speciϐies the form and establishes the interpretation of programs expressed in the base6
Fortran language. The purpose of this document is to promote portability, reliability, maintainability, and7
efϐicient execution of Fortran programs for use on a variety of computing systems.8

2 This document speciϐies9
• the forms that a program written in the Fortran language can take,10
• the rules for interpreting the meaning of a program and its data,11
• the form of the input data to be processed by such a program, and12
• the form of the output data resulting from the use of such a program.13

3 Except where stated otherwise, requirements and prohibitions speciϐied by this document apply to pro‑14
grams rather than processors.15

4 This document does not specify16

• the mechanism by which programs are transformed for use on computing systems,17
• the operations required for setup and control of the use of programs on computing systems,18
• the method of transcription of programs or their input or output data to or from a storage medium,19
• the program and processor behavior when this document fails to establish an interpretation except20
for the processor detection and reporting requirements in items (2) to (10) of 4.2,21

• the maximum number of images, or the size or complexity of a program and its data that will exceed22
the capacity of any particular computing system or the capability of a particular processor,23

• the mechanism for determining the number of images of a program,24
• the physical properties of an image or the relationship between images and the computational ele‑25
ments of a computing system,26

• the physical properties of the representation of quantities and the method of rounding, approximat‑27
ing, or computing numeric values on a particular processor, except by reference to28
ISO/IEC 60559:2020 under conditions speciϐied in Clause 17,29

• the physical properties of input/output records, ϐiles, and units, or30
• the physical properties and implementation of storage.31

J3/25‑007 1

J3/25‑007 WD 1539‑1 2024‑12‑29

2 Normative references1

The following documents are referred to in the text in such a way that some or all of their content con‑2
stitutes requirements of this document. For dated references, only the edition cited applies. For undated3
references, the latest edition of the referenced document (including any amendments) applies.4

ISO/IEC 646:1991, Information technology—ISO 7‑bit coded character set for information interchange5

ISO/IEC 9899:2018, Programming languages—C6

ISO/IEC 10646, Information technology—Universal Multiple‑Octet Coded Character Set (UCS)7

ISO/IEC/IEEE 60559:2020, Information technology—Microprocessor Systems— Floating‑Point arithmetic8

2 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3 Terms and deϐinitions1

For the purposes of this document, the following terms and deϐinitions apply.2

ISO and IEC maintain terminology databases for use in standardization at the following addresses:3

— ISO Online browsing platform: available at https://www.iso.org/obp4
— IEC Electropedia: available at https://www.electropedia.org/5

3.16
actual argument7
entity that determines argument association8

Note 1 to entry: See 15.5.2.3 and 15.5.2.4.9

Note 2 to entry: An actual‑arg, consequent‑arg, or variable in a deϐined assignment statement, are all10
examples of actual arguments.11

3.212
allocatable13
having the ALLOCATABLE attribute14

Note 1 to entry: See 8.5.3.15

3.316
array17
set of scalar data, all of the same type and type parameters, whose individual elements are arranged in a18
rectangular pattern19

Note 1 to entry: See 8.5.8 and 9.5.20

3.3.121
array element22
scalar subobject (3.138) of an array that has the same type and type parameters as the array23

Note 1 to entry: Array elements are described in 9.5.3.24

3.3.225
array pointer26
array with the POINTER attribute27

Note 1 to entry: The POINTER attribute is described in 8.5.14.28

3.3.329
array section30
array subobject (3.138) designated by array‑section, and which is itself an array31

Note 1 to entry: Array sections are described in 9.5.3.4.32

J3/25‑007 3

https://www.iso.org/obp
https://www.electropedia.org/

J3/25‑007 WD 1539‑1 2024‑12‑29

3.3.41
assumed‑shape array2
nonallocatable nonpointer dummy argument (3.59) array that takes its shape from its effective argument3
(3.60)4

Note 1 to entry: Assumed‑shape arrays are described in 8.5.8.3.5

3.3.56
assumed‑size array7
dummy argument (3.59) array whose size is assumed from that of its effective argument (3.60)8

Note 1 to entry: Assumed‑size arrays are described in 8.5.8.5.9

3.3.610
deferred‑shape array11
allocatable (3.2) array or array pointer (3.3.2)12

Note 1 to entry: Deferred‑shape arrays are described in 8.5.8.4.13

3.3.714
explicit‑shape array15
array declared with an explicit‑shape‑spec‑list or explicit‑shape‑bounds‑spec, which speciϐies explicit values16
for the bounds (3.17) in each dimension of the array17

Note 1 to entry: Explicit‑shape arrays are described in 8.5.8.2.18

3.419
ASCII character20
character whose representation method corresponds to ISO/IEC 646:1991 (International Reference Ver‑21
sion)22

3.523
associate name24
name of construct entity (3.35) associatedwith a selector of an ASSOCIATE, CHANGE TEAM, SELECT RANK,25
or SELECT TYPE construct26

Note 1 to entry: See 11.1.3, 11.1.5, 11.1.10, and 11.1.11.27

3.628
associating entity29
entity that did not exist prior to a dynamically‑established association30

Note 1 to entry: Dynamically‑established associations are described in 19.5.5.31

3.732
association33
inheritance association (3.7.4), name association (3.7.6), pointer association (3.7.7), or storage association34
(3.7.8)35

3.7.136
argument association37
association between an effective argument (3.60) and a dummy argument (3.59)38

Note 1 to entry: Argument association is described in 15.5.2.39

4 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.7.21
construct association2
association between a selector and an associate name (3.5) in an ASSOCIATE, CHANGE TEAM, SELECT3
RANK, or SELECT TYPE construct4

Note 1 to entry: See 11.1.3, 11.1.5, 11.1.10, 11.1.11, and 19.5.1.6.5

3.7.36
host association7
name association, other than argument association, between entities in a submodule or contained scoping8
unit (3.120) and entities in its host9

Note 1 to entry: Host association is described in 19.5.1.4.10

3.7.411
inheritance association12
association between the inherited components of an extended type (3.144.5) and the components of its13
parent component (3.30.2)14

Note 1 to entry: Inheritance association is described in 19.5.4.15

3.7.516
linkage association17
association between a variable or common block with the BIND attribute and a C global variable18

Note 1 to entry: Linkage association is described in 18.9 and 19.5.1.5.19

Note 2 to entry: Common blocks are obsolescent.20

3.7.621
name association22
argument association (3.7.1), construct association (3.7.2), host association (3.7.3),23
linkage association (3.7.5), or use association (3.7.9)24

Note 1 to entry: Name association is described in 19.5.1.25

3.7.726
pointer association27
association between a pointer (3.104) and a procedure or a variable with the TARGET attribute28

Note 1 to entry: Pointer association is described in 19.5.2.29

3.7.830
storage association31
association between storage sequences32

Note 1 to entry: Storage association is described in 19.5.3.33

3.7.934
use association35
association between entities in a module and entities in a scoping unit or construct that references that36
module, as speciϐied by a USE statement37

Note 1 to entry: Use association is described in 14.2.2.38

J3/25‑007 5

J3/25‑007 WD 1539‑1 2024‑12‑29

3.81
assumed‑rank dummy data object2
dummy data object (3.59.1) that assumes the rank, shape, and size of its effective argument (3.60)3

Note 1 to entry: Assumed‑rank entities are described in 8.5.8.7.4

3.95
assumed‑type6
declared with a TYPE(*) type speciϐier7

Note 1 to entry: See 7.3.2.8

3.109
attribute10
property of an entity that determines its uses11

Note 1 to entry: Attributes of procedures and data objects are described in 8.1.12

3.1113
automatic data object14
nondummy data object (3.42) with a type parameter (3.144.12) or array bound (3.17) that depends on the15
value of a speciϔication expression (3.128) that is not a constant expression (3.36)16

Note 1 to entry: Automatic data objects are described in 8.3.17

3.1218
base object19
object designated by the leftmost part‑name20

Note 1 to entry: Base objects are described in 9.4.2.21

Note 2 to entry: This only applies to the data‑ref syntax (R911).22

3.1323
binding24
type‑bound procedure (3.109.7) or ϔinal subroutine (3.69)25

3.1426
binding name27
name given to a speciϐic or generic type‑bound procedure (3.109.7) in the type deϐinition28

Note 1 to entry: Type‑bound procedures are described in 7.5.5.29

3.1530
binding label31
default character value specifying the name by which a global entity with the BIND attribute is known to32
the companion processor (3.29)33

Note 1 to entry: Binding labels are described in 18.10.2 and 18.9.2.34

6 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.161
block2
sequence of executable constructs formed by the syntactic class block3

Note 1 to entry: A block is treated as a unit by the executable constructs described in 11.1.4

3.175
bound6
array bound7
limit of a dimension of an array (3.3)8

3.189
branch target statement10
statement whose statement label (3.132) appears as a label in a GO TO statement, computed GO TO state‑11
ment, alt‑return‑spec, END= speciϐier, EOR= speciϐier, or ERR= speciϐier12

Note 1 to entry: A branch target statement shall be an action‑stmt, associate‑stmt, end‑associate‑stmt, if‑13
then‑stmt, end‑if‑stmt, select‑case‑stmt, end‑select‑stmt, select‑rank‑stmt, end‑select‑rank‑stmt, select‑type‑14
stmt, end‑select‑type‑stmt, do‑stmt, end‑do‑stmt, block‑stmt, end‑block‑stmt, critical‑stmt, end‑critical‑stmt,15
forall‑construct‑stmt, where‑construct‑stmt, end‑function‑stmt, end‑mp‑subprogram‑stmt, end‑program‑16
stmt, or end‑subroutine‑stmt. Branching is described in 11.2.1.17

Note 2 to entry: Computed GO TO statements and alternate return speciϐiers are obsolescent.18

3.1919
C address20
value of type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING identifying a location21

Note 1 to entry: This is the concept that ISO/IEC 9899:2018 calls the address. This can apply to a variable22
or procedure.23

3.2024
C descriptor25
C structure of type CFI_cdesc_t deϐined in the source ϐile ISO_Fortran_binding.h26

Note 1 to entry: C descriptors and the source ϐile ISO_Fortran_binding.h are described in 18.4 and 18.5.27

3.2128
character context29
within a character literal constant or within a character string edit descriptor30

Note 1 to entry: Character literal constants are described in 7.4.4. Character string edit descriptors are31
described in 13.3.2.32

J3/25‑007 7

J3/25‑007 WD 1539‑1 2024‑12‑29

3.221
characteristics2
properties used to determine compatibility or consistency3

Note 1 to entry: A dummy argument (3.59) has the characteristic of being a dummy data object (3.59.1),
dummy procedure (3.109.1), or an asterisk (alternate return indicator; these are obsolescent). A dummy
data object (3.59.1) has the additional characteristics listed in 15.3.2.2. A dummy procedure (3.109.1) has
the additional characteristics listed in 15.3.2.3.

A function result has the characteristics listed in 15.3.3. A procedure has the characteristics listed in 15.3.1.4
The characteristics of intrinsic procedures are listed in 16.9.5

3.236
coarray7
component (3.30), or variable (3.151), that has nonzero corank (3.39)8

3.23.19
established coarray10
coarray (3.23) that is accessible using an image‑selector11

Note 1 to entry: Established coarrays are described in 5.4.8.12

3.2413
cobound14
bound (limit) of a codimension (3.25)15

3.2516
codimension17
dimension of the pattern formed by a set of corresponding coarrays (3.23)18

3.2619
coindexed object20
data object (3.42) whose designator (3.56) includes an image‑selector21

Note 1 to entry: Image selectors are described in 9.6.22

3.2723
collating sequence24
one‑to‑one mapping from a character set into the nonnegative integers25

Note 1 to entry: Collating sequences are described in 7.4.4.4.26

3.2827
common block28
block of physical storage speciϐied by a COMMON statement29

Note 1 to entry: Common blocks are described in 8.10.3.30

Note 2 to entry: Common blocks are obsolescent.31

3.28.132
blank common33
unnamed common block34

8 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.291
companion processor2
processor‑dependent mechanism by which global data and procedures can be referenced or deϐined3

Note 1 to entry: Companion processors are described in 5.5.7.4

3.305
component6
part of a derived type, or of an object of derived type, deϐined by a component‑def‑stmt7

Note 1 to entry: Components are described in 7.5.4.8

3.30.19
direct component10
one of the components, or one of the direct components of a nonpointer nonallocatable component11

Note 1 to entry: See 7.5.1.12

3.30.213
parent component14
component of an extended type (3.144.5) whose type is that of the parent type (3.144.10) and whose com‑15
ponents are inheritance associated (3.7.4) with the inherited (3.84) components of the parent type16

Note 1 to entry: Inheritance and the parent component are described in 7.5.7.2.17

3.30.318
potential subobject component19
nonpointer component, or potential subobject component of a nonpointer component20

Note 1 to entry: See 7.5.1.21

3.30.422
subcomponent23
⟨structure (3.136)⟩ direct component (3.30.1) that is a subobject (3.138) of the structure24

Note 1 to entry: See 9.4.2.25

3.30.526
ultimate component27
component that is of intrinsic type (3.144.8), a pointer (3.104), or allocatable (3.2); or an ultimate compon‑28
ent of a nonpointer nonallocatable component of derived type29

3.3130
component order31
ordering of the nonparent components of a derived type that is used for intrinsic (3.90) formatted in‑32
put/output and, where component keywords are not used, structure constructors (3.136.2)33

Note 1 to entry: Component order is described in 7.5.4.7.34

3.3235
conformable36
having the same shape, or one being an array and the other being scalar37

Note 1 to entry: This is a relationship between two data entities.38

J3/25‑007 9

J3/25‑007 WD 1539‑1 2024‑12‑29

3.331
connected2
relationship between a unit (3.148) and a ϐile: each is connected if and only if the unit refers to the ϐile3

Note 1 to entry: See 12.5.4.4

3.345
constant6
data object (3.42) that has a value and which cannot be deϐined, redeϐined, or become undeϐined during7
execution of a program8

Note 1 to entry: See 6.2.3 and 9.3.9

3.34.110
literal constant11
constant that does not have a name12

Note 1 to entry: A literal constant has the syntax literal‑constant (R605), and is of intrinsic type (7.4).13

3.34.214
named constant15
named data object (3.42) with the PARAMETER attribute16

3.3517
construct entity18
entity whose identiϐier has the scope of a construct19

Note 1 to entry: The scoping of such entities is described in 19.1 and 19.4.20

3.3621
constant expression22
expression satisfying requirements that ensure its value is constant23

Note 1 to entry: A constant expression shall satisfy the requirements in 10.1.12.24

3.3725
contiguous26
⟨array⟩whose array elements, in order, are not separated by other data objects27

Note 1 to entry: The requirements for contiguous are deϐined in 8.5.7.28

3.3829
contiguous30
⟨multi‑part data object⟩whose parts, in order, are not separated by other data objects31

3.3932
corank33
number of codimensions (3.25) of a coarray (3.23), or zero for objects that are not coarrays34

Note 1 to entry: See 5.4.7 and 8.5.6.35

10 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.401
cosubscript2
scalar integer expression in an image selector3

Note 1 to entry: The syntax of an image selector is speciϐied by the BNF rule image‑selector(R926). The4
syntax of a cosubscript is speciϐied by the BNF rule cosubscript(R927).5

3.416
data entity7
data object (3.42), result of the evaluation of an expression, or the result of the execution of a function8
reference9

3.4210
data object11
object12
constant, variable, or subobject of a constant13

Note 1 to entry: See 7.1.4, 9.2, and 5.4.3.2.4.14

3.4315
decimal symbol16
character that separates the whole and fractional parts in the decimal representation of a real number in a17
ϐile18

Note 1 to entry: See 13.6.19

3.4420
declaration21
speciϐication of attributes for various program entities Note 1 to entry: Often this involves specifying the22
type of a named data object or specifying the shape of a named array object.23

3.4524
default initialization25
mechanism for automatically initializing pointer components to have a deϐined pointer association status,26
and nonpointer components to have a particular value27

Note 1 to entry: Default initialization is described in 7.5.4.6.28

3.4629
default‑initialized30
⟨subcomponent (3.30.4)⟩ subject to a default initialization (3.45) speciϐied in the type deϐinition for that31
component32

3.4733
deϐinable34
capable of deϔinition (3.53) and permitted to become deϔined (3.48)35

3.4836
deϐined37
⟨data object (3.42)⟩with a valid value38

J3/25‑007 11

J3/25‑007 WD 1539‑1 2024‑12‑29

3.491
deϐined2
⟨pointer (3.104)⟩whose pointer association status is associated or disassociated3

Note 1 to entry: Pointer association is described in 19.5.2.2.4

3.505
deϐined assignment6
assignment deϐined by a procedure7

Note 1 to entry: See 10.2.1.4 and 15.4.3.4.3.8

3.519
deϐined input/output10
input/output deϐined by a procedure and accessed via a deϔined‑io‑generic‑spec11

Note 1 to entry: See syntax rule R1509, and 12.6.4.8.12

3.5213
deϐined operation14
operation deϐined by a procedure15

Note 1 to entry: See 10.1.6.1 and 15.4.3.4.2.16

3.5317
deϐinition18
⟨data object (3.42)⟩ process by which the data object becomes deϐined19

Note 1 to entry: Such events are listed in 19.6.5.20

3.5421
deϐinition22
⟨derived type, interoperable enumeration, enumeration type, or procedure⟩ speciϐication of the type, enu‑23
meration, or procedure24

Note 1 to entry: See 7.5.2, 7.6.1, 7.6.2, and 15.6.25

3.5526
descendant27
submodule that extends a module or submodule, or that extends another descendant thereof28

Note 1 to entry: This is a relationship between amodule or submodule and a submodule. Submodules are29
described in 14.2.3.30

3.5631
designator32
name followed by zero or more component selectors, complex part selectors, array section selectors, array33
element selectors, image selectors, and substring selectors34

Note 1 to entry: Designators are deϐined in 9.1.35

12 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.56.11
complex part designator2
designator that designates the real or imaginary part of a complex data object (3.42), independently of the3
other part4

Note 1 to entry: Complex parts are described in 9.4.4.5

3.56.26
object designator7
data object designator8
designator (3.56) for a data object (3.42)9

Note 1 to entry: An object name is a special case of an object designator.10

3.56.311
procedure designator12
designator (3.56) for a procedure13

3.5714
disassociated15
⟨pointer association⟩ pointer association status of not being associated with any target and not being un‑16
deϐined17

Note 1 to entry: Pointer association status is described in 19.5.2.2.18

3.5819
disassociated20
⟨pointer⟩whose pointer association status is disassociated21

3.5922
dummy argument23
entitywhose identiϐier appears in a dummy‑arg‑list or dummy‑arg‑name‑list in a FUNCTION, SUBROUTINE,24
ENTRY, or statement function statement, or whose name can be used as an argument keyword (3.94.1) in25
a reference to an intrinsic (3.90) procedure or a procedure in an intrinsic module26

Note 1 to entry: The ENTRY statement is obsolescent.27

3.59.128
dummy data object29
dummy argument (3.59) that is a data object30

3.59.231
dummy function32
dummy procedure (3.109.1) that is a function33

3.6034
effective argument35
entity that is argument‑associated with a dummy argument (3.59)36

Note 1 to entry: Argument association is described in 15.5.2.4.37

J3/25‑007 13

J3/25‑007 WD 1539‑1 2024‑12‑29

3.611
effective item2
scalar object treated as a single entity in input/output3

Note 1 to entry: An effective item results from the application of the rules in 12.6.3 to an input/output list.4

3.625
elemental6
independent scalar application of an action or operation to elements of an array or corresponding elements7
of a set of conformable arrays and scalars, or possessing the capability of elemental operation8

Note 1 to entry: Combination of scalar and array operands or arguments combine the scalar operand(s)9
with each element of the array operand(s).10

3.62.111
elemental assignment12
assignment that operates elementally13

3.62.214
elemental operation15
operation that operates elementally16

3.62.317
elemental operator18
operator in an elemental operation19

3.62.420
elemental procedure21
procedure that can be used elementally22

Note 1 to entry: User‑deϐined elemental procedures are described in 15.9.23

3.62.524
elemental reference25
reference to an elemental procedure with at least one array actual argument26

3.62.627
elemental subprogram28
subprogram with the ELEMENTAL preϐix29

Note 1 to entry: See 15.9.1.30

3.6331
END statement32
end‑block‑data‑stmt, end‑function‑stmt, end‑module‑stmt, end‑mp‑subprogram‑stmt, end‑program‑stmt,33
end‑submodule‑stmt, or end‑subroutine‑stmt34

Note 1 to entry: The end‑block‑data‑stmt is obsolescent.35

3.6436
explicit initialization37
initialization of a data object by a speciϐication statement38

Note 1 to entry: See 8.4 and 8.6.7.39

14 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.651
extent2
number of elements in a single dimension of an array (3.3)3

3.664
external ϐile5
ϐile that exists in a medium external to the program6

Note 1 to entry: See 12.3.7

3.678
external unit9
external input/output unit10
entity that can be connected (3.33) to an external ϔile (3.66)11

Note 1 to entry: External units and their connection are described in 12.5.3 and 12.5.4.12

3.6813
ϐile storage unit14
unit of storage in a stream ϔile (3.135) or an unformatted record ϔile (3.116)15

Note 1 to entry: File storage units are described in 12.3.5.16

3.6917
ϐinal subroutine18
subroutine whose name appears in a FINAL statement in a type deϐinition, and which can be automatically19
invoked by the processor when an object of that type is ϐinalized20

Note 1 to entry: See 7.5.6.21

3.7022
ϐinalizable23
⟨type⟩ has a ϐinal subroutine or a nonpointer nonallocatable component of ϐinalizable type24

3.7125
ϐinalizable26
⟨nonpointer data entity⟩ of ϐinalizable type27

3.7228
ϐinalization29
process of calling ϐinal subroutines when certain events occur30

Note 1 to entry: These events are listed in 7.5.6.3.31

3.7332
function33
procedure that is invoked by an expression34

3.7435
function result36
entity that returns the value of a function37

Note 1 to entry: See 15.6.2.2.38

J3/25‑007 15

J3/25‑007 WD 1539‑1 2024‑12‑29

3.751
generic identiϐier2
sequence of tokens that identiϐies a generic set of procedures or operations3

Note1 to entry: See15.4.3.4. In this context, anoperation couldbedeϐined input/output or an assignment.4

3.765
host instance6
instance of the host procedure that supplies the host environment7

Note 1 to entry: Instances are described in 15.6.2.4.8

Note 2 to entry: This is only applicable to an internal procedure (3.109.3), or a dummy procedure (3.109.1)9
or procedure pointer (3.104.2) that is associated with an internal procedure (3.109.3).10

3.7711
host scoping unit12
host13
scoping unit (3.120) immediately surrounding another scoping unit, or the scoping unit extended by a sub‑14
module15

3.7816
IEEE inϐinity17
ISO/IEC/IEEE 60559:2020 conformant inϐinite ϐloating‑point value18

3.7919
IEEE NaN20
NaN21
ISO/IEC/IEEE 60559:2020 conformant ϐloating‑point datum that does not represent a number22

3.8023
image24
instance of a Fortran program25

Note 1 to entry: See 5.3.4.26

3.80.127
active image28
image (3.80) that has not failed or stopped29

Note 1 to entry: Image execution states are described in 5.3.6.30

3.80.231
failed image32
image (3.80) that has not initiated termination but which has ceased to participate in program execution33

3.80.334
stopped image35
image (3.80) that has initiated normal termination36

3.8137
image index38
integer value identifying an image (3.80) within a team (3.142)39

16 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.821
image control statement2
statement that affects the execution ordering between images (3.80)3

Note 1 to entry: Image execution control is described in 11.7.4

3.835
inclusive scope6
nonblock scoping unit (3.120) plus every block scoping unit (3.120.1) whose host (3.77) is that scoping unit7
or that is nested within such a block scoping unit8

Note 1 to entry: That is, inclusive scope is the scope as if BLOCK constructs were not scoping units.9

3.8410
inherit11
acquire entities (components (3.30), type‑bound procedures (3.109.7), and type parameters (3.144.12))12
through type extension from the parent type13

Note 1 to entry: Inheritance is described in 7.5.7.2.14

3.8515
inquiry function16
intrinsic (3.90) function, or function in an intrinsic module, whose result depends on the properties of one17
or more of its arguments instead of their values18

3.8619
interface20
⟨procedure⟩ name, procedure characteristics, dummy argument names, binding label, and generic identi‑21
ϐiers22

Note 1 to entry: See 15.4.1.23

3.86.124
abstract interface25
set of procedure characteristics with dummy argument names26

3.86.227
explicit interface28
interface of a procedure that includes all the characteristics of the procedure and names for its dummy29
arguments except for asterisk dummy arguments30

Note 1 to entry: See 15.4.2.31

Note 2 to entry: Asterisk dummy arguments (alternate return indicators) are obsolescent.32

3.86.333
generic interface34
set of procedure interfaces identiϐied by a generic identiϔier (3.75)35

3.86.436
implicit interface37
interface of a procedure that is not an explicit interface38

Note 1 to entry: See 15.4.2 and 15.4.3.8.39

J3/25‑007 17

J3/25‑007 WD 1539‑1 2024‑12‑29

3.86.51
speciϐic interface2
interface (3.86) identiϐied by a nongeneric name3

3.874
interface block5
abstract interface block (3.87.1), generic interface block (3.87.2), or speciϔic interface block (3.87.3)6

Note 1 to entry: Interface blocks are described in 15.4.3.2.7

3.87.18
abstract interface block9
interface block with the ABSTRACT keyword; collection of interface bodies that specify named abstract10
interfaces (3.86.1)11

3.87.212
generic interface block13
interface block with a generic‑spec; collection of interface bodies and procedure statements that are being14
given that generic identiϐier15

3.87.316
speciϐic interface block17
interface block with no generic‑spec or ABSTRACT keyword; collection of interface bodies that specify the18
interfaces of procedures19

3.8820
interoperable21
⟨Fortran entity⟩ equivalent to an entity deϐined by or deϐinable by the companion processor (3.29)22

Note 1 to entry: Interoperability between Fortran and C entities is described in 18.3.23

3.8924
interoperable25
⟨C entity⟩ equivalent to an entity deϐined by or deϐinable by the Fortran processor26

3.9027
intrinsic28
type, procedure, module, assignment, operator, or input/output operation deϐined in this document and29
accessible without further deϐinition or speciϐication, or a procedure or module provided by a processor30
but not deϐined in this document31

3.90.132
standard intrinsic33
intrinsic, deϐined in this document34

3.9135
internal ϐile36
character variable that is connected (3.33) to an internal unit (3.92)37

Note 1 to entry: Internal ϐiles are described in 12.4. File connection is described in 12.5.4.38

18 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.921
internal unit2
input/output unit (3.148) that is connected (3.33) to an internal ϔile (3.91)3

3.934
ISO 10646 character5
character whose representation method corresponds to UCS‑4 in ISO/IEC 106466

3.947
keyword8
statement keyword, argument keyword, type parameter keyword, or component keyword9

3.94.110
argument keyword11
word that identiϐies the corresponding dummy argument (3.59) in an actual argument list12

Note 1 to entry: Argument correspondence is described in 15.5.2.1.13

3.94.214
component keyword15
word that identiϐies a component (3.30) in a structure constructor (3.136.2)16

3.94.317
statement keyword18
word that is part of the syntax of a statement19

Note 1 to entry: Statement keywords are described in 5.5.2.20

3.94.421
type parameter keyword22
word that identiϐies a type parameter (3.144.12) in a type‑param‑spec23

3.9524
lexical token25
keyword, name, literal constant other than a complex literal constant, operator, label, delimiter, comma, =,26
=>, :, ::, ;, .., or %27

Note 1 to entry: See 6.2.28

3.9629
line30
sequence of zero or more characters31

3.9732
main program33
program unit (3.113) that is not a subprogram (3.139), module (3.99), submodule (3.137), or block data34
program unit35

Note 1 to entry: See 14.1.36

J3/25‑007 19

J3/25‑007 WD 1539‑1 2024‑12‑29

3.981
masked array assignment2
assignment statement in a WHERE statement or WHERE construct3

Note 1 to entry: See 10.2.3.4

3.995
module6
program unit (3.113) that can contain, or access from anothermodule, deϐinitions that can bemade access‑7
ible to other program units8

Note 1 to entry: Modules are described in 14.2.9

3.10010
name11
identiϐier of a program constituent, beginning with an alphabetic character and containing only alphanu‑12
meric characters and underscores13

Note 1 to entry: The form of a name follows the rules given in 6.2.2.14

3.10115
operand16
data value that is the subject of an operator17

3.10218
operator19
intrinsic‑operator, deϔined‑unary‑op, or deϔined‑binary‑op20

Note 1 to entry: These are deϐined by the syntax rules R608, R1004, and R1024.21

3.10322
passed‑object dummy argument23
dummy argument of a type‑bound procedure (3.109.7) or procedure pointer (3.104.2) component that be‑24
comes associated with the object through which the procedure is invoked25

Note 1 to entry: This is described in 7.5.4.5.26

3.10427
pointer28
data pointer (3.104.1) or procedure pointer (3.104.2)29

3.104.130
data pointer31
data entity (3.41) with the POINTER attribute32

Note 1 to entry: See 8.5.14.33

3.104.234
procedure pointer35
procedure with the POINTER attribute36

20 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.104.31
local procedure pointer2
procedure pointer (3.104.2) that is part of a local variable (3.151.2), or a named procedure pointer that is3
not a dummy argument (3.59) or accessed by use or host association4

3.1055
pointer assignment6
association of a pointer with a target, by execution of a pointer assignment statement or an intrinsic as‑7
signment statement for a derived‑type object that has the pointer as a subobject8

Note 1 to entry: The pointer assignment statement is described in 10.2.2. Derived‑type intrinsic assign‑9
ment is described in 10.2.1.2.10

3.10611
polymorphic12
⟨data entity⟩ able to be of differing dynamic types (3.144.4) during program execution13

Note 1 to entry: Polymorphic data objects are declared with the CLASS type speciϐier (7.3.2.3).14

3.10715
polymorphic16
⟨function⟩ having a result that is a polymorphic data entity17

3.10818
preconnected19
connected (3.33) at the beginning of execution of the program20

Note 1 to entry: Preconnection is described in 12.5.5.21

3.10922
procedure23
entity encapsulating an arbitrary sequence of actions that can be invoked directly during program execu‑24
tion25

3.109.126
dummy procedure27
dummy argument (3.59) that is a procedure28

Note 1 to entry: See 15.2.2.3.29

3.109.230
external procedure31
procedure deϐined by an external subprogram (3.139.1) or by means other than Fortran32

Note 1 to entry: The syntax of an external subprogram is deϐined by R503. See also 15.6.3.33

3.109.334
internal procedure35
procedure deϐined by an internal subprogram (3.139.2)36

Note 1 to entry: The syntax of an internal subprogram is deϐined by R512.37

J3/25‑007 21

J3/25‑007 WD 1539‑1 2024‑12‑29

3.109.41
module procedure2
procedure deϐined by a module subprogram, or a speciϐic procedure provided by an intrinsic module3

Note 1 to entry: The syntax of a module subprogram is deϐined by R1408.4

3.109.55
pure procedure6
procedure declared or deϐined to be pure (15.7)7

3.109.68
simple procedure9
procedure declared or deϐined to be simple10

Note 1 to entry: Simple procedures are described in 15.8.11

3.109.712
type‑bound procedure13
procedure that is bound to a derived type and referenced via an object of that type14

Note 1 to entry: Type‑bound procedures are described in 7.5.5.15

3.11016
processor17
combination of a computing system and mechanism by which programs are transformed for use on that18
computing system19

3.11120
processor dependent21
not completely speciϐied in this document, having methods and semantics determined by the processor22

Note 1 to entry: For example, the number of decimal digits displayed in list‑directed output of a real value23
may vary across processors.24

3.11225
program26
set of Fortran program units (3.113) and entities deϐined bymeans other than Fortran that includes exactly27
onemain program (3.97)28

3.11329
program unit30
main program (3.97), external subprogram (3.139.1),module (3.99), submodule (3.137), or block data pro‑31
gram unit32

Note 1 to entry: See 5.2.1.33

Note 2 to entry: The block data program unit is obsolescent.34

3.11435
rank36
number of array dimensions of a data entity (3.41) that is an array, or zero for a scalar entity37

22 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.1151
record2
sequence of values or characters in a ϐile3

Note 1 to entry: See 12.2.4

3.1165
record ϐile6
ϐile composed of a sequence of records7

Note 1 to entry: See 12.1.8

3.1179
reference10
data object reference (3.117.1), procedure reference (3.117.4), ormodule reference (3.117.3)11

3.117.112
data object reference13
appearance of adata object designator (3.56.2) in a context requiring its value at that point during execution14

3.117.215
function reference16
appearance of the procedure designator (3.56.3) for a function, or operator symbol for a deϔined operation17
(3.52), in a context requiring execution of the function during expression evaluation18

Note 1 to entry: See 15.5.3.19

3.117.320
module reference21
appearance of a module name in a USE statement22

Note 1 to entry: See 14.2.2.23

3.117.424
procedure reference25
appearance of a procedure designator (3.56.3), operator symbol, or assignment symbol in a context requir‑26
ing execution of the procedure at that point during execution; or occurrence of deϐined input/output or27
derived‑type ϔinalization (3.72)28

Note 1 to entry: Deϐined input/output is described in 12.6.4.8.29

3.11830
saved31
having the SAVE attribute32

Note 1 to entry: The SAVE attribute is described in 8.5.16.33

3.11934
scalar35
data entity (3.41) that can be represented by a single value of the type and that is not an array (3.3)36

J3/25‑007 23

J3/25‑007 WD 1539‑1 2024‑12‑29

3.1201
scoping unit2
BLOCK construct, derived‑type deϐinition, interface body, program unit (3.113), or subprogram, excluding3
all nested scoping units in it4

3.120.15
block scoping unit6
scoping unit of a BLOCK construct7

3.1218
segment9
maximal sequence of executions on an image (3.80) of statements other than image control statements10
(3.82)11

Note 1 to entry: Segments are described in 11.7.2.12

3.12213
sequence14
set of elements ordered by a one‑to‑one correspondence with the numbers 1, 2, to n15

3.12316
sequence structure17
scalar data object (3.42) of a sequence type (3.124)18

3.12419
sequence type20
derived type with the SEQUENCE attribute21

Note 1 to entry: Sequence types are described in 7.5.2.3.22

3.124.123
character sequence type24
sequence type with no allocatable (3.2) or pointer (3.104) components (3.30), and whose components are25
all default character or of another character sequence type26

3.124.227
numeric sequence type28
sequence type with no allocatable (3.2) or pointer (3.104) components (3.30), and whose components are29
all default complex, default integer, default logical, default real, double precision real, or of another numeric30
sequence type31

3.12532
shape33
array dimensionality of a data entity, represented as a rank‑one array whose size is the rank (3.114) of the34
data entity and whose elements are the extents of the data entity35

Note 1 to entry: Thus the shape of a scalar data entity is an array with rank one and size zero.36

24 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.1261
simply contiguous2
satisfying requirements that ensure it is contiguous3

Note 1 to entry: An entity that is simply contiguous shall satisfy the requirements speciϐied in 9.5.4.4

Note 2 to entry: These requirements are simple ones which make it clear that a designator or variable5
designates a contiguous (3.37) array. Only an array designator or variable can be simply contiguous.6

3.1277
size8
⟨array⟩ total number of elements in the array (3.3)9

3.12810
speciϐication expression11
expression satisfying requirements that make it suitable for use in speciϐications12

Note 1 to entry: A speciϐication expression shall satisfy the requirements speciϐied in 10.1.11.13

3.128.114
component speciϐication expression15
speciϐication expression satisfying additional requirements that make it suitable for use in speciϐications16
in a component deϐinition statement17

Note 1 to entry: A component speciϐication expression shall specify the additional requirements speciϐied18
in 10.1.11.19

3.12920
speciϐic name21
name that is not a generic name22

3.13023
statement24
sequence of one or more complete or partial lines satisfying a syntax rule that ends in ‑stmt25

Note 1 to entry: See 6.3.26

3.130.127
executable statement28
end‑function‑stmt, end‑mp‑subprogram‑stmt, end‑program‑stmt, end‑subroutine‑stmt, or statement that is29
a member of the syntactic class executable‑construct, excluding those in the block‑speciϔication‑part of a30
BLOCK construct31

3.130.232
nonexecutable statement33
statement that is not an executable statement (3.130.1)34

3.13135
statement entity36
entity whose identiϐier has the scope of a statement or part of a statement37

Note 1 to entry: See 19.1 and 19.4.38

J3/25‑007 25

J3/25‑007 WD 1539‑1 2024‑12‑29

3.1321
statement label2
label3
unsigned positive number of up to ϐive digits that refers to an individual statement4

Note 1 to entry: Statement labels are described in 6.2.5.5

3.1336
storage sequence7
contiguous sequence of storage units (3.134)8

3.1349
storage unit10
character storage unit (3.134.1), numeric storage unit (3.134.2), ϔile storage unit (3.68), or unspeciϔied stor‑11
age unit (3.134.3)12

Note 1 to entry: Storage units are described in 19.5.3.2.13

3.134.114
character storage unit15
unit of storage that holds a default character value16

3.134.217
numeric storage unit18
unit of storage that holds a default real, default integer, or default logical value19

3.134.320
unspeciϐied storage unit21
unit of storage that holds a value that is not default character, default real, double precision real, default22
integer, default logical, or default complex23

3.13524
stream ϐile25
ϐile composed of a sequence of ϐile storage units26

Note 1 to entry: See 12.1.27

3.13628
structure29
scalar data object (3.42) of derived type (3.144.3)30

3.136.131
structure component32
component (3.30) of a structure33

3.136.234
structure constructor35
syntax that speciϐies a structure value or creates such a value36

Note 1 to entry: The syntax of a structure constructor is deϐined by structure‑constructor (R756, 7.5.10).37

26 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.1371
submodule2
program unit (3.113) that extends amodule (3.99) or another submodule3

Note 1 to entry: Submodules are described in 14.2.3.4

3.1385
subobject6
portion of data object (3.42) that can be referenced and, if it is a variable (3.151), deϐined, independently7
of any other portion8

Note 1 to entry: The conditions for a structure component being a subobject are speciϐied in 9.4.2.9

3.13910
subprogram11
function‑subprogram (R1532) or subroutine‑subprogram (R1537)12

3.139.113
external subprogram14
subprogram that is not contained in amain program (3.97),module (3.99), submodule (3.137), or another15
subprogram16

3.139.217
internal subprogram18
subprogram that is contained in amain program (3.97) or another subprogram19

3.139.320
module subprogram21
subprogram that is contained in amodule (3.99) or submodule (3.137) but is not an internal subprogram22

3.14023
subroutine24
procedure invoked by a CALL statement, by deϔined assignment (3.50), or by some operations on derived‑25
type entities26

3.140.127
atomic subroutine28
intrinsic subroutine that performs an action on its ATOM argument atomically29

Note 1 to entry: Atomic subroutines are described in 16.5.30

3.140.231
collective subroutine32
intrinsic subroutine that performs a calculation on a team (3.142) of images without requiring synchron‑33
ization34

Note 1 to entry: Collective subroutines are described in 16.6.35

J3/25‑007 27

J3/25‑007 WD 1539‑1 2024‑12‑29

3.1411
target2
entity that is pointer associatedwith apointer (3.104), entity on the right‑hand‑sideof apointer assignment3
statement, or entity with the TARGET attribute4

Note 1 to entry: Pointer association is described in 19.5.2.2. The pointer assignment statement is de‑5
scribed in 10.2.2. The TARGET attribute is described in 8.5.18.6

3.1427
team8
ordered set of images (3.80) created by execution of a FORM TEAM statement, or the initial ordered set of9
all images10

Note 1 to entry: The FORM TEAM statement is described in 11.7.9.11

3.142.112
current team13
team speciϐied by the most recently executed CHANGE TEAM statement of a CHANGE TEAM construct that14
has not completed execution, or initial team if no CHANGE TEAM construct is being executed15

3.142.216
initial team17
team existing at the beginning of program execution, consisting of all images18

3.142.319
parent team20
current team at time of execution of the FORM TEAM statement that created the team21

Note 1 to entry: The initial team does not have a parent team.22

3.142.423
sibling teams24
teams created by a single set of corresponding executions of the FORM TEAM statement25

3.142.526
team number27
−1which identiϐies the initial team, or positive integer which identiϐies a team among its siblings28

3.14329
transformational function30
intrinsic function, or function in an intrinsicmodule, that is neither elemental (3.62) nor an inquiry function31
(3.85)32

3.14433
type34
data type35
named category of data characterized by a set of values, a syntax for denoting these values, and a set of36
operations that interpret and manipulate the values37

Note 1 to entry: See 7.1.38

28 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.144.11
abstract type2
type with the ABSTRACT attribute3

Note 1 to entry: The ABSTRACT attribute is described in 7.5.7.1.4

3.144.25
declared type6
type that a data entity is declared to have, either explicitly or implicitly7

Note 1 to entry: See 7.3.2 and 10.1.9.8

3.144.39
derived type10
type deϐined by a derived‑type deϐinition or by an intrinsic module11

Note 1 to entry: See 7.5.12

3.144.413
dynamic type14
type of a data entity at a particular point during execution of a program15

Note 1 to entry: See 7.3.2.3 and 10.1.9.16

3.144.517
extended type18
type with the EXTENDS attribute19

Note 1 to entry: The EXTENDS attribute is described in 7.5.7.1.20

3.144.621
extensible type22
type that can be extended using the EXTENDS clause23

Note 1 to entry: See 7.5.7.1.24

3.144.725
extension type26
is the same type or is an extended type whose parent type is an extension type of the other type27

Note 1 to entry: This is a relation of one type with respect to another.28

3.144.829
intrinsic type30
type deϐined by this document that is always accessible31

Note 1 to entry: Intrinsic types are described in 7.4.32

3.144.933
numeric type34
one of the types integer, real, and complex35

J3/25‑007 29

J3/25‑007 WD 1539‑1 2024‑12‑29

3.144.101
parent type2
type named in the EXTENDS clause3

Note 1 to entry: Only an extended type has a parent type.4

3.144.115
type compatible6
compatibility of the type of one entity with respect to another for purposes such as argument association7
(3.7.1), pointer association (3.7.7), and allocation8

Note 1 to entry: Type compatibility is described in 7.3.3.9

3.144.1210
type parameter11
value used to parameterize a type12

Note 1 to entry: Type parameters are described in 7.2.13

3.144.12.114
assumed type parameter15
length type parameter (3.144.12.4) that assumes the type parameter value from another entity16

Note 1 to entry: The other entity is
• the selector for an associate name (3.5),
• the constant‑expr for a named constant (3.34.2) of type character, or
• the effective argument (3.60) for a dummy argument (3.59).

3.144.12.217
deferred type parameter18
length type parameter (3.144.12.4)whose value can change during execution of a program andwhose type‑19
param‑value is a colon20

3.144.12.321
kind type parameter22
type parameter whose value is required to be defaulted or given by a constant expression23

3.144.12.424
length type parameter25
type parameter whose value is permitted to be assumed, deferred, or given by a speciϔication expression26
(3.128)27

3.144.12.528
type parameter inquiry29
syntax (type‑param‑inquiry) that is used to inquire the value of a type parameter of a data object30

Note 1 to entry: Type parameter enquiries are described in 9.4.5.31

30 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3.144.12.61
type parameter order2
ordering of the type parameters of a type used for derived‑type speciϐiers3

Note 1 to entry: Type parameter order is deϐined in 7.5.3.2. The syntax of a derived‑type speciϐier is4
derived‑type‑spec, deϐined in 7.5.9.5

3.1456
ultimate argument7
nondummy entity with which a dummy argument (3.59) is associated via a chain of argument associations8

Note 1 to entry: Argument association is described in 15.5.2.4.9

3.14610
undeϐined11
⟨data object⟩without a valid value12

3.14713
undeϐined14
⟨pointer⟩ does not have a pointer association status of associated or disassociated15

Note 1 to entry: Pointer association status is described in 19.5.2.2.16

3.14817
unit18
input/output unit19
means, speciϐied by an io‑unit, for referring to a ϐile20

Note 1 to entry: See 12.5.1.21

3.14922
unlimited polymorphic23
able to have any dynamic type (3.144.4) during program execution24

Note 1 to entry: See 7.3.2.3.25

3.15026
unsaved27
without the SAVE attribute28

Note 1 to entry: The SAVE attribute is described in 8.5.16.29

3.15130
variable31
data entity (3.41) that can be deϔined (3.48) and redeϐined during execution of a program32

3.151.133
event variable34
scalar variable of type EVENT_TYPE from the intrinsic module ISO_FORTRAN_ENV35

Note 1 to entry: See 16.10.2.10.36

J3/25‑007 31

J3/25‑007 WD 1539‑1 2024‑12‑29

3.151.21
local variable2
variable in a scoping unit (3.120) that is not a dummy argument (3.59) or part thereof, is not a global entity3
or part thereof, and is not an entity or part of an entity that is accessible outside that scoping unit (3.120)4

3.151.35
lock variable6
scalar variable of type LOCK_TYPE from the intrinsic module ISO_FORTRAN_ENV7

Note 1 to entry: See 16.10.2.19.8

3.151.49
notify variable10
scalar variable of type NOTIFY_TYPE from the intrinsic module ISO_FORTRAN_ENV11

Note 1 to entry: See 16.10.2.22.12

3.151.513
team variable14
scalar variable of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV15

Note 1 to entry: See 16.10.2.34.16

3.15217
vector subscript18
section‑subscript that is an array19

Note 1 to entry: See 9.5.3.4.3.20

3.15321
whole array22
array component or array name without further qualiϐication23

Note 1 to entry: See 9.5.2.24

32 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 Notation, conformance, and compatibility1

4.1 Notation, symbols and abbreviated terms2

4.1.1 Syntax rules3

1 Syntax rules describe the forms that Fortran lexical tokens, statements, and constructs may take. These4
syntax rules are expressed in a variation of Backus‑Naur form (BNF) with the following conventions.5

• Characters from the Fortran character set (6.1) are interpreted literally as shown, except where oth‑6
erwise noted.7

• Lower‑case italicized letters and words (often hyphenated and abbreviated) represent general syn‑8
tactic classes for which particular syntactic entities shall be substituted in actual statements.9
Common abbreviations used in syntactic terms are:10

arg for argument attr for attribute
decl for declaration def for deϐinition
desc for descriptor expr for expression
int for integer op for operator
spec for speciϐier stmt for statement

• The syntactic metasymbols used are:11

is introduces a syntactic class deϐinition
or introduces a syntactic class alternative
[] encloses an optional item
[] ... encloses an optionally repeated item

that may occur zero or more times
continues a syntax rule

• Each syntax rule is given a unique identifying number of the form Rsnn, where s is a one‑ or two‑12
digit clause number and nn is a two‑digit sequence number within that clause. The syntax rules are13
distributed as appropriate throughout the text, and are referenced by number as needed. Some rules14
in Clauses 5 and 6 are more fully described in later clauses; in such cases, the clause number s is the15
number of the later clause where the rule is repeated.16

• The syntax rules are not a complete and accurate syntax description of Fortran, and cannot be used17
to generate a Fortran parser automatically; where a syntax rule is incomplete, it is restricted by cor‑18
responding constraints and text.19

NOTE
An example of the use of the syntax rules is:

digit‑string is digit [digit] ...
The following are examples of forms for a digit string allowed by the above rule:

digit
digit digit
digit digit digit digit
digit digit digit digit digit digit digit digit

Some examples of digit‑string are:

J3/25‑007 33

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
4
67
1999
10243852

4.1.2 Constraints1

1 Each constraint is given a unique identifying number of the form Csnn, where s is a one‑ or two‑digit clause2
number and nn is a two‑ or three‑digit sequence number within that clause.3

2 Often a constraint is associated with a particular syntax rule. Where that is the case, the constraint is4
annotated with the syntax rule number in parentheses. A constraint that is associated with a syntax rule5
constitutes part of the deϐinition of the syntax term deϐined by the rule. It thus applies in all places where6
the syntax term appears.7

3 Some constraints are not associated with particular syntax rules. The effect of such a constraint is similar8
to that of a restriction stated in the text, except that a processor is required to have the capability to detect9
and report violations of constraints (4.2). In some cases, a broad requirement is stated in text and a subset10
of the same requirement is also stated as a constraint. This indicates that a standard‑conforming program11
is required to adhere to the broad requirement, but that a standard‑conforming processor is required only12
to have the capability of diagnosing violations of the constraint.13

4.1.3 Assumed syntax rules14

1 In order tominimize the number of additional syntax rules and convey appropriate constraint information,15
the following rules, where the letters xyz stand for any syntactic class phrase, are assumed.16

R401 xyz‑list is xyz [, xyz] ...17

R402 xyz‑name is name18

R403 scalar‑xyz is xyz19

C401 (R403) scalar‑xyz shall be scalar.20

2 An explicit syntax rule for a term overrides an assumed rule.21

4.1.4 Syntax conventions and characteristics22

1 Any syntactic class name ending in “‑stmt” follows the source form statement rules: it shall be delimited23
by end‑of‑line or semicolon, and may be labeled unless it forms part of another statement (such as an IF24
or WHERE statement). Conversely, everything considered to be a source form statement is given a “‑stmt”25
ending in the syntax rules.26

2 The rules on statement ordering are described rigorously in the deϐinition of program‑unit (R502). Expres‑27
sion hierarchy is described rigorously in the deϐinition of expr (R1023).28

3 The sufϐix “‑spec” is used consistently for speciϐiers, such as input/output statement speciϐiers. It also is29
used for type declaration attribute speciϐications (for example, “array‑spec” in R814), and in a few other30
cases.31

4 Where reference is made to a type parameter, including the surrounding parentheses, the sufϐix “‑selector”32
is used. See, for example, “kind‑selector” (R706) and “length‑selector” (R722).33

34 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4.1.5 Text conventions1

1 In descriptive text, an equivalent English word is frequently used in place of a syntactic term. Particular2
statements and attributes are identiϐied in the text by an upper‑case keyword, e.g., “END statement”.3

4.2 Conformance4

1 Aprogram (5.2.2) is a standard‑conforming program if it uses only those forms and relationships described5
herein and if the program has an interpretation according to this document. A program unit (5.2.1) con‑6
forms to this document if it canbe included in aprogram in amanner that allows theprogram tobe standard7
conforming.8

2 A Fortran processor shall:9

(1) execute any standard‑conforming program in a manner that fulϐills the interpretations herein,10
subject to any limits that the processor may impose on the size and complexity of the program;11

(2) contain the capability to detect and report the use within a submitted program unit of a form12
designated herein as obsolescent, insofar as such use can be detected by reference to the num‑13
bered syntax rules and constraints;14

(3) contain the capability to detect and report the use within a submitted program unit of a form15
or relationship that is not permitted by the numbered syntax rules or constraints, including the16
deleted features described in Annex B;17

(4) contain the capability to detect and report the use within a submitted program unit of an in‑18
trinsic type with a kind type parameter value not supported by the processor (7.4);19

(5) contain the capability to detect and report the use within a submitted program unit of source20
form or characters not permitted by Clause 6;21

(6) contain the capability to detect and report the use within a submitted program of name usage22
not consistent with the scope rules for names, labels, operators, and assignment symbols in23
Clause 19;24

(7) contain the capability to detect and report the use within a submitted program unit of a non‑25
standard intrinsic procedure (including one with the same name as a standard intrinsic pro‑26
cedure but with different requirements);27

(8) contain the capability to detect and report the use within a submitted program unit of a non‑28
standard intrinsic module;29

(9) contain the capability to detect and report the use within a submitted program unit of a pro‑30
cedure from a standard intrinsic module, if the procedure is not deϐined by this document or31
the procedure has different requirements from those speciϐied by this document; and32

(10) contain the capability to detect and report the reason for rejecting a submitted program.33

3 However, in a format speciϐication that is not part of a FORMAT statement (13.2.1), a processor need not34
detect or report the use of deleted or obsolescent features, or the use of additional forms or relationships.35

4 A standard‑conforming processor may allow additional forms and relationships provided that such addi‑36
tions do not conϐlictwith the standard forms and relationships. However, a standard‑conforming processor37
may allow additional intrinsic procedures even though this could cause a conϐlict with the name of a pro‑38
cedure in a standard‑conforming program. If such a conϐlict occurs and involves the name of an external39
procedure, the processor is permitted to use the intrinsic procedure unless the name has the EXTERNAL40
attribute (8.5.9) where it is used. A standard‑conforming program shall not use nonstandard intrinsic pro‑41
cedures or modules that have been added by the processor.42

J3/25‑007 35

J3/25‑007 WD 1539‑1 2024‑12‑29

5 Because a standard‑conforming programmay place demands on a processor that are not within the scope1
of this document or may include standard items that are not portable, such as external procedures deϐined2
by means other than Fortran, conformance to this document does not ensure that a program will execute3
consistently on all or any standard‑conforming processors.4

6 The semantics of facilities that are identiϐied as processor dependent are not completely speciϐied in this5
document. They shall be provided, with methods or semantics determined by the processor.6

7 The processor should be accompanied by documentation that speciϐies the limits it imposes on the size7
and complexity of a program and the means of reporting when these limits are exceeded, that deϐines the8
additional forms and relationships it allows, and that deϐines the means of reporting the use of additional9
forms and relationships and the use of deleted or obsolescent forms. In this context, the use of a deleted10
form is the use of an additional form.11

8 Theprocessor shouldbe accompaniedbydocumentation that speciϐies themethodsor semantics of proces‑12
sor‑dependent facilities.13

4.3 Compatibility14

4.3.1 Previous Fortran standards15

1 Table 4.3 lists the previous editions of the Fortran International Standard, alongwith their informal names.16

Table 4.3— Previous editions of the Fortran International Standard

Ofϐicial designation Informal name
ISO R 1539‑1972 FORTRAN 66
ISO 1539‑1980 FORTRAN 77
ISO/IEC 1539:1991 Fortran 90
ISO/IEC 1539‑1:1997 Fortran 95
ISO/IEC 1539‑1:2004 Fortran 2003
ISO/IEC 1539‑1:2010 Fortran 2008
ISO/IEC 1539‑1:2018 Fortran 2018
ISO/IEC 1539‑1:2023 Fortran 2023

4.3.2 New intrinsic procedures17

1 Each Fortran International Standard since ISO 1539:1980 (FORTRAN77), deϐinesmore intrinsic procedures18
than theprevious one. Therefore, a Fortranprogramconforming to anolder standardmight have adifferent19
interpretation under a newer standard if it invokes an external procedure having the same name as one of20
the new standard intrinsic procedures, unless that procedure is speciϐied to have the EXTERNAL attribute.21

4.3.3 Fortran 2023 compatibility22

1 Thisdocument is anupward compatible extension to theprecedingFortran International Standard, ISO/IEC23
1539‑1:2023 (Fortran2023). A standard‑conformingFortran2023programremains standard‑conforming24
under this document.25

4.3.4 Fortran 2018 compatibility26

1 Except as identiϐied in this subclause, this document is an upward compatible extension to ISO/IEC 1539‑27
1:2018 (Fortran 2018). A standard‑conforming Fortran 2018 program that does not use any feature iden‑28
tiϐied in this subclause as being no longer permitted remains standard‑conforming under this document.29

36 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 Fortran 2018 allowed integer arguments to the intrinsic subroutine SYSTEM_CLOCK to be of any kind. This1
document requires integer arguments to SYSTEM_CLOCK to have a decimal exponent range at least as large2
as a default integer, and requires that all integer arguments in a reference to SYSTEM_CLOCK have the same3
kind type parameter.4

3 Fortran 2018 permitted a variable in a BLOCK construct that was declared only by a DATA statement to be5
used before the DATA statement. This document does not permit such usage.6

4 Fortran 2018permitted the POINTERandTARGETarguments to the intrinsic functionASSOCIATED to have7
different rank; this document does not permit such usage.8

5 The following Fortran 2018 features might have a different interpretation under this document.9

• After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=10
clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to11
an intrinsic subroutine, that variable might be of shorter or longer length under this document than12
under Fortran 2018, since this document speciϐies intrinsic assignment semantics for these assign‑13
ments.14

• This document permits the intrinsic subroutine SYSTEM_CLOCK to use two or more clocks, with dif‑15
ferent characteristics based on the type and kind type parameters of its arguments. A program that16
invokes SYSTEM_CLOCK with different argument types or kinds in different references, could have a17
different interpretation under this document.18

• The result of a reference to IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_NUM, or IEEE_MIN_‑19
NUM_MAG where one argument is a number and the other is a signaling NaN is speciϐied to be the20
number in this document. Fortran 2018 speciϐied that the result is a NaN.21

4.3.5 Fortran 2008 compatibility22

1 Except as identiϐied in this subclause, and except for the deleted features noted in Clause B.2, this document23
is an upward compatible extension to ISO/IEC 1539‑1:2010 (Fortran 2008). Any standard‑conforming24
Fortran 2008 program that does not use any deleted features, and does not use any feature identiϐied in25
this subclause as being no longer permitted, remains standard‑conforming under this document.26

2 Fortran 2008 speciϐies that the IOSTAT= variable shall be set to a processor‑dependent negative value if27
the ϐlush operation is not supported for the unit speciϐied. This document speciϐies that the processor‑28
dependent negative integer value shall be different from the named constants IOSTAT_EOR or IOSTAT_END29
from the intrinsic module ISO_FORTRAN_ENV.30

3 Fortran 2008 permitted a noncontiguous array that was supplied as an actual argument corresponding to31
a contiguous INTENT (INOUT) dummy argument in one iteration of a DO CONCURRENT construct, without32
being previously deϐined in that iteration, to be deϐined in another iteration; this document does not permit33
this.34

4 Fortran 2008 permitted a pure statement function to reference a volatile variable, and permitted a local35
variable of a pure subprogram or of a BLOCK construct within a pure subprogram to be volatile (provided36
it was not used); this document does not permit that.37

5 Fortran 2008 permitted a pure function to have a result that has a polymorphic allocatable ultimate com‑38
ponent; this document does not permit that.39

6 Fortran2008permitted aPROTECTEDTARGETvariable accessedbyuse association to be used as an initial‑40
data‑target; this document does not permit that.41

J3/25‑007 37

J3/25‑007 WD 1539‑1 2024‑12‑29

7 Fortran 2008 permitted a named constant to have declared type LOCK_TYPE, or have a noncoarray poten‑1
tial subobject component with declared type LOCK_TYPE; this document does not permit that.2

8 Fortran 2008 permitted a polymorphic object to be ϐinalized within a DO CONCURRENT construct; this3
document does not permit that.4

9 Fortran 2008 permitted an unallocated allocatable coarray or coindexed object to be allocated by an as‑5
signment statement, provided it was scalar, nonpolymorphic, and had no deferred type parameters; this6
document does not permit that.7

10 Fortran 2008 permitted the processor to use a common pseudorandom number generator for all images.8
This document requires separate seeds on each image for the pseudorandom number generator.9

11 Fortran 2008 required ACOSH of a complex value to have the imaginary part nonnegative and had no re‑10
quirement on the real part. This document requires ACOSH of a complex value to have a nonnegative real11
part and has no such requirement on the imaginary part.12

12 Fortran 2008 allowed integer arguments to the intrinsic subroutine SYSTEM_CLOCK to be of any kind. This13
document requires integer arguments to SYSTEM_CLOCK to have a decimal exponent range at least as large14
as a default integer, and requires that all integer arguments in a reference to SYSTEM_CLOCK have the same15
kind type parameter.16

13 Fortran 2008 permitted a variable in a BLOCK construct that was declared only by a DATA statement to be17
used before the DATA statement. This document does not permit such usage.18

14 Fortran 2008permitted the POINTERandTARGETarguments to the intrinsic functionASSOCIATED to have19
different rank; this document does not permit such usage.20

15 The following Fortran 2008 features might have a different interpretation under this document.21

• After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=22
clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to23
an intrinsic subroutine, that variable might be of shorter or longer length under this document than24
under Fortran 2008, since this document speciϐies intrinsic assignment semantics for these assign‑25
ments.26

• This document permits the intrinsic subroutine SYSTEM_CLOCK to use two or more clocks, with dif‑27
ferent characteristics based on the type and kind type parameters of its arguments. A program that28
invokes SYSTEM_CLOCK with different argument types or kinds in different references, could have a29
different interpretation under this document.30

4.3.6 Fortran 2003 compatibility31

1 Except as identiϐied in this subclause, this document is an upward compatible extension to ISO/IEC 1539‑32
1:2004 (Fortran 2003). Except as identiϐied in this subclause, any standard‑conforming Fortran 2003 pro‑33
gram remains standard‑conforming under this document.34

2 Fortran 2003 permitted a sequence type to have type parameters; that is not permitted by this document.35

3 Fortran 2003 speciϐied that array constructors and structure constructors of ϐinalizable type are ϐinalized.36
This document speciϐies that these constructors are not ϐinalized.37

4 The formproduced by the G edit descriptor for some values and some input/output roundingmodes differs38
from that speciϐied by Fortran 2003.39

38 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Fortran 2003 required an explicit interface only for a procedure that was actually referenced in the scope,1
not merely passed as an actual argument. This document requires an explicit interface for a procedure2
under the conditions listed in 15.4.2.2, regardless of whether the procedure is referenced in the scope.3

6 Fortran 2003 permitted the function result of a pure function to be a polymorphic allocatable variable,4
to have a polymorphic allocatable ultimate component, or to be ϐinalizable by an impure ϐinal subroutine.5
These are not permitted by this document.6

7 Fortran 2003 permitted an INTENT (OUT) argument of a pure subroutine to be polymorphic; that is not7
permitted by this document.8

8 Fortran 2003 interpreted assignment to an allocatable variable from a nonconformable array as intrinsic9
assignment, even when an elemental deϐined assignment was in scope; this document does not permit10
assignment from a nonconformable array in this context.11

9 Fortran 2003 permitted a statement function to be of parameterized derived type; this document does not12
permit that.13

10 Fortran 2003 permitted a pure statement function to reference a volatile variable, and permitted a local14
variable of a pure subprogram to be volatile (provided it was not used); this document does not permit15
that.16

11 Fortran 2003 allowed integer arguments to the intrinsic subroutine SYSTEM_CLOCK to be of any kind. This17
document requires integer arguments to SYSTEM_CLOCK to have a decimal exponent range at least as large18
as a default integer, and requires that all integer arguments in a reference to SYSTEM_CLOCK have the same19
kind type parameter.20

12 Fortran 2003permitted the POINTERandTARGETarguments to the intrinsic functionASSOCIATED to have21
different rank; this document does not permit such usage.22

13 The following Fortran 2003 features might have a different interpretation under this document.23
• After an allocatable deferred length character variable is assigned a value by an IOMSG= or ERRMSG=24
clause, is the unit in an internal WRITE statement, or is an INTENT (OUT) argument in a reference to25
an intrinsic subroutine, that variable might be of shorter or longer length under this document than26
under Fortran 2003, since this document speciϐies intrinsic assignment semantics for these assign‑27
ments.28

• This document permits the intrinsic subroutine SYSTEM_CLOCK to use two or more clocks, with dif‑29
ferent characteristics based on the type and kind type parameters of its arguments. A program that30
invokes SYSTEM_CLOCK with different argument types or kinds in different references, could have a31
different interpretation under this document.32

4.3.7 Fortran 95 compatibility33

1 Except as identiϐied in this subclause, this document is an upward compatible extension to ISO/IEC 1539‑34
1:1997 (Fortran 95). Except as identiϐied in this subclause, any standard‑conforming Fortran 95 program35
remains standard‑conforming under this document.36

2 Fortran 95 permitted deϐined assignment between character strings of the same rank and different kinds.37
This document does not permit that if both of the different kinds are ASCII, ISO 10646, or default kind.38

3 The following Fortran 95 features might have different interpretations in this document.39

• Earlier Fortran standards had the concept of printing, meaning that column one of formatted output40

J3/25‑007 39

J3/25‑007 WD 1539‑1 2024‑12‑29

had special meaning for a processor‑dependent (possibly empty) set of external ϐiles. This could be1
neither detected nor speciϐied by a standard‑speciϐied means. The interpretation of the ϐirst column2
is not speciϐied by this document.3

• This document speciϐies a different output format for real zero values in list‑directed and namelist4
output.5

• If the processor distinguishes between positive and negative real zero, this document requires dif‑6
ferent returned values for ATAN2(Y,X) when X < 0 and Y is negative real zero and for LOG(X) and7
SQRT(X) when X is complex with X%RE< 0 and X%IM is negative real zero.8

• This document has fewer restrictions on constant expressions than Fortran 95; this affects whether9
a variable is considered to be an automatic data object.10

• The form produced by the G edit descriptorwith d equal to zero differs from that speciϐied by Fortran11
95 for some values.12

4.3.8 Fortran 90 compatibility13

1 Except for the deleted features noted in Clause B.1, and except as identiϐied in this subclause, this docu‑14
ment is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard‑conforming15
Fortran 90 program that does not use one of the deleted features remains standard‑conforming under this16
document.17

2 The PAD= speciϐier in the INQUIRE statement in this document returns the value UNDEFINED if there is no18
connection or the connection is for unformatted input/output. Fortran 90 speciϐied YES.19

3 Fortran 90 speciϐied that if the second argument to MOD or MODULO was zero, the result was processor20
dependent. This document speciϐies that the second argument shall not be zero.21

4 Fortran 90 permitted deϐined assignment between character strings of the same rank and different kinds.22
This document does not permit that if both of the different kinds are ASCII, ISO 10646, or default kind.23

5 The following Fortran 90 features have different interpretations in this document:24
• if the processor distinguishes between positive and negative real zero, the result value of the intrinsic25
function SIGN when the second argument is a negative real zero;26

• formatted output of negative real values (when the output value is zero);27
• whether an expression is a constant expression (thus whether a variable is considered to be an auto‑28
matic data object);29

• the G edit descriptor with d equal to zero for some values.30

4.3.9 FORTRAN 77 compatibility31

1 Except for the deleted features noted in Clause B.1, and except as identiϐied in this subclause, this doc‑32
ument is an upward compatible extension to ISO 1539:1980 (FORTRAN 77). Any standard‑conforming33
FORTRAN 77 program that does not use one of the deleted features noted in Clause B.1 and that does not34
depend on the differences speciϐied here remains standard‑conforming under this document. This docu‑35
ment restricts the behavior for some features that were processor dependent in FORTRAN 77. Therefore,36
a standard‑conforming FORTRAN 77 program that uses one of these processor‑dependent features might37
have a different interpretation under this document, yet remain a standard‑conforming program. The fol‑38
lowing FORTRAN 77 features might have different interpretations in this document.39

• FORTRAN77permitted a processor to supplymore precision derived fromadefault real constant than40
can be represented in a default real datum when the constant is used to initialize a double precision41
real data object in a DATA statement. This document does not permit a processor this option.42

40 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• If a named variable that was not in a common block1 was initialized in a DATA statement and did1
not have the SAVE attribute speciϐied, FORTRAN 77 left its SAVE attribute processor dependent. This2
document speciϐies (8.6.7) that this named variable has the SAVE attribute.3

• FORTRAN 77 speciϐied that the number of characters required by the input list was to be less than4
or equal to the number of characters in the record during formatted input. This document speciϐies5
(12.6.4.5.3) that the input record is logically padded with blanks if there are not enough characters6
in the record, unless the PAD= speciϐier with the value ’NO’ is speciϐied in an appropriate OPEN or7
READ statement.8

• A value of zero for an effective item in a formatted output statement will be formatted in a different9
form for some G edit descriptors. In addition, this document speciϐies how rounding of values will10
affect the output ϐield form, but FORTRAN 77 did not address this issue. Therefore, the form produced11
for certain combinations of values and G edit descriptors might differ from that produced by some12
FORTRAN 77 processors.13

• FORTRAN 77 did not permit a processor to distinguish between positive and negative real zero; if the14
processor does so distinguish, the result will differ for the intrinsic function SIGN when the second15
argument is negative real zero, and formatted output of negative real zero will be different.16

4.4 Deleted and obsolescent features17

4.4.1 General18

1 This document protects the users’ investment in existing software by including all but eight of the language19
elements of Fortran 90 that are not processor dependent. This document identiϐies two categories of out‑20
moded features. The ϐirst category, deleted features, consists of features considered to have been redund‑21
ant in Fortran 90 and largely unused. Those in the second category, obsolescent features, are considered22
to have been redundant in Fortran 2008, but are still frequently used.23

4.4.2 Nature of deleted features24

1 There are two groups of deleted features. The ϐirst group contains features for which better methods exis‑25
ted in FORTRAN 77; these features were not included in Fortran 95 and later revisions, and are not included26
in this document. The second group contains features forwhich bettermethods existed in Fortran 90; these27
features were not included in Fortran 2018 and later revisions, and are not included in this document.28

4.4.3 Nature of obsolescent features29

1 Better methods existed in a previous Fortran standard for each obsolescent feature. It is recommended30
that programmers use these better methods in new programs and convert existing code to these methods.31

2 An obsolescent feature is eligible for deletion from a future revision of this document if its use has become32
insigniϐicant.33

1Common blocks are obsolescent.

J3/25‑007 41

J3/25‑007 WD 1539‑1 2024‑12‑29

5 Fortran concepts1

5.1 High level syntax2

1 This subclause introduces the syntax associated with program units and other Fortran concepts above the3
construct, statement, and expression levels and illustrates their relationships.4

NOTE
Constraints and other information related to the rules that do not begin with R5 appear in the appropriate clause.

R501 program is program‑unit5
[program‑unit] ...6

R502 program‑unit is main‑program7
or external‑subprogram8
or module9
or submodule10
or block‑data11

R1401 main‑program is [program‑stmt]12
[speciϔication‑part]13
[execution‑part]14
[internal‑subprogram‑part]15
end‑program‑stmt16

R503 external‑subprogram is function‑subprogram17
or subroutine‑subprogram18

R1532 function‑subprogram is function‑stmt19
[speciϔication‑part]20
[execution‑part]21
[internal‑subprogram‑part]22
end‑function‑stmt23

R1537 subroutine‑subprogram is subroutine‑stmt24
[speciϔication‑part]25
[execution‑part]26
[internal‑subprogram‑part]27
end‑subroutine‑stmt28

R1404 module is module‑stmt29
[speciϔication‑part]30
[module‑subprogram‑part]31
end‑module‑stmt32

R1416 submodule is submodule‑stmt33
[speciϔication‑part]34
[module‑subprogram‑part]35

42 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

end‑submodule‑stmt1

R1420 block‑data is block‑data‑stmt2
[speciϔication‑part]3
end‑block‑data‑stmt4

R504 speciϔication‑part is [use‑stmt] ...5
[import‑stmt] ...6
[implicit‑part]7
[declaration‑construct] ...8

R505 implicit‑part is [implicit‑part‑stmt] ...9
implicit‑stmt10

R506 implicit‑part‑stmt is implicit‑stmt11
or parameter‑stmt12
or format‑stmt13
or entry‑stmt14

R507 declaration‑construct is speciϔication‑construct15
or data‑stmt16
or format‑stmt17
or entry‑stmt18
or stmt‑function‑stmt19

R508 speciϔication‑construct is derived‑type‑def20
or enum‑def21
or enumeration‑type‑def22
or generic‑stmt23
or interface‑block24
or parameter‑stmt25
or procedure‑declaration‑stmt26
or other‑speciϔication‑stmt27
or type‑declaration‑stmt28

R509 execution‑part is executable‑construct29
[execution‑part‑construct] ...30

R510 execution‑part‑construct is executable‑construct31
or format‑stmt32
or entry‑stmt33
or data‑stmt34

R511 internal‑subprogram‑part is contains‑stmt35
[internal‑subprogram] ...36

R512 internal‑subprogram is function‑subprogram37
or subroutine‑subprogram38

R1407 module‑subprogram‑part is contains‑stmt39
[module‑subprogram] ...40

J3/25‑007 43

J3/25‑007 WD 1539‑1 2024‑12‑29

R1408 module‑subprogram is function‑subprogram1
or subroutine‑subprogram2
or separate‑module‑subprogram3

R1541 separate‑module‑subprogram is mp‑subprogram‑stmt4
[speciϔication‑part]5
[execution‑part]6
[internal‑subprogram‑part]7
end‑mp‑subprogram‑stmt8

R513 other‑speciϔication‑stmt is access‑stmt9
or allocatable‑stmt10
or asynchronous‑stmt11
or bind‑stmt12
or codimension‑stmt13
or contiguous‑stmt14
or dimension‑stmt15
or external‑stmt16
or intent‑stmt17
or intrinsic‑stmt18
or namelist‑stmt19
or optional‑stmt20
or pointer‑stmt21
or protected‑stmt22
or save‑stmt23
or target‑stmt24
or volatile‑stmt25
or value‑stmt26
or common‑stmt27
or equivalence‑stmt28

R514 executable‑construct is action‑stmt29
or associate‑construct30
or block‑construct31
or case‑construct32
or change‑team‑construct33
or critical‑construct34
or do‑construct35
or if‑construct36
or select‑rank‑construct37
or select‑type‑construct38
or where‑construct39
or forall‑construct40

R515 action‑stmt is allocate‑stmt41
or assignment‑stmt42
or backspace‑stmt43
or call‑stmt44
or close‑stmt45
or continue‑stmt46

44 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

or cycle‑stmt1
or deallocate‑stmt2
or endϔile‑stmt3
or error‑stop‑stmt4
or event‑post‑stmt5
or event‑wait‑stmt6
or exit‑stmt7
or fail‑image‑stmt8
or ϔlush‑stmt9
or form‑team‑stmt10
or goto‑stmt11
or if‑stmt12
or inquire‑stmt13
or lock‑stmt14
or notify‑wait‑stmt15
or nullify‑stmt16
or open‑stmt17
or pointer‑assignment‑stmt18
or print‑stmt19
or read‑stmt20
or return‑stmt21
or rewind‑stmt22
or stop‑stmt23
or sync‑all‑stmt24
or sync‑images‑stmt25
or sync‑memory‑stmt26
or sync‑team‑stmt27
or unlock‑stmt28
or wait‑stmt29
or where‑stmt30
or write‑stmt31
or computed‑goto‑stmt32
or forall‑stmt33

5.2 Program unit concepts34

5.2.1 Program units and scoping units35

1 Program units are the fundamental components of a Fortran program. A program unit is a main program,36
an external subprogram, a module, a submodule, or a block data program unit.37

2 A subprogram is a function subprogram or a subroutine subprogram. A module contains deϐinitions that38
can be made accessible to other program units. A submodule is an extension of a module; it may contain39
the deϐinitions of procedures declared in a module or another submodule. A block data program unit is40
used to specify initial values for data objects in named common blocks. The block data program unit is41
obsolescent.42

3 Each type of program unit is described in Clause 14 or 15.43

4 A program unit consists of a set of nonoverlapping scoping units.44

J3/25‑007 45

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
The module or submodule containing a module subprogram is the host scoping unit of the module subprogram.
The containing main program or subprogram is the host scoping unit of an internal subprogram.
An internal procedure is local to its host in the sense that its name is accessible within the host scoping unit and all
its other internal procedures but is not accessible elsewhere.

5.2.2 Program1

1 A program shall consist of exactly one main program, any number (including zero) of other kinds of pro‑2
gram units, any number (including zero) of external procedures, and any number (including zero) of other3
entities deϐined by means other than Fortran. The main program shall be deϐined by a Fortran main‑4
program program‑unit or by means other than Fortran, but not both.5

5.2.3 Procedure6

1 A procedure is either a function or a subroutine. Invocation of a function in an expression causes a value7
to be computed which is then used in evaluating the expression.8

2 A procedure that is not puremay change the program state by changing the value of accessible data objects9
or procedure pointers.10

3 Procedures are described further in Clause 15.11

5.2.4 Module12

1 Amodule contains (or accesses from other modules) deϐinitions that can be made accessible to other pro‑13
gram units. These deϐinitions include data object declarations, type deϐinitions, procedure deϐinitions, and14
interface blocks. Modules are further described in Clause 14.15

5.2.5 Submodule16

1 A submodule extends a module or another submodule.17

2 It may provide deϐinitions (15.6) for procedures whose interfaces are declared (15.4.3.2) in an ancestor18
module or submodule. It may also contain declarations and deϐinitions of other entities, which are access‑19
ible in its descendants. An entity declared in a submodule is not accessible by use association unless it is a20
module procedure whose interface is declared in the ancestor module. Submodules are further described21
in Clause 14.22

NOTE
A submodule has access to entities in its parent module or submodule by host association.

5.3 Execution concepts23

5.3.1 Statement classiϐication24

1 Each Fortran statement is classiϐied as either an executable statement or a nonexecutable statement.25

2 An executable statement is an instruction to perform or control an action. Thus, the executable statements26
of a program unit determine the behavior of the program unit.27

3 Nonexecutable statements are used to conϐigure the program environment in which actions take place.28

46 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5.3.2 Statement order1

Table 5.1— Requirements on statement ordering
PROGRAM, FUNCTION, SUBROUTINE,

MODULE, SUBMODULE, or BLOCK DATA statement
USE statements

IMPORT statements
IMPLICIT NONE

PARAMETER IMPLICIT
statements statements

FORMAT
and PARAMETER Speciϐication constructs

ENTRY and DATA and statement function statements
statements statements

DATA Executable
statements constructs

CONTAINS statement
Internal subprograms
or module subprograms

END statement
NOTE 1 The BLOCK DATA, ENTRY, and statement function statements are obsolescent.
NOTE 2 The appearance of a DATA statement after an executable statement is obsolescent.

1 The syntax rules of 5.1 specify the statement order within program units and subprograms. These rules2
are illustrated in Table 5.1 and Table 5.2. Table 5.1 shows the ordering rules for statements and applies to3
all program units, subprograms, and interface bodies. Vertical lines delineate varieties of statements that4
can be interspersed and horizontal lines delineate varieties of statements that shall not be interspersed.5
Internal or module subprograms shall follow a CONTAINS statement. Between USE and CONTAINS state‑6
ments in a subprogram, nonexecutable statements generally precede executable statements, although the7
ENTRY statement, FORMAT statement, and DATA statementmay appear among the executable statements.8
Table 5.2 shows which statements are allowed in some kinds of scoping units.9

Table 5.2— Statements allowed in scoping units
Kind of scoping unit

Main Module or Block External Module Internal Interface
Statement type program submodule data2 subprogram subprogram subprogram body
USE Yes Yes Yes Yes Yes Yes Yes
IMPORT No Submodule No No Yes Yes Yes
ENTRY2 No No No Yes Yes No No
FORMAT Yes No No Yes Yes Yes No
Misc. decl.s 1 Yes Yes Yes Yes Yes Yes Yes
DATA Yes Yes Yes Yes Yes Yes No
Derived‑type Yes Yes Yes Yes Yes Yes Yes
Interface Yes Yes No Yes Yes Yes Yes
Executable Yes No No Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No
Statement function2 Yes No No Yes Yes Yes No
(1) Miscellaneous declarations are PARAMETER statements, IMPLICIT statements, type declaration statements, enumeration
deϐinitions, procedure declaration statements, and speciϐication statements.
(2) The block data scoping unit, ENTRY statement, and statement function statements are obsolescent.

J3/25‑007 47

J3/25‑007 WD 1539‑1 2024‑12‑29

5.3.3 The END statement1

1 Each program unit, module subprogram, and internal subprogram shall have exactly one END statement.2
The end‑program‑stmt, end‑function‑stmt, end‑subroutine‑stmt, and end‑mp‑subprogram‑stmt statements3
are executable, and may be branch target statements (11.2). Executing an end‑program‑stmt initiates nor‑4
mal termination. Executing an end‑function‑stmt, end‑subroutine‑stmt, or end‑mp‑subprogram‑stmt is equi‑5
valent to executing a return‑stmt with no scalar‑int‑expr.6

2 The end‑module‑stmt, end‑submodule‑stmt, and end‑block‑data‑stmt statements are nonexecutable.7

5.3.4 Program execution8

1 Execution of a program consists of the asynchronous execution of a ϐixed number (which may be one) of9
its images. Each image has its own execution state, ϐloating‑point status (17.7), and set of data objects,10
input/output units, and procedure pointers. The image index that identiϐies an image is an integer value in11
the range one to the number of images in a team.12

2 A team is an ordered set of images that is either the initial team, consisting of all images, or a subset of a13
parent team formed by execution of a FORM TEAM statement. The initial team has no parent; every other14
team has a unique parent team. Among its sibling teams, each team is identiϐied by its team number; this15
is the integer value that was speciϐied in the FORM TEAM statement.16

3 During execution, each image has a current team, which is only changed by execution of CHANGE TEAM17
and END TEAM statements. Image indices, and thus coindexing of variable names with an image‑selector,18
are relative to the current team unless a different team is speciϐied. Initially, the current team is the initial19
team.20

NOTE 1
Fortran control constructs (11.1, 11.2) control the progress of execution in each image. Image control statements
(11.7.1) affect the relative progress of execution between images. Coarrays (5.4.7) provide amechanism for access‑
ing data on one image from another image.

NOTE 2
A processor might allow the number of images to be chosen at compile time, link time, or run time. It might be the
same as the number of CPUs but this is not required. Compiling for a single image might permit the optimizer to
eliminate overhead associated with parallel execution. A program that makes assumptions about the number of
images is unlikely to be portable.

5.3.5 Execution sequence21

1 Following the creation of a ϐixed number of images, execution begins on each image. Image execution is22
a sequence, in time, of actions. Actions take place during execution of the statement that performs them23
(exceptwhen explicitly stated otherwise). Segments (11.7.2) executedby a single image are totally ordered,24
and segments executed by separate images are partially ordered by image control statements (11.7.1).25

2 If the program contains a Fortran main program, each image begins execution with the ϐirst executable26
construct of the main program. The execution of a main program or subprogram involves execution of27
the executable constructs within its scoping unit. When a Fortran procedure is invoked, the speciϐication28
expressions within the speciϔication‑part of the invoked procedure, if any, are evaluated in a processor29
dependent order. Thereafter, execution proceeds to the ϐirst executable construct appearing within the30
scoping unit of the procedure after the invoked entry point. With the following exceptions, the effect of31

48 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

execution is as if the executable constructs are executed in the order in which they appear in the main1
program or subprogram until a STOP, ERROR STOP, RETURN, or END statement is executed.2

• Execution of a branching statement (11.2) changes the execution sequence. These statements expli‑3
citly specify a new starting place for the execution sequence.4

• DO constructs, IF constructs, SELECT CASE constructs, SELECT RANK constructs, and SELECT TYPE5
constructs contain an internal statement structure and execution of these constructs involves implicit6
internal transfer of control. See Clause 11 for the detailed semantics of each of these constructs.7

• A BLOCK construct may contain speciϐication expressions; see 11.1.4 for detailed semantics of this8
construct.9

• An END=, ERR=, or EOR= speciϐier (12.11) can result in a branch.10
• An alternate return can result in a branch.111

5.3.6 Image execution states12

1 There are three image execution states: active, stopped, and failed. An image that has initiated normal13
termination of execution is a stopped image. An image that has ceased participating in program execution14
but has not initiated termination is a failed image. All other images are active images.15

2 A failed image remains failed for the remainder of the execution of the program. The conditions that cause16
an image to fail are processor dependent. It is processor dependent whether the processor has the ability17
to detect that an image has failed.18

3 Deϐining a coindexed object on a failed image has no effect other than deϐining the stat‑variable, if one19
appears, with the value STAT_FAILED_IMAGE (16.10.2.28). The value of a reference to a coindexed object20
on a failed image is processor dependent. Execution continues after such a reference.21

4 When an image fails during the execution of a segment, a data object on a nonfailed image becomes un‑22
deϐined if it is not a lock variable, notify variable, or event variable, and it might be deϐined or become23
undeϐined by execution of a statement of the segment other than an invocation of an atomic subroutine24
with the object as an actual argument corresponding to the ATOM dummy argument.25

5.3.7 Termination of execution26

1 Termination of execution of a program is either normal termination or error termination. Normal ter‑27
mination occurs only when all images initiate normal termination and occurs in three steps: initiation,28
synchronization, and completion. In this case, all images synchronize execution at the second step so that29
no image starts the completion step until all images have ϐinished the initiation step. Error termination30
occurs when any image initiates error termination. Once error termination has been initiated on an image,31
error termination is initiated on all images that have not already initiated error termination. Termination32
of execution of the program occurs when all images have terminated execution or failed.33

2 Normal termination of execution of an image is initiated when a STOP statement or end‑program‑stmt is34
executed. Normal terminationof executionof an image can also be initiatedduring executionof a procedure35
deϐined by a companion processor (ISO/IEC 9899:2018, 5.1.2.2.3 and 7.22.4.4). If normal termination of36
execution is initiatedwithin a Fortran program unit and the program incorporates procedures deϐined by a37
companion processor, the process of execution termination shall include the effect of executing the C exit()38
function (ISO/IEC 9899:2018, 7.22.4.4) during the completion step.39

1Alternate returns are obsolescent.

J3/25‑007 49

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Error termination of execution of an image is initiated if an ERROR STOP statement is executed or as spe‑1
ciϐied elsewhere in this document. When error termination on an image has been initiated, the processor2
should initiate error termination on other images as quickly as possible.3

4 If the processor supports the concept of a process exit status, it is recommended that error termination4
initiated other than by an ERROR STOP statement supplies a processor‑dependent nonzero value as the5
process exit status.6

NOTE 1
As well as in the circumstances speciϐied in this document, error termination might be initiated by means other
than Fortran.

NOTE 2
If an image has initiated normal termination, its data remain available for possible reference or deϐinition by other
images that are still executing.

5.4 Data concepts7

5.4.1 Type8

5.4.1.1 General9

1 A type is a named categorization of data that, together with its type parameters, determines the set of10
values, syntax for denoting these values, and the set of operations that interpret andmanipulate the values.11
This central concept is described in 7.1.12

2 A type is either an intrinsic type or a nonintrinsic type. A nonintrinsic type is deϐined by the program or by13
an intrinsic module.14

5.4.1.2 Intrinsic type15

1 The intrinsic types are integer, real, complex, character, and logical. The properties of intrinsic types are16
described in 7.4.17

2 All intrinsic types have a kind type parameter called KIND, which determines the representation method18
for the speciϐied type. The intrinsic type character also has a length type parameter called LEN, which19
determines the length of the character string.20

5.4.1.3 Derived type21

1 Derived types can be parameterized. A scalar object of derived type is a structure; assignment of structures22
is deϐined intrinsically (10.2.1.3), but there are no intrinsic operations for structures. For eachderived type,23
a structure constructor is available to create values (7.5.10). In addition, objects of derived type can be used24
as procedure arguments and function results, and can appear in input/output lists. If additional operations25
are needed for a derived type, they can be deϐined by procedures (10.1.6).26

2 Derived types are described further in 7.5.27

5.4.2 Data value28

1 Each intrinsic type has associated with it a set of values that a datum of that type can take, depending on29
the values of the type parameters. The values for each intrinsic type are described in 7.4. The values that30

50 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

objects of a derived type can assume are determined by the type deϐinition, type parameter values, and the1
sets of values of its components. The values that an object of a nonderived nonintrinsic type can assume2
are determined by the type deϐinition.3

5.4.3 Data entity4

5.4.3.1 General5

1 A data entity has a type and type parameters; it might have a data value (an exception is an undeϐined6
variable). Every data entity has a rank and is thus either a scalar or an array.7

2 A data entity that is the result of the execution of a function reference is called the function result.8

5.4.3.2 Data object9

5.4.3.2.1 Data object classiϐication10

1 A data object is either a constant, variable, or a subobject of a constant. The type and type parameters of a11
named data object can be speciϐied explicitly (8.2) or implicitly (8.7).12

2 Subobjects are portions of data objects that can be referenced and deϐined (variables only) independently13
of the other portions.14

3 These include portions of arrays (array elements and array sections), portions of character strings (sub‑15
strings), portions of complex objects (real and imaginary parts), and portions of structures (components).16
Subobjects are themselves data objects, but subobjects are referenced only by object designators or in‑17
trinsic functions. A subobject of a variable is a variable. Subobjects are described in Clause 9.18

4 The following objects are referenced by a name:19
• a named scalar (a scalar object);
• a named array (an array object).20

5 The following subobjects are referenced by an object designator:21
• an array element (a scalar subobject);
• an array section (an array subobject);
• a complex part designator (the real or imaginary part of a complex object);
• a structure component (a scalar or an array subobject);
• a substring (a scalar subobject).

22

5.4.3.2.2 Variable23

1 A variable can have a value or be undeϐined; during execution of a program it can be deϐined, redeϐined, or24
become undeϐined.25

2 A local variable of amodule, submodule, main program, subprogram, or BLOCK construct is accessible only26
in that scoping unit or construct and in any contained scoping units and constructs.27

NOTE
A subobject of a local variable is also a local variable.
A local variable cannot be in COMMON or have the BIND attribute, because common blocks and variables with the
BIND attribute are global entities. Note that common blocks are obsolescent.

J3/25‑007 51

J3/25‑007 WD 1539‑1 2024‑12‑29

5.4.3.2.3 Constant1

1 A constant is either a named constant or a literal constant.2

2 Named constants are deϐined using the PARAMETER attribute (8.5.13, 8.6.11). The syntax of literal con‑3
stants is described in 7.4.4

5.4.3.2.4 Subobject of a constant5

1 A subobject of a constant is a portion of a constant.6

2 In an object designator for a subobject of a constant, the portion referenced may depend on the value of a7
variable.8

NOTE
For example, given:

CHARACTER (LEN = 10), PARAMETER :: DIGITS = '0123456789'
CHARACTER (LEN = 1) :: DIGIT
INTEGER :: I

...
DIGIT = DIGITS (I:I)

DIGITS is a named constant and DIGITS (I:I) designates a subobject of the constant DIGITS.

5.4.3.3 Expression9

1 An expression (10.1) produces a data entity when evaluated. An expression represents either a data ob‑10
ject reference or a computation; it is formed from operands, operators, and parentheses. The type, type11
parameters, value, and rank of an expression result are determined by the rules in Clause 10.12

5.4.3.4 Function reference13

1 A function reference produces a data entity when the function is executed during expression evaluation.14
The type, type parameters, and rank of a function result are determined by the interface of the function15
(15.3.3). The value of a function result is determined by execution of the function.16

5.4.4 Deϐinition of objects and pointers17

1 When an object is given a valid value during program execution, it becomes deϐined. This is often accom‑18
plished by execution of an assignment or input statement. When a variable does not have a predictable19
value, it is undeϐined.20

2 Similarly, when a pointer is associated with a target or nulliϐied, its pointer association status becomes21
deϐined. When the association status of a pointer is not predictable, its pointer association status is un‑22
deϐined.23

3 Clause 19 describes the ways in which variables become deϐined and undeϐined and the association status24
of pointers becomes deϐined and undeϐined.25

5.4.5 Reference26

1 A data object is referenced when its value is required during execution. A procedure is referenced when it27
is executed.28

52 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 The appearance of a data object designator or procedure designator as an actual argument does not con‑1
stitute a reference to that data object or procedure unless such a reference is necessary to complete the2
speciϐication of the actual argument.3

5.4.6 Array4

1 An array may have up to ϐifteen dimensions minus its corank, and any extent in any dimension. The size5
of an array is the total number of elements, which is equal to the product of the extents. An array may6
have zero size. The shape of an array is determined by its rank and its extent in each dimension, and is7
represented as a rank‑one array whose elements are the extents. All named arrays shall be declared, and8
the rank of a named array is speciϐied in its declaration. Except for an assumed‑rank array, the rank of a9
named array, once declared, is constant.10

2 Any intrinsic operation deϐined for scalar objects may be applied to conformable objects. Such operations11
are performed elementally to produce a resultant array conformable with the array operands. If an ele‑12
mental operation is intrinsically pure or is implemented by a pure elemental function (15.9), the element13
operations can be performed simultaneously or in any order.14

3 A rank‑one array can be constructed from scalars and other arrays and can be reshaped into any allowable15
array shape (7.8).16

4 Arrays are described further in 9.5.17

5.4.7 Coarray18

1 A coarray is a component (7.5.4.3), or variable (9.2), that has nonzero corank. A coarray variable can be19
directly referenced or deϐined by other images. It may be a scalar or an array.20

2 Requirements and semantics for coarrays that refer to properties that are possessed by variables, but not21
by type components, only apply to coarray variables.22

3 For each coarray on an image, there is a corresponding coarray with the same type, type parameters, and23
bounds on every other image of a team in which it is established (5.4.8). If a coarray is an unsaved local24
variable of a recursive procedure, its corresponding coarrays are the ones at the same depth of recursion25
of that procedure on each image.26

4 The set of corresponding coarrays on all images in a team is arranged in a rectangular pattern. The dimen‑27
sions of this pattern are the codimensions; the number of codimensions is the corank. The bounds for each28
codimension are the cobounds.29

NOTE 1
If the total number of images is not a multiple of the product of the sizes of each but the rightmost of the codimen‑
sions, the rectangular pattern will be incomplete.

5 A coarray on any image can be accessed directly by using cosubscripts. On its own image, a coarray can30
also be accessed without use of cosubscripts.31

6 A subobject of a coarray is a coarray if it does not have any cosubscripts, vector subscripts, allocatable32
component selection, or pointer component selection.33

7 For a coindexedobject, its cosubscript list determines the image index (9.6) in the sameway that a subscript34
list determines the subscript order value for an array element (9.5.3.3).35

J3/25‑007 53

J3/25‑007 WD 1539‑1 2024‑12‑29

8 Intrinsic procedures are provided for mapping between an image index and a list of cosubscripts.1

NOTE 2
The mechanism for an image to reference and deϐine a coarray on another image might vary according to the hard‑
ware. On a shared‑memory machine, a coarray on an image and the corresponding coarrays on other images could
be implemented as a sequence of arrays with evenly spaced starting addresses. On a distributed‑memory machine
with separate physical memory for each image, a processor might store a coarray at the same virtual address in
each physical memory.

NOTE 3
Except in contexts where coindexed objects are disallowed, accessing a coarray on its own image by using a set
of cosubscripts that specify that image has the same effect as accessing it without cosubscripts. In particular, the
segment ordering rules (11.7.2) apply whether or not cosubscripts are used to access the coarray.

5.4.8 Established coarrays2

1 A nonallocatable coarray with the SAVE attribute is established in the initial team.3

2 An allocated allocatable coarray is established in the team in which it was allocated. An unallocated alloc‑4
atable coarray is not established.5

3 A coarray that is established in the team in which a CHANGE TEAM statement is executed is established in6
the team of the CHANGE TEAM construct.7

4 A coarray that is an associating entity in a coarray‑association of a CHANGE TEAM statement is established8
in the team of its CHANGE TEAM construct.9

5 A nonallocatable coarray that is an associating entity in an ASSOCIATE, SELECT RANK, or SELECT TYPE10
construct is established in the team in which the ASSOCIATE, SELECT RANK, or SELECT TYPE statement is11
executed.12

6 A nonallocatable coarray that is a dummy argument or host associated with a dummy argument is estab‑13
lished in the team in which the procedure was invoked. A nonallocatable coarray dummy argument is not14
established in any ancestor team even if the corresponding actual argument is established in one or more15
of them.16

5.4.9 Pointer17

1 A pointer has an association status which is either associated, disassociated, or undeϐined (19.5.2.2).18

2 A pointer that is not associated shall not be referenced or deϐined.19

3 If a data pointer is an array, the rank is declared, but the bounds are determined when it is associated with20
a target.21

5.4.10 Allocatable variables22

1 The allocation status of an allocatable variable is either allocated or unallocated. An allocatable variable23
becomes allocated as described in 9.7.1.3. It becomes unallocated as described in 9.7.3.2.24

2 An unallocated allocatable variable shall not be referenced or deϐined.25

3 If an allocatable variable is an array, the rank is declared, but thebounds aredeterminedwhen it is allocated.26
If an allocatable variable is a coarray, the corank is declared, but the cobounds are determined when it is27

54 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

allocated.1

5.4.11 Storage2

1 Many of the facilities of this document make no assumptions about the physical storage characteristics of3
data objects. However, program units that include storage association dependent features shall observe4
the storage restrictions described in 19.5.3.5

5.5 Fundamental concepts6

5.5.1 Names and designators7

1 A name is used to identify a program constituent, such as a program unit, named variable, named constant,8
dummy argument, or nonintrinsic type.9

2 A designator is used to identify a program constituent or a part thereof.10

5.5.2 Statement keyword11

1 A statement keyword is not a reservedword; that is, a namewith the same spelling is allowed. In the syntax12
rules, such keywords appear literally. In descriptive text, this meaning is denoted by the term “keyword”13
without any modiϐier. Examples of statement keywords are IF, READ, UNIT, KIND, and INTEGER.14

5.5.3 Other keywords15

1 Other keywords denote names that identify items in a list. In this case, items are identiϐied by a preceding16
keyword= rather than their position within the list.17

2 An argument keyword is the name of a dummy argument in the interface for the procedure being refer‑18
enced, and can appear in an actual argument list. A type parameter keyword is the name of a type para‑19
meter in the type being speciϐied, and can appear in a type‑param‑spec. A component keyword is the name20
of a component in a structure constructor.21

R516 keyword is name22

NOTE
Use of keywords rather than position to identify items in a list can make such lists more readable and allows them
to be reordered. This facilitates speciϐication of a list in cases where optional items are omitted.

5.5.4 Association23

1 Name association (19.5.1) permits an entity to be identiϐied by different names in the same scoping unit or24
by the same name or different names in different scoping units.25

2 Pointer association (19.5.2) between a pointer and a target allows the target to be denoted by the pointer.26

3 Storage association (19.5.3) causes different entities to use the same storage.27

4 Inheritance association (19.5.4) occurs between components of the parent component and components28
inherited by type extension.29

J3/25‑007 55

J3/25‑007 WD 1539‑1 2024‑12‑29

5.5.5 Intrinsic1

1 All intrinsic types, procedures, assignments, and operatorsmay be used in any scoping unitwithout further2
deϐinition or speciϐication. Intrinsic modules (16.10, 17, 18.2) may be accessed by use association.3

5.5.6 Operator4

1 This document speciϐies a number of intrinsic operators (e.g., the arithmetic operators +, –, *, /, and ** with5
numeric operands and the logical operators .AND., .OR., etc. with logical operands). Additional operators6
can be deϐined within a program (7.5.5, 15.4.3.4).7

5.5.7 Companion processors8

1 A processor has one or more companion processors. A companion processor can be a mechanism that9
references and deϐines such entities by ameans other than Fortran (15.6.3), it can be the Fortran processor10
itself, or it can be another Fortran processor. If there is more than one companion processor, the means by11
which the Fortran processor selects among them are processor dependent.12

2 If a procedure is deϐined by means of a companion processor that is not the Fortran processor itself, this13
document refers to the C function that deϐines the procedure, although the procedure need not be deϐined14
by means of the C programming language.15

NOTE
A companion processor might or might not be a mechanism that conforms to the requirements of ISO/IEC
9899:2018. If it does, 5.3.7 states that a program unit that is deϐined by means other than Fortran and that ini‑
tiates normal termination is required to include the effect of executing the C exit() function.
For example, a processor might allow a procedure deϐined by some language other than Fortran or C to be invoked
if it can be described by a C prototype as deϐined in ISO/IEC 9899:2018, 6.7.6.3.

56 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 Lexical tokens and source form1

6.1 Processor character set2

6.1.1 Characters3

1 The processor character set is processor dependent. Each character in a processor character set is either a4
control character or a graphic character. The set of graphic characters is further divided into letters (6.1.2),5
digits (6.1.3), underscore (6.1.4), special characters (6.1.5), and other characters (6.1.6).6

2 The letters, digits, underscore, and special characters make up the Fortran character set. Together, the set7
of letters, digits, and underscore deϐine the syntax class alphanumeric‑character.8

R601 alphanumeric‑character is letter9
or digit10
or underscore11

3 Except for the currency symbol, the graphics used for the characters shall be as given in 6.1.2, 6.1.3, 6.1.4,12
and 6.1.5. However, the style of any graphic is not speciϐied.13

6.1.2 Letters14

1 The twenty‑six letters are:15

2 A B C D E F G H I J K L M N O P Q R S T U VW X Y Z16

3 The set of letters deϐines the syntactic class letter. The processor character set shall include lower‑case17
and upper‑case letters. A lower‑case letter is equivalent to the corresponding upper‑case letter in program18
units except in a character context (3.21).19

NOTE
The following statements are equivalent:

CALL BIG_COMPLEX_OPERATION (NDATE)
call big_complex_operation (ndate)
Call Big_Complex_Operation (NDate)

6.1.3 Digits20

1 The ten digits are:21

2 0 1 2 3 4 5 6 7 8 922

3 The ten digits deϐine the syntactic class digit.23

6.1.4 Underscore24

R602 underscore is _25

J3/25‑007 57

J3/25‑007 WD 1539‑1 2024‑12‑29

6.1.5 Special characters1

1 The special characters are shown in Table 6.1.2

Table 6.1— Special characters
Character Name of character Character Name of character

Blank ; Semicolon
= Equals ! Exclamation point
+ Plus " Quotation mark or quote
- Minus % Percent
* Asterisk & Ampersand
/ Slash ~ Tilde
\ Backslash < Less than
(Left parenthesis > Greater than
) Right parenthesis ? Question mark
[Left square bracket ' Apostrophe
] Right square bracket ̀ Grave accent
{ Left curly bracket ^ Circumϐlex accent
} Right curly bracket | Vertical line
, Comma $ Currency symbol
. Decimal point or period # Number sign
: Colon @ Commercial at

2 Some of the special characters are used for operator symbols, bracketing, and various forms of separating3
and delimiting other lexical tokens.4

6.1.6 Other characters5

1 Additional characters may be representable in the processor, but shall appear only in comments (6.3.2.3,6
6.3.3.2), character constants (7.4.4), input/output records (12.2.2), and character string edit descriptors7
(13.3.2).8

6.2 Low‑level syntax9

6.2.1 Tokens10

1 The low‑level syntax describes the fundamental lexical tokens of a program unit. A lexical token is a11
keyword, name, literal constant other than a complex literal constant, .NIL., operator, statement label, de‑12
limiter, comma, =, =>, :, ::, ;, .., ?, or %.13

6.2.2 Names14

1 Names are used for various entities such as variables, program units, dummy arguments, named constants,15
and nonintrinsic types.16

R603 name is letter [alphanumeric‑character] ...17

C601 (R603) The maximum length of a name is 63 characters.18

NOTE 1
Examples of names:
A1
NAME_LENGTH (single underscore)
S_P_R_E_A_D__O_U_T (two consecutive underscores)
TRAILER_ (trailing underscore)

58 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2
The word “name” always denotes this particular syntactic form. The word “identiϐier” is used where entities can be
identiϐied by other syntactic forms or by values; its particular meaning depends on the context in which it is used.

6.2.3 Constants1

R604 constant is literal‑constant2
or named‑constant3

R605 literal‑constant is int‑literal‑constant4
or real‑literal‑constant5
or complex‑literal‑constant6
or logical‑literal‑constant7
or char‑literal‑constant8
or boz‑literal‑constant9

R606 named‑constant is name10

R607 int‑constant is constant11

C602 (R607) int‑constant shall be of type integer.12

6.2.4 Operators13

R608 intrinsic‑operator is power‑op14
or mult‑op15
or add‑op16
or concat‑op17
or rel‑op18
or not‑op19
or and‑op20
or or‑op21
or equiv‑op22

R1008 power‑op is **23

R1009 mult‑op is *24
or /25

R1010 add‑op is +26
or –27

R1012 concat‑op is //28

R1014 rel‑op is .EQ.29
or .NE.30
or .LT.31
or .LE.32
or .GT.33
or .GE.34
or ==35
or /=36

J3/25‑007 59

J3/25‑007 WD 1539‑1 2024‑12‑29

or <1
or <=2
or >3
or >=4

R1019 not‑op is .NOT.5

R1020 and‑op is .AND.6

R1021 or‑op is .OR.7

R1022 equiv‑op is .EQV.8
or .NEQV.9

R609 deϔined‑operator is deϔined‑unary‑op10
or deϔined‑binary‑op11
or extended‑intrinsic‑op12

R1004 deϔined‑unary‑op is . letter [letter]13

R1024 deϔined‑binary‑op is . letter [letter]14

R610 extended‑intrinsic‑op is intrinsic‑operator15

6.2.5 Statement labels16

1 A statement label provides a means of referring to an individual statement.17

R611 label is digit [digit [digit [digit [digit]]]]18

C603 (R611) At least one digit in a label shall be nonzero.19

2 If a statement is labeled, the statement shall contain a nonblank character. The same statement label shall20
not be given to more than one statement in its scope. Leading zeros are not signiϐicant in distinguishing21
between statement labels. There are 99999 possible unique statement labels and a processor shall accept22
any of them as a statement label. However, a processor may have a limit on the total number of unique23
statement labels in one program unit.24

NOTE
For example:

99999
10
010

are all statement labels. The last two are equivalent.

3 Any statement that is not part of another statement, and that is not preceded by a semicolon in ϐixed form1,25
may begin with a statement label, but the labels are used only in the following ways.26

• The label on a branch target statement (11.2) is used to identify that statement as the possible des‑27
tination of a branch.28

• The label on a FORMAT statement (13.2.1) is used to identify that statement as the format speciϐica‑29
tion for a data transfer statement (12.6).30

1Fixed form is obsolescent.

60 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• In some forms of the DO construct (11.1.7), the terminal statement of the construct is identiϐied by a1
label. This syntax is obsolescent.2

6.2.6 Delimiters3

1 A lexical token that is a delimiter is a (,), /, [,], (/, or /).4

6.3 Source form5

6.3.1 Program units, statements, and lines6

1 A Fortran program unit is a sequence of one or more lines, organized as Fortran statements, comments,7
and INCLUDE lines. A line is a sequence of zero or more characters. Lines following a program unit END8
statement are not part of that program unit. A Fortran statement is a sequence of one or more complete or9
partial lines.10

2 A comment may contain any character that may occur in any character context.11

3 There are two source forms. The rules in 6.3.2 apply only to free form source. The rules in 6.3.3 apply only12
to ϐixed source form. Free form and ϐixed form shall not be mixed in the same program unit. The means for13
specifying the source form of a program unit are processor dependent.14

6.3.2 Free source form15

6.3.2.1 Free form line length16

1 In free source form there are no restrictions on where a statement (or portion of a statement) can appear17
within a line. A line may contain zero characters. A line shall contain at most ten thousand characters.18

6.3.2.2 Blank characters in free form19

1 In free source formblank characters shall not appearwithin lexical tokens other than in a character context20
or in a format speciϐication. Blanks may be inserted freely between tokens to improve readability; for21
example, blanks may occur between the tokens that form a complex literal constant. A sequence of blank22
characters outside of a character context is equivalent to a single blank character.23

2 A blank shall be used to separate names, constants, or labels from adjacent keywords, names, constants, or24
labels.25

NOTE
For example, the blanks after REAL, READ, 30, and DO are required in the following:

REAL X
READ 10
30 DO K=1,3

3 One ormore blanks shall be used to separate adjacent keywords except in the following cases, where blanks26
are optional:27

Table 6.2— Adjacent keywords where separating blanks are optional

BLOCK DATA END FILE END SUBROUTINE
DOUBLE PRECISION END FORALL END TEAM

J3/25‑007 61

J3/25‑007 WD 1539‑1 2024‑12‑29

Adjacent keywords where separating blanks are optional (cont.)

ELSE IF END FUNCTION END TYPE
ELSEWHERE END IF ENDWHERE
END ASSOCIATE END INTERFACE GO TO
END BLOCK END MODULE IN OUT
END BLOCK DATA END PROCEDURE SELECT CASE
END CRITICAL END PROGRAM SELECT TYPE
END DO END SELECT
END ENUM END SUBMODULE

6.3.2.3 Free form commentary1

1 The character “!” initiates a comment except where it appears within a character context. The comment2
extends to the end of the line. If the ϐirst nonblank character on a line is an “!”, the line is a comment3
line. Lines containing only blanks or containing no characters are also comment lines. Comments may4
appear anywhere in a program unit and may precede the ϐirst statement of a program unit or follow the5
last statement of a program unit. Comments have no effect on the interpretation of the program unit.6

NOTE
This document does not restrict the number of consecutive comment lines.

6.3.2.4 Free form statement continuation7

1 The character “&” is used to indicate that the statement is continued on the next line that is not a comment8
line. Comment lines cannot be continued; an “&” in a comment has no effect. Commentsmay occurwithin a9
continued statement. When used for continuation, the “&” is not part of the statement. No line shall contain10
a single “&” as the only nonblank character or as the only nonblank character before an “!” that initiates a11
comment.12

2 If a noncharacter context is to be continued, an “&” shall be the last nonblank character on the line, or13
the last nonblank character before an “!”. There shall be a later line that is not a comment; the statement is14
continuedon thenext such line. If the ϐirst nonblank character on that line is an “&”, the statement continues15
at the next character position following that “&”; otherwise, it continues with the ϐirst character position16
of that line.17

3 If a lexical token is split across the end of a line, the ϐirst nonblank character on the ϐirst following noncom‑18
ment line shall be an “&” immediately followed by the successive characters of the split token.19

4 If a character context is to be continued, an “&” shall be the last nonblank character on the line. There shall20
be a later line that is not a comment; an “&” shall be the ϐirst nonblank character on the next such line and21
the statement continues with the next character following that “&”.22

6.3.2.5 Free form statement termination23

1 If a statement is not continued, a comment or the end of the line terminates the statement.24

2 A statement may alternatively be terminated by a “;” character that appears other than in a character con‑25
text or in a comment. The “;” is not part of the statement. After a “;” terminator, another statement may26
appear on the same line, or begin on that line and be continued. A sequence consisting only of zero ormore27
blanks and one or more “;” terminators, in any order, is equivalent to a single “;” terminator.28

62 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6.3.2.6 Free form statements1

1 A label may precede any statement not forming part of another statement.2

NOTE
No Fortran statement begins with a digit.

2 A statement shall not have more than one million characters.3

6.3.3 Fixed source form (obsolescent)4

6.3.3.1 General5

1 In ϐixed source form, there are restrictions on where a statement can appear within a line. If a source line6
contains only characters of default kind, it shall contain exactly 72 characters; otherwise, its maximum7
number of characters is processor dependent.8

2 Except in a character context, blanks are insigniϐicant and may be used freely throughout the program.9

3 Fixed source form is obsolescent.10

6.3.3.2 Fixed form commentary11

1 The character “!” initiates a comment except where it appears within a character context or in character12
position 6. The comment extends to the end of the line. If the ϐirst nonblank character on a line is an “!” in13
any character position other than character position 6, the line is a comment line. Lines beginning with a14
“C” or “*” in character position 1 and lines containing only blanks are also comment lines. Comments may15
appear anywhere in a program unit and may precede the ϐirst statement of the program unit or follow the16
last statement of a program unit. Comments have no effect on the interpretation of the program unit.17

NOTE
This document does not restrict the number of consecutive comment lines.

6.3.3.3 Fixed form statement continuation18

1 Except within commentary, character position 6 is used to indicate continuation. If character position 619
contains a blank or zero, the line is the initial line of a new statement, which begins in character position20
7. If character position 6 contains any character other than blank or zero, character positions 7–72 of the21
line constitute a continuation of the preceding noncomment line.22

NOTE
An “!” or “;” in character position 6 is interpreted as a continuation indicator unless it appears within commentary
indicated by a “C” or “*” in character position 1 or by an “!” in character positions 1–5.

2 Comment lines cannot be continued. Comment lines may occur within a continued statement.23

6.3.3.4 Fixed form statement termination24

1 If a statement is not continued, a comment or the end of the line terminates the statement.25

2 A statement may alternatively be terminated by a “;” character that appears other than in a character con‑26
text, in a comment, or in character position 6. The “;” is not part of the statement. After a “;” terminator,27

J3/25‑007 63

J3/25‑007 WD 1539‑1 2024‑12‑29

another statementmay begin on the same line, or begin on that line and be continued. A “;” shall not appear1
as the ϐirst nonblank character on an initial line. A sequence consisting only of zero or more blanks and2
one or more “;” terminators, in any order, is equivalent to a single “;” terminator.3

6.3.3.5 Fixed form statements4

1 A label, if it appears, shall occur in character positions 1 through 5 of the ϐirst line of a statement; otherwise,5
positions 1 through 5 shall be blank. Blanks may appear anywhere within a label. A statement following6
a “;” on the same line shall not be labeled. Character positions 1 through 5 of any continuation lines shall7
be blank. A statement shall not have more than one million characters. The program unit END statement8
shall not be continued. A statement whose initial line appears to be a program unit END statement shall9
not be continued.10

6.4 Including source text11

1 Additional text can be incorporated into the source text of a program unit during processing. This is ac‑12
complished with the INCLUDE line, which has the form13

INCLUDE char‑literal‑constant14

2 The char‑literal‑constant shall not have a kind type parameter value that is a named‑constant.15

3 An INCLUDE line is not a Fortran statement.16

4 An INCLUDE line shall appear on a single source line where a statement can appear; it shall be the only17
nonblank text on this line other than an optional trailing comment. Thus, a statement label is not allowed.18

5 The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE line prior19
to program processing. Included text may contain any source text, including additional INCLUDE lines;20
such nested INCLUDE lines are similarly replaced with the speciϐied source text. The maximum depth of21
nesting of any nested INCLUDE lines is processor dependent. Inclusion of the source text referenced by an22
INCLUDE line shall not, at any level of nesting, result in inclusion of the same source text.23

6 When an INCLUDE line is resolved, the ϐirst included statement line shall not be a continuation line and the24
last included statement line shall not be continued.25

7 The interpretation of char‑literal‑constant is processor dependent. An example of a possible valid inter‑26
pretation is that char‑literal‑constant is the name of a ϐile that contains the source text to be included.27

NOTE
In some circumstances, for examplewhere source code ismaintained in an INCLUDE ϐile for use in programswhose
source formmight be either ϐixed or free, observing the following rules allows the code to be usedwith either source
form.

• Conϐine statement labels to character positions 1 to 5 and statements to character positions 7 to 72.
• Treat blanks as being signiϐicant.
• Use only the exclamationmark (!) to indicate a comment, but do not start the comment in character position
6.

• For continued statements, place an ampersand (&) in both character position 73 of a continued line and
character position 6 of a continuation line.

64 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

7 Types1

7.1 Characteristics of types2

7.1.1 The concept of type3

1 Fortran provides an abstract means whereby data can be categorized without relying on a particular phys‑4
ical representation. This abstract means is the concept of type.5

2 A type has a name, a set of valid values, a means to denote such values (constants), and a set of operations6
to manipulate the values.7

7.1.2 Type classiϐication8

1 A type is either an intrinsic type or a nonintrinsic type.9

2 This document deϐines ϐive intrinsic types: integer, real, complex, character, and logical.10

3 A derived type is one that is deϐined by a derived‑type deϐinition (7.5.2) or by an intrinsicmodule. An enum11
type is one that is deϐinedbyanenumtypedeϐinition (7.6.1) or by an intrinsicmodule. An enumeration type12
is one that is deϐined by an enumeration type deϐinition (7.6.2) or by an intrinsic module. A nonintrinsic13
type name shall be used only where it is accessible (7.5.2.2). An intrinsic type is always accessible.14

7.1.3 Set of values15

1 For each type, there is a set of valid values. The set of valid values for logical is completely determined by16
this document. The sets of valid values for integer, character, and real are processor dependent. The set of17
valid values for complex consists of the set of all the combinations of the values of the real and imaginary18
parts. The set of valid values for a derived type is as deϐined in 7.5.8. The set of valid values for an enum19
type is as deϐined in 7.6.1. The set of valid values for an enumeration type is as deϐined in 7.6.2.20

7.1.4 Constants21

1 The syntax for denoting a value indicates the type, type parameters, and the particular value.22

2 The syntax for literal constants of each intrinsic type is speciϐied in 7.4.23

3 A structure constructor (7.5.10) that is a constant expression (10.1.12) denotes a scalar constant value of24
derived type. An enum constructor (7.6.1) that is a constant expression denotes a scalar constant value25
of enum type. An enumeration constructor (7.6.2) that is a constant expression denotes a scalar constant26
value of enumeration type. An array constructor (7.8) that is a constant expression denotes a constant27
array value of intrinsic or nonintrinsic type.28

4 A constant value can be named (8.5.13, 8.6.11).29

7.1.5 Operations30

1 For each of the intrinsic types, a set of operations and corresponding operators is deϐined intrinsically.31
These are described in Clause 10. The intrinsic set can be augmented with operations and operators32

J3/25‑007 65

J3/25‑007 WD 1539‑1 2024‑12‑29

deϐined by functionswith theOPERATOR interface (15.4.3.2). Operator deϐinitions are described in Clauses1
10 and 15.2

2 For derived types, there are no intrinsic operations. Operations on derived types can be deϐined by the3
program (7.5.11).4

3 For an enumor enumeration type, a set of intrinsic operations is deϐined intrinsically as described in Clause5
10. The intrinsic set can be augmented with operations and operators deϐined by the program.6

7.2 Type parameters7

1 If a type has type parameters, the set of values, the syntax for denoting the values, and the set of operations8
on the values of the type depend on the values of the parameters.9

2 A typeparameter is either a kind typeparameter or a length typeparameter. All typeparameters are of type10
integer. A kind type parameter participates in generic resolution (15.5.5.2), but a length type parameter11
does not.12

3 Each intrinsic type has a kind type parameter named KIND. The intrinsic character type has a length type13
parameter named LEN. A derived type can have type parameters.14

4 A type parameter value can be speciϐied by a type speciϐication (7.4, 7.5.9).15

R701 type‑param‑value is scalar‑int‑expr16
or *17
or :18

C701 (R701) The type‑param‑value for a kind type parameter shall be a constant expression.19

C702 (R701) A colon shall not be used as a type‑param‑value except in the declaration of an entity that20
has the POINTER or ALLOCATABLE attribute.21

5 A colon as a type‑param‑value speciϐies a deferred type parameter.22

6 The values of the deferred type parameters of an object are determined by successful execution of an AL‑23
LOCATE statement (9.7.1), execution of an intrinsic assignment statement (10.2.1.3), execution of a pointer24
assignment statement (10.2.2), or by argument association (15.5.2).25

NOTE 1
Deferred type parameters of functions, including function procedure pointers, have no values. Instead, they indicate
that those type parameters of the function result will be determined by execution of the function, if it returns an
allocated allocatable result or an associated pointer result.

7 An asterisk as a type‑param‑value speciϐies that a length type parameter is an assumed type parameter.26
It is used for a dummy argument to assume the type parameter value from the effective argument, for an27
associate name in a SELECT TYPE construct to assume the type parameter value from the corresponding28
selector, and for a named constant of type character to assume the character length from the constant‑expr.29

NOTE 2
The value of a kind type parameter is always known at compile time. Some parameterizations that involve mul‑
tiple representation forms need to be distinguished at compile time for practical implementation and performance.
Examples include the multiple precisions of the intrinsic real type and the possible multiple character sets of the
intrinsic character type.

66 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2 (cont.)
The adjective “length” is used for type parameters other than kind type parameters because they often specify a
length, as for intrinsic character type. However, they can be used for other purposes. The important difference from
kind type parameters is that their values need not be known at compile time and might change during execution.

7.3 Types, type speciϐiers, and values1

7.3.1 Relationship of types and values to objects2

1 The name of a type serves as a type speciϐier and can be used to declare objects of that type. A declaration3
can specify the type of a named object. A data object can be declared explicitly or implicitly. A data object4
has attributes in addition to its type. Clause 8 describes the way in which a data object is declared and how5
its type and other attributes are speciϐied.6

2 An array is formed of scalar data of an intrinsic or nonintrinsic type, and has the same type and type para‑7
meters as its elements.8

3 A variable is a data object. The type and type parameters of a variable determinewhich values that variable9
can take. Assignment (10.2) provides one means of changing the value of a variable.10

4 The type of a variable determines the operations that can be used to manipulate the variable.11

7.3.2 Type speciϐiers12

7.3.2.1 Type speciϐier syntax13

1 A type speciϐier speciϐies a type and type parameter values. It is either a type‑spec or a declaration‑type‑14
spec.15

R702 type‑spec is intrinsic‑type‑spec16
or derived‑type‑spec17
or enum‑type‑spec18
or enumeration‑type‑spec19

C703 (R702) The derived‑type‑spec shall not specify an abstract type (7.5.7).20

R703 declaration‑type‑spec is intrinsic‑type‑spec21
or TYPE (intrinsic‑type‑spec)22
or TYPE (derived‑type‑spec)23
or TYPE (enum‑type‑spec)24
or TYPE (enumeration‑type‑spec)25
or CLASS (derived‑type‑spec)26
or CLASS (*)27
or TYPE (*)28
or TYPEOF (data‑ref)29
or CLASSOF (data‑ref)30

C704 (R703) In a declaration‑type‑spec, every type‑param‑value that is not a colon or an asterisk shall be31
a speciϐication expression.32

C705 (R703) In a declaration‑type‑spec that uses the CLASS keyword, derived‑type‑spec shall specify an33
extensible type (7.5.7).34

J3/25‑007 67

J3/25‑007 WD 1539‑1 2024‑12‑29

C706 (R703) TYPE(derived‑type‑spec) shall not specify an abstract type (7.5.7).1

C707 (R702) In TYPE(intrinsic‑type‑spec) the intrinsic‑type‑spec shall not end with a comma.2

C708 An entity declared with the CLASS or CLASSOF keyword shall be a dummy argument or have the3
ALLOCATABLE or POINTER attribute.4

C709 A TYPEOF or CLASSOF speciϐier shall appear only in a type declaration statement or component5
deϐinition statement.6

C710 The data‑ref in a TYPEOF or CLASSOF speciϐier shall have its type and type parameters previously7
declared or established by the implicit typing rules.8

C711 The data‑ref in a TYPEOF speciϐier shall not be unlimited polymorphic or of abstract type.9

C712 The data‑ref in a CLASSOF speciϐier shall not be assumed‑type or of intrinsic type.10

C713 If the data‑ref in a TYPEOF or CLASSOF speciϐier has the OPTIONAL attribute, it shall not have a11
deferred or assumed type parameter.12

2 An intrinsic‑type‑spec speciϐies the named intrinsic type and its type parameter values. A derived‑type‑spec13
speciϐies the named derived type and its type parameter values. An enum‑type‑spec speciϐies the named14
enum type. An enumeration‑type‑spec speciϐies the named enumeration type.15

3 TYPEOF and CLASSOF with a data‑ref that is not unlimited polymorphic specify the same type and type16
parameter values as the declared type and type parameter values of data‑ref , except that they specify that a17
typeparameter is deferred if it is deferred indata‑ref . An entity declaredwithCLASSOF is polymorphic, and18
one declared with TYPEOF is not polymorphic. If a data‑ref is CLASS (*), CLASSOF (data‑ref) is equivalent19
to a CLASS (*) speciϐier.20

NOTE 1
A type‑spec is used in an array constructor, a SELECT TYPE construct, or an ALLOCATE statement. An integer‑type‑
spec is used in a DO CONCURRENT or FORALL statement. Elsewhere, a declaration‑type‑spec is used.

NOTE 2
Note that TYPEOF and CLASSOF declare entities whose type parameters depend on those of the data‑ref , they are
not equivalent to simply repeating the declaration of the data‑ref . For example, if the data‑ref has an assumed type
parameter, the entities declared have the same values for that type parameter as data‑ref , they are not assumed
(even if they are dummy arguments).

7.3.2.2 TYPE type speciϐier21

1 A TYPE type speciϐier is used to declare entities that are assumed‑type, or of an intrinsic or nonintrinsic22
type.23

2 A derived‑type‑spec, enum‑type‑spec, or enumeration‑type‑spec in a TYPE type speciϐier in a type declaration24
statement shall specify a previously deϐined type. If the data entity is a function result, the type may be25
speciϐied in the FUNCTION statement provided the type is deϐined within the body of the function or is26
accessible therebyuseorhost association. If the type is speciϐied in theFUNCTIONstatement and is deϐined27
within the body of the function, it is as if the function result were declared with that type immediately28
following the deϐinition of the speciϐied type.29

3 An entity that is declared using the TYPE(*) type speciϐier is assumed‑type and is an unlimited polymorphic30
entity. It is not declared to have a type, and is not considered to have the same declared type as any other31

68 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

entity, including another unlimited polymorphic entity. Its dynamic type and type parameters are assumed1
from its effective argument.2

C714 An assumed‑type entity shall be a dummy data object that does not have the ALLOCATABLE, CODI‑3
MENSION, INTENT (OUT), POINTER, or VALUE attribute and is not an explicit‑shape array.4

C715 An assumed‑type variable name shall not appear in a designator or expression except as an actual5
argument corresponding to a dummy argument that is assumed‑type, or as the ϐirst argument to6
the intrinsic function IS_CONTIGUOUS, LBOUND, PRESENT, RANK, SHAPE, SIZE, or UBOUND, or the7
function C_LOC from the intrinsic module ISO_C_BINDING.8

C716 An assumed‑type actual argument that corresponds to an assumed‑rank dummy argument shall be9
assumed‑shape or assumed‑rank.10

7.3.2.3 CLASS type speciϐier11

1 The CLASS type speciϐier is used to declare polymorphic entities. A polymorphic entity is a data entity that12
is able to be of differing dynamic types during program execution.13

2 A derived‑type‑spec in a CLASS type speciϐier in a type declaration statement shall specify a previously14
deϐined derived type. If the data entity is a function result, the derived type may be speciϐied in the FUNC‑15
TION statement provided the derived type is deϐined within the body of the function or is accessible there16
by use or host association. If the derived type is speciϐied in the FUNCTION statement and is deϐinedwithin17
the body of the function, it is as if the function result were declared with that derived type immediately fol‑18
lowing its derived‑type‑def .19

3 The declared type of a polymorphic entity is the speciϐied type if the CLASS type speciϐier contains a type20
name.21

4 An entity declared with the CLASS(*) speciϐier is an unlimited polymorphic entity. It is not declared to22
have a type, and is not considered to have the same declared type as any other entity, including another23
unlimited polymorphic entity.24

5 Thedynamic type of an allocated allocatable polymorphic object is the typewithwhich itwas allocated. The25
dynamic type of an associated polymorphic pointer is the dynamic type of its target. The dynamic type of26
a nonallocatable nonpointer polymorphic dummy argument is the dynamic type of its effective argument.27
The dynamic type of an unallocated allocatable object or a disassociated pointer is the same as its declared28
type. The dynamic type of an entity identiϐied by an associate name (11.1.3) is the dynamic type of the29
selector with which it is associated. The dynamic type of an object that is not polymorphic is its declared30
type.31

7.3.3 Type compatibility32

1 A nonpolymorphic entity is type compatible only with entities of the same declared type, except that an33
entity of an enum type is also type compatible with an expression of type integer if the expression has a34
primary that is an enumerator of that enumtype. Apolymorphic entity that is not anunlimitedpolymorphic35
entity is type compatible with entities of the same declared type or any of its extensions. Even though36
an unlimited polymorphic entity is not considered to have a declared type, it is type compatible with all37
entities. An entity is type compatible with a type if it is type compatible with entities of that type.38

J3/25‑007 69

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
Given

TYPE TROOT
...
TYPE,EXTENDS(TROOT) :: TEXTENDED
...
CLASS(TROOT) A
CLASS(TEXTENDED) B
...

A is type compatible with B but B is not type compatible with A.

2 A polymorphic allocatable object may be allocated to be of any type with which it is type compatible. A1
polymorphic pointer or dummy argument may, during program execution, be associated with objects with2
which it is type compatible.3

7.4 Intrinsic types4

7.4.1 Classiϐication and speciϐication5

1 Each intrinsic type is classiϐied as a numeric type or a nonnumeric type. The numeric types are integer,6
real, and complex. The nonnumeric intrinsic types are character and logical.7

2 Each intrinsic type has a kind type parameter named KIND; this type parameter is of type integer with8
default kind.9

R704 intrinsic‑type‑spec is integer‑type‑spec10
or REAL [kind‑selector]11
or DOUBLE PRECISION12
or COMPLEX [kind‑selector]13
or CHARACTER [char‑selector]14
or LOGICAL [kind‑selector]15

R705 integer‑type‑spec is INTEGER [kind‑selector]16

R706 kind‑selector is ([KIND =] scalar‑int‑constant‑expr)17

C717 (R706) The value of scalar‑int‑constant‑expr shall be nonnegative and shall specify a representation18
method that exists on the processor.19

7.4.2 Intrinsic operations on intrinsic types20

1 Intrinsic numeric operations are deϐined as speciϐied in 10.1.5.2.1 for the numeric intrinsic types. Rela‑21
tional intrinsic operations are deϐined as speciϐied in 10.1.5.5 for numeric and character intrinsic types.22
The intrinsic concatenation operation is deϐined as speciϐied in 10.1.5.3 for the character type. Logical23
intrinsic operations are deϐined as speciϐied in 10.1.5.4 for the logical type.24

7.4.3 Numeric intrinsic types25

7.4.3.1 Integer type26

1 The set of values for the integer type is a subset of the mathematical integers. The processor shall provide27
one or more representation methods that deϐine sets of values for data of type integer. Each such method28

70 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

is characterized by a value for the kind type parameter KIND. The kind type parameter of a representation1
method is returned by the intrinsic function KIND (16.9.118). The decimal exponent range of a represent‑2
ation method is returned by the intrinsic function RANGE (16.9.170). The intrinsic function SELECTED_‑3
INT_KIND (16.9.181) returns a kind value based on a speciϐied decimal exponent range requirement. The4
integer type includes a zero value, which is considered to be neither negative nor positive. The value of a5
signed integer zero is the same as the value of an unsigned integer zero.6

2 The processor shall provide at least one representation method with a decimal exponent range greater7
than or equal to 18.8

3 The type speciϐier for the integer type uses the keyword INTEGER.9

4 The keyword INTEGER with no kind‑selector speciϐies type integer with default kind; the kind type para‑10
meter value is equal to KIND (0). The decimal exponent range of default integer shall be at least 5.11

5 Any integer value can be represented as a signed‑int‑literal‑constant.12

R707 signed‑int‑literal‑constant is [sign] int‑literal‑constant13

R708 int‑literal‑constant is digit‑string [_ kind‑param]14

R709 kind‑param is digit‑string15
or scalar‑int‑constant‑name16

R710 signed‑digit‑string is [sign] digit‑string17

R711 digit‑string is digit [digit] ...18

R712 sign is +19
or –20

C718 (R709) A scalar‑int‑constant‑name shall be a named constant of type integer.21

C719 (R709) The value of kind‑param shall be nonnegative.22

C720 (R708) The value of kind‑param shall specify a representationmethod that exists on the processor.23

6 The optional kind type parameter following digit‑string speciϐies the kind type parameter of the integer24
constant; if it does not appear, the constant is default integer.25

7 An integer constant is interpreted as a decimal value.26

NOTE
Examples of signed integer literal constants are:

473
+56
-101
21_2
21_SHORT
1976354279568241_8

where SHORT is a scalar integer named constant. A program that uses a digit‑string as a kind‑param is unlikely to
be portable.

J3/25‑007 71

J3/25‑007 WD 1539‑1 2024‑12‑29

7.4.3.2 Real type1

1 The real type has values that approximate the mathematical real numbers. The processor shall provide2
two or more approximation methods that deϐine sets of values for data of type real. Each such method has3
a representation method and is characterized by a value for the kind type parameter KIND. The kind type4
parameter of an approximation method is returned by the intrinsic function KIND (16.9.118).5

2 The decimal precision, decimal exponent range, and radix of an approximationmethod are returned by the6
intrinsic functions PRECISION (16.9.162), RANGE (16.9.170), and RADIX (16.9.166). The intrinsic func‑7
tion SELECTED_REAL_KIND (16.9.183) returns a kind value based on speciϐied precision, range, and radix8
requirements.9

NOTE 1
See C.3.1 for remarks concerning selection of approximation methods.

3 The real type includes a zero value. Processors that distinguish between positive and negative zeros shall10
treat them as mathematically equivalent11

• in all intrinsic relational operations, and12
• as actual arguments to intrinsic procedures other than those for which it is explicitly speciϐied that13
negative zero is distinguished.14

NOTE 2
On a processor that distinguishes between 0.0 and−0.0,

(X >= 0.0)

evaluates to true if X = 0.0 or if X =−0.0, and
(X < 0.0)

evaluates to false for X =−0.0.
In order to distinguish between 0.0 and−0.0, a program can use the intrinsic function SIGN. SIGN (1.0, X)will return
−1.0 if X< 0.0 or if the processor distinguishes between 0.0 and−0.0 and X has the value−0.0.

4 The type speciϐier for the real type uses the keyword REAL. The keyword DOUBLE PRECISION is an altern‑15
ative speciϐier for one kind of real type.16

5 If the type keyword REAL is used without a kind type parameter, the real type with default real kind is17
speciϐied and the kind value is KIND (0.0). The type speciϐier DOUBLE PRECISION speciϐies type real with18
double precision kind; the kind value is KIND (0.0D0). The decimal precision of the double precision real19
approximation method shall be greater than that of the default real method.20

6 The decimal precision of double precision real shall be at least 10, and its decimal exponent range shall be21
at least 37. It is recommended that the decimal precision of default real be at least 6, and that its decimal22
exponent range be at least 37.23

R713 signed‑real‑literal‑constant is [sign] real‑literal‑constant24

R714 real‑literal‑constant is signiϔicand [exponent‑letter exponent] [_ kind‑param]25
or digit‑string exponent‑letter exponent [_ kind‑param]26

R715 signiϔicand is digit‑string . [digit‑string]27
or . digit‑string28

72 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

R716 exponent‑letter is E1
or D2

R717 exponent is signed‑digit‑string3

C721 (R714) If both kind‑param and exponent‑letter appear, exponent‑letter shall be E.4

C722 (R714)The value of kind‑param shall specify an approximationmethod that exists on the processor.5

7 A real literal constant without a kind type parameter is a default real constant if it is without an exponent6
part or has exponent letter E, and is a double precision real constant if it has exponent letter D. A real literal7
constant written with a kind type parameter is a real constant with the speciϐied kind type parameter.8

8 The exponent represents the power of ten scaling to be applied to the signiϐicand or digit string. Themean‑9
ing of these constants is as in decimal scientiϐic notation.10

9 The signiϐicand may be written with more digits than a processor will use to approximate the value of the11
constant.12

NOTE 3
Examples of signed real literal constants are:

-12.78
+1.6E3
2.1
-16.E4_8
0.45D-4
10.93E7_QUAD
.123
3E4

where QUAD is a scalar integer named constant.

7.4.3.3 Complex type13

1 The complex type has values that approximate the mathematical complex numbers. The values of a com‑14
plex type are ordered pairs of real values. The ϐirst real value is called the real part, and the second real15
value is called the imaginary part.16

2 Each approximation method used to represent data entities of type real shall be available for both the real17
and imaginary parts of a data entity of type complex. The (default integer) kind type parameter KIND18
for a complex entity speciϐies for both parts the real approximationmethod characterized by this kind type19
parameter value. The kind typeparameter of an approximationmethod is returnedby the intrinsic function20
KIND (16.9.118).21

3 The type speciϐier for the complex type uses the keyword COMPLEX. There is no keyword for double preci‑22
sion complex. If the type keyword COMPLEX is used without a kind type parameter, the complex type with23
default complex kind is speciϐied, the kind value is KIND (0.0), and both parts are default real.24

R718 complex‑literal‑constant is (real‑part , imag‑part)25

R719 real‑part is signed‑int‑literal‑constant26
or signed‑real‑literal‑constant27
or named‑constant28

R720 imag‑part is signed‑int‑literal‑constant29
or signed‑real‑literal‑constant30

J3/25‑007 73

J3/25‑007 WD 1539‑1 2024‑12‑29

or named‑constant1

C723 (R718) Each named constant in a complex literal constant shall be scalar and of type integer or real.2

4 If the real part and the imaginary part of a complex literal constant are both real, the kind type parameter3
value of the complex literal constant is the kind type parameter value of the part with the greater decimal4
precision; if theprecisions are the same, it is thekind typeparameter valueof oneof theparts as determined5
by theprocessor. If a part has akind typeparameter valuedifferent fromthat of the complex literal constant,6
the part is converted to the approximation method of the complex literal constant.7

5 If both the real and imaginaryparts are integer, they are converted to thedefault real approximationmethod8
and the constant is default complex. If only oneof theparts is an integer, it is converted to the approximation9
method selected for the part that is real and the kind type parameter value of the complex literal constant10
is that of the part that is real.11

NOTE
Examples of complex literal constants are:

(1.0, -1.0)
(3, 3.1E6)
(4.0_4, 3.6E7_8)
(0., PI)

where PI is a previously declared named constant of type real.

7.4.4 Character type12

7.4.4.1 Character sets13

1 The character type has a set of values composed of character strings. A character string is a sequence of14
characters, numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The number15
of characters in the string is called the length of the string. The length is a type parameter; its kind is16
processor dependent and its value is greater than or equal to zero.17

2 The processor shall provide one or more representationmethods that deϐine sets of values for data of type18
character. Each suchmethod is characterized by a value for the (default integer) kind type parameter KIND.19
The kind type parameter of a representationmethod is returned by the intrinsic function KIND (16.9.118).20
The intrinsic function SELECTED_CHAR_KIND (16.9.180) returns a kind value based on the name of a char‑21
acter type. Any character of a particular representation method representable in the processor may occur22
in a character string of that representation method.23

3 The character set speciϐied in ISO/IEC 646:1991 (International Reference Version) is referred to as the24
ASCII character set and its corresponding representation method is ASCII character kind. The character25
set UCS‑4 as speciϐied in ISO/IEC 10646 is referred to as the ISO 10646 character set and its corresponding26
representation method is the ISO 10646 character kind.27

7.4.4.2 Character type speciϐier28

1 The type speciϐier for the character type uses the keyword CHARACTER.29

2 If the type keyword CHARACTER is used without a kind type parameter, the character type with default30
character kind is speciϐied and the kind value is KIND (’A’).31

3 Thedefault character kind shall support a character set that includes the characters in the Fortran character32
set (6.1). The processor may support additional character sets by supplying nondefault character kinds.33

74 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

The characters available in nondefault character kinds are not speciϐied by this document, except that one1
character in each nondefault character set shall be designated as a blank character to be used as a padding2
character.3

R721 char‑selector is length‑selector4
or (LEN = type‑param‑value ,5

KIND = scalar‑int‑constant‑expr)6
or (type‑param‑value ,7

[KIND =] scalar‑int‑constant‑expr)8
or (KIND = scalar‑int‑constant‑expr9

[, LEN =type‑param‑value])10

R722 length‑selector is ([LEN =] type‑param‑value)11
or * char‑length [,]12

4 The “* char‑length” (and optional comma) syntax in a length‑selector is obsolescent.13

R723 char‑length is (type‑param‑value)14
or int‑literal‑constant15

C724 (R721) The value of scalar‑int‑constant‑expr shall be nonnegative and shall specify a representation16
method that exists on the processor.17

C725 (R723) The int‑literal‑constant shall not include a kind‑param.18

C726 (R721 R722 R723) A type‑param‑value of * shall be used only19

• to declare a dummy argument,20

• to declare a named constant,21

• in the type‑spec of an ALLOCATE statement wherein each allocate‑object is a dummy argument22
of type CHARACTER with an assumed character length,23

• in the type‑spec or derived‑type‑spec of a type guard statement (11.1.11), or24

• in an external function subprogram, to declare the character length parameter of the function25
result (this usage is obsolescent).26

C727 A function name shall not be declared with an asterisk type‑param‑value unless it is of type CHAR‑27
ACTER and is the name of a dummy function or the name of the result of an external function.28

C728 A function name declared with an asterisk type‑param‑value shall not be an array, a pointer, ele‑29
mental, or pure. A function name declared with an asterisk type‑param‑value shall not have the30
RECURSIVE attribute.31

C729 (R722) The optional comma in a length‑selector is permitted only in a declaration‑type‑spec in a32
type‑declaration‑stmt.33

C730 (R722) The optional comma in a length‑selector is permitted only if no double‑colon separator ap‑34
pears in the type‑declaration‑stmt.35

C731 (R721) The length speciϐied for a character statement function1 or for a statement function dummy36
argument of type character shall be a constant expression.37

1Statement functions are obsolescent.

J3/25‑007 75

J3/25‑007 WD 1539‑1 2024‑12‑29

5 The char‑selector in a CHARACTER intrinsic‑type‑spec and the * char‑length in an entity‑decl or in a compon‑1
ent‑decl of a type deϐinition specify character length. The * char‑length in an entity‑decl or a component‑decl2
speciϐies an individual length and overrides the length speciϐied in the char‑selector, if any. If a * char‑length3
is not speciϐied in an entity‑decl or a component‑decl, the length‑selector or type‑param‑value speciϐied in4
the char‑selector is the character length. If the length is not speciϐied in a char‑selector or a * char‑length,5
the length is 1.6

6 If the character length parameter value evaluates to a negative value, the length of character entities de‑7
clared is zero. A character length parameter value of : indicates a deferred type parameter (7.2). A char‑8
length type parameter value of * has the following meanings.9

• If used to declare a dummy argument of a procedure, the dummy argument assumes its length from10
its effective argument.11

• If used to declare a named constant, the length is that of the constant value.12
• If used in the type‑spec of an ALLOCATE statement, each allocate‑object assumes its length from its13
effective argument.14

• If used in the type‑spec of a type guard statement, the associating entity assumes its length from the15
selector.16

• If used to specify the character length parameter of a function result in an external subprogram, the17
function is an assumed character length function; such functions are obsolescent. Any scoping unit18
invoking the function or passing it as an actual argument shall declare the function namewith a char‑19
acter length parameter value other than * or access such a deϐinition by argument, host, or use asso‑20
ciation. When the function is invoked, the length of the function result is assumed from the value of21
this type parameter.22

7.4.4.3 Character literal constant23

1 The syntax of a character literal constant is given by R724.24

R724 char‑literal‑constant is [kind‑param _] ' [rep‑char] ... '25
or [kind‑param _] " [rep‑char] ... "26

C732 (R724) The value of kind‑param shall specify a representationmethod that exists on the processor.27

2 The optional kind type parameter preceding the leading delimiter speciϐies the kind type parameter of the28
character constant; if it does not appear, the constant is default character.29

3 For the type character with kind kind‑param, if it appears, and for default character otherwise, a repres‑30
entable character, rep‑char, is deϐined as follows.31

• In free source form, it is any graphic character in the processor‑dependent character set.32
• In ϐixed source form2, it is any character in the processor‑dependent character set. A processor may33
restrict the occurrence of some or all of the control characters.34

4 The delimiting apostrophes or quotation marks are not part of the value of the character literal constant.35

5 An apostrophe character within a character constant delimited by apostrophes is represented by two con‑36
secutive apostrophes (without intervening blanks); in this case, the two apostrophes are counted as one37
character. Similarly, a quotation mark character within a character constant delimited by quotation marks38

2Fixed source form is obsolescent.

76 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

is represented by two consecutive quotation marks (without intervening blanks) and the two quotation1
marks are counted as one character.2

6 A zero‑length character literal constant is represented by two consecutive apostrophes (without interven‑3
ing blanks) or two consecutivequotationmarks (without interveningblanks) outside of a character context.4

NOTE 1
Examples of character literal constants are:

"DON'T"
'DON''T'

both of which have the value DON’T and

''

which has the zero‑length character string as its value.

NOTE 2
An example of a nondefault character literal constant, where the processor supports the corresponding character
set, is:
NIHONGO_'彼女なしで何もできない。'

where NIHONGO is a named constant whose value is the kind type parameter for Nihongo (Japanese) characters.
This means “Without her, nothing is possible”.

7.4.4.4 Collating sequence5

1 The processor deϐines a collating sequence for the character set of each kind of character. The collating6
sequence is an isomorphism between the character set and the set of integers {I : 0 ≤ I < N}, whereN is7
the number of characters in the set. The intrinsic functions CHAR (16.9.52) and ICHAR (16.9.105) provide8
conversions between the characters and the integers according to this mapping.9

NOTE 1
For example:

ICHAR ('X')

returns the integer value of the character ’X’ according to the collating sequence of the processor.

2 The collating sequence of the default character kind shall satisfy the following constraints.10

• ICHAR (’A’)< ICHAR (’B’)< ...< ICHAR (’Z’) for the twenty‑six upper‑case letters.11
• ICHAR (’0’)< ICHAR (’1’)< ...< ICHAR (’9’) for the ten digits.12
• ICHAR (’ ’)< ICHAR (’0’)< ICHAR (’9’)< ICHAR (’A’) or13
ICHAR (’ ’)< ICHAR (’A’)< ICHAR (’Z’)< ICHAR (’0’).14

• ICHAR (’a’)< ICHAR (’b’)< ...< ICHAR (’z’) for the twenty‑six lower‑case letters.15
• ICHAR (’ ’)< ICHAR (’0’)< ICHAR (’9’)< ICHAR (’a’) or16
ICHAR (’ ’)< ICHAR (’a’)< ICHAR (’z’)< ICHAR (’0’).17

3 There are no constraints on the location of any other character in the collating sequence, nor is there any18
speciϐied collating sequence relationship between the upper‑case and lower‑case letters.19

J3/25‑007 77

J3/25‑007 WD 1539‑1 2024‑12‑29

4 The collating sequence for the ASCII character kind is as speciϐied in ISO/IEC 646:1991 (International Ref‑1
erence Version); this collating sequence is called the ASCII collating sequence in this document. The collat‑2
ing sequence for the ISO 10646 character kind is as speciϐied in ISO/IEC 10646.3

NOTE 2
The intrinsic functions ACHAR (16.9.3) and IACHAR (16.9.98) provide conversions between characters and corres‑
ponding integer values according to the ASCII collating sequence.

5 The intrinsic functions LGT, LGE, LLE, and LLT (16.9.124‑16.9.127) provide comparisons between strings4
based on the ASCII collating sequence. International portability is guaranteed if the set of characters used5
is limited to the Fortran character set (6.1).6

7.4.5 Logical type7

1 The logical type has two values, which represent true and false.8

2 Theprocessor shall provide one ormore representationmethods for data of type logical. Each suchmethod9
is characterized by a value for the (default integer) kind type parameter KIND. The kind type parameter of10
a representation method is returned by the intrinsic function KIND (16.9.118).11

3 The type speciϐier for the logical type uses the keyword LOGICAL.12

4 The keyword LOGICAL with no kind‑selector speciϐies type logical with default kind; the kind type para‑13
meter value is equal to KIND (.FALSE.).14

R725 logical‑literal‑constant is .TRUE. [_ kind‑param]15
or .FALSE. [_ kind‑param]16

C733 (R725) The value of kind‑param shall specify a representationmethod that exists on the processor.17

5 The optional kind type parameter speciϐies the kind type parameter of the logical constant; if it does not18
appear, the constant has the default logical kind.19

7.5 Derived types20

7.5.1 Derived type concepts21

1 Additional types can be derived from the intrinsic types and other derived types. A type deϐinition deϐines22
the name of the type and the names and attributes of its components and type‑bound procedures.23

2 A derived type can be parameterized by one or more type parameters, each of which is deϐined to be either24
a kind or length type parameter and can have a default value.25

3 The ultimate components of a derived type are the components that are of intrinsic type or have the AL‑26
LOCATABLE or POINTER attribute, plus the ultimate components of the components that are of derived27
type and have neither the ALLOCATABLE nor POINTER attribute.28

4 The direct components of a derived type are the components of that type, plus the direct components of29
the components that are of derived type and have neither the ALLOCATABLE nor POINTER attribute.30

5 The potential subobject components of a derived type are the nonpointer components of that type together31
with the potential subobject components of the nonpointer components that are of derived type. This32
includes all the components that could be a subobject of an object of the type (9.4.2).33

78 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 The components, direct components, potential subobject components, and ultimate components of an ob‑1
ject of derived type are the components, direct components, potential subobject components, and ultimate2
components of its type, respectively.3

7 By default, no storage sequence is implied by the order of the component deϐinitions. However, a storage4
sequence is implied for a sequence type (7.5.2.3). If the derived type has the BIND attribute, the storage5
sequence is that required by the companion processor (5.5.7, 18.3.4).6

8 A scalar entity of derived type is a structure. If a derived type has the SEQUENCE attribute, a scalar entity7
of the type is a sequence structure.8

NOTE
The ultimate components of an object of the derived type kids deϐined below are oldest_child%name, old-
est_child%age, and other_kids. The direct components of such an object are oldest_child%name, oldest_-
child%age, other_kids, and oldest_child.

type :: person
character(len=20) :: name
integer :: age

end type person

type :: kids
type(person) :: oldest_child
type(person), allocatable, dimension(:) :: other_kids

end type kids

7.5.2 Derived‑type deϐinition9

7.5.2.1 Syntax of a derived‑type deϐinition10

R726 derived‑type‑def is derived‑type‑stmt11
[type‑param‑def‑stmt] ...12
[private‑or‑sequence] ...13
[component‑part]14
[type‑bound‑procedure‑part]15
end‑type‑stmt16

R727 derived‑type‑stmt is TYPE [[, type‑attr‑spec‑list] ::] type‑name17
[(type‑param‑name‑list)]18

R728 type‑attr‑spec is ABSTRACT19
or access‑spec20
or BIND (C)21
or EXTENDS (parent‑type‑name)22

C734 (R727) A derived type type‑name shall not be DOUBLEPRECISION or the same as the name of any23
intrinsic type deϐined in this document.24

C735 (R727) The same type‑attr‑spec shall not appear more than once in a given derived‑type‑stmt.25

C736 The same type‑param‑name shall not appear more than once in a given derived‑type‑stmt.26

C737 (R728) A parent‑type‑name shall be the name of a previously deϐined extensible type (7.5.7).27

C738 (R726) If the type deϐinition contains or inherits (7.5.7.2) a deferred type‑bound procedure (7.5.5),28
ABSTRACT shall appear.29

J3/25‑007 79

J3/25‑007 WD 1539‑1 2024‑12‑29

C739 (R726) If ABSTRACT appears, the type shall be extensible.1

C740 (R726) If EXTENDS appears, SEQUENCE shall not appear.2

C741 (R726) If EXTENDS appears and the type being deϐined has a coarray potential subobject compon‑3
ent, its parent type shall have a coarray potential subobject component.4

C742 (R726) If EXTENDS appears and the type being deϐined has a potential subobject component of5
type EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE from the intrinsic module ISO_FORTRAN_ENV,6
its parent type shall be EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE, or have a potential subobject7
component of type EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE.8

R729 private‑or‑sequence is private‑components‑stmt9
or sequence‑stmt10

C743 (R726) The same private‑or‑sequence shall not appear more than once in a given derived‑type‑def .11

R730 end‑type‑stmt is END TYPE [type‑name]12

C744 (R730) If END TYPE is followed by a type‑name, the type‑name shall be the same as that in the13
corresponding derived‑type‑stmt.14

1 Derived types with the BIND attribute are subject to additional constraints as speciϐied in 18.3.4.15

NOTE
An example of a derived type deϐinition is:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 50) NAME

END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:
TYPE (PERSON) :: CHAIRMAN

7.5.2.2 Accessibility16

1 The accessibility of a type name is determined as speciϐied in 8.5.2. The accessibility of a type name does17
not affect, and is not affected by, the accessibility of its components and type‑bound procedures.18

2 If a derived type is deϐined in the scoping unit of a module, and its name is private in that module, then the19
type name, and thus the structure constructor (7.5.10) for the type, are accessible only within that module20
and its descendants.21

NOTE
An example of a type with a private name is:

TYPE, PRIVATE :: AUXILIARY
LOGICAL :: DIAGNOSTIC
CHARACTER (LEN = 20) :: MESSAGE

END TYPE AUXILIARY
Such a type would be accessible only within the module in which it is deϐined, and within its descendants.

7.5.2.3 Sequence type22

R731 sequence‑stmt is SEQUENCE23

80 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C745 (R726) If SEQUENCE appears, the type shall have at least one component, each data component1
shall be declared to be of an intrinsic type or of a sequence type, the derived type shall not have any2
type parameter, and a type‑bound‑procedure‑part shall not appear.3

1 If the SEQUENCE statement appears, the type has the SEQUENCE attribute and is a sequence type. The4
order of the component deϐinitions in a sequence type speciϐies a storage sequence for objects of that type.5
The type is a numeric sequence type if there are nopointer or allocatable components, and each component6
is default integer, default real, doubleprecision real, default complex, default logical, or of numeric sequence7
type. The type is a character sequence type if there are no pointer or allocatable components, and each8
component is default character or of character sequence type.9

NOTE 1
An example of a numeric sequence type is:

TYPE NUMERIC_SEQ
SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL
LOGICAL :: LOG_VAL

END TYPE NUMERIC_SEQ

NOTE 2
A structure resolves into a sequence of components. Unless the structure includes a SEQUENCE statement, the use
of this terminology in no way implies that these components are stored in this, or any other, order. Nor is there any
requirement that contiguous storage be used. The sequence merely refers to the fact that in writing the deϐinitions
there will necessarily be an order in which the components appear, and this will deϐine a sequence of components.
This order is of limited signiϐicance because a component of an object of derived type will always be accessed by a
component name except in the following contexts:

• the sequence of expressions in a derived‑type value constructor,
• intrinsic assignment,
• the sequence of data values in namelist input data, and
• and the inclusion of the structure in an input/output list of a formatted data transfer, where it is expanded to
this sequence of components.

Provided the processor adheres to the deϐined order in these cases, it is otherwise free to organize the storage of
the components for any nonsequence structure in memory as best suited to the particular architecture.

7.5.2.4 Determination of derived types10

1 Derived‑type deϐinitionswith the same type namemay appear in different scoping units, inwhich case they11
might be independent and describe different derived types or they might describe the same type.12

2 Two data entities have the same type if they are declared with reference to the same derived‑type deϐin‑13
ition. Data entities also have the same type if they are declared with reference to different derived‑type14
deϐinitions that specify the same type name, all have the SEQUENCE attribute or all have the BIND attrib‑15
ute, have no components with PRIVATE accessibility, and have components that agree in order, name, and16
attributes. Otherwise, they are of different derived types. A data entity declared using a type with the SE‑17
QUENCE attribute or with the BIND attribute is not of the same type as an entity of a type that has any18
components that are PRIVATE.19

NOTE 1
An example of declaring two entities with reference to the same derived‑type deϐinition is:

TYPE POINT
REAL X, Y

END TYPE POINT

J3/25‑007 81

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1 (cont.)
TYPE (POINT) :: X1
CALL SUB (X1)
…
CONTAINS

SUBROUTINE SUB (A)
TYPE (POINT) :: A
…

END SUBROUTINE SUB
The deϐinition of derived type POINT is known in subroutine SUB by host association. Because the declarations
of X1 and A both reference the same derived‑type deϐinition, X1 and A have the same type. X1 and A also would
have the same type if the derived‑type deϐinition were in a module and both SUB and its containing program unit
accessed that derived type from the module.

NOTE 2
An example of data entities in different scoping units having the same type is:

PROGRAM PGM
TYPE EMPLOYEE

SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE
TYPE (EMPLOYEE) PROGRAMMER
CALL SUB (PROGRAMMER)
…

END PROGRAM PGM
SUBROUTINE SUB (POSITION)

TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION
…

END SUBROUTINE SUB
The actual argument PROGRAMMER and the dummy argument POSITION have the same type because they are
declaredwith reference to a derived‑type deϐinitionwith the same name, the SEQUENCE attribute, and components
that agree in order, name, and attributes.
Suppose the component name ID_NUMBER was ID_NUM in the subroutine. Because all the component names are
not identical to the component names in derived type EMPLOYEE in the main program, the actual argument PRO‑
GRAMMER would not be of the same type as the dummy argument POSITION. Thus, the program would not be
standard‑conforming.

NOTE 3
The requirement that the two types have the same name applies to the type‑names in the respective derived type
deϐinitions, not to local names introduced via renaming in USE statements.

7.5.3 Derived‑type parameters1

7.5.3.1 Type parameter deϐinition statement2

R732 type‑param‑def‑stmt is integer‑type‑spec, type‑param‑attr‑spec ::3
type‑param‑decl‑list4

R733 type‑param‑decl is type‑param‑name [= scalar‑int‑constant‑expr]5

C746 (R732) A type‑param‑name in a type‑param‑def‑stmt in a derived‑type‑def shall be one of the type‑6
param‑names in the derived‑type‑stmt of that derived‑type‑def .7

C747 (R732) Each type‑param‑name in the derived‑type‑stmt in a derived‑type‑def shall appear exactly8

82 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

once as a type‑param‑name in a type‑param‑def‑stmt in that derived‑type‑def .1

R734 type‑param‑attr‑spec is KIND2
or LEN3

1 The derived type is parameterized if the derived‑type‑stmt has any type‑param‑names.4

2 Each typeparameter is itself of type integer. If its kind selector is omitted, the kind typeparameter is default5
integer.6

3 The type‑param‑attr‑spec explicitly speciϐies whether a type parameter is a kind parameter or a length7
parameter.8

4 If a type‑param‑decl has a scalar‑int‑constant‑expr, the type parameter has a default value which is spe‑9
ciϐied by the expression. If necessary, the value is converted according to the rules of intrinsic assignment10
(10.2.1.3) to a value of the same kind as the type parameter.11

5 A type parameter may be used as a primary in a speciϐication expression (10.1.11) in the derived‑type‑def .12
A kind type parametermay also be used as a primary in a constant expression (10.1.12) in the derived‑type‑13
def .14

NOTE
The following example uses derived‑type parameters.

TYPE humongous_matrix(k, d)
INTEGER, KIND :: k = KIND (0.0)
INTEGER (SELECTED_INT_KIND (12)), LEN :: d

!-- Specify a potentially nondefault kind for d.
REAL (k) :: element (d, d)

END TYPE

In the following example, dim is declared to be a kind parameter, allowing generic overloading of procedures dis‑
tinguished only by dim.

TYPE general_point(dim)
INTEGER, KIND :: dim
REAL :: coordinates(dim)

END TYPE

7.5.3.2 Type parameter order15

1 Type parameter order is an ordering of the type parameters of a derived type; it is used for derived‑type16
speciϐiers.17

2 The type parameter order of a nonextended type is the order of the type‑param‑name‑list in the derived‑18
type deϐinition. The type parameter order of an extended type (7.5.7) consists of the type parameter order19
of its parent type followed by any additional type parameters in the order of the type‑param‑name‑list in20
the derived‑type deϐinition.21

NOTE
Given

TYPE :: t1 (k1, k2)
INTEGER, KIND :: k1, k2
REAL (k1) a (k2)

END TYPE
TYPE, EXTENDS(t1) :: t2 (k3)

INTEGER, KIND :: k3
LOGICAL (k3) flag

END TYPE

J3/25‑007 83

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
the type parameter order for type t1 is k1 then k2, and the type parameter order for type t2 is k1 then k2 then k3.

7.5.4 Components1

7.5.4.1 Component deϐinition statement2

R735 component‑part is [component‑def‑stmt] ...3

R736 component‑def‑stmt is data‑component‑def‑stmt4
or proc‑component‑def‑stmt5

R737 data‑component‑def‑stmt is declaration‑type‑spec [[, component‑attr‑spec‑list] ::]6
component‑decl‑list7

R738 component‑attr‑spec is access‑spec8
or ALLOCATABLE9
or CODIMENSION lbracket coarray‑spec rbracket10
or CONTIGUOUS11
or DIMENSION (component‑array‑spec)12
or POINTER13

R739 component‑decl is component‑name [(component‑array‑spec)]14
[lbracket coarray‑spec rbracket]15
[* char‑length] [component‑initialization]16

R740 component‑array‑spec is explicit‑shape‑spec‑list17
or deferred‑shape‑spec‑list18

19

C748 (R737) No component‑attr‑spec shall appear more than once in a given component‑def‑stmt.20

C749 (R737) If neither the POINTER nor the ALLOCATABLE attribute is speciϐied, the declaration‑type‑21
spec in the component‑def‑stmt shall specify an intrinsic type, or apreviously deϐinedderived, enum,22
or enumeration type.23

C750 (R737) If the POINTER or ALLOCATABLE attribute is speciϐied, each component‑array‑spec shall be24
a deferred‑shape‑spec‑list.25

C751 (R737) If a coarray‑spec appears, it shall be a deferred‑coshape‑spec‑list and the component shall26
have the ALLOCATABLE attribute.27

C752 (R737) If a coarray‑spec appears, the component shall not be of type C_PTR or C_FUNPTR from28
the intrinsic module ISO_C_BINDING (18.2), or of type TEAM_TYPE from the intrinsic module ISO_‑29
FORTRAN_ENV (16.10.2).30

C753 A data component whose type has a coarray potential subobject component shall be a nonpointer31
nonallocatable scalar and shall not be a coarray.32

C754 (R737) If neither the POINTER nor the ALLOCATABLE attribute is speciϐied, each component‑array‑33
spec shall be an explicit‑shape‑spec‑list.34

C755 (R740) Each bound in the explicit‑shape‑spec shall be a component speciϐication expression.35

84 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C756 (R737) A component shall not have both the ALLOCATABLE and POINTER attributes.1

C757 (R737) If theCONTIGUOUSattribute is speciϐied, the component shall be anarraywith thePOINTER2
attribute.3

C758 (R739) The * char‑length option is permitted only if the component is of type character.4

C759 (R736) Each type‑param‑value within a component‑def‑stmt shall be a colon or a component spe‑5
ciϐication expression.6

NOTE 1
Because a type parameter is not an object, a type‑param‑value or a bound in an explicit‑shape‑spec can contain a
type‑param‑name.

R741 proc‑component‑def‑stmt is PROCEDURE ([proc‑interface]) ,7
proc‑component‑attr‑spec‑list :: proc‑decl‑list8

NOTE 2
See 15.4.3.6 for deϐinitions of proc‑interface and proc‑decl.

R742 proc‑component‑attr‑spec is access‑spec9
or NOPASS10
or PASS [(arg‑name)]11
or POINTER12

C760 The same proc‑component‑attr‑spec shall not appear more than once in a given proc‑component‑13
def‑stmt.14

C761 (R741) POINTER shall appear in each proc‑component‑attr‑spec‑list.15

C762 (R741) If the procedure pointer component has an implicit interface or has no arguments, NOPASS16
shall be speciϐied.17

C763 (R741) If PASS (arg‑name) appears, the interface of the procedure pointer component shall have a18
dummy argument named arg‑name.19

C764 (R741) PASS and NOPASS shall not both appear in the same proc‑component‑attr‑spec‑list.20

1 The declaration‑type‑spec in the data‑component‑def‑stmt speciϐies the type and type parameters of the21
components in the component‑decl‑list, except that the character length parameter can be speciϐied or over‑22
ridden for a component by the appearance of * char‑length in its entity‑decl. The component‑attr‑spec‑list23
in the data‑component‑def‑stmt speciϐies the attributes whose keywords appear for the components in the24
component‑decl‑list, except that the DIMENSION attribute can be speciϐied or overridden for a component25
by the appearance of a component‑array‑spec in its component‑decl, and the CODIMENSION attribute can26
be speciϐied or overridden for a component by the appearance of a coarray‑spec in its component‑decl.27

7.5.4.2 Array components28

1 A data component is an array if its component‑decl contains a component‑array‑spec or its data‑component‑29
def‑stmt contains a DIMENSION clause. If the component‑decl contains a component‑array‑spec, it speciϐies30
the array rank, and if the array is explicit shape (8.5.8.2), the array bounds; otherwise, the component‑31
array‑spec in the DIMENSION clause speciϐies the array rank, and if the array is explicit shape, the array32
bounds.33

J3/25‑007 85

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1
An example of a derived type deϐinition with an array component is:

TYPE LINE
REAL, DIMENSION (2, 2) :: COORD !

! COORD(:,1) has the value of [X1, Y1]
! COORD(:,2) has the value of [X2, Y2]

REAL :: WIDTH ! Line width in centimeters
INTEGER :: PATTERN ! 1 for solid, 2 for dash, 3 for dot

END TYPE LINE

An example of declaring a variable LINE_SEGMENT to be of the type LINE is:
TYPE (LINE) :: LINE_SEGMENT

The scalar variable LINE_SEGMENT has a component that is an array. In this case, the array is a subobject of a
scalar. The double colon in the deϐinition for COORD is required; the double colon in the deϐinition for WIDTH and
PATTERN is optional.

NOTE 2
An example of a derived type deϐinition with an allocatable component is:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS (:)

END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is determined by execution of an
ALLOCATE statement or assignment statement, or by argument association.

NOTE 3
Default initialization of an explicit‑shape array component can be speciϐied by a constant expression consisting of
an array constructor (7.8), or of a single scalar that becomes the value of each array element.

7.5.4.3 Coarray components1

1 A data component is a coarray if its component‑decl contains a coarray‑spec or its data‑component‑def‑stmt2
contains a CODIMENSION clause. If the component‑decl contains a coarray‑spec it speciϐies the corank;3
otherwise, the coarray‑spec in the CODIMENSION clause speciϐies the corank.4

NOTE
An example of a derived type deϐinition with a coarray component is:

TYPE GRID_TYPE
REAL, ALLOCATABLE, CODIMENSION [:, :, :] :: GRID (:, :, :)

END TYPE GRID_TYPE

An object of type grid_type cannot be a coarray or a pointer.

7.5.4.4 Pointer components5

1 A data component is a data pointer (5.4.9) if its component‑attr‑spec‑list contains the POINTER keyword.6
A procedure pointer component has the POINTER keyword in its proc‑component‑attr‑spec‑list.7

NOTE
An example of a derived type deϐinition with a pointer component is:

TYPE REFERENCE
INTEGER :: VOLUME, YEAR, PAGE
CHARACTER (LEN = 50) :: TITLE
PROCEDURE (printer_interface), POINTER :: PRINT => NULL()

86 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE (cont.)
CHARACTER, DIMENSION (:), POINTER :: SYNOPSIS

END TYPE REFERENCE
Any object of type REFERENCE will have the four nonpointer components VOLUME, YEAR, PAGE, and TITLE, the
procedure pointer PRINT, which has an explicit interface the same as printer_interface, plus a pointer to an array
of characters holding SYNOPSIS. The size of this target array will be determined by the length of the synopsis. The
space for the target could be allocated (9.7.1) or the pointer component could be associated with a target by a
pointer assignment statement (10.2.2).

7.5.4.5 The passed‑object dummy argument1

1 A passed‑object dummy argument is a distinguished dummy argument of a procedure pointer compon‑2
ent or type‑bound procedure (7.5.5). It affects procedure overriding (7.5.7.3) and argument association3
(15.5.2.2).4

2 If NOPASS is speciϐied, the procedure pointer component or type‑bound procedure has no passed‑object5
dummy argument.6

3 If neither PASS nor NOPASS is speciϐied or PASS is speciϐied without arg‑name, the ϐirst dummy argument7
of a procedure pointer component or type‑bound procedure is its passed‑object dummy argument.8

4 If PASS (arg‑name) is speciϐied, the dummy argument named arg‑name is the passed‑object dummy argu‑9
ment of the procedure pointer component or named type‑bound procedure.10

C765 The passed‑object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data ob‑11
ject with the same declared type as the type being deϐined; all of its length type parameters shall be12
assumed; it shall be polymorphic (7.3.2.3) if and only if the type being deϐined is extensible (7.5.7).13
It shall not have the VALUE attribute.14

NOTE
If a procedure is bound to several types as a type‑bound procedure, different dummy arguments might be the
passed‑object dummy argument in different contexts.

7.5.4.6 Default initialization for components15

1 Default initialization provides ameans of automatically initializing pointer components to be disassociated16
or associated with speciϐic targets, and nonpointer nonallocatable components to have a particular value.17
Allocatable components are always initialized to unallocated.18

2 Apointer variable or component is data‑pointer‑initialization compatiblewith a target if the pointer is type19
compatible with the target, they have the same rank, all nondeferred type parameters of the pointer have20
the same values as the corresponding type parameters of the target, and the target is contiguous if the21
pointer has the CONTIGUOUS attribute.22

R743 component‑initialization is = constant‑expr23
or => null‑init24
or => initial‑data‑target25

R744 initial‑data‑target is designator26

C766 If component‑initialization appears in a data‑component‑def‑stmt, a double‑colon separator shall27
appear before the component‑decl‑list.28

J3/25‑007 87

J3/25‑007 WD 1539‑1 2024‑12‑29

C767 (R737) If component‑initialization appears, every type parameter and array bound of the compon‑1
ent shall be a colon or constant expression.2

C768 (R737) If => appears in component‑initialization, POINTER shall appear in the component‑attr‑3
spec‑list. If = appears in component‑initialization, neither POINTERnor ALLOCATABLE shall appear4
in the component‑attr‑spec‑list.5

C769 If initial‑data‑target appears in a component‑initialization in a component‑decl, component‑name6
shall be data‑pointer‑initialization compatible with it.7

C770 A designator that is an initial‑data‑target shall designate a nonallocatable, noncoindexed variable8
that has the TARGET and SAVE attributes and does not have a vector subscript. Every subscript,9
section subscript, substring starting point, and substring ending point in designator shall be a con‑10
stant expression.11

3 If null‑init appears for a pointer component, that component in any object of the type has an initial associ‑12
ation status of disassociated (3.57) or becomes disassociated as speciϐied in 19.5.2.4.13

4 If initial‑data‑target appears for a data pointer component, that component in any object of the type is14
initially associated with the target or becomes associated with the target as speciϐied in 19.5.2.3.15

5 If initial‑proc‑target (15.4.3.6) appears in proc‑decl for a procedure pointer component, that component16
in any object of the type is initially associated with the target or becomes associated with the target as17
speciϐied in 19.5.2.3.18

6 If constant‑expr appears for a nonpointer component, that component in any object of the type is initially19
deϐined (19.6.3) or becomes deϐined as speciϐied in 19.6.5 with the value determined from constant‑expr.20
If necessary, the value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that21
agrees in type, type parameters, and shape with the component. If the component is of a type for which22
default initialization is speciϐied for a component, the default initialization speciϐied by constant‑expr over‑23
rides the default initialization speciϐied for that component. When one initialization overrides another it is24
as if only the overriding initialization were speciϐied (see NOTE 2). Explicit initialization in a type declar‑25
ation statement (8.2) overrides default initialization (see NOTE 1). Unlike explicit initialization, default26
initialization does not imply that the object has the SAVE attribute.27

7 A subcomponent (9.4.2) is default‑initialized if the type of the object ofwhich it is a component speciϐies de‑28
fault initialization for that component, and the subcomponent is not a subobject of an object that is default‑29
initialized or explicitly initialized.30

8 A type has default initialization if component‑initialization is speciϐied for any direct component of the type.31
An object has default initialization if it is of a type that has default initialization.32

NOTE 1
It is not required that initialization be speciϐied for each component of a derived type. For example:

TYPE DATE
INTEGER DAY
CHARACTER (LEN = 5) MONTH
INTEGER :: YEAR = 2008 ! Partial default initialization

END TYPE DATE

In the following example, the default initial value for the YEAR component of TODAY is overridden by explicit ini‑
tialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 2009)

88 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2
The default initial value of a component of derived type can be overridden by default initialization speciϐied in the
deϐinition of the type. Continuing the example of NOTE 1:

TYPE SINGLE_SCORE
TYPE(DATE) :: PLAY_DAY = TODAY
INTEGER SCORE
TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL ()

END TYPE SINGLE_SCORE
TYPE(SINGLE_SCORE) SETUP

The PLAY_DAY component of SETUP receives its initial value from TODAY, overriding the initialization for the YEAR
component.

NOTE 3
Arrays of structures can be declaredwith elements that are partially or totally initialized by default. Continuing the
example of NOTE 2:

TYPE MEMBER (NAME_LEN)
INTEGER, LEN :: NAME_LEN
CHARACTER (LEN = NAME_LEN) :: NAME
INTEGER :: TEAM_NO, HANDICAP = 0
TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL ()

END TYPE MEMBER
TYPE (MEMBER(9)) LEAGUE (36) ! Array of partially initialized elements
TYPE (MEMBER(9)) :: ORGANIZER = MEMBER (9) ("I. Manage",1,5,NULL ())

ORGANIZER is explicitly initialized, overriding the default initialization for an object of type MEMBER.
Allocated objects can also be initialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) ! A partially initialized object of type
! SINGLE_SCORE is created.

NOTE 4
A pointer component of a derived type can have as its target an object of that derived type. The type deϐinition can
specify that in objects declared to be of this type, such a pointer is default initialized to disassociated. For example:

TYPE NODE
INTEGER :: VALUE = 0
TYPE (NODE), POINTER :: NEXT_NODE => NULL ()

END TYPE

A type such as this can be used to construct linked lists of objects of type NODE. Linked lists can also be constructed
using allocatable components.

NOTE 5
A pointer component of a derived type can be default initialized to have an initial target.

TYPE NODE
INTEGER :: VALUE = 0
TYPE (NODE), POINTER :: NEXT_NODE => SENTINEL

END TYPE
TYPE(NODE), SAVE, TARGET :: SENTINEL

7.5.4.7 Component order1

1 Component order is an ordering of the nonparent components of a derived type; it is used for intrinsic2
formatted input/output and structure constructorswhere component keywords are not used. Parent com‑3
ponents are excluded from the component order of an extended type (7.5.7).4

J3/25‑007 89

J3/25‑007 WD 1539‑1 2024‑12‑29

2 The component order of a nonextended type is the order of the declarations of the components in the1
derived‑type deϐinition. The component order of an extended type consists of the component order of2
its parent type followed by any additional components in the order of their declarations in the extended3
derived‑type deϐinition.4

NOTE
Given the same type deϐinitions as in 7.5.3.2, NOTE, the component order of type T1 is just A (there is only one
component), and the component order of type T2 is A then FLAG. The parent component (T1) does not participate
in the component order.

7.5.4.8 Component accessibility5

R745 private‑components‑stmt is PRIVATE6

C771 (R745) A private‑components‑stmt is permitted only if the type deϐinition iswithin the speciϐication7
part of a module.8

1 The default accessibility for the components that are declared in a type’s component‑part is private if the9
type deϐinition contains a private‑components‑stmt, and public otherwise. The accessibility of a component10
can be explicitly declared by an access‑spec; otherwise its accessibility is the default for the type deϐinition11
in which it is declared.12

2 If a component is private, that component name is accessible only within the module containing the deϐin‑13
ition, and within its descendants.14

NOTE 1
Type parameters are not components. They are effectively always public.

NOTE 2
The accessibility of the components of a type is independent of the accessibility of the type name. It is possible to
have all four combinations of public and private type names with public and private components.

NOTE 3
An example of a public type with private components is:

TYPE, PUBLIC :: POINT
PRIVATE
REAL :: X, Y

END TYPE POINT

Such a type deϐinition can be accessed by use association; however, the components X and Y are accessible only
within the module and its descendants.

NOTE 4
An example that uses an individual component access‑spec to override the default accessibility is:

TYPE MIXED
PRIVATE
INTEGER :: I
INTEGER, PUBLIC :: J

END TYPE MIXED

TYPE (MIXED) :: M

The component M%J is accessible in any scoping unit where M is accessible; M%I is accessible only within the
module containing the TYPE MIXED deϐinition, and within its descendants.

90 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

7.5.5 Type‑bound procedures1

R746 type‑bound‑procedure‑part is contains‑stmt2

[binding‑private‑stmt]3
[type‑bound‑proc‑binding] ...4

R747 binding‑private‑stmt is PRIVATE5

C772 (R746)A binding‑private‑stmt is permitted only if the type deϐinition iswithin the speciϐication part6
of a module.7

R748 type‑bound‑proc‑binding is type‑bound‑procedure‑stmt8
or type‑bound‑generic‑stmt9
or ϔinal‑procedure‑stmt10

R749 type‑bound‑procedure‑stmt is PROCEDURE [[, binding‑attr‑list] ::] type‑bound‑proc‑decl‑list11
12

or PROCEDURE (interface‑name), binding‑attr‑list ::13
binding‑name‑list14

R750 type‑bound‑proc‑decl is binding‑name [=> procedure‑name]15

C773 (R749) If => procedure‑name appears in a type‑bound‑proc‑decl, the double‑colon separator shall16
appear.17

C774 (R750) The procedure‑name shall be the name of an accessible module procedure or an external18
procedure that has an explicit interface.19

C775 A binding‑name in a type‑bound‑proc‑decl in a derived type deϐinition shall not be the same as any20
other binding‑namewithin that derived type deϐinition.21

1 If => procedure‑name does not appear in a type‑bound‑proc‑decl, it is as though => procedure‑name had22
appeared with a procedure name the same as the binding name.23

R751 type‑bound‑generic‑stmt is GENERIC [, access‑spec] :: generic‑spec => binding‑name‑list24

C776 Within the speciϔication‑part of a module, each type‑bound‑generic‑stmt shall specify, either impli‑25
citly or explicitly, the same accessibility as every other type‑bound‑generic‑stmt with that generic‑26
spec in the same derived type.27

C777 (R751) Each binding‑name in binding‑name‑list shall be the name of a speciϐic binding of the type.28

C778 A binding‑name in a type‑bound GENERIC statement shall not specify a speciϐic binding that was29
inherited or speciϐied previously for the same generic identiϐier in that derived type deϐinition.30

C779 (R751) If generic‑spec is not generic‑name, each of its speciϐic bindings shall have a passed‑object31
dummy argument (7.5.4.5).32

C780 (R751) If generic‑spec is OPERATOR (deϔined‑operator), the interface of each binding shall be as33
speciϐied in 15.4.3.4.2.34

C781 (R751) If generic‑spec is ASSIGNMENT (=), the interface of each binding shall be as speciϐied in35
15.4.3.4.3.36

J3/25‑007 91

J3/25‑007 WD 1539‑1 2024‑12‑29

C782 (R751) If generic‑spec is deϔined‑io‑generic‑spec, the interface of each binding shall be as speciϐied1
in 12.6.4.8. The type of the dtv argument shall be type‑name.2

R752 binding‑attr is access‑spec3
or DEFERRED4
or NON_OVERRIDABLE5
or NOPASS6
or PASS [(arg‑name)]7

C783 (R752) The same binding‑attr shall not appear more than once in a given binding‑attr‑list.8

C784 (R749) If the interface of the binding has no dummy argument of the type being deϐined, NOPASS9
shall appear.10

C785 (R749) If PASS (arg‑name) appears, the interface of the binding shall have a dummy argument11
named arg‑name.12

C786 (R752) PASS and NOPASS shall not both appear in the same binding‑attr‑list.13

C787 (R752) NON_OVERRIDABLE and DEFERRED shall not both appear in the same binding‑attr‑list.14

C788 (R752) DEFERRED shall appear if and only if interface‑name appears.15

C789 (R749) An overriding binding (7.5.7.3) shall have the DEFERRED attribute only if the binding it16
overrides is deferred.17

C790 (R749) A binding shall not override an inherited binding (7.5.7.2) that has the NON_OVERRIDABLE18
attribute.19

2 A type‑bound procedure statement declares one or more speciϐic type‑bound procedures. A speciϐic type‑20
bound procedure can have a passed‑object dummy argument (7.5.4.5). A type‑bound procedure with the21
DEFERRED attribute is a deferred type‑bound procedure. The DEFERRED keyword shall appear only in22
the deϐinition of an abstract type.23

3 A GENERIC statement declares a generic type‑bound procedure, which is a type‑bound generic interface24
for its speciϐic type‑bound procedures.25

4 Abinding of a type is a type‑boundprocedure (speciϐic or generic), a generic type‑bound interface, or a ϐinal26
subroutine. These are referred to as speciϐic bindings, generic bindings, and ϐinal bindings respectively.27

5 A type‑bound procedure can be identiϐied by a binding name in the scope of the type deϐinition. This name28
is the binding‑name for a speciϐic type‑bound procedure, and the generic‑name for a generic bindingwhose29
generic‑spec is generic‑name. A ϐinal binding, or a generic binding whose generic‑spec is not generic‑name,30
has no binding name.31

6 The interface of a speciϐic type‑bound procedure is that of the procedure speciϐied by procedure‑name or32
the interface speciϐied by interface‑name.33

7 The same generic‑specmay be used in several GENERIC statements within a single derived‑type deϐinition.34
Each additional GENERIC statement with the same generic‑spec extends the generic interface.35

NOTE 1
Unlike the situation with generic procedure names, a generic type‑bound procedure name is not permitted to be
the same as a speciϐic type‑bound procedure name in the same type (19.3).

92 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

8 The default accessibility for the type‑bound procedures of a type is private if the type deϐinition contains1
a binding‑private‑stmt, and public otherwise. The accessibility of a type‑bound procedure can be explicitly2
declared by an access‑spec; otherwise its accessibility is the default for the type deϐinition in which it is3
declared.4

9 A public type‑bound procedure is accessible via any accessible object of the type. A private type‑bound5
procedure is accessible only within the module containing the type deϐinition, and within its descendants.6

NOTE 2
The accessibility of a type‑bound procedure is not affected by a PRIVATE statement in the component‑part; the
accessibility of a component is not affected by a PRIVATE statement in the type‑bound‑procedure‑part.

NOTE 3
An example of a type and a type‑bound procedure is:

TYPE POINT
REAL :: X, Y

CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_LENGTH

END TYPE POINT
...

and in themodule‑subprogram‑part of the same module:

REAL FUNCTION POINT_LENGTH (A, B)
CLASS (POINT), INTENT (IN) :: A, B
POINT_LENGTH = SQRT ((A%X - B%X)**2 + (A%Y - B%Y)**2)

END FUNCTION POINT_LENGTH

7.5.6 Final subroutines7

7.5.6.1 FINAL statement8

R753 ϔinal‑procedure‑stmt is FINAL [::] ϔinal‑subroutine‑name‑list9

C791 (R753) A ϔinal‑subroutine‑name shall be the name of a module procedure with exactly one dummy10
argument. That argument shall be nonoptional and shall be a noncoarray, nonpointer, nonalloc‑11
atable, nonpolymorphic variable of the derived type being deϐined. All length type parameters of12
the dummy argument shall be assumed. The dummy argument shall not have the INTENT (OUT)13
or VALUE attribute.14

C792 (R753) A ϔinal‑subroutine‑name shall not be one previously speciϐied as a ϐinal subroutine for that15
type.16

C793 (R753) A ϐinal subroutine shall not have a dummy argument with the same kind type parameters17
and rank as the dummy argument of another ϐinal subroutine of that type.18

C794 (R753) If a ϐinal subroutine has an assumed‑rank dummy argument, no other ϐinal subroutine of19
that type shall have a dummy argument with the same kind type parameters.20

1 The FINAL statement speciϐies that each procedure it names is a ϐinal subroutine. A ϐinal subroutine might21
be executed when a data entity of that type is ϐinalized (7.5.6.2).22

2 Aderived type is ϐinalizable if andonly if it has a ϐinal subroutine or anonpointer, nonallocatable component23
of ϐinalizable type. Anonpointerdata entity is ϐinalizable if andonly if it is of ϐinalizable type. Noother entity24
is ϐinalizable.25

J3/25‑007 93

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1
Final subroutines are effectively always “accessible”. They are called for entity ϐinalization regardless of the access‑
ibility of the type, its other type‑bound procedures, or the subroutine name itself.

NOTE 2
Final subroutines are not inherited through type extension and cannot be overridden. The ϐinal subroutines of the
parent type are called after any additional ϐinal subroutines of an extended type are called.

7.5.6.2 The ϐinalization process1

1 Only ϐinalizable entities are ϐinalized. When an entity is ϐinalized, the following steps are carried out in2
sequence.3

(1) If the dynamic type of the entity has a ϐinal subroutine whose dummy argument has the same4
kind type parameters and rank as the entity being ϐinalized, it is called with the entity as an5
actual argument. Otherwise, if there is an elemental ϐinal subroutine whose dummy argument6
has the same kind type parameters as the entity being ϐinalized, or a ϐinal subroutine whose7
dummy argument is assumed‑rank with the same kind type parameters as the entity being8
ϐinalized, it is called with the entity as an actual argument. Otherwise, no subroutine is called9
at this point.10

(2) All nonallocatable ϐinalizable components that appear in the type deϐinition are ϐinalized in a11
processor‑dependent order. If the entity being ϐinalized is an array, each ϐinalizable component12
of each element of that entity is ϐinalized separately.13

(3) If the entity is of extended type and the parent type is ϐinalizable, the parent component is14
ϐinalized.15

2 If several entities are to be ϐinalized as a consequence of an event speciϐied in 7.5.6.3, the order in which16
they are ϐinalized is processor dependent. During this process, execution of a ϐinal subroutine for one of17
these entities shall not reference or deϐine any of the other entities that have already been ϐinalized.18

NOTE
An implementation might need to ensure that when an event causes more than one coarray to be deallocated, they
are deallocated in the same order on all images in the current team.

7.5.6.3 When ϐinalization occurs19

1 When an intrinsic assignment statement is executed (10.2.1.3), if the variable is not an unallocated allocat‑20
able variable, it is ϐinalized after evaluation of expr and before the deϐinition of the variable. If the variable21
is an allocated allocatable variable, or has an allocated allocatable subobject, that would be deallocated by22
intrinsic assignment, the ϐinalization occurs before the deallocation.23

2 When a pointer is deallocated its target is ϐinalized. When an allocatable entity is deallocated, it is ϐinalized24
unless it is the variable in an intrinsic assignment statement. If an error condition occurs during dealloca‑25
tion, it is processor dependent whether ϐinalization occurs.26

3 A nonpointer, nonallocatable object that is not a dummy argument or function result is ϐinalized imme‑27
diately before it would become undeϐined due to execution of a RETURN or END statement (19.6.6, item28
(3)).29

4 A nonpointer nonallocatable local variable of a BLOCK construct is ϐinalized immediately before it would30
become undeϐined due to termination of the BLOCK construct (19.6.6, item (23)).31

94 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 If an executable construct references a nonpointer function, the result is ϐinalized after execution of the1
innermost executable construct containing the reference.2

6 If a speciϐication expression in a scoping unit references a function, the result is ϐinalized before execution3
of the executable constructs in the scoping unit.4

7 When a procedure is invoked, a nonpointer, nonallocatable, INTENT (OUT) dummy argument of that pro‑5
cedure is ϐinalized before it becomes undeϐined. The ϐinalization caused by INTENT (OUT) is considered6
to occur within the invoked procedure; so for elemental procedures, an INTENT (OUT) argument will be7
ϐinalized only if a scalar or elemental ϐinal subroutine is available, regardless of the rank of the actual argu‑8
ment.9

8 If an object is allocated via pointer allocation and later becomes unreachable due to all pointers associated10
with that object having their pointer association status changed, it is processor dependent whether it is11
ϐinalized. If it is ϐinalized, it is processor dependent as to when the ϐinal subroutines are called.12

NOTE
If ϐinalization is used for storage management, it often needs to be combined with deϐined assignment.

7.5.6.4 Entities that are not ϐinalized13

1 If image execution is terminated, either by an error (e.g. an allocation failure) or by execution of a stop‑stmt,14
error‑stop‑stmt, or end‑program‑stmt, entities existing immediately prior to termination are not ϐinalized.15

NOTE
A nonpointer, nonallocatable object that has the SAVE attribute is never ϐinalized as a direct consequence of the
execution of a RETURN or END statement.

7.5.7 Type extension16

7.5.7.1 Extensible, extended, and abstract types17

1 A derived type, other than the type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING, that18
does not have the BIND attribute or the SEQUENCE attribute is an extensible type.19

2 A type with the EXTENDS attribute is an extended type; its parent type is the type named in the EXTENDS20
type‑attr‑spec.21

NOTE 1
The name of the parent type might be a local name introduced via renaming in a USE statement.

3 An extensible type that does not have the EXTENDS attribute is an extension type of itself only. An extended22
type is an extension of itself and of all types for which its parent type is an extension.23

4 An abstract type is a type that has the ABSTRACT attribute.24

NOTE 2
The DEFERRED attribute (7.5.5) defers the implementation of a type‑bound procedure to extensions of the type; it
can appear only in an abstract type. The dynamic type of an object cannot be abstract; therefore, a deferred type‑
bound procedure cannot be invoked. An extension of an abstract type need not be abstract if it has no deferred
type‑bound procedures. A short example of an abstract type is:

TYPE, ABSTRACT :: FILE_HANDLE
CONTAINS

J3/25‑007 95

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2 (cont.)
PROCEDURE(OPEN_FILE), DEFERRED, PASS(HANDLE) :: OPEN
...

END TYPE
For a more elaborate example see C.3.4.

7.5.7.2 Inheritance1

1 Anextended type includes all of the typeparameters, all of the components, and thenonoverridden (7.5.7.3)2
type‑bound procedures of its parent type. These are inherited by the extended type from the parent type.3
They retain all of the attributes that they had in the parent type. Additional type parameters, components,4
and procedure bindings may be declared in the derived‑type deϐinition of the extended type.5

NOTE 1
Inaccessible components and bindings of the parent type are also inherited, but they remain inaccessible in the
extended type. Inaccessible entities occur if the type being extended is accessed via use association and has a
private entity.

NOTE 2
An extensible derived type is not required to have any components, bindings, or parameters; an extended type is
not required to have more components, bindings, or parameters than its parent type.

2 An extended type has a scalar, nonpointer, nonallocatable, parent component with the type and type para‑6
meters of the parent type. The name of this component is the parent type name. If the extended type is7
deϐined in a module, the parent component has the accessibility of the parent type in the module in which8
the parent type was deϐined. Components of the parent component are inheritance associated (19.5.4)9
with the corresponding components inherited from the parent type. An ancestor component of a type is10
the parent component of the type or an ancestor component of the parent component.11

3 If a generic binding speciϐied in a type deϐinition has the same generic‑spec as an inherited binding, it ex‑12
tends the generic interface and shall satisfy the requirements speciϐied in 15.4.3.4.5.13

NOTE 3
A component or type parameter declared in an extended type cannot have the same name as any accessible com‑
ponent or type parameter of its parent type.

NOTE 4
For example:

TYPE POINT ! A base type
REAL :: X, Y

END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
! Components X and Y, and component name POINT, inherited from parent
INTEGER :: COLOR

END TYPE COLOR_POINT

7.5.7.3 Type‑bound procedure overriding14

1 If a speciϐic type‑bound procedure speciϐied in a type deϐinition has the same binding name as an accessible15
type‑bound procedure from the parent type then the binding speciϐied in the type deϐinition overrides the16
one from the parent type.17

2 The overriding and overridden type‑bound procedures shall satisfy the following conditions.18

96 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• Either both shall have a passed‑object dummy argument or neither shall.1
• If the overridden type‑bound procedure is pure then the overriding one shall also be pure.2
• If the overridden type‑bound procedure is simple then the overriding one shall also be simple.3
• Either both shall be elemental or neither shall.4
• They shall have the same number of dummy arguments.5
• Passed‑object dummy arguments, if any, shall correspond by name and position.6
• Dummyarguments that correspondbyposition shall have the samenames and characteristics, except7
for the type of the passed‑object dummy arguments.8

• Either both shall be subroutines or both shall be functions having the same result characteristics9
(15.3.3).10

• If the overridden type‑bound procedure is PUBLIC then the overriding one shall not be PRIVATE.11

3 A binding of a type and a binding of an extension of that type correspond if the latter binding is the same12
binding as the former, overrides a corresponding binding, or is an inherited corresponding binding.13

NOTE
The following is an example of procedure overriding, expanding on the example in 7.5.5, NOTE 3.

TYPE, EXTENDS (POINT) :: POINT_3D
REAL :: Z

CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH

END TYPE POINT_3D
…

and in themodule‑subprogram‑part of the same module:
REAL FUNCTION POINT_3D_LENGTH (A, B)

CLASS (POINT_3D), INTENT (IN) :: A
CLASS (POINT), INTENT (IN) :: B
SELECT TYPE(B)

CLASS IS(POINT_3D)
POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2 + (A%Z-B%Z)**2)
RETURN

END SELECT
PRINT *, 'In POINT_3D_LENGTH, dynamic type of argument is incorrect.'
STOP

END FUNCTION POINT_3D_LENGTH

7.5.8 Derived‑type values14

1 The component value of15

• a pointer component is its pointer association,16
• an allocatable component is its allocation status and, if it is allocated, its dynamic type and type para‑17
meters, bounds and value, and18

• a nonpointer nonallocatable component is its value.19

2 The set of values of a particular derived type consists of all possible sequences of the component values of20
its components.21

7.5.9 Derived‑type speciϐier22

1 Aderived‑type speciϐier is used in several contexts to specify a particular derived type and type parameters.23

R754 derived‑type‑spec is type‑name [(type‑param‑spec‑list)]24

J3/25‑007 97

J3/25‑007 WD 1539‑1 2024‑12‑29

R755 type‑param‑spec is [keyword =] type‑param‑value1

C795 (R754) type‑name shall be the name of an accessible derived type.2

C796 (R754) type‑param‑spec‑list shall appear only if the type is parameterized.3

C797 (R754) There shall be at most one type‑param‑spec corresponding to each parameter of the type.4
If a type parameter does not have a default value, there shall be a type‑param‑spec corresponding5
to that type parameter.6

C798 (R755) The keyword= shall not be omitted from a type‑param‑spec unless the keyword= has been7
omitted from each preceding type‑param‑spec in the type‑param‑spec‑list.8

C799 (R755) Each keyword shall be the name of a parameter of the type.9

C7100 (R755) An asterisk shall not be used as a type‑param‑value in a type‑param‑spec except in the de‑10
claration of a dummy argument or associate name or in the allocation of a dummy argument.11

2 Type parameter values that do not have type parameter keywords speciϐied correspond to type parameters12
in type parameter order (7.5.3.2). If a type parameter keyword appears, the value corresponds to the type13
parameter named by the keyword. If necessary, the value is converted according to the rules of intrinsic14
assignment (10.2.1.3) to a value of the same kind as the type parameter.15

3 The value of a type parameter for which no type‑param‑value has been speciϐied is its default value.16

7.5.10 Construction of derived‑type values17

1 Aderived‑type deϐinition implicitly deϐines a corresponding structure constructor that allows construction18
of scalar values of that derived type. The type and type parameters of a constructed value are speciϐied by19
a derived type speciϐier.20

R756 structure‑constructor is derived‑type‑spec ([component‑spec‑list])21

R757 component‑spec is [keyword =] component‑data‑source22

R758 component‑data‑source is expr23
or data‑target24
or proc‑target25

C7101 (R756) The derived‑type‑spec shall not specify an abstract type (7.5.7).26

C7102 (R756) At most one component‑spec shall be provided for a component.27

C7103 (R756) If a component‑spec is provided for an ancestor component, a component‑spec shall not be28
provided for any component that is inheritance associated with a subcomponent of that ancestor29
component.30

C7104 (R756) A component‑spec shall be provided for a nonallocatable component unless it has default31
initialization or is inheritance associated with a subcomponent of another component for which a32
component‑spec is provided.33

C7105 (R757) The keyword= shall not be omitted from a component‑spec unless the keyword= has been34
omitted from each preceding component‑spec in the constructor.35

C7106 (R757) Each keyword shall be the name of a component of the type.36

98 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C7107 (R756) The type name and all components of the type for which a component‑spec appears shall1
be accessible in the scoping unit containing the structure constructor.2

C7108 (R756) If derived‑type‑spec is a type name that is the same as a generic name, the component‑spec‑3
list shall not be a valid actual‑arg‑spec‑list for a function reference that is resolvable as a generic4
reference to that name (15.5.5.2).5

C7109 (R758) A data‑target shall correspond to a data pointer component; a proc‑target shall correspond6
to a procedure pointer component.7

C7110 (R758) A data‑target shall have the same rank as its corresponding component.8

NOTE 1
The form ’name(...)’ is interpreted as a generic function‑reference if possible; it is interpreted as a structure‑
constructor only if it cannot be interpreted as a generic function‑reference.

2 In the absence of a component keyword, each component‑data‑source is assigned to the corresponding9
component in component order (7.5.4.7). If a component keyword appears, the expr is assigned to the10
component named by the keyword. For a nonpointer component, the declared type and type parameters11
of the component and expr shall conform in the same way as for a variable and expr in an intrinsic assign‑12
ment statement (10.2.1.2). If necessary, each value of intrinsic type is converted according to the rules of13
intrinsic assignment (10.2.1.3) to a value that agrees in type and type parameters with the corresponding14
component of the derived type. For a nonpointer nonallocatable component, the shape of the expression15
shall conform with the shape of the component.16

3 If a component with default initialization has no corresponding component‑data‑source, then the default17
initialization is applied to that component. If an allocatable component has no corresponding component‑18
data‑source, then that component has an allocation status of unallocated.19

NOTE 2
Because no parent components appear in the deϐined component ordering, a value for a parent component can be
speciϐied only with a component keyword. Examples of equivalent values using types deϐined in 7.5.7.2, NOTE 4:

! Create values with components x = 1.0, y = 2.0, color = 3.
TYPE(POINT) :: PV = POINT(1.0, 2.0) ! Assume components of TYPE(POINT)

! are accessible here.
…
COLOR_POINT(point=point(1,2), color=3) ! Value for parent component
COLOR_POINT(point=PV, color=3) ! Available even if TYPE(point)

! has private components
COLOR_POINT(1, 2, 3) ! All components of TYPE(point)

! need to be accessible.

4 A structure constructor shall not appear before the referenced type is deϐined.20

5 For a pointer component, the corresponding component‑data‑source shall be an allowable data‑target or21
proc‑target for such a pointer in a pointer assignment statement (10.2.2). If the component data source22
is a pointer, the association of the component is that of the pointer; otherwise, the component is pointer23
associated with the component data source.24

NOTE 3
For example, if the variable TEXT were declared (8.2) to be

CHARACTER, DIMENSION (1:400), TARGET :: TEXT

and BIBLIO were declared using the derived‑type deϐinition REFERENCE in 7.5.4.4, NOTE

J3/25‑007 99

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 3 (cont.)
TYPE (REFERENCE) :: BIBLIO

the statement
BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced &

&paper", SYNOPSIS=TEXT)

is valid and associates the pointer component SYNOPSIS of the object BIBLIO with the target object TEXT. The
keyword SYNOPSIS is required because the ϐifth component of the type REFERENCE is a procedure pointer com‑
ponent, not a data pointer component of type character. It is not necessary to specify a proc‑target for the procedure
pointer component because it has default initialization.

6 If a component of a derived type is allocatable, the corresponding constructor expression shall be a ref‑1
erence to the intrinsic function NULL with no arguments, an allocatable entity of the same rank, or shall2
evaluate to an entity of the same rank. If the expression is a reference to the intrinsic function NULL, the3
corresponding component of the constructor has a status of unallocated.4

7 If the component is allocatable and the expression is an allocatable entity, the corresponding component5
of the constructor has the same allocation status as that allocatable entity. If it is allocated, it has the same6
bounds; if a length parameter of the component is deferred, its value is the same as the corresponding7
parameter of the expression. If the component is polymorphic, it has the same dynamic type and value;8
otherwise, it has the value converted, if necessary, to the declared type of the component.9

8 If the component is allocatable and the expression is not an allocatable entity, the component has an alloc‑10
ation status of allocated and the same bounds as the expression; if a length parameter of the component11
is deferred, its value is the same as the corresponding parameter of the expression. If the component is12
polymorphic, it has the same dynamic type and value; otherwise, it has the value converted, if necessary,13
to the declared type of the component.14

NOTE 4
This example shows a derived‑type constant expression using the derived type deϐined in 7.5.2.1, NOTE:

PERSON (21, 'JOHN SMITH')

This could also be written as
PERSON (NAME = 'JOHN SMITH', AGE = 21)

NOTE 5
An example constructor using the derived type GENERAL_POINT deϐined in 7.5.3.1, NOTE is

general_point(dim=3) ([1., 2., 3.])

7.5.11 Derived‑type operations and assignment15

1 Intrinsic assignment of derived‑type entities is described in 10.2.1. This document does not specify any16
intrinsic operations on derived‑type entities. Any operation on derived‑type entities or deϐined assignment17
(10.2.1.4) for derived‑type entities shall be deϐined explicitly by a function or a subroutine, and a generic18
interface (7.5.5, 15.4.3.2).19

100 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

7.6 Other nonintrinsic types1

7.6.1 Interoperable enumerations and enum types2

1 An interoperable enumeration is a set of interoperable enumerators, optionally together with an enum3
type. An enum‑def deϐines an interoperable enumeration. An interoperable enumerator is a named integer4
constant; all the enumerators deϐined by a particular enum‑def have the same kind. An enum type is a5
nonintrinsic type that is not a derived type; it has no type parameter.6

R759 enum‑def is enum‑def‑stmt7
enumerator‑def‑stmt8
[enumerator‑def‑stmt] ...9
end‑enum‑stmt10

R760 enum‑def‑stmt is ENUM, BIND(C) [:: enum‑type‑name]11

R761 enumerator‑def‑stmt is ENUMERATOR [::] enumerator‑list12

R762 enumerator is named‑constant [= scalar‑int‑constant‑expr]13

R763 end‑enum‑stmt is END ENUM14

C7111 (R761) If = appears in an enumerator, a double‑colon separator shall appear before the enumer‑15
ator‑list.16

R764 enum‑type‑spec is enum‑type‑name17

C7112 An enum‑type‑name in an enum‑type‑spec shall be the name of a previously deϐined enum type.18

2 The kind type parameter of each enumerator deϐined by an enum‑def is the kind that is interoperable19
(18.3.1) with the corresponding C enumerated type. The corresponding C enumerated type is the type20
that would be declared by a C enumeration speciϐier (ISO/IEC 9899:2018, 6.7.2.2) that speciϐied C enu‑21
meration constants with the same values as those speciϐied by the enum‑def , in the same order as speciϐied22
by the enum‑def .23

3 If enum‑type‑name appears in an enum‑def , the enum‑def deϐines the enum type with that name. An enum24
type is an interoperable type. The set of values of an enum type has a one‑to‑one correspondence with the25
set of possible values for the integer kind of its enumerators. The internal representation of each enum26
type value is the same as that of the corresponding integer.27

4 An enum type speciϐier speciϐiers the type. Two data entities of enum type have the same type if they are28
declared with reference to the same enum type deϐinition.29

5 The companion processor (5.5.7) shall be one that uses the same representation for the types declared by30
all C enumeration speciϐiers that specify the same values in the same order.31

NOTE 1
If a companion processor uses an unsigned type to represent a C enumerated type, the Fortran processor will use
the signed integer type of the samewidth for the enumeration, even though some of the values of the C enumerators
might not be representable in this signed integer type. The types of any such enumeratorswill be interoperablewith
the type declared in the C enumeration.

J3/25‑007 101

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2
ISO/IEC 9899:2018 guarantees the enumeration constants ϐit in a C int (ISO/IEC 9899:2018, 6.7.2.2). Therefore,
the Fortran processor can evaluate all enumerator values using the integer type with kind parameter C_INT, and
then determine the kind parameter of the integer type that is interoperable with the corresponding C enumerated
type.

NOTE 3
ISO/IEC 9899:2018 speciϐies that two C enumerated types are compatible only if they specify enumeration con‑
stants with the same names and same values in the same order. This document further requires that a C processor
that is to be a companion processor of a Fortran processor use the same representation for two C enumerated types
if they both specify enumeration constants with the same values in the same order, even if the names are different.

6 An enumerator is treated as if it were explicitly declared with the PARAMETER attribute. The enumerator1
is a scalar named constant, with the value determined as follows.2

• If scalar‑int‑constant‑expr appears, the enumerator has the value speciϐied by scalar‑int‑constant‑3
expr.4

• If scalar‑int‑constant‑expr does not appear and the enumerator is the ϐirst enumerator in enum‑def ,5
the enumerator has the value zero.6

• If scalar‑int‑constant‑expr does not appear and the enumerator is not the ϐirst enumerator in enum‑7
def , it has the value obtained by adding one to the value of the enumerator that immediately precedes8
it in the enum‑def .9

R765 enum‑constructor is enum‑type‑spec (scalar‑expr)10

C7113 The scalar‑expr in an enum‑constructor shall be of type integer or be a boz‑literal‑constant.11

7 An enum constructor produces a scalar value of the speciϐied type, with the speciϐied internal representa‑12
tion. The value of scalar‑expr shall be representable in objects of that type.13

NOTE 4
Example of an interoperable enumeration deϐinition:

ENUM, BIND(C)
ENUMERATOR :: RED = 4, BLUE = 9
ENUMERATOR YELLOW

END ENUM
The kind type parameter for this enumeration is processor dependent, but the processor is required to select a kind
sufϐicient to represent the values 4, 9, and 10, which are the values of its enumerators. The following declaration
might be equivalent to the above enumeration deϐinition.

INTEGER (SELECTED_INT_KIND (2)), PARAMETER :: RED = 4, BLUE = 9, YELLOW = 10

An entity of the same kind type parameter value can be declared using the intrinsic function KIND with one of the
enumerators as its argument, for example
INTEGER (KIND (RED)) :: X

NOTE 5
There is no difference in the effect of declaring the enumerators inmultiple ENUMERATOR statements or in a single
ENUMERATOR statement. The order in which the enumerators in an enumeration deϐinition are declared is signi‑
ϐicant, but the number of ENUMERATOR statements is not.

NOTE 6
Here is an example of a module that deϐines two enum types.

102 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 6 (cont.)
Module enum_mod

Enum,Bind(C) :: myenum
Enumerator :: one=1, two, three

End Enum
Enum,Bind(C) :: flags

Enumerator :: f1 = 1, f2 = 2, f3 = 4
End Enum

Contains
Subroutine sub(a) Bind(C)

Type(myenum),Value :: a
Print *,a ! Prints the integer value, as if it were Print *,Int(a).

End Subroutine
End Module

Here is a simple program that uses that module and the enum constructor.

Program example
Use enum_mod
Type(myenum) :: x = one ! Assign enumerator to enum-type var.
Type(myenum) :: y = myenum(12345) ! Using the constructor.
Type(myenum) :: x2 = myenum(two) ! Constructor not needed but valid.
Call sub(x)
Call sub(three)
Call sub(myenum(-Huge(one)))

End Program

Here is an example of invalid usage.

Program invalid
Use enum_mod
Type(myenum) :: z = 12345 ! Integer expr with no enumerator.
Call sub(999) ! Not type-compatible (constructor needed).
Call sub(f1) ! Wrong enum type.

End Program

7.6.2 Enumeration types1

1 An enumeration type is a nonintrinsic type with no type parameter. It is not a derived type and is not2
interoperable. An enumeration type deϐinition deϐines the name of the type and lists all the possible values3
of the type.4

R766 enumeration‑type‑def is enumeration‑type‑stmt5
enumeration‑enumerator‑stmt6
[enumeration‑enumerator‑stmt]...7
end‑enumeration‑type‑stmt8

R767 enumeration‑type‑stmt is ENUMERATION TYPE [[, access‑spec] ::] enumeration‑type‑name9

C7114 An access‑spec on an enumeration‑type‑stmt shall only appear in the speciϐication part of amodule.10

R769 enumeration‑enumerator‑stmt is ENUMERATOR [::] enumerator‑name‑list11

R770 end‑enumeration‑type‑stmt is END ENUMERATION TYPE [enumeration‑type‑name]12

C7115 If enumeration‑type‑name appears on an ENDENUMERATIONTYPE statement, it shall be the same13
as on the ENUMERATION TYPE statement.14

2 The access‑spec on an ENUMERATION TYPE statement speciϐies the accessibility of the enumeration‑type‑15
name and the default accessibility of its enumerators. The accessibility of an enumeratormay be conϐirmed16
or overridden by an access‑stmt.17

J3/25‑007 103

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Each enumerator in the deϐinition is a scalar named constant of the enumeration type. The order of the1
enumerator names in the deϐinition deϐines the ordinal position of each enumerator.2

R771 enumeration‑type‑spec is enumeration‑type‑name3

C7116 The enumeration‑type‑name in an enumeration‑type‑spec shall be the name of a previously deϐined4
enumeration type.5

4 An enumeration type speciϐier speciϐiers the type. Two data entities of enumeration type have the same6
type if they are declared with reference to the same enumeration type deϐinition.7

R772 enumeration‑constructor is enumeration‑type‑spec (scalar‑int‑expr)8

5 An enumeration constructor produces the scalar value of the enumeration type whose ordinal position is9
the value of the scalar‑int‑expr. The scalar‑int‑expr shall have a value that is positive and less than or equal10
to the number of enumerators in the enumeration type’s deϐinition.11

NOTE
Here is an example of a module deϐining two enumeration types.

Module enumeration_mod
Enumeration Type :: v_value

Enumerator :: v_one, v_two, v_three
Enumerator v_four

End Enumeration Type
Enumeration Type :: w_value

Enumerator :: w1, w2, w3, w4, w5, wendsentinel
End Enumeration Type

Contains
Subroutine sub(a)

Type(v_value),Intent(In) :: a
Print 1,a ! Acts similarly to Print *,Int(a).

1 Format('A has ordinal value ',I0)
End Subroutine
Subroutine wcheck(w)

Type(w_value),Intent(In) :: w
Select Case(w)
Case(w1)
Print *,'w1 selected'

Case (w2:w4)
Print *,'One of w2...w4 selected'

Case (wendsentinel)
Stop 'Invalid w selected'

Case Default
Stop 'Unrecognized w selected'

End Select
End Subroutine

End Module

Here is an example of a program using that module.

Program example
Use enumeration_mod
Type(v_value) :: x = v_one
Type(v_value) :: y = v_value(2) ! Explicit constructor producing v_two.
Type(v_value) :: z,nz ! Initially undefined.
Call sub(x)
Call sub(v_three)
z = v_value(1) ! First value.
Do

If (z==Huge(x)) Write (*,'(A)',Advance='No') ' Huge:'
Call sub(z)
nz = Next(z)
If (z==nz) Exit
z = nz

End Do

104 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE (cont.)
End Program

Here is an example showing some invalid usages of enumerations.

Program invalid
Use enumeration_mod
Type(v_value) :: a, b
a = 1 ! INVALID - wrong type (INTEGER).
b = w1 ! INVALID - wrong enumeration type.
Print *,a ! INVALID - list-directed i/o not available.

End Program

An enumeration type can be used to declare components, for example:

Module example2
Use enumeration_mod
Type vw

Type(v_value) v
Type(w_value) w

End Type
Contains

Subroutine showme(ka)
Type(vw),Intent(In) :: ka
Print 1,ka

1 Format(1X,'v ordinal is ',I0,', w ordinal is ',I0)
End Subroutine

End Module

7.7 Binary, octal, and hexadecimal literal constants1

1 A binary, octal, or hexadecimal constant (boz‑literal‑constant) is a sequence of digits that represents an2
ordered sequence of bits. Such a constant has no type.3

R773 boz‑literal‑constant is binary‑constant4
or octal‑constant5
or hex‑constant6

R774 binary‑constant is B ' digit [digit] ... '7
or B " digit [digit] ... "8

C7117 (R774) digit shall have one of the values 0 or 1.9

R775 octal‑constant is O ' digit [digit] ... '10
or O " digit [digit] ... "11

C7118 (R775) digit shall have one of the values 0 through 7.12

R776 hex‑constant is Z ' hex‑digit [hex‑digit] ... '13
or Z " hex‑digit [hex‑digit] ... "14

R777 hex‑digit is digit15
or A16
or B17
or C18
or D19
or E20
or F21

J3/25‑007 105

J3/25‑007 WD 1539‑1 2024‑12‑29

2 The hex‑digits A through F represent the numbers ten through ϐifteen, respectively; they may be repres‑1
ented by their lower‑case equivalents. Each digit of a boz‑literal‑constant represents a sequence of bits,2
according to its numerical interpretation, using themodel of 16.3, with z equal to one for binary constants,3
three for octal constants or four for hexadecimal constants. A boz‑literal‑constant represents a sequence4
of bits that consists of the concatenation of the sequences of bits represented by its digits, in the order the5
digits are speciϐied. The positions of bits in the sequence are numbered from right to left, with the position6
of the rightmost bit being zero. The length of a sequence of bits is the number of bits in the sequence. The7
processor shall allow the position of the leftmost nonzero bit to be at least z − 1, where z is the maximum8
value that could result from invoking the intrinsic function STORAGE_SIZE (16.9.200) with an argument9
that is a real or integer scalar of any kind supported by the processor.10

C7119 (R773) A boz‑literal‑constant shall appear only as a data‑stmt‑constant in a DATA statement, as the11
initialization for a named constant or variable of type integer or real, as the expr in an intrinsic12
assignment whose variable is of type integer or real, as an ac‑value in an array constructor with13
a type‑spec that speciϐies type integer or real, as the scalar‑expr in an enum constructor, or where14
explicitly allowed in 16.9 as an actual argument of an intrinsic procedure.15

7.8 Construction of array values16

1 An array constructor constructs a rank‑one array value from a sequence of scalar values, array values, and17
implied DO loops.18

R778 array‑constructor is (/ ac‑spec /)19
or lbracket ac‑spec rbracket20

R779 ac‑spec is type‑spec ::21
or [type‑spec ::] ac‑value‑list22

R780 lbracket is [23

R781 rbracket is]24

R782 ac‑value is expr25
or ac‑implied‑do26

R783 ac‑implied‑do is (ac‑value‑list , ac‑implied‑do‑control)27

R784 ac‑implied‑do‑control is [integer‑type‑spec ::] ac‑do‑variable = scalar‑int‑expr ,28
scalar‑int‑expr [, scalar‑int‑expr]29

R785 ac‑do‑variable is do‑variable30

C7120 (R779) If type‑spec is omitted, each ac‑value expression in the array‑constructor shall have the31
same declared type and kind type parameters.32

C7121 (R779) If type‑spec speciϐies an intrinsic type or enum type, each ac‑value expression in the array‑33
constructor shall be of a type that is in type conformance with a variable of type type‑spec as spe‑34
ciϐied in Table 10.8, or be a boz‑literal‑constant.35

C7122 (R779) If type‑spec speciϐies a derived type, the declared type of each ac‑value expression in the36
array‑constructor shall be that derived type and shall have the same kind type parameter values as37
speciϐied by type‑spec.38

106 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C7123 (R779) If type‑spec speciϐies an enumeration type, each ac‑value shall be of that type.1

C7124 (R782) An ac‑value shall not be unlimited polymorphic.2

C7125 (R782) The declared type of an ac‑value shall not be abstract.3

C7126 If an ac‑value is a boz‑literal‑constant, type‑spec shall appear and shall specify type integer or real.4

C7127 If an ac‑value is a boz‑literal‑constant and type‑spec speciϐies type real, the boz‑literal‑constant shall5
be a valid internal representation for the speciϐied kind of real.6

C7128 (R783) The ac‑do‑variable of an ac‑implied‑do that is in another ac‑implied‑do shall not appear as7
the ac‑do‑variable of the containing ac‑implied‑do.8

2 If type‑spec is omitted, corresponding length type parameters of the declared type of each ac‑value expres‑9
sion shall have the same value; in this case, the declared type and type parameters of the array constructor10
are those of the ac‑value expressions.11

3 If type‑spec appears, it speciϐies the declared type and type parameters of the array constructor. Each ac‑12
value expression in the array‑constructor shall be compatible with intrinsic assignment to a variable of this13
type and type parameters. Each value is converted to the type and type parameters of the array‑constructor14
in accordance with the rules of intrinsic assignment (10.2.1.3).15

4 The dynamic type of an array constructor is the same as its declared type.16

5 The character length of an ac‑value in an ac‑implied‑do whose iteration count is zero shall not depend on17
the value of the ac‑do‑variable and shall not depend on the value of an expression that is not a constant18
expression.19

6 If an ac‑value is a scalar expression, its value speciϐies an element of the array constructor. If an ac‑value is20
an array expression, the values of the elements of the expression, in array element order (9.5.3.3), specify21
the corresponding sequence of elements of the array constructor. If an ac‑value is an ac‑implied‑do, it is22
expanded to form a sequence of elements under the control of the ac‑do‑variable, as in the DO construct23
(11.1.7.4).24

7 For an ac‑implied‑do, the loop initialization and execution is the same as for a DO construct. The scope and25
attributes of an ac‑do‑variable are described in 19.4.26

8 An empty sequence forms a zero‑sized array.27

NOTE 1
A one‑dimensional array can be reshaped into any allowable array shape using the intrinsic function RESHAPE
(16.9.175). An example is:

X = (/ 3.2, 4.01, 6.5 /)
Y = RESHAPE (SOURCE = [2.0, [4.5, 4.5], X], SHAPE = [3, 2])

This results in Y having the 3× 2 array of values:
2.0 3.2
4.5 4.01
4.5 6.5

NOTE 2
Examples of array constructors containing an implied DO are:

(/ (I, I = 1, 1075) /)
and

J3/25‑007 107

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2 (cont.)
[3.6, (3.6 / I, I = 1, N)]

NOTE 3
Using the type deϐinition for PERSON in 7.5.2.1, NOTE, an example of the construction of a derived‑type array value
is:

[PERSON (40, 'SMITH'), PERSON (20, 'JONES')]

NOTE 4
Using the type deϐinition for LINE in 7.5.4.2, NOTE 1, an example of the construction of a derived‑type scalar value
with a rank‑two array component is:

LINE (RESHAPE ([0.0, 0.0, 1.0, 2.0], [2, 2]), 0.1, 1)

The intrinsic function RESHAPE is used to construct a value that represents a solid line from (0, 0) to (1, 2) of width
0.1 centimeters.

NOTE 5
Examples of zero‑size array constructors are:

[INTEGER ::]
[(I, I = 1, 0)]

NOTE 6
An example of an array constructor that speciϐies a length type parameter:

[CHARACTER(LEN=7) :: 'Takata', 'Tanaka', 'Hayashi']

In this constructor, without the type speciϐication, it would have been necessary to specify all of the constants with
the same character length.

108 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

8 Attribute declarations and speciϐications1

8.1 Attributes of procedures and data objects2

1 Every data object has a type and rank and can have type parameters and other properties that determine3
the uses of the object. Collectively, these properties are the attributes of the object. The declared type of a4
named data object is either speciϐied explicitly in a type declaration statement or determined implicitly by5
the ϐirst letter of its name (8.7). The attributes listed in 8.5 can be speciϐied in a type declaration statement6
or individually in separate speciϐication statements.7

2 A function has a type and rank and can have type parameters and other attributes that determine the uses8
of the function. The type, rank, and type parameters are the same as those of the function result.9

3 A subroutine does not have a type, rank, or type parameters, but can have other attributes that determine10
the uses of the subroutine.11

8.2 Type declaration statement12

R801 type‑declaration‑stmt is declaration‑type‑spec [[, attr‑spec] ... ::] entity‑decl‑list13

1 The type declaration statement speciϐies the declared type of the entities in the entity declaration list. The14
type and type parameters are those speciϐied by declaration‑type‑spec, except that the character length type15
parameter can be overridden for an entity by the appearance of * char‑length in its entity‑decl.16

R802 attr‑spec is access‑spec17
or ALLOCATABLE18
or ASYNCHRONOUS19
or CODIMENSION lbracket coarray‑spec rbracket20
or CONTIGUOUS21
or DIMENSION (array‑spec)22
or EXTERNAL23
or INTENT (intent‑spec)24
or INTRINSIC25
or language‑binding‑spec26
or OPTIONAL27
or PARAMETER28
or POINTER29
or PROTECTED30
or rank‑clause31
or SAVE32
or TARGET33
or VALUE34
or VOLATILE35

36

C801 (R801) The same attr‑spec shall not appear more than once in a given type‑declaration‑stmt.37

J3/25‑007 109

J3/25‑007 WD 1539‑1 2024‑12‑29

C802 (R801) If a language‑binding‑specwith a NAME= speciϐier appears, the entity‑decl‑list shall consist1
of a single entity‑decl.2

C803 (R801) If a language‑binding‑spec is speciϐied, the entity‑decl‑list shall not contain any procedure3
names.4

2 The type declaration statement also speciϐies the attributeswhose keywords appear in the attr‑spec, except5
that the DIMENSION attribute can be speciϐied or overridden for an entity by the appearance of array‑6
spec in its entity‑decl, and the CODIMENSION attribute can be speciϐied or overridden for an entity by the7
appearance of coarray‑spec in its entity‑decl.8

R803 entity‑decl is object‑name [(array‑spec)]9
[lbracket coarray‑spec rbracket]10
[* char‑length] [initialization]11

or function‑name [* char‑length]12

C804 (R803) If the entity is not of type character, * char‑length shall not appear.13

C805 A type‑param‑value in a char‑length in an entity‑decl shall be a colon, asterisk, or speciϐication ex‑14
pression.15

C806 (R801) If initialization appears, a double‑colon separator shall appear before the entity‑decl‑list.16

C807 (R801) If the PARAMETER keyword appears, initialization shall appear in each entity‑decl.17

C808 (R803) An initialization shall not appear if object‑name is a dummy argument, a function result, an18
object in a named common block1 unless the type declaration is in a block data program unit, an19
object in blank common, an allocatable variable, or an automatic data object.20

C809 (R803) The function‑name shall be the name of an external function, an intrinsic function, a dummy21
function, a procedure pointer, or a statement function2.22

R804 object‑name is name23

C810 (R804) The object‑name shall be the name of a data object.24

R805 initialization is = constant‑expr25
or => null‑init26
or => initial‑data‑target27

R806 null‑init is function‑reference28

C811 (R803) If => appears in initialization, the entity shall have the POINTER attribute. If = appears in29
initialization, the entity shall not have the POINTER attribute.30

C812 (R803) If initial‑data‑target appears, object‑name shall be data‑pointer‑initialization compatible31
with it (7.5.4.6).32

C813 (R806) The function‑reference shall be a reference to the intrinsic function NULL with no argu‑33
ments.34

3 A name that identiϐies a speciϐic intrinsic function3 has a type as speciϐied in 16.8. An explicit type declar‑35
1Common blocks are obsolescent.
2Statement functions are obsolescent.
3Speciϐic intrinsic function names are obsolescent.

110 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

ation statement is not required; however, it is permitted. Specifying a type for a generic intrinsic function1
name in a type declaration statement has no effect.2

4 If initialization appears for a nonpointer entity,3
• its type and type parameters shall conform as speciϐied for intrinsic assignment (10.2.1.2);4
• if the entity has implied shape, the rank of initialization shall be the same as the rank of the entity;5
• if the entity does not have implied shape, initialization shall either be scalar or have the same shape6
as the entity.7

NOTE
Examples of type declaration statements:

REAL A (10)
LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2
COMPLEX :: CUBE_ROOT = (-0.5, 0.866)
INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)
INTEGER (SHORT) K ! Range at least -9999 to 9999.
TYPEOF (K) K_TMP ! Also has range at least -9999 to 9999.
REAL (KIND (0.0D0)) B1
REAL (KIND = 2) B2
COMPLEX (KIND = KIND (0.0D0)) :: C
CHARACTER (LEN = 10, KIND = 2) TEXT2
CHARACTER CHAR, STRING *20
TYPE (PERSON) :: CHAIRMAN
TYPE(NODE), POINTER :: HEAD => NULL ()
TYPE (humongous_matrix (k=8, d=1000)) :: MAT
CLASSOF (MAT), POINTER :: MAT_REF ! Same declared type and type parameters as MAT.

(The type HUMONGOUS_MATRIX is deϐined in 7.5.3.1, NOTE.)

8.3 Automatic data objects8

1 An automatic data object is a nondummy data object with a type parameter or array bound that depends9
on the value of a speciϔication‑expr that is not a constant expression.10

C814 An automatic data object shall not have the SAVE attribute.11

2 If a type parameter in a declaration‑type‑spec or in a char‑length in an entity‑decl for a local variable of a12
subprogram or BLOCK construct is deϐined by an expression that is not a constant expression, the type13
parameter value is established on entry to a procedure deϐined by the subprogram, or on execution of the14
BLOCK statement, and is not affected by any redeϐinition or undeϐinition of the variables in the expression15
during execution of the procedure or BLOCK construct.16

8.4 Initialization17

1 The appearance of initialization in an entity‑decl for an entity without the PARAMETER attribute speciϐies18
that the entity is a variable with explicit initialization. Explicit initialization alternatively may be speciϐied19
in a DATA statement unless the variable is of a derived type for which default initialization is speciϐied. If20
initialization is = constant‑expr, the variable is initially deϐinedwith the value speciϐied by the constant‑expr;21
if necessary, the value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that22
agrees in type, type parameters, and shape with the variable. A variable, or part of a variable, shall not be23
explicitly initializedmore than once in a program. If the variable is an array, it shall have its shape speciϐied24
in either the type declaration statement or a previous attribute speciϐication statement in the same scoping25
unit.26

J3/25‑007 111

J3/25‑007 WD 1539‑1 2024‑12‑29

2 If null‑init appears, the initial association status of the object is disassociated. If initial‑data‑target appears,1
the object is initially associated with the target.2

3 Explicit initialization of a variable that is not in a common block4 implies the SAVE attribute, which may be3
conϐirmed by explicit speciϐication.4

8.5 Attributes5

8.5.1 Attribute speciϐication6

1 An attribute may be explicitly speciϐied by an attr‑spec in a type declaration statement or by an attribute7
speciϐication statement (8.6). The following constraints apply to attributes.8

C815 An entity shall not be explicitly given any attribute more than once in a scoping unit.9

C816 An array‑spec for a nonallocatable nonpointer function result shall be an explicit‑shape‑spec‑list.10

8.5.2 Accessibility attribute11

1 The accessibility attribute speciϐies the accessibility of an entity via a particular identiϐier.12

R807 access‑spec is PUBLIC13
or PRIVATE14

C817 An access‑spec shall appear only in the speciϔication‑part of a module.15

2 An access‑spec in a type declaration statement speciϐies the accessibility of the names of all the entities16
declared by that statement. An access‑spec in a derived‑type‑stmt speciϐies the accessibility of the derived17
type name. An access‑spec in an enumeration‑type‑stmt speciϐies the accessibility of the enumeration type18
name, and the default accessibility of its enumerators. Accessibility can also be speciϐied by an access‑stmt.19

3 An identiϐier that is speciϐied in amodule or is accessible in amodule by use association has either the PUB‑20
LIC attribute or PRIVATE attribute. An identiϐier whose accessibility is not explicitly speciϐied has default21
accessibility (8.6.1).22

4 The default accessibility attribute for a module is PUBLIC unless it has been changed by a PRIVATE state‑23
ment. Only an identiϐier that has the PUBLIC attribute in that module is available to be accessed from that24
module by use association.25

NOTE 1
An identiϐier can only be accessed by use association if it has the PUBLIC attribute in the module from which it is
accessed. It can nonetheless have the PRIVATE attribute in a module in which it is accessed by use association, and
therefore not be available by use association from that module.

NOTE 2
An example of an accessibility speciϐication is:

REAL, PRIVATE :: X, Y, Z

8.5.3 ALLOCATABLE attribute26

1 A variable with the ALLOCATABLE attribute is a variable for which space is allocated during execution.27
4Common blocks are obsolescent.

112 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
Only variables and components can have the ALLOCATABLE attribute. The result of referencing a function whose
result variable has the ALLOCATABLE attribute is a value that does not itself have the ALLOCATABLE attribute.

8.5.4 ASYNCHRONOUS attribute1

1 An entity with the ASYNCHRONOUS attribute is a variable, and may be subject to asynchronous input/2
output or asynchronous communication.3

2 The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if4

• the variable is a dummy argument or appears in an executable statement or speciϐication expression5
in that scoping unit, and6

• any statement of the scoping unit is executed while the variable is a pending input/output storage7
sequence affector (12.6.2.5) or a pending communication affector (18.10.4).8

3 Use of a variable in an asynchronous data transfer statement can imply the ASYNCHRONOUS attribute; see9
12.6.2.5.10

4 An object with the ASYNCHRONOUS attribute may be associated with an object that does not have the11
ASYNCHRONOUS attribute, including by use (14.2.2) or host association (19.5.1.4). If an object that is not a12
local variable of a BLOCK construct is speciϐied to have the ASYNCHRONOUS attribute in the speciϔication‑13
part of the construct, the object has the attribute within the construct even if it does not have the attribute14
outside the construct. If an object has the ASYNCHRONOUS attribute, then all of its subobjects also have15
the ASYNCHRONOUS attribute.16

NOTE
TheASYNCHRONOUS attribute speciϐies the variables thatmight be associatedwith a pending input/output storage
sequence (the actualmemory locations onwhich asynchronous input/output is being performed)while the scoping
unit is in execution. This information could be used by the compiler to disable certain code motion optimizations.

8.5.5 BIND attribute for data entities17

1 The BIND attribute for a variable or common block speciϐies that it is capable of interoperating with a C18
variable whose name has external linkage (18.9). Common blocks, with or without the BIND attribute, are19
obsolescent. The BIND attribute for a common block implies the SAVE attribute, which may be conϐirmed20
by explicit speciϐication.21

R808 language‑binding‑spec is BIND (C [, NAME = scalar‑default‑char‑constant‑expr])22

C818 An entity with the BIND attribute shall be a common block, variable, type, or procedure.23

C819 A variable with the BIND attribute shall be declared in the speciϐication part of a module.24

C820 A variable with the BIND attribute shall be interoperable (18.3).25

C821 Each variable of a common block with the BIND attribute shall be interoperable.26

2 If the value of the scalar‑default‑char‑constant‑expr after discarding leading and trailing blanks has nonzero27
length, it shall be valid as an identiϐier on the companion processor.28

J3/25‑007 113

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
ISO/IEC 9899:2018 provides a facility for creating C identiϐiers whose characters are not restricted to the C basic
character set. Such a C identiϐier is referred to as a universal character name (ISO/IEC 9899:2018, 6.4.3). The name
of such a C identiϐier might include characters that are not part of the representationmethod used by the processor
for default character. If so, the C entity cannot be referenced from Fortran.

8.5.6 CODIMENSION attribute1

8.5.6.1 General2

1 The CODIMENSION attribute speciϐies that an entity is a coarray. The coarray‑spec speciϐies its corank or3
corank and cobounds.4

R809 coarray‑spec is deferred‑coshape‑spec‑list5
or explicit‑coshape‑spec6

C822 The sum of the rank and corank of an entity shall not exceed ϐifteen.7

C823 A coarray shall be a component or a variable that is not a function result.8

C824 A coarray shall not be of type C_PTR or type C_FUNPTR from the intrinsic module ISO_C_BINDING9
(18.3.2), or of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV (16.10.2.34).10

C825 An entity whose type has a coarray potential subobject component shall not be a pointer, shall not11
be a coarray, and shall not be a function result.12

C826 A coarray or an object with a coarray potential subobject component shall be an associate name or13
a dummy argument, or have the ALLOCATABLE or SAVE attribute.14

NOTE 1
A coarray is permitted to be of a derived type with pointer or allocatable components. The target of such a pointer
component is always on the same image as the pointer.

NOTE 2
This requirement for the SAVE attribute has the effect that automatic coarrays are not permitted; for example, the
coarray WORK in the following code fragment is not valid.

SUBROUTINE SOLVE3(N,A,B)
INTEGER :: N
REAL :: A(N)[*], B(N)
REAL :: WORK(N)[*] ! Not permitted

If this were permitted, it would require an implicit synchronization on entry to the procedure.
Explicit‑shape coarrays that are declared in a subprogram and are not dummy arguments are required to have the
SAVE attribute because otherwise they might be implemented as if they were automatic coarrays.

NOTE 3
Examples of CODIMENSION attribute speciϐications are:

REAL W(100,100)[0:2,*] ! Explicit-shape coarray
REAL, CODIMENSION[*] :: X ! Scalar coarray
REAL, CODIMENSION[3,*] :: Y(:) ! Assumed-shape coarray
REAL, CODIMENSION[:],ALLOCATABLE :: Z(:,:) ! Allocatable coarray

114 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

8.5.6.2 Allocatable coarray1

1 A coarray with the ALLOCATABLE attribute has a speciϐied corank, but its cobounds are determined by2
allocation or argument association.3

R810 deferred‑coshape‑spec is :4

C827 A coarray with the ALLOCATABLE attribute shall have a coarray‑spec that is a deferred‑coshape‑5
spec‑list.6

2 The corank of an allocatable coarray is equal to the number of colons in its deferred‑coshape‑spec‑list.7

3 The cobounds of an unallocated allocatable coarray are undeϐined. No part of such a coarray shall be ref‑8
erenced or deϐined; however, the coarray may appear as an argument to an intrinsic inquiry function as9
speciϐied in 16.1.10

4 The cobounds of an allocated allocatable coarray are those speciϐied when the coarray is allocated.11

5 The cobounds of an allocatable coarray are unaffected by any subsequent redeϐinition or undeϐinition of12
the variables on which the cobounds’ expressions depend.13

8.5.6.3 Explicit‑coshape coarray14

1 An explicit‑coshape coarray is a named coarray that has its corank and cobounds declared by an explicit‑15
coshape‑spec.16

R811 explicit‑coshape‑spec is [[lower‑cobound :] upper‑cobound,]...17
[lower‑cobound :] *18

C828 A nonallocatable coarray shall have a coarray‑spec that is an explicit‑coshape‑spec.19

2 The corank is equal to one plus the number of upper‑cobounds.20

R812 lower‑cobound is speciϔication‑expr21

R813 upper‑cobound is speciϔication‑expr22

C829 (R811) A lower‑cobound or upper‑cobound that is not a constant expression shall appear only in a23
subprogram, BLOCK construct, or interface body.24

3 If an explicit‑coshape coarray is a local variable of a subprogramor BLOCK construct and has cobounds that25
are not constant expressions, the cobounds are determined on entry to a procedure deϐined by the subpro‑26
gram, or on execution of the BLOCK statement, by evaluating the cobounds expressions. The cobounds of27
such a coarray are unaffected by the redeϐinition or undeϐinition of any variable during execution of the28
procedure or BLOCK construct.29

4 The values of each lower‑cobound and upper‑cobound determine the cobounds of the coarray along a par‑30
ticular codimension. The cosubscript range of the coarray in that codimension is the set of integer values31
between and including the lower and upper cobounds. If the lower cobound is omitted, the default value32
is 1. The upper cobound shall not be less than the lower cobound.33

8.5.7 CONTIGUOUS attribute34

C830 An entity with the CONTIGUOUS attribute shall be an array pointer, an assumed‑shape array, or an35
assumed‑rank dummy data object.36

J3/25‑007 115

J3/25‑007 WD 1539‑1 2024‑12‑29

1 The CONTIGUOUS attribute speciϐies that an assumed‑shape array is contiguous, that an array pointer can1
only be pointer associated with a contiguous target, or that an assumed‑rank dummy data object is con‑2
tiguous.3

2 An object is contiguous if it is4

(1) an object with the CONTIGUOUS attribute,5
(2) a nonpointer whole array that is not assumed‑shape,6
(3) an assumed‑shape array that is argument associated with an array that is contiguous,7
(4) an assumed‑rank dummy data object whose effective argument is contiguous,8
(5) an array allocated by an ALLOCATE statement,9
(6) a pointer associated with a contiguous target, or10
(7) a nonzero‑sized array section (9.5.3) provided that11

(a) its base object is contiguous,12
(b) it does not have a vector subscript,13
(c) the array element ordering of the elements of the section is the same as the array element14

ordering of those elements of the base object,15
(d) in the array element ordering of the base object, every element of the base object that16

is not an element of the section either precedes every element of the section or follows17
every element of the section,18

(e) if the array is of type character and a substring‑range appears, the substring‑range spe‑19
ciϐies all of the characters of the parent‑string (9.4.1),20

(f) only its ϐinal part‑ref has nonzero rank, and21
(g) it is not the real or imaginary part (9.4.4) of an array of type complex.22

3 An object is not contiguous if it is an array subobject, and23

• the object has two or more elements,24
• the elements of the object in array element order are not consecutive in the elements of the base25
object,26

• the object is not of type character with length zero, and27
• the object is not of a derived type that has no ultimate components other than zero‑sized arrays and28
characters with length zero.29

4 It is processor dependent whether any other object is contiguous.30

NOTE 1
If a derived type has only one component that is not zero‑sized, it is processor dependent whether a structure
component of a contiguous array of that type is contiguous. That is, the derived type might contain padding on
some processors.

NOTE 2
The CONTIGUOUS attribute makes it easier for a processor to enable optimizations that depend on the memory
layout of the object occupying a contiguous block of memory. Examples of CONTIGUOUS attribute speciϐications
are:

REAL, POINTER, CONTIGUOUS :: SPTR(:)
REAL, CONTIGUOUS, DIMENSION(:,:) :: D

116 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 3
If an assumed‑shape or assumed‑rank dummy argument has the CONTIGUOUS attribute, there is no requirement
for the actual argument to be contiguous. This is the same as for dummy arguments that have explicit shape or
assumed size. The dummy argument will be contiguous even when the actual argument is not.

8.5.8 DIMENSION attribute1

8.5.8.1 General2

1 The DIMENSION attribute speciϐies that an entity is scalar, assumed‑rank, or an array. An assumed‑rank3
dummy data object has the rank, shape, and size of its effective argument; otherwise, the rank or rank and4
shape is speciϐied by its RANK clause or its array‑spec.5

R814 array‑spec is explicit‑shape‑spec‑list6
or explicit‑shape‑bounds‑spec7
or assumed‑shape‑spec‑list8
or assumed‑shape‑bounds‑spec9
or deferred‑shape‑spec‑list10
or assumed‑size‑spec11
or implied‑shape‑spec12
or implied‑shape‑or‑assumed‑size‑spec13
or assumed‑rank‑spec14

NOTE 1
The maximum rank of an entity is ϐifteen minus the corank.

NOTE 2
Examples of DIMENSION attribute speciϐications are:

SUBROUTINE EX (N, A, B)
REAL, DIMENSION (N, 10) :: W ! Automatic explicit-shape array
REAL, DIMENSION (SHAPE (W)) :: X ! Array with the same shape as W
REAL, DIMENSION ([1, 2, 3] : 10) :: Y ! Same as DIMENSION (1:10, 2:10, 3:10)
REAL, DIMENSION (LBARRAY:UBARRAY) :: Z ! Upper/lower bounds provided by arrays
REAL :: ZZ (LBARRAY+2:UBARRAY+2) ! Upper/lower bounds provided by arrays
REAL A (:), B (0:) ! Assumed-shape arrays
REAL C (LBARRAY:) ! Specified lower bounds, assumed shape
REAL, POINTER :: D (:, :) ! Array pointer
REAL, DIMENSION (:), POINTER :: P ! Array pointer
REAL, ALLOCATABLE, DIMENSION (:) :: E ! Allocatable array
REAL, PARAMETER :: V(0:*) = [0.1, 1.1] ! Implied-shape array

8.5.8.2 Explicit‑shape array15

R815 explicit‑shape‑spec is [lower‑bound :] upper‑bound16

R816 lower‑bound is speciϔication‑expr17

R817 upper‑bound is speciϔication‑expr18

R818 explicit‑shape‑bounds‑spec is [explicit‑bounds‑expr :] explicit‑bounds‑expr19
or lower‑bound : explicit‑bounds‑expr20
or explicit‑bounds‑expr : upper‑bound21

R819 explicit‑bounds‑expr is int‑expr22

J3/25‑007 117

J3/25‑007 WD 1539‑1 2024‑12‑29

C831 An explicit‑shape‑spec or explicit‑shape‑bounds‑spec whose bounds are not constant expressions1
shall appear only in a subprogram, derived type deϐinition, BLOCK construct, or interface body.2

C832 If an explicit‑shape‑bounds‑spec has two explicit‑bounds‑exprs, they shall have the same size.3

C833 An explicit‑bounds‑expr shall be a restricted expression that is a rank one integer array with con‑4
stant size.5

1 The rank of an entity declaredwith an explicit‑shape‑spec‑list is equal to the number of explicit‑shape‑specs;6
the rank of an entity declared with an explicit‑shape‑bounds‑spec is equal to the size of one of the explicit‑7
bounds‑exprs. If the rank of such an entity is nonzero, the entity is an explicit‑shape array; otherwise, it is8
scalar.9

2 The values of each lower‑bound and upper‑bound in an explicit‑shape‑spec determine the bounds along a10
particular dimension and hence the extent in that dimension. If lower‑bound is omitted, the lower bound11
is equal to one.12

3 An explicit‑bounds‑expr that appears immediately before a colon speciϐies the lower bounds; otherwise, it13
speciϐies the upper bounds. The ϐirst element speciϐies the bound for the ϐirst dimension, and so on. A14
lower‑bound or upper‑bound in an explicit‑shape‑bounds‑spec speciϐies the bound for every dimension of15
the entity. If no lower bound is speciϐied in an explicit‑shape‑bounds‑spec, all the lower bounds are equal to16
one.17

4 The value of a lower bound or an upper bound may be positive, negative, or zero. The subscript range of18
the array in that dimension is the set of integer values between and including the lower and upper bounds,19
provided the upper bound is not less than the lower bound. If the upper bound is less than the lower bound,20
the range is empty, the extent in that dimension is zero, and the array is of zero size.21

5 Anexplicit‑shape array that is a named local variable of a subprogramorBLOCKconstructmayhavebounds22
that are not constant expressions. The bounds, and hence shape, are determined on entry to a procedure23
deϐined by the subprogram, or on execution of the BLOCK statement, by evaluating the bounds’ expres‑24
sions. The bounds of such an array are unaffected by the redeϐinition or undeϐinition of any variable during25
execution of the procedure or BLOCK construct.26

8.5.8.3 Assumed‑shape array27

1 An assumed‑shape array is a nonallocatable nonpointer dummy argument array that takes its shape from28
its effective argument.29

R820 assumed‑shape‑spec is [lower‑bound] :30

R821 assumed‑shape‑bounds‑spec is explicit‑bounds‑expr :31

2 If the rank is not speciϐied by a rank‑clause, it is equal to the number of colons in the assumed‑shape‑spec‑32
list, or the size of the explicit‑bounds‑expr in the assumed‑shape‑bounds‑spec. If the rank is nonzero, the33
entity is an assumed‑shape array; otherwise, it is scalar.34

3 If explicit‑bounds‑expr appears it speciϐies the lower bounds for every dimension; otherwise, if lower‑bound35
appears it speciϐies the lower bound for that dimension; otherwise the lower bound is equal to one.36

4 The extent of a dimension of an assumed‑shape array dummy argument is the extent of the corresponding37
dimension of its effective argument. If the lower bound value is d and the extent of the corresponding38
dimension of its effective argument is s, then the value of the upper bound is s+ d− 1.39

118 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

8.5.8.4 Deferred‑shape array1

1 A deferred‑shape array is an allocatable array or an array pointer. (An allocatable array has the ALLOCAT‑2
ABLE attribute; an array pointer has the POINTER attribute.)3

R822 deferred‑shape‑spec is :4

C834 An arraywith the POINTER or ALLOCATABLE attribute shall be declaredwith a rank‑clause or have5
an array‑spec that is a deferred‑shape‑spec‑list.6

2 If the rank is not speciϐied by a rank‑clause, it is equal to the number of colons in the deferred‑shape‑spec‑list.7

3 The size, bounds, and shape of an unallocated allocatable array or a disassociated array pointer are un‑8
deϐined. No part of such an array shall be referenced or deϐined; however, the array may appear as an9
argument to an intrinsic inquiry function as speciϐied in 16.1.10

4 The bounds of each dimension of an allocated allocatable array are those speciϐied when the array is alloc‑11
ated or, if it is a dummy argument, when it is argument associated with an allocated effective argument.12

5 The bounds of each dimension of an associated array pointer, and hence its shape, may be speciϐied13

• in an ALLOCATE statement (9.7.1) when the target is allocated,14
• by pointer assignment (10.2.2), or15
• if it is a dummy argument, by argument association with a nonpointer actual argument or an associ‑16
ated pointer effective argument.17

6 The bounds of an array pointer or allocatable array are unaffected by any subsequent redeϐinition or un‑18
deϐinition of variables on which the bounds’ expressions depend.19

8.5.8.5 Assumed‑size array20

1 An assumed‑size array is a dummy argument array whose size is assumed from that of its effective argu‑21
ment, or the associate name of a RANK (*) block in a SELECT RANK construct. The rank and extents may22
differ for the effective and dummy arguments; only the size of the effective argument is assumed by the23
dummy argument. A dummy argument is declared to be an assumed‑size array by an assumed‑size‑spec or24
an implied‑shape‑or‑assumed‑size‑spec.25

R823 assumed‑implied‑spec is [lower‑bound :] *26

R824 assumed‑size‑spec is explicit‑shape‑spec‑list, assumed‑implied‑spec27

C835 An object whose array bounds are speciϐied by an assumed‑size‑spec shall be a dummy data object.28

C836 An assumed‑size array with the INTENT (OUT) attribute shall not be polymorphic, ϐinalizable, of a29
typewith an allocatable ultimate component, or of a type forwhichdefault initialization is speciϐied.30

R826 implied‑shape‑or‑assumed‑size‑spec is assumed‑implied‑spec31

C837 An object whose array bounds are speciϐied by an implied‑shape‑or‑assumed‑size‑spec shall be a32
dummy data object or a named constant.33

2 The size of an assumed‑size array is determined as follows.34

• If the effective argument associatedwith the assumed‑size dummy array is an array of any type other35
than default character, the size is that of the effective argument.36

J3/25‑007 119

J3/25‑007 WD 1539‑1 2024‑12‑29

• If the actual argument corresponding to the assumed‑size dummy array is an array element of any1
type other than default character with a subscript order value of r (9.5.3.3) in an array of size x, the2
size of the dummy array is x− r + 1.3

• If the actual argument is a default character array, default character array element, or a default char‑4
acter array element substring (9.4.1), and if it begins at character storage unit t of an array with c5
character storage units, the size of the dummy array is MAX (INT ((c − t + 1)/e), 0), where e is the6
length of an element in the dummy character array.7

• If the actual argument is a default character scalar that is not an array element or array element8
substring designator, the size of the dummy array is MAX (INT (l/e), 0), where e is the length of an9
element in the dummy character array and l is the length of the actual argument.10

3 The rank is equal to one plus the number of explicit‑shape‑specs.11

4 An assumed‑size array has no upper bound in its last dimension and therefore has no extent in its last12
dimension and no shape. An assumed‑size array shall not appear in a context that requires its shape.13

5 If a list of explicit‑shape‑specs appears, it speciϐies the bounds of the ϐirst rank−1 dimensions. If lower‑14
bound appears it speciϐies the lower bound of the last dimension; otherwise that lower bound is 1. An15
assumed‑size array can be subscripted or sectioned (9.5.3).16

6 If an assumed‑size array has bounds that are not constant expressions, the bounds are determined on entry17
to the procedure. The bounds of such an array are unaffected by the redeϐinition or undeϐinition of any18
variable during execution of the procedure.19

8.5.8.6 Implied‑shape array20

1 An implied‑shape array is a named constant that takes its shape from the constant‑expr in its declaration.21
A named constant is declared to be an implied‑shape array with an array‑spec that is an implied‑shape‑or‑22
assumed‑size‑spec or an implied‑shape‑spec.23

R827 implied‑shape‑spec is assumed‑implied‑spec, assumed‑implied‑spec‑list24

C838 An implied‑shape array shall be a named constant.25

2 The rank of an implied‑shape array is the number of assumed‑implied‑specs in its array‑spec.26

3 The extent of each dimension of an implied‑shape array is the same as the extent of the corresponding27
dimension of the constant‑expr. The lower bound of each dimension is lower‑bound, if it appears, and 128
otherwise; the upper bound is one less than the sum of the lower bound and the extent.29

8.5.8.7 Assumed‑rank entity30

1 An assumed‑rank entity is a dummy data object whose rank is assumed from its effective argument, or the31
associate name of a RANK DEFAULT block in a SELECT RANK construct; this rank can be zero. The bounds32
and shape of an assumed‑rank entity with the ALLOCATABLE or POINTER attribute are determined as33
speciϐied in 8.5.8.4. An assumed‑rank entity is declared with an array‑spec that is an assumed‑rank‑spec.34

R828 assumed‑rank‑spec is ..35

C839 An assumed‑rank entity shall be an associate name or a dummy data object that does not have the36
CODIMENSION or VALUE attribute.37

120 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C840 An assumed‑rank variable name shall not appear in a designator or expression except as an ac‑1
tual argument that corresponds to a dummy argument that is assumed‑rank, the argument of the2
function C_LOC or C_SIZEOF from the intrinsic module ISO_C_BINDING (18.2), the ϐirst dummy ar‑3
gument of an intrinsic inquiry function, or the selector of a SELECT RANK statement.4

C841 If an assumed‑size or nonallocatable nonpointer assumed‑rank array is an actual argument that5
corresponds to a dummy argument that is an INTENT (OUT) assumed‑rank array, it shall not be6
polymorphic, ϐinalizable, of a type with an allocatable ultimate component, or of a type for which7
default initialization is speciϐied.8

8.5.9 EXTERNAL attribute9

1 The EXTERNAL attribute speciϐies that an entity is an external procedure, dummy procedure, procedure10
pointer, or block data program unit5.11

C842 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.12

C843 In an external subprogram, the EXTERNAL attribute shall not be speciϐied for a procedure deϐined13
by the subprogram.14

C844 In an interface body, the EXTERNAL attribute shall not be speciϐied for the procedure declared by15
the interface body.16

2 If an external procedure or dummy procedure is used as an actual argument or is the target of a procedure17
pointer assignment, it shall be declared to have the EXTERNAL attribute.18

NOTE
The EXTERNAL attribute can be speciϐied in a type declaration statement, by an interface body (15.4.3.2), by an
EXTERNAL statement (15.4.3.5), or by a procedure declaration statement (15.4.3.6).

8.5.10 INTENT attribute19

1 The INTENT attribute speciϐies the intended use of a dummy argument. An INTENT (IN) dummy argument20
is suitable for receiving data from the invoking scoping unit, an INTENT (OUT) dummyargument is suitable21
for returning data to the invoking scoping unit, and an INTENT (INOUT) dummy argument is suitable for22
use both to receive data from and to return data to the invoking scoping unit.23

R829 intent‑spec is IN24
or OUT25
or INOUT26

C845 An entity with the INTENT attribute shall be a dummy data object or a dummy procedure pointer.27

C846 (R829) A nonpointer object with the INTENT (IN) attribute shall not appear in a variable deϐinition28
context (19.6.7).29

C847 A pointer with the INTENT (IN) attribute shall not appear in a pointer association context (19.6.8).30

C848 An INTENT (OUT) dummy argument of a nonintrinsic procedure shall not be an allocatable coarray31
or have a subobject that is an allocatable coarray.32

5Block data program units are obsolescent.

J3/25‑007 121

J3/25‑007 WD 1539‑1 2024‑12‑29

C849 Anentitywith the INTENT (OUT) attribute shall not be of, or have a subcomponent of, typeEVENT_‑1
TYPE (16.10.2.10), LOCK_TYPE (16.10.2.19), or NOTIFY_TYPE (16.10.2.22) from the intrinsicmod‑2
ule ISO_FORTRAN_ENV.3

2 The INTENT (IN) attribute for a nonpointer dummy argument speciϐies that it shall neither be deϐined nor4
become undeϐined during the invocation and execution of the procedure. The INTENT (IN) attribute for5
a pointer dummy argument speciϐies that during the invocation and execution of the procedure its asso‑6
ciation shall not be changed except that it may become undeϐined if the target is deallocated other than7
through the pointer (19.5.2.5).8

3 The INTENT (OUT) attribute for a nonpointer dummy argument speciϐies that the dummy argument be‑9
comes undeϐined on invocation of the procedure, except for any subcomponents that are default‑initialized10
(7.5.4.6). Any actual argument that corresponds to such adummyargument shall be deϐinable. The INTENT11
(OUT) attribute for a pointer dummy argument speciϐies that on invocation of the procedure the pointer12
association status of the dummy argument becomes undeϐined. Any actual argument that corresponds to13
such a dummy pointer shall be a pointer variable or a procedure pointer that is not the result of a function14
reference. Any undeϐinition or deϐinition implied by association of an actual argument with an INTENT15
(OUT) dummy argument shall not affect any other entity within the statement that invokes the procedure.16

4 The INTENT (INOUT) attribute for a nonpointer dummy argument speciϐies that any actual argument that17
corresponds to the dummy argument shall be deϐinable. The INTENT (INOUT) attribute for a pointer18
dummy argument speciϐies that any actual argument that corresponds to the dummy argument shall be19
a pointer variable or a procedure pointer that is not the result of a function reference.20

NOTE 1
The INTENT attribute for an allocatable dummy argument applies to both the allocation status and the deϐinition
status. An actual argument that corresponds to an INTENT (OUT) allocatable dummy argument is deallocated on
procedure invocation (9.7.3.2). To avoid this deallocation for coarrays, INTENT (OUT) is not allowed for a dummy
argument that is an allocatable coarray or has a subobject that is an allocatable coarray.

5 If no INTENT attribute is speciϐied for a dummy argument, its use is subject to the limitations of its effective21
argument (15.5.2).22

6 If a nonpointer object has an INTENT attribute, then all of its subobjects have the same INTENT attribute.23

NOTE 2
An example of INTENT speciϐication is:

SUBROUTINE MOVE (FROM, TO)
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

NOTE 3
If a dummy argument is a nonpointer derived‑type object with a pointer component, then the pointer as a pointer
is a subobject of the dummy argument, but the target of the pointer is not. Therefore, the restrictions on subobjects
of the dummy argument apply to the pointer in contexts where it is used as a pointer, but not in contexts where it
is dereferenced to indicate its target. For example, if X is a nonpointer dummy argument of derived type with an
integer pointer component P, and X is INTENT (IN), then the statement

X%P => NEW_TARGET

is prohibited, but
X%P = 0

is allowed (provided that X%P is associated with a deϐinable target).

122 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 3 (cont.)
Similarly, the INTENT restrictions on pointer dummy arguments apply only to the association of the dummy argu‑
ment; they do not restrict the operations allowed on its target.

NOTE 4
Argument intent speciϐications serve several purposes in addition to documenting the intended use of dummy ar‑
guments. A processor can check whether an INTENT (IN) dummy argument is used in a way that could redeϐine
it. A slightly more sophisticated processor could check to see whether an INTENT (OUT) dummy argument could
possibly be referenced before it is deϐined. If the procedure’s interface is explicit, the processor can also verify that
actual arguments corresponding to INTENT (OUT) or INTENT (INOUT) dummy arguments are deϐinable. A more
sophisticated processor could use this information to optimize the translation of the referencing scoping unit by
taking advantage of the fact that actual arguments corresponding to INTENT (IN) dummy arguments will not be
changed and that any prior value of an actual argument corresponding to an INTENT (OUT) dummy argument will
not be referenced and could thus be discarded.
INTENT (OUT)means that the value of the argument after invoking the procedure is entirely the result of executing
that procedure. If an argument might not be redeϐined and it is desired to have the argument retain its value in that
case, INTENT (OUT) cannot be used because it would cause the argument to become undeϐined; however, INTENT
(INOUT) can be used, even if there is no explicit reference to the value of the dummy argument.
INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The actual argument corresponding to an
INTENT (INOUT) dummy argument is always required to be deϐinable, while an actual argument corresponding to a
dummyargumentwithout an INTENT attribute need be deϐinable only if the dummyargument is actually redeϐined.

8.5.11 INTRINSIC attribute1

1 The INTRINSIC attribute speciϐies that the entity is an intrinsic procedure. The procedure name may be a2
generic name (16.7), a speciϐic name (16.8), or both. Speciϐic intrinsic procedure names are obsolescent.3

2 If the speciϐic name of an intrinsic procedure (16.8) is used as an actual argument, the name shall be expli‑4
citly speciϐied to have the INTRINSIC attribute. Note that a speciϐic intrinsic procedure listed in Table 16.35
is not permitted to be used as an actual argument (C1534).6

C850 If the generic name of an intrinsic procedure is explicitly declared to have the INTRINSIC attrib‑7
ute, and it is also the generic name of one or more generic interfaces (15.4.3.2) accessible in the8
same scoping unit, the procedures in the interfaces and the generic intrinsic procedure shall all be9
functions or all be subroutines.10

8.5.12 OPTIONAL attribute11

1 The OPTIONAL attribute speciϐies that the dummy argument need not have an effective argument in a ref‑12
erence to the procedure (15.5.2.13).13

C851 An entity with the OPTIONAL attribute shall be a dummy argument.14

NOTE
The intrinsic function PRESENT (16.9.163) can be used to determinewhether an optional dummy argument has an
associated effective argument.

8.5.13 PARAMETER attribute15

1 The PARAMETER attribute speciϐies that an entity is a named constant. The entity has the value speciϐied16
by its constant‑expr, converted, if necessary, to the type, type parameters and shape of the entity.17

C852 An entity with the PARAMETER attribute shall not be a variable, a coarray, or a procedure.18

J3/25‑007 123

J3/25‑007 WD 1539‑1 2024‑12‑29

C853 An expression that speciϐies a length type parameter or array bound of a named constant shall be1
a constant expression.2

2 A named constant shall not be referenced unless it has been deϐined previously; it may be deϐined previ‑3
ously in the same statement.4

NOTE
Examples of declarations with a PARAMETER attribute are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /)
TYPE(NODE), PARAMETER :: DEFAULT = NODE(0, NULL ())

8.5.14 POINTER attribute5

1 Entities with the POINTER attribute can be associated with different data objects or procedures during6
execution of a program. A pointer is either a data pointer or a procedure pointer.7

C854 An entity with the POINTER attribute shall not have the ALLOCATABLE, INTRINSIC, or TARGET8
attribute, and shall not be a coarray.9

C855 A named procedure with the POINTER attribute shall have the EXTERNAL attribute.10

2 A data pointer shall not be referenced unless it is pointer associated with a target object that is deϐined. A11
data pointer shall not be deϐined unless it is pointer associated with a target object that is deϐinable.12

3 If a data pointer is associated, the values of its deferred type parameters are the same as the values of the13
corresponding type parameters of its target.14

4 A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.15

NOTE
Examples of POINTER attribute speciϐications are:

TYPE (NODE), POINTER :: CURRENT, TAIL
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

8.5.15 PROTECTED attribute16

1 The PROTECTED attribute imposes limitations on the usage of module entities.17

C856 The PROTECTED attribute shall be speciϐied only in the speciϐication part of a module.18

C857 An entity with the PROTECTED attribute shall be a procedure pointer or variable.19

C858 An entity with the PROTECTED attribute shall not be in a common block.620

C859 A nonpointer object that has the PROTECTED attribute and is accessed by use association shall not21
appear in a variable deϐinition context (19.6.7) or as a data‑target or initial‑data‑target.22

C860 A pointer that has the PROTECTED attribute and is accessed by use association shall not appear in23
a pointer association context (19.6.8).24

6Common blocks are obsolescent.

124 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 Other than within the module in which an entity is given the PROTECTED attribute, or within any of its1
descendants,2

• if it is a nonpointer object, it is not deϐinable, and3
• if it is a pointer, its association status shall not be changed except that it may become undeϐined if its4
target is deallocated other than through the pointer (19.5.2.5), or if its target becomes undeϐined by5
completing execution of a BLOCK construct or by execution of a RETURN or END statement.6

3 If an object has the PROTECTED attribute, all of its subobjects have the PROTECTED attribute.7

NOTE
An example of the PROTECTED attribute:

MODULE temperature
REAL, PROTECTED :: temp_c, temp_f

CONTAINS
SUBROUTINE set_temperature_c(c)

REAL, INTENT(IN) :: c
temp_c = c
temp_f = temp_c*(9.0/5.0) + 32

END SUBROUTINE
END MODULE

The PROTECTED attribute ensures that the variables temp_c and temp_f cannot be modiϐied other than via the
set_temperature_c procedure, thus keeping them consistent with each other.

8.5.16 SAVE attribute8

1 The SAVE attribute speciϐies that a local variable of a program unit or subprogram retains its association9
status, allocation status, deϐinition status, and value after execution of a RETURN or END statement unless10
it is a pointer and its target becomes undeϐined (19.5.2.5(6)). If it is a local variable of a subprogram it is11
shared by all instances (15.6.2.4) of the subprogram.12

2 The SAVE attribute speciϐies that a local variable of a BLOCK construct retains its association status, alloca‑13
tion status, deϐinition status, and value after termination of the construct unless it is a pointer and its target14
becomes undeϐined (19.5.2.5(7)). If the BLOCK construct is within a subprogram the variable is shared by15
all instances (15.6.2.4) of the subprogram.16

3 Giving a common block the SAVE attribute confers the attribute on all entities in the common block7.17

C861 An entity with the SAVE attribute shall be a common block, variable, or procedure pointer.18

C862 The SAVE attribute shall not be speciϐied for a dummy argument, a function result, an automatic19
data object, or an object that is in a common block.20

4 A variable, common block, or procedure pointer declared in the scoping unit of amain program,module, or21
submodule implicitly has the SAVE attribute, whichmaybe conϐirmedby explicit speciϐication. If a common22
block has the SAVE attribute in any other kind of scoping unit, it shall have the SAVE attribute in every23
scoping unit that is not of a main program, module, or submodule.24

8.5.17 RANK clause25

1 The RANK clause speciϐies the DIMENSION attribute.26

R830 rank‑clause is RANK (scalar‑int‑constant‑expr)27
7Common blocks are obsolescent.

J3/25‑007 125

J3/25‑007 WD 1539‑1 2024‑12‑29

C863 The scalar‑int‑constant‑expr in a rank‑clause shall be nonnegative with a value less than or equal to1
the maximum array rank supported by the processor.2

C864 An entity declared with a rank‑clause shall be a dummy data object or have the ALLOCATABLE or3
POINTER attribute.4

2 An entity declared with a RANK clause has the speciϐied rank. If the rank is zero the entity is scalar; other‑5
wise, if it has the ALLOCATABLE or POINTER attribute, it speciϐies that it is a deferred‑shape array; other‑6
wise, it speciϐies that it is an assumed‑shape array with all the lower bounds equal to one.7

NOTE
Examples of RANK speciϐications are:

INTEGER :: X0(10,10,10)
LOGICAL, RANK(RANK(X0)), ALLOCATABLE :: X1 ! Rank 3, deferred shape
COMPLEX, RANK(2), POINTER :: X2 ! Rank 2, deferred-shape
LOGICAL, RANK(RANK(X0)) :: X3 ! Rank 3, assumed-shape
REAL, RANK(0) :: X4 ! Scalar

8.5.18 TARGET attribute8

1 The TARGET attribute speciϐies that a data object may have a pointer associated with it (10.2.2). An object9
without the TARGET attribute shall not have a pointer associated with it.10

C865 An entity with the TARGET attribute shall be a variable.11

C866 An entity with the TARGET attribute shall not have the POINTER attribute.12

2 If an object has the TARGET attribute, then all of its nonpointer subobjects also have the TARGET attribute.13

NOTE 1
In addition to variables explicitly declared tohave theTARGETattribute, the objects createdby allocationof pointers
(9.7.1.4) have the TARGET attribute.

NOTE 2
Examples of TARGET attribute speciϐications are:

TYPE (NODE), TARGET :: HEAD
REAL, DIMENSION (1000, 1000), TARGET :: A, B

NOTE 3
Every object designator that starts from an object with the TARGET attribute will have either the TARGET or
POINTER attribute. If pointers are involved, the designator might not necessarily be a subobject of the original
object, but because a pointer can point only to an entity with the TARGET attribute, there is no way to end up at a
nonpointer that does not have the TARGET attribute.

8.5.19 VALUE attribute14

1 The VALUE attribute speciϐies a type of argument association (15.5.2.5) for a dummy argument.15

C867 An entity with the VALUE attribute shall be a dummy data object. It shall not be an assumed‑size16
array, a coarray, or a variable with a coarray potential subobject component.17

C868 An entity with the VALUE attribute shall not have the ALLOCATABLE, INTENT (INOUT), INTENT18
(OUT), POINTER, or VOLATILE attributes.19

126 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C869 A dummy argument of a procedure with the BIND attribute shall not have both the OPTIONAL and1
VALUE attributes.2

8.5.20 VOLATILE attribute3

1 TheVOLATILEattribute speciϐies that anobjectmaybe referenced, deϐined, or becomeundeϐined, bymeans4
not speciϐied by the program. A pointer with the VOLATILE attribute may additionally have its association5
status, dynamic type and type parameters, and array bounds changed by means not speciϐied by the pro‑6
gram. An allocatable object with the VOLATILE attribute may additionally have its allocation status, dy‑7
namic type and type parameters, and array bounds changed by means not speciϐied by the program.8

C870 An entity with the VOLATILE attribute shall be a variable that is not an INTENT (IN) dummy argu‑9
ment.10

C871 The VOLATILE attribute shall not be speciϐied for a coarray, or a variable with a coarray potential11
subobject component, that is accessed by use (14.2.2) or host (19.5.1.4) association.12

C872 Within a BLOCK construct (11.1.4), the VOLATILE attribute shall not be speciϐied for a coarray, or a13
variable with a coarray potential subobject component, that is not a construct entity (19.4) of that14
construct.15

2 A noncoarray object that has the VOLATILE attribute may be associated with an object that does not have16
the VOLATILE attribute, including by use (14.2.2) or host association (19.5.1.4). If an object that is not a17
local variable of a BLOCK construct is speciϐied to have the VOLATILE attribute in the speciϔication‑part of18
the construct, the object has the attribute within the construct even if it does not have the attribute outside19
the construct. The relationship between coarrays, the VOLATILE attribute, and argument association is20
described in 15.5.2.9. The relationship between coarrays, the VOLATILE attribute, and pointer association21
is described in 10.2.2.3.22

3 A pointer should have the VOLATILE attribute if its target has the VOLATILE attribute. If, by means not23
speciϐied by the program, the target is referenced, deϐined, or becomes undeϐined, the pointer shall have24
the VOLATILE attribute. All members of an EQUIVALENCE group should have the VOLATILE attribute if any25
member has the VOLATILE attribute.826

4 If an object has the VOLATILE attribute, then all of its subobjects also have the VOLATILE attribute.27

5 The Fortran processor should use the most recent deϐinition of a volatile object each time its value is re‑28
quired. When a volatile object is deϐined by means of Fortran, it should make that deϐinition available to29
the non‑Fortran parts of the program as soon as possible.30

8.6 Attribute speciϐication statements31

8.6.1 Accessibility statement32

R831 access‑stmt is access‑spec [[::] access‑id‑list]33

R832 access‑id is access‑name34
or generic‑spec35

C873 (R831) An access‑stmt shall appear only in the speciϔication‑part of amodule. Only one accessibility36
statement with an omitted access‑id‑list is permitted in the speciϔication‑part of a module.37

8EQUIVALENCE groups are obsolescent.

J3/25‑007 127

J3/25‑007 WD 1539‑1 2024‑12‑29

C874 (R832) Each access‑name shall be the name of a module, variable, procedure, nonintrinsic type,1
named constant, or namelist group.2

C875 A module whose name appears in an access‑stmt shall be referenced by a USE statement in the3
scoping unit that contains the access‑stmt.4

C876 The name of a module shall appear at most once in all of the access‑stmts in a module.5

1 An access‑stmtwith an access‑id‑list speciϐies the accessibility attribute, PUBLIC or PRIVATE, of each access‑6
id in the list that is not a module name. An access‑stmtwithout an access‑id list speciϐies the default access‑7
ibility of the identiϐiers of entities declared in the module, and of entities accessed from a module whose8
name does not appear in any access‑stmt in the module. If an identiϐier is accessed from another module9
and also declared locally, it has the default accessibility of a locally declared identiϐier. The statement10

PUBLIC11
speciϐies a default of public accessibility. The statement12

PRIVATE13
speciϐies a default of private accessibility. If no such statement appears in a module, the default is public14
accessibility.15

2 If an identiϐier is accessed by use association and not declared in themodule, and the name of everymodule16
from which it is accessed appears in an access‑stmt in the scoping unit, its default accessibility is PRIVATE17
if the access‑spec in every such access‑stmt is PRIVATE, or PUBLIC if the access‑spec in any such access‑stmt18
is PUBLIC.19

NOTE 1
Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+)

NOTE 2
The following is an example of using an accessibility statement on a module name.

MODULE m2
USE m1
! We want to use the types and procedures in m1, but we only want to
! re-export m_type from m1, and export our own procedures.
PRIVATE m1
PUBLIC m_type
… deϔinitions for our own entities and module procedures.

END MODULE

8.6.2 ALLOCATABLE statement20

R833 allocatable‑stmt is ALLOCATABLE [::] allocatable‑decl‑list21

R834 allocatable‑decl is object‑name [(array‑spec)]22
[lbracket coarray‑spec rbracket]23

1 The ALLOCATABLE statement speciϐies the ALLOCATABLE attribute (8.5.3) for a list of objects.24

NOTE
An example of an ALLOCATABLE statement is:

REAL A, B (:), SCALAR
ALLOCATABLE :: A (:, :), B, SCALAR

128 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

8.6.3 ASYNCHRONOUS statement1

R835 asynchronous‑stmt is ASYNCHRONOUS [::] object‑name‑list2

1 The ASYNCHRONOUS statement speciϐies the ASYNCHRONOUS attribute (8.5.4) for a list of objects.3

8.6.4 BIND statement4

R836 bind‑stmt is language‑binding‑spec [::] bind‑entity‑list5

R837 bind‑entity is entity‑name6
or / common‑block‑name /7

C877 (R836) If the language‑binding‑spec has a NAME= speciϐier, the bind‑entity‑list shall consist of a8
single bind‑entity.9

1 The BIND statement speciϐies the BIND attribute for a list of variables and common blocks9.10

8.6.5 CODIMENSION statement11

R838 codimension‑stmt is CODIMENSION [::] codimension‑decl‑list12

R839 codimension‑decl is coarray‑name lbracket coarray‑spec rbracket13

1 The CODIMENSION statement speciϐies the CODIMENSION attribute (8.5.6) for a list of objects.14

NOTE
An example of a CODIMENSION statement is:

CODIMENSION a[*], b[3,*], c[:]

8.6.6 CONTIGUOUS statement15

R840 contiguous‑stmt is CONTIGUOUS [::] object‑name‑list16

1 The CONTIGUOUS statement speciϐies the CONTIGUOUS attribute (8.5.7) for a list of objects.17

8.6.7 DATA statement18

R841 data‑stmt is DATA data‑stmt‑set [[,] data‑stmt‑set] ...19

1 The DATA statement speciϐies explicit initialization (8.4).20

2 If a nonpointer variable has default initialization, it shall not appear in a data‑stmt‑object‑list.21

3 A variable that appears in a DATA statement and has not been typed previously shall not appear in a sub‑22
sequent type declaration unless that declaration conϐirms the implicit typing. An array name, array section,23
or array element that appears in a DATA statement shall have had its array properties established by a pre‑24
vious speciϐication statement.25

4 Except for variables in named common blocks10, a named variable has the SAVE attribute if any part of it is26
initialized in a DATA statement, and this may be conϐirmed by explicit speciϐication.27

9Common blocks are obsolescent.
10Common blocks are obsolescent.

J3/25‑007 129

J3/25‑007 WD 1539‑1 2024‑12‑29

R842 data‑stmt‑set is data‑stmt‑object‑list / data‑stmt‑value‑list /1

R843 data‑stmt‑object is variable2
or data‑implied‑do3

R844 data‑implied‑do is (data‑i‑do‑object‑list , [integer‑type‑spec ::] data‑i‑do‑variable4
= scalar‑int‑constant‑expr , scalar‑int‑constant‑expr5
[, scalar‑int‑constant‑expr])6

R845 data‑i‑do‑object is array‑element7
or scalar‑structure‑component8
or data‑implied‑do9

R846 data‑i‑do‑variable is do‑variable10

C878 A data‑stmt‑object or data‑i‑do‑object shall not be a coindexed variable.11

C879 (R843) A data‑stmt‑object that is a variable shall be a designator. Each subscript, section subscript,12
substring starting point, and substring ending point in the variable shall be a constant expression.13

C880 (R843) A variable whose designator appears as a data‑stmt‑object or a data‑i‑do‑object shall not14
be a dummy argument, accessed by use or host association, in a named common block unless the15
DATA statement is in a block data programunit, in blank common, a function name, a function result16
name, an automatic data object, or an allocatable variable.17

C881 (R843) A data‑i‑do‑object or a variable that appears as a data‑stmt‑object shall not be an object18
designator in which a pointer appears other than as the entire rightmost part‑ref .19

C882 (R845) The array‑element shall be a variable.20

C883 (R845) The scalar‑structure‑component shall be a variable.21

C884 (R845) The scalar‑structure‑component shall contain at least one part‑ref that contains a subscript‑22
list.23

C885 (R845) In an array‑element or scalar‑structure‑component that is a data‑i‑do‑object, any subscript24
shall be a constant expression, and any primary within that subscript that is a data‑i‑do‑variable25
shall be a DO variable of this data‑implied‑do or of a containing data‑implied‑do.26

R847 data‑stmt‑value is [data‑stmt‑repeat *] data‑stmt‑constant27

R848 data‑stmt‑repeat is scalar‑int‑constant28
or scalar‑int‑constant‑subobject29

C886 (R848) The data‑stmt‑repeat shall be positive or zero. If the data‑stmt‑repeat is a named constant,30
it shall have been deϐined previously.31

R849 data‑stmt‑constant is scalar‑constant32
or scalar‑constant‑subobject33
or signed‑int‑literal‑constant34
or signed‑real‑literal‑constant35
or null‑init36
or initial‑data‑target37
or structure‑constructor38

130 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

or enum‑constructor1
or enumeration‑constructor2

C887 (R849) If a DATA statement constant value is a named constant, structure constructor, enum con‑3
structor, or enumeration constructor, the named constant or type shall have been deϐined previ‑4
ously.5

C888 If a data‑stmt‑constant is a structure‑constructor, enum‑constructor, or enumeration‑constructor, it6
shall be a constant expression.7

R850 int‑constant‑subobject is constant‑subobject8

C889 (R850) int‑constant‑subobject shall be of type integer.9

R851 constant‑subobject is designator10

C890 (R851) constant‑subobject shall be a subobject of a constant.11

C891 (R851) Any subscript, substring starting point, or substring ending point shall be a constant ex‑12
pression.13

5 The data‑stmt‑object‑list is expanded to form a sequence of pointers and scalar variables, referred to as14
“sequence of variables” in subsequent text. A nonpointer array whose unqualiϐied name appears as a data‑15
stmt‑object or data‑i‑do‑object is equivalent to a complete sequence of its array elements in array element16
order (9.5.3.3). An array section is equivalent to the sequence of its array elements in array element order.17
A data‑implied‑do is expanded to form a sequence of array elements and structure components, under the18
control of the data‑i‑do‑variable, as in the DO construct (11.1.7.4). The scope and attributes of a data‑i‑do‑19
variable are described in 19.4.20

6 The data‑stmt‑value‑list is expanded to form a sequence of data‑stmt‑constants. A data‑stmt‑repeat indic‑21
ates the number of times the following data‑stmt‑constant is to be included in the sequence; omission of a22
data‑stmt‑repeat has the effect of a repeat factor of 1.23

7 A zero‑sized array or a data‑implied‑do with an iteration count of zero contributes no variables to the ex‑24
panded sequence of variables, but a zero‑length scalar character variable does contribute a variable to the25
expanded sequence. A data‑stmt‑constant with a repeat factor of zero contributes no data‑stmt‑constants26
to the expanded sequence of scalar data‑stmt‑constants.27

8 The expanded sequences of variables and data‑stmt‑constants are in one‑to‑one correspondence. Each28
data‑stmt‑constant speciϐies the initial value, initial data target, or null‑init for the corresponding variable.29
The lengths of the two expanded sequences shall be the same.30

9 Adata‑stmt‑constant shall benull‑init or initial‑data‑target if andonly if the correspondingdata‑stmt‑object31
has the POINTERattribute. If data‑stmt‑constant isnull‑init, the initial association status of the correspond‑32
ing data statement object is disassociated. If data‑stmt‑constant is initial‑data‑target the corresponding33
data statement object shall be data‑pointer‑initialization compatible (7.5.4.6) with the initial data target;34
the data statement object is initially associated with the target.35

J3/25‑007 131

J3/25‑007 WD 1539‑1 2024‑12‑29

10 A data‑stmt‑constant other than boz‑literal‑constant, null‑init, or initial‑data‑target shall be compatible1
with its corresponding variable according to the rules of intrinsic assignment (10.2.1.2). The variable is2
initially deϐined with the value speciϐied by the data‑stmt‑constant; if necessary, the value is converted ac‑3
cording to the rules of intrinsic assignment (10.2.1.3) to a value that agrees in type, type parameters, and4
shape with the variable.5

11 If a data‑stmt‑constant is a boz‑literal‑constant, the corresponding variable shall be of type integer. The boz‑6
literal‑constant is treated as if itwere convertedby the intrinsic function INT (16.9.110) to type integerwith7
the kind type parameter of the variable.8

NOTE
Examples of DATA statements are:

CHARACTER (LEN = 10) NAME
INTEGER, DIMENSION (0:9) :: MILES
REAL, DIMENSION (100, 100) :: SKEW
TYPE (NODE), POINTER :: HEAD_OF_LIST
TYPE (PERSON) MYNAME, YOURNAME
DATA NAME / 'JOHN DOE' /, MILES / 10 * 0 /
DATA ((SKEW (K, J), J = 1, K), K = 1, 100) / 5050 * 0.0 /
DATA ((SKEW (K, J), J = K + 1, 100), K = 1, 99) / 4950 * 1.0 /
DATA HEAD_OF_LIST / NULL() /
DATA MYNAME / PERSON (21, 'JOHN SMITH') /
DATA YOURNAME % AGE, YOURNAME % NAME / 35, 'FRED BROWN' /

The character variable NAME is initialized with the value JOHN DOE with padding on the right because the length
of the constant is less than the length of the variable. All ten elements of the integer array MILES are initialized
to zero. The two‑dimensional array SKEW is initialized so that the lower triangle of SKEW is zero and the strict
upper triangle is one. The structures MYNAME and YOURNAME are declared using the derived type PERSON from
7.5.2.1, NOTE.ThepointerHEAD_OF_LIST is declaredusing thederived typeNODE from7.5.4.6, NOTE4; it is initially
disassociated. MYNAME is initialized by a structure constructor. YOURNAME is initialized by supplying a separate
value for each component.

8.6.8 DIMENSION statement9

R852 dimension‑stmt is DIMENSION [::] array‑name (array‑spec)10
[, array‑name (array‑spec)] ...11

1 The DIMENSION statement speciϐies the DIMENSION attribute (8.5.8) for a list of objects.12

NOTE
An example of a DIMENSION statement is:

DIMENSION A (10), B (10, 70), C (:)

8.6.9 INTENT statement13

R853 intent‑stmt is INTENT (intent‑spec) [::] dummy‑arg‑name‑list14

1 The INTENT statement speciϐies the INTENT attribute (8.5.10) for the dummy arguments in the list.15

NOTE
An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B

8.6.10 OPTIONAL statement16

R854 optional‑stmt is OPTIONAL [::] dummy‑arg‑name‑list17

132 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

1 The OPTIONAL statement speciϐies the OPTIONAL attribute (8.5.12) for the dummy arguments in the list.1

NOTE
An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: B

8.6.11 PARAMETER statement2

1 The PARAMETER statement speciϐies the PARAMETER attribute (8.5.13) and the values for the named con‑3
stants in the list.4

R855 parameter‑stmt is PARAMETER (named‑constant‑def‑list)5

R856 named‑constant‑def is named‑constant = constant‑expr6

2 If a named constant is deϐined by a PARAMETER statement, it shall not be subsequently declared to have7
a type or type parameter value that differs from the type and type parameters it would have if declared8
implicitly (8.7). A named array constant deϐined by a PARAMETER statement shall have its rank speciϐied9
in a prior speciϐication statement.10

3 The constant expression that corresponds to a named constant shall have type and type parameters that11
conformwith thenamed constant as speciϐied for intrinsic assignment (10.2.1.2). If the named constant has12
implied shape, the expression shall have the same rank as the named constant; otherwise, the expression13
shall either be scalar or have the same shape as the named constant.14

4 The value of each named constant is that speciϐied by the corresponding constant expression; if necessary,15
the value is converted according to the rules of intrinsic assignment (10.2.1.3) to a value that agrees in type,16
type parameters, and shape with the named constant.17

NOTE
An example of a PARAMETER statement is:

PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100)

8.6.12 POINTER statement18

R857 pointer‑stmt is POINTER [::] pointer‑decl‑list19

R858 pointer‑decl is object‑name [(deferred‑shape‑spec‑list)]20
or procptr‑entity‑name21

C892 A procptr‑entity‑name shall have the EXTERNAL attribute.22

1 The POINTER statement speciϐies the POINTER attribute (8.5.14) for a list of entities.23

NOTE
An example of a POINTER statement is:

TYPE (NODE) :: CURRENT
POINTER :: CURRENT, A (:, :)

8.6.13 PROTECTED statement24

R859 protected‑stmt is PROTECTED [::] entity‑name‑list25

J3/25‑007 133

J3/25‑007 WD 1539‑1 2024‑12‑29

1 The PROTECTED statement speciϐies the PROTECTED attribute (8.5.15) for a list of entities.1

8.6.14 SAVE statement2

R860 save‑stmt is SAVE [[::] saved‑entity‑list]3

R861 saved‑entity is object‑name4
or proc‑pointer‑name5
or / common‑block‑name /6

R862 proc‑pointer‑name is name7

C893 (R860) If a SAVE statement with an omitted saved entity list appears in a scoping unit, no other8
appearance of the SAVE attr‑spec or SAVE statement is permitted in that scoping unit.9

C894 A proc‑pointer‑name shall be the name of a procedure pointer.10

1 A SAVE statementwith a saved entity list speciϐies the SAVE attribute (8.5.16) for a list of entities11. A SAVE11
statement without a saved entity list is treated as though it contained the names of all allowed items in the12
same scoping unit.13

NOTE
An example of a SAVE statement is:

SAVE A, B, C, / BLOCKA /, D

8.6.15 TARGET statement14

R863 target‑stmt is TARGET [::] target‑decl‑list15

R864 target‑decl is object‑name [(array‑spec)]16
[lbracket coarray‑spec rbracket]17

1 The TARGET statement speciϐies the TARGET attribute (8.5.18) for a list of objects.18

NOTE
An example of a TARGET statement is:

TARGET :: A (1000, 1000), B

8.6.16 VALUE statement19

R865 value‑stmt is VALUE [::] dummy‑arg‑name‑list20

1 The VALUE statement speciϐies the VALUE attribute (8.5.19) for a list of dummy arguments.21

8.6.17 VOLATILE statement22

R866 volatile‑stmt is VOLATILE [::] object‑name‑list23

1 The VOLATILE statement speciϐies the VOLATILE attribute (8.5.20) for a list of objects.24
11Common blocks are obsolescent.

134 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

8.7 IMPLICIT statement1

1 In a scoping unit, an IMPLICIT statement speciϐies a type, and possibly type parameters, for all implicitly2
typed data entities whose names begin with one of the letters speciϐied in the statement. An IMPLICIT3
NONE statement can indicate that no implicit typing rules are to apply in a particular scoping unit, or that4
external and dummy procedures need to be explicitly given the EXTERNAL attribute.5

R867 implicit‑stmt is IMPLICIT implicit‑spec‑list6
or IMPLICIT NONE [([implicit‑none‑spec‑list])]7

R868 implicit‑spec is declaration‑type‑spec (letter‑spec‑list)8

R869 letter‑spec is letter [– letter]9

R870 implicit‑none‑spec is EXTERNAL10
or TYPE11

C895 (R867) If an IMPLICIT NONE statement appears in a scoping unit, it shall precede any PARAMETER12
statements that appear in the scoping unit. No more than one IMPLICIT NONE statement shall13
appear in a scoping unit.14

C896 The same implicit‑none‑spec shall not appear more than once in a given implicit‑stmt.15

C897 If an IMPLICIT NONE statement in a scoping unit has an implicit‑none‑spec of TYPE or has no16
implicit‑none‑spec‑list, there shall be no other IMPLICIT statements in the scoping unit.17

C898 (R869) If the minus and second letter appear, the second letter shall follow the ϐirst letter alpha‑18
betically.19

C899 If IMPLICITNONEwith an implicit‑none‑spec of EXTERNAL appearswithin a scoping unit, the name20
of an external or dummy procedure in that scoping unit or in a contained subprogram or BLOCK21
construct shall have an explicit interface or be explicitly declared to have the EXTERNAL attribute.22

2 A letter‑spec consisting of two letters separated by a minus is equivalent to writing a list containing all of23
the letters in alphabetical order in the alphabetic sequence from the ϐirst letter through the second letter.24
For example, A–C is equivalent to A, B, C. The same letter shall not appear as a single letter, or be included25
in a range of letters, more than once in all of the IMPLICIT statements in a scoping unit.26

3 In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z and a27
type (and type parameters). An IMPLICIT statement speciϐies the mapping for the letters in its letter‑spec‑28
list. IMPLICIT NONEwith an implicit‑none‑spec of TYPE or with no implicit‑none‑spec‑list speciϐies the null29
mapping for all the letters. If a mapping is not speciϐied for a letter, the default for a program unit or an30
interface body is default integer if the letter is I, J, ..., or N and default real otherwise, and the default for a31
BLOCK construct, internal subprogram, or module subprogram is the mapping in the host scoping unit.32

4 Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic function, is33
not a component, and is not accessed by use or host association is declared implicitly to be of the type (and34
type parameters) mapped from the ϐirst letter of its name, provided the mapping is not null. The mapping35
for the ϐirst letter of the data entity shall either have been established by a prior IMPLICIT statement or36
be the default mapping for the letter. An explicit type speciϐication in a FUNCTION statement overrides an37
IMPLICIT statement for the result of that function.38

J3/25‑007 135

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1
The following are examples of the use of IMPLICIT statements:

MODULE EXAMPLE_MODULE
IMPLICIT NONE
…
INTERFACE

FUNCTION FUN (I) ! Not all data entities need to
INTEGER FUN ! be declared explicitly

END FUNCTION FUN
END INTERFACE

CONTAINS
FUNCTION JFUN (J) ! All data entities need to

INTEGER JFUN, J ! be declared explicitly.
…

END FUNCTION JFUN
END MODULE EXAMPLE_MODULE
SUBROUTINE SUB

IMPLICIT COMPLEX (C)
C = (3.0, 2.0) ! C is implicitly declared COMPLEX
…

CONTAINS
SUBROUTINE SUB1

IMPLICIT INTEGER (A, C)
C = (0.0, 0.0) ! C is host associated and of

! type complex
Z = 1.0 ! Z is implicitly declared REAL
A = 2 ! A is implicitly declared INTEGER
CC = 1 ! CC is implicitly declared INTEGER
…

END SUBROUTINE SUB1
SUBROUTINE SUB2

Z = 2.0 ! Z is implicitly declared REAL and
! is different from the variable of
! the same name in SUB1

…
END SUBROUTINE SUB2
SUBROUTINE SUB3

USE EXAMPLE_MODULE ! Accesses integer function FUN
! by use association

Q = FUN (K) ! Q is implicitly declared REAL and
… ! K is implicitly declared INTEGER

END SUBROUTINE SUB3
END SUBROUTINE SUB

NOTE 2
The following is an example of a mapping to a derived type that is inaccessible in the local scope:

PROGRAM MAIN
IMPLICIT TYPE(BLOB) (A)
TYPE BLOB

INTEGER :: I
END TYPE BLOB
TYPE(BLOB) :: B
CALL STEVE

CONTAINS
SUBROUTINE STEVE

INTEGER :: BLOB
…
AA = B
…

END SUBROUTINE STEVE
END PROGRAM MAIN

In the subroutine STEVE, it is not possible to explicitly declare a variable to be of type BLOB because BLOB has been
given a different meaning, but implicit mapping for the letter A still maps to type BLOB, so AA is of type BLOB.

NOTE 3
Implicit typing is not affected by BLOCK constructs. For example, in

SUBROUTINE S(N)

136 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 3 (cont.)
…
IF (N>0) THEN

BLOCK
NSQP = CEILING (SQRT (DBLE (N)))

END BLOCK
END IF
…
IF (N>0) THEN

BLOCK
PRINT *,NSQP

END BLOCK
END IF

END SUBROUTINE

even if the only two appearances ofNSQP arewithin theBLOCK constructs, the scope ofNSQP is thewhole subroutine
S.

NOTE 4
In the subprogram

SUBROUTINE EXAMPLE (X, Y)
IMPLICIT NONE (EXTERNAL)
REAL, EXTERNAL :: G
REAL :: X, Y
X = F (Y) ! Invalid: F lacks the EXTERNAL attribute.
X = G (Y) ! Valid: G has the EXTERNAL attribute.

END SUBROUTINE

the referenced function F needs to have the EXTERNAL attribute (8.5.9).

8.8 IMPORT statement1

R871 import‑stmt is IMPORT [[::] import‑name‑list]2
or IMPORT, ONLY : import‑name‑list3
or IMPORT, NONE4
or IMPORT, ALL5

C8100 (R871) An IMPORT statement shall not appear in the scoping unit of a main‑program, external‑6
subprogram,module, or block‑data12.7

C8101 (R871) Each import‑name shall be the name of an entity in the host scoping unit.8

C8102 If any IMPORT statement in a scoping unit has an ONLY speciϐier, all IMPORT statements in that9
scoping unit shall have an ONLY speciϐier.10

C8103 IMPORT, NONE shall not appear in the scoping unit of a submodule.11

C8104 If an IMPORT, NONE or IMPORT, ALL statement appears in a scoping unit, no other IMPORT state‑12
ment shall appear in that scoping unit.13

C8105 Within an interface body, an entity that is accessed by host association shall be accessible by host14
or use association within the host scoping unit, or explicitly declared prior to the interface body.15

C8106 An entity whose name appears as an import‑name or which is made accessible by an IMPORT, ALL16
statement shall not appear in any context described in 19.5.1.4 that would cause the host entity of17
that name to be inaccessible.18

12Block data program units are obsolescent.

J3/25‑007 137

J3/25‑007 WD 1539‑1 2024‑12‑29

1 If the ONLY speciϐier appears on an IMPORT statement in a scoping unit other than a BLOCK construct, an1
entity is only accessible by host association if its name appears as an import‑name in that scoping unit. If2
a BLOCK construct contains one or more IMPORT statements with ONLY speciϐiers, identiϐiers of local and3
construct entities in the host scoping unit that are not in the import‑name‑list of at least one of the IMPORT4
statements are inaccessible in the BLOCK construct.5

2 An IMPORT, NONE statement in a scoping unit speciϐies that no entities in the host scoping unit are access‑6
ible by host association in that scoping unit. This is the default for an interface body that is not a module7
procedure interface body. An IMPORT, NONE statement in a BLOCK construct speciϐies that the identiϐiers8
of local and construct entities in the host scoping unit are inaccessible in the BLOCK construct.9

3 An IMPORT, ALL statement in a scoping unit speciϐies that all entities from the host scoping unit are ac‑10
cessible in that scoping unit.11

4 If an IMPORT statement with no speciϐier and no import‑name‑list appears in a scoping unit, every entity in12
the host scoping unit is accessible unless its name appears in a context described in 19.5.1.4 that causes it13
to be inaccessible. This is the default for a derived‑type deϐinition, internal subprogram,module procedure14
interface body, module subprogram, or submodule.15

5 If an IMPORT statement with an import‑name‑list appears in a scoping unit other than a BLOCK construct,16
each entity named in the list is accessible.17

NOTE 1
The IMPORT, NONE statement can be used to prevent accidental host association:

SUBROUTINE s(x,n)
IMPLICIT NONE
IMPORT, NONE
…
DO i=1,n ! Forces I to be locally declared.

NOTE 2
The IMPORT, ALL statement can be used to prevent accidental “shadowing” of host entities:

SUBROUTINE outer
REAL x
…

CONTAINS
SUBROUTINE inner

IMPORT, ALL
…
x = x + 1 ! There is a host X, so this must be the host X.

NOTE 3
The IMPORT, ONLY statement can be used to document deliberate access via host association whilst blocking acci‑
dental access:

SUBROUTINE sub
IMPORT,ONLY : x, y
…
x = y + z ! Only X and Y are imported, so Z is local.

NOTE 4
The program

PROGRAM MAIN
BLOCK

IMPORT, NONE
!IMPORT, ONLY: X
X = 1.0

138 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 4 (cont.)
END BLOCK

END
is not conformant. The variable X is implicitly declared in the scoping unit of the main program. The statement
IMPORT, NONE makes X inaccessible in the BLOCK construct. If the IMPORT, NONE statement is replaced with the
IMPORT statement in the comment, the program is conformant.

NOTE 5
The IMPORT statement can be used to allow module procedures to have dummy arguments that are procedures
with assumed‑shape arguments of an opaque type. For example:

MODULE M
TYPE T

PRIVATE ! T is an opaque type
…

END TYPE
CONTAINS

SUBROUTINE PROCESS(X,Y,RESULT,MONITOR)
TYPE(T),INTENT(IN) :: X(:,:),Y(:,:)
TYPE(T),INTENT(OUT) :: RESULT(:,:)
INTERFACE
SUBROUTINE MONITOR(ITERATION_NUMBER,CURRENT_ESTIMATE)

IMPORT T
INTEGER,INTENT(IN) :: ITERATION_NUMBER
TYPE(T),INTENT(IN) :: CURRENT_ESTIMATE(:,:)

END SUBROUTINE
END INTERFACE
…

END SUBROUTINE
END MODULE

The MONITOR dummy procedure requires an explicit interface because it has an assumed‑shape array argument,
but TYPE(T) would not be available inside the interface body without the IMPORT statement.

8.9 NAMELIST statement1

1 A NAMELIST statement speciϐies a group of named data objects, which can be referred to by a single name2
for the purpose of data transfer (12.6, 13.11).3

R872 namelist‑stmt is NAMELIST4
/ namelist‑group‑name / namelist‑group‑object‑list5
[[,] / namelist‑group‑name /6
namelist‑group‑object‑list] …7

C8107 (R872) The namelist‑group‑name shall not be a name accessed by use association.8

R873 namelist‑group‑object is variable‑name9

C8108 (R873) A namelist‑group‑object shall not be an assumed‑size array.10

C8109 A namelist‑group‑object shall not be of enumeration type, or have a direct component that is of11
enumeration type.12

2 The order in which the values appear on output is the same as the order of the namelist‑group‑objects in13
the namelist group object list; if a variable appears more than once as a namelist‑group‑object for the same14
namelist group, its value appears once for each occurrence.15

3 Any namelist‑group‑name may occur more than once in the NAMELIST statements in a scoping unit. The16
namelist‑group‑object‑list followingeach successive appearanceof the samenamelist‑group‑name in a scop‑17

J3/25‑007 139

J3/25‑007 WD 1539‑1 2024‑12‑29

ing unit is treated as a continuation of the list for that namelist‑group‑name.1

4 A namelist group object may be a member of more than one namelist group.2

5 A namelist group object shall either be accessed by use or host association or shall have its declared type,3
kind type parameters of the declared type, and rank speciϐied by previous statements in the same scoping4
unit or by the implicit typing rules in effect for the scoping unit. If a namelist group object is typed by5
the implicit typing rules, its appearance in any subsequent type declaration statement shall conϐirm the6
implied type and type parameters.7

NOTE
An example of a NAMELIST statement is:

NAMELIST /NLIST/ A, B, C

8.10 Storage association of data objects (obsolescent)8

8.10.1 Obsolescence9

1 Storageassociationof dataobjects,whetherby theEQUIVALENCEstatement, commonblocks, or theENTRY10
statement, is obsolescent.11

8.10.2 EQUIVALENCE statement12

8.10.2.1 General13

1 An EQUIVALENCE statement is used to specify the sharing of storage units by two or more objects in a14
scoping unit. This causes storage association (19.5.3) of the objects that share the storage units.15

2 If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement does not16
cause type conversion or imply mathematical equivalence. If a scalar and an array are equivalenced, the17
scalar does not have array properties and the array does not have the properties of a scalar.18

R874 equivalence‑stmt is EQUIVALENCE equivalence‑set‑list19

R875 equivalence‑set is (equivalence‑object , equivalence‑object‑list)20

R876 equivalence‑object is variable‑name21
or array‑element22
or substring23

C8110 (R876) An equivalence‑object shall not be a designator with a base object that is a dummy argu‑24
ment, a function result, a pointer, an allocatable variable, a derived‑type object that has an allocat‑25
able or pointer ultimate component, an object of a nonsequence derived type, an object of enumer‑26
ation type, an automatic data object, a coarray, a variable with the BIND attribute, a variable in a27
common block that has the BIND attribute, or a named constant.28

C8111 (R876) An equivalence‑object shall not be a designator that has more than one part‑ref .29

C8112 (R876) An equivalence‑object shall not have the TARGET attribute.30

C8113 (R876) Each subscript or substring range expression in an equivalence‑object shall be an integer31
constant expression (10.1.12).32

140 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C8114 (R875) If an equivalence‑object is default integer, default real, double precision real, default com‑1
plex, default logical, or of numeric sequence type, all of the objects in the equivalence set shall be2
of these types and kinds.3

C8115 (R875) If an equivalence‑object is default character or of character sequence type, all of the objects4
in the equivalence set shall be of these types and kinds.5

C8116 (R875) If an equivalence‑object is of a sequence type that is not a numeric sequence or character6
sequence type, all of the objects in the equivalence set shall be of that type.7

C8117 (R875) If an equivalence‑object is of an intrinsic type but is not default integer, default real, double8
precision real, default complex, default logical, or default character, all of the objects in the equival‑9
ence set shall be of the same type with the same kind type parameter value.10

C8118 (R876) If an equivalence‑object has the PROTECTED attribute, all of the objects in the equivalence11
set shall have the PROTECTED attribute.12

C8119 (R876) The name of an equivalence‑object shall not be a namemade accessible by use association.13

C8120 (R876) A substring shall not have length zero.14

NOTE
The EQUIVALENCE statement allows the equivalencing of sequence structures and the equivalencing of objects of
intrinsic type with nondefault type parameters, but there are strict rules regarding the appearance of these objects
in an EQUIVALENCE statement.
In addition to the above constraints, further rules on the interaction of EQUIVALENCE statements and default ini‑
tialization are given in 19.5.3.4.

8.10.2.2 Equivalence association15

1 An EQUIVALENCE statement speciϐies that the storage sequences (19.5.3.2) of the data objects speciϐied16
in an equivalence‑set are storage associated. All of the nonzero‑sized sequences in the equivalence‑set, if17
any, have the same ϐirst storage unit, and all of the zero‑sized sequences in the equivalence‑set, if any, are18
storage associated with one another and with the ϐirst storage unit of any nonzero‑sized sequences. This19
causes the storage association of the data objects in the equivalence‑set and can cause storage association20
of other data objects.21

2 If any data object in an equivalence‑set has the SAVE attribute, all other objects in the equivalence‑set have22
the SAVE attribute; this may be conϐirmed by explicit speciϐication.23

8.10.2.3 Equivalence of default character objects24

1 A default character data object shall not be equivalenced to an object that is not default character and not25
of a character sequence type. The lengths of equivalenced default character objects need not be the same.26

2 An EQUIVALENCE statement speciϐies that the storage sequences of all the default character data objects27
speciϐied in an equivalence‑set are storage associated. All of thenonzero‑sized sequences in the equivalence‑28
set, if any, have the same ϐirst character storage unit, and all of the zero‑sized sequences in the equivalence‑29
set, if any, are storage associated with one another andwith the ϐirst character storage unit of any nonzero‑30
sized sequences. This causes the storage association of the data objects in the equivalence‑set and can cause31
storage association of other data objects.32

J3/25‑007 141

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
For example, using the declarations:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

the association of A, B, and C can be illustrated graphically as:
1 2 3 4 5 6 7

|--- --- A --- ---|
|--- --- B --- ---|

|--- C(1) ---| |--- C(2) ---|

8.10.2.4 Array names and array element designators1

1 For a nonzero‑sized array, the use of the array name unqualiϐied by a subscript list as an equivalence‑object2
has the same effect as using an array element designator that identiϐies the ϐirst element of the array.3

8.10.2.5 Restrictions on EQUIVALENCE statements4

1 An EQUIVALENCE statement shall not specify that the same storage unit is to occur more than once in a5
storage sequence.6

2 An EQUIVALENCE statement shall not specify that consecutive storage units are to be nonconsecutive.7

8.10.3 COMMON statement8

8.10.3.1 General9

1 The COMMON statement speciϐies blocks of physical storage, called common blocks, that can be accessed10
by any of the scoping units in a program. Thus, the COMMONstatement provides a global data facility based11
on storage association (19.5.3).12

2 A common block that does not have a name is called blank common.13

R877 common‑stmt is COMMON14
[/ [common‑block‑name] /] common‑block‑object‑list15
[[,] / [common‑block‑name] /16
common‑block‑object‑list] ...17

R878 common‑block‑object is variable‑name [(array‑spec)]18

C8121 (R878) An array‑spec in a common‑block‑object shall be an explicit‑shape‑spec‑list.19

C8122 (R878) Only one appearance of a given variable‑name is permitted in all common‑block‑object‑lists20
within a scoping unit.21

C8123 (R878) A common‑block‑object shall not be a dummy argument, a function result, an allocatable22
variable, a derived‑type object with an ultimate component that is allocatable, an object of enu‑23
meration type, a procedure pointer, an automatic data object, a variable with the BIND attribute,24
an unlimited polymorphic pointer, or a coarray.25

C8124 (R878) If a common‑block‑object is of a derived type, the type shall have the BIND attribute or the26
SEQUENCE attribute and it shall have no default initialization.27

C8125 (R878) A variable‑name shall not be a name made accessible by use association.28

142 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3 In eachCOMMONstatement, the data objectswhosenames appear in a commonblock object list following a1
commonblock name are declared to be in that commonblock. If the ϐirst commonblock name is omitted, all2
data objectswhose names appear in the ϐirst common block object list are speciϐied to be in blank common.3
Alternatively, the appearance of two slashes with no common block name between them declares the data4
objects whose names appear in the common block object list that follows to be in blank common.5

4 Any common block name or an omitted common block name for blank commonmay occurmore than once6
in one or more COMMON statements in a scoping unit. The common block list following each successive7
appearance of the same common block name in a scoping unit is treated as a continuation of the list for8
that common block name. Similarly, each blank common block object list in a scoping unit is treated as a9
continuation of blank common.10

5 The form variable‑name (array‑spec) speciϐies the DIMENSION attribute for that variable.11

6 If derived‑type objects of numeric sequence type or character sequence type (7.5.2.3) appear in common,12
it is as if the individual components were enumerated directly in the common list.13

8.10.3.2 Common block storage sequence14

1 For each common block in a scoping unit, a common block storage sequence is formed as follows:15

(1) A storage sequence is formed consisting of the sequence of storage units in the storage se‑16
quences (19.5.3.2) of all data objects in the common block object lists for the common block.17
The order of the storage sequences is the same as the order of the appearance of the common18
block object lists in the scoping unit.19

(2) The storage sequence formed in (1) is extended to include all storage units of any storage se‑20
quence associated with it by equivalence association. The sequence shall be extended only by21
adding storage units beyond the last storage unit. Data objects associated with an entity in a22
common block are considered to be in that common block.23

2 Only COMMON statements and EQUIVALENCE statements appearing in the scoping unit contribute to com‑24
mon block storage sequences formed in that scoping unit.25

8.10.3.3 Size of a common block26

1 The size of a common block is the size of its common block storage sequence, including any extensions of27
the sequence resulting from equivalence association.28

8.10.3.4 Common association29

1 Within a program, the commonblock storage sequences of all nonzero‑sized commonblockswith the same30
name have the same ϐirst storage unit, and the common block storage sequences of all zero‑sized common31
blocks with the same name are storage associated with one another. Within a program, the common block32
storage sequences of all nonzero‑sized blank common blocks have the same ϐirst storage unit and the stor‑33
age sequences of all zero‑sized blank common blocks are associated with one another and with the ϐirst34
storage unit of any nonzero‑sized blank common blocks. This results in the association of objects in differ‑35
ent scoping units. Use or host association can cause these associated objects to be accessible in the same36
scoping unit.37

2 A nonpointer object that is default integer, default real, double precision real, default complex, default lo‑38
gical, or of numeric sequence type shall be associated onlywith nonpointer objects of these types andkinds.39

J3/25‑007 143

J3/25‑007 WD 1539‑1 2024‑12‑29

3 A nonpointer object that is default character or of character sequence type shall be associated only with1
nonpointer objects of these types and kinds.2

4 A nonpointer object of a derived type that is not a numeric sequence or character sequence type shall be3
associated only with nonpointer objects of the same type.4

5 A nonpointer object of an enum type shall be associated only with nonpointer objects of the same type.5

6 A nonpointer object of intrinsic type but which is not default integer, default real, double precision real,6
default complex, default logical, or default character shall be associated onlywith nonpointer objects of the7
same type and type parameters.8

7 A data pointer shall be storage associated only with data pointers of the same type and rank. Data pointers9
that are storage associated shall have deferred the same type parameters; corresponding nondeferred type10
parameters shall have the same value.11

8 An object with the TARGET attribute shall be storage associated only with another object that has the TAR‑12
GET attribute and the same type and type parameters.13

NOTE
A common block is permitted to contain sequences of different storage units, provided each scoping unit that ac‑
cesses the common block speciϐies an identical sequence of storage units for the common block. For example, this
allows a single common block to contain both numeric and character storage units.
Association in different scoping units between objects of default type, objects of double precision real type, and
sequence structures is permitted according to the rules for equivalence objects (8.10.2).

8.10.3.5 Differences between named common and blank common14

1 A blank common block has the same properties as a named common block, except for the following.15

• Execution of a RETURN or END statement might cause data objects in a named common block to16
become undeϐined unless the common block has the SAVE attribute, but never causes nonpointer17
data objects in blank common to become undeϐined (19.6.6).18

• Named common blocks of the same name shall be of the same size in all scoping units of a program19
in which they appear, but blank common blocks may be of different sizes.20

• A data object in a named common block may be initially deϐined by means of a DATA statement or21
type declaration statement in a block data program unit (14.3), but objects in blank common shall22
not be initially deϐined.23

8.10.4 Restrictions on common and equivalence24

1 An EQUIVALENCE statement shall not cause the storage sequences of two different common blocks to be25
associated.26

2 Equivalence association shall not cause a derived‑type object with default initialization to be associated27
with an object in a common block.28

3 Equivalence association shall not cause a commonblock storage sequence to be extendedby adding storage29
units preceding the ϐirst storage unit of the ϐirst object speciϐied in a COMMON statement for the common30
block.31

144 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

9 Use of data objects1

9.1 Designator2

R901 designator is object‑name3
or array‑element4
or array‑section5
or coindexed‑named‑object6
or complex‑part‑designator7
or structure‑component8
or substring9

1 The appearance of a data object designator in a context that requires its value is termed a reference.10

9.2 Variable11

R902 variable is designator12
or function‑reference13

C901 (R902) designator shall not be a constant or a subobject of a constant.14

C902 (R902) function‑reference shall have a data pointer result.15

1 A variable is either the data object denoted by designator or the target of the pointer resulting from the16
evaluation of function‑reference; this pointer shall be associated.17

2 A reference is permitted only if the variable is deϐined. A reference to a data pointer is permitted only if18
the pointer is associated with a target object that is deϐined. A variable becomes deϐinedwith a value when19
events described in 19.6.5 occur.20

R903 variable‑name is name21

C903 (R903) variable‑name shall be the name of a variable.22

R904 logical‑variable is variable23

C904 (R904) logical‑variable shall be of type logical.24

R905 char‑variable is variable25

C905 (R905) char‑variable shall be of type character.26

R906 default‑char‑variable is variable27

C906 (R906) default‑char‑variable shall be default character.28

R907 int‑variable is variable29

C907 (R907) int‑variable shall be of type integer.30

J3/25‑007 145

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
For example, given the declarations:

CHARACTER (10) A, B (10)
TYPE (PERSON) P ! See 7.5.2.1, NOTE

then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables.

9.3 Constants1

1 A constant (6.2.3) is a literal constant or a named constant. A literal constant is a scalar denoted by a2
syntactic form, which indicates its type, type parameters, and value. A named constant is a constant that3
has a name; the name has the PARAMETER attribute (8.5.13, 8.6.11). A reference to a constant is always4
permitted; redeϐinition of a constant is never permitted.5

9.4 Scalars6

9.4.1 Substrings7

1 A substring is a contiguous portion of a character string (7.4.4).8

R908 substring is parent‑string (substring‑range)9

R909 parent‑string is scalar‑variable‑name10
or array‑element11
or coindexed‑named‑object12
or scalar‑structure‑component13
or scalar‑constant14

R910 substring‑range is [scalar‑int‑expr] : [scalar‑int‑expr]15

C908 (R909) parent‑string shall be of type character.16

2 The value of the ϐirst scalar‑int‑expr in substring‑range is the starting point of the substring and the value17
of the second one is the ending point of the substring. The length of a substring is the number of characters18
in the substring and is MAX (l − f + 1, 0), where f and l are the starting and ending points, respectively.19

3 Let the characters in the parent string be numbered 1, 2, 3, ..., n, where n is the length of the parent string.20
Then the characters in the substring are those from theparent string from the startingpoint andproceeding21
in sequence up to and including the ending point. If the starting point is greater than the ending point, the22
substring has length zero; otherwise, both the starting point and the ending point shall be within the range23
1, 2, ..., n. If the starting point is not speciϐied, the default value is 1. If the ending point is not speciϐied, the24
default value is n.25

NOTE
Examples of character substrings are:

B(1)(1:5) array element as parent string
P%NAME(1:1) structure component as parent string
ID(4:9) scalar variable name as parent string
'0123456789'(N:N) character constant as parent string

146 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

9.4.2 Structure components1

1 A structure component is part of an object of derived type; it can be referenced by an object designator. A2
structure component may be a scalar or an array.3

R911 data‑ref is part‑ref [% part‑ref] ...4

R912 part‑ref is part‑name [(section‑subscript‑list)] [image‑selector]5

C909 (R911) Each part‑name except the rightmost shall be of derived type.6

C910 (R911) Each part‑name except the leftmost shall be the name of a component of the declared type7
of the preceding part‑name.8

C911 (R911) If the rightmost part‑name is of abstract type, data‑ref shall be polymorphic.9

C912 (R911) The leftmost part‑name shall be the name of a data object.10

C913 (R912) If a section‑subscript‑list appears, the sum of the rank of part‑ref , the sizes of the arrays in11
each multiple subscript, and the number of subscripts, shall equal the rank of part‑name.12

C914 (R912) If image‑selector appears, the number of cosubscripts shall be equal to the corank of part‑13
name.14

C915 Adata‑ref shall not beof typeC_PTRorC_FUNPTR fromthe intrinsicmodule ISO_C_BINDING(18.2),15
or of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV (16.10.2), if one of its part‑16
ref s has an image‑selector.17

C916 (R912) If image‑selector appears and part‑name is an array, section‑subscript‑list shall appear.18

C917 (R911) Except as an actual argument to an intrinsic inquiry function or as the designator in a type19
parameter inquiry, a data‑ref shall not be a coindexed object that has a polymorphic allocatable20
potential subobject component.21

C918 Except as an actual argument to an intrinsic inquiry function or as the designator in a type para‑22
meter inquiry, if the rightmost part‑ref is polymorphic, no other part‑ref shall be coindexed.23

2 The rank of a part‑ref of the form part‑name is the rank of part‑name. The rank of a part‑ref that has a24
section subscript list is the sum of the number of subscript triplets, the number of vector subscripts, and25
the sizes of one of the arrays in each multiple section subscript.26

C919 (R911) There shall not be more than one part‑ref with nonzero rank. A part‑name to the right of a27
part‑ref with nonzero rank shall not have the ALLOCATABLE or POINTER attribute.28

3 The rank of a data‑ref is the rank of the part‑ref with nonzero rank, if any; otherwise, the rank is zero. The29
base object of a data‑ref is the data object whose name is the leftmost part name.30

4 The type and type parameters, if any, of a data‑ref are those of the rightmost part name.31

5 A data‑ref with more than one part‑ref is a subobject of its base object if none of the part‑names, except32
for possibly the rightmost, is a pointer. If the rightmost part‑name is the only pointer, then the data‑ref is33
a subobject of its base object in contexts that pertain to its pointer association status but not in any other34
contexts.35

J3/25‑007 147

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1
If X is anobject of derived typewith apointer componentP, then thepointerX%P is a subobject of Xwhen considered
as a pointer – that is in contexts where it is not dereferenced.
However the target of X%P is not a subobject of X. Thus, in contexts where X%P is dereferenced to refer to the
target, it is not a subobject of X.

R913 structure‑component is data‑ref1

C920 (R913) There shall be more than one part‑ref and the rightmost part‑ref shall not have a section‑2
subscript‑list.3

6 A structure component shall be neither referenced nor deϐined before the declaration of the base object. A4
structure component is a pointer only if the rightmost part name has the POINTER attribute.5

NOTE 2
Examples of structure components are:

SCALAR_PARENT%SCALAR_FIELD scalar component of scalar parent
ARRAY_PARENT(J)%SCALAR_FIELD component of array element parent
ARRAY_PARENT(1:N)%SCALAR_FIELD component of array section parent

For a more elaborate example see C.5.1.

NOTE 3
The syntax rules are structured such that a data‑ref that ends in a component name without a following subscript
list is a structure component, even when other component names in the data‑ref are followed by a subscript list.
A data‑ref that ends in a component name with a following subscript list is either an array element or an array
section. A data‑ref of nonzero rank that endswith a substring‑range is an array section. A data‑ref of zero rank that
ends with a substring‑range is a substring.

9.4.3 Coindexed named objects6

1 A coindexed‑named‑object is a named scalar coarray variable followed by an image selector.7

R914 coindexed‑named‑object is data‑ref8

C921 (R914) The data‑ref shall contain exactly one part‑ref . The part‑ref shall contain an image‑selector.9
The part‑name shall be the name of a scalar coarray.10

9.4.4 Complex parts11

R915 complex‑part‑designator is designator %RE12
or designator % IM13

C922 (R915) The designator shall be of complex type.14

1 If complex‑part‑designator is designator%RE it designates the real part of designator. If it is designator%IM15
it designates the imaginary part of designator. The type of a complex‑part‑designator is real, and its kind16
and shape are those of the designator, which can be an array or scalar.17

NOTE
The following are examples of complex part designators:

impedance%re Same value as REAL (impedance).
fft%im Same value as AIMAG (fft).
x%im = 0.0 Sets the imaginary part of X to zero.

148 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

9.4.5 Type parameter inquiry1

1 A type parameter inquiry is used to inquire about a type parameter of a data object. It applies to both2
intrinsic and derived types.3

R916 type‑param‑inquiry is designator % type‑param‑name4

C923 (R916) The type‑param‑name shall be the name of a type parameter of the declared type of the5
object designated by the designator.6

2 A deferred type parameter of a pointer that is not associated or of an unallocated allocatable variable shall7
not be inquired about.8

NOTE 1
A type‑param‑inquiry has a syntax like that of a structure component reference, but it does not have the same se‑
mantics. It is not a variable and thus can never be assigned to. It can be used only as a primary in an expression. It
is scalar even if designator is an array.
The intrinsic type parameters can also be inquired about by using the intrinsic functions KIND and LEN.

NOTE 2
The following are examples of type parameter inquiries:

a%kind A is real. Same value as KIND (a).
s%len S is character. Same value as LEN (s).
b(10)%kind Inquiry about an array element.
p%dim P is of the derived type general_point.

See 7.5.3.1, NOTE for the deϐinition of the general_point type used in the last example above.

9.5 Arrays9

9.5.1 Order of reference10

1 No order of reference to the elements of an array is indicated by the appearance of the array designator,11
except where array element ordering (9.5.3.3) is speciϐied.12

9.5.2 Whole arrays13

1 Awhole array is a named array or a structure componentwhose ϐinal part‑ref is an array component name;14
no subscript list is appended.15

2 The appearance of a whole array variable in an executable construct speciϐies all the elements of the array16
(5.4.6). The appearance of awhole array designator in a nonexecutable statement speciϐies the entire array17
except for the appearance of a whole array designator in an equivalence set1 (8.10.2.4). An assumed‑size18
array (8.5.8.5) is permitted to appear as awhole array in anexecutable construct or speciϐication expression19
only as an actual argument in a procedure reference that does not require the shape.20

9.5.3 Array elements and array sections21

9.5.3.1 Syntax22

R917 array‑element is data‑ref23
1Equivalence sets are obsolescent.

J3/25‑007 149

J3/25‑007 WD 1539‑1 2024‑12‑29

C924 (R917) Every part‑ref shall have rank zero and the last part‑ref shall contain a subscript‑list.1

R918 array‑section is data‑ref [(substring‑range)]2
or complex‑part‑designator3

C925 (R918) Exactly one part‑ref shall have nonzero rank, and either the ϐinal part‑ref shall have a4
section‑subscript‑list with nonzero rank, another part‑ref shall have nonzero rank, or the complex‑5
part‑designator shall be an array.6

C926 (R918) If a substring‑range appears, data‑ref shall be of type character.7

R919 subscript is scalar‑int‑expr8

R920 multiple‑subscript is @ int‑expr9

C927 The int‑expr in amultiple‑subscript shall be an array of rank one.10

R921 section‑subscript is subscript11
or multiple‑subscript12
or subscript‑triplet13
or multiple‑subscript‑triplet14
or vector‑subscript15

R922 subscript‑triplet is [subscript] : [subscript] [: stride]16

R923 multiple‑subscript‑triplet is @ [int‑expr] : [int‑expr] [: int‑expr]17

C928 Amultiple‑subscript‑triplet shall have at least one int‑expr that is an array of rank one. The int‑exprs18
in amultiple‑subscript‑triplet shall be conformable.19

R924 stride is scalar‑int‑expr20

R925 vector‑subscript is int‑expr21

C929 (R925) A vector‑subscript shall be an integer array expression of rank one.22

C930 (R922) The second subscript shall not be omitted from a subscript‑triplet in the last dimension of23
an assumed‑size array.24

C931 If amultiple‑subscript‑triplet is the last section‑subscript in the section‑subscript‑list of an assumed‑25
size array, the second int‑expr shall appear.26

1 An array element is a scalar. An array section is an array. If a substring‑range appears in an array‑section,27
each element is the designated substring of the corresponding element of the array section.28

2 The value of a subscript in an array element shall be within the bounds for its dimension.29

NOTE 1
For example, with the declarations:

REAL A (10, 10)
CHARACTER (LEN = 10) B (5, 5, 5)

A (1, 2) is an array element, A (1:N:2, M) is a rank‑one array section, and B (:, :, :) (2:3) is an array of shape (5, 5, 5)
whose elements are substrings of length 2 of the corresponding elements of B.

150 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2
Unless otherwise speciϐied, an array element or array section does not have an attribute of the whole array. In
particular, an array element or an array section does not have the POINTER or ALLOCATABLE attribute.

NOTE 3
Examples of array elements and array sections are:

ARRAY_A(1:N:2)%ARRAY_B(I, J)%STRING(K)(:) array section
SCALAR_PARENT%ARRAY_FIELD(J) array element
SCALAR_PARENT%ARRAY_FIELD(1:N) array section
SCALAR_PARENT%ARRAY_FIELD(1:N)%SCALAR_FIELD array section

9.5.3.2 Sequences of subscripts and subscript triplets1

1 Amultiple‑subscript speciϐies a sequence of subscripts, the number of which is equal to the size ofmultiple‑2
subscript. The effect is as if the array elements were speciϐied individually as subscripts of consecutive3
dimensions (not preceded by @).4

2 In amultiple‑subscript‑triplet, if the ϐirst int‑expr does not appear, the effect is as if it were a rank‑one array5
whose element values are the lower bounds of the corresponding dimensions. If the second int‑expr does6
not appear, the effect is as if it were a rank‑one array whose element values are the upper bounds of the7
corresponding dimensions. If the third int‑expr does not appear, the effect is as if it appearedwith the value8
one.9

3 A multiple‑subscript‑triplet speciϐies a sequence of subscript triplets, the number of which is equal to the10
size of one of its array int‑exprs. If any int‑expr is a scalar, the effect is as if it were broadcast to the shape of11
one that is an array. An element of the ϐirst array acts as if it were the ϐirst subscript in a subscript triplet;12
the corresponding element of the second array acts as if it were the second subscript; the corresponding13
element of the third array acts as if it were the stride.14

NOTE
Examples of references to parts of arrays using one‑dimensional arrays to specify sequences of subscripts or se‑
quences of subscript triplets, assuming V1, V2, and V3 are rank‑one arrays, are:

A(@[3,5]) ! Array element, equivalent to A(3, 5)
A(6, @[3,5], 1) ! Array element, equivalent to A(6, 3, 5, 1)
A(@[1,2]:[3,4]) ! Array section, equivalent to A(1:3, 2:4)
A(@:[4,6]:2, :, 1) ! Array section with stride, equivalent to A(:4:2, :6:2, :, 1)
A(@V1, :, @V2) ! Rank-one array section, the rank of A being

! SIZE (V1) + 1 + SIZE (V2).
B(@V1, :, @V2:) ! Rank 1 + SIZE (V2) array section, the rank of B being

! SIZE (V1) + 1 + SIZE (V2).
C(@V1, :, @::V3) ! Rank 1 + SIZE (V3) array section, the rank of C being

! SIZE (V1) + 1 + SIZE (V3).

9.5.3.3 Array element order15

1 The elements of an array form a sequence known as the array element order. The position of an array16
element in this sequence is determined by the subscript order value of the subscript list designating the17
element. The subscript order value is computed from the formulas in Table 9.1.18

Table 9.1— Subscript order value
Rank Subscript bounds Subscript list Subscript order value
1 j1:k1 s1 1 + (s1 − j1)

2 j1:k1,j2:k2 s1, s2 1 + (s1 − j1)
+(s2 − j2)× d1

J3/25‑007 151

J3/25‑007 WD 1539‑1 2024‑12‑29

Subscript order value (cont.)

Rank Subscript bounds Subscript list Subscript order value

3 j1:k1, j2:k2, j3:k3 s1, s2, s3
1 + (s1 − j1)
+(s2 − j2)× d1
+(s3 − j3)× d2 × d1

... ...
...

...

15 j1:k1, . . . , j15:k15 s1, . . . , s15
1 + (s1 − j1)
+(s2 − j2)× d1
+ . . .
+(s15−j15)×d14×. . .×d1

NOTE 1 di = max (ki − ji + 1, 0) is the size of the ith dimension.
NOTE 2 If the size of the array is nonzero, ji ≤ si ≤ ki for all i = 1, 2, …, 15.

9.5.3.4 Array sections1

9.5.3.4.1 Section subscript lists2

1 In an array‑section having a section‑subscript‑list, each subscript triplet and vector‑subscript in the section3
subscript list indicates a sequence of subscripts, which may be empty. Each subscript in such a sequence4
shall be within the bounds for its dimension unless the sequence is empty. The array section is the set of5
elements from the array determined by all possible subscript lists obtainable from the single subscripts or6
sequences of subscripts speciϐied by each section subscript.7

2 In an array‑section with no section‑subscript‑list, the rank and shape of the array is the rank and shape of8
the part‑ref with nonzero rank; otherwise, the rank of the array section is the number of subscript triplets9
and vector subscripts in the section subscript list. The shape is the rank‑one array whose ith element is10
the number of integer values in the sequence indicated by the ith subscript triplet or vector subscript. If11
any of these sequences is empty, the array section has size zero. The subscript order of the elements of an12
array section is that of the array data object that the array section represents.13

9.5.3.4.2 Subscript triplet14

1 A subscript triplet designates a regular sequence of subscripts consisting of zero or more subscript values.15
The stride in the subscript triplet speciϐies the increment between the subscript values. The subscripts and16
stride of a subscript triplet are optional. An omitted ϐirst subscript in a subscript triplet is equivalent to a17
subscript whose value is the lower bound for the array and an omitted second subscript is equivalent to18
the upper bound. An omitted stride is equivalent to a stride of 1.19

2 The stride shall not be zero.20

3 When the stride is positive, the subscripts speciϐied by a triplet forma regularly spaced sequence of integers21
beginningwith the ϐirst subscript and proceeding in increments of the stride to the largest such integer not22
greater than the second subscript; the sequence is empty if the ϐirst subscript is greater than the second.23

NOTE 1
For example, suppose an array is declared as A (5, 4, 3). The section A (3 : 5, 2, 1 : 2) is the array of shape (3, 2):

A (3, 2, 1) A (3, 2, 2)
A (4, 2, 1) A (4, 2, 2)
A (5, 2, 1) A (5, 2, 2)

4 When the stride is negative, the sequence begins with the ϐirst subscript and proceeds in increments of24

152 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

the stride down to the smallest such integer equal to or greater than the second subscript; the sequence is1
empty if the second subscript is greater than the ϐirst.2

NOTE 2
For example, if an array is declared B (10), the section B (9 : 1 : −2) is the array of shape (5) whose elements are
B (9), B (7), B (5), B (3), and B (1), in that order.

NOTE 3
A subscript in a subscript triplet need not be within the declared bounds for that dimension if all values used in
selecting the array elements are within the declared bounds.
For example, if an array is declared as B (10), the array section B (3 : 11 : 7) is the array of shape (2) consisting of
the elements B (3) and B (10), in that order.

9.5.3.4.3 Vector subscript3

1 A vector subscript designates a sequence of subscripts corresponding to the values of the elements of the4
expression. Each element of the expression shall be deϐined.5

2 An array section with a vector subscript shall not be ϐinalized by a nonelemental ϐinal subroutine.6

3 If a vector subscript has two or more elements with the same value, an array section with that vector sub‑7
script is not deϐinable and shall not be deϐined or become undeϐined.8

NOTE
For example, suppose Z is a two‑dimensional array of shape [5, 7] and U and V are one‑dimensional arrays of shape
(3) and (4), respectively. Assume the values of U and V are:

U = [1, 3, 2]
V = [2, 1, 1, 3]

Then Z (3, V) consists of elements from the third row of Z in the order:
Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3)

Z (U, 2) consists of the column elements:
Z (1, 2) Z (3, 2) Z (2, 2)

and Z (U, V) consists of the elements:
Z (1, 2) Z (1, 1) Z (1, 1) Z (1, 3)
Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3)
Z (2, 2) Z (2, 1) Z (2, 1) Z (2, 3)

Because Z (3, V) and Z (U, V) contain duplicate elements fromZ, the sections Z (3, V) and Z (U, V) cannot be redeϐined
as sections.

9.5.4 Simply contiguous array designators9

1 A section‑subscript‑list speciϐies a simply contiguous section if and only if it does not have a vector subscript10
and11

• all but the last subscript‑triplet is a colon,12
• the last subscript‑triplet does not have a stride, and13
• no subscript‑triplet is preceded by a section‑subscript that is a subscript.14

2 An array designator is simply contiguous if and only if it is15

• an object‑name that has the CONTIGUOUS attribute,16

J3/25‑007 153

J3/25‑007 WD 1539‑1 2024‑12‑29

• an object‑name that is not a pointer, not assumed‑shape, and not assumed‑rank,1
• a structure‑componentwhose ϐinal part‑name is an array and that either has the CONTIGUOUS attrib‑2
ute or is not a pointer, or3

• an array section4

– that is not a complex‑part‑designator,5
– that does not have a substring‑range,6
– whose ϐinal part‑ref has nonzero rank,7
– whose rightmost part‑name has the CONTIGUOUS attribute or is neither assumed‑shape nor a8
pointer, and9

– which either does not have a section‑subscript‑list, or has a section‑subscript‑listwhich speciϐies10
a simply contiguous section.11

3 An array variable is simply contiguous if and only if it is a simply contiguous array designator or a reference12
to a function that returns a pointer with the CONTIGUOUS attribute.13

NOTE
Array sections that are simply contiguous include column, plane, cube, and hypercube subobjects of a simply con‑
tiguous base object, for example:

ARRAY1 (10:20, 3) Passes part of the third column of ARRAY1.
X3D (:, i:j, 2) Passes part of the second plane of X3D (or the whole

plane if i==LBOUND (X3D, 2) and j==UBOUND (X3D, 2).
Y5D (:, :, :, :, 7) Passes the seventh hypercube of Y5D.

All simply contiguous designators designate contiguous objects.

9.6 Image selectors14

1 An image selector determines the image index for a coindexed object.15

R926 image‑selector is lbracket cosubscript‑list [, image‑selector‑spec‑list] rbracket16

R927 cosubscript is scalar‑int‑expr17

R928 image‑selector‑spec is NOTIFY = notify‑variable18
or STAT = stat‑variable19
or TEAM = team‑value20
or TEAM_NUMBER = scalar‑int‑expr21

C932 No speciϐier shall appear more than once in a given image‑selector‑spec‑list.22

C933 A NOTIFY= image‑selector‑spec shall appear only in the designator of the variable of an intrinsic23
assignment statement.24

C934 TEAM and TEAM_NUMBER shall not both appear in the same image‑selector‑spec‑list.25

C935 A stat‑variable in an image‑selector shall not be a coindexed object.26

2 Thenumber of cosubscripts shall be equal to the corank of the object. The value of a cosubscript in an image27
selector shall be within the cobounds for its codimension. Taking account of the cobounds, the cosubscript28
list in an image selector determines the image index in the sameway that a subscript list in an array element29
determines the subscript order value (9.5.3.3), taking account of the bounds.30

154 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3 If a TEAM= speciϐier appears in an image‑selector, the team of the image selector is speciϐied by team‑value,1
which shall identify the current or an ancestor team; the object shall be an established coarray in that team.2
If a TEAM_NUMBER= speciϐier appears in an image‑selector and the current team is not the initial team, the3
valueof the scalar‑int‑expr shall be equal to the valueof a teamnumber for a sibling teamof the current team4
and the teamof the image selector is that team; the object shall be an established coarray in theparent of the5
current team, or be an associating entity of the CHANGE TEAM construct. If a TEAM_NUMBER= speciϐier6
appears in an image‑selector and the current team is the initial team, the value of scalar‑int‑expr shall be the7
team number for the initial team; the object shall be an established coarray in the initial team. Otherwise,8
the team of the image selector is the current team.9

4 Execution of an assignment statement whose variable has a NOTIFY= speciϐier atomically increments the10
count of the corresponding notify variable on the image speciϐied by the image selector, and does not wait11
for that image to execute a corresponding NOTIFY WAIT statement.12

5 An image selector shall specify an image index value that is not greater than the number of images in the13
team of the image selector, and identiϐies the image with that index in that team.14

6 Execution of a statement containing an image‑selector with a STAT= speciϐier causes the stat‑variable to15
becomedeϐined. If the designator is part of an operand that is evaluated or is a variable that is being deϐined16
or partly deϐined, and the object designated is on a failed image, the stat‑variable is deϐined with the value17
STAT_FAILED_IMAGE (16.10.2.28) in the intrinsicmodule ISO_FORTRAN_ENV; otherwise, it is deϐinedwith18
the value zero.19

7 The denotation of a stat‑variable in an image‑selector shall not depend on the evaluation of any entity in20
the same statement. The value of an expression shall not depend on the value of any stat‑variable that21
appears in the same statement. The value of a stat‑variable in an image‑selector shall not be affected by the22
execution of any part of the statement, other than bywhether the image speciϐied by the image‑selector has23
failed.24

NOTE
For example, if there are 16 images and the coarray A is declared

REAL :: A(10)[5,*]
A(:)[1,4] is valid because it speciϐies image 16, but A(:)[2,4] is invalid because it speciϐies image 17.

9.7 Dynamic association25

9.7.1 ALLOCATE statement26

9.7.1.1 Form of the ALLOCATE statement27

1 The ALLOCATE statement dynamically creates pointer targets and allocatable variables.28

R929 allocate‑stmt is ALLOCATE ([type‑spec ::] allocation‑list29
[, alloc‑opt‑list])30

R930 alloc‑opt is ERRMSG = errmsg‑variable31
or MOLD = source‑expr32
or SOURCE = source‑expr33
or STAT = stat‑variable34

R931 errmsg‑variable is scalar‑default‑char‑variable35

J3/25‑007 155

J3/25‑007 WD 1539‑1 2024‑12‑29

R932 source‑expr is expr1

R933 allocation is allocate‑object [(allocate‑shape‑spec‑list)]2
[lbracket allocate‑coarray‑spec rbracket]3

or ([lower‑bounds‑expr :] upper‑bounds‑expr)4
[lbracket allocate‑coarray‑spec rbracket]5

R934 allocate‑object is variable‑name6
or structure‑component7

R935 allocate‑shape‑spec is [lower‑bound‑expr :] upper‑bound‑expr8

R936 lower‑bound‑expr is scalar‑int‑expr9

R937 lower‑bounds‑expr is int‑expr10

R938 upper‑bound‑expr is scalar‑int‑expr11

R939 upper‑bounds‑expr is int‑expr12

R940 allocate‑coarray‑spec is [allocate‑coshape‑spec‑list ,] [lower‑bound‑expr :] *13

R941 allocate‑coshape‑spec is [lower‑bound‑expr :] upper‑bound‑expr14

C936 (R934) Each allocate‑object shall be a data pointer or an allocatable variable.15

C937 (R929) If any allocate‑object has a deferred type parameter, is unlimited polymorphic, or is of ab‑16
stract type, either type‑spec or source‑expr shall appear.17

C938 (R929) If type‑spec appears, it shall specify a type with which each allocate‑object is type compat‑18
ible.19

C939 (R929) A type‑param‑value in a type‑spec shall be an asterisk if and only if each allocate‑object is a20
dummy argument for which the corresponding type parameter is assumed.21

C940 (R929) If type‑spec appears, the kind type parameter values of each allocate‑object shall be the22
same as the corresponding type parameter values of the type‑spec.23

C941 (R929) If an allocate‑object is a coarray, type‑spec shall not specify type C_PTR or type C_FUNPTR24
from the intrinsic module ISO_C_BINDING, or type TEAM_TYPE from the intrinsic module ISO_‑25
FORTRAN_ENV.26

C942 (R929) If an allocate‑object is unlimited polymorphic, type‑spec shall not specify a type that has a27
coarray potential subobject component.28

C943 (R929) If an allocate‑object is an array, either allocate‑shape‑spec‑list or upper‑bounds‑expr shall29
appear in its allocation, or source‑expr shall appear in the ALLOCATE statement and have the same30
rank as the allocate‑object.31

C944 (R933) If allocate‑object is scalar, allocate‑shape‑spec‑list shall not appear.32

C945 (R933) An allocate‑coarray‑spec shall appear if and only if the allocate‑object is a coarray.33

C946 (R933) The number of allocate‑shape‑specs in an allocate‑shape‑spec‑list shall be the same as the34
rank of the allocate‑object. The number of allocate‑coshape‑specs in an allocate‑coarray‑spec shall35
be one less than the corank of the allocate‑object.36

156 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C947 If upper‑bounds‑expr and lower‑bounds‑expr both appear in an allocation, at least one of them shall1
be a rank‑one array of constant size equal to the rank of allocate‑object. Otherwise, if upper‑bounds‑2
expr appears in an allocation, it shall be a rank‑one array of constant size equal to the rank of3
allocate‑object.4

C948 (R930) No alloc‑opt shall appear more than once in a given alloc‑opt‑list.5

C949 (R929) At most one of source‑expr and type‑spec shall appear.6

C950 (R929) Each allocate‑object shall be type compatible (7.3.3) with source‑expr. If SOURCE= appears,7
source‑expr shall be a scalar or have the same rank as each allocate‑object.8

C951 (R929) If source‑expr appears, the kind type parameters of each allocate‑object shall have the same9
values as the corresponding type parameters of source‑expr.10

C952 (R929) The declared type of source‑expr shall not be C_PTR or C_FUNPTR from the intrinsicmodule11
ISO_C_BINDING, or TEAM_TYPE from the intrinsicmodule ISO_FORTRAN_ENV, if an allocate‑object12
is a coarray.13

C953 (R929) If an allocate‑object is unlimited polymorphic, the declared type of source‑expr shall not be14
a type that has a coarray potential subobject component.15

C954 (R929) If SOURCE= appears, the declared type of source‑expr shall not be EVENT_TYPE, LOCK_‑16
TYPE, orNOTIFY_TYPE from the intrinsicmodule ISO_FORTRAN_ENV, or have apotential subobject17
component that is a coarray or of type EVENT_TYPE, LOCK_TYPE, or NOTIFY_TYPE.18

C955 (R934) An allocate‑object shall not be a coindexed object.19

NOTE 1
A pointer or allocatable component of a coarray can only be allocated by its own image.

TYPE (SOMETHING), ALLOCATABLE :: T[:]
…
ALLOCATE (T[*]) Allowed ‑ implies synchronization.
ALLOCATE (T%AAC (N)) Allowed ‑ allocated by its own image.
ALLOCATE (T[Q]%AAC (N)) Not allowed, because it is coindexed.

2 An allocate‑object or a bound or type parameter of an allocate‑object shall not depend on the value of stat‑20
variable, the value of errmsg‑variable, or on the value, bounds, length type parameters, allocation status, or21
association status of any allocate‑object in the same ALLOCATE statement.22

3 source‑expr shall not be allocated within the ALLOCATE statement in which it appears; nor shall it depend23
on the value, bounds, deferred type parameters, allocation status, or association status of any allocate‑24
object in that statement.25

4 If an ALLOCATE statement has a SOURCE= speciϐier and an allocate‑object that is a coarray, source‑expr26
shall not have a dynamic type of C_PTRorC_FUNPTR from the intrinsicmodule ISO_C_BINDING, or EVENT_‑27
TYPE, LOCK_TYPE, NOTIFY_TYPE, or TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, or have a28
subcomponent whose dynamic type is EVENT_TYPE, LOCK_TYPE, NOTIFY_TYPE, or TEAM_TYPE.29

5 If type‑spec is speciϐied, each allocate‑object is allocated with the speciϐied dynamic type and type para‑30
meter values; if source‑expr is speciϐied, each allocate‑object is allocated with the dynamic type and type31
parameter values of source‑expr; otherwise, each allocate‑object is allocatedwith its dynamic type the same32
as its declared type. If an allocate‑object is unlimited polymorphic, the dynamic type of source‑expr shall33
not have a coarray potential subobject component.34

J3/25‑007 157

J3/25‑007 WD 1539‑1 2024‑12‑29

6 If a type‑param‑value in a type‑spec in an ALLOCATE statement is an asterisk, it denotes the current value1
of that assumed type parameter. If it is an expression, subsequent redeϐinition or undeϐinition of any entity2
in the expression does not affect the type parameter value.3

NOTE 2
An example of an ALLOCATE statement is:

ALLOCATE (X (N), B (-3 : M, 0:9), STAT = IERR_ALLOC)

9.7.1.2 Execution of an ALLOCATE statement4

1 When an ALLOCATE statement is executed for an array for which allocate‑shape‑spec‑list is speciϐied, the5
values of the lower bound and upper bound expressions determine the bounds of the array. Subsequent6
redeϐinition or undeϐinition of any entities in the bound expressions do not affect the array bounds. If the7
lower bound is omitted, the default value is one. If the upper bound is less than the lower bound, the extent8
in that dimension is zero and the array has zero size.9

2 When an ALLOCATE statement is executed for an array for which upper‑bounds‑expr is speciϐied, it de‑10
termines the upper bounds of the array. Subsequent redeϐinition or undeϐinition of an entity in a bounds11
expression does not affect the array bounds. If lower‑bounds‑expr appears, it determines the lower bounds;12
otherwise the default value is one. If lower‑bounds‑expr or upper‑bounds‑expr is scalar, the effect is as if it13
were broadcast to the shape of the other. If any element of upper‑bounds‑expr is less than the correspond‑14
ing element of lower‑bounds‑expr, the extent in the corresponding dimension is zero and the array has zero15
size.16

3 When an ALLOCATE statement is executed for a coarray, the values of the lower cobound and upper co‑17
bound expressions determine the cobounds of the coarray. Subsequent redeϐinition or undeϐinition of any18
entities in the cobound expressions do not affect the cobounds. If the lower cobound is omitted, the default19
value is 1. The upper cobound shall not be less than the lower cobound.20

4 If an allocation speciϐies a coarray, its dynamic type and the values of corresponding type parameters shall21
be the same on every active image in the current team. The values of corresponding bounds and corres‑22
ponding cobounds shall be the same on those images. If the coarray is a dummy argument, the ultimate23
arguments (15.5.2.4) on those images shall be corresponding coarrays. If the coarray is an ultimate com‑24
ponent of a dummy argument, the ultimate arguments on those images shall be declared with the same25
name in the same scoping unit; if the ultimate argument is an unsaved local variable of a recursive proced‑26
ure, the execution of the ALLOCATE statement shall be at the same depth of recursion of that procedure on27
every active image in the current team. If the coarray is an ultimate component of an array element, the28
element shall have the same position in array element order on those images. If the coarray is an unsaved29
local variable of a recursive procedure, the execution of the ALLOCATE statement shall be at the samedepth30
of recursion of that procedure on every active image in the current team.31

5 When an ALLOCATE statement is executed for which an allocate‑object is a coarray, there is an implicit32
synchronization of all active images in the current team. If the current team contains a stopped or failed33
image, an error condition occurs. If no other error condition occurs, execution on the active images of34
the segment (11.7.2) following the statement is delayed until all other active images in the current team35
have executed the same statement the same number of times in this team. The segments that executed36
before the ALLOCATE statement on an active image of this team precede the segments that execute after37
the ALLOCATE statement on another active image of this team. The coarray shall not become allocated on38
an image unless it is successfully allocated on all active images in this team.39

158 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
When an image executes an ALLOCATE statement, communication is not necessarily involved apart from any re‑
quired for synchronization. The image allocates its coarray and records how the corresponding coarrays on other
images are to be addressed. The processor is not required to detect violations of the rule that the bounds are the
same on all images of the current team, nor is it responsible for detecting or resolving deadlock problems (such as
two images waiting on different ALLOCATE statements.).

6 If source‑expr is a pointer, it shall be associated with a target. If source‑expr is allocatable, it shall be alloc‑1
ated.2

7 When an ALLOCATE statement is executed for an array with no allocate‑shape‑spec‑list or upper‑bounds‑3
expr, the array is allocated with the shape of source‑expr, and with each lower bound equal to the corres‑4
ponding element of LBOUND (source‑expr). Subsequent changes to the bounds of source‑expr do not affect5
the array bounds.6

8 If SOURCE= appears, source‑expr shall be conformable with allocation. If an allocate‑object is not poly‑7
morphic and the source‑expr is polymorphic with a dynamic type that differs from its declared type, the8
value provided for that allocate‑object is the ancestor component of the source‑expr that has the type of9
the allocate‑object; otherwise the value provided is the value of the source‑expr. On successful allocation, if10
allocate‑object and source‑expr have the same rank the value of allocate‑object becomes the value provided,11
otherwise the value of each element of allocate‑object becomes the value provided. The source‑expr is eval‑12
uated exactly once for each execution of an ALLOCATE statement.13

9 If MOLD= appears and source‑expr is a variable, its value need not be deϐined.14

10 If type‑spec appears and the value of a length type parameter it speciϐies differs from the value of the corres‑15
ponding nondeferred type parameter speciϐied in the declaration of any allocate‑object, an error condition16
occurs. If the value of a nondeferred length type parameter of an allocate‑object differs from the value of17
the corresponding type parameter of source‑expr, an error condition occurs.18

11 The set of error conditions for anALLOCATE statement is processor dependent. If an error condition occurs19
during execution of an ALLOCATE statement that does not contain the STAT= speciϐier, error termination20
is initiated. The STAT= speciϐier is described in 9.7.4. The ERRMSG= speciϐier is described in 9.7.5.21

9.7.1.3 Allocation of allocatable variables22

1 The allocation status of an allocatable entity is one of the following at any time.23

• The status of an allocatable variable becomes “allocated” if it is allocated by an ALLOCATE statement,24
if it is allocated during assignment, or if it is given that status by the intrinsic subroutine MOVE_‑25
ALLOC (16.9.147). An allocatable variablewith this statusmaybe referenced, deϐined, or deallocated;26
allocating it causes an error condition in theALLOCATE statement. The result of the intrinsic function27
ALLOCATED (16.9.13) is true for such a variable.28

• An allocatable variable has a status of “unallocated” if it is not allocated. The status of an allocatable29
variable becomes unallocated if it is deallocated (9.7.3) or if it is given that status by the intrinsic30
subroutine MOVE_ALLOC. An allocatable variable with this status shall not be referenced or deϐined.31
It shall not be supplied as an actual argument corresponding to a nonallocatable nonoptional dummy32
argument, except to certain intrinsic inquiry functions. It may be allocatedwith the ALLOCATE state‑33
ment. Deallocating it causes an error condition in the DEALLOCATE statement. The result of the34
intrinsic function ALLOCATED (16.9.13) is false for such a variable.35

2 At the beginning of execution of a program, allocatable variables are unallocated.36

J3/25‑007 159

J3/25‑007 WD 1539‑1 2024‑12‑29

3 When the allocation status of an allocatable variable changes, the allocation status of any associated allocat‑1
able variable changes accordingly. Allocation of an allocatable variable establishes values for the deferred2
type parameters of all associated allocatable variables.3

4 An unsaved allocatable local variable of a procedure has a status of unallocated at the beginning of each4
invocation of the procedure. An unsaved allocatable local variable of a construct has a status of unallocated5
at the beginning of each execution of the construct.6

5 When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate compon‑7
ents have an allocation status of unallocated unless the SOURCE= speciϐier appears and the corresponding8
component of the source‑expr is allocated.9

6 If the evaluation of a functionwould change the allocation status of a variable and if a reference to the func‑10
tion appears in an expression in which the value of the function is not needed to determine the value of the11
expression, the allocation status of the variable after evaluation of the expression is processor dependent.12

9.7.1.4 Allocation of pointer targets13

1 Allocation of a pointer creates an object that implicitly has the TARGET attribute. Following successful exe‑14
cution of an ALLOCATE statement for a pointer, the pointer is associated with the target and can be used to15
reference or deϐine the target. Additional pointers can become associated with the pointer target or a part16
of the pointer target by pointer assignment. It is not an error to allocate a pointer that is already associated17
with a target. In this case, a new pointer target is created as required by the attributes of the pointer and18
any array bounds, type, and type parameters speciϐied by the ALLOCATE statement. The pointer is then19
associated with this new target. Any previous association of the pointer with a target is broken. If the pre‑20
vious target had been created by allocation, it becomes inaccessible unless other pointers are associated21
with it. The intrinsic function ASSOCIATED (16.9.20) can be used to determinewhether a pointer that does22
not have undeϐined association status is associated.23

2 At the beginning of execution of a function whose result is a pointer, the association status of the result24
pointer is undeϐined. Before such a function returns, it shall either associate a target with this pointer or25
cause the association status of this pointer to become disassociated.26

9.7.2 NULLIFY statement27

R942 nullify‑stmt is NULLIFY (pointer‑object‑list)28

R943 pointer‑object is variable‑name29
or structure‑component30
or proc‑pointer‑name31

C956 (R943) Each pointer‑object shall have the POINTER attribute.32

1 A pointer‑object shall not depend on the value, bounds, or association status of another pointer‑object in33
the same NULLIFY statement.34

2 Execution of a NULLIFY statement causes each pointer‑object to become disassociated.35

NOTE
When a NULLIFY statement is applied to a polymorphic pointer (7.3.2.3), its dynamic type becomes the same as its
declared type.

160 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

9.7.3 DEALLOCATE statement1

9.7.3.1 Form of the DEALLOCATE statement2

1 The DEALLOCATE statement causes allocatable variables to be deallocated; it causes pointer targets to be3
deallocated and the pointers to be disassociated.4

R944 deallocate‑stmt is DEALLOCATE (allocate‑object‑list [, dealloc‑opt‑list])5

R945 dealloc‑opt is STAT = stat‑variable6
or ERRMSG = errmsg‑variable7

C957 (R945) No dealloc‑opt shall appear more than once in a given dealloc‑opt‑list.8

2 An allocate‑object shall not depend on the value, bounds, allocation status, or association status of another9
allocate‑object in the sameDEALLOCATE statement; it also shall not dependon the value of the stat‑variable10
or errmsg‑variable in the same DEALLOCATE statement.11

3 The set of error conditions for a DEALLOCATE statement is processor dependent. If an error condition12
occurs during execution of a DEALLOCATE statement that does not contain the STAT= speciϐier, error ter‑13
mination is initiated. The STAT= speciϐier is described in 9.7.4. The ERRMSG= speciϐier is described in14
9.7.5.15

4 When more than one allocated object is deallocated by execution of a DEALLOCATE statement, the order16
of deallocation is processor dependent.17

NOTE
An example of a DEALLOCATE statement is:

DEALLOCATE (X, B)

9.7.3.2 Deallocation of allocatable variables18

1 Deallocating an unallocated allocatable variable causes an error condition in the DEALLOCATE statement.19
Deallocating an allocatable variable with the TARGET attribute causes the pointer association status of any20
pointer associated with it to become undeϐined. An allocatable variable shall not be deallocated if it or any21
subobject of it is argument associated with a dummy argument or construct associated with an associate22
name.23

2 When the execution of a procedure is terminated by execution of a RETURN or END statement, an unsaved24
allocatable local variable of the procedure retains its allocation and deϐinition status if it is a function result25
or a subobject thereof; otherwise, if it is allocated it will be deallocated.26

3 When a BLOCK construct terminates, any unsaved allocated allocatable local variable of the construct is27
deallocated.28

4 If an executable construct references a function whose result is allocatable or has an allocatable subobject,29
and the function reference is executed, an allocatable result and any allocated allocatable subobject of the30
result is deallocated after execution of the innermost executable construct containing the reference.31

5 If a functionwhose result is allocatable or has an allocatable subobject is referenced in the speciϐicationpart32
of a scoping unit, and the function reference is executed, an allocatable result and any allocated allocatable33
subobject of the result is deallocated before execution of the executable constructs of the scoping unit.34

J3/25‑007 161

J3/25‑007 WD 1539‑1 2024‑12‑29

6 When a procedure is invoked, any allocated allocatable object that is an actual argument corresponding1
to an INTENT (OUT) allocatable dummy argument is deallocated; any allocated allocatable object that is a2
subobject of an actual argument corresponding to an INTENT (OUT) dummy argument is deallocated. If a3
Fortran procedure that has an INTENT (OUT) allocatable dummy argument is invoked by a C function and4
the corresponding argument in the C function call is a C descriptor that describes an allocated allocatable5
variable, the variable is deallocated on entry to the Fortran procedure. If a C function is invoked from a6
Fortran procedure via an interface with an INTENT (OUT) allocatable dummy argument and the corres‑7
ponding actual argument in the reference to the C function is an allocated allocatable variable, the variable8
is deallocated on invocation (before execution of the C function begins).9

7 When an intrinsic assignment statement (10.2.1.3) is executed, any noncoarray allocated allocatable sub‑10
object of the variable is deallocated before the assignment takes place.11

8 Whena variable of derived type is deallocated, any allocated allocatable subobject is deallocated. If an error12
condition occurs during deallocation, it is processor dependent whether an allocated allocatable subobject13
is deallocated.14

9 If an allocatable component is a subobject of a ϐinalizable object, any ϐinal subroutine for that object is15
executed before the component is automatically deallocated.16

10 When a statement that deallocates a coarray or an object with a coarray potential subobject component is17
executed, there is an implicit synchronization of all active images in the current team. If the current team18
contains a stopped or failed image, an error condition occurs. If no other error condition occurs, execution19
on the active images of the segment (11.7.2) following the statement is delayed until all other active images20
in the current teamhave executed the same statement the samenumber of times in this team. The segments21
that executed before the statement on an active image of this team precede the segments that execute after22
the statement on another active image of this team. A coarray shall not become deallocated on an image23
unless it is successfully deallocated on all active images in this team.24

11 If an allocate‑object is a coarray dummy argument, the ultimate arguments (15.5.2.4) on those images shall25
be corresponding coarrays.26

12 The effect of automatic deallocation is the same as that of a DEALLOCATE statement without a dealloc‑opt‑27
list.28

NOTE 1
In the following example:

SUBROUTINE PROCESS
REAL, ALLOCATABLE :: TEMP (:)
REAL, ALLOCATABLE, SAVE :: X (:)
…

END SUBROUTINE PROCESS
on return from subroutine PROCESS, the allocation status of X is preserved because X has the SAVE attribute. TEMP
does not have the SAVE attribute, so it will be deallocated if it was allocated. On the next invocation of PROCESS,
TEMP will have an allocation status of unallocated.

NOTE 2
For example, executing a RETURN, END, or END BLOCK statement, or deallocating an object that has an allocat‑
able subobject, can cause deallocation of a coarray, and thus an implicit synchronization of all active images in the
current team.

162 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

9.7.3.3 Deallocation of pointer targets1

1 If a pointer appears in a DEALLOCATE statement, its association status shall be deϐined. Deallocating a2
pointer that is disassociated or whose target was not created by an ALLOCATE statement causes an error3
condition in the DEALLOCATE statement. If a pointer is associated with an allocatable entity, the pointer4
shall not be deallocated. A pointer shall not be deallocated if its target or any subobject thereof is argument5
associated with a dummy argument or construct associated with an associate name.6

2 If a pointer appears in a DEALLOCATE statement, it shall be associatedwith thewhole of an object that was7
created by allocation. The pointer shall have the same dynamic type and type parameters as the allocated8
object, and if the allocated object is an array the pointer shall be an array whose elements are the same9
as those of the allocated object in array element order. Deallocating a pointer target causes the pointer10
association status of any other pointer that is associatedwith the target or a portion of the target to become11
undeϐined.12

9.7.4 STAT= speciϐier13

R946 stat‑variable is scalar‑int‑variable14

1 A stat‑variable should have a decimal exponent range of at least four; otherwise the processor‑dependent15
error code might not be representable in the variable.16

2 This rest of this subclause applies where an alloc‑opt or dealloc‑opt that is a STAT= speciϐier appears in an17
ALLOCATE or DEALLOCATE statement.18

3 The stat‑variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement in19
which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or20
association status of any allocate‑object in that statement. The stat‑variable shall not depend on the value21
of the errmsg‑variable.22

4 Successful execution of the ALLOCATE or DEALLOCATE statement causes the stat‑variable to become def‑23
ined with a value of zero.24

5 If an ALLOCATE statement with a coarray allocate‑object, or a DEALLOCATE statement with an allocate‑25
object that is a coarray or which has a coarray potential subobject component, is executed when the cur‑26
rent team contains a stopped image, the stat‑variable becomes deϐined with the value STAT_STOPPED_IM‑27
AGE from the intrinsic module ISO_FORTRAN_ENV (16.10.2). Otherwise, if such a statement is executed28
when the current team contains a failed image, and no other error condition occurs, the stat‑variable be‑29
comes deϐined with value STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV. If any other30
error condition occurs during execution of the ALLOCATE or DEALLOCATE statement, the stat‑variable be‑31
comes deϐined with a processor‑dependent positive integer value different from STAT_STOPPED_IMAGE32
and STAT_FAILED_IMAGE.33

6 If stat‑variable became deϐined with the value STAT_FAILED_IMAGE, each allocate‑object is successfully34
allocated or deallocated on all the active images of the current team. If any other error condition occurs,35
each allocate‑object has a processor‑dependent status:36

• each allocate‑object that was successfully allocated shall have an allocation status of allocated or a37
pointer association status of associated;38

• each allocate‑object that was successfully deallocated shall have an allocation status of unallocated39
or a pointer association status of disassociated;40

• each allocate‑object that was not successfully allocated or deallocated shall retain its previous alloc‑41
ation status or pointer association status.42

J3/25‑007 163

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
The status of objects that were not successfully allocated or deallocated can be individually checked with the in‑
trinsic functions ALLOCATED or ASSOCIATED.

9.7.5 ERRMSG= speciϐier1

1 The errmsg‑variable shall not be an allocate‑object of the ALLOCATE or DEALLOCATE statement in which2
it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or associ‑3
ation status of any allocate‑object in that statement. The errmsg‑variable shall not depend on the value of4
the stat‑variable.5

2 If an error condition occurs during execution of an ALLOCATE or DEALLOCATE statement with an ER‑6
RMSG= speciϐier, the errmsg‑variable is assigned an explanatory message, as if by intrinsic assignment. If7
no such condition occurs, the deϐinition status and value of errmsg‑variable are unchanged.8

164 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

10 Expressions and assignment1

10.1 Expressions2

10.1.1 Expression semantics3

1 An expression represents either a data object reference or a computation, and its value is either a scalar or4
an array. Evaluation of an expression produces a value, which has a type, type parameters (if appropriate),5
and a shape (10.1.9). The corank of an expression that is not a variable is zero.6

10.1.2 Form of an expression7

10.1.2.1 Overall expression syntax8

1 An expression is formed from operands, operators, and parentheses. An operand is either a scalar or an9
array. An operation is either intrinsic (10.1.5) or deϐined (10.1.6). More complicated expressions can be10
formed using operands which are themselves expressions.11

2 An expression is deϐined in terms of several categories: primary, level‑1 expression, level‑2 expression,12
level‑3 expression, level‑4 expression, and level‑5 expression.13

3 These categories are related to the different operator precedence levels and, in general, are deϐined in terms14
of other categories. The simplest form of each expression category is a primary.15

10.1.2.2 Primary16

R1001 primary is literal‑constant17
or designator18
or array‑constructor19
or structure‑constructor20
or enum‑constructor21
or enumeration‑constructor22
or function‑reference23
or type‑param‑inquiry24
or type‑param‑name25
or (expr)26
or conditional‑expr27

C1001 (R1001) The type‑param‑name shall be the name of a type parameter.28

C1002 (R1001) The designator shall not be a whole assumed‑size array.29

C1003 (R1001) The expr shall not be a function reference that returns a procedure pointer.30

NOTE
Examples of a primary are:

Example Syntactic class
1.0 constant

J3/25‑007 165

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' (I:I) designator
[1.0, 2.0] array‑constructor
PERSON ('Jones', 12) structure‑constructor
F (X, Y) function‑reference
X%KIND type‑param‑inquiry
KIND type‑param‑name
(S + T) (expr)

10.1.2.3 Conditional expressions1

1 A conditional expression is a primary that selectively evaluates a chosen subexpression.2

R1002 conditional‑expr is (scalar‑logical‑expr ? expr [: scalar‑logical‑expr ? expr]... : expr)3

C1004 Each expr of a conditional‑expr shall have the same declared type, kind type parameters, and rank.4

NOTE
Examples of a conditional expression are:

(ABS (RESIDUAL)<=TOLERANCE ? 'ok' : 'did not converge')
(I>0 .AND. I<=SIZE (A) ? A (I) : PRESENT (VAL) ? VAL : 0.0)

10.1.2.4 Level‑1 expressions5

1 Deϐined unary operators have the highest operator precedence (Table 10.1). A level‑1 expression is a6
primary optionally operated on by a deϐined unary operator:7

R1003 level‑1‑expr is [deϔined‑unary‑op] primary8

R1004 deϔined‑unary‑op is . letter [letter]9

C1005 (R1004) A deϔined‑unary‑op shall not containmore than 63 letters and shall not be the same as any10
intrinsic‑operator or logical‑literal‑constant.11

NOTE
Simple examples of a level‑1 expression are:

Example Syntactic class
A primary (R1001)
.INVERSE. B level‑1‑expr (R1003)

A more complicated example of a level‑1 expression is:
.INVERSE. (A + B)

10.1.2.5 Level‑2 expressions12

1 Level‑2 expressions are level‑1 expressions optionally involving the numeric operators power‑op,mult‑op,13
and add‑op.14

R1005 mult‑operand is level‑1‑expr [power‑op mult‑operand]15

R1006 add‑operand is [add‑operand mult‑op]mult‑operand16

R1007 level‑2‑expr is [[level‑2‑expr] add‑op] add‑operand17

166 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

R1008 power‑op is **1

R1009 mult‑op is *2
or /3

R1010 add‑op is +4
or –5

NOTE
Simple examples of a level‑2 expression are:

Example Syntactic class Remarks
A level‑1‑expr A is a primary. (R1003)
B ** C mult‑operand B is a level‑1‑expr, ** is a power‑op,

and C is amult‑operand. (R1005)
D * E add‑operand D is an add‑operand, * is amult‑op,

and E is amult‑operand. (R1006)
+1 level‑2‑expr + is an add‑op and 1 is an add‑operand. (R1007)
F - I level‑2‑expr F is a level‑2‑expr, – is an add‑op,

and I is an add‑operand. (R1007)

A more complicated example of a level‑2 expression is:
- A + D * E + B ** C

10.1.2.6 Level‑3 expressions6

1 Level‑3 expressions are level‑2 expressions optionally involving the character operator concat‑op.7

R1011 level‑3‑expr is [level‑3‑expr concat‑op] level‑2‑expr8

R1012 concat‑op is //9

NOTE
Simple examples of a level‑3 expression are:

Example Syntactic class
A level‑2‑expr (R1007)
B // C level‑3‑expr (R1011)

A more complicated example of a level‑3 expression is:
X // Y // 'ABCD'

10.1.2.7 Level‑4 expressions10

1 Level‑4 expressions are level‑3 expressions optionally involving the relational operators rel‑op.11

R1013 level‑4‑expr is [level‑3‑expr rel‑op] level‑3‑expr12

R1014 rel‑op is .EQ.13
or .NE.14
or .LT.15
or .LE.16
or .GT.17
or .GE.18
or ==19
or /=20

J3/25‑007 167

J3/25‑007 WD 1539‑1 2024‑12‑29

or <1
or <=2
or >3
or >=4

NOTE
Simple examples of a level‑4 expression are:

Example Syntactic class
A level‑3‑expr (R1011)
B == C level‑4‑expr (R1013)
D < E level‑4‑expr (R1013)

A more complicated example of a level‑4 expression is:
(A + B) /= C

10.1.2.8 Level‑5 expressions5

1 Level‑5 expressions are level‑4 expressions optionally involving the logical operators not‑op, and‑op, or‑op,6
and equiv‑op.7

R1015 and‑operand is [not‑op] level‑4‑expr8

R1016 or‑operand is [or‑operand and‑op] and‑operand9

R1017 equiv‑operand is [equiv‑operand or‑op] or‑operand10

R1018 level‑5‑expr is [level‑5‑expr equiv‑op] equiv‑operand11

R1019 not‑op is .NOT.12

R1020 and‑op is .AND.13

R1021 or‑op is .OR.14

R1022 equiv‑op is .EQV.15
or .NEQV.16

NOTE
Simple examples of a level‑5 expression are:

Example Syntactic class
A level‑4‑expr (R1013)
.NOT. B and‑operand (R1015)
C .AND. D or‑operand (R1016)
E .OR. F equiv‑operand (R1017)
G .EQV. H level‑5‑expr (R1018)
S .NEQV. T level‑5‑expr (R1018)

A more complicated example of a level‑5 expression is:
A .AND. B .EQV. .NOT. C

10.1.2.9 General form of an expression17

1 Expressions are level‑5 expressions optionally involving deϐined binary operators. Deϐined binary operat‑18
ors have the lowest operator precedence (Table 10.1).19

168 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

R1023 expr is [expr deϔined‑binary‑op] level‑5‑expr1

R1024 deϔined‑binary‑op is . letter [letter]2

C1006 (R1024) A deϔined‑binary‑op shall not contain more than 63 letters and shall not be the same as3
any intrinsic‑operator or logical‑literal‑constant.4

NOTE
Simple examples of an expression are:

Example Syntactic class
A level‑5‑expr (R1018)
B.UNION.C expr (R1023)

More complicated examples of an expression are:
(B .INTERSECT. C) .UNION. (X - Y)
A + B == C * D
.INVERSE. (A + B)
A + B .AND. C * D
E // G == H (1:10)

10.1.3 Precedence of operators5

1 There is a precedence among the intrinsic and extension operations corresponding to the form of expres‑6
sions speciϐied in 10.1.2, which determines the order in which the operands are combined unless the order7
is changed by the use of parentheses. This precedence order is summarized in Table 10.1.8

Table 10.1— Categories of operations and relative precedence
Category of operation Operators Precedence

Extension deϔined‑unary‑op Highest
Numeric ** .
Numeric *, / .
Numeric unary +, – .
Numeric binary +, – .
Character // .
Relational .EQ., .NE., .LT., .LE., .GT., .GE.,

==, /=,<,<=,>,>= .
Logical .NOT. .
Logical .AND. .
Logical .OR. .
Logical .EQV., .NEQV. .

Extension deϔined‑binary‑op Lowest

2 The precedence of a deϐined operation is that of its operator.9

NOTE 1
For example, in the expression

-A ** 2
the exponentiation operator (**) has precedence over the negation operator (–); therefore, the operands of the
exponentiation operator are combined to form an expression that is used as the operand of the negation operator.
The interpretation of the above expression is the same as the interpretation of the expression

- (A ** 2)

3 The general form of an expression (10.1.2) also establishes a precedence among operators in the same10
syntactic class. This precedence determines the order in which the operands are to be combined in de‑11
termining the interpretation of the expression unless the order is changed by the use of parentheses.12

J3/25‑007 169

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2
In interpreting a level‑2‑expr containing two or more binary operators + or –, each operand (add‑operand) is com‑
bined from left to right. Similarly, the same left‑to‑right interpretation for a mult‑operand in add‑operand, as well
as for other kinds of expressions, is a consequence of the general form. However, for interpreting a mult‑operand
expressionwhen two ormore exponentiation operators ** combine level‑1‑expr operands, each level‑1‑expr is com‑
bined from right to left.
For example, the expressions

2.1 + 3.4 + 4.9
2.1 * 3.4 * 4.9
2.1 / 3.4 / 4.9
2 ** 3 ** 4
'AB' // 'CD' // 'EF'

have the same interpretations as the expressions
(2.1 + 3.4) + 4.9
(2.1 * 3.4) * 4.9
(2.1 / 3.4) / 4.9
2 ** (3 ** 4)
('AB' // 'CD') // 'EF'

As a consequence of the general form (10.1.2), only the ϐirst add‑operand of a level‑2‑expr can be preceded by the
identity (+) or negation (–) operator. These formation rules do not permit expressions containing two consecutive
numeric operators, such as A ** –B or A + –B. However, expressions such as A ** (–B) and A + (–B) are permitted.
The rules do allow a binary operator or an intrinsic unary operator to be followed by a deϐined unary operator, such
as:

A * .INVERSE. B
- .INVERSE. (B)

As another example, in the expression
A .OR. B .AND. C

the general form implies a higher precedence for the .AND. operator than for the .OR. operator; therefore, the inter‑
pretation of the above expression is the same as the interpretation of the expression

A .OR. (B .AND. C)

NOTE 3
An expression can contain more than one category of operator. The logical expression

L .OR. A + B >= C
where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a relational operator, and a
logical operator. This expression would be interpreted the same as the expression

L .OR. ((A + B) >= C)

NOTE 4
If

• the operator ** is extended to type logical,
• the operator .STARSTAR. is deϐined to duplicate the function of ** on type real,
• .MINUS. is deϐined to duplicate the unary operator−, and
• L1 and L2 are type logical and X and Y are type real,

then in precedence: L1 ** L2 is higher than X * Y; X * Y is higher than X .STARSTAR. Y; and .MINUS. X is higher than
−X.

10.1.4 Evaluation of operations1

1 An intrinsic operation requires the values of its operands.2

2 Executionof a function reference in the logical expression in an IF statement (11.1.8.4), themaskexpression3

170 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

in a WHERE statement (10.2.3.1), or the concurrent‑limits and concurrent‑steps in a FORALL statement11
(10.2.4) is permitted to deϐine variables in the subsidiary action‑stmt, where‑assignment‑stmt, or forall‑2
assignment‑stmt respectively. Except in those cases:3

• the evaluation of a function reference shall neither affect nor be affected by the evaluation of any4
other entity within the statement;5

• if a function reference causes deϐinition or undeϐinition of an actual argument of the function, that6
argument or any associated entities shall not appear elsewhere in the same statement.7

NOTE 1
For example, the statements

A (I) = F (I)
Y = G (X) + X

are prohibited if the reference to F deϐines or undeϐines I or the reference to G deϐines or undeϐines X.
However, in the statements

IF (F (X)) A = X
WHERE (G (X)) B = X

the reference to F and/or the reference to G can deϐine X.

3 The appearance of an array constructor requires the evaluation of each scalar‑int‑expr of the ac‑implied‑8
do‑control in any ac‑implied‑do it contains.9

4 When an elemental binary operation is applied to a scalar and an array or to two arrays of the same shape,10
the operation is performed element‑by‑element on corresponding array elements of the array operands.11

NOTE 2
For example, the array expression

A + B
produces an array of the same shape as A and B. The individual array elements of the result have the values of the
ϐirst element of A added to the ϐirst element of B, the second element of A added to the second element of B, etc.

5 When an elemental unary operator operates on an array operand, the operation is performed element‑12
by‑element, and the result is the same shape as the operand. If an elemental operation is intrinsically13
pure or is implemented by a pure elemental function (15.9), the element operations may be performed14
simultaneously or in any order.15

6 Evaluation of a conditional‑expr evaluates each scalar‑logical‑expr in order, until the value of a scalar‑16
logical‑expr is true, or there are no more scalar‑logical‑exprs. If the value of a scalar‑logical‑expr is true,17
its subsequent expr is chosen; otherwise, the last expr of the conditional‑expr is chosen. The chosen expr is18
evaluated, and its value is the value of the conditional expression.19

7 The declared type, kind type parameters, and rank of a conditional‑expr are the same as those of its exprs.20
The dynamic type, length type parameters, and shape are those of the chosen expr. A conditional‑expr is21
polymorphic if and only if one or more of its exprs is polymorphic.22

NOTE 3
Only one expr of a conditional expression is evaluated, and any of its scalar‑logical‑exprs subsequent to one that
evaluates to true are not evaluated.

1The FORALL statement is obsolescent.

J3/25‑007 171

J3/25‑007 WD 1539‑1 2024‑12‑29

10.1.5 Intrinsic operations1

10.1.5.1 Intrinsic operation classiϐication2

1 An intrinsic operation is either a unary or binary operation. An intrinsic unary operation is an operation3
of the form intrinsic‑operator x2 where x2 is of a type (7.4, 7.6) listed in Table 10.2 for the unary intrinsic4
operator.5

2 An intrinsic binary operation is an operation of the form x1 intrinsic‑operator x2 where x1 and x2 are con‑6
formable and of the types listed in Table 10.2 for the binary intrinsic operator.7

3 Anumeric intrinsic operation is an intrinsic operation forwhich the intrinsic‑operator is a numeric operator8
(+, –, *, /, or **). A numeric intrinsic operator is the operator in a numeric intrinsic operation.9

4 The character intrinsic operation is the intrinsic operation for which the intrinsic‑operator is (//) and both10
operands are of type character with the same kind type parameter. The character intrinsic operator is the11
operator in a character intrinsic operation.12

5 A logical intrinsic operation is an intrinsic operation for which the intrinsic‑operator is .AND., .OR., .NOT.,13
.EQV., or .NEQV. and both operands are of type logical. A logical intrinsic operator is the operator in a logical14
intrinsic operation.15

6 A relational intrinsic operator is an intrinsic‑operator that is .EQ., .NE., .GT., .GE., .LT., .LE., ==, /=, >, >=,16
<, or <=. A relational intrinsic operation is an intrinsic operation for which the intrinsic‑operator is a17
relational intrinsic operator. A numeric relational intrinsic operation is a relational intrinsic operation for18
which both operands are of numeric type. A character relational intrinsic operation is a relational intrinsic19
operation for which both operands are of type character. An enumeration relational intrinsic operation20
is a relational intrinsic operation for which both operands are of the same enumeration type. An enum21
relational intrinsic operation is a relational intrinsic operation for which one operand is of an enum type,22
and the other operand has the same type or is an integer expression involving an enumerator of that type.23
The kind type parameters of the operands of a character relational intrinsic operation shall be the same.24

7 The interpretations deϐined in 10.1.5 apply to both scalars and arrays; the interpretation for arrays is ob‑25
tained by applying the interpretation for scalars element by element.26

Table 10.2— Types of operands and results for intrinsic operators
Intrinsic operator op Type of x1 Type of x2 Type of [x1] op x2

Unary +, – I, R, Z I, R, Z
I I, R, Z I, R, Z

Binary +, –, *, /, ** R I, R, Z R, R, Z
Z I, R, Z Z, Z, Z

// C C C
I I, R, Z, N L, L, L, L

.EQ., .NE., R I, R, Z L, L, L
==, /= Z I, R, Z L, L, L

C C L
E E L
N N, I L, L
I I, R, N L, L, L

.GT., .GE., .LT., .LE. R I, R L, L
>,>=,<,<= C C L

E E L
N N, I L, L

.NOT. L L
.AND., .OR., .EQV., .NEQV. L L L

172 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Types of operands and results for intrinsic operators (cont.)
Intrinsic operator op Type of x1 Type of x2 Type of [x1] op x2

The symbols I, R, Z, C, and L stand for the types integer, real, complex, character, and
logical, respectively. The symbol E stands for the same enumeration type for both
operands. The symbol N stands for an enum type, where if the other operand is N,
they have the same type, and if the other operand is I, the integer operand is an ex‑
pression with a primary that is an enumerator of the enum type. Where more than
one type for x2 is given, the type of the result of the operation is given in the same
relative position in the next column.

NOTE
For example, if X is of type real and J is of type integer, the expression X + J is of type real.

10.1.5.2 Numeric intrinsic operations1

10.1.5.2.1 Interpretation of numeric intrinsic operations2

1 The two operands of numeric intrinsic binary operations may be of different numeric types or different3
kind type parameters. Except for a value of type real or complex raised to an integer power, if the operands4
have different types or kind type parameters, the effect is as if each operand that differs in type or kind type5
parameter from those of the result is converted to the type and kind type parameter of the result before6
the operation is performed. When a value of type real or complex is raised to an integer power, the integer7
operand need not be converted.8

2 Anumeric operation is used to express anumeric computation. Evaluationof anumeric operationproduces9
a numeric value. The permitted data types for operands of the numeric intrinsic operations are speciϐied10
in 10.1.5.1.11

3 The numeric operators and their interpretation in an expression are given in Table 10.3, where x1 denotes12
the operand to the left of the operator and x2 denotes the operand to the right of the operator.13

Table 10.3— Interpretation of the numeric intrinsic operators
Operator Representing Use of operator Interpretation

** Exponentiation x1 ** x2 Raise x1 to the power x2

/ Division x1 / x2 Divide x1 by x2

* Multiplication x1 * x2 Multiply x1 by x2

− Subtraction x1 - x2 Subtract x2 from x1

− Negation - x2 Negate x2

+ Addition x1 + x2 Add x1 and x2

+ Identity + x2 Same as x2

4 The interpretation of a division operation depends on the types of the operands (10.1.5.2.2).14

5 If x1 and x2 are of type integer and x2 has a negative value, the interpretation of x1 ** x2 is the same as the15
interpretation of 1/(x1 ** ABS (x2)), which is subject to the rules of integer division (10.1.5.2.2).16

NOTE
For example, 2 ** (−3) has the value of 1/(2 ** 3), which is zero.

J3/25‑007 173

J3/25‑007 WD 1539‑1 2024‑12‑29

10.1.5.2.2 Integer division1

1 One operand of type integermay be divided by another operand of type integer. Although themathematical2
quotient of two integers is not necessarily an integer, Table 10.2 speciϐies that an expression involving the3
division operator with two operands of type integer is interpreted as an expression of type integer. The4
result of such an operation is the integer closest to the mathematical quotient and between zero and the5
mathematical quotient inclusively.6

NOTE
For example, the expression (−8) / 3 has the value (−2).

10.1.5.2.3 Complex exponentiation7

1 In the case of a complex value raised to a complex power, the value of the operation x1 ** x2 is the principal8
value of xx2

1 .9

10.1.5.2.4 Evaluation of numeric intrinsic operations10

1 The execution of any numeric operationwhose result is not deϐined by the arithmetic used by the processor11
is prohibited. Raising a negative real value to a real power is prohibited.12

2 Once the interpretation of a numeric intrinsic operation is established, the processor may evaluate any13
mathematically equivalent expression, provided that the integrity of parentheses is not violated.14

3 Two expressions of a numeric type are mathematically equivalent if, for all possible values of their primar‑15
ies, their mathematical values are equal. However, mathematically equivalent expressions of numeric type16
can produce different computational results.17

NOTE 1
Any difference between the values of the expressions (1./3.)*3. and 1. is a computational difference, not amathem‑
atical difference. The difference between the values of the expressions 5/2 and 5./2. is a mathematical difference,
not a computational difference.
The mathematical deϐinition of integer division is given in 10.1.5.2.2.

NOTE 2
The following are examples of expressions with allowable alternative forms that can be used by the processor in
the evaluation of those expressions. A, B, and C represent arbitrary real or complex operands; I and J represent
arbitrary integer operands; and X, Y, and Z represent arbitrary operands of numeric type.

Expression Allowable alternative form
X + Y Y + X
X * Y Y * X
‑X + Y Y ‑ X
X + Y + Z X + (Y + Z)
X ‑ Y + Z X ‑ (Y ‑ Z)
X * A / Z X * (A / Z)
X * Y ‑ X * Z X * (Y ‑ Z)
A / B / C A / (B * C)
A / 5.0 0.2 * A

The following are examples of expressions with forbidden alternative forms that cannot be used by a processor in
the evaluation of those expressions.

174 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2 (cont.)
Expression Forbidden alternative form
I / 2 0.5 * I
X * I / J X * (I / J)
I / J / A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) ‑ (X * Z) X * (Y ‑ Z)
X * (Y ‑ Z) X * Y ‑ X * Z

NOTE 3
In addition to the parentheses required to establish the desired interpretation, parentheses can be included to
restrict the alternative forms that can be used by the processor in the actual evaluation of the expression. This is
useful for controlling the magnitude and accuracy of intermediate values developed during the evaluation of an
expression.
For example, in the expression

A + (B - C)
the parenthesized expression (B− C) is evaluated and then added to A.
The inclusion of parentheses could change the mathematical value of an expression. For example, the two expres‑
sions

A * I / J
A * (I / J)

could have different mathematical values if I and J are of type integer.

NOTE 4
Each operand in a numeric intrinsic operation has a type that can depend on the order of evaluation used by the
processor.
For example, in the evaluation of the expression

Z + R + I
where Z, R, and I represent data objects of complex, real, and integer type, respectively, the type of the operand that
is added to I could be either complex or real, depending on which pair of operands (Z and R, R and I, or Z and I) is
added ϐirst.

10.1.5.3 Character intrinsic operation1

10.1.5.3.1 Interpretation of the character intrinsic operation2

1 The character intrinsic operator // is used to concatenate two operands of type character with the same3
kind type parameter. Evaluation of the character intrinsic operation produces a result of type character.4

2 The interpretation of the character intrinsic operator // when used to form an expression is given in Table5
10.4, where x1 denotes the operand to the left of the operator and x2 denotes the operand to the right of6
the operator.7

Table 10.4— Interpretation of the character intrinsic operator //
Operator Representing Use of operator Interpretation

// Concatenation x1 // x2 Concatenate x1 with x2

3 The result of the character intrinsic operation x1 // x2 is a character string whose value is the value of x18
concatenated on the right with the value of x2 and whose length is the sum of the lengths of x1 and x2.9
Parentheses used to specify the order of evaluation have no effect on the value of a character expression.10

J3/25‑007 175

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
For example, the value of the expression (’AB’ // ’CDE’) // ’F’ is the string ’ABCDEF’. The value of the expression
’AB’ // (’CDE’ // ’F’) is also the string ’ABCDEF’.

10.1.5.3.2 Evaluation of the character intrinsic operation1

1 A processor is only required to evaluate as much of the character intrinsic operation as is required by the2
context in which the expression appears.3

NOTE
For example, the statements

CHARACTER (LEN = 2) C1, C2, C3, CF
C1 = C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to determine the value of C1
because C1 and C2 both have a length of 2.

10.1.5.4 Logical intrinsic operations4

10.1.5.4.1 Interpretation of logical intrinsic operations5

1 A logical operation is used to express a logical computation. Evaluation of a logical operation produces a6
result of type logical. The permitted types for operands of the logical intrinsic operations are speciϐied in7
10.1.5.1.8

2 The logical operators and their interpretation when used to form an expression are given in Table 10.5,9
where x1 denotes the operand to the left of the operator and x2 denotes the operand to the right of the10
operator.11

Table 10.5— Interpretation of the logical intrinsic operators
Operator Representing Use of operator Interpretation
.NOT. Logical negation .NOT. x2 True if x2 is false
.AND. Logical conjunction x1 .AND. x2 True if x1 and x2 are both true
.OR. Logical inclusive disjunction x1 .OR. x2 True if x1 and/or x2 is true
.EQV. Logical equivalence x1 .EQV. x2

True if both x1 and x2 are true or
both are false

.NEQV. Logical nonequivalence x1 .NEQV. x2
True if either x1 or x2 is true, but
not both

3 The values of the logical intrinsic operations are shown in Table 10.6.12

Table 10.6— The values of operations involving logical intrinsic operators
x1 x2 .NOT. x2 x1 .AND. x2 x1 .OR. x2 x1 .EQV. x2 x1 .NEQV. x2

true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

10.1.5.4.2 Evaluation of logical intrinsic operations13

1 Once the interpretation of a logical intrinsic operation is established, the processormay evaluate any other14
expression that is logically equivalent, provided that the integrity of parentheses in any expression is not15
violated.16

176 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
For example, for the variables L1, L2, and L3 of type logical, the processor could choose to evaluate the expression

L1 .AND. L2 .AND. L3
as

L1 .AND. (L2 .AND. L3)

2 Two expressions of type logical are logically equivalent if their values are equal for all possible values of1
their primaries.2

10.1.5.5 Relational intrinsic operations3

10.1.5.5.1 Interpretation of relational intrinsic operations4

1 A relational intrinsic operation is used to compare values of two operands using the relational intrinsic5
operators .LT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted types for operands of the6
relational intrinsic operators are speciϐied in 10.1.5.1.7

2 The operators<,<=,>,>=, ==, and /= always have the same interpretations as the operators .LT., .LE., .GT.,8
.GE., .EQ., and .NE., respectively.9

NOTE 1
As shown in Table 10.2, a relational intrinsic operator cannot be used to compare the value of an expression of
a numeric type with one of type character or logical. Also, two operands of type logical cannot be compared, a
complex operand can be compared with another numeric operand only when the operator is .EQ., .NE., ==, or /=,
and two character operands cannot be compared unless they have the same kind type parameter value.

3 Evaluation of a relational intrinsic operation produces a default logical result.10

4 The interpretation of the relational intrinsic operators is given in Table 10.7, where x1 denotes the operand11
to the left of the operator and x2 denotes the operand to the right of the operator.12

Table 10.7— Interpretation of the relational intrinsic operators
Operator Representing Use of operator Interpretation

.LT. Less than x1 .LT. x2 x1 less than x2

< Less than x1 < x2 x1 less than x2

.LE. Less than or equal to x1 .LE. x2 x1 less than or equal to x2

<= Less than or equal to x1 <= x2 x1 less than or equal to x2

.GT. Greater than x1 .GT. x2 x1 greater than x2

> Greater than x1 > x2 x1 greater than x2

.GE. Greater than or equal to x1 .GE. x2 x1 greater than or equal to x2

>= Greater than or equal to x1 >= x2 x1 greater than or equal to x2

.EQ. Equal to x1 .EQ. x2 x1 equal to x2

== Equal to x1 == x2 x1 equal to x2

.NE. Not equal to x1 .NE. x2 x1 not equal to x2

/= Not equal to x1 /= x2 x1 not equal to x2

5 A numeric relational intrinsic operation is interpreted as having the logical value true if and only if the13
values of the operands satisfy the relation speciϐied by the operator.14

6 In the numeric relational operation15
x1 rel‑op x216

if the types or kind type parameters of x1 and x2 differ, their values are converted to the type and kind type17
parameter of the expression x1 + x2 before evaluation.18

J3/25‑007 177

J3/25‑007 WD 1539‑1 2024‑12‑29

7 A character relational intrinsic operation is interpreted as having the logical value true if and only if the1
values of the operands satisfy the relation speciϐied by the operator.2

8 For a character relational intrinsic operation, the operands are compared one character at a time in order,3
beginning with the ϐirst character of each character operand. If the operands are of unequal length, the4
shorter operand is treated as if itwere extendedon the rightwith blanks to the length of the longer operand.5
If both x1 and x2 are of zero length, x1 is equal to x2; if every character of x1 is the same as the character6
in the corresponding position in x2, x1 is equal to x2. Otherwise, at the ϐirst position where the character7
operands differ, the character operand x1 is considered to be less than x2 if the character value of x1 at8
this position precedes the value of x2 in the collating sequence (3.27); x1 is greater than x2 if the character9
value of x1 at this position follows the value of x2 in the collating sequence.10

NOTE 2
The collating sequence depends partially on the processor; however, the result of the use of the operators .EQ., .NE.,
==, and /= does not depend on the collating sequence.
For nondefault character kinds, the blank padding character is processor dependent.

9 An enumeration relational intrinsic operation is interpreted as having the logical value true if and only if11
the ordinal values of the operands satisfy the relation speciϐied by the operator.12

10 An enum relational intrinsic operation is interpreted as if all operands of enum type were converted to13
their corresponding integer values.14

10.1.5.5.2 Evaluation of relational intrinsic operations15

1 Once the interpretation of a relational intrinsic operation is established, the processor may evaluate any16
other expression that is relationally equivalent, provided that the integrity of parentheses in any expression17
is not violated.18

2 Two relational intrinsic operations are relationally equivalent if their logical values are equal for all possible19
values of their primaries.20

NOTE
Whether an operand of a relational intrinsic operation could be an IEEE NaN affects whether expressions are equi‑
valent. For example, if x or y could be a NaN, the expressions

.NOT. (x .LT. y) and x .GE. y

are not equivalent.

10.1.6 Deϐined operations21

10.1.6.1 Deϐinitions22

1 A deϐined operation is either a unary operation or a binary operation. A unary deϐined operation is an23
operation that has the form deϔined‑unary‑op x2 or intrinsic‑operator x2 and that is deϐined by a function24
and a generic interface (7.5.5, 15.4.3.4).25

2 A function deϐines the unary operation op x2 if26

(1) the function is speciϐied with a FUNCTION (15.6.2.2) or ENTRY2 (15.6.2.6) statement that spe‑27
ciϐies one dummy argument d2,28

2The ENTRY statement is obsolescent.

178 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

(2) either1
(a) a generic interface (15.4.3.2) provides the functionwith ageneric‑specofOPERATOR (op),2

or3
(b) there is a generic binding (7.5.5) in the declared type of x2 with a generic‑spec of OPER‑4

ATOR (op) and there is a corresponding binding to the function in the dynamic type of5
x2,6

(3) the type of d2 is compatible with the dynamic type of x2,7
(4) the type parameters, if any, of d2 match the corresponding type parameters of x2, and8
(5) either9

(a) the rank of x2 matches that of d2 or10
(b) the function is elemental and there is no other function that deϐines the operation.11

3 If d2 is an array, the shape of x2 shall match the shape of d2.12

4 A binary deϐined operation is an operationwith the form x1 deϔined‑binary‑op x2 or x1 intrinsic‑operator x213
and that is deϐined by a function and a generic interface.14

5 A function deϐines the binary operation x1 op x2 if15

(1) the function is speciϐied with a FUNCTION (15.6.2.2) or ENTRY3 (15.6.2.6) statement that spe‑16
ciϐies two dummy arguments, d1 and d2,17

(2) either18
(a) a generic interface (15.4.3.2) provides the functionwith ageneric‑specofOPERATOR (op),19

or20
(b) there is a generic binding (7.5.5) in the declared type of x1 or x2 with a generic‑spec of21

OPERATOR (op) and there is a corresponding binding to the function in the dynamic type22
of x1 or x2, respectively,23

(3) the types of d1 and d2 are compatible with the dynamic types of x1 and x2, respectively,24
(4) the type parameters, if any, of d1 and d2 match the corresponding type parameters of x1 and x2,25

respectively, and26
(5) either27

(a) the ranks of x1 and x2 match those of d1 and d2, respectively, or28
(b) the function is elemental, x1 and x2 are conformable, and there is no other function that29

deϐines the operation.30

6 If d1 or d2 is an array, the shapes of x1 and x2 shall match the shapes of d1 and d2, respectively.31

NOTE
An intrinsic operator can be used as the operator in a deϐined operation. In such a case, the generic properties of
the operator are extended.

10.1.6.2 Interpretation of a deϐined operation32

1 The interpretation of a deϐined operation is provided by the function that deϐines the operation.33

2 The operators<,<=,>,>=, ==, and /= always have the same interpretations as the operators .LT., .LE., .GT.,34
.GE., .EQ., and .NE., respectively.35

3The ENTRY statement is obsolescent.

J3/25‑007 179

J3/25‑007 WD 1539‑1 2024‑12‑29

10.1.6.3 Evaluation of a deϐined operation1

1 Once the interpretation of a deϐined operation is established, the processormay evaluate any other expres‑2
sion that is equivalent, provided that the integrity of parentheses is not violated.3

2 Two expressions of derived type are equivalent if their values are equal for all possible values of their4
primaries.5

10.1.7 Evaluation of operands6

1 It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate entirely7
each operand, if the value of the expression can be determined otherwise.8

NOTE 1
This principle is most often applicable to logical expressions, zero‑sized arrays, and zero‑length strings, but it ap‑
plies to all expressions.
For example, in evaluating the expression

X > Y .OR. L (Z)

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need not be evaluated if X
is greater than Y. Similarly, in the array expression

W (Z) + A

where A is of size zero and W is a function, the function reference W (Z) need not be evaluated.

2 If a statement contains a function reference in a part of an expression that need not be evaluated, all entities9
that would have become deϐined in the execution of that reference become undeϐined at the completion of10
evaluation of the expression containing the function reference.11

NOTE 2
In the examples in NOTE 1, if L or W deϐines its argument, evaluation of the expressions under the speciϐied condi‑
tions causes Z to become undeϐined, no matter whether or not L(Z) or W(Z) is evaluated.

3 If a statement contains a function reference in a part of an expression that need not be evaluated, no in‑12
vocation of that function in that part of the expression shall execute an image control statement other than13
CRITICAL or END CRITICAL.14

NOTE 3
This restriction is intended to avoid inadvertent deadlock caused by optimization.

10.1.8 Integrity of parentheses15

1 The rules for evaluation speciϐied in 10.1.5 state certain conditions under which a processor can evaluate16
an expression that is different from the one speciϐied by applying the rules given in 10.1.2 and the rules for17
interpretation speciϐied in 10.1.5. However, any expression in parentheses shall be treated as a data entity.18

NOTE
For example, in evaluating the expression A + (B – C) where A, B, and C are of numeric types, the difference of B and
C shall be evaluated before the addition operation is performed; the processor shall not evaluate themathematically
equivalent expression (A + B) – C.

180 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

10.1.9 Type, type parameters, and shape of an expression1

10.1.9.1 General2

1 The type, type parameters, and shape of an expression depend on the operators and on the types, type3
parameters, and shapes of the primaries used in the expression, and are determined recursively from the4
syntactic form of the expression. The type of an expression is one of the intrinsic types (7.4) or a nonin‑5
trinsic type (7.5, 7.6).6

2 If an expression is a polymorphic primary or deϐined operation, the type parameters and the declared and7
dynamic types of the expression are the same as those of the primary or deϐined operation. Otherwise the8
type parameters and dynamic type of the expression are the same as its declared type and type parameters;9
they are referred to simply as the type and type parameters of the expression.10

R1025 logical‑expr is expr11

C1007 (R1025) logical‑expr shall be of type logical.12

R1026 default‑char‑expr is expr13

C1008 (R1026) default‑char‑expr shall be default character.14

R1027 int‑expr is expr15

C1009 (R1027) int‑expr shall be of type integer.16

R1028 numeric‑expr is expr17

C1010 (R1028) numeric‑expr shall be of type integer, real, or complex.18

10.1.9.2 Type, type parameters, and shape of a primary19

1 The type, type parameters, and shape of a primary are determined according to whether the primary is a20
literal constant, designator, array constructor, structure constructor, enum constructor, enumeration con‑21
structor, function reference, type parameter inquiry, type parameter name, or parenthesized expression.22
If a primary is a literal constant, its type, type parameters, and shape are those of the literal constant. If it23
is a structure constructor, it is scalar and its type and type parameters are as described in 7.5.10. If it is an24
enum constructor, it is scalar and its type is as described in 7.6.1. If it is an enumeration constructor, it is25
scalar and its type is as described in 7.6.2. If it is an array constructor, its type, type parameters, and shape26
are as described in 7.8. If it is a designator or function reference, its type, type parameters, and shape are27
those of the designator (8.2, 8.5) or the function reference (15.5.3), respectively. If the function reference28
is generic (15.4.3.2, 16.7) then its type, type parameters, and shape are those of the speciϐic function ref‑29
erenced, which is determined by the declared types, type parameters, and ranks of its actual arguments as30
speciϐied in 15.5.5.2. If it is a type parameter inquiry or type parameter name, it is a scalar integer with the31
kind of the type parameter.32

2 If a primary is a parenthesized expression, its type, type parameters, and shape are those of the expression.33

3 The associated target object is referenced if a pointer appears as a primary in an intrinsic or deϐined op‑34
eration, the expr of a parenthesized primary, or the only primary on the right‑hand side of an intrinsic35
assignment statement. The type, type parameters, and shape of the primary are those of the target. If the36
pointer is not associatedwith a target, it shall appear as a primary only as an actual argument in a reference37
to a procedurewhose corresponding dummy argument is declared to be a pointer, as the target in a pointer38

J3/25‑007 181

J3/25‑007 WD 1539‑1 2024‑12‑29

assignment statement, or as explicitly permitted elsewhere in this document.1

4 A disassociated array pointer or an unallocated allocatable array has no shape but does have rank. The2
type, type parameters, and rank of the result of the intrinsic function NULL (16.9.155) depend on context.3

10.1.9.3 Type, type parameters, and shape of the result of an operation4

1 The type of the result of an intrinsic operation [x1] op x2 is speciϐied by Table 10.2. The shape of the result5
of an intrinsic operation is the shape of x2 if op is unary or if x1 is scalar, and is the shape of x1 otherwise.6

2 The type, type parameters, and shape of the result of a deϐined operation [x1] op x2 are speciϐied by the7
function deϐining the operation (10.1.6).8

3 An expression of an intrinsic type has a kind type parameter. An expression of type character also has a9
character length parameter.10

4 The type parameters of the result of an intrinsic operation are as follows.11

• For an expression x1 // x2 where // is the character intrinsic operator and x1 and x2 are of type12
character, the character length parameter is the sum of the lengths of the operands and the kind type13
parameter is the kind type parameter of x1, which shall be the same as the kind type parameter of14
x2.15

• For an expression opx2where op is an intrinsic unary operator andx2 is of type integer, real, complex,16
or logical, the kind type parameter of the expression is that of the operand.17

• For an expression x1 op x2 where op is a numeric intrinsic binary operator with one operand of type18
integer and the other of type real or complex, the kind type parameter of the expression is that of the19
real or complex operand.20

• For an expression x1 op x2 where op is a numeric intrinsic binary operator with both operands of21
the same type and kind type parameters, or with one real and one complex with the same kind type22
parameters, the kind type parameter of the expression is identical to that of each operand. In the case23
where both operands are integer with different kind type parameters, the kind type parameter of the24
expression is that of the operand with the greater decimal exponent range if the decimal exponent25
ranges are different; if the decimal exponent ranges are the same, the kind type parameter of the26
expression is processor dependent, but it is the same as that of one of the operands. In the case27
where both operands are any of type real or complex with different kind type parameters, the kind28
type parameter of the expression is that of the operand with the greater decimal precision if the29
decimal precisions are different; if the decimal precisions are the same, the kind type parameter of30
the expression is processor dependent, but it is the same as that of one of the operands.31

• For an expression x1 op x2 where op is a logical intrinsic binary operator with both operands of the32
same kind type parameter, the kind type parameter of the expression is identical to that of each33
operand. In the case where both operands are of type logical with different kind type parameters,34
the kind type parameter of the expression is processor dependent, but it is the same as that of one of35
the operands.36

• For an expression x1 op x2 where op is a relational intrinsic operator, the kind type parameter of the37
expression is default logical.38

10.1.10 Conformability rules for elemental operations39

1 An elemental operation is an intrinsic operation or a deϐined operation for which the function is elemental40
(15.9).41

182 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 For all elemental binary operations, the two operands shall be conformable. In the case where one is a1
scalar and the other an array, the scalar is treated as if it were an array of the same shape as the array2
operand with every element, if any, of the array equal to the value of the scalar.3

10.1.11 Speciϐication expression4

1 A speciϐication expression is an expression with limitations that make it suitable for use in speciϐications5
such as length type parameters (C704) and array bounds (R816, R817). A speciϔication‑expr shall be a con‑6
stant expression unless it is in an interface body (15.4.3.2), the speciϐication part of a subprogramorBLOCK7
construct, a derived type deϐinition, or the declaration‑type‑spec of a FUNCTION statement (15.6.2.2).8

R1029 speciϔication‑expr is scalar‑int‑expr9

C1011 (R1029) The scalar‑int‑expr shall be a restricted expression.10

2 A restricted expression is an expression in which each operation is intrinsic or deϐined by a speciϐication11
function and each primary is12

(1) a constant or subobject of a constant,13
(2) an object designator with a base object that is a dummy argument that has neither the OP‑14

TIONAL nor the INTENT (OUT) attribute,15
(3) an object designator with a base object that is in a common block4,16
(4) an object designator with a base object that is made accessible by use or host association,17
(5) an array constructorwhere each element and each scalar‑int‑expr of each ac‑implied‑do‑control18

is a restricted expression,19
(6) a structure constructor where each component is a restricted expression,20
(7) an enum constructor whose expr is a restricted expression,21
(8) an enumeration constructor whose expr is a restricted expression,22
(9) a speciϐication inquiry where each designator or argument is23

(a) a restricted expression or24
(b) a variable that is not an optional dummy argument, andwhose properties inquired about25

are not26
(i) dependent on the upper bound of the last dimension of an assumed‑size array,27
(ii) deferred, or28
(iii) deϐined by an expression that is not a restricted expression,29

(10) a speciϐication inquiry that is a constant expression,30
(11) a reference to the intrinsic function PRESENT,31
(12) a reference to any other standard intrinsic function where each argument is a restricted ex‑32

pression,33
(13) a reference to a transformational function from the intrinsicmodule IEEE_ARITHMETIC, IEEE_‑34

EXCEPTIONS, or ISO_C_BINDING, where each argument is a restricted expression,35
(14) a reference to a speciϐication function where each argument is a restricted expression,36
(15) a type parameter of the derived type being deϐined,37
(16) an ac‑do‑variablewithin an array constructor where each scalar‑int‑expr of the corresponding38

ac‑implied‑do‑control is a restricted expression, or39
(17) a restricted expression enclosed in parentheses,40

4Common blocks are obsolescent.

J3/25‑007 183

J3/25‑007 WD 1539‑1 2024‑12‑29

where each subscript, section subscript, substring starting point, substring ending point, and type para‑1
meter value is a restricted expression.2

3 A speciϐication inquiry is a reference to3

(1) an intrinsic inquiry function other than PRESENT,4
(2) a type parameter inquiry (9.4.5),5
(3) an inquiry function from the intrinsicmodule IEEE_ARITHMETICor the intrinsicmodule IEEE_‑6

EXCEPTIONS (17.10),7
(4) the function C_SIZEOF from the intrinsic module ISO_C_BINDING (18.2.3.8), or8
(5) the COMPILER_VERSION or COMPILER_OPTIONS function from the intrinsic module ISO_FOR‑9

TRAN_ENV (16.10.2.6, 16.10.2.7).10

4 A function is a speciϐication function if it is a pure function, is not a standard intrinsic function, is not an11
internal function,is not a statement function5, and does not have a dummy procedure argument.12

5 Evaluation of a speciϐication expression shall not directly or indirectly cause a procedure deϐined by the13
subprogram in which it appears to be invoked.14

NOTE 1
Speciϐication functions are nonintrinsic functions that can be used in speciϐication expressions to determine the
attributes of data objects. The requirement that they be pure ensures that they cannot have side effects that could
affect other objects being declared in the same speciϔication‑part. The requirement that they not be internal ensures
that they cannot inquire, via host association, about other objects being declared in the same speciϔication‑part. The
prohibition against recursion avoids the creation of a new instance of a procedure while construction of one is in
progress.

6 A variable in a speciϐication expression shall have its type and type parameters, if any, speciϐied by a pre‑15
vious declaration in the same scoping unit, by the implicit typing rules in effect for the scoping unit, or by16
host or use association. If a variable in a speciϐication expression is typed by the implicit typing rules, its17
appearance in any subsequent type declaration statement shall conϐirm the implied type and type paramet‑18
ers. If a speciϐication inquiry depends on the type of an object of derived type, that type shall be previously19
deϐined.20

7 If a speciϐication expression includes a speciϐication inquiry that depends on the type, a type parameter, an21
array bound, or a cobound of an entity speciϐied in the same speciϔication‑part, the type, type parameter,22
array bound, or cobound shall be speciϐied in a prior speciϐication of the speciϔication‑part. The prior spe‑23
ciϐication may be to the left of the speciϐication inquiry in the same statement, but shall not be within the24
same entity‑decl. If a speciϐication expression includes a reference to the value of an element of an array25
speciϐied in the same speciϔication‑part, the array shall be completely speciϐied in prior declarations.26

8 Ageneric entity referenced in a speciϐication expression in the speciϔication‑part of a scoping unit shall have27
no speciϐic procedures deϐined in the scoping unit, or its host scoping unit, subsequent to the speciϐication28
expression.29

9 A component speciϐication expression is a speciϐication expression in which30

• there are no references to speciϐication functions,31
• there are no references to the intrinsic functions ALLOCATED, ASSOCIATED,32
COMMAND_ARGUMENT_COUNT, EXTENDS_TYPE_OF, GET_TEAM, NUM_IMAGES, PRESENT,33
SAME_TYPE_AS, TEAM_NUMBER, or THIS_IMAGE,34

5Statement functions are obsolescent.

184 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• every speciϐication inquiry reference is a constant expression, and1
• the value does not depend on the value of a variable.2

A reference to the intrinsic function TRANSFER in a component speciϐication expression is permitted only3
if each argument is a a constant expression and each ultimate pointer component of the SOURCE argument4
is disassociated.5

NOTE 2
The following are examples of speciϐication expressions:

LBOUND (B, 1) + 5 ! B is an assumed-shape dummy array
M + LEN (C) ! M and C are dummy arguments
2 * PRECISION (A) ! A is a real variable made accessible by a USE statement

10.1.12 Constant expression6

1 A constant expression is an expression with limitations that make it suitable for use as a kind type para‑7
meter, initializer, or named constant. It is an expression in which each operation is intrinsic, and each8
primary is9

(1) a constant or subobject of a constant,10
(2) an array constructorwhere each element and each scalar‑int‑expr of each ac‑implied‑do‑control11

is a constant expression,12
(3) a structure constructor where each component‑spec corresponding to13

(a) an allocatable component is a reference to the intrinsic function NULL,14
(b) a pointer component is an initialization target or a reference to the intrinsic function15

NULL, and16
(c) any other component is a constant expression,17

(4) an enum constructor whose expr is a constant expression,18
(5) an enumeration constructor whose expr is a constant expression,19
(6) a speciϐication inquiry where each designator or argument is20

(a) a constant expression or21
(b) a variable whose properties inquired about are not22

(i) assumed,23
(ii) deferred, or24
(iii) deϐined by an expression that is not a constant expression,25

(7) a reference to an elemental standard intrinsic function, where each argument is a constant ex‑26
pression,27

(8) a reference to a standard intrinsic function that is transformational, other than COMMAND_AR‑28
GUMENT_COUNT, GET_TEAM, NULL, NUM_IMAGES, TEAM_NUMBER, THIS_IMAGE, or TRANS‑29
FER, where each argument is a constant expression,30

(9) a reference to the intrinsic functionNULL that doesnot have an argumentwith a typeparameter31
that is assumed or is deϐined by an expression that is not a constant expression,32

(10) a reference to the intrinsic function TRANSFER where each argument is a constant expression33
and each ultimate pointer component of the SOURCE argument is disassociated,34

(11) a reference to a transformational function from the intrinsic module IEEE_ARITHMETIC or35
IEEE_EXCEPTIONS, where each argument is a constant expression,36

J3/25‑007 185

J3/25‑007 WD 1539‑1 2024‑12‑29

(12) a previously declared kind type parameter of the derived type being deϐined,1
(13) a data‑i‑do‑variablewithin a data‑implied‑do,2
(14) an ac‑do‑variablewithin an array constructor where each scalar‑int‑expr of the corresponding3

ac‑implied‑do‑control is a constant expression, or4
(15) a constant expression enclosed in parentheses,5

and where each subscript, section subscript, substring starting point, substring ending point, and type6
parameter value is a constant expression.7

R1030 constant‑expr is expr8

C1012 (R1030) constant‑expr shall be a constant expression.9

R1031 default‑char‑constant‑expr is default‑char‑expr10

C1013 (R1031) default‑char‑constant‑expr shall be a constant expression.11

R1032 int‑constant‑expr is int‑expr12

C1014 (R1032) int‑constant‑expr shall be a constant expression.13

2 If a constant expression includes a speciϐication inquiry that dependsona typeparameter or anarraybound14
of an entity speciϐied in the same speciϔication‑part, the type parameter or array bound shall be speciϐied in15
a prior speciϐication of the speciϔication‑part. The prior speciϐication may be to the left of the speciϐication16
inquiry in the same statement, but shall not be within the same entity‑decl unless the speciϐication inquiry17
appears within an initialization.18

3 A generic entity referenced in a constant expression in the speciϔication‑part of a scoping unit shall have19
no speciϐic procedures deϐined in that scoping unit, or its host scoping unit, subsequent to the constant20
expression.21

NOTE
The following are examples of constant expressions:

3
-3 + 4
'AB'
'AB' // 'CD'
('AB' // 'CD') // 'EF'
SIZE (A)
DIGITS (X) + 4
4.0 * ATAN (1.0)
CEILING (number_of_decimal_digits / LOG10 (REAL (RADIX (0.0))))

where A is an explicit‑shape array with constant bounds, X is default real, and number_of_decimal_digits is an in‑
teger named constant.

10.2 Assignment22

10.2.1 Assignment statement23

10.2.1.1 General form24

R1033 assignment‑stmt is variable = expr25

C1015 (R1033) The variable shall not be a whole assumed‑size array.26

186 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
Examples of an assignment statement are:

A = 3.5 + X * Y
I = INT (A)

1 An assignment‑stmt shall meet the requirements of either a deϐined assignment statement or an intrinsic1
assignment statement.2

10.2.1.2 Intrinsic assignment statement3

1 An intrinsic assignment statement is an assignment statement that is not a deϐined assignment statement4
(10.2.1.4). In an intrinsic assignment statement,5

(1) if the variable is polymorphic it shall be allocatable, and not a coarray or a data object with a6
coarray potential subobject component,7

(2) if expr is an array then the variable shall also be an array,8
(3) the variable and expr shall be conformable unless the variable is an allocatable array that has9

the same rank as expr and is not a coarray or of a type that has a coarray potential subobject10
component,11

(4) if the variable is polymorphic it shall be type compatible with expr,12
(5) if expr is a boz‑literal‑constant, the variable shall be of type integer or real,13
(6) if the variable is not polymorphic and expr is not a boz‑literal‑constant, the declared types of14

the variable and expr shall conform as speciϐied in Table 10.8,15
(7) if the variable is of type character and of ISO 10646, ASCII, or default character kind, expr shall16

be of ISO 10646, ASCII, or default character kind,17
(8) otherwise if the variable is of type character expr shall have the same kind type parameter,18
(9) if the variable is of derived type each kind type parameter of the variable shall have the same19

value as the corresponding kind type parameter of expr, and20
(10) if the variable is of derived type each length type parameter of the variable shall have the same21

value as the corresponding type parameter of expr unless the variable is allocatable, is not a22
coarray, and its corresponding type parameter is deferred.23

Table 10.8— Intrinsic assignment type conformance
Type of the variable Type of expr

integer integer, real, complex
real integer, real, complex

complex integer, real, complex
character character
logical logical

derived type same derived type as the variable
enumeration type same enumeration type

enum type same enum type, or integer; if of type integer, a primary
in expr shall be an enumerator of the enum type

2 If the variable in an intrinsic assignment statement is a coindexed object,24
• the variable shall not be polymorphic,25
• the variable shall not have an allocatable ultimate component,26
• the variable shall be conformable with expr, and27

J3/25‑007 187

J3/25‑007 WD 1539‑1 2024‑12‑29

• each deferred length type parameter of the variable shall have the same value as the corresponding1
type parameter of expr.2

3 If the variable is a pointer, it shall be associated with a deϐinable target such that the type, type parameters,3
and shape of the target and expr conform. If the variable is a coarray or a coindexed object, it shall not be4
an unallocated allocatable variable.5

10.2.1.3 Interpretation of intrinsic assignments6

1 Execution of an intrinsic assignment causes, in effect, the evaluation of the expression expr and all expres‑7
sionswithin variable (10.1), the possible conversion of expr to the type and type parameters of the variable8
(Table 10.9), and the deϐinition of the variable with the resulting value. The execution of the assignment9
shall have the same effect as if the evaluation of expr and the evaluation of all expressions in variable oc‑10
curredbefore anyportion of the variable is deϐinedby the assignment. The evaluationof expressionswithin11
variable shall neither affect nor be affected by the evaluation of expr.12

2 If the variable is a pointer, the value of expr is assigned to the target of the variable.13

3 If the variable is an unallocated allocatable array, expr shall have the same rank. If the variable is an alloc‑14
ated allocatable variable, it is deallocated if expr is an array of different shape, any corresponding length15
type parameter values of the variable and expr differ, or the variable is polymorphic and the dynamic type16
or any corresponding kind type parameter values of the variable and expr differ. If the variable is or be‑17
comes an unallocated allocatable variable, it is then allocated with18

• the same dynamic type and kind type parameter values as expr if the variable is polymorphic,19
• each deferred type parameter equal to the corresponding type parameter of expr,20
• the same bounds as before if the variable is an array and expr is scalar, and21
• the shape of expr with each lower bound equal to the corresponding element of LBOUND (expr) if22
expr is an array.23

NOTE 1
For example, given the declaration

CHARACTER(:),ALLOCATABLE :: NAME
then after the assignment statement

NAME = 'Dr. '//FIRST_NAME//' '//SURNAME

NAME will have the length LEN (FIRST_NAME) + LEN (SURNAME) + 5, even if it had previously been unallocated,
or allocated with a different length. However, the assignment statement

NAME(:) = 'Dr. '//FIRST_NAME//' '//SURNAME
is only conforming if NAME is already allocated at the time of the assignment; the assigned value is truncated or
blank padded to the previously allocated length of NAME.

4 Both variable and expr may contain references to any portion of the variable.24

NOTE 2
For example, in the character intrinsic assignment statement:

STRING (2:5) = STRING (1:4)
the assignment of the ϐirst character of STRING to the second character does not affect the evaluation of
STRING (1:4). If the value of STRING prior to the assignment was ’ABCDEF’, the value following the assignment
is ’AABCDF’.

188 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 If expr is a scalar and the variable is an array, the expr is treated as if it were an array of the same shape as1
the variable with every element of the array equal to the scalar value of expr.2

6 If the variable is an array, the assignment is performed element‑by‑element on corresponding array ele‑3
ments of the variable and expr.4

NOTE 3
For example, if A and B are arrays of the same shape, the array intrinsic assignment

A = B
assigns the corresponding elements of B to those of A; that is, the ϐirst element of B is assigned to the ϐirst element
of A, the second element of B is assigned to the second element of A, etc.
If C is an allocatable array of rank 1, then

C = PACK (ARRAY, ARRAY>0)
will cause C to contain all the positive elements of ARRAY in array element order; if C is not allocated or is allocated
with the wrong size, it will be re‑allocated to be of the correct size to hold the result of PACK.

7 The processor may perform the element‑by‑element assignment in any order.5

NOTE 4
For example, the following program segment results in the values of the elements of array X being reversed:

REAL X (10)
…

X (1:10) = X (10:1:-1)

8 For an intrinsic assignment statement where the variable is of numeric type, the expr can have a different6
numeric type or kind type parameter, in which case the value of expr is converted to the type and kind type7
parameter of the variable according to the rules of Table 10.9.8

9 For an intrinsic assignment statement where the variable is of type integer or real, and expr is a boz‑literal‑9
constant, expr is converted to the type and kind type parameter of the variable according to the rules of10
Table 10.9.11

Table 10.9— Numeric conversion and the assignment statement
Type of the variable Value assigned
integer INT (expr, KIND = KIND (variable))
real REAL (expr, KIND = KIND (variable))
complex CMPLX (expr, KIND = KIND (variable))
NOTE INT, REAL, CMPLX, and KIND are the generic names of functions

deϐined in 16.9.

10 For an intrinsic assignment statementwhere the variable is of type logical, the expr canhave adifferent kind12
type parameter, in which case the value of expr is converted to the kind type parameter of the variable.13

11 For an intrinsic assignment statement where the variable is of type character, the expr can have a different14
character length parameter in which case the conversion of expr to the length of the variable is as follows.15

(1) If the length of the variable is less than that of expr, the value of expr is truncated from the right16
until it is the same length as the variable.17

(2) If the length of the variable is greater than that of expr, the value of expr is extended on the right18
with blanks until it is the same length as the variable.19

12 For an intrinsic assignment statement where the variable is of type character, if expr has a different kind20

J3/25‑007 189

J3/25‑007 WD 1539‑1 2024‑12‑29

type parameter, each character c in expr is converted to the kind type parameter of the variable by ACHAR (1
IACHAR(c), KIND (variable)).2

NOTE 5
For nondefault character kinds, the blank padding character is processor dependent. When assigning a character
expression to a variable of a different kind, each character of the expression that is not representable in the kind of
the variable is replaced by a processor‑dependent character.

13 For an intrinsic assignment where the variable is of enum type, if expr is of type integer, it is converted to3
the type of the variable as if by the enum constructor enum‑type‑name (expr).4

14 For an intrinsic assignment of the type C_PTR or C_FUNPTR from the intrinsic module ISO_C_BINDING, or5
of the type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, the variable becomes undeϐined if6
the variable and expr are not on the same image.7

NOTE 6
An intrinsic assignment statement for a variable of declared type C_PTR, C_FUNPTR, or TEAM_TYPE cannot involve
a coindexed object, see C915, which prevents inappropriate copying from one image to another. However, such
copying can occur for a component in a derived‑type intrinsic assignment.

15 An intrinsic assignment where the variable is of derived type is performed as if each component of the8
variable were assigned from the corresponding component of expr using pointer assignment (10.2.2) for9
each pointer component, deϐined assignment for each nonpointer nonallocatable component of a type that10
has a type‑bound deϐined assignment consistent with the component, intrinsic assignment for each other11
nonpointer nonallocatable component, and intrinsic assignment for each allocated coarray component. For12
unallocated coarray components, the corresponding component of the variable shall be unallocated. For a13
noncoarray allocatable component the following sequence of operations is applied.14

(1) If the component of the variable is allocated, it is deallocated.15
(2) If the component of the value of expr is allocated, the corresponding component of the variable16

is allocated with the same dynamic type and type parameters as the component of the value of17
expr. If it is an array, it is allocated with the same bounds. The value of the component of the18
value of expr is then assigned to the corresponding component of the variable using deϐined19
assignment if the declared type of the component has a type‑bound deϐined assignment con‑20
sistent with the component, and intrinsic assignment for the dynamic type of that component21
otherwise.22

16 The processor may perform the component‑by‑component assignment in any order or by any means that23
has the same effect.24

NOTE 7
For an example of a derived‑type intrinsic assignment statement, if C and D are of the same derived type with
a pointer component P and nonpointer components S, T, U, and V of type integer, logical, character, and another
derived type, respectively, the intrinsic assignment

C = D

pointer assigns D%P to C%P. It assigns D%S to C%S, D%T to C%T, and D%U to C%U using intrinsic assignment.
It assigns D%V to C%V using deϐined assignment if objects of that type have a compatible type‑bound deϐined
assignment, and intrinsic assignment otherwise.

NOTE 8
If an allocatable component of expr is unallocated, the corresponding component of the variable has an allocation
status of unallocated after execution of the assignment.

190 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

10.2.1.4 Deϐined assignment statement1

1 A deϐined assignment statement is an assignment statement that is deϐined by a subroutine and a generic2
interface (7.5.5, 15.4.3.4.3) that speciϐies ASSIGNMENT (=).3

2 A subroutine deϐines the deϐined assignment x1 = x2 if4

(1) the subroutine is speciϐied with a SUBROUTINE (15.6.2.3) or ENTRY6 (15.6.2.6) statement5
that speciϐies two dummy arguments, d1 and d2,6

(2) either7

(a) a generic interface (15.4.3.2) provides the subroutine with a generic‑spec of8
ASSIGNMENT (=), or9

(b) there is a generic binding (7.5.5) in the declared type of x1 or x2 with a generic‑spec of10
ASSIGNMENT (=) and there is a corresponding binding to the subroutine in the dynamic11
type of x1 or x2, respectively,12

(3) the types of d1 and d2 are compatible with the dynamic types of x1 and x2, respectively,13
(4) the type parameters, if any, of d1 and d2 match the corresponding type parameters of x1 and14

x2, respectively, and15
(5) either16

(a) the ranks of x1 and x2 match those of d1 and d2 or17
(b) the subroutine is elemental, x2 is scalar or has the same rank as x1, and there is no other18

subroutine that deϐines the assignment.19

3 If d1 or d2 is an array, the shapes of x1 and x2 shall match the shapes of d1 and d2, respectively. If the20
subroutine is elemental, x2 shall be conformable with x1.21

10.2.1.5 Interpretation of deϐined assignment statements22

1 The interpretation of a deϐined assignment is provided by the subroutine that deϐines it.23

2 If the deϐined assignment is an elemental assignment and the variable in the assignment is an array, the24
deϐined assignment is performed element‑by‑element, on corresponding elements of the variable and expr.25
If expr is a scalar, it is treated as if it were an array of the same shape as the variable with every element of26
the array equal to the scalar value of expr.27

NOTE
The rules of deϐined assignment (15.4.3.4.3), procedure references (15.5), subroutine references (15.5.4), and ele‑
mental subroutine arguments (15.9.3) ensure that the deϐined assignment has the same effect as if the evaluation
of all operations in x2 and x1 occurs before any portion of x1 is deϐined. If an elemental assignment is deϐined by a
pure elemental subroutine, the element assignments can be performed simultaneously or in any order.

10.2.2 Pointer assignment28

10.2.2.1 General29

1 Pointer assignment causes a pointer to become associated with a target or causes its pointer association30
status to become disassociated or undeϐined. Any previous association between the pointer and a target is31
broken.32

6The ENTRY statement is obsolescent.

J3/25‑007 191

J3/25‑007 WD 1539‑1 2024‑12‑29

2 Pointer assignment for a pointer component of a structure can also take place by execution of a derived‑1
type intrinsic assignment statement (10.2.1.3).2

10.2.2.2 Syntax of the pointer assignment statement3

R1034 pointer‑assignment‑stmt is data‑pointer‑object [(bounds‑spec‑list)] => data‑target4
or data‑pointer‑object (lower‑bounds‑expr :) => data‑target5
or data‑pointer‑object (bounds‑remapping‑list) => data‑target6
or data‑pointer‑object (lower‑bounds‑expr : upper‑bounds‑expr)7

=> data‑target8
or proc‑pointer‑object => proc‑target9

R1035 data‑pointer‑object is variable‑name10
or scalar‑variable% data‑pointer‑component‑name11

C1016 (R1034) If data‑target is not unlimited polymorphic, data‑pointer‑object shall be type compatible12
(7.3.3) with it and the corresponding kind type parameters shall be equal.13

C1017 (R1034) If data‑target is unlimited polymorphic, data‑pointer‑object shall be unlimited14
polymorphic, or of a type with the BIND attribute or the SEQUENCE attribute.15

C1018 (R1034) If bounds‑spec‑list is speciϐied, the number of bounds‑specs shall equal the rank of data‑16
pointer‑object.17

C1019 (R1034) If bounds‑remapping‑list is speciϐied, the number of bounds‑remappings shall equal the18
rank of data‑pointer‑object.19

C1020 If lower‑bounds‑expr and upper‑bounds‑expr appear in a pointer‑assignment‑stmt, at least one of20
them shall be a rank‑one array of constant size equal to the rank of data‑pointer‑object.21

C1021 If lower‑bounds‑expr appears in a pointer‑assignment‑stmt but not upper‑bounds‑expr, it shall be a22
rank‑one array of constant size equal to the rank of data‑pointer‑object.23

C1022 If neither bounds‑remapping‑list nor upper‑bounds‑expr appears in a pointer‑assignment‑stmt, the24
ranks of data‑pointer‑object and data‑target shall be the same.25

C1023 (R1034) A coarray data‑target shall have the VOLATILE attribute if and only if the data‑pointer‑26
object has the VOLATILE attribute.27

C1024 (R1035) A variable‑name shall have the POINTER attribute.28

C1025 (R1035) A scalar‑variable shall be a data‑ref .29

C1026 (R1035) A data‑pointer‑component‑name shall be the name of a component of scalar‑variable that30
is a data pointer.31

C1027 (R1035) A data‑pointer‑object shall not be a coindexed object.32

R1036 bounds‑spec is lower‑bound‑expr :33

R1037 bounds‑remapping is lower‑bound‑expr : upper‑bound‑expr34

R1038 data‑target is expr35

C1028 (R1038) The expr shall be a designator that designates a variable with either the TARGET or36

192 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

POINTER attribute and is not an array section with a vector subscript, or it shall be a reference to1
a function that returns a data pointer.2

C1029 (R1038) A data‑target shall not be a coindexed object.3

NOTE
A data pointer and its target are always on the same image. A coarray can be of a derived type with pointer or
allocatable subcomponents. For example, if PTR is apointer component, andZ%PTRon imagePhasbeenassociated
with a target by execution of an ALLOCATE statement or a pointer assignment on image P, Z[P]%PTR will be a
reference to that target.

R1039 proc‑pointer‑object is proc‑pointer‑name4
or proc‑component‑ref5

R1040 proc‑component‑ref is scalar‑variable% procedure‑component‑name6

C1030 (R1040) The scalar‑variable shall be a data‑ref that is not a coindexed object.7

C1031 (R1040) The procedure‑component‑name shall be the name of a procedure pointer component of8
the declared type of scalar‑variable.9

R1041 proc‑target is expr10
or procedure‑name11
or proc‑component‑ref12

C1032 (R1041) An expr shall be a reference to a function whose result is a procedure pointer.13

C1033 (R1041) A procedure‑name shall be the name of an internal, module, or dummy procedure, a pro‑14
cedure pointer, a speciϐic intrinsic function7 listed in Table 16.2, or an external procedure that is15
accessed by use or host association, referenced in the scoping unit as a procedure, or that has the16
EXTERNAL attribute.17

C1034 (R1041) The proc‑target shall not be a nonintrinsic elemental procedure.18

1 In a pointer assignment statement, data‑pointer‑object or proc‑pointer‑object denotes the pointer object19
and data‑target or proc‑target denotes the pointer target.20

2 For pointer assignment performed by a derived‑type intrinsic assignment statement, the pointer object is21
the pointer component of the variable and the pointer target is the corresponding component of expr.22

10.2.2.3 Data pointer assignment23

1 If the pointer object is not polymorphic (7.3.2.3) and the pointer target is polymorphic with dynamic type24
that differs from its declared type, the assignment target is the ancestor component of the pointer target25
that has the type of the pointer object. Otherwise, the assignment target is the pointer target.26

2 If the pointer target is not a pointer, the pointer object becomes pointer associated with the assignment27
target; if the pointer target is a pointer with a target that is not on the same image, the pointer association28
status of the pointer object becomes undeϐined. Otherwise, the pointer association status of the pointer29
object becomes that of thepointer target; if thepointer target is associatedwith anobject, thepointer object30
becomes associated with the assignment target. If the pointer target is allocatable, it shall be allocated.31

7Speciϐic intrinsic function names are obsolescent.

J3/25‑007 193

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
A pointer assignment statement is not permitted to involve a coindexed pointer or target, see C1027 and C1029.
This prevents a pointer assignment statement from associating a pointer with a target on another image. If such
an association would otherwise be implied, the association status of the pointer becomes undeϐined. For example,
a derived‑type intrinsic assignment where the variable and expr are on different images and the variable has an
ultimate pointer component.

3 If the pointer object is polymorphic, it assumes the dynamic type of the pointer target. If the pointer object1
is of a type with the BIND attribute or the SEQUENCE attribute, the dynamic type of the pointer target shall2
be that type.3

4 If the pointer target is a disassociated pointer, all nondeferred type parameters of the declared type of4
the pointer object that correspond to nondeferred type parameters of the pointer target shall have the5
same values as the corresponding type parameters of the pointer target. Otherwise, all nondeferred type6
parameters of the declared type of the pointer object shall have the same values as the corresponding type7
parameters of the pointer target.8

5 If the pointer object has nondeferred type parameters that correspond to deferred type parameters of the9
pointer target, the pointer target shall not be a pointer with undeϐined association status.10

6 If the pointer object has the CONTIGUOUS attribute, the pointer target shall be contiguous.11

7 If the target of a pointer is a coarray, the pointer shall have the VOLATILE attribute if and only if the coarray12
has the VOLATILE attribute.13

8 If bounds‑remapping‑list appears, it speciϐies the upper and lower bounds of each dimension of the pointer,14
and thus the extents; the pointer target shall be simply contiguous (9.5.4) or of rank one, and shall not be15
a disassociated or undeϐined pointer. The number of elements of the pointer target shall not be less than16
the number implied by the bounds‑remapping‑list. The elements of the pointer object are associated with17
those of the pointer target, in array element order; if the pointer target has more elements than speciϐied18
for the pointer object, the remaining elements are not associated with the pointer object.19

9 If lower‑bounds‑expr and upper‑bounds‑expr appear, the effect is the same as a bounds‑remapping‑list with20
eachbounds‑remapping comprising corresponding elements of the lower andupper bounds arrays, in array21
element order. If one of them is a scalar, the effect is as if it were broadcast to the same shape as the other.22

10 If neither bounds‑remapping‑list nor upper‑bounds‑expr appears, the extent of a dimension of the pointer23
object is the extent of the corresponding dimension of the pointer target. If bounds‑spec‑list or lower‑24
bounds‑expr appears, it speciϐies the lower bounds; otherwise, the lower bound of each dimension is the25
result of the intrinsic function LBOUND (16.9.119) applied to the corresponding dimension of the pointer26
target. The upper bound of each dimension is one less than the sum of the lower bound and the extent.27

10.2.2.4 Procedure pointer assignment28

1 If the pointer target is not a pointer or dummy argument, the pointer object becomes pointer associated29
with the pointer target. If the pointer target is a nonpointer dummy argument, the pointer object becomes30
associated with the ultimate argument of the dummy argument. Otherwise, the pointer association status31
of the pointer object becomes that of the pointer target; if the pointer target is associatedwith a procedure,32
the pointer object becomes associated with the same procedure.33

2 The host instance (15.6.2.4) of an associated procedure pointer is the host instance of its target.34

3 If thepointer object has an explicit interface, its characteristics shall be the sameas thepointer target except35

194 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

that the pointer target may be pure even if the pointer object is not pure, the pointer target may be simple1
even if the pointer object is not simple, and the pointer target may be an elemental intrinsic procedure,2
even though the pointer object cannot be elemental.3

4 If the characteristics of the pointer object or the pointer target are such that an explicit interface is required,4
both the pointer object and the pointer target shall have an explicit interface.5

5 If the pointer object has an implicit interface and is explicitly typed or referenced as a function, the pointer6
target shall be a function. If the pointer object has an implicit interface and is referenced as a subroutine,7
the pointer target shall be a subroutine.8

6 If the pointer object is a function with an implicit interface, the pointer target shall be a function with the9
same type; corresponding type parameters shall have the same value.10

7 If procedure‑name is a speciϐic procedure name that is also a generic name, only the speciϐic procedure is11
associated with the pointer object.12

10.2.2.5 Examples of pointer assignment statements13

NOTE 1
The following are examples of pointer assignment statements. (See 15.4.3.6, NOTE for declarations of P and
BESSEL.)

NEW_NODE % LEFT => CURRENT_NODE
SIMPLE_NAME => TARGET_STRUCTURE % SUBSTRUCT % COMPONENT
PTR => NULL ()
ROW => MAT2D (N, :)
WINDOW => MAT2D (I-1:I+1, J-1:J+1)
POINTER_OBJECT => POINTER_FUNCTION (ARG_1, ARG_2)
EVERY_OTHER => VECTOR (1:N:2)
WINDOW2 (0:, 0:) => MAT2D (ML:MU, NL:NU)
! P is a procedure pointer, BESSEL is a procedure with a compatible interface.
P => BESSEL

! Likewise for a structure component.
STRUCT % COMPONENT => BESSEL

NOTE 2
It is possible to obtain different‑rank views of parts of an object by specifying upper bounds in pointer assignment
statements. This requires that the object be either rank one or contiguous. Consider the following example, in
which a matrix is under consideration. The matrix is stored as a rank‑one object in MYDATA because its diagonal
is needed for some reason – the diagonal cannot be gotten as a single object from a rank‑two representation. The
matrix is represented as a rank‑two view of MYDATA.

real, target :: MYDATA (NR*NC) ! An automatic array
real, pointer :: MATRIX (:, :) ! A rank-two view of MYDATA
real, pointer :: VIEW_DIAG (:)
MATRIX (1:NR, 1:NC) => MYDATA ! The MATRIX view of the data
VIEW_DIAG => MYDATA (1::NR+1) ! The diagonal of MATRIX

Rows, columns, or blocks of the matrix can be accessed as sections of MATRIX.
Rank remapping can be applied to CONTIGUOUS arrays, for example:

REAL, CONTIGUOUS, POINTER :: A (:)
REAL, CONTIGUOUS, TARGET :: B (:,:) ! Dummy argument
A (1:SIZE(B)) => B ! Linear view of a rank-2 array

J3/25‑007 195

J3/25‑007 WD 1539‑1 2024‑12‑29

10.2.3 Masked array assignment – WHERE1

10.2.3.1 General form of the masked array assignment2

1 A masked array assignment is either a WHERE statement or a WHERE construct. It is used to mask the3
evaluation of expressions and assignment of values in array assignment statements, according to the value4
of a logical array expression.5

R1042 where‑stmt is WHERE (mask‑expr) where‑assignment‑stmt6

R1043 where‑construct is where‑construct‑stmt7
[where‑body‑construct] ...8

[masked‑elsewhere‑stmt9
[where‑body‑construct] ...] ...10

[elsewhere‑stmt11
[where‑body‑construct] ...]12

end‑where‑stmt13

R1044 where‑construct‑stmt is [where‑construct‑name:] WHERE (mask‑expr)14

R1045 where‑body‑construct is where‑assignment‑stmt15
or where‑stmt16
or where‑construct17

R1046 where‑assignment‑stmt is assignment‑stmt18

R1047 mask‑expr is logical‑expr19

R1048 masked‑elsewhere‑stmt is ELSEWHERE (mask‑expr) [where‑construct‑name]20

R1049 elsewhere‑stmt is ELSEWHERE [where‑construct‑name]21

R1050 end‑where‑stmt is ENDWHERE [where‑construct‑name]22

C1035 (R1046) A where‑assignment‑stmt that is a deϐined assignment shall be elemental.23

C1036 (R1043) If the where‑construct‑stmt is identiϐied by a where‑construct‑name, the corresponding24
end‑where‑stmt shall specify the same where‑construct‑name. If the where‑construct‑stmt is not25
identiϐied by awhere‑construct‑name, the corresponding end‑where‑stmt shall not specify awhere‑26
construct‑name. If an elsewhere‑stmt or amasked‑elsewhere‑stmt is identiϐied by awhere‑construct‑27
name, the correspondingwhere‑construct‑stmt shall specify the same where‑construct‑name.28

C1037 (R1045) A statement that is part of awhere‑body‑construct shall not be a branch target statement.29

2 If awhere‑construct contains awhere‑stmt, amasked‑elsewhere‑stmt, or anotherwhere‑construct then each30
mask‑exprwithin thewhere‑construct shall have the same shape. In eachwhere‑assignment‑stmt, themask‑31
expr and the variable being deϐined shall be arrays of the same shape.32

NOTE
Examples of masked array assignment are:

WHERE (TEMP > 100.0) TEMP = TEMP - REDUCE_TEMP
WHERE (PRESSURE <= 1.0)

PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP - 5.0

ELSEWHERE
RAINING = .TRUE.

196 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE (cont.)
END WHERE

10.2.3.2 Interpretation of masked array assignments1

1 When aWHERE statement or awhere‑construct‑stmt is executed, a controlmask is established. In addition,2
when a WHERE construct statement is executed, a pending control mask is established. If the statement3
does not appear as part of a where‑body‑construct, the mask‑expr of the statement is evaluated, and the4
control mask is established to be the value ofmask‑expr. The pending control mask is established to have5
the value .NOT.mask‑expr upon execution of a WHERE construct statement that does not appear as part of6
a where‑body‑construct.7

2 Themask‑expr in aWHERE statement, WHERE construct statement, or masked ELSEWHERE statement, is8
evaluated at most once per execution of the statement.9

3 Each statement in a WHERE construct is executed in sequence.10

4 Upon execution of amasked‑elsewhere‑stmt, the following actions take place in sequence.11

(1) The control maskmc is established to have the value of the pending control mask.12
(2) The pending control mask is established to have the valuemc .AND. (.NOT.mask‑expr).13
(3) The control maskmc is established to have the valuemc .AND.mask‑expr.14

5 Upon execution of an ELSEWHERE statement, the control mask is established to have the value of the15
pending control mask. No new pending control mask value is established.16

6 Upon execution of an ENDWHERE statement, the control mask and pending control mask are established17
to have the values they had prior to the execution of the corresponding WHERE construct statement. Fol‑18
lowing the execution of a WHERE statement that appears as a where‑body‑construct, the control mask is19
established to have the value it had prior to the execution of the WHERE statement.20

NOTE 1
The establishment of control masks and the pending control mask is illustrated with the following example:

WHERE(cond1) ! Statement 1
...

ELSEWHERE(cond2) ! Statement 2
...

ELSEWHERE ! Statement 3
...

END WHERE

Following execution of statement 1, the control mask has the value cond1 and the pending control mask has the
value .NOT. cond1. Following execution of statement 2, the control mask has the value (.NOT. cond1) .AND. cond2
and the pending control mask has the value (.NOT. cond1) .AND. (.NOT. cond2). Following execution of statement
3, the control mask has the value (.NOT. cond1) .AND. (.NOT. cond2). The false condition values are propagated
through the execution of the masked ELSEWHERE statement.

7 Upon execution of aWHERE construct statement that is part of awhere‑body‑construct, the pending control21
mask is established to have the valuemc .AND. (.NOT.mask‑expr). The control mask is then established to22
have the valuemc .AND.mask‑expr. Themask‑expr is evaluated at most once.23

8 Upon execution of a WHERE statement that is part of a where‑body‑construct, the control mask is estab‑24
lished to have the valuemc .AND.mask‑expr. The pending control mask is not altered.25

9 If a nonelemental function reference occurs in the expr or variable of awhere‑assignment‑stmt or in amask‑26

J3/25‑007 197

J3/25‑007 WD 1539‑1 2024‑12‑29

expr, the function is evaluated without any masked control; that is, all of its argument expressions are fully1
evaluated and the function is fully evaluated. If the result is an array and the reference is not within the2
argument list of a nonelemental function, elements corresponding to true values in the control mask are3
selected for use in evaluating the expr, variable ormask‑expr.4

10 If an elemental operation or function reference occurs in the expr or variable of a where‑assignment‑stmt5
or in a mask‑expr, and is not within the argument list of a nonelemental function reference, the operation6
is performed or the function is evaluated only for the elements corresponding to true values of the control7
mask.8

11 If an array constructor appears in awhere‑assignment‑stmt or in amask‑expr, the array constructor is eval‑9
uated without any masked control and then the where‑assignment‑stmt is executed or the mask‑expr is10
evaluated.11

12 When awhere‑assignment‑stmt is executed, the values of expr that correspond to true values of the control12
mask are assigned to the corresponding elements of the variable.13

13 The value of the control mask is established by the execution of a WHERE statement, a WHERE construct14
statement, an ELSEWHERE statement, a masked ELSEWHERE statement, or an ENDWHERE statement.15
Subsequent changes to the value of entities in amask‑expr have no effect on the value of the control mask.16
The execution of a function reference in the mask expression of a WHERE statement is permitted to affect17
entities in the assignment statement.18

NOTE 2
Examples of function references in masked array assignments are:

WHERE (A > 0.0)
A = LOG (A) ! LOG is invoked only for positive elements.
A = A / SUM (LOG (A)) ! LOG is invoked for all elements

! because SUM is transformational
END WHERE

10.2.4 FORALL19

10.2.4.1 Obsolescence20

1 The FORALL construct and statement are obsolescent.21

10.2.4.2 Form of the FORALL Construct22

1 The FORALL construct allowsmultiple assignments, masked array (WHERE) assignments, and nested FOR‑23
ALL constructs and statements to be controlled by a single concurrent‑control‑list and scalar‑mask‑expr.24

R1051 forall‑construct is forall‑construct‑stmt25
[forall‑body‑construct] ...26
end‑forall‑stmt27

R1052 forall‑construct‑stmt is [forall‑construct‑name :] FORALL concurrent‑header28

R1053 forall‑body‑construct is forall‑assignment‑stmt29
or where‑stmt30
or where‑construct31
or forall‑construct32
or forall‑stmt33

198 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

R1054 forall‑assignment‑stmt is assignment‑stmt1
or pointer‑assignment‑stmt2

R1055 end‑forall‑stmt is END FORALL [forall‑construct‑name]3

C1038 (R1055) If the forall‑construct‑stmt has a forall‑construct‑name, the end‑forall‑stmt shall have the4
same forall‑construct‑name. If the end‑forall‑stmt has a forall‑construct‑name, the forall‑construct‑5
stmt shall have the same forall‑construct‑name.6

C1039 A statement in a forall‑body‑construct shall not deϐine an index‑name of the forall‑construct.7

C1040 (R1053)Anyprocedure referenced in a forall‑body‑construct, includingone referencedbyadeϐined8
operation, assignment, or ϐinalization, shall be a pure procedure.9

C1041 (R1053) A forall‑body‑construct shall not be a branch target.10

2 The scope and attributes of an index‑name in a concurrent‑header in a FORALL construct or statement are11
described in 19.4.12

10.2.4.3 Execution of the FORALL construct13

10.2.4.3.1 Execution stages14

1 There are three stages in the execution of a FORALL construct:15

(1) determination of the values for index‑name variables,16
(2) evaluation of the scalar‑mask‑expr, and17
(3) execution of the FORALL body constructs.18

10.2.4.3.2 Determination of the values for index variables19

1 The values of the index variables are determined as they are for the DO CONCURRENT statement20
(11.1.7.4.2).21

10.2.4.3.3 Evaluation of the mask expression22

1 The mask expression is evaluated as it is for the DO CONCURRENT statement (11.1.7.4.2).23

10.2.4.3.4 Execution of the FORALL body constructs24

1 The forall‑body‑constructs are executed in the order in which they appear. Each construct is executed for25
all active combinations of the index‑name values with the following interpretation:26

2 Execution of a forall‑assignment‑stmt that is an assignment‑stmt causes the evaluation of expr and all ex‑27
pressions within variable for all active combinations of index‑name values. These evaluations may be done28
in any order. After all these evaluations have been performed, each expr value is assigned to the corres‑29
ponding variable. The assignments may occur in any order.30

3 Execution of a forall‑assignment‑stmt that is a pointer‑assignment‑stmt causes the evaluation of all expres‑31
sions within data‑target and data‑pointer‑object or proc‑target and proc‑pointer‑object, the determination32
of any pointers within data‑pointer‑object or proc‑pointer‑object, and the determination of the target for33
all active combinations of index‑name values. These evaluations may be done in any order. After all these34
evaluations have been performed, each data‑pointer‑object or proc‑pointer‑object is associated with the35
corresponding target. These associations may occur in any order.36

J3/25‑007 199

J3/25‑007 WD 1539‑1 2024‑12‑29

4 In a forall‑assignment‑stmt, a deϐined assignment subroutine shall not reference any variable that becomes1
deϐined by the statement.2

NOTE
If a variable deϐined in an assignment statementwithin a FORALL construct is referenced in a later statement in that
construct, the later statement uses the value(s) computed in the preceding assignment statement, not the value(s)
the variable had prior to execution of the FORALL.

5 Each statement in a where‑construct (10.2.3) within a forall‑construct is executed in sequence. When a3
where‑stmt,where‑construct‑stmt ormasked‑elsewhere‑stmt is executed, the statement’smask‑expr is eval‑4
uated for all active combinations of index‑name values as determined by the outer forall‑constructs, masked5
by any control mask corresponding to outerwhere‑constructs. Awhere‑assignment‑stmt is executed for all6
active combinations of index‑name values, masked by the control mask in effect for the where‑assignment‑7
stmt.8

6 Execution of a forall‑stmt or forall‑construct causes the evaluation of the concurrent‑limit and concurrent‑9
step expressions in the concurrent‑control‑list for all active combinations of the index‑name values of the10
outer FORALL construct. The set of combinations of index‑name values for the inner FORALL is the union of11
the sets deϐined by these limits and steps for each active combination of the outer index‑name values; it also12
includes the outer index‑name values. The scalar‑mask‑expr is then evaluated for all combinations of the13
index‑name values of the inner construct to produce a set of active combinations for the inner construct. If14
there is no scalar‑mask‑expr, it is as if it appeared with the value true. Each statement in the inner FORALL15
is then executed for each active combination of the index‑name values.16

10.2.4.4 The FORALL statement17

1 The FORALL statement allows a single assignment statement or pointer assignment statement to be con‑18
trolled by a set of index values and an optional mask expression.19

R1056 forall‑stmt is FORALL concurrent‑header forall‑assignment‑stmt20

2 A FORALL statement is equivalent to a FORALL construct containing a single forall‑body‑construct that is a21
forall‑assignment‑stmt.22

3 The scope of an index‑name in a forall‑stmt is the statement itself (19.4).23

10.2.4.5 Restrictions on FORALL constructs and statements24

1 A many‑to‑one assignment is more than one assignment to the same object, or association of more than25
one target with the same pointer, whether the object is referenced directly or indirectly through a pointer.26
A many‑to‑one assignment shall not occur within a single statement in a FORALL construct or statement.27
It is possible to assign or pointer‑assign to the same object in different assignment or pointer assignment28
statements in a FORALL construct.29

NOTE
The appearance of each index‑name in the identiϐication of the left‑hand side of an assignment statement is helpful
in eliminating many‑to‑one assignments, but it is not sufϐicient to guarantee there will be none. For example, the
following is allowed

FORALL (I = 1:10)
A (INDEX (I)) = B(I)

END FORALL

if and only if INDEX(1:10) contains no repeated values.

200 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 Within the scopeof a FORALLconstruct, a nestedFORALL statement or FORALLconstruct shall not have the1
same index‑name. The concurrent‑header expressions within a nested FORALL may depend on the values2
of outer index‑name variables.3

J3/25‑007 201

J3/25‑007 WD 1539‑1 2024‑12‑29

11 Execution control1

11.1 Executable constructs containing blocks2

11.1.1 Blocks3

1 The following are executable constructs that contain blocks:4
• ASSOCIATE construct;5
• BLOCK construct;6
• CHANGE TEAM construct;7
• CRITICAL construct;8
• DO construct;9
• IF construct;10
• SELECT CASE construct;11
• SELECT RANK construct;12
• SELECT TYPE construct.13

R1101 block is [execution‑part‑construct] ...14

2 Executable constructs can be used to control which blocks of a program are executed or how many times15
a block is executed. Blocks are always bounded by statements that are particular to the construct in which16
they are embedded.17

NOTE
An example of a construct containing a block is:

IF (A > 0.0) THEN
B = SQRT (A) ! These two statements
C = LOG (A) ! form a block.

END IF

11.1.2 Rules governing blocks18

11.1.2.1 Control ϐlow in blocks19

1 Transfer of control to the interior of a block from outside the block is prohibited, except for the return from20
a procedure invoked within the block. Transfers within a block and transfers from the interior of a block21
to outside the block may occur.22

2 Subroutine and function references (15.5.3, 15.5.4) may appear in a block.23

11.1.2.2 Execution of a block24

1 Execution of a block begins with the execution of the ϐirst executable construct in the block.25

2 Execution of the block is completed when26
• execution of the last executable construct in the block completes without branching to a statement27
within the block,28

202 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• a branch (11.2) within the block that has a branch target outside the block occurs,1
• a RETURN statement within the block is executed, or2
• an EXIT or CYCLE statement that belongs to a construct that contains the block is executed.3

NOTE
The action that takes place at the terminal boundary depends on the particular construct and on the block within
that construct.

11.1.3 ASSOCIATE construct4

11.1.3.1 Purpose and form of the ASSOCIATE construct5

1 The ASSOCIATE construct associates named entities with expressions or variables during the execution of6
its block. These named construct entities (19.4) are associating entities (19.5.1.6). The names are associate7
names.8

R1102 associate‑construct is associate‑stmt9
block10
end‑associate‑stmt11

R1103 associate‑stmt is [associate‑construct‑name :] ASSOCIATE12
(association‑list)13

R1104 association is associate‑name => selector14

R1105 selector is expr15
or variable16

C1101 (R1104) If selector is not a variable or is a variable that has a vector subscript, neither associate‑17
name nor any subobject thereof shall appear in a variable deϐinition context (19.6.7) or pointer18
association context (19.6.8).19

C1102 (R1104) An associate‑name shall not be the same as another associate‑name in the same associate‑20
stmt.21

C1103 (R1105) variable shall not be a coindexed object.22

C1104 (R1105) expr shall not be a variable.23

C1105 (R1105) expr shall not be a designator of a procedure pointer or a function reference that returns24
a procedure pointer.25

R1106 end‑associate‑stmt is END ASSOCIATE [associate‑construct‑name]26

C1106 (R1106) If the associate‑stmt of an associate‑construct speciϐies an associate‑construct‑name, the27
corresponding end‑associate‑stmt shall specify the same associate‑construct‑name. If the associate‑28
stmt of an associate‑construct does not specify an associate‑construct‑name, the corresponding end‑29
associate‑stmt shall not specify an associate‑construct‑name.30

11.1.3.2 Execution of the ASSOCIATE construct31

1 Execution of an ASSOCIATE construct causes evaluation of every expression within every selector that is32
a variable designator and evaluation of every other selector, followed by execution of its block. During33

J3/25‑007 203

J3/25‑007 WD 1539‑1 2024‑12‑29

execution of that block each associate name identiϐies an entity which is associated (19.5.1.6) with the cor‑1
responding selector. The associating entity assumes the declared type and type parameters of the selector.2
If and only if the selector is polymorphic, the associating entity is polymorphic.3

2 The other attributes of the associating entity are described in 11.1.3.3.4

3 It is permissible to branch to an end‑associate‑stmt only from within its ASSOCIATE construct.5

11.1.3.3 Other attributes of associate names6

1 Within an ASSOCIATE, CHANGE TEAM, or SELECT TYPE construct, each associating entity has the same7
rank as its associated selector. The lower bound of each dimension is the result of the intrinsic function8
LBOUND (16.9.119) applied to the corresponding dimension of selector. The upper bound of each dimen‑9
sion is one less than the sum of the lower bound and the extent. The associating entity does not have the10
ALLOCATABLE or POINTER attributes; it has the TARGET attribute if and only if the selector is a variable11
and has either the TARGET or POINTER attribute.12

2 Within an ASSOCIATE, SELECT RANK, or SELECT TYPE construct, each associating entity has the same13
corank as its associated selector. If the selector is a coarray, the cobounds of each codimension of the14
associating entity are the same as those of the selector.15

3 Within a CHANGE TEAM construct, the associating entity is a coarray. Its corank and cobounds are as16
speciϐied in its codimension‑decl.17

4 Within anASSOCIATE, CHANGETEAM, SELECTRANK, or SELECTTYPE construct, the associating entity has18
the ASYNCHRONOUS or VOLATILE attribute if and only if the selector is a variable and has the attribute.19
If the associating entity is polymorphic, it assumes the dynamic type and type parameter values of the20
selector. The associating entity does not have the OPTIONAL attribute. If the selector has the OPTIONAL21
attribute, it cannot be absent (15.5.2.13). The associating entity is contiguous if and only if the selector is22
contiguous.23

5 The associating entity itself is a variable, but if the selector is not a deϐinable variable, the associating entity24
is not deϐinable and shall not be deϐined or become undeϐined. If a selector is not permitted to appear in a25
variable deϐinition context (19.6.7), neither the associate name nor any subobject thereof shall appear in a26
variable deϐinition context or pointer association context (19.6.8).27

11.1.3.4 Examples of the ASSOCIATE construct28

NOTE
The following example illustrates an association with an expression.

ASSOCIATE (Z => EXP (-(X**2+Y**2)) * COS (THETA))
PRINT *, A+Z, A-Z

END ASSOCIATE

The following example illustrates an association with a derived‑type variable.
ASSOCIATE (XC => AX%B(I,J)%C)

XC%DV = XC%DV + PRODUCT (XC%EV(1:N))
END ASSOCIATE

The following example illustrates association with an array section.
ASSOCIATE (ARRAY => AX%B(I,:)%C)

ARRAY(N)%EV = ARRAY(N-1)%EV
END ASSOCIATE

The following example illustrates multiple associations.

204 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE (cont.)
ASSOCIATE (W => RESULT(I,J)%W, ZX => AX%B(I,J)%D, ZY => AY%B(I,J)%D)

W = ZX*X + ZY*Y
END ASSOCIATE

11.1.4 BLOCK construct1

1 The BLOCK construct is an executable construct that can contain declarations.2

R1107 block‑construct is block‑stmt3
[block‑speciϔication‑part]4
block5
end‑block‑stmt6

R1108 block‑stmt is [block‑construct‑name :] BLOCK7

R1109 block‑speciϔication‑part is [use‑stmt] ...8
[import‑stmt] ...9
[declaration‑construct] ...10

R1110 end‑block‑stmt is END BLOCK [block‑construct‑name]11

C1107 (R1107) A block‑speciϔication‑part shall not contain a COMMON, EQUIVALENCE, INTENT, NAMEL‑12
IST, OPTIONAL, statement function, or VALUE statement.113

C1108 (R1107) A SAVE statement in a BLOCK construct shall contain a saved‑entity‑list that does not spe‑14
cify a common‑block‑name.15

C1109 The block of a block‑construct shall not begin with a FORMAT statement or a DATA statement.16

C1110 (R1107) If the block‑stmt of a block‑construct speciϐies a block‑construct‑name, the corresponding17
end‑block‑stmt shall specify the same block‑construct‑name. If the block‑stmt does not specify a18
block‑construct‑name, the corresponding end‑block‑stmt shall not specify a block‑construct‑name.19

2 Except for the ASYNCHRONOUS, IMPORT, and VOLATILE statements, speciϐications in a BLOCK construct20
declare construct entitieswhose scope is that of theBLOCKconstruct (19.4). The appearance of the nameof21
an object that is not a construct entity in an ASYNCHRONOUS or VOLATILE statement in a BLOCK construct22
speciϐies that the object has the attribute within the construct even if it does not have the attribute outside23
the construct.24

3 Execution of a BLOCK construct causes evaluation of the speciϐication expressions within its speciϐication25
part in a processor‑dependent order, followed by execution of its block.26

4 It is permissible to branch to an end‑block‑stmt only from within its BLOCK construct.27

NOTE
The following is an example of a BLOCK construct.

IF (swapxy) THEN
BLOCK

REAL (KIND (x)) tmp
tmp = x
x = y
y = tmp

END BLOCK

1Common blocks, EQUIVALENCE statements, and statement functions are obsolescent.

J3/25‑007 205

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
END IF

Actions on a variable local to a BLOCK construct do not affect any variable of the same name outside the construct.
For example,

F = 254E-2
BLOCK

REAL F
F = 39.37

END BLOCK
! F is still equal to 254E-2.

A SAVE statement outside a BLOCK construct does not affect variables local to the BLOCK construct, because a SAVE
statement affects variables in its scoping unit rather than in its inclusive scope. For example,

SUBROUTINE S
…
SAVE
…
BLOCK

REAL X ! Not saved.
REAL,SAVE :: Y(100) ! SAVE attribute is allowed.
Z = 3 ! Implicitly declared in S, thus saved.
…

END BLOCK
…

END SUBROUTINE

11.1.5 CHANGE TEAM construct1

11.1.5.1 Purpose and form of the CHANGE TEAM construct2

1 The CHANGETEAM construct changes the current team. Named construct entities (19.4) can be associated3
(19.5.1.6) with coarrays in the containing scoping unit, in the same way as for the ASSOCIATE construct.4

R1111 change‑team‑construct is change‑team‑stmt5
block6
end‑change‑team‑stmt7

R1112 change‑team‑stmt is [team‑construct‑name :] CHANGE TEAM (team‑value8
[, coarray‑association‑list] [, sync‑stat‑list])9

R1113 coarray‑association is codimension‑decl=> selector10

R1114 end‑change‑team‑stmt is END TEAM [([sync‑stat‑list])] [team‑construct‑name]11

R1115 team‑value is scalar‑expr12

C1111 A branch (11.2) within a CHANGE TEAM construct shall not have a branch target that is outside13
the construct.14

C1112 A RETURN statement shall not appear within a CHANGE TEAM construct.15

C1113 If the change‑team‑stmt of a change‑team‑construct speciϐies a team‑construct‑name, the corres‑16
ponding end‑change‑team‑stmt shall specify the same team‑construct‑name. If the change‑team‑17
stmt of a change‑team‑construct does not specify a team‑construct‑name, the corresponding end‑18
change‑team‑stmt shall not specify a team‑construct‑name.19

C1114 In a change‑team‑stmt, a coarray‑name in a codimension‑decl shall not be the same as a selector, or20
another coarray‑name, in that statement.21

206 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C1115 A team‑value shall be of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.1

C1116 No selector shall appear more than once in a given change‑team‑stmt.2

C1117 A selector in a coarray‑association shall be a named coarray.3

2 Each coarray‑name in a codimension‑decl in the CHANGE TEAM statement is an associate name which is4
associated with the corresponding selector. Each associating entity assumes the type and type paramet‑5
ers of its selector; it is polymorphic if and only if the selector is polymorphic. The other attributes of the6
associating entities are described in 11.1.3.3.7

11.1.5.2 Execution of a CHANGE TEAM construct8

1 The team‑values on the active images that execute the CHANGETEAMstatement shall be those of teamvari‑9
ables deϐined by corresponding executions of the sameFORMTEAMstatement (11.7.9). When the CHANGE10
TEAM statement is executed, the current team shall be the team that was current when those team vari‑11
ables were deϐined. The current team for the statements of the CHANGE TEAM block is the team identiϐied12
by the team‑value. If team‑value is a variable, the variable shall not be deϐined or become undeϐined during13
execution of the CHANGE TEAM construct. A CHANGE TEAM construct completes execution by executing14
its END TEAM statement, which restores the current team to the original team that was current for the15
CHANGE TEAM statement.16

2 Execution of a CHANGE TEAM construct causes evaluation of the expressionswithin each codimension‑decl17
in the CHANGE TEAM statement, followed by execution of its block. Each selector shall be an established18
coarray when the CHANGE TEAM statement begins execution.19

3 It is permissible to branch to an end‑change‑team‑stmt only from within its CHANGE TEAM construct.20

4 An allocatable coarray that was allocated immediately before executing a CHANGE TEAM statement shall21
not be deallocated during execution of the construct. An allocatable coarray that was unallocated imme‑22
diately before executing a CHANGE TEAM statement, and which is allocated immediately before executing23
the corresponding END TEAM statement, is deallocated by the execution of the END TEAM statement.24

5 Successful execution of a CHANGE TEAM statement performs an implicit synchronization of all images of25
the new team that is identiϐied by team‑value. All active images of the new team shall execute the same26
CHANGETEAMstatement. On each image of the new team, execution of the segment following the CHANGE27
TEAM statement is delayed until all other images of that team have executed the same statement the same28
number of times in the original team.29

6 If the new team contains a failed image and no other error condition occurs, there is an implicit synchroniz‑30
ation of all active images of the new team. On each active image of the new team, execution of the segment31
following the CHANGE TEAM statement is delayed until all other active images of that team have executed32
the same statement the same number of times in the original team.33

7 If no error condition other than the new team containing a failed image occurs, the segments that executed34
before the CHANGETEAMstatement on an active image of the new teamprecede the segments that execute35
after the CHANGE TEAM statement on another active image of that team.36

8 When a CHANGE TEAM construct completes execution, there is an implicit synchronization of all active37
images in the new team. On each active image of the new team, execution of the segment following the38
ENDTEAM statement is delayed until all other active images of this team have executed the same construct39
the same number of times in this team. The segments that executed before the END TEAM statement on an40
active image of the new team precede the segments that execute after the ENDTEAM statement on another41

J3/25‑007 207

J3/25‑007 WD 1539‑1 2024‑12‑29

active image of that team.1

NOTE 1
Deallocation of an allocatable coarray that was not allocated at the beginning of a CHANGE TEAM construct, but is
allocated at the end of execution of the construct, occurs even for allocatable coarrays with the SAVE attribute.

NOTE 2
Execution of a CHANGE TEAM statement includes a synchronization of the executing image with the other images
that will be in the same team after execution of the CHANGE TEAM statement. Synchronization of these images
occurs again when the corresponding END TEAM statement is executed.
If it is desired to synchronize all of the images in the team that was current when the CHANGE TEAM statement was
executed, a SYNC TEAM statement that speciϐies the parent team can be executed immediately after the CHANGE
TEAM statement. If similar semantics are desired following the END TEAM statement, a SYNC ALL statement could
immediately follow the END TEAM statement.

NOTE 3
A coarray that is established when a CHANGE TEAM statement is executed retains its corank and cobounds inside
the block. If it is desired to perform remote accesses based on corank or cobounds different from those of the
original coarray, an associating coarray can be used. An example of this is in C.7.7.

11.1.6 CRITICAL construct2

1 A CRITICAL construct limits execution of a block to one image at a time.3

R1116 critical‑construct is critical‑stmt4
block5
end‑critical‑stmt6

R1117 critical‑stmt is [critical‑construct‑name :] CRITICAL [([sync‑stat‑list])]7

R1118 end‑critical‑stmt is END CRITICAL [critical‑construct‑name]8

C1118 (R1116) If the critical‑stmt of a critical‑construct speciϐies a critical‑construct‑name, the corres‑9
ponding end‑critical‑stmt shall specify the same critical‑construct‑name. If the critical‑stmt of a10
critical‑construct does not specify a critical‑construct‑name, the corresponding end‑critical‑stmt11
shall not specify a critical‑construct‑name.12

C1119 (R1116) The block of a critical‑construct shall not contain a RETURN statement or an image control13
statement.14

C1120 A branch (11.2) within a CRITICAL construct shall not have a branch target that is outside the15
construct.16

2 Executionof the CRITICAL construct is completedwhenexecution of its block is completed, or the executing17
image fails (5.3.6). A procedure invoked, directly or indirectly, from a CRITICAL construct shall not execute18
an image control statement.19

3 The processor shall ensure that once an image has commenced executing block, no other image shall com‑20
mence executing block until this image has completed execution of the construct. The image shall not ex‑21
ecute an image control statement during the execution of block. The sequence of executed statements is22
therefore a segment (11.7.2). If image M completes execution of the construct without failing and image T23
is the next to execute the construct, the segment on image M precedes the segment on image T. Otherwise,24

208 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

if image M completes execution of the construct by failing, and image T is the next to execute the construct,1
the previous segment on image M precedes the segment on image T.2

4 The effect of a STAT= or ERRMSG= speciϐier in a CRITICAL statement is speciϐied in 11.7.11.3

5 It is permissible to branch to an end‑critical‑stmt only from within its CRITICAL construct.4

NOTE 1
Ifmore than one image executes the block of a CRITICAL constructwithout failing, its execution by one image always
either precedes or succeeds its execution by another nonfailed image. Typically no other statement ordering is
needed. Consider the following example:

CRITICAL
GLOBAL_COUNTER[1] = GLOBAL_COUNTER[1] + 1

END CRITICAL

Thedeϐinition of GLOBAL_COUNTER [1] by aparticular imagewill always precede the reference to the samevariable
by the next image to execute the block.

NOTE 2
The following example permits a large number of jobs to be shared among the images:

INTEGER :: NUM_JOBS[*], JOB
…
IF (THIS_IMAGE() == 1) READ(*,*) NUM_JOBS
SYNC ALL
DO

CRITICAL
JOB = NUM_JOBS[1]
NUM_JOBS[1] = JOB - 1

END CRITICAL
IF (JOB > 0) THEN

… ! Work on JOB
ELSE

EXIT
END IF

END DO
SYNC ALL

11.1.7 DO construct5

11.1.7.1 Purpose and form of the DO construct6

1 The DO construct speciϐies the repeated execution of a sequence of executable constructs. Such a repeated7
sequence is called a loop.8

2 The number of iterations of a loop can be determined at the beginning of execution of the DO construct,9
or can be left indeϐinite (“DO forever” or DO WHILE). The execution order of the iterations can be left in‑10
determinate (DO CONCURRENT); except in this case, the loop can be terminated immediately (11.1.7.4.5).11
An iteration of the loop can be curtailed by executing a CYCLE statement (11.1.7.4.4).12

3 There are three phases in the execution of a DO construct: initiation of the loop, execution of each iteration13
of the loop, and termination of the loop.14

4 The scope and attributes of an index‑name in a concurrent‑header (DO CONCURRENT) are described in15
19.4.16

11.1.7.2 Form of the DO construct17

R1119 do‑construct is do‑stmt18

J3/25‑007 209

J3/25‑007 WD 1539‑1 2024‑12‑29

block1
end‑do2

R1120 do‑stmt is nonlabel‑do‑stmt3
or label‑do‑stmt4

R1121 label‑do‑stmt is [do‑construct‑name :] DO label [loop‑control]5

R1122 nonlabel‑do‑stmt is [do‑construct‑name :] DO [loop‑control]6

R1123 loop‑control is [,] do‑variable = scalar‑int‑expr, scalar‑int‑expr7
[, scalar‑int‑expr]8

or [,] WHILE (scalar‑logical‑expr)9
or [,] CONCURRENT concurrent‑header concurrent‑locality10

R1124 do‑variable is scalar‑int‑variable‑name11

C1121 (R1124) The do‑variable shall be a variable of type integer.12

R1125 concurrent‑header is ([integer‑type‑spec ::] concurrent‑control‑list13
[, scalar‑mask‑expr])14

R1126 concurrent‑control is index‑name = concurrent‑limit : concurrent‑limit15
[: concurrent‑step]16

R1127 concurrent‑limit is scalar‑int‑expr17

R1128 concurrent‑step is scalar‑int‑expr18

R1129 concurrent‑locality is [locality‑spec]...19

R1130 locality‑spec is LOCAL (variable‑name‑list)20
or LOCAL_INIT (variable‑name‑list)21
or REDUCE (reduce‑operation : variable‑name‑list)22
or SHARED (variable‑name‑list)23
or DEFAULT (NONE)24

R1131 reduce‑operation is binary‑reduce‑op25
or function‑reduction‑name26

R1132 binary‑reduce‑op is +27
or *28
or .AND.29
or .OR.30
or .EQV.31
or .NEQV.32

C1122 The function‑reduction‑name shall be the name of the standard intrinsic function IAND, IEOR, IOR,33
MAX, or MIN.34

C1123 (R1125) Any procedure referenced in the scalar‑mask‑expr, including one referenced by a deϐined35
operation, shall be a pure procedure (15.7).36

C1124 (R1126) The index‑name shall be a named scalar variable of type integer.37

210 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C1125 (R1126) A concurrent‑limit or concurrent‑step in a concurrent‑control shall not contain a reference1
to any index‑name in the concurrent‑control‑list in which it appears.2

C1126 A variable‑name in a locality‑spec shall be the name of a variable in the innermost executable con‑3
struct or scoping unit that includes the DO CONCURRENT statement.4

C1127 A variable‑name in a locality‑spec shall not be the same as an index‑name in the concurrent‑header5
of the same DO CONCURRENT statement.6

C1128 The name of a variable shall not appear in more than one variable‑name‑list, or more than once in7
a variable‑name‑list, in a given concurrent‑locality.8

C1129 The DEFAULT (NONE) locality‑spec shall not appearmore than once in a given concurrent‑locality.9

C1130 A variable‑name that appears in a LOCAL or LOCAL_INIT locality‑spec shall not have the ALLOCAT‑10
ABLE, INTENT (IN), or OPTIONAL attribute, shall not be of ϐinalizable type, shall not have an alloc‑11
atable ultimate component, shall not be a nonpointer polymorphic dummy argument, and shall not12
be a coarray or an assumed‑size array. A variable‑name that is not permitted to appear in a variable13
deϐinition context shall not appear in a LOCAL or LOCAL_INIT locality‑spec.14

C1131 A variable‑name that appears in a REDUCE locality‑spec shall not have the ASYNCHRONOUS, IN‑15
TENT (IN), OPTIONAL, or VOLATILE attribute, shall not be coindexed, and shall not be an assumed‑16
size array. A variable‑name that is not permitted to appear in a variable deϐinition context shall not17
appear in a REDUCE locality‑spec.18

C1132 A variable‑name that appears in a REDUCE locality‑spec shall be of intrinsic type suitable for the19
intrinsic operation or function speciϐied by its reduce‑operation.20

C1133 A variable that is referenced by the scalar‑mask‑expr of a concurrent‑header or by any concurrent‑21
limit or concurrent‑step in that concurrent‑header shall not appear in a LOCAL locality‑spec in the22
same DO CONCURRENT statement.23

C1134 If the locality‑spec DEFAULT (NONE) appears in a DO CONCURRENT statement, a variable that is24
a local or construct entity of a scope containing the DO CONCURRENT construct, and that appears25
in the block of the construct, shall have its locality explicitly speciϐied by that statement.26

R1133 end‑do is end‑do‑stmt27
or continue‑stmt28

R1134 end‑do‑stmt is END DO [do‑construct‑name]29

C1135 (R1119) If the do‑stmt of a do‑construct speciϐies a do‑construct‑name, the corresponding end‑do30
shall be an end‑do‑stmt specifying the same do‑construct‑name. If the do‑stmt of a do‑construct does31
not specify a do‑construct‑name, the corresponding end‑do shall not specify a do‑construct‑name.32

C1136 (R1119) If the do‑stmt is a nonlabel‑do‑stmt, the corresponding end‑do shall be an end‑do‑stmt.33

C1137 (R1119) If the do‑stmt is a label‑do‑stmt, the corresponding end‑do shall be identiϐied with the34
same label.35

1 The label‑do‑stmt is obsolescent.36

2 It is permissible to branch to an end‑do only from within its DO construct.37

J3/25‑007 211

J3/25‑007 WD 1539‑1 2024‑12‑29

11.1.7.3 Active and inactive DO constructs1

1 A DO construct is either active or inactive. Initially inactive, a DO construct becomes active only when its2
DO statement is executed.3

2 Once active, the DO construct becomes inactive only when it terminates (11.1.7.4.5).4

11.1.7.4 Execution of a DO construct5

11.1.7.4.1 Loop initiation6

1 When the DO statement is executed, the DO construct becomes active. If loop‑control is7

[,] do‑variable = scalar‑int‑expr1 , scalar‑int‑expr2 [, scalar‑int‑expr3]8

the following steps are performed in sequence.9

(1) The initial parameter m1, the terminal parameter m2, and the incrementation parameter m310
are of type integer with the same kind type parameter as the do‑variable. Their values are11
established by evaluating scalar‑int‑expr1, scalar‑int‑expr2, and scalar‑int‑expr3, respectively,12
including, if necessary, conversion to the kind type parameter of the do‑variable according to13
the rules for numeric conversion (Table 10.9). If scalar‑int‑expr3 does not appear, m3 has the14
value 1. The value ofm3 shall not be zero.15

(2) The DO variable becomes deϐined with the value of the initial parameterm1.16
(3) The iteration count is established and is the value of the expression (m2−m1+m3)/m3, unless17

that value is negative, in which case the iteration count is 0.18

NOTE
The iteration count is zero whenever:

m1 > m2 andm3 > 0, or
m1 < m2 andm3 < 0.

2 If loop‑control is omitted, no iteration count is calculated. The effect is as if a large positive iteration count,19
impossible to decrement to zero, were established. If loop‑control is [,] WHILE (scalar‑logical‑expr), the20
effect is as if loop‑control were omitted and the following statement inserted as the ϐirst statement of the21
block:22

IF (.NOT. (scalar-logical-expr)) EXIT23

3 For a DO CONCURRENT construct, the values of the index variables for the iterations of the construct are24
determined by the rules in 11.1.7.4.2.25

4 At the completion of the execution of the DO statement, the execution cycle begins.26

11.1.7.4.2 DO CONCURRENT loop control27

1 The concurrent‑limit and concurrent‑step expressions in the concurrent‑control‑list are evaluated. These28
expressionsmay be evaluated in any order. The set of values that a particular index‑name variable assumes29
is determined as follows.30

(1) The lower boundm1, the upper boundm2, and the stepm3 are of type integer with the same31
kind type parameter as the index‑name. Their values are established by evaluating the ϐirst32
concurrent‑limit, the second concurrent‑limit, and the concurrent‑step expressions, respectively,33

212 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

including, if necessary, conversion to the kind type parameter of the index‑name according to1
the rules for numeric conversion (Table 10.9). If concurrent‑step does not appear, m3 has the2
value 1. The valuem3 shall not be zero.3

(2) Let the value ofmax be (m2 −m1 +m3)/m3. Ifmax≤ 0 for some index‑name, the execution of4
the construct is complete. Otherwise, the set of values for the index‑name is5

m1 + (k − 1)×m3 where k = 1, 2, …,max.6

2 The set of combinations of index‑name values is the Cartesian product of the sets deϐined by each triplet7
speciϐication. An index‑name becomes deϐined when this set is evaluated.8

3 The scalar‑mask‑expr, if any, is evaluated for each combination of index‑name values. If there is no scalar‑9
mask‑expr, it is as if it appeared with the value true. The index‑name variables may be primaries in the10
scalar‑mask‑expr.11

4 The set of active combinations of index‑name values is the subset of all possible combinations for which the12
scalar‑mask‑expr has the value true.13

NOTE
The index‑name variables can appear in the mask, for example

DO CONCURRENT (I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)
…

11.1.7.4.3 The execution cycle14

1 The execution cycle of a DO construct that is not a DO CONCURRENT construct consists of the following15
steps performed in sequence repeatedly until termination.16

(1) The iteration count, if any, is tested. If it is zero, the loop terminates and the DO construct17
becomes inactive. If loop‑control is [,] WHILE (scalar‑logical‑expr), the scalar‑logical‑expr is18
evaluated; if the value of this expression is false, the loop terminates and the DO construct be‑19
comes inactive.20

(2) The block of the loop is executed.21
(3) The iteration count, if any, is decremented by one. The DO variable, if any, is incremented by22

the value of the incrementation parameterm3.23

2 Except for the incrementation of the DO variable that occurs in step (3), the DO variable shall neither be24
redeϐined nor become undeϐined while the DO construct is active.25

3 The block of a DO CONCURRENT construct is executed for every active combination of the index‑name val‑26
ues. Each execution of the block is an iteration. The executions may occur in any order.27

11.1.7.4.4 CYCLE statement28

1 Execution of a loop iteration can be curtailed by executing a CYCLE statement that belongs to the construct.29

R1135 cycle‑stmt is CYCLE [do‑construct‑name]30

C1138 If a do‑construct‑name appears on a CYCLE statement, the CYCLE statement shall be within that31
do‑construct; otherwise, it shall be within at least one do‑construct.32

C1139 A cycle‑stmt shall not appear within a CHANGE TEAM, CRITICAL, or DO CONCURRENT construct if33
it belongs to an outer construct.34

J3/25‑007 213

J3/25‑007 WD 1539‑1 2024‑12‑29

2 A CYCLE statement belongs to a particular DO construct. If the CYCLE statement contains a DO construct1
name, it belongs to that DO construct; otherwise, it belongs to the innermost DO construct in which it2
appears.3

3 Execution of a CYCLE statement that belongs to a DO construct that is not a DO CONCURRENT construct4
causes immediate progression to step (3) of the execution cycle of the DO construct to which it belongs.5

4 Execution of a CYCLE statement that belongs to a DO CONCURRENT construct completes execution of that6
iteration of the construct.7

5 In a DO construct, a transfer of control to the end‑do has the same effect as execution of a CYCLE statement8
belonging to that construct.9

11.1.7.4.5 Loop termination10

1 For a DO construct that is not a DO CONCURRENT construct, the loop terminates, and the DO construct11
becomes inactive, when any of the following occurs.12

• The iteration count is determined to be zero or the scalar‑logical‑expr is false, when tested during13
step (1) of the above execution cycle.14

• An EXIT statement that belongs to the DO construct is executed.15
• An EXIT or CYCLE statement that belongs to an outer construct and is within the DO construct is16
executed.17

• A branch occurs within the DO construct and the branch target statement is outside the construct.18
• A RETURN statement within the DO construct is executed.19

2 For a DO CONCURRENT construct, the loop terminates, and the DO construct becomes inactive when all of20
the iterations have completed execution.21

3 When a DO construct becomes inactive, the DO variable, if any, of the DO construct retains its last deϐined22
value.23

11.1.7.5 Additional semantics for DO CONCURRENT constructs24

C1140 A RETURN statement shall not appear within a DO CONCURRENT construct.25

C1141 An image control statement shall not appear within a DO CONCURRENT construct.26

C1142 A branch (11.2) within a DO CONCURRENT construct shall not have a branch target that is outside27
the construct.28

C1143 A reference to an impure procedure shall not appear within a DO CONCURRENT construct.29

C1144 A statement that might result in the deallocation of a polymorphic entity shall not appear within a30
DO CONCURRENT construct.31

C1145 A reference to the procedure IEEE_GET_FLAG, IEEE_GET_HALTING_MODE, IEEE_GET_STATUS,32
IEEE_SET_HALTING_MODE, IEEE_SET_MODES, or IEEE_SET_STATUS from the intrinsic module33
IEEE_EXCEPTIONS, shall not appear within a DO CONCURRENT construct.34

C1146 A reference to the procedure IEEE_SET_ROUNDING_MODEor IEEE_SET_UNDERFLOW_MODE from35
the intrinsic module IEEE_ARITHMETIC shall not appear within a DO CONCURRENT construct.36

214 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

1 The locality of a variable that appears in a DO CONCURRENT construct is LOCAL, LOCAL_INIT, REDUCE,1
SHARED, or unspeciϐied. A construct or statement entity of a construct or statement within the DO CON‑2
CURRENT construct has SHARED locality if it has the SAVE attribute. If it does not have the SAVE attribute,3
it is a different entity in each iteration, similar to LOCAL locality.4

2 A variable that has LOCAL or LOCAL_INIT locality is a construct entitywith the same type, type parameters,5
and rank as the variable with the same name in the innermost executable construct or scoping unit that6
includes the DO CONCURRENT construct, and the outside variable is inaccessible by that name within the7
construct. The construct entity has the ASYNCHRONOUS, CONTIGUOUS, POINTER, TARGET, or VOLATILE8
attribute if and only if the outside variable has that attribute; it does not have the BIND, INTENT, PROTEC‑9
TED, SAVE, or VALUE attribute, even if the outside variable has that attribute. If it is not a pointer, it has the10
same bounds as the outside variable. At the beginning of execution of each iteration,11

• if a variablewith LOCAL locality is a pointer it has undeϐinedpointer association status, andotherwise12
it is undeϐined except for any subobjects that are default‑initialized;13

• a variable with LOCAL_INIT locality has the pointer association status and deϐinition status of the14
outside variable with that name; the outside variable shall not be an undeϐined pointer or a nonal‑15
locatable nonpointer variable that is undeϐined.16

If a variable with LOCAL or LOCAL_INIT locality becomes an affector of a pending input/output operation,17
the operation shall have completed before the end of the iteration. If a variable with LOCAL or LOCAL_INIT18
locality has the TARGET attribute, a pointer associatedwith it during an iteration becomes undeϐinedwhen19
execution of that iteration completes.20

3 A variable that has REDUCE locality is a construct entity with the same type, type parameters, rank, and21
bounds as the variable with the same name in the innermost executable construct or scoping unit that in‑22
cludes the DO CONCURRENT construct (the outside variable); the outside variable is inaccessible by that23
namewithin the construct. The outside variable shall not be anunallocated allocatable variable or a pointer24
that is not associated. The construct entity has the CONTIGUOUS attribute if and only if the outside variable25
has that attribute; it does not have the ALLOCATABLE, BIND, INTENT, POINTER, PROTECTED, SAVE, TAR‑26
GET, or VALUE attribute, even if the outside variable has that attribute. Before execution of the iterations27
begins, the construct entity is assigned an initial value corresponding to its reduce‑operation as speciϐied28
in Table 11.1.29

Table 11.1— Initial values for reduction operations
Operation Initial value

+ 0
* 1

.AND. .TRUE.
.OR. .FALSE.
.EQV. .TRUE.
.NEQV. .FALSE.
IAND All bits set
IEOR 0
IOR 0
MAX Least representable value of the type and kind
MIN Largest representable value of the type and kind

NOTE 1
A processor can implement a DO CONCURRENT construct in a manner such that a variable with REDUCE locality
might not have the initial value from Table 11.1 at the start of every iteration.

4 A variable that has REDUCE locality shall only appear within the block of a DO CONCURRENT construct in30
the designator of a variable, as the object‑name, or as the leftmost part‑name of an array‑element or array‑31
section, in an intrinsic assignment statement with the following forms:32

J3/25‑007 215

J3/25‑007 WD 1539‑1 2024‑12‑29

variable = variable binary‑reduce‑op expr
variable = expr binary‑reduce‑op variable
variable = function‑reduction‑name ([expr,]... variable [, expr]...)

1

where each occurrence of variable has the same form.2

5 If a variable has REDUCE locality, on termination of the DO CONCURRENT construct the outside variable is3
updated by combining it with the values the construct entity had at completion of each iteration, using the4
reduce‑operation. The processor may combine the values in any order.5

6 If a variable has SHARED locality, appearances of the variable within the DO CONCURRENT construct refer6
to the variable in the innermost executable construct or scoping unit that includes the DO CONCURRENT7
construct. If it is deϐined or becomes undeϐined during any iteration, it shall not be referenced, deϐined, or8
become undeϐined during any other iteration. If it is allocated, deallocated, nulliϐied, or pointer‑assigned9
during an iteration it shall not have its allocation or association status, dynamic type, array bounds, shape,10
or a deferred type parameter value inquired about in any other iteration. A noncontiguous array with11
SHARED locality shall not be supplied as an actual argument corresponding to a contiguous INTENT (IN‑12
OUT) dummy argument.13

7 If a variable has unspeciϐied locality,14
• if it is referenced in an iteration it shall either be previously deϐined during that iteration, or shall not15
be deϐined or become undeϐined during any other iteration; if it is deϐined or becomes undeϐined by16
more than one iteration it becomes undeϐined when the loop terminates;17

• if it is noncontiguous and is supplied as an actual argument corresponding to a contiguous INTENT18
(INOUT) dummy argument in an iteration, it shall either be previously deϐined in that iteration or19
shall not be deϐined in any other iteration;20

• if it is a pointer and is used in an iteration other than as the pointer in pointer assignment, allocation,21
or nulliϐication, it shall either be previously pointer associated during that iteration or shall not have22
its pointer association changed during any iteration;23

• if it is a pointer whose pointer association is changed inmore than one iteration, it has an association24
status of undeϐined when the construct terminates;25

• if it is allocatable and is allocated in more than one iteration, it shall have an allocation status of26
unallocated at the end of every iteration;27

• if it is allocatable and is referenced, deϐined, deallocated, or has its allocation status, dynamic type, or28
adeferred typeparameter value inquired about, in any iteration, it shall either bepreviously allocated29
in that iteration or shall not be allocated or deallocated in any other iteration.30

8 ADOCONCURRENT construct shall not contain an input/output statement that has anADVANCE= speciϐier.31

9 If data are written to a ϐile record or position in one iteration, that record or position in that ϐile shall not be32
read fromorwritten to in adifferent iteration. If records arewritten to a ϐile connected for sequential access33
by more than one iteration, the ordering of records written by different iterations is processor dependent.34

NOTE 2
The restrictions on referencing variables deϐined in an iteration of a DO CONCURRENT construct apply to any pro‑
cedure invoked within the loop.

NOTE 3
The restrictions on the statements in a DO CONCURRENT construct are designed to ensure there are no data de‑
pendencies between iterations of the loop. This permits code optimizations that might otherwise be difϐicult or
impossible because they would depend on properties of the program not visible to the compiler.

216 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

11.1.7.6 Examples of DO constructs1

NOTE 1
The following program fragment computes a tensor product of two arrays:

DO I = 1, M
DO J = 1, N

C (I, J) = DOT_PRODUCT (A (I, J, :), B(:, I, J))
END DO

END DO

NOTE 2
The following program fragment contains a DO construct that uses the WHILE form of loop‑control. The loop will
continue to execute until an end‑of‑ϐile or input/output error is encountered, at which point the DO statement
terminates the loop. When a negative value of X is read, the program skips immediately to the next READ statement,
bypassing most of the block of the loop.

READ (IUN, '(1X, G14.7)', IOSTAT = IOS) X
DO WHILE (IOS == 0)

IF (X >= 0.) THEN
CALL SUBA (X)
CALL SUBB (X)
…
CALL SUBZ (X)

ENDIF
READ (IUN, '(1X, G14.7)', IOSTAT = IOS) X

END DO

NOTE 3
The following example behaves exactly the same as the one in NOTE 2. However, the READ statement has been
moved to the interior of the loop, so that only one READ statement is needed. Also, a CYCLE statement has been
used to avoid an extra level of IF nesting.

DO ! A "DO WHILE + 1/2" loop
READ (IUN, '(1X, G14.7)', IOSTAT = IOS) X
IF (IOS /= 0) EXIT
IF (X < 0.) CYCLE
CALL SUBA (X)
CALL SUBB (X)
…
CALL SUBZ (X)

END DO

NOTE 4
The following example illustrates a case in which the user knows that there are no repeated values in the index
array IND. The DO CONCURRENT construct makes it easier for the processor to generate vector gather/scatter
code, unroll the loop, or parallelize the code for this loop, potentially improving performance.

INTEGER :: A(N),IND(N)
…
DO CONCURRENT (I=1:M)

A(IND(I)) = I
END DO

NOTE 5
The following code demonstrates the use of the LOCAL clause so that the X inside the DO CONCURRENT construct
is a temporary variable, and will not affect the X outside the construct.

X = 1.0
DO CONCURRENT (I=1:10) LOCAL (X)

IF (A (I) > 0) THEN
X = SQRT (A (I))
A (I) = A (I) - X**2

END IF
B (I) = B (I) - A (I)

J3/25‑007 217

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 5 (cont.)
END DO
PRINT *, X ! Always prints 1.0.

NOTE 6
Additional examples of DO constructs are in C.7.3.

11.1.8 IF construct and statement1

11.1.8.1 Purpose and form of the IF construct2

1 The IF construct selects for execution at most one of its constituent blocks. The selection is based on a3
sequence of logical expressions.4

R1136 if‑construct is if‑then‑stmt5
block6

[else‑if‑stmt7
block] ...8

[else‑stmt9
block]10

end‑if‑stmt11

R1137 if‑then‑stmt is [if‑construct‑name :] IF (scalar‑logical‑expr) THEN12

R1138 else‑if‑stmt is ELSE IF (scalar‑logical‑expr) THEN [if‑construct‑name]13

R1139 else‑stmt is ELSE [if‑construct‑name]14

R1140 end‑if‑stmt is END IF [if‑construct‑name]15

C1147 (R1136) If the if‑then‑stmt of an if‑construct speciϐies an if‑construct‑name, the corresponding end‑16
if‑stmt shall specify the same if‑construct‑name. If the if‑then‑stmt of an if‑construct does not specify17
an if‑construct‑name, the corresponding end‑if‑stmt shall not specify an if‑construct‑name. If an else‑18
if‑stmt or else‑stmt speciϐies an if‑construct‑name, the corresponding if‑then‑stmt shall specify the19
same if‑construct‑name.20

11.1.8.2 Execution of an IF construct21

1 At most one of the blocks in the IF construct is executed. If there is an ELSE statement in the construct, ex‑22
actly one of the blocks in the construct is executed. The scalar logical expressions are evaluated in the order23
of their appearance in the construct until a true value is found or an ELSE statement or END IF statement24
is encountered. If a true value or an ELSE statement is found, the block immediately following is executed25
and this completes the execution of the construct. The scalar logical expressions in any remaining ELSE IF26
statements of the IF construct are not evaluated. If none of the evaluated expressions is true and there is27
no ELSE statement, the execution of the construct is completed without the execution of any block within28
the construct.29

2 It is permissible to branch to an END IF statement only from within its IF construct. Execution of an END30
IF statement has no effect.31

11.1.8.3 Examples of IF constructs32

218 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE

IF (CVAR == 'RESET') THEN
I = 0; J = 0; K = 0

END IF
PROOF_DONE: IF (PROP) THEN

WRITE (3, '(''QED'')')
STOP

ELSE
PROP = NEXTPROP

END IF PROOF_DONE
IF (A > 0) THEN

B = C/A
IF (B > 0) THEN

D = 1.0
END IF

ELSE IF (C > 0) THEN
B = A/C
D = -1.0

ELSE
B = ABS (MAX (A, C))
D = 0

END IF

11.1.8.4 IF statement1

1 The IF statement controls the execution of a single action statement based on a single logical expression.2

R1141 if‑stmt is IF (scalar‑logical‑expr) action‑stmt3

C1148 (R1141) The action‑stmt in the if‑stmt shall not be an if‑stmt.4

2 Execution of an IF statement causes evaluation of the scalar logical expression. If the value of the expression5
is true, the action statement is executed. If the value is false, the action statement is not executed.6

3 The execution of a function reference in the scalar logical expressionmay affect entities in the action state‑7
ment.8

NOTE
An example of an IF statement is:

IF (A > 0.0) A = LOG (A)

11.1.9 SELECT CASE construct9

11.1.9.1 Purpose and form of the SELECT CASE construct10

1 The SELECT CASE construct selects for execution at most one of its constituent blocks. The selection is11
based on the value of an expression.12

R1142 case‑construct is select‑case‑stmt13
[case‑stmt14

block] ...15
end‑select‑stmt16

R1143 select‑case‑stmt is [case‑construct‑name :] SELECT CASE (case‑expr)17

R1144 case‑stmt is CASE case‑selector [case‑construct‑name]18

R1145 end‑select‑stmt is END SELECT [case‑construct‑name]19

J3/25‑007 219

J3/25‑007 WD 1539‑1 2024‑12‑29

C1149 (R1142) If the select‑case‑stmt of a case‑construct speciϐies a case‑construct‑name, the correspond‑1
ing end‑select‑stmt shall specify the same case‑construct‑name. If the select‑case‑stmt of a case‑2
construct does not specify a case‑construct‑name, the corresponding end‑select‑stmt shall not spe‑3
cify a case‑construct‑name. If a case‑stmt speciϐies a case‑construct‑name, the corresponding select‑4
case‑stmt shall specify the same case‑construct‑name.5

R1146 case‑expr is scalar‑expr6

C1150 case‑expr shall be of type character, integer, or logical, or of enum or enumeration type.7

R1147 case‑selector is (case‑value‑range‑list)8
or DEFAULT9

C1151 (R1142) No more than one of the selectors of one of the CASE statements shall be DEFAULT.10

R1148 case‑value‑range is case‑value11
or case‑value :12
or : case‑value13
or case‑value : case‑value14

R1149 case‑value is scalar‑constant‑expr15

C1152 (R1142) For a given case‑construct, each case‑value shall be of the same type as case‑expr, or in16
type conformance as speciϐied in Table 10.8 if case‑expr is of an enum type. For character type, the17
kind type parameters shall be the same; character length differences are allowed.18

C1153 (R1142) A case‑value‑range using a colon shall not be used if case‑expr is of type logical.19

C1154 (R1142) For a given case‑construct, there shall be no possible value of the case‑expr that matches20
more than one case‑value‑range.21

11.1.9.2 Execution of a SELECT CASE construct22

1 The execution of the SELECT CASE statement causes the case expression to be evaluated. For a case value23
range list, a match occurs if the case expression value matches any of the case value ranges in the list. For24
a case expression with a value of c, a match is determined as follows.25

(1) If the case value range contains a single value v without a colon, a match occurs for type logical26
if the expression c .EQV. v is true, and a match occurs for other types if the expression c == v is27
true.28

(2) If the case value range is of the form low : high, a match occurs if the expression low <= c .AND.29
c <= high is true.30

(3) If the case value range is of the form low :, a match occurs if the expression low <= c is true.31
(4) If the case value range is of the form : high, a match occurs if the expression c <= high is true.32
(5) If no other selector matches and a DEFAULT selector appears, it matches the case index.33
(6) If no other selector matches and the DEFAULT selector does not appear, there is no match.34

2 Theblock following theCASE statement containing thematching selector, if any, is executed. This completes35
execution of the construct.36

3 It is permissible to branch to an end‑select‑stmt only from within its SELECT CASE construct.37

220 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

11.1.9.3 Examples of SELECT CASE constructs1

NOTE 1
An integer signum function:

INTEGER FUNCTION SIGNUM (N)
SELECT CASE (N)
CASE (:-1)

SIGNUM = -1
CASE (0)

SIGNUM = 0
CASE (1:)

SIGNUM = 1
END SELECT
END

NOTE 2
A code fragment to check for balanced parentheses:

CHARACTER (80) :: LINE
…
LEVEL = 0
SCAN_LINE: DO I = 1, 80

CHECK_PARENS: SELECT CASE (LINE (I:I))
CASE ('(')

LEVEL = LEVEL + 1
CASE (')')

LEVEL = LEVEL - 1
IF (LEVEL < 0) THEN

PRINT *, 'UNEXPECTED RIGHT PARENTHESIS'
EXIT SCAN_LINE

END IF
CASE DEFAULT

! Ignore all other characters
END SELECT CHECK_PARENS

END DO SCAN_LINE
IF (LEVEL > 0) THEN

PRINT *, 'MISSING RIGHT PARENTHESIS'
END IF

NOTE 3
The following three fragments are equivalent:

IF (SILLY == 1) THEN ! Fragment one
CALL THIS

ELSE
CALL THAT

END IF

SELECT CASE (SILLY == 1) ! Fragment two
CASE (.TRUE.)

CALL THIS
CASE (.FALSE.)

CALL THAT
END SELECT

SELECT CASE (SILLY) ! Fragment three
CASE DEFAULT

CALL THAT
CASE (1)

CALL THIS
END SELECT

NOTE 4
A code fragment showing several selections of one block:

J3/25‑007 221

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 4 (cont.)
SELECT CASE (N)
CASE (1, 3:5, 8) ! Selects 1, 3, 4, 5, 8

CALL SUB
CASE DEFAULT

CALL OTHER
END SELECT

11.1.10 SELECT RANK construct1

11.1.10.1 Purpose and form of the SELECT RANK construct2

1 The SELECT RANK construct selects for execution at most one of its constituent blocks. The selection is3
based on the rank of an assumed‑rank variable. A name is associated with the variable (19.4, 19.5.1.6), in4
the same way as for the ASSOCIATE construct.5

R1150 select‑rank‑construct is select‑rank‑stmt6
[select‑rank‑case‑stmt7
block]...8
end‑select‑rank‑stmt9

R1151 select‑rank‑stmt is [select‑construct‑name :] SELECT RANK10
([associate‑name =>] selector)11

C1155 The selector in a select‑rank‑stmt shall be the name of an assumed‑rank array.12

R1152 select‑rank‑case‑stmt is RANK (scalar‑int‑constant‑expr) [select‑construct‑name]13
or RANK (*) [select‑construct‑name]14
or RANK DEFAULT [select‑construct‑name]15

C1156 A scalar‑int‑constant‑expr in a select‑rank‑case‑stmt shall be nonnegative.16

C1157 For a given select‑rank‑construct, the same rank value shall not be speciϐied inmore than one select‑17
rank‑case‑stmt.18

C1158 For a given select‑rank‑construct, there shall be at most one RANK (*) select‑rank‑case‑stmt and at19
most one RANK DEFAULT select‑rank‑case‑stmt.20

C1159 If select‑construct‑name appears on a select‑rank‑case‑stmt, the corresponding select‑rank‑stmt21
shall specify the same select‑construct‑name.22

C1160 A SELECT RANK construct shall not have a select‑rank‑case‑stmt that is RANK (*) if the selector23
has the ALLOCATABLE or POINTER attribute.24

R1153 end‑select‑rank‑stmt is END SELECT [select‑construct‑name]25

C1161 If the select‑rank‑stmt of a select‑rank‑construct speciϐies a select‑construct‑name, the correspond‑26
ing end‑select‑rank‑stmt shall specify the same select‑construct‑name. If the select‑rank‑stmt of a27
select‑rank‑construct does not specify a select‑construct‑name, the corresponding end‑select‑rank‑28
stmt shall not specify a select‑construct‑name.29

2 The associate name of a SELECT RANK construct is the associate‑name if speciϐied; otherwise it is the name30
that constitutes the selector.31

3 The scalar‑int‑constant‑expr in a select‑rank‑case‑stmtmayhave a value greater than themaximumpossible32

222 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

rank of the selector; in this case, its block will never be executed.1

11.1.10.2 Execution of the SELECT RANK construct2

1 A SELECT RANK construct selects at most one block to be executed. During execution of that block, the3
associate name identiϐies an entity which is associated (19.5.1.6) with the selector. A RANK (*) state‑4
ment matches the selector if the selector is argument associated with an assumed‑size array. A RANK (5
scalar‑int‑constant‑expr) statement matches the selector if the selector has that rank and is not argument6
associatedwith an assumed‑size array. A RANKDEFAULT statementmatches the selector if no other select‑7
rank‑case‑stmt of the construct matches the selector. If a select‑rank‑case‑stmt matches the selector, the8
block following that statement is executed; otherwise, control is transferred to the end‑select‑rank‑stmt.9

2 It is permissible to branch to an end‑select‑rank‑stmt only from within its SELECT RANK construct.10

11.1.10.3 Attributes of a SELECT RANK associate name11

1 The associating entity (19.5.5) assumes the declared type and type parameters of the selector. It is poly‑12
morphic if and only if the selector is polymorphic.13

2 Within the block following a RANK DEFAULT statement, the associating entity is assumed‑rank and has14
exactly the same attributes as the selector. Within the block following a RANK (*) statement, the associ‑15
ating entity has rank 1 and is assumed‑size, as if it were declared with DIMENSION(1:*). Within the block16
following a RANK (scalar‑int‑constant‑expr) statement, the associating entity has the speciϐied rank; the17
lower bound of each dimension is the result of the intrinsic function LBOUND (16.9.119) applied to the cor‑18
responding dimension of the selector, and the upper bound of each dimension is the result of the intrinsic19
function UBOUND (16.9.215) applied to the corresponding dimension of the selector.20

3 The associating entity has the ALLOCATABLE, POINTER, or TARGET attribute if the selector has that attrib‑21
ute. The other attributes of the associating entity are described in 11.1.3.3.22

11.1.10.4 Examples of the SELECT RANK construct23

NOTE 1
This example shows how to use a SELECT RANK construct to process scalars and rank‑2 arrays; anything else will
be rejected as an error.

SUBROUTINE process(x)
REAL x(..)
!
SELECT RANK(x)
RANK (0)

x = 0
RANK (2)

IF (SIZE(x,2)>=2) x(:,2) = 2
RANK DEFAULT

Print *, 'I did not expect rank', RANK(x), 'shape', SHAPE(x)
ERROR STOP 'process bad arg'

END SELECT

NOTE 2
The following example shows how to process assumed‑size arrays, including how to use sequence association for
multi‑dimensional processing of an assumed‑size array.

SELECT RANK (y => x)
RANK (*)

IF (RANK(x)==2) THEN
! Special code for the rank two case.

J3/25‑007 223

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2 (cont.)
CALL sequence_assoc_2(y, LBOUND(x,1), UBOUND(x,1), LBOUND(x,2))

ELSE
! We just do all the other ranks in array element order.
i = 1
DO
IF (y(i)==0) Exit
y(i) = -y(i)
i = i + 1

END DO
END IF

END SELECT
…

CONTAINS
…
SUBROUTINE sequence_assoc_2(a, lb1, ub1, lb2)

INTEGER, INTENT (IN) :: lb1, ub1, lb2
REAL a(lb1:ub1,lb2:*)
j = lb2

outer: DO
DO i=lb1,ub1

IF (a(i,j)==0) EXIT outer
a(i,j) = a(i,j)**2

END DO
j = j + 1
IF (ANY(a(:,j)==0)) EXIT
j = j + 1

END DO outer
END SUBROUTINE

11.1.11 SELECT TYPE construct1

11.1.11.1 Purpose and form of the SELECT TYPE construct2

1 The SELECT TYPE construct selects for execution at most one of its constituent blocks. The selection is3
based on the dynamic type of an expression. A name is associated with the expression or variable (19.4,4
19.5.1.6), in the same way as for the ASSOCIATE construct.5

R1154 select‑type‑construct is select‑type‑stmt6
[type‑guard‑stmt7

block] ...8
end‑select‑type‑stmt9

R1155 select‑type‑stmt is [select‑construct‑name :] SELECT TYPE10
([associate‑name =>] selector)11

C1162 (R1155) If selector is not a named variable, associate‑name => shall appear.12

C1163 (R1155) If selector is not a variable or is a variable that has a vector subscript, neither associate‑13
name nor any subobject thereof shall appear in a variable deϐinition context (19.6.7) or pointer14
association context (19.6.8).15

C1164 (R1155) The selector in a select‑type‑stmt shall be polymorphic.16

R1156 type‑guard‑stmt is TYPE IS (type‑spec) [select‑construct‑name]17
or CLASS IS (derived‑type‑spec) [select‑construct‑name]18
or CLASS DEFAULT [select‑construct‑name]19

C1165 (R1156) The type‑spec or derived‑type‑spec shall specify that each length type parameter is as‑20
sumed.21

224 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C1166 (R1156) The type‑spec or derived‑type‑spec shall not specify a derived typewith the BIND attribute1
or the SEQUENCE attribute.2

C1167 (R1154) If selector is not unlimited polymorphic, each TYPE IS or CLASS IS type‑guard‑stmt shall3
specify an extension of the declared type of selector.4

C1168 (R1154) For a given select‑type‑construct, the same type and kind type parameter values shall not5
be speciϐied in more than one TYPE IS type‑guard‑stmt and shall not be speciϐied in more than one6
CLASS IS type‑guard‑stmt.7

C1169 (R1154) For a given select‑type‑construct, there shall be at most one CLASS DEFAULT type‑guard‑8
stmt.9

R1157 end‑select‑type‑stmt is END SELECT [select‑construct‑name]10

C1170 (R1154) If the select‑type‑stmt of a select‑type‑construct speciϐies a select‑construct‑name, the cor‑11
responding end‑select‑type‑stmt shall specify the same select‑construct‑name. If the select‑type‑stmt12
of a select‑type‑construct does not specify a select‑construct‑name, the corresponding end‑select‑13
type‑stmt shall not specify a select‑construct‑name. If a type‑guard‑stmt speciϐies a select‑construct‑14
name, the corresponding select‑type‑stmt shall specify the same select‑construct‑name.15

2 The associate name of a SELECT TYPE construct is the associate‑name if speciϐied; otherwise it is the name16
that constitutes the selector.17

11.1.11.2 Execution of the SELECT TYPE construct18

1 Execution of a SELECT TYPE construct causes evaluation of every expression within a selector that is a19
variable designator, or evaluation of a selector that is not a variable designator.20

2 A SELECT TYPE construct selects at most one block to be executed. During execution of that block, the21
associate name identiϐies an entity which is associated (19.5.1.6) with the selector.22

3 A TYPE IS type guard statement matches the selector if the dynamic type and kind type parameter values23
of the selector are the same as those speciϐied by the statement. A CLASS IS type guard statement matches24
the selector if the dynamic type of the selector is an extension of the type speciϐied by the statement and the25
kind type parameter values speciϐied by the statement are the same as the corresponding type parameter26
values of the dynamic type of the selector.27

4 The block to be executed is selected as follows.28

(1) If a TYPE IS type guard statement matches the selector, the block following that statement is29
executed.30

(2) Otherwise, if exactly one CLASS IS type guard statement matches the selector, the block follow‑31
ing that statement is executed.32

(3) Otherwise, if several CLASS IS type guard statements match the selector, one of these state‑33
ments will inevitably specify a type that is an extension of all the types speciϐied in the others;34
the block following that statement is executed.35

(4) Otherwise, if there is a CLASS DEFAULT type guard statement, the block following that state‑36
ment is executed.37

(5) Otherwise, no block is executed.38

J3/25‑007 225

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1
This algorithm does not examine the type guard statements in source text order when it looks for amatch; it selects
the most particular type guard when there are several potential matches.

5 Within the block following a TYPE IS type guard statement, the associating entity (19.5.5) is not poly‑1
morphic (7.3.2.3), has the type named in the type guard statement, and has the type parameter values2
of the selector.3

6 Within the block following a CLASS IS type guard statement, the associating entity is polymorphic and has4
the declared type named in the type guard statement. The type parameter values of the associating entity5
are the corresponding type parameter values of the selector.6

7 Within the block following a CLASS DEFAULT type guard statement, the associating entity is polymorphic7
and has the same declared type as the selector. The type parameter values of the associating entity are8
those of the declared type of the selector.9

NOTE 2
If the declared type of the selector is T, specifying CLASS DEFAULT has the same effect as specifying CLASS IS (T).

8 The other attributes of the associating entity are described in 11.1.3.3.10

9 It is permissible to branch to an end‑select‑type‑stmt only from within its SELECT TYPE construct.11

11.1.11.3 Examples of the SELECT TYPE construct12

NOTE 1

TYPE POINT
REAL :: X, Y

END TYPE POINT
TYPE, EXTENDS(POINT) :: POINT_3D

REAL :: Z
END TYPE POINT_3D
TYPE, EXTENDS(POINT) :: COLOR_POINT

INTEGER :: COLOR
END TYPE COLOR_POINT

TYPE(POINT), TARGET :: P
TYPE(POINT_3D), TARGET :: P3
TYPE(COLOR_POINT), TARGET :: C
CLASS(POINT), POINTER :: P_OR_C
P_OR_C => C
SELECT TYPE (A => P_OR_C)
CLASS IS (POINT)

! "CLASS (POINT) :: A" implied here
PRINT *, A%X, A%Y ! This block gets executed

TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: A" implied here
PRINT *, A%X, A%Y, A%Z

END SELECT

NOTE 2
The following example illustrates the omission of associate‑name. It uses the declarations from NOTE 1.

P_OR_C => P3
SELECT TYPE (P_OR_C)
CLASS IS (POINT)

! "CLASS (POINT) :: P_OR_C" implied here
PRINT *, P_OR_C%X, P_OR_C%Y

TYPE IS (POINT_3D)
! "TYPE (POINT_3D) :: P_OR_C" implied here

226 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2 (cont.)
PRINT *, P_OR_C%X, P_OR_C%Y, P_OR_C%Z ! This block gets executed

END SELECT

11.1.12 EXIT statement1

1 The EXIT statement provides one way of terminating a loop, or completing execution of another construct.2

R1158 exit‑stmt is EXIT [construct‑name]3

C1171 If a construct‑name appears on an EXIT statement, the EXIT statement shall be within that con‑4
struct; otherwise, it shall be within at least one do‑construct.5

2 An EXIT statement belongs to a particular construct. If a construct name appears, the EXIT statement6
belongs to that construct; otherwise, it belongs to the innermost DO construct in which it appears.7

C1172 An exit‑stmt shall not appear within a DO CONCURRENT construct if it belongs to that construct or8
an outer construct.9

C1173 An exit‑stmt shall not appear within a CHANGE TEAM or CRITICAL construct if it belongs to an10
outer construct.11

3 When an EXIT statement that belongs to a DO construct is executed, it terminates the loop (11.1.7.4.5) and12
any active loops contained within the terminated loop. When an EXIT statement that belongs to a non‑13
DO construct is executed, it terminates any active loops contained within that construct, and completes14
execution of that construct. If the EXIT statement belongs to a CHANGE TEAM construct, the effect is the15
same as transferring control to the END TEAM statement; if that statement contains a STAT= or ERRMSG=16
speciϐier, the stat‑variable or errmsg‑variable becomes deϐined as speciϐied for that statement.17

11.2 Branching18

11.2.1 Branch concepts19

1 Branching is used to alter the normal execution sequence. A branch causes a transfer of control from one20
statement to a labeled branch target statement in the same inclusive scope. Branching can be caused by21
a GO TO statement, a computed GO TO statement, a CALL statement that has an alt‑return‑spec, or an in‑22
put/output statement that has an END=, EOR=, or ERR= speciϐier. Although procedure references and23
control constructs can cause transfer of control, they are not branches. A branch target statement is an24
action‑stmt, associate‑stmt, end‑associate‑stmt, if‑then‑stmt, end‑if‑stmt, select‑case‑stmt, end‑select‑stmt,25
select‑rank‑stmt, end‑select‑rank‑stmt, select‑type‑stmt, end‑select‑type‑stmt, do‑stmt, end‑do‑stmt, block‑26
stmt, end‑block‑stmt, critical‑stmt, end‑critical‑stmt, forall‑construct‑stmt, forall‑stmt, where‑construct‑27
stmt, end‑function‑stmt, end‑mp‑subprogram‑stmt, end‑program‑stmt, or end‑subroutine‑stmt.28

11.2.2 GO TO statement29

R1159 goto‑stmt is GO TO label30

C1174 (R1159) The label shall be the statement label of a branch target statement that appears in the31
same inclusive scope as the goto‑stmt.32

1 Execution of a GO TO statement causes a branch to the branch target statement identiϐied by the label.33

J3/25‑007 227

J3/25‑007 WD 1539‑1 2024‑12‑29

11.2.3 Computed GO TO statement1

1 The computed GO TO statement is obsolescent.2

R1160 computed‑goto‑stmt is GO TO (label‑list) [,] scalar‑int‑expr3

C1175 (R1160) Each label in label‑list shall be the statement label of a branch target statement that ap‑4
pears in the same inclusive scope as the computed‑goto‑stmt.5

2 Execution of a computed GO TO statement causes evaluation of the scalar integer expression. If this value6
is i such that 1 ≤ i ≤ n where n is the number of labels in label‑list, a branch occurs to the branch target7
statement identiϐied by the ith label in the list of labels. If i is less than 1 or greater than n, the execution8
sequence continues as though a CONTINUE statement were executed.9

11.3 CONTINUE statement10

1 Execution of a CONTINUE statement has no effect.11

R1161 continue‑stmt is CONTINUE12

11.4 STOP and ERROR STOP statements13

R1162 stop‑stmt is STOP [stop‑code] [, QUIET = scalar‑logical‑expr]14

R1163 error‑stop‑stmt is ERROR STOP [stop‑code] [, QUIET = scalar‑logical‑expr]15

R1164 stop‑code is scalar‑default‑char‑expr16
or scalar‑int‑expr17

C1176 (R1164) The scalar‑int‑expr shall be of default kind.18

1 Execution of a STOP statement initiates normal termination of execution. Execution of an ERROR STOP19
statement initiates error termination of execution.20

2 When an image is terminated by a STOP or ERROR STOP statement, its stop code, if any, ismade available in21
a processor‑dependent manner. If the stop‑code is an integer, it is recommended that the value be used as22
the process exit status, if the processor supports that concept. If the stop‑code in a STOP statement is of type23
character or does not appear, or if an end‑program‑stmt is executed, it is recommended that the value zero24
be supplied as the process exit status, if the processor supports that concept. If the stop‑code in an ERROR25
STOP statement is of type character or does not appear, it is recommended that a processor‑dependent26
nonzero value be supplied as the process exit status, if the processor supports that concept.27

3 If QUIET= is omitted or the scalar‑logical‑expr has the value false:28
• if any exception (17) is signaling on that image, the processor shall issue a warning indicating which29
exceptions are signaling, and this warning shall be on the unit identiϐied by the named constant ER‑30
ROR_UNIT from the intrinsic module ISO_FORTRAN_ENV (16.10.2.9);31

• if a stop code is speciϐied, it is recommended that it be made available by formatted output to the32
same unit.33

4 If QUIET= appears and the scalar‑logical‑expr has the value true, no output of signaling exceptions or stop34
code shall be produced.35

228 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 1
When normal termination occurs on more than one image, it is expected that a processor‑dependent summary of
any stop codes and signaling exceptions will be made available.

NOTE 2
If the integer stop‑code is used as the process exit status, the processormight be able to interpret only values within
a limited range, or only a limited portion of the integer value (for example, only the least‑signiϐicant 8 bits).

11.5 FAIL IMAGE statement1

R1165 fail‑image‑stmt is FAIL IMAGE2

1 Execution of a FAIL IMAGE statement causes the executing image to cease participating in program execu‑3
tion without initiating termination. No further statements are executed by that image.4

NOTE
The FAIL IMAGE statement enables testing of a recovery algorithm without needing an actual failure.
On a processor that does not have the ability to detect that an image has failed, execution of a FAIL IMAGE statement
might provide a simulated failure environment that provides debug information.
In a piece of code that executes about once a second, invoking this subroutine on an image

SUBROUTINE FAIL
REAL :: X
CALL RANDOM_NUMBER (X)
IF (X<0.001) FAIL IMAGE

END SUBROUTINE FAIL

will cause that image to have approximately a 1/1000 chance of failure every second.
Note that FAIL IMAGE is not an image control statement.

11.6 NOTIFYWAIT statement5

1 TheNOTIFYWAIT statementwaits until the valueof itsnotify‑variable is greater thanor equal to a threshold6
value.7

R1166 notify‑wait‑stmt is NOTIFY WAIT (notify‑variable [, event‑wait‑spec‑list])8

R1167 notify‑variable is scalar‑variable9

C1177 A notify‑variable shall be of type NOTIFY_TYPE from the intrinsic module ISO_FORTRAN_ENV.10

C1178 A notify‑variable shall not be a coindexed object.11

2 The notify‑variable shall not depend on the value of stat‑variable or errmsg‑variable.12

3 Execution of a NOTIFY WAIT statement consists of the following sequence of actions:13

(1) if theUNTIL_COUNT= speciϐier appears and its scalar‑int‑expr is greater than one, the threshold14
value is set to that value, otherwise, the threshold value is set to one;15

(2) the executing image waits until the count of the notify variable is greater than or equal to the16
threshold value or an error condition occurs;17

(3) if no error condition occurs, the count of the notify variable is atomically decremented by the18
threshold value.19

J3/25‑007 229

J3/25‑007 WD 1539‑1 2024‑12‑29

4 If an error condition occurs during execution of an NOTIFY WAIT statement, the value of the count of its1
notify variable is processor dependent.2

5 Execution of an assignment statement whose variable has a NOTIFY= speciϐier is initially unsatisϐied. Suc‑3
cessful execution of a NOTIFY WAIT statement with a threshold value of k satisϐies the ϐirst k unsatisϐied4
executions of assignment statements whose NOTIFY= speciϐier speciϐies the same notify variable as the5
NOTIFY WAIT statement.6

6 The stat‑variable of a NOTIFY WAIT statement shall not depend on the value of the notify variable or the7
errmsg‑variable. The errmsg‑variable of a NOTIFY WAIT statement shall not depend on the value of the8
notify variable or the stat‑variable.9

7 If a NOTIFY WAIT statement has a STAT= speciϐier, stat‑variable is assigned the value zero if execution10
of the statement is successful, and a processor‑dependent positive value that is different from the value11
of STAT_FAILED_IMAGE (16.10.2.28) and STAT_STOPPED_IMAGE (16.10.2.31) from the intrinsic module12
ISO_FORTRAN_ENV (16.10.2) if an error condition occurs.13

8 If an error conditionoccurs during executionof aNOTIFYWAIT statementwithnoSTAT=, error termination14
is initiated.15

9 If a NOTIFY WAIT statement has an ERRMSG= speciϐier and an error condition occurs, errmsg‑variable is16
assigned an explanatory message, as if by intrinsic assignment. If no such condition occurs, the deϐinition17
status and the value of errmsg‑variable are unchanged.18

10 The set of error conditions that can occur during execution of a NOTIFY WAIT statement is processor de‑19
pendent.20

11.7 Image execution control21

11.7.1 Image control statements22

1 The execution sequence on each image is speciϐied in 5.3.5.23

2 Execution of an image control statement divides the execution sequence on an image into segments. Each24
of the following is an image control statement:25

• SYNC ALL statement;26
• SYNC IMAGES statement;27
• SYNC MEMORY statement;28
• SYNC TEAM statement;29
• ALLOCATE statement that has a coarray allocate‑object;30
• DEALLOCATE statement that has an allocate‑object that is a coarray or has a coarray potential sub‑31
object component;32

• CHANGE TEAM or END TEAM statement (11.1.5);33
• CRITICAL or END CRITICAL statement (11.1.6);34
• EVENT POST or EVENTWAIT statement;35
• FORM TEAM statement;36
• LOCK or UNLOCK statement;37
• any statement that completes execution of a block or procedure and which results in the implicit38

230 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

deallocation of a coarray;1
• a CALL statement that references the intrinsic subroutine MOVE_ALLOC with coarray arguments;2
• STOP statement;3
• END statement of a main program.4

3 During an execution of a statement that invokes more than one procedure, at most one invocation shall5
cause execution of an image control statement other than CRITICAL or END CRITICAL.6

11.7.2 Segments7

1 On each image, the sequence of statements executed before the ϐirst execution of an image control state‑8
ment, between the execution of two image control statements, or after the last execution of an image con‑9
trol statement is a segment. The segment executed immediately before the execution of an image control10
statement includes the evaluation of all expressions within the statement. If an image does not execute11
any image control statement before termination of execution, its entire statement execution sequence is a12
single segment.13

2 By execution of image control statements or user‑deϐined ordering (11.7.5), the program can ensure that14
the execution of the ith segment on image P,Pi, either precedes or succeeds the execution of the jth segment15
on another imageQ,Qj . If the programdoes not ensure this, segmentsPi andQj are unordered; depending16
on the relative execution speeds of the images, some or all of the execution of the segmentPimay take place17
at the same time as some or all of the execution of the segmentQj .18

3 A coarray may be referenced or deϐined by execution of an atomic subroutine during the execution of a19
segment that is unordered relative to the execution of a segment in which the coarray is referenced or20
deϐined by execution of an atomic subroutine. An event variable or notify variable may be referenced or21
deϐined during the execution of a segment that is unordered relative to the execution of another segment22
in which that event variable or notify variable is deϐined. A variable deϐined in an unordered segment23
only by execution of an assignment statement with a NOTIFY= speciϐier may be referenced or deϐined after24
execution of a NOTIFY WAIT statement that satisϐies that assignment statement execution. Otherwise,25

• if a variable is deϐined or becomes undeϐined on an image in a segment, it shall not be referenced,26
deϐined, or become undeϐined in a segment on another image unless the segments are ordered,27

• if the allocation of an allocatable subobject of a coarray or the pointer association of a pointer subob‑28
ject of a coarray is changed on an image in a segment, that subobject shall not be referenced, deϐined,29
or have its allocation or association status, dynamic type, array bounds, shape, or a deferred type30
parameter value inquired about in a segment on another image unless the segments are ordered,31
and32

• if a procedure invocation on image P is in execution in segmentsPi,Pi+1, …,Pk anddeϐines a noncoar‑33
ray dummy argument, the effective argument shall not be referenced, deϐined, or become undeϐined34
on another image Q in a segmentQj unlessQj precedes Pi or succeeds Pk .35

4 If, by execution of a statement in segment Pi on image P,36
• a variable X is deϐined, referenced, becomesundeϐined, or has its allocation status, pointer association37
status, array bounds, dynamic type, or type parameters changed or inquired about,38

• segment Pi on image P precedes segmentQj on image Q, and39
• X is deϐined, referenced, becomes undeϐined, or has its allocation status, pointer association status,40
array bounds, dynamic type, or type parameters changed or inquired about by execution of a state‑41
ment in segmentQj on image Q,42

J3/25‑007 231

J3/25‑007 WD 1539‑1 2024‑12‑29

then the action regarding X in segment Pi on image P precedes the action regarding X in segment Qj on1
image Q.2

NOTE 1
The set of all segments on all images is partially ordered: the segmentPi precedes segmentQj if and only if there is
a sequence of segments starting with Pi and ending withQj such that each segment of the sequence precedes the
next either because they are consecutive segments on the same image or because of the execution of image control
statements.

NOTE 2
If the segments S1, S2, …, Sk on the distinct images P1, P2, …, Pk are all unordered with respect to each other, it is
expected that the processor will ensure that each of these images is provided with an equitable share of resources
for executing its segment.

NOTE 3
Because of the restrictions on references and deϐinitions in unordered segments, the processor can apply code
motionoptimizationswithin a segment as if itwere theonly image in execution, provided calls to atomic subroutines
are not involved.

NOTE 4
The model upon which the interpretation of a program is based is that there is a permanent memory location for
each coarray and that all images on which it is established can access it.
In practice, apart from executions of atomic subroutines, the processor could make a copy of a nonvolatile coarray
in a segment (in cache or a register, for example) and, as an optimization, defer copying a changed value back to
its permanent memory location while it is still being used. Since the variable is not volatile, it is safe to defer this
copying back until the end of the segment. It might not be safe to defer this action beyond the end of the segment
since another image might reference the variable then.
The value of the ATOM argument of an atomic subroutine might be accessed or modiϐied by another concurrently
executing image. Therefore, execution of an atomic subroutine that references the ATOM argument cannot rely
on a local copy, but instead always gets its value from its permanent memory location. Execution of an atomic
subroutine that deϐines the ATOM argument does not complete until the value of its ATOM argument has been sent
to its permanent memory location.

NOTE 5
The incorrect sequencing of image control statements can suspend execution indeϐinitely. For example, one image
might be executing a SYNC ALL statement while another is executing an ALLOCATE statement for a coarray.

11.7.3 SYNC ALL statement3

R1168 sync‑all‑stmt is SYNC ALL [([sync‑stat‑list])]4

R1169 sync‑stat is STAT = stat‑variable5
or ERRMSG = errmsg‑variable6

C1179 No speciϐier shall appear more than once in a given sync‑stat‑list.7

C1180 A stat‑variable or errmsg‑variable in a sync‑stat shall not be a coindexed object.8

1 The STAT= and ERRMSG= speciϐiers for image control statements are described in 11.7.11.9

2 Successful execution of a SYNCALL statement performs a synchronization of all images in the current team.10
Execution on an image, M, of the segment following the SYNC ALL statement is delayed until each other11
image in the current team has executed a SYNC ALL statement as many times as has image M in this team.12

232 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

The segments that executed before the SYNCALL statement on an image precede the segments that execute1
after the SYNC ALL statement on another image.2

NOTE
The processor might have special hardware or employ an optimized algorithm to make the SYNC ALL statement
execute efϐiciently.
Here is a simple example of its use. Image 1 reads data and broadcasts it to other images:

REAL :: P[*]
…
SYNC ALL
IF (THIS_IMAGE()==1) THEN

READ (*,*) P
DO I = 2, NUM_IMAGES()

P[I] = P
END DO

END IF
SYNC ALL

11.7.4 SYNC IMAGES statement3

R1170 sync‑images‑stmt is SYNC IMAGES (image‑set [, sync‑stat‑list])4

R1171 image‑set is int‑expr5
or *6

C1181 An image‑set that is an int‑expr shall be scalar or of rank one.7

C1182 The value of image‑set shall not depend on the value of stat‑variable or errmsg‑variable.8

1 If image‑set is an array expression, the value of each element shall be positive and not greater than the9
number of images in the current team, and there shall be no repeated values.10

2 If image‑set is a scalar expression, its value shall be positive and not greater than the number of images in11
the current team.12

3 An image‑set that is an asterisk speciϐies all images in the current team.13

4 Execution of a SYNC IMAGES statement performs a synchronization of the image with each of the other14
images in the image‑set. Executions of SYNC IMAGES statements on images M and T correspond if the15
number of times image M has executed a SYNC IMAGES statement in the current team with T in its image16
set is the same as the number of times image T has executed a SYNC IMAGES statement with M in its image17
set in this team. The segments that executed before the SYNC IMAGES statement on either image precede18
the segments that execute after the corresponding SYNC IMAGES statement on the other image.19

NOTE 1
A SYNC IMAGES statement that speciϐies the single image index value THIS_IMAGE () in its image set is allowed.
This simpliϐies writing programs for an arbitrary number of images by allowing correct execution in the limiting
case of the number of images being equal to one.

NOTE 2
In a program that uses SYNC ALL as its only synchronization mechanism, every SYNC ALL statement could be re‑
placed by a SYNC IMAGES (*) statement, but SYNC ALL might give better performance.
SYNC IMAGES statements are not required to specify the entire image set, or even the same image set, on all images
participating in the synchronization. In the following example, image 1 will wait for each of the other images to

J3/25‑007 233

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2 (cont.)
execute the statement SYNC IMAGES (1). The other images wait for image 1 to set up the data, but do not wait on
any other image.

IF (THIS_IMAGE() == 1) then
! Set up coarray data needed by all other images.
SYNC IMAGES(*)

ELSE
SYNC IMAGES(1)
! Use the data set up by image 1.

END IF

When the following example runs on ϐive or more images, each image synchronizes with both of its neighbors, in a
circular fashion.

INTEGER :: up, down
…
IF (NUM_IMAGES () > 1) THEN

up = THIS_IMAGE () + 1; IF (up>NUM_IMAGES ()) up = 1
down = THIS_IMAGE () - 1; IF (down==0) down = NUM_IMAGES ()
SYNC IMAGES ((/ up, down /))

END IF

This might appear to have the same effect as SYNC ALL but there is no ordering between the preceding and suc‑
ceeding segments on non‑adjacent images. For example, the segment preceding the SYNC IMAGES statement on
image 3 will be ordered before those succeeding it on images 2 and 4, but not those on images 1 and 5.

NOTE 3
In the following example, each image synchronizes with its neighbor.

INTEGER :: ME, NE, STEP, NSTEPS
NE = NUM_IMAGES()
ME = THIS_IMAGE()
… ! Initial calculation
SYNC ALL
DO STEP = 1, NSTEPS

IF (ME > 1) SYNC IMAGES(ME-1)
… ! Perform calculation

IF (ME < NE) SYNC IMAGES(ME+1)
END DO
SYNC ALL

The calculation starts on image 1 since all the others will be waiting on SYNC IMAGES (ME−1). When this is done,
image2 can start and image1 canperform its second calculation. This continuesuntil they are all executingdifferent
steps at the same time. Eventually, image 1 will ϐinish and then the others will ϐinish one by one.

11.7.5 SYNC MEMORY statement1

1 Execution of a SYNC MEMORY statement ends one segment and begins another; those two segments can2
be ordered by a user‑deϐined way with respect to segments on other images.3

R1172 sync‑memory‑stmt is SYNC MEMORY [([sync‑stat‑list])]4

2 If, by execution of statements on image P,5

• a variable X on imageQ is deϐined, referenced, becomes undeϐined, or has its allocation status, pointer6
association status, array bounds, dynamic type, or type parameters changed or inquired about by7
execution of a statement,8

• that statement precedes a successful execution of a SYNC MEMORY statement, and9
• a variable Y on imageQ is deϐined, referenced, becomes undeϐined, or has its allocation status, pointer10
association status, array bounds, dynamic type, or type parameters changed or inquired about by11
execution of a statement that succeeds execution of that SYNC MEMORY statement,12

234 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

then the action regarding X on image Q precedes the action regarding Y on image Q.1

3 User‑deϐined ordering of segment Pi on image P to precede segmentQj on image Q occurs when2

• image P executes an image control statement that ends segment Pi, and then executes statements3
that initiate a cooperative synchronization between images P and Q, and4

• image Q executes statements that complete the cooperative synchronization between images P and5
Q and then executes an image control statement that begins segmentQj .6

4 Execution of the cooperative synchronization between images P and Q shall include a dependency that7
forces execution on image P of the statements that initiate the synchronization to precede the execution on8
image Q of the statements that complete the synchronization. The mechanisms available for creating such9
a dependency are processor dependent.10

NOTE 1
SYNC MEMORY usually suppresses compiler optimizations that might reorder memory operations across the seg‑
ment boundary deϐined by the SYNC MEMORY statement and ensures that all memory operations initiated in the
preceding segments in its image complete before any memory operations in the subsequent segment in its image
are initiated. It needs to do this unless it can establish that failure to do so could not alter processing on another
image.

NOTE 2
SYNC MEMORY can be used to implement specialized schemes for segment ordering. For example, the user might
have access to an external procedure that performs synchronization between images. That library proceduremight
not be aware of the mechanisms used by the processor to manage remote data references and deϐinitions, and
therefore not, by itself, be able to ensure the correctmemory state before and after its reference. The SYNCMEMORY
statement provides the neededmemory ordering that enables the safe use of the external synchronization routine.
For example:

INTEGER :: IAM
REAL :: X[*]

IAM = THIS_IMAGE ()
IF (IAM == 1) X = 1.0
SYNC MEMORY
CALL EXTERNAL_SYNC ()
SYNC MEMORY
IF (IAM == 2) WRITE (*,*) X[1]

where executing the subroutine EXTERNAL_SYNC has an image synchronization effect similar to executing a SYNC
ALL statement.

11.7.6 SYNC TEAM statement11

R1173 sync‑team‑stmt is SYNC TEAM (team‑value [, sync‑stat‑list])12

1 The team‑value shall identify an ancestor team, the current team, or a team whose parent is the current13
team. The executing image shall be a member of the speciϐied team.14

2 Successful execution of a SYNCTEAMstatement performs a synchronization of the team identiϐied by team‑15
value. Execution on an image, M, of the segment following the SYNC TEAM statement is delayed until each16
other image of the speciϐied team has executed a SYNC TEAM statement specifying the same team as many17
times as has image M in this team. The segments that executed before the SYNC TEAM statement on an18
image precede the segments that execute after the corresponding SYNCTEAMstatement on another image.19

J3/25‑007 235

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
A SYNC TEAM statement synchronizes a particular team whereas a SYNC ALL statement synchronizes the current
team.

11.7.7 EVENT POST statement1

1 The EVENT POST statement posts an event.2

R1174 event‑post‑stmt is EVENT POST (event‑variable [, sync‑stat‑list])3

R1175 event‑variable is scalar‑variable4

C1183 (R1175) An event‑variable shall be of type EVENT_TYPE from the intrinsicmodule ISO_FORTRAN_‑5
ENV (16.10.2).6

2 The event‑variable shall not depend on the value of stat‑variable or errmsg‑variable.7

3 Successful execution of an EVENT POST statement atomically increments the count of the event variable by8
one. If an error condition occurs during execution of an EVENT POST statement, the value of the count of9
the event variable is processor dependent. The completion of an EVENT POST statement does not depend10
on the execution of a corresponding EVENTWAIT statement.11

11.7.8 EVENTWAIT statement12

1 The EVENTWAIT statement waits until an event is posted.13

R1176 event‑wait‑stmt is EVENTWAIT (event‑variable [, event‑wait‑spec‑list])14

R1177 event‑wait‑spec is until‑spec15
or sync‑stat16

R1178 until‑spec is UNTIL_COUNT = scalar‑int‑expr17

C1184 (R1176) The event‑variable in an event‑wait‑stmt shall not be coindexed.18

C1185 No speciϐier shall appear more than once in a given event‑wait‑spec‑list.19

2 The event‑variable shall not depend on the value of stat‑variable or errmsg‑variable.20

3 Execution of an EVENTWAIT statement consists of the following sequence of actions:21

1. if the UNTIL_COUNT= speciϐier does not appear, the threshold value is set to one; otherwise, the22
threshold value is set to the maximum of the value of the scalar‑int‑expr and one;23

2. the executing image waits until the count of the event variable is greater than or equal to the24
threshold value or an error condition occurs;25

3. if no error condition occurs, the count of the event variable is atomically decremented by the26
threshold value.27

4 If an error condition occurs during execution of an EVENT WAIT statement, the value of the count of its28
event variable is processor dependent.29

5 An EVENT POST statement execution is initially unsatisϐied. Successful execution of an EVENTWAIT state‑30
ment with a threshold of k satisϐies the ϐirst k unsatisϐied EVENT POST statement executions for that event31

236 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

variable. This EVENTWAIT statement execution causes the segment following the EVENTWAIT statement1
execution to succeed the segments preceding those k EVENT POST statement executions.2

11.7.9 FORM TEAM statement3

1 The FORM TEAM statement creates a set of sibling teams whose parent team is the current team.4

R1179 form‑team‑stmt is FORM TEAM (team‑number, team‑variable5
[, form‑team‑spec‑list])6

R1180 team‑number is scalar‑int‑expr7

R1181 team‑variable is scalar‑variable8

C1186 A team‑variable shall be of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.9

R1182 form‑team‑spec is NEW_INDEX = scalar‑int‑expr10
or sync‑stat11

C1187 No speciϐier shall appear more than once in a given form‑team‑spec‑list.12

2 Successful execution of a FORM TEAM statement creates a new team for each unique team‑number value13
speciϐied by the active images of the current team. The value of team‑number shall be positive. Each ex‑14
ecuting image will belong to the team whose team number is equal to the value of team‑number on that15
image, and the team‑variable becomes deϐined with a value that identiϐies that team.16

3 The value of the scalar‑int‑expr in a NEW_INDEX= speciϐier speciϐies the image index that the executing17
image will have in its new team. It shall be positive, less than or equal to the number of images in the team,18
and different from the value speciϐied by every other image that belongs to that team.19

4 If the NEW_INDEX= speciϐier does not appear, the image index of the executing image in the new team is20
processor dependent. This image index will be positive, less than or equal to the number of images in the21
team, and different from that of every other image in the team.22

5 If the FORM TEAM statement is executed on one image, the same statement shall be executed on all active23
images of the current team. When aFORMTEAMstatement is executed, there is an implicit synchronization24
of all active images in the current team. On those images, execution of the segment following the statement25
is delayed until all other active images in the current team have executed the same statement the same26
number of times in this team. The segments that executed before the FORM TEAM statement on an active27
image of this team precede the segments that execute after the FORM TEAM statement on another active28
image of this team. If an error condition other than detection of a failed image occurs, the team variable29
becomes undeϐined.30

6 If execution of a FORM TEAM statement assigns the value STAT_FAILED_IMAGE to the stat‑variable, the ef‑31
fect is the same as for the successful execution of FORMTEAMexcept for the value assigned to stat‑variable.32

NOTE 1
Executing the statement

FORM TEAM (2 - MOD (THIS_IMAGE (), 2), ODD_EVEN)

will create two subteams of the current team, with imageswhose image index is odd being in the teamwith number
1, and those with an even image index being in the team with number 2.

J3/25‑007 237

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2
If the current team consists ofP 2 images, with corresponding coarrays on each image representing parts of a larger
array spread over a P × P square, the following code will establish teams for the rows with image indices equal to
the column indices.

USE, INTRINSIC :: ISO_FORTRAN_ENV
TYPE(TEAM_TYPE) :: ROW
REAL :: A [P, *]
INTEGER :: ME (2)
ME (:) = THIS_IMAGE (A)
FORM TEAM (ME(1), ROW, NEW_INDEX=ME(2))

11.7.10 LOCK and UNLOCK statements1

R1183 lock‑stmt is LOCK (lock‑variable [, lock‑stat‑list])2

R1184 lock‑stat is ACQUIRED_LOCK = scalar‑logical‑variable3
or sync‑stat4

C1188 No speciϐier shall appear more than once in a given lock‑stat‑list.5

R1185 unlock‑stmt is UNLOCK (lock‑variable [, sync‑stat‑list])6

R1186 lock‑variable is scalar‑variable7

C1189 (R1186) A lock‑variable shall be of type LOCK_TYPE from the intrinsic module ISO_FORTRAN_ENV8
(16.10.2.19).9

1 The lock‑variable shall not depend on the value of stat‑variable, errmsg‑variable, or the scalar‑logical‑varia‑10
ble in the ACQUIRED_LOCK= speciϐier. The scalar‑logical‑variable shall not depend on the value of the lock‑11
variable, stat‑variable, or errmsg‑variable.12

2 A lock variable is unlocked if and only if the value of each component is the same as its default value. If13
it has any other value, it is locked. A lock variable is locked by an image if it was locked by execution of a14
LOCK statement on that image, has not been subsequently unlocked by execution of an UNLOCK statement15
on the same image, and that image has not failed.16

3 Successful execution of a LOCK statement without an ACQUIRED_LOCK= speciϐier causes the lock variable17
to become locked by that image. If the lock variable is already locked by another image, that LOCK state‑18
ment causes the lock variable to become locked after the other image causes the lock variable to become19
unlocked.20

4 If the lock variable is unlocked, successful execution of a LOCK statement with an ACQUIRED_LOCK= spe‑21
ciϐier causes the lock variable to become locked by that image and the scalar logical variable to become22
deϐined with the value true. If the lock variable is already locked by a different image, successful execution23
of a LOCK statement with an ACQUIRED_LOCK= speciϐier leaves the lock variable unchanged and causes24
the scalar logical variable to become deϐined with the value false.25

5 Successful execution of an UNLOCK statement causes the lock variable to become unlocked. Failure of an26
image causes all lock variables that are locked by that image to become unlocked.27

6 During execution of the program, the value of a lock variable changes through a sequence of locked and28
unlocked states due to the execution of LOCK and UNLOCK statements, and by failure of an imagewhile it is29
lockedby that image. If a lock variable becomes unlockedby execution of anUNLOCK statement on imageM30
andnext becomes lockedbyexecutionof a LOCKstatement on imageT, the segmentspreceding theUNLOCK31

238 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

statement on imageMprecede the segments following the LOCK statement on image T. Execution of a LOCK1
statement that does not cause the lock variable to become locked does not affect segment ordering.2

7 An error condition occurs if the lock variable in a LOCK statement is already locked by the executing image.3
Anerror condition occurs if the lock variable in anUNLOCK statement is not already lockedby the executing4
image. If an error condition occurs during execution of a LOCK or UNLOCK statement, the value of the lock5
variable is not changed and the value of the ACQUIRED_LOCK variable, if any, is not changed.6

NOTE 1
A lock variable is effectively deϐined atomically by a LOCK or UNLOCK statement. If LOCK statements on two images
both attempt to acquire a lock, one will succeed and the other will either fail if an ACQUIRED_LOCK= speciϐier
appears, or will wait until the lock is later released if an ACQUIRED_LOCK= speciϐier does not appear.

NOTE 2
An image might wait for a LOCK statement to successfully complete for a long period of time if other images fre‑
quently lock and unlock the same lock variable. This situation might result from executing LOCK statements with
ACQUIRED_LOCK= speciϐiers inside a spin loop.

NOTE 3
The following example illustrates the use of LOCK and UNLOCK statements to manage a work queue:

USE, INTRINSIC :: ISO_FORTRAN_ENV

TYPE(LOCK_TYPE) :: queue_lock[*] ! Lock on each image to manage its work queue
INTEGER :: work_queue_size[*]
TYPE(Task) :: work_queue(100)[*] ! List of tasks to perform

TYPE(Task) :: job ! Current task working on
INTEGER :: me

me = THIS_IMAGE()
DO

! Process the next item in your work queue

LOCK (queue_lock) ! New segment A starts
! This segment A is ordered with respect to
! segment B executed by image me-1 below because of lock exclusion
IF (work_queue_size>0) THEN

! Fetch the next job from the queue
job = work_queue(work_queue_size)
work_queue_size = work_queue_size-1

END IF
UNLOCK (queue_lock) ! Segment ends
… Actually process the task.

! Add a new task on neighbors queue:
LOCK(queue_lock[me+1]) ! Starts segment B
! This segment B is ordered with respect to
! segment A executed by image me+1 above because of lock exclusion
IF (work_queue_size[me+1]<SIZE (work_queue)) THEN

work_queue_size[me+1] = work_queue_size[me+1]+1
work_queue(work_queue_size[me+1])[me+1] = job

END IF
UNLOCK (queue_lock[me+1]) ! Ends segment B

END DO

11.7.11 STAT= and ERRMSG= speciϐiers in image control statements7

1 In an image control statement, the stat‑variable in a sync‑stat shall not depend on the value of an errmsg‑8
variable in a sync‑stat, event‑variable, lock‑variable, team‑variable, or the scalar‑logical‑variable in the AC‑9
QUIRED_LOCK= speciϐier. The errmsg‑variable in a sync‑stat shall not depend on the value of a stat‑variable10

J3/25‑007 239

J3/25‑007 WD 1539‑1 2024‑12‑29

in a sync‑stat, event‑variable, lock‑variable, team‑variable, or the scalar‑logical‑variable in the ACQUIRED_‑1
LOCK= speciϐier.2

2 If a STAT= speciϐier appears in a sync‑stat in an image control statement, the stat‑variable is assigned the3
value zero if execution of the statement is successful.4

3 If the STAT= speciϐier appears in a sync‑stat in an EVENT WAIT or SYNC MEMORY statement and an er‑5
ror condition occurs, stat‑variable is assigned a processor‑dependent positive value that is different from6
the value of STAT_FAILED_IMAGE (16.10.2.28) and STAT_STOPPED_IMAGE (16.10.2.31) from the intrinsic7
module ISO_FORTRAN_ENV (16.10.2).8

4 The images involved in execution of an END TEAM, FORM TEAM, or SYNC ALL statement are those in the9
current team. The images involved in execution of a CHANGE TEAM or SYNC TEAM statement are those of10
the speciϐied team. The images involved in execution of a SYNC IMAGES statement are the images speciϐied11
and the executing image. The images involved in execution of an EVENT POST statement are the image on12
which the event variable is located and the executing image.13

5 If the STAT= speciϐier appears in a sync‑stat in a CHANGE TEAM, END TEAM, EVENT POST, FORM TEAM,14
SYNC ALL, SYNC IMAGES, or SYNC TEAM statement,15

• if one of the images involved has stopped, stat‑variable is assigned the value STAT_STOPPED_IMAGE16
(16.10.2.31) from the intrinsic module ISO_FORTRAN_ENV;17

• otherwise, if one of the images involved has failed and no other error condition occurs, the inten‑18
ded action is performed on the active images involved and stat‑variable is assigned the value STAT_‑19
FAILED_IMAGE (16.10.2.28) from the intrinsic module ISO_FORTRAN_ENV;20

• otherwise, if any other error condition occurs, stat‑variable is assigned a processor‑dependent pos‑21
itive value that is different from the values of STAT_STOPPED_IMAGE and STAT_FAILED_IMAGE.22

6 If the STAT= speciϐier appears in a sync‑stat in a SYNCALL, SYNC IMAGES, or SYNCTEAM statement and the23
error condition STAT_STOPPED_IMAGEoccurs, the effect is the sameas that of executing the SYNCMEMORY24
statement, except for deϐining the stat‑variable.25

7 If the STAT= speciϐier appears in a sync‑stat in a LOCK statement,26

• if the image on which the lock variable is located has failed, the stat‑variable becomes deϐined with27
the value STAT_FAILED_IMAGE;28

• otherwise, if the lock variable is locked by the executing image, the stat‑variable becomes deϐined29
with the value of STAT_LOCKED (16.10.2.29) from the intrinsic module ISO_FORTRAN_ENV;30

• otherwise, if the lock variable is unlocked because of the failure of the image that locked it, stat‑31
variable becomes deϐined with the value STAT_UNLOCKED_FAILED_IMAGE (16.10.2.33) from the in‑32
trinsic module ISO_FORTRAN_ENV.33

8 If the STAT= speciϐier appears in a sync‑stat in an UNLOCK statement,34

• if the image on which the lock variable is located has failed, the stat‑variable becomes deϐined with35
the value STAT_FAILED_IMAGE;36

• otherwise, if the lock variable has the value unlocked, the stat‑variable becomes deϐined with the37
value of STAT_UNLOCKED (16.10.2.32) from the intrinsic module ISO_FORTRAN_ENV;38

• otherwise, if the lock variable is locked by a different image, the stat‑variable becomes deϐined with39
the value STAT_LOCKED_OTHER_IMAGE (16.10.2.30) from the intrinsic module ISO_FORTRAN_ENV.40

240 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

9 If the STAT= speciϐier appears in a sync‑stat in a LOCK or UNLOCK statement and any other error condition1
occurs during execution of that statement, the stat‑variable becomes deϐined with a processor‑dependent2
positive value that is different from STAT_LOCKED, STAT_LOCKED_OTHER_IMAGE, STAT_UNLOCKED, and3
STAT_UNLOCKED_FAILED_IMAGE.4

10 If an image completes execution of a CRITICAL statement that has a sync‑stat that is a STAT= speciϐier and5
theprevious image tohaveentered the construct failedwhile executing it, the stat‑variablebecomesdeϐined6
with the value STAT_FAILED_IMAGE and execution of the construct continues normally. If any other error7
condition occurs during execution of a CRITICAL statement that has a STAT= speciϐier, the stat‑variable8
becomes deϐined with a processor‑dependent positive value other than STAT_FAILED_IMAGE.9

11 If an error condition occurs during execution of an image control statement that does not contain the STAT=10
speciϐier in a sync‑stat, error termination is initiated.11

12 If an ERRMSG= speciϐier appears in an image control statement and an error condition occurs, errmsg‑12
variable is assigned an explanatory message, as if by intrinsic assignment. If no such condition occurs, the13
deϐinition status and value of errmsg‑variable are unchanged.14

13 The set of error conditions that can occur in an image control statement is processor dependent.15

NOTE
A processor might detect communication failure between images and treat it as an error condition. A processor
might also treat an invalid set of images in a SYNC IMAGES statement as an error condition.

J3/25‑007 241

J3/25‑007 WD 1539‑1 2024‑12‑29

12 Input/output statements1

12.1 Input/output concepts2

1 Input statements provide the means of transferring data from external media to internal storage or from3
an internal ϐile to internal storage. This process is called reading. Output statements provide the means of4
transferring data from internal storage to external media or from internal storage to an internal ϐile. This5
process is called writing. Some input/output statements specify that editing of the data is to be performed.6

2 In addition to the statements that transfer data, there are auxiliary input/output statements to manipu‑7
late the external medium, or to describe or inquire about the properties of the connection to the external8
medium.9

3 The input/output statements are the BACKSPACE, CLOSE, ENDFILE, FLUSH, INQUIRE, OPEN, PRINT, READ,10
REWIND, WAIT, and WRITE statements.11

4 A ϐile is composed of either a sequence of ϐile storage units (12.3.5) or a sequence of records, which provide12
an extra level of organization to the ϐile. A ϐile composed of records is called a record ϐile. A ϐile composed13
of ϐile storage units is called a stream ϐile. A processor may allow a ϐile to be viewed both as a record ϐile14
and as a stream ϐile; in this case the relationship between the ϐile storage units when viewed as a stream15
ϐile and the records when viewed as a record ϐile is processor dependent.16

5 A ϐile is either an external ϐile (12.3) or an internal ϐile (12.4).17

12.2 Records18

12.2.1 Deϐinition of a record19

1 A record is a sequence of values or a sequence of characters. For example, a line on a terminal is usually20
considered to be a record. However, a record does not necessarily correspond to a physical entity. There21
are three kinds of records:22

(1) formatted;23
(2) unformatted;24
(3) endϐile.25

NOTE
What is called a “record” inFortran is commonly called a “logical record”. There is no concept inFortranof a “physical
record.”

12.2.2 Formatted record26

1 A formatted record consists of a sequence of characters that are representable in the processor; however, a27
processor may prohibit some control characters (6.1.1) from appearing in a formatted record. The length28
of a formatted record is measured in characters and depends primarily on the number of characters put29
into the record when it is written; however, it may depend on the processor and the external medium. The30
lengthmay be zero. Formatted records shall be read orwritten only by formatted input/output statements.31

242 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.2.3 Unformatted record1

1 An unformatted record consists of a sequence of values in a processor‑dependent form and may contain2
data of any type or may contain no data. The length of an unformatted record is measured in ϐile storage3
units (12.3.5) and depends on the output list (12.6.3) used when it is written, as well as on the processor4
and the external medium. The length may be zero. Unformatted records shall be read or written only by5
unformatted input/output statements.6

12.2.4 Endϐile record7

1 An endϐile record is written explicitly by the ENDFILE statement; the ϐile shall be connected for sequential8
access. An endϐile record iswritten implicitly to a ϐile connected for sequential accesswhen themost recent9
data transfer statement referring to the ϐile is anoutput statement, no intervening ϐile positioning statement10
referring to the ϐile has been executed, and11

• a REWIND or BACKSPACE statement references the unit to which the ϐile is connected, or12
• the unit is closed, either explicitly by a CLOSE statement, implicitly by normal termination, or impli‑13
citly by another OPEN statement for the same unit.14

2 An endϐile record shall occur only as the last record of a ϐile. An endϐile record does not have a length15
property.16

NOTE
An endϐile record does not necessarily have any physical embodiment. The processor can use a record count or any
other means to register the position of the ϐile at the time an ENDFILE statement is executed, so that it can take
appropriate action when that position is reached again during a read operation. The endϐile record, however it is
implemented, is considered to exist for the BACKSPACE statement (12.8.2).

12.3 External ϐiles17

12.3.1 External ϐile concepts18

1 An external ϐile is any ϐile that exists in a medium external to the program.19

2 At any given time, there is a processor‑dependent set of allowedaccessmethods, a processor‑dependent set20
of allowed forms, a processor‑dependent set of allowed actions, and a processor‑dependent set of allowed21
record lengths for a ϐile.22

NOTE 1
For example, the processor‑dependent set of allowed actions for a printer would likely include the write action, but
not the read action.

3 A ϐilemay have a name; a ϐile that has a name is called a named ϐile. The name of a named ϐile is represented23
by a character string value. The set of allowable names for a ϐile is processor dependent. Whether a named24
ϐile on one image is the same as a ϐile with the same name on another image is processor dependent.25

NOTE 2
If different ϐiles are needed on each image, using a different ϐile name on each image will improve portability of the
code. One technique is to incorporate the image index as part of the name.

4 An external ϐile that is connected to a unit has a position property (12.3.4).26

J3/25‑007 243

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 3
For more explanatory information on external ϐiles, see C.8.1.

12.3.2 File existence1

1 At any given time, there is a processor‑dependent set of external ϐiles that exist for a program. A ϐile may2
be known to the processor, yet not exist for a program at a particular time.3

2 To create a ϐilemeans to cause a ϐile to exist that did not exist previously. To delete a ϐilemeans to terminate4
the existence of the ϐile.5

3 All input/output statementsmay refer to ϐiles that exist. ACLOSE, ENDFILE, FLUSH, INQUIRE,OPEN,PRINT,6
REWIND, orWRITE statement is permitted to refer to a ϐile that does not exist. No other input/output state‑7
ment shall refer to a ϐile that does not exist. Execution of aWRITE, PRINT, or ENDFILE statement referring8
to a preconnected ϐile that does not exist creates the ϐile. This ϐile is a different ϐile from one preconnected9
on any other image.10

12.3.3 File access11

12.3.3.1 File access methods12

1 There are three methods of accessing the data of an external ϐile: sequential, direct, and stream. Some ϐiles13
may have more than one allowed access method; other ϐiles may be restricted to one access method.14

NOTE
For example, a processor might provide only sequential access to a ϐile on magnetic tape. Thus, the set of allowed
access methods depends on the ϐile and the processor.

2 The method of accessing a ϐile is determined when the ϐile is connected to a unit (12.5.4) or when the ϐile15
is created if the ϐile is preconnected (12.5.5).16

12.3.3.2 Sequential access17

1 Sequential access is a method of accessing the records of an external record ϐile in order.18

2 While connected for sequential access, an external ϐile has the following properties.19

• The order of the records is the order in which they were written if the direct access method is not a20
member of the set of allowed accessmethods for the ϐile. If the direct accessmethod is also amember21
of the set of allowed access methods for the ϐile, the order of the records is the same as that speciϐied22
for direct access. In this case, the ϐirst record accessible by sequential access is the record whose23
record number is 1 for direct access. The second record accessible by sequential access is the record24
whose record number is 2 for direct access, etc. A record that has not been written since the ϐile was25
created shall not be read.26

• The records of the ϐile are either all formatted or all unformatted, except that the last record of the27
ϐile can be an endϐile record. Unless the previous reference to the ϐile was an output statement, the28
last record, if any, of the ϐile shall be an endϐile record.29

• The records of the ϐile shall be read or written only by sequential access data transfer statements.30

12.3.3.3 Direct access31

1 Direct access is a method of accessing the records of an external record ϐile in arbitrary order.32

244 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 While connected for direct access, an external ϐile has the following properties.1

• Each recordof the ϐile is uniquely identiϐied by apositive integer called the recordnumber. The record2
number of a record is speciϐied when the record is written. Once established, the record number of3
a record can never be changed. The order of the records is the order of their record numbers.4

• The records of the ϐile are either all formatted or all unformatted. If the sequential access method5
is also a member of the set of allowed access methods for the ϐile, its endϐile record, if any, is not6
considered to be part of the ϐilewhile it is connected for direct access. If the sequential accessmethod7
is not a member of the set of allowed access methods for the ϐile, the ϐile shall not contain an endϐile8
record.9

• The records of the ϐile shall be read or written only by direct access data transfer statements.10
• All records of the ϐile have the same length.11
• Records need not be read orwritten in the order of their record numbers. Any recordmay bewritten12
into the ϐilewhile it is connected to a unit. For example, it is permissible towrite record3, even though13
records 1 and 2 have not been written. Any record may be read from the ϐile while it is connected to14
a unit, provided that the record has been written since the ϐile was created, and if a READ statement15
for this connection is permitted.16

• The records of the ϐile shall not be read or written using list‑directed formatting (13.10), namelist17
formatting (13.11), or a nonadvancing data transfer statement (12.3.4.2).18

NOTE
A record cannot be deleted; however, a record can be rewritten.

12.3.3.4 Stream access19

1 Stream access is a method of accessing the ϐile storage units (12.3.5) of an external stream ϐile.20

2 The properties of an external ϐile connected for stream access depend on whether the connection is for21
unformatted or formatted access. While connected for stream access, the ϐile storage units of the ϐile shall22
be read or written only by stream access data transfer statements.23

3 While connected for unformatted stream access, an external ϐile has the following properties.24

• Each ϐile storage unit in the ϐile is uniquely identiϐied by a positive integer called the position. The25
ϐirst ϐile storage unit in the ϐile is at position 1. The position of each subsequent ϐile storage unit is26
one greater than that of its preceding ϐile storage unit.27

• If it is possible to position the ϐile, the ϐile storage units need not be read or written in order of their28
position. For example, it might be permissible to write the ϐile storage unit at position 3, even though29
the ϐile storage units at positions 1 and 2 have not been written. Any ϐile storage unit may be read30
from the ϐile while it is connected to a unit, provided that the ϐile storage unit has been written since31
the ϐile was created, and if a READ statement for this connection is permitted.32

4 While connected for formatted stream access, an external ϐile has the following properties.33

• Some ϐile storage units of the ϐile can contain record markers; this imposes a record structure on the34
ϐile in addition to its stream structure. There might or might not be a record marker at the end of the35
ϐile. If there is no record marker at the end of the ϐile, the ϐinal record is incomplete.36

• No maximum length (12.5.6.16) is applicable to these records.37
• Writing an empty record with no record marker has no effect.38

J3/25‑007 245

J3/25‑007 WD 1539‑1 2024‑12‑29

• Each ϐile storage unit in the ϐile is uniquely identiϐied by a positive integer called the position. The1
ϐirst ϐile storage unit in the ϐile is at position 1. The relationship between positions of successive ϐile2
storage units is processor dependent; not all positive integers need correspond to valid positions.3

• If it is possible to position the ϐile, the ϐile position can be set to a position that was previously iden‑4
tiϐied by the POS= speciϐier in an INQUIRE statement.5

• A processor may prohibit some control characters (6.1.1) from appearing in a formatted stream ϐile.6

NOTE 1
Because the record structure is determined from the record markers that are stored in the ϐile itself, an incomplete
record at the end of the ϐile is necessarily not empty.

NOTE 2
There might be some character positions in the ϐile that do not correspond to characters written; this is because
on some processors a record marker could be written to the ϐile as a carriage‑return/line‑feed or other sequence.
Themeans of determining the position in a ϐile connected for stream access is via the POS= speciϐier in an INQUIRE
statement (12.10.2.23).

12.3.4 File position7

12.3.4.1 General8

1 Execution of certain input/output statements affects the position of an external ϐile. Certain circumstances9
can cause the position of a ϐile to become indeterminate.10

2 The initial point of a ϐile is the position just before the ϐirst record or ϐile storage unit. The terminal point is11
the position just after the last record or ϐile storage unit. If there are no records or ϐile storage units in the12
ϐile, the initial point and the terminal point are the same position.13

3 If a record ϐile is positionedwithin a record, that record is the current record; otherwise, there is no current14
record.15

4 Let n be the number of records in the ϐile. If 1 < i ≤ n and a ϐile is positioned within the ith record or16
between the (i− 1)th record and the ith record, the (i− 1)th record is the preceding record. If n ≥ 1 and17
the ϐile is positioned at its terminal point, the preceding record is the nth and last record. If n = 0 or if a18
ϐile is positioned at its initial point or within the ϐirst record, there is no preceding record.19

5 If 1 ≤ i < n and a ϐile is positioned within the ith record or between the ith and (i + 1)th record, the20
(i + 1)th record is the next record. If n ≥ 1 and the ϐile is positioned at its initial point, the ϐirst record is21
the next record. If n = 0 or if a ϐile is positioned at its terminal point or within the nth (last) record, there22
is no next record.23

6 For a ϐile connected for stream access, the ϐile position is either between two ϐile storage units, at the initial24
point of the ϐile, at the terminal point of the ϐile, or undeϐined.25

12.3.4.2 Advancing and nonadvancing input/output26

1 An advancing input/output statement always positions a record ϐile after the last record read or written,27
unless there is an error condition.28

2 A nonadvancing input/output statement may position a record ϐile at a character position within the cur‑29
rent record, or a subsequent record (13.8.2). Using nonadvancing input/output, it is possible to read or30

246 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

write a record of the ϐile by a sequence of data transfer statements, each accessing a portion of the record.1
If a nonadvancing output statement leaves a ϐile positioned within a current record and no further output2
statement is executed for the ϐile before it is closed or a BACKSPACE, ENDFILE, or REWIND statement is3
executed for it, the effect is as if the output statement were the corresponding advancing output statement.4

12.3.4.3 File position prior to data transfer5

1 The positioning of the ϐile prior to data transfer depends on the method of access: sequential, direct, or6
stream.7

2 For sequential access on input, if there is a current record, the ϐile position is not changed. Otherwise, the8
ϐile is positioned at the beginning of the next record and this record becomes the current record. Input9
shall not occur if there is no next record or if there is a current record and the last data transfer statement10
accessing the ϐile performed output.11

3 If the ϐile contains an endϐile record, the ϐile shall not be positioned after the endϐile record prior to data12
transfer. However, a REWIND or BACKSPACE statement may be used to reposition the ϐile.13

4 For sequential access on output, if there is a current record, the ϐile position is not changed and the current14
record becomes the last record of the ϐile. Otherwise, a new record is created as the next record of the ϐile;15
this new record becomes the last and current record of the ϐile and the ϐile is positioned at the beginning16
of this record.17

5 For direct access, the ϐile is positioned at the beginning of the record speciϐied by the REC= speciϐier. This18
record becomes the current record.19

6 For stream access, the ϐile is positioned immediately before the ϐile storage unit speciϐied by the POS= spe‑20
ciϐier; if there is no POS= speciϐier, the ϐile position is not changed.21

7 File positioning for child data transfer statements is described in 12.6.4.8.22

12.3.4.4 File position after data transfer23

1 If an error condition (12.11) occurred, the position of the ϐile is indeterminate. If no error condition oc‑24
curred, but an end‑of‑ϐile condition (12.11) occurred as a result of reading an endϐile record, the ϐile is25
positioned after the endϐile record.26

2 For unformatted stream input/output, if no error condition occurred, the ϐile position is not changed. For27
unformatted stream output, if the ϐile position exceeds the previous terminal point of the ϐile, the terminal28
point is set to the ϐile position.29

NOTE 1
An unformatted stream output statement with a POS= speciϐier and an empty output list can have the effect of
extending the terminal point of a ϐile without actually writing any data.

3 For formatted stream input, if an end‑of‑ϐile condition occurred, the ϐile position is not changed.30

4 For nonadvancing input, if no error condition or end‑of‑ϐile condition occurred, but an end‑of‑record con‑31
dition (12.11) occurred, the ϐile is positioned after the record just read. If no error condition, end‑of‑32
ϐile condition, or end‑of‑record condition occurred in a nonadvancing input statement, the ϐile position33
is not changed. If no error condition occurred in a nonadvancing output statement, the ϐile position is not34
changed.35

J3/25‑007 247

J3/25‑007 WD 1539‑1 2024‑12‑29

5 In all other cases, the ϐile is positioned after the record just read or written and that record becomes the1
preceding record.2

6 For a formatted stream output statement, if no error condition occurred, the terminal point of the ϐile is set3
to the next position after the highest‑numbered position to which a datum was transferred by the state‑4
ment.5

NOTE 2
The highest‑numbered position might not be the current one if the output involved a T, TL, TR, or X edit descriptor
(13.8.1) and the statement is a nonadvancing output statement.

12.3.5 File storage units6

1 A ϐile storage unit is the basic unit of storage in a stream ϐile or an unformatted record ϐile. It is the unit of7
ϐile position for stream access, the unit of record length for unformatted ϐiles, and the unit of ϐile size for all8
external ϐiles.9

2 Every value in a stream ϐile or an unformatted record ϐile shall occupy an integer number of ϐile storage10
units; if the stream or record ϐile is unformatted, this number shall be the same for all scalar values of the11
same type and type parameters. The number of ϐile storage units required for an item of a given type and12
type parameters can be determined using the IOLENGTH= speciϐier of the INQUIRE statement (12.10.3).13

3 For a ϐile connected for unformatted stream access, the processor shall not have alignment restrictions that14
prevent a value of any type from being stored at any positive integer ϐile position.15

4 The number of bits in a ϐile storage unit is given by the constant FILE_STORAGE_SIZE (16.10.2.11) deϐined16
in the intrinsic module ISO_FORTRAN_ENV. It is recommended that the ϐile storage unit be an 8‑bit octet17
where this choice is practical.18

NOTE
The requirement that every data value occupy an integer number of ϐile storage units implies that data items inher‑
ently smaller than a ϐile storage unit will require padding. This suggests that the ϐile storage unit be small to avoid
wasted space. Ideally, the ϐile storage unit would be chosen such that padding is never required. A ϐile storage unit
of one bit would always meet this goal, but would likely be impractical because of the alignment requirements.
The prohibition on alignment restrictions prohibits the processor from requiring data alignments larger than the
ϐile storage unit.
The 8‑bit octet is recommended as a good compromise that is small enough to accommodate the requirements of
many applications, yet not so small that the data alignment requirements are likely to cause signiϐicant performance
problems.

12.4 Internal ϐiles19

1 Internal ϐiles provide ameans of transferring and converting data from internal storage to internal storage.20

2 An internal ϐile is a record ϐile with the following properties.21

• The ϐile is a variable of default, ASCII, or ISO 10646 character kind that is not an array section with a22
vector subscript.23

• A record of an internal ϐile is a scalar character variable.24
• If the ϐile is a scalar character variable, it consists of a single record whose length is the same as25
the length of the scalar character variable. If the ϐile is a character array, it is treated as a sequence26
of character array elements. Each array element, if any, is a record of the ϐile. The ordering of the27

248 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

records of the ϐile is the same as the ordering of the array elements in the array (9.5.3.3) or the array1
section (9.5.3.4). Every record of the ϐile has the same length, which is the length of an array element2
in the array.3

• A record of the internal ϐile becomes deϐined by writing the record.4
– If the internal ϐile is an allocatable, deferred‑length character scalar variable, it is assigned the5
characters written by intrinsic assignment, allocating or reallocating to have length equal to the6
number of characters written if necessary.7

– Otherwise, if the number of characters written in a record is less than the length of the record,8
the remaining portion of the record is ϐilled with blanks; the number of characters to be written9
shall not exceed the length of the record.10

• A record shall be read only if the record is deϐined.11
• A record of an internal ϐile can become deϐined (or undeϐined) by means other than an output state‑12
ment. For example, the character variable can become deϐined by a character assignment statement.13

• An internal ϐile is always positioned at the beginning of the ϐirst record prior to data transfer, except14
for child data transfer statements (12.6.4.8). This record becomes the current record.15

• The initial value of a connection mode (12.5.2) is the value that would be implied by an initial OPEN16
statement without the corresponding keyword.17

• Reading andwriting records shall be accomplished only by sequential access formatted data transfer18
statements.19

• An internal ϐile shall not be speciϐied as the unit in a CLOSE, INQUIRE, or OPEN statement.20

12.5 File connection21

12.5.1 Referring to a ϐile22

1 A unit, speciϐied by an io‑unit, provides a means for referring to a ϐile.23

R1201 io‑unit is ϔile‑unit‑number24
or *25
or internal‑ϔile‑variable26

R1202 ϔile‑unit‑number is scalar‑int‑expr27

R1203 internal‑ϔile‑variable is char‑variable28

C1201 (R1203) The char‑variable shall not be an array section with a vector subscript.29

C1202 (R1203) The char‑variable shall be default character, ASCII character, or ISO 10646 character.30

2 A unit is either an external unit or an internal unit. An external unit is used to refer to an external ϐile and31
is speciϐied by an asterisk or a ϔile‑unit‑number. The value of ϔile‑unit‑number shall be nonnegative, the32
unit argument of an active deϐined input/output procedure (12.6.4.8), a NEWUNIT value (12.5.6.13), or33
equal to one of the named constants INPUT_UNIT, OUTPUT_UNIT, or ERROR_UNIT of the intrinsic module34
ISO_FORTRAN_ENV (16.10.2). An internal unit is used to refer to an internal ϐile and is speciϐied by an35
internal‑ϔile‑variable or a ϔile‑unit‑number whose value is equal to the unit argument of an active deϐined36
input/output procedure. The value of a ϔile‑unit‑number shall identify a valid unit.37

3 On an image, the external unit identiϐied by a particular value of a scalar‑int‑expr is the same external unit38
in all program units.39

J3/25‑007 249

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1
In the example:

SUBROUTINE A
READ (6) X
…

SUBROUTINE B
N = 6
REWIND N

the value 6 used in both program units identiϐies the same external unit.

4 In a READ statement, an io‑unit that is an asterisk identiϐies an external unit that is preconnected for se‑1
quential formatted input on image 1 in the initial team only (12.6.4.3); it is not preconnected on any other2
image. This unit is also identiϐied by the value of the named constant INPUT_UNIT of the intrinsic module3
ISO_FORTRAN_ENV (16.10.2.13). This unit is also used by a READ statement without an io‑control‑spec‑4
list. In a WRITE statement, an io‑unit that is an asterisk identiϐies an external unit that is preconnected for5
sequential formatted output. This unit is also identiϐied by the value of the named constant OUTPUT_UNIT6
of the intrinsic module ISO_FORTRAN_ENV (16.10.2.24). This unit is also used by a PRINT statement.7

5 This document identiϐies a processor‑dependent external unit for the purpose of error reporting. This unit8
shall be preconnected for sequential formatted output. The processor may deϐine this to be the same as9
the output unit identiϐied by an asterisk. This unit is also identiϐied by a unit number deϐined by the named10
constant ERROR_UNIT of the intrinsic module ISO_FORTRAN_ENV.11

NOTE 2
Even though OUTPUT_UNIT is connected to a separate ϐile on each image, it is expected that the processor could
merge the sequences of records from these ϐiles into a single sequence of records that is sent to the physical device
associated with this unit, such as the user’s terminal. If ERROR_UNIT is associated with the same physical device,
the sequences of records from ϐiles connected to ERROR_UNIT on each of the images could bemerged into the same
sequence generated from the OUTPUT_UNIT ϐiles. Otherwise, it is expected that the sequence of records in the
ϐiles connected to ERROR_UNIT on each image could be merged into a single sequence of records that is sent to the
physical device associated with ERROR_UNIT.

12.5.2 Connection modes12

1 A connection for formatted input/output has several changeable modes: these are the blank interpreta‑13
tion mode (13.8.7), delimiter mode (13.10.4, 13.11.4.2), sign mode (13.8.4), leading zero mode (13.8.5),14
decimal edit mode (13.8.9), input/output rounding mode (13.7.2.3.8), pad mode (12.6.4.5.3), and scale15
factor (13.8.6). A connection for unformatted input/output has no changeable modes.16

2 Values for the modes of a connection are established when the connection is initiated. If the connection17
is initiated by an OPEN statement, the values are as speciϐied, either explicitly or implicitly, by the OPEN18
statement. If the connection is initiated other than by anOPEN statement (that is, if the ϐile is an internal ϐile19
or preconnected ϐile) the values established are those that would be implied by an initial OPEN statement20
without the corresponding keywords.21

3 The scale factor cannot be explicitly speciϐied in an OPEN statement; it is implicitly 0.22

4 Themodes of a connection to an external ϐile canbe changedby a subsequentOPENstatement thatmodiϐies23
the connection.24

5 The modes of a connection can be temporarily changed by a corresponding keyword speciϐier in a data25
transfer statement or by an edit descriptor. Keyword speciϐiers take effect at the beginning of execution of26
the data transfer statement. Edit descriptors take effect when they are encountered in format processing.27
When a data transfer statement terminates, the values for themodes are reset to the values in effect imme‑28

250 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

diately before the data transfer statement was executed.1

12.5.3 Unit existence2

1 At any given time, there is a processor‑dependent set of external units that exist for an image.3

2 All input/output statements are permitted to refer to units that exist. The CLOSE, INQUIRE, and WAIT4
statements are also permitted to refer to units that do not exist. No other input/output statement shall5
refer to a unit that does not exist.6

12.5.4 Connection of a ϐile to a unit7

1 An external unit has a property of being connected or not connected. If connected, it refers to an external8
ϐile. An external unit may become connected by preconnection or by the execution of an OPEN statement.9
The property of connection is symmetric; the unit is connected to a ϐile if and only if the ϐile is connected10
to the unit.11

2 Every input/output statement except an OPEN, CLOSE, INQUIRE, or WAIT statement shall refer to a unit12
that is connected to a ϐile and thereby make use of or affect that ϐile.13

3 A ϐile may be connected and not exist (12.3.2).14

NOTE 1
An example is a preconnected external ϐile that has not yet been written.

4 Aunit shall not be connected tomore thanone ϐile at the same time. However,means areprovided to change15
the status of an external unit and to connect a unit to a different ϐile. It is processor dependent whether a16
ϐile can be connected to more than one unit at the same time.17

5 This document deϐines means of portable interoperation with C. C streams are described in18
ISO/IEC 9899:2018, 7.21.2. Whether a unit can be connected to a ϐile that is also connected to a C stream19
is processor dependent. If a unit is connected to a ϐile that is also connected to a C stream, the results of20
performing input/output operations on such a ϐile are processor dependent. It is processor dependent21
whether the ϐiles connected to the units INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT correspond to the22
predeϐined C text streams standard input, standard output, and standard error. If a main program or pro‑23
cedure deϐined bymeans of Fortran and amain programor procedure deϐined bymeans other than Fortran24
perform input/output operations on the same external ϐile, the results are processor dependent. A main25
program or procedure deϐined by means of Fortran and a main program or procedure deϐined by means26
other than Fortran can perform input/output operations on different external ϐiles without interference.27

6 If input/output operations are performed on more than one unit while they are connected to the same28
external ϐile, the results are processor dependent.29

7 After an external unit has been disconnected by the execution of a CLOSE statement, it may be connected30
again within the same program to the same ϐile or to a different ϐile. After an external ϐile has been discon‑31
nected by the execution of a CLOSE statement, it may be connected again within the same program to the32
same unit or to a different unit.33

NOTE 2
The only means of referencing a ϐile that has been disconnected is by the appearance of its name in an OPEN or
INQUIRE statement. There might be no means of reconnecting an unnamed ϐile once it is disconnected.

J3/25‑007 251

J3/25‑007 WD 1539‑1 2024‑12‑29

8 An internal unit is always connected to the internal ϐile designated by the variable that identiϐies the unit.1

NOTE 3
For more explanatory information on ϐile connection properties, see C.8.4.

12.5.5 Preconnection2

1 Preconnection means that the unit is connected to a ϐile at the beginning of execution of the program and3
therefore itmay be speciϐied in input/output statementswithout the prior execution of anOPEN statement.4

12.5.6 OPEN statement5

12.5.6.1 General6

1 An OPEN statement initiates or modiϐies the connection between an external ϐile and a speciϐied unit. The7
OPEN statement can be used to connect an existing ϐile to a unit, create a ϐile that is preconnected, create a8
ϐile and connect it to a unit, or change certain modes of a connection between a ϐile and a unit.9

2 An external unit may be connected by an OPEN statement in the main program or any subprogram.10

3 If the ϐile to be connected to the unit does not exist but is the same as the ϐile to which the unit is precon‑11
nected, the modes speciϐied by an OPEN statement become a part of the connection.12

4 If the ϐile to be connected to the unit is not the same as the ϐile to which the unit is connected, the effect is13
as if a CLOSE statement without a STATUS= speciϐier had been executed for the unit immediately prior to14
the execution of an OPEN statement.15

5 If a unit is connected to a ϐile that exists, execution of an OPEN statement for that unit is permitted. If the16
FILE= speciϐier is not included in such an OPEN statement, the ϐile to be connected to the unit is the same17
as the ϐile to which the unit is already connected.18

6 If the ϐile to be connected to the unit is the same as the ϐile to which the unit is connected, a new connection19
is not established and values for any changeable modes (12.5.2) speciϐied come into effect for the estab‑20
lished connection; the current ϐile position is unaffected. Before any effect on changeable modes, a wait21
operation is performed for any pending asynchronous data transfer operations for the speciϐied unit. If the22
POSITION= speciϐier appears in such an OPEN statement, the value speciϐied shall not disagree with the23
current position of the ϐile. If the STATUS= speciϐier is included in such an OPEN statement, it shall be spe‑24
ciϐied with the value OLD. Other than ERR=, IOSTAT=, and IOMSG=, and the changeable modes, the values25
of all other speciϐiers in such an OPEN statement shall not differ from those in effect for the established26
connection.27

7 A STATUS= speciϐier with a value of OLD is always allowed when the ϐile to be connected to the unit is the28
same as the ϐile to which the unit is connected. In this case, if the status of the ϐile was SCRATCH before29
execution of the OPEN statement, the ϐile will still be deleted when the unit is closed, and the ϐile is still30
considered to have a status of SCRATCH.31

12.5.6.2 Syntax of the OPEN statement32

R1204 open‑stmt is OPEN (connect‑spec‑list)33

R1205 connect‑spec is [UNIT =] ϔile‑unit‑number34
or ACCESS = scalar‑default‑char‑expr35

252 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

or ACTION = scalar‑default‑char‑expr1
or ASYNCHRONOUS = scalar‑default‑char‑expr2
or BLANK = scalar‑default‑char‑expr3
or DECIMAL = scalar‑default‑char‑expr4
or DELIM = scalar‑default‑char‑expr5
or ENCODING = scalar‑default‑char‑expr6
or ERR = label7
or FILE = ϔile‑name‑expr8
or FORM = scalar‑default‑char‑expr9
or IOMSG = iomsg‑variable10
or IOSTAT = stat‑variable11
or LEADING_ZERO = scalar‑default‑char‑expr12
or NEWUNIT = scalar‑int‑variable13
or PAD = scalar‑default‑char‑expr14
or POSITION = scalar‑default‑char‑expr15
or RECL = scalar‑int‑expr16
or ROUND = scalar‑default‑char‑expr17
or SIGN = scalar‑default‑char‑expr18
or STATUS = scalar‑default‑char‑expr19

R1206 ϔile‑name‑expr is scalar‑default‑char‑expr20

R1207 iomsg‑variable is scalar‑default‑char‑variable21

C1203 No speciϐier shall appear more than once in a given connect‑spec‑list.22

C1204 (R1204) If the NEWUNIT= speciϐier does not appear, a ϔile‑unit‑number shall be speciϐied; if the23
optional characters UNIT= are omitted, the ϔile‑unit‑number shall be the ϐirst item in the connect‑24
spec‑list.25

C1205 (R1204) If a NEWUNIT= speciϐier appears, a ϔile‑unit‑number shall not appear.26

C1206 (R1204) The label used in the ERR= speciϐier shall be the statement label of a branch target state‑27
ment that appears in the same inclusive scope as the OPEN statement.28

1 Some speciϐiers that require a scalar‑default‑char‑expr have a limited list of character values. These values29
are listed for each such speciϐier. Any trailing blanks are ignored. The value speciϐied is without regard to30
case. Some speciϐiers have a default value if the speciϐier is omitted.31

2 The IOSTAT=, ERR=, and IOMSG= speciϐiers are described in 12.11.32

NOTE 1
An example of an OPEN statement is:

OPEN (10, FILE = 'employee.names', ACTION = 'READ', PAD = 'YES')

NOTE 2
For more explanatory information on the OPEN statement, see C.8.3.

12.5.6.3 ACCESS= speciϐier in the OPEN statement33

1 The scalar‑default‑char‑expr shall evaluate to SEQUENTIAL, DIRECT, or STREAM. The ACCESS= speciϐier34
speciϐies the access method for the connection of the ϐile as being sequential, direct, or stream. If this35

J3/25‑007 253

J3/25‑007 WD 1539‑1 2024‑12‑29

speciϐier is omitted, the default value is SEQUENTIAL. For an existing ϐile, the speciϐied accessmethod shall1
be included in the set of allowed access methods for the ϐile. For a new ϐile, the processor creates the ϐile2
with a set of allowed access methods that includes the speciϐied method.3

12.5.6.4 ACTION= speciϐier in the OPEN statement4

1 The scalar‑default‑char‑expr shall evaluate to READ, WRITE, or READWRITE. READ speciϐies that the5
WRITE, PRINT, and ENDFILE statements shall not refer to this connection. WRITE speciϐies that READ6
statements shall not refer to this connection. READWRITE permits any input/output statement to refer7
to this connection. If this speciϐier is omitted, the default value is processor dependent. If READWRITE is8
included in the set of allowable actions for a ϐile, both READ andWRITE also shall be included in the set of9
allowed actions for that ϐile. For an existing ϐile, the speciϐied action shall be included in the set of allowed10
actions for the ϐile. For a new ϐile, the processor creates the ϐile with a set of allowed actions that includes11
the speciϐied action.12

12.5.6.5 ASYNCHRONOUS= speciϐier in the OPEN statement13

1 The scalar‑default‑char‑expr shall evaluate to YES or NO. If YES is speciϐied, asynchronous input/output on14
the unit is allowed. If NO is speciϐied, asynchronous input/output on the unit is not allowed. If this speciϐier15
is omitted, the default value is NO.16

12.5.6.6 BLANK= speciϐier in the OPEN statement17

1 The scalar‑default‑char‑expr shall evaluate to NULL or ZERO. The BLANK= speciϐier is permitted only for18
a connection for formatted input/output. It speciϐies the blank interpretation mode (13.8.7, 12.6.2.6) for19
input for this connection. This mode has no effect on output. It is a changeable mode (12.5.2). If this20
speciϐier is omitted in an OPEN statement that initiates a connection, the default value is NULL.21

12.5.6.7 DECIMAL= speciϐier in the OPEN statement22

1 The scalar‑default‑char‑expr shall evaluate to COMMA or POINT. The DECIMAL= speciϐier is permitted only23
for a connection for formatted input/output. It speciϐies the decimal edit mode (13.6, 13.8.9, 12.6.2.7) for24
this connection. It is a changeable mode (12.5.2). If this speciϐier is omitted in an OPEN statement that25
initiates a connection, the default value is POINT.26

12.5.6.8 DELIM= speciϐier in the OPEN statement27

1 The scalar‑default‑char‑expr shall evaluate to APOSTROPHE, QUOTE, or NONE. The DELIM= speciϐier is28
permitted only for a connection for formatted input/output. It speciϐies the delimiter mode (12.6.2.8) for29
list‑directed (13.10.4) andnamelist (13.11.4.2) output for the connection. Thismode has no effect on input.30
It is a changeablemode (12.5.2). If this speciϐier is omitted in anOPENstatement that initiates a connection,31
the default value is NONE.32

12.5.6.9 ENCODING= speciϐier in the OPEN statement33

1 The scalar‑default‑char‑expr shall evaluate to UTF‑8 or DEFAULT. The ENCODING= speciϐier is permitted34
only for a connection for formatted input/output. The value UTF‑8 speciϐies that the encoding form of the35
ϐile is UTF‑8 as speciϐied in ISO/IEC 10646. Such a ϐile is called a Unicode ϐile, and all characters therein36
are of ISO 10646 character kind. The value UTF‑8 shall not be speciϐied if the processor does not support37
the ISO 10646 character kind. The value DEFAULT speciϐies that the encoding form of the ϐile is processor38

254 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

dependent. If this speciϐier is omitted in an OPEN statement that initiates a connection, the default value1
is DEFAULT.2

12.5.6.10 FILE= speciϐier in the OPEN statement3

1 The value of the FILE= speciϐier is the name of the ϐile to be connected to the speciϐied unit. Any trailing4
blanks are ignored. The ϔile‑name‑expr shall be a name that is allowed by the processor. The interpretation5
of case is processor dependent.6

2 This speciϐier shall appear if the STATUS= speciϐier has the value NEW or REPLACE. This speciϐier shall not7
appear if the STATUS= speciϐier has the value SCRATCH. If the STATUS= speciϐier has the value OLD, this8
speciϐier shall appear unless the unit is connected and the ϐile connected to the unit exists. If this speciϐier9
is omitted and the unit is not connected to a ϐile, the STATUS= speciϐier shall be speciϐied with a value of10
SCRATCH; in this case, the connection is made to a processor‑dependent ϐile.11

12.5.6.11 FORM= speciϐier in the OPEN statement12

1 The scalar‑default‑char‑expr shall evaluate to FORMATTED or UNFORMATTED. The FORM= speciϐier de‑13
termines whether the ϐile is being connected for formatted or unformatted input/output. If this speciϐier is14
omitted, the default value is UNFORMATTED if the ϐile is being connected for direct access or stream access,15
and the default value is FORMATTED if the ϐile is being connected for sequential access. For an existing ϐile,16
the speciϐied form shall be included in the set of allowed forms for the ϐile. For a new ϐile, the processor17
creates the ϐile with a set of allowed forms that includes the speciϐied form.18

12.5.6.12 LEADING_ZERO= speciϐier in the OPEN statement19

1 The scalar‑default‑char‑expr shall evaluate to one of PRINT, SUPPRESS, or PROCESSOR_DEFINED. The LEA‑20
DING_ZERO= speciϐier is permitted only for a connection for formatted input/output. It speciϐies the lead‑21
ing zero mode (13.8.5, 12.6.2.10) for this connection. It is a changeable mode (12.5.2). If this speciϐier is22
omitted in an OPEN statement that initiates a connection, the default value is PROCESSOR_DEFINED.23

12.5.6.13 NEWUNIT= speciϐier in the OPEN statement24

1 If this speciϐier appears in an OPEN statement, either the FILE= speciϐier shall appear, or the STATUS=25
speciϐier shall appear with a value of SCRATCH.26

2 The variable is deϐined with a processor determined NEWUNIT value if no error condition occurs during27
the execution of the OPEN statement. If an error condition occurs, the processor shall not change the value28
of the variable.29

3 A NEWUNIT value is a negative number, and shall not be equal to −1, any of the named constants ER‑30
ROR_UNIT, INPUT_UNIT, or OUTPUT_UNIT from the intrinsic module ISO_FORTRAN_ENV (16.10.2), any31
value used by the processor for the unit argument to a deϐined input/output procedure, nor any previous32
NEWUNIT value that identiϐies a ϐile that is connected. The unit identiϐied by a NEWUNIT value shall not33
be preconnected.34

12.5.6.14 PAD= speciϐier in the OPEN statement35

1 The scalar‑default‑char‑expr shall evaluate to YES or NO. The PAD= speciϐier is permitted only for a connec‑36
tion for formatted input/output. It speciϐies the pad mode (12.6.4.5.3, 12.6.2.11) for input for this connec‑37
tion. This mode has no effect on output. It is a changeable mode (12.5.2). If this speciϐier is omitted in an38
OPEN statement that initiates a connection, the default value is YES.39

J3/25‑007 255

J3/25‑007 WD 1539‑1 2024‑12‑29

12.5.6.15 POSITION= speciϐier in the OPEN statement1

1 The scalar‑default‑char‑expr shall evaluate to ASIS, REWIND, or APPEND. The connection shall be for se‑2
quential or stream access. A new ϐile is positioned at its initial point. REWIND positions an existing ϐile3
at its initial point. APPEND positions an existing ϐile such that the endϐile record is the next record, if it4
has one. If an existing ϐile does not have an endϐile record, APPEND positions the ϐile at its terminal point.5
ASIS leaves the position unchanged if the ϐile exists and already is connected. If the ϐile exists but is not6
connected, the position resulting from ASIS is processor dependent. If this speciϐier is omitted, the default7
value is ASIS.8

12.5.6.16 RECL= speciϐier in the OPEN statement9

1 The value of the RECL= speciϐier shall be positive. It speciϐies the length of each record in a ϐile being con‑10
nected for direct access, or speciϐies themaximum length of a record in a ϐile being connected for sequential11
access. This speciϐier shall not appear when a ϐile is being connected for stream access. This speciϐier shall12
appear when a ϐile is being connected for direct access. If this speciϐier is omitted when a ϐile is being con‑13
nected for sequential access, the default value is processor dependent. If the ϐile is being connected for14
formatted input/output, the length is the number of characters for all records that contain only characters15
of default kind. When a record contains any nondefault characters, the effect of the RECL= speciϐier is pro‑16
cessor dependent. If the ϐile is being connected for unformatted input/output, the length is measured in17
ϐile storage units. For an existing ϐile, the value of the RECL= speciϐier shall be included in the set of allowed18
record lengths for the ϐile. For a new ϐile, the processor creates the ϐile with a set of allowed record lengths19
that includes the speciϐied value.20

12.5.6.17 ROUND= speciϐier in the OPEN statement21

1 The scalar‑default‑char‑expr shall evaluate to one of UP, DOWN, ZERO, NEAREST, COMPATIBLE, or PRO‑22
CESSOR_DEFINED. The ROUND= speciϐier is permitted only for a connection for formatted input/output.23
It speciϐies the input/output rounding mode (13.7.2.3.8, 12.6.2.14) for this connection. It is a changeable24
mode (12.5.2). If this speciϐier is omitted in anOPENstatement that initiates a connection, the input/output25
rounding mode is processor dependent; it shall be one of the above modes.26

NOTE
A processor is free to select any input/output rounding mode for the default mode. The mode might correspond to
UP, DOWN, ZERO, NEAREST, or COMPATIBLE; or it might be a completely different input/output rounding mode.

12.5.6.18 SIGN= speciϐier in the OPEN statement27

1 The scalar‑default‑char‑expr shall evaluate to one of PLUS, SUPPRESS, or PROCESSOR_DEFINED. The SIGN=28
speciϐier is permitted only for a connection for formatted input/output. It speciϐies the sign mode (13.8.4,29
12.6.2.15) for this connection. It is a changeable mode (12.5.2). If this speciϐier is omitted in an OPEN30
statement that initiates a connection, the default value is PROCESSOR_DEFINED.31

12.5.6.19 STATUS= speciϐier in the OPEN statement32

1 The scalar‑default‑char‑expr shall evaluate to OLD, NEW, SCRATCH, REPLACE, or UNKNOWN. If OLD is spe‑33
ciϐied, the ϐile shall exist. If NEW is speciϐied, the ϐile shall not exist.34

2 Successful execution of an OPEN statement with NEW speciϐied creates the ϐile and changes the status to35
OLD. If REPLACE is speciϐied and the ϐile does not already exist, the ϐile is created and the status is changed36
to OLD. If REPLACE is speciϐied and the ϐile does exist, the ϐile is deleted, a new ϐile is created with the same37

256 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

name, and the status is changed to OLD. If SCRATCH is speciϐied, the ϐile is created and connected to the1
speciϐied unit for use by the program but is deleted at the execution of a CLOSE statement referring to the2
same unit or at the normal termination of the program.3

3 If UNKNOWN is speciϐied, the status is processor dependent. If this speciϐier is omitted, the default value4
is UNKNOWN.5

NOTE
SCRATCH cannot be speciϐied if the FILE= speciϐier appears (12.5.6.10).

12.5.7 CLOSE statement6

12.5.7.1 General7

1 The CLOSE statement is used to terminate the connection of a speciϐied unit to an external ϐile.8

2 Execution of a CLOSE statement for a unit may occur in any program unit of a program and need not occur9
in the same program unit as the execution of an OPEN statement referring to that unit.10

3 Execution of a CLOSE statement performs a wait operation for any pending asynchronous data transfer11
operations for the speciϐied unit.12

4 Execution of a CLOSE statement specifying a unit that does not exist, exists but is connected to a ϐile that13
does not exist, or has no ϐile connected to it, is permitted and affects no ϐile or unit.14

5 After a unit has been disconnected by execution of a CLOSE statement, it may be connected again within15
the same program, either to the same ϐile or to a different ϐile. After a named ϐile has been disconnected by16
execution of a CLOSE statement, it may be connected again within the same program, either to the same17
unit or to a different unit, provided that the ϐile still exists.18

6 During the completion step (5.3.7) of normal termination, all units that are connected are closed. Each unit19
is closed with status KEEP unless the ϐile status prior to termination of execution was SCRATCH, in which20
case the unit is closed with status DELETE.21

NOTE
The effect is as though a CLOSE statement without a STATUS= speciϐier were executed on each connected unit.

12.5.7.2 Syntax22

R1208 close‑stmt is CLOSE (close‑spec‑list)23

R1209 close‑spec is [UNIT =] ϔile‑unit‑number24
or IOSTAT = stat‑variable25
or IOMSG = iomsg‑variable26
or ERR = label27
or STATUS = scalar‑default‑char‑expr28

C1207 No speciϐier shall appear more than once in a given close‑spec‑list.29

C1208 A ϔile‑unit‑number shall be speciϐied in a close‑spec‑list; if the optional characters UNIT= are omit‑30
ted, the ϔile‑unit‑number shall be the ϐirst item in the close‑spec‑list.31

J3/25‑007 257

J3/25‑007 WD 1539‑1 2024‑12‑29

C1209 (R1209) The label used in the ERR= speciϐier shall be the statement label of a branch target state‑1
ment that appears in the same inclusive scope as the CLOSE statement.2

1 The scalar‑default‑char‑expr has a limited list of character values. Any trailing blanks are ignored. The3
value speciϐied is without regard to case.4

2 The IOSTAT=, ERR=, and IOMSG= speciϐiers are described in 12.11.5

NOTE
An example of a CLOSE statement is:

CLOSE (10, STATUS = 'KEEP')

12.5.7.3 STATUS= speciϐier in the CLOSE statement6

1 The scalar‑default‑char‑expr shall evaluate to KEEP or DELETE. The STATUS= speciϐier determines the dis‑7
position of the ϐile that is connected to the speciϐied unit. KEEP shall not be speciϐied for a ϐile whose status8
prior to execution of a CLOSE statement is SCRATCH. If KEEP is speciϐied for a ϐile that exists, the ϐile con‑9
tinues to exist after the execution of a CLOSE statement. If KEEP is speciϐied for a ϐile that does not exist,10
the ϐile will not exist after the execution of a CLOSE statement. If DELETE is speciϐied, the ϐile will not exist11
after the execution of a CLOSE statement. If this speciϐier is omitted, the default value is KEEP, unless the12
ϐile status prior to execution of the CLOSE statement is SCRATCH, inwhich case the default value is DELETE.13

14

12.6 Data transfer statements15

12.6.1 Form of input and output statements16

1 The READ statement is the data transfer input statement. TheWRITE statement and the PRINT statement17
are the data transfer output statements.18

R1210 read‑stmt is READ (io‑control‑spec‑list) [input‑item‑list]19
or READ format [, input‑item‑list]20

R1211 write‑stmt is WRITE (io‑control‑spec‑list) [output‑item‑list]21

R1212 print‑stmt is PRINT format [, output‑item‑list]22

NOTE 1
Examples of data transfer statements are:

READ (6, *) SIZE
READ 10, A, B
WRITE (6, 10) A, S, J
PRINT 10, A, S, J

10 FORMAT (2E16.3, I5)

NOTE 2
A statement of the form

READ (name)

where name is the name of a default character variable is a formatted input statement. The format expression
“(name)” is the format. The statement cannot be an input statement that speciϐies an internal ϐile because of C1221.

258 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.6.2 Control information list1

12.6.2.1 Syntax2

1 A control information list is an io‑control‑spec‑list. It governs data transfer.3

R1213 io‑control‑spec is [UNIT =] io‑unit4
or [FMT =] format5
or [NML =] namelist‑group‑name6
or ADVANCE = scalar‑default‑char‑expr7
or ASYNCHRONOUS = scalar‑default‑char‑constant‑expr8
or BLANK = scalar‑default‑char‑expr9
or DECIMAL = scalar‑default‑char‑expr10
or DELIM = scalar‑default‑char‑expr11
or END = label12
or EOR = label13
or ERR = label14
or ID = id‑variable15
or IOMSG = iomsg‑variable16
or IOSTAT = stat‑variable17
or LEADING_ZERO = scalar‑default‑char‑expr18
or PAD = scalar‑default‑char‑expr19
or POS = scalar‑int‑expr20
or REC = scalar‑int‑expr21
or ROUND = scalar‑default‑char‑expr22
or SIGN = scalar‑default‑char‑expr23
or SIZE = scalar‑int‑variable24

R1214 id‑variable is scalar‑int‑variable25

C1210 No speciϐier shall appear more than once in a given io‑control‑spec‑list.26

C1211 An io‑unit shall be speciϐied in an io‑control‑spec‑list; if the optional characters UNIT= are omitted,27
the io‑unit shall be the ϐirst item in the io‑control‑spec‑list.28

C1212 (R1213) A DELIM=, LEADING_ZERO=, or SIGN= speciϐier shall not appear in a read‑stmt.29

C1213 (R1213) A BLANK=, PAD=, END=, EOR=, or SIZE= speciϐier shall not appear in a write‑stmt.30

C1214 A SIZE= speciϐier shall not appear in a list‑directed or namelist input statement.31

C1215 (R1213) The label in the ERR=, EOR=, or END= speciϐier shall be the statement label of a branch32
target statement that appears in the same inclusive scope as the data transfer statement.33

C1216 (R1213) A namelist‑group‑name shall be the name of a namelist group.34

C1217 (R1213) A namelist‑group‑name shall not appear if a REC= speciϐier, format, input‑item‑list, or an35
output‑item‑list appears in the data transfer statement.36

C1218 (R1213) If format appears without a preceding FMT=, it shall be the second item in the io‑control‑37
spec‑list and the ϐirst item shall be io‑unit.38

C1219 (R1213) If namelist‑group‑name appears without a preceding NML=, it shall be the second item in39

J3/25‑007 259

J3/25‑007 WD 1539‑1 2024‑12‑29

the io‑control‑spec‑list and the ϐirst item shall be io‑unit.1

C1220 (R1213) If io‑unit is not a ϔile‑unit‑number, the io‑control‑spec‑list shall not contain aREC= speciϐier2
or a POS= speciϐier.3

C1221 (R1213) If io‑unit is an internal‑ϔile‑variable, the io‑control‑spec‑list shall contain a format or a4
namelist‑group‑name.5

C1222 (R1213) If the REC= speciϐier appears, an END= speciϐier shall not appear, and the format, if any,6
shall not be an asterisk.7

C1223 (R1213) An ADVANCE= speciϐier shall appear only in a formatted sequential or stream data trans‑8
fer statement with explicit format speciϐication (13.2) whose io‑control‑spec‑list does not contain9
an internal‑ϔile‑variable as the io‑unit.10

C1224 (R1213) If an EOR= speciϐier appears, an ADVANCE= speciϐier also shall appear.11

C1225 (R1213) The scalar‑default‑char‑constant‑expr in an ASYNCHRONOUS= speciϐier shall have the12
value YES or NO.13

C1226 (R1213) An ASYNCHRONOUS= speciϐier with a value YES shall not appear unless io‑unit is a ϔile‑14
unit‑number.15

C1227 (R1213) If an ID= speciϐier appears, an ASYNCHRONOUS= speciϐier with the value YES shall also16
appear.17

C1228 (R1213) If a POS= speciϐier appears, the io‑control‑spec‑list shall not contain a REC= speciϐier.18

C1229 (R1213) If a DECIMAL=, BLANK=, LEADING_ZERO=, PAD=, SIGN=, or ROUND= speciϐier appears, a19
format or namelist‑group‑name shall also appear.20

C1230 (R1213) If a DELIM= speciϐier appears, either format shall be an asterisk or namelist‑group‑name21
shall appear.22

C1231 (R1214) The scalar‑int‑variable shall have a decimal exponent range no smaller than that of default23
integer.24

2 If an EOR= speciϐier appears, an ADVANCE= speciϐier with the value NO shall also appear.25

3 If the data transfer statement contains a format or namelist‑group‑name, the statement is a formatted in‑26
put/output statement; otherwise, it is an unformatted input/output statement.27

4 The ADVANCE=, ASYNCHRONOUS=, DECIMAL=, BLANK=, DELIM=, LEADING_ZERO=, PAD=,28
ROUND=, and SIGN= speciϐiers have a limited list of character values. Any trailing blanks are ignored. The29
values speciϐied are without regard to case.30

5 The IOSTAT=, ERR=, EOR=, END=, and IOMSG= speciϐiers are described in 12.11.31

NOTE
An example of a READ statement is:

READ (IOSTAT = IOS, UNIT = 6, FMT = '(10F8.2)') A, B

260 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.6.2.2 Format speciϐication in a data transfer statement1

1 The format speciϐier supplies a format speciϐication or speciϐies list‑directed formatting for a formatted2
input/output statement.3

R1215 format is default‑char‑expr4
or label5
or *6

C1232 (R1215) The label shall be the label of a FORMAT statement that appears in the same inclusive7
scope as the statement containing the FMT= speciϐier.8

2 The default‑char‑expr shall evaluate to a valid format speciϐication (13.2.1 and 13.2.2).9

3 If default‑char‑expr is an array, it is treated as if all of the elements of the array were speciϐied in array10
element order and were concatenated.11

4 If format is *, the statement is a list‑directed input/output statement.12

NOTE
An example in which the format is a character expression is:

READ (6, FMT = "(" // CHAR_FMT // ")") X, Y, Z
where CHAR_FMT is a default character variable.

12.6.2.3 NML= speciϐier in a data transfer statement13

1 The NML= speciϐier supplies the namelist‑group‑name (8.9). This name identiϐies a particular collection of14
data objects on which transfer is to be performed.15

2 If a namelist‑group‑name appears, the statement is a namelist input/output statement.16

12.6.2.4 ADVANCE= speciϐier in a data transfer statement17

1 The scalar‑default‑char‑expr shall evaluate to YES or NO. The ADVANCE= speciϐier determines whether18
advancing input/output occurs for a nonchild data transfer statement. If YES is speciϐied for a nonchild data19
transfer statement, advancing input/output occurs. If NO is speciϐied, nonadvancing input/output occurs20
(12.3.4.2). If this speciϐier is omitted from a nonchild data transfer statement that allows the speciϐier, the21
default value is YES. A formatted child data transfer statement is a nonadvancing input/output statement,22
and any ADVANCE= speciϐier is ignored.23

12.6.2.5 ASYNCHRONOUS= speciϐier in a data transfer statement24

1 The ASYNCHRONOUS= speciϐier determines whether this data transfer statement is synchronous or asyn‑25
chronous. If YES is speciϐied, the statement and the input/output operation are asynchronous. If NO is26
speciϐied or if the speciϐier is omitted, the statement and the input/output operation are synchronous.27

2 Asynchronous input/output is permitted only for external ϐiles openedwith anASYNCHRONOUS= speciϐier28
with the value YES in the OPEN statement.29

NOTE 1
Both synchronous and asynchronous input/output are allowed for ϐiles openedwith anASYNCHRONOUS= speciϐier
of YES. For other ϐiles, only synchronous input/output is allowed; this includes ϐiles opened with an ASYNCHRON‑
OUS= speciϐier of NO, ϐiles opened without an ASYNCHRONOUS= speciϐier, preconnected ϐiles accessed without an
OPEN statement, and internal ϐiles.

J3/25‑007 261

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1 (cont.)
The ASYNCHRONOUS= speciϐier value in a data transfer statement is a constant expression because it effects com‑
piler optimizations and, therefore, needs to be known at compile time.

3 The processormay perform an asynchronous data transfer operation asynchronously, but it is not required1
to do so. For each external ϐile, records and ϐile storage units read orwritten by asynchronous data transfer2
statements are read, written, and processed in the same order as they would have been if the data trans‑3
fer statements were synchronous. The documentation of the Fortran processor should describe when in‑4
put/output will be performed asynchronously.5

4 If a variable is used in an asynchronous data transfer statement as6
• an item in an input/output list,7
• a group object in a namelist, or8
• a SIZE= speciϐier,9

the base object of the data‑ref is implicitly given the ASYNCHRONOUS attribute in the scoping unit of the10
data transfer statement. This attribute may be conϐirmed by explicit declaration.11

5 When an asynchronous input/output statement is executed, the set of storage units speciϐied by the item12
list or NML= speciϐier, plus the storage units speciϐied by the SIZE= speciϐier, is deϐined to be the pending13
input/output storage sequence for the data transfer operation.14

NOTE 2
A pending input/output storage sequence is not necessarily a contiguous set of storage units.

6 A pending input/output storage sequence affector is a variable of which any part is associated with a stor‑15
age unit in a pending input/output storage sequence.16

12.6.2.6 BLANK= speciϐier in a data transfer statement17

1 The scalar‑default‑char‑expr shall evaluate to NULL or ZERO. The BLANK= speciϐier temporarily changes18
(12.5.2) the blank interpretation mode (13.8.7, 12.5.6.6) for the connection. If the speciϐier is omitted, the19
mode is not changed.20

12.6.2.7 DECIMAL= speciϐier in a data transfer statement21

1 The scalar‑default‑char‑expr shall evaluate to COMMAorPOINT. TheDECIMAL= speciϐier temporarily chan‑22
ges (12.5.2) the decimal edit mode (13.6, 13.8.9, 12.5.6.7) for the connection. If the speciϐier is omitted, the23
mode is not changed.24

12.6.2.8 DELIM= speciϐier in a data transfer statement25

1 The scalar‑default‑char‑expr shall evaluate to APOSTROPHE, QUOTE, or NONE. The DELIM= speciϐier tem‑26
porarily changes (12.5.2) the delimiter mode (13.10.4, 13.11.4.2, 12.5.6.8) for the connection. If the spe‑27
ciϐier is omitted, the mode is not changed.28

12.6.2.9 ID= speciϐier in a data transfer statement29

1 Successful execution of an asynchronous data transfer statement containing an ID= speciϐier causes the30
variable speciϐied in the ID= speciϐier to become deϐined with a processor determined value. If this value is31
zero, the data transfer operation has been completed. A nonzero value is referred to as the identiϐier of the32

262 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

data transfer operation. This identiϐier is different from the identiϐier of any other pending data transfer1
operation for this unit. It can be used in a subsequentWAIT or INQUIRE statement to identify the particular2
data transfer operation.3

2 If an error condition occurs during the execution of a data transfer statement containing an ID= speciϐier,4
the variable speciϐied in the ID= speciϐier becomes undeϐined.5

3 A child data transfer statement shall not specify the ID= speciϐier.6

12.6.2.10 LEADING_ZERO= speciϐier in a data transfer statement7

1 The scalar‑default‑char‑expr shall evaluate to PRINT, SUPPRESS, or PROCESSOR_DEFINED. The LEADING_‑8
ZERO= speciϐier temporarily changes (12.5.2) the leading zeromode (13.8.5, 12.5.6.12) for the connection.9
If the speciϐier is omitted, the mode is not changed.10

12.6.2.11 PAD= speciϐier in a data transfer statement11

1 The scalar‑default‑char‑expr shall evaluate to YES or NO. The PAD= speciϐier temporarily changes (12.5.2)12
the padmode (12.6.4.5.3, 12.5.6.14) for the connection. If the speciϐier is omitted, themode is not changed.13

12.6.2.12 POS= speciϐier in a data transfer statement14

1 The POS= speciϐier speciϐies the ϐile position in ϐile storage units. This speciϐier shall not appear in a data15
transfer statement unless the statement speciϐies a unit connected for stream access. A child data transfer16
statement shall not specify this speciϐier.17

2 A processor may prohibit the use of POS= with particular ϐiles that do not have the properties necessary18
to support random positioning. A processor may also prohibit positioning a particular ϐile to any position19
prior to its current ϐile position if the ϐile does not have the properties necessary to support such position‑20
ing.21

NOTE
A unit that is connected to a device or data streammight not be positionable.

3 If the ϐile is connected for formatted streamaccess, the ϐile position speciϐiedbyPOS= shall be equal to either22
1 (the beginning of the ϐile) or a value previously returned by a POS= speciϐier in an INQUIRE statement for23
the ϐile.24

12.6.2.13 REC= speciϐier in a data transfer statement25

1 The REC= speciϐier speciϐies the number of the record that is to be read or written. This speciϐier shall ap‑26
pear only in a data transfer statement that speciϐies a unit connected for direct access; it shall not appear in27
a child data transfer statement. If the io‑control‑spec‑list contains a REC= speciϐier, the statement is a direct28
access data transfer statement. A child data transfer statement is a direct access data transfer statement29
if the parent is a direct access data transfer statement. Any other data transfer statement is a sequential30
access data transfer statement or a stream access data transfer statement, depending on whether the ϐile31
connection is for sequential access or stream access.32

12.6.2.14 ROUND= speciϐier in a data transfer statement33

1 The scalar‑default‑char‑expr shall evaluate to one of UP, DOWN, ZERO, NEAREST, COMPATIBLE or PRO‑34
CESSOR_DEFINED. The ROUND= speciϐier temporarily changes (12.5.2) the input/output rounding mode35

J3/25‑007 263

J3/25‑007 WD 1539‑1 2024‑12‑29

(13.7.2.3.8, 12.5.6.17) for the connection. If the speciϐier is omitted, the mode is not changed.1

12.6.2.15 SIGN= speciϐier in a data transfer statement2

1 The scalar‑default‑char‑expr shall evaluate to PLUS, SUPPRESS, or PROCESSOR_DEFINED. The SIGN= spe‑3
ciϐier temporarily changes (12.5.2) the sign mode (13.8.4, 12.5.6.18) for the connection. If the speciϐier is4
omitted, the mode is not changed.5

12.6.2.16 SIZE= speciϐier in a data transfer statement6

1 The SIZE= speciϐier in an input statement causes the variable speciϐied to become deϐinedwith the count of7
the characters transferred from the ϐile by data edit descriptors during the input operation. Blanks inserted8
as padding are not counted.9

2 For a synchronous input statement, this deϐinition occurs when execution of the statement completes. For10
an asynchronous input statement, this deϐinition occurs when the corresponding wait operation is per‑11
formed.12

12.6.3 Data transfer input/output list13

1 An input/output list speciϐies the entities whose values are transferred by a data transfer statement.14

R1216 input‑item is variable15
or io‑implied‑do16

R1217 output‑item is expr17
or io‑implied‑do18

R1218 io‑implied‑do is (io‑implied‑do‑object‑list , io‑implied‑do‑control)19

R1219 io‑implied‑do‑object is input‑item20
or output‑item21

R1220 io‑implied‑do‑control is do‑variable = scalar‑int‑expr ,22
scalar‑int‑expr [, scalar‑int‑expr]23

C1233 (R1216) A variable that is an input‑item shall not be a whole assumed‑size array.24

C1234 (R1219) In an input‑item‑list, an io‑implied‑do‑object shall be an input‑item. In an output‑item‑list,25
an io‑implied‑do‑object shall be an output‑item.26

C1235 (R1217) An expression that is an output‑item shall not have a value that is a procedure pointer.27

2 An input‑item shall not appear as, nor be associated with, the do‑variable of any io‑implied‑do that contains28
the input‑item.29

NOTE 1
A constant, an expression involving operators or function references that does not have a pointer result, or an
expression enclosed in parentheses cannot appear as an input list item.

3 If an input item is a pointer, it shall be associated with a deϐinable target and data are transferred from the30
ϐile to the associated target. If an output item is a pointer, it shall be associated with a target and data are31
transferred from the target to the ϐile.32

264 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2
Data transfers always involve the movement of values between a ϐile and internal storage. A pointer as such cannot
be read or written. Therefore, a pointer shall not appear as an item in an input/output list unless it is associated
with a target that can receive a value (input) or can deliver a value (output).

4 If an input item or an output item is allocatable, it shall be allocated.1

5 A list item shall not be polymorphic unless it is processed by a deϐined input/output procedure (12.6.4.8).2

6 A list item that is of an enumeration type shall not appear in a list‑directed data transfer statement. In a3
formatted data transfer statement, it shall correspond to an I, B, O, or Z edit descriptor.4

7 The do‑variable of an io‑implied‑do that is in another io‑implied‑do shall not appear as, nor be associated5
with, the do‑variable of the containing io‑implied‑do.6

8 The following rules describingwhether to expandan input/output list itemare re‑applied to each expanded7
list item until none of the rules apply.8

• If an array appears as an input/output list item, it is treated as if the elements, if any, were speciϐied9
in array element order (9.5.3.3). However, no element of that array shall affect the value of any ex‑10
pression in the input‑item, nor shall any element appear more than once in a given input‑item.11

NOTE 3
For example:

INTEGER A (100), J (100)
…
READ *, A (A) ! Not allowed
READ *, A (LBOUND (A, 1) : UBOUND (A, 1)) ! Allowed
READ *, A (J) ! Allowed if no two elements

! of J have the same value
A(1) = 1; A(10) = 10
READ *, A (A (1) : A (10)) ! Not allowed

• If an effective item of derived type in an unformatted input/output statement is not processed by a12
deϐined input/output procedure (12.6.4.8), and if any subobject of that effective item would be pro‑13
cessed by a deϐined input/output procedure, the effective item is treated as if all of the components14
of the object were speciϐied in component order (7.5.4.7); those components shall be accessible in15
the scoping unit containing the data transfer statement and shall not be pointers or allocatable.16

• An effective item of derived type in an unformatted input/output statement is treated as a single17
value in a processor‑dependent form unless the effective item or a subobject thereof is processed by18
a deϐined input/output procedure (12.6.4.8).19

NOTE 4
The appearance of a derived‑type object as an input/output list item in an unformatted input/output statement is
not equivalent to the list of its components.
Unformatted input/output involving derived‑type list items forms the single exception to the rule that the appear‑
ance of an aggregate list item (such as an array) is equivalent to the appearance of its expanded list of component
parts. This exception permits the processor greater latitude in improving efϐiciency or in matching the processor‑
dependent sequence of values for a derived‑type object to similar sequences for aggregate objects used by means
other than Fortran. However, formatted input/output of all list items and unformatted input/output of list items
other than those of derived types adhere to the above rule.

• If an effective item of derived type in a formatted input/output statement is not processed by a20
deϐined input/output procedure, that effective item is treated as if all of the components of the ef‑21
fective itemwere speciϐied in component order; those components shall be accessible in the scoping22
unit containing the input/output statement and shall not be pointers or allocatable.23

J3/25‑007 265

J3/25‑007 WD 1539‑1 2024‑12‑29

• If a derived‑type list item is not processed by a deϐined input/output procedure and is not treated as1
a list of its individual components, all the subcomponents of that list item shall be accessible in the2
scoping unit containing the data transfer statement and shall not be pointers or allocatable.3

• For an io‑implied‑do, the loop initializationandexecutionare the sameas for aDOconstruct (11.1.7.4).4

NOTE 5
An example of an output list with an implied DO is:

WRITE (LP, FMT = '(10F8.2)') (LOG (A (I)), I = 1, N + 9, K), G

9 The scalar objects resultingwhen a data transfer statement’s list items are expanded according to the rules5
in this subclause for handling array and derived‑type list items are called effective items. Zero‑sized arrays6
and io‑implied‑dos with an iteration count of zero do not contribute to the list of effective items. A scalar7
character item of zero length is an effective item.8

NOTE 6
In a formatted input/output statement, edit descriptors are associatedwith effective items, which are always scalar.
The rules in 12.6.3 determine the set of effective items corresponding to each actual list item in the statement. These
rules might have to be applied repetitively until all of the effective items are scalar items.

10 An input/output list shall not contain an effective item of nondefault character kind if the data transfer9
statement speciϐies an internal ϐile of default character kind. An input/output list shall not contain an effect‑10
ive item that is nondefault character except for ISO 10646 or ASCII character if the data transfer statement11
speciϐies an internal ϐile of ISO10646 character kind. An input/output list shall not contain an effective item12
of type character of any kind other than ASCII if the data transfer statement speciϐies an ASCII character13
internal ϐile.14

11 An output list shall not contain an effective item that is a boz‑literal‑constant.15

12.6.4 Execution of a data transfer input/output statement16

12.6.4.1 Data transfer sequence of operations17

1 Execution of a WRITE or PRINT statement for a unit connected to a ϐile that does not exist creates the ϐile18
unless an error condition occurs.19

2 The effect of executing a synchronous data transfer statement shall be as if the following operations were20
performed in the order speciϐied.21

(1) Determine the direction of data transfer (12.6.4.2).22
(2) Identify the unit (12.6.4.3).23
(3) Perform a wait operation for all pending input/output operations for the unit. If an error, end‑24

of‑ϐile, or end‑of‑record condition occurs during any of the wait operations, steps 4 through 825
are skipped.26

(4) Establish the format if one is speciϐied.27
(5) If the statement is not a child data transfer statement (12.6.4.8),28

(a) position the ϐile prior to data transfer (12.3.4.3), and29
(b) for formatted data transfer, set the left tab limit (13.8.1.2).30

(6) Transfer data between the ϐile and the entities speciϐied by the input/output list (if any) or31
namelist, possibly mediated by deϐined input/output procedures (12.6.4.8).32

266 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

(7) Determine whether an error, end‑of‑ϐile, or end‑of‑record condition has occurred.1
(8) Position the ϐile after data transfer (12.3.4.4) unless the statement is a child data transfer state‑2

ment (12.6.4.8).3
(9) Cause any variable speciϐied in a SIZE= speciϐier to become deϐined.4
(10) If an error, end‑of‑ϐile, or end‑of‑record condition occurred, processing continues as speciϐied5

in 12.11; otherwise, any variable speciϐied in an IOSTAT= speciϐier is assigned the value zero.6

3 The effect of executing an asynchronous data transfer statement shall be as if the following operationswere7
performed in the order speciϐied.8

(1) Determine the direction of data transfer (12.6.4.2).9
(2) Identify the unit (12.6.4.3).10
(3) Optionally, perform wait operations for one or more pending input/output operations for the11

unit. If an error, end‑of‑ϐile, or end‑of‑record conditionoccurs during anyof thewait operations,12
steps 4 through 9 are skipped.13

(4) Establish the format if one is speciϐied.14
(5) Position the ϐile prior to data transfer (12.3.4.3) and, for formatted data transfer, set the left tab15

limit (13.8.1.2).16
(6) Establish the set of storage units identiϐied by the input/output list. For an input statement,17

this might require some or all of the data in the ϐile to be read if an input variable is used as18
a scalar‑int‑expr in an io‑implied‑do‑control in the input/output list, as a subscript, substring‑19
range, stride, or is otherwise referenced.20

(7) Initiate an asynchronous data transfer between the ϐile and the entities speciϐied by the in‑21
put/output list (if any) or namelist. The asynchronous data transfer may complete (and an er‑22
ror, end‑of‑ϐile, or end‑of‑record conditionmay occur) during the execution of this data transfer23
statement or during a later wait operation.24

(8) Determine whether an error, end‑of‑ϐile, or end‑of‑record condition has occurred. The condi‑25
tions may occur during the execution of this data transfer statement or during the correspond‑26
ing wait operation, but not both.27

(9) Position the ϐile as if the data transfer had ϐinished (12.3.4.4).28
(10) Cause any variable speciϐied in a SIZE= speciϐier to become undeϐined.29
(11) If an error, end‑of‑ϐile, or end‑of‑record condition occurred, processing continues as speciϐied30

in 12.11; otherwise, any variable speciϐied in an IOSTAT= speciϐier is assigned the value zero.31

4 For an asynchronous data transfer statement, the data transfers may occur during execution of the state‑32
ment, during execution of the corresponding wait operation, or anywhere between. The data transfer op‑33
eration is considered to be pending until a corresponding wait operation is performed.34

5 For asynchronous output, a pending input/output storage sequence affector (12.6.2.5) shall not be re‑35
deϐined, become undeϐined, or have its pointer association status changed.36

6 For asynchronous input, a pending input/output storage sequence affector shall not be referenced, become37
deϐined, become undeϐined, become associated with a dummy argument that has the VALUE attribute, or38
have its pointer association status changed.39

7 Error, end‑of‑ϐile, and end‑of‑record conditions in an asynchronous data transfer operationmay occur dur‑40
ing execution of either the data transfer statement or the corresponding wait operation. If an ID= speciϐier41
does not appear in the initiating data transfer statement, the conditions may occur during the execution of42
any subsequent data transfer or wait operation for the same unit. When a condition occurs for a previously43

J3/25‑007 267

J3/25‑007 WD 1539‑1 2024‑12‑29

executed asynchronous data transfer statement, await operation is performed for all pending data transfer1
operations on that unit. When a condition occurs during a subsequent statement, any actions speciϐied by2
IOSTAT=, IOMSG=, ERR=, END=, and EOR= speciϐiers for that statement are taken.3

8 If execution of the program is terminated during execution of an output statement, the contents of the ϐile4
become undeϐined.5

NOTE
Because end‑of‑ϐile and error conditions for asynchronous data transfer statements without an ID= speciϐier can be
reported by the processor during the execution of a subsequent data transfer statement, it might be impossible for
the user to determinewhich data transfer statement caused the condition. Reliably detectingwhich input statement
caused an end‑of‑ϐile condition requires that all asynchronous input statements for the unit include an ID= speciϐier.

12.6.4.2 Direction of data transfer6

1 Execution of a READ statement causes values to be transferred from a ϐile to the entities speciϐied by the in‑7
put list, if any, or speciϐiedwithin the ϐile itself for namelist input. Execution of aWRITEor PRINT statement8
causes values to be transferred to a ϐile from the entities speciϐied by the output list and format speciϐica‑9
tion, if any, or by the namelist‑group‑name for namelist output.10

12.6.4.3 Identifying a unit11

1 A data transfer statement that contains an input/output control list includes a UNIT= speciϐier that iden‑12
tiϐies an external or internal unit. A READ statement that does not contain an input/output control list13
speciϐies a particular processor‑dependent unit, which is the same as the unit identiϐied by * in a READ14
statement that contains an input/output control list (12.5.1) and is the same as the unit identiϐied by the15
value of the named constant INPUT_UNIT of the intrinsic module ISO_FORTRAN_ENV (16.10.2.13). The16
PRINT statement speciϐies some other processor‑dependent unit, which is the same as the unit identiϐied17
by * in a WRITE statement and is the same as the unit identiϐied by the value of the named constant OUT‑18
PUT_UNIT of the intrinsic module ISO_FORTRAN_ENV (16.10.2.24). Thus, each data transfer statement19
identiϐies an external or internal unit.20

2 The unit identiϐied by a data transfer statement shall be connected to a ϐilewhen execution of the statement21
begins.22

NOTE
The unit could be preconnected.

12.6.4.4 Establishing a format23

1 If the input/output control list contains * as a format, list‑directed formatting is established. If namelist‑24
group‑name appears, namelist formatting is established. If no format or namelist‑group‑name is speciϐied,25
unformatted data transfer is established. Otherwise, the format speciϐied by format is established.26

2 For output to an internal ϐile, a format speciϐication that is in the ϐile or is associated with the ϐile shall not27
be speciϐied.28

3 An input list item, or an entity associated with it, shall not contain any portion of an established format29
speciϐication.30

268 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.6.4.5 Data transfer1

12.6.4.5.1 General2

1 Data are transferred between the ϐile and the entities speciϐied by the input/output list or namelist. The3
list items are processed in the order of the input/output list for all data transfer statements except namelist4
data transfer statements. The list items for a namelist input statement are processed in the order of the5
entities speciϐied within the input records. The list items for a namelist output statement are processed in6
the order in which the variables are speciϐied in the namelist‑group‑object‑list. Effective items are derived7
from the input/output list items as described in 12.6.3.8

2 All values needed to determine which entities are speciϐied by an input/output list item are determined at9
the beginning of the processing of that item.10

3 All values are transmitted to or from the entities speciϐied by a list item prior to the processing of any11
succeeding list item for all data transfer statements.12

NOTE
In the example

READ (N) N, X (N)
the old value of N identiϐies the unit, but the new value of N is the subscript of X.

4 All values following the name= part of the namelist entity (13.11) within the input records are transmitted13
to the matching entity speciϐied in the namelist‑group‑object‑list prior to processing any succeeding entity14
within the input record for namelist input statements. If an entity is speciϐied more than once within the15
input recordduring anamelist input statement, the last occurrenceof the entity speciϐies the valueor values16
to be used for that entity.17

5 If the input/output item is a pointer, data are transferred between the ϐile and the associated target.18

6 If an internal ϐile has been speciϐied, an input/output list item shall not be in the ϐile or associated with the19
ϐile.20

7 During the execution of an output statement that speciϐies an internal ϐile, no part of that internal ϐile shall21
be referenced, deϐined, or become undeϐined as the result of evaluating any output list item.22

8 During the execution of an input statement that speciϐies an internal ϐile, no part of that internal ϐile shall23
be deϐined or become undeϐined as the result of transferring a value to any input list item.24

9 A DO variable becomes deϐined and its iteration count established at the beginning of processing of the25
io‑implied‑do‑object‑list an io‑implied‑do.26

10 On output, every entity whose value is to be transferred shall be deϐined.27

12.6.4.5.2 Unformatted data transfer28

1 If the ϐile is not connected for unformatted input/output, unformatted data transfer is prohibited.29

2 During unformatted data transfer, data are transferred without editing between the ϐile and the entities30
speciϐied by the input/output list. If the ϐile is connected for sequential or direct access, exactly one record31
is read or written.32

3 A value in the ϐile is stored in a contiguous sequence of ϐile storage units, beginning with the ϐile storage33

J3/25‑007 269

J3/25‑007 WD 1539‑1 2024‑12‑29

unit immediately following the current ϐile position.1

4 After each value is transferred, the current ϐile position is moved to a point immediately after the last ϐile2
storage unit of the value.3

5 On input from a ϐile connected for sequential or direct access, the number of ϐile storage units required by4
the input list shall be less than or equal to the number of ϐile storage units in the record.5

6 On input, if the ϐile storage units transferred do not contain a valuewith the same type and type parameters6
as the input list entity, then the resulting value of the entity is processor dependent except in the following7
cases.8

• A complex entity may correspond to two real values with the same kind type parameter as the com‑9
plex entity.10

• A default character list entity of length n may correspond to n default characters stored in the ϐile,11
regardless of the length parameters of the entities that were written to these storage units of the ϐile.12
If the ϐile is connected for stream input, the characters may have been written by formatted stream13
output.14

7 On output to a ϐile connected for unformatted direct access, the output list shall not specify more values15
than can ϐit into the record. If the ϐile is connected for direct access and the values speciϐied by the output16
list do not ϐill the record, the remainder of the record is undeϐined.17

8 If the ϐile is connected for unformatted sequential access, the record is created with a length sufϐicient18
to hold the values from the output list. This length shall be one of the set of allowed record lengths for19
the ϐile and shall not exceed the value speciϐied in the RECL= speciϐier, if any, of the OPEN statement that20
established the connection.21

12.6.4.5.3 Formatted data transfer22

1 If the ϐile is not connected for formatted input/output, formatted data transfer is prohibited.23

2 During formatted data transfer, data are transferredwith editing between the ϐile and the entities speciϐied24
by the input/output list or by the namelist‑group‑name. Format control is initiated and editing is performed25
as described in Clause 13.26

3 The current record and possibly additional records are read or written.27

4 During advancing input when the pad mode has the value NO, the input list and format speciϐication shall28
not require more characters from the record than the record contains.29

5 During advancing input when the pad mode has the value YES, blank characters are supplied by the pro‑30
cessor if the input list and format speciϐication require more characters from the record than the record31
contains.32

6 Duringnonadvancing inputwhen thepadmodehas thevalueNO, anend‑of‑record condition (12.11) occurs33
if the input list and format speciϐication require more characters from the record than the record contains,34
and the record is complete (12.3.3.4). If the record is incomplete, an end‑of‑ϐile condition occurs instead of35
an end‑of‑record condition.36

7 During nonadvancing input when the pad mode has the value YES, blank characters are supplied by the37
processor if an effective item and its corresponding data edit descriptors requiremore characters from the38

270 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

record than the record contains. If the record is incomplete, an end‑of‑ϐile condition occurs; otherwise, an1
end‑of‑record condition occurs.2

8 If the ϐile is connected for direct access, the record number is increased by one as each succeeding record3
is read or written.4

9 On output, if the ϐile is connected for direct access or is an internal ϐile and the characters speciϐied by the5
output list and format do not ϐill a record, blank characters are added to ϐill the record.6

10 On output, the output list and format speciϐication shall not specify more characters for a record than have7
been speciϐied by a RECL= speciϐier in the OPEN statement or the record length of an internal ϐile.8

12.6.4.6 List‑directed formatting9

1 If list‑directed formatting has been established, editing is performed as described in 13.10.10

12.6.4.7 Namelist formatting11

1 If namelist formatting has been established, editing is performed as described in 13.11.12

2 Every allocatable namelist‑group‑object in the namelist group shall be allocated and every namelist‑group‑13
object that is a pointer shall be associatedwith a target. If a namelist‑group‑object is polymorphic or has an14
ultimate component that is allocatable or a pointer, that object shall be processed by a deϐined input/output15
procedure (12.6.4.8).16

12.6.4.8 Deϐined input/output17

12.6.4.8.1 General18

1 Deϐined input/output allows a program to override the default handling of derived‑type objects and values19
in data transfer statements described in 12.6.3.20

2 A deϐined input/output procedure is a procedure accessible by a deϔined‑io‑generic‑spec (15.4.3.2). A par‑21
ticular deϐined input/output procedure is selected as described in 12.6.4.8.4.22

12.6.4.8.2 Deϐined input/output procedures23

1 For a particular derived type and a particular set of kind type parameter values, there are four possible sets24
of characteristics for deϐined input/output procedures; one each for formatted input, formatted output,25
unformatted input, and unformatted output. The program need not supply all four procedures. The pro‑26
cedures are speciϐied to be used for derived‑type input/output by interface blocks (15.4.3.2) or by generic27
bindings (7.5.5), with a deϔined‑io‑generic‑spec (R1509). The deϔined‑io‑generic‑specs for these procedures28
are READ (FORMATTED), READ (UNFORMATTED), WRITE (FORMATTED), andWRITE (UNFORMATTED),29
for formatted input, unformatted input, formatted output, and unformatted output respectively.30

2 In the four interfaces, which specify the characteristics of deϐined input/output procedures, the following31
syntax term is used:32

R1221 dtv‑type‑spec is TYPE(derived‑type‑spec)33
or CLASS(derived‑type‑spec)34

C1236 (R1221) If derived‑type‑spec speciϐies an extensible type, the CLASS keyword shall be used; other‑35
wise, the TYPE keyword shall be used.36

J3/25‑007 271

J3/25‑007 WD 1539‑1 2024‑12‑29

C1237 (R1221) All length type parameters of derived‑type‑spec shall be assumed.1

3 If thedeϔined‑io‑generic‑spec is READ(FORMATTED), the characteristics shall be the sameas those speciϐied2
by the following interface:3

SUBROUTINE my_read_routine_formatted (dtv, &4
unit, &5
iotype, v_list, &6
iostat, iomsg)7

! the derived-type variable8
dtv-type-spec, INTENT(INOUT) :: dtv9
INTEGER, INTENT(IN) :: unit ! unit number10
! the edit descriptor string11
CHARACTER (LEN=*), INTENT(IN) :: iotype12
INTEGER, INTENT(IN) :: v_list(:)13
INTEGER, INTENT(OUT) :: iostat14
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg15

END16

4 If the deϔined‑io‑generic‑spec is READ (UNFORMATTED), the characteristics shall be the same as those spe‑17
ciϐied by the following interface:18

SUBROUTINE my_read_routine_unformatted (dtv, &19
unit, &20
iostat, iomsg)21

! the derived-type variable22
dtv-type-spec, INTENT(INOUT) :: dtv23
INTEGER, INTENT(IN) :: unit24
INTEGER, INTENT(OUT) :: iostat25
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg26

END27

5 If the deϔined‑io‑generic‑spec is WRITE (FORMATTED), the characteristics shall be the same as those spe‑28
ciϐied by the following interface:29

SUBROUTINE my_write_routine_formatted (dtv, &30
unit, &31
iotype, v_list, &32
iostat, iomsg)33

! the derived-type value/variable34
dtv-type-spec, INTENT(IN) :: dtv35
INTEGER, INTENT(IN) :: unit36
! the edit descriptor string37
CHARACTER (LEN=*), INTENT(IN) :: iotype38
INTEGER, INTENT(IN) :: v_list(:)39
INTEGER, INTENT(OUT) :: iostat40
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg41

END42

6 If the deϔined‑io‑generic‑spec is WRITE (UNFORMATTED), the characteristics shall be the same as those43
speciϐied by the following interface:44

SUBROUTINE my_write_routine_unformatted (dtv, &45
unit, &46
iostat, iomsg)47

! the derived-type value/variable48
dtv-type-spec, INTENT(IN) :: dtv49
INTEGER, INTENT(IN) :: unit50
INTEGER, INTENT(OUT) :: iostat51
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg52

END53

7 The actual speciϐic procedurenames (the my_..._routine_... procedurenames above) are not signiϐicant.54
In the discussion here and elsewhere, the dummy arguments in these interfaces are referred to by the55
names given above; the names are, however, arbitrary.56

272 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.6.4.8.3 Executing deϐined input/output data transfers1

1 If a deϐined input/output procedure is selected for an effective item as speciϐied in 12.6.4.8.4, the processor2
shall call the selected deϐined input/output procedure for that effective item. The deϐined input/output3
procedure controls the actual data transfer operations for the effective item.4

2 A data transfer statement that includes a derived‑type list item and that causes a deϐined input/output pro‑5
cedure to be invoked is called a parent data transfer statement. A data transfer statement that is executed6
while a parent data transfer statement is being processed and that speciϐies the unit passed into a deϐined7
input/output procedure is called a child data transfer statement. As a child data transfer statement and its8
corresponding parent data transfer statement use the same ϐile connection (12.5), the connectionmodes at9
the beginning of execution of the child data transfer statement are those in effect in the parent data transfer10
statement at the moment when the deϐined input/output procedure was invoked.11

NOTE 1
A deϐined input/output procedurewill usually contain child data transfer statements that read values from orwrite
values to the current record or at the current ϐile position. The effect of executing the deϐined input/output pro‑
cedure is similar to that of substituting the list items from any child data transfer statements into the parent data
transfer statement’s list items, along with similar substitutions in the format speciϐication.

NOTE 2
A particular execution of a READ, WRITE or PRINT statement can be both a parent and a child data transfer state‑
ment. A deϐined input/output procedure can indirectly call itself or another deϐined input/output procedure by
executing a child data transfer statement containing a list item of derived type, where a matching interface is ac‑
cessible for that derived type. If a deϐined input/output procedure calls itself indirectly in this manner, it cannot be
declared NON_RECURSIVE.

3 A child data transfer statement is processed differently from a nonchild data transfer statement in the fol‑12
lowing ways.13

• Executing a child data transfer statement does not position the ϐile prior to data transfer.14
• Anunformatted child data transfer statement does not position the ϐile after data transfer is complete.15
• Any ADVANCE= speciϐier in a child input/output statement is ignored.16

4 When a deϐined input/output procedure is invoked, the processor shall pass a unit argument that has a17
value as follows.18

• If the parent data transfer statement uses a ϔile‑unit‑number, the value of the unit argument shall be19
that of the ϔile‑unit‑number.20

• If theparent data transfer statement is aWRITE statementwith an asterisk unit or aPRINT statement,21
the unit argument shall have the same value as the named constant OUTPUT_UNIT of the intrinsic22
module ISO_FORTRAN_ENV (16.10.2).23

• If the parent data transfer statement is a READ statement with an asterisk unit or a READ state‑24
mentwithout an io‑control‑spec‑list, the unit argument shall have the same value as the INPUT_UNIT25
named constant of the intrinsic module ISO_FORTRAN_ENV (16.10.2).26

• Otherwise the parent data transfer statement accesses an internal ϐile, in which case the unit argu‑27
ment shall have a processor‑dependent negative value.28

J3/25‑007 273

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 3
The unit argument passed to a deϐined input/output procedure will be negative when the parent data transfer
statement speciϐied an internal unit, or speciϐied an external unit that is a NEWUNIT value. When an internal
unit is used with the INQUIRE statement, an error condition will occur, and any variable speciϐied in an IOSTAT=
speciϐier will be assigned the value IOSTAT_INQUIRE_INTERNAL_UNIT from the intrinsic module ISO_FORTRAN_‑
ENV (16.10.2).

5 For formatted data transfer, the processor shall pass an iotype argument that has the value1

• “LISTDIRECTED” if the parent data transfer statement speciϐied list directed formatting,2
• “NAMELIST” if the parent data transfer statement speciϐied namelist formatting, or3
• “DT” concatenated with the char‑literal‑constant, if any, of the DT edit descriptor in the format spe‑4
ciϐication of the parent data transfer statement.5

6 If the parent data transfer statement is an input statement, the dtv dummy argument is argument associ‑6
ated with the effective item that caused the deϐined input procedure to be invoked, as if the effective item7
were an actual argument in this procedure reference (5.4.5).8

7 If the parent data transfer statement is an output statement, the processor shall provide the value of the9
effective item in the dtv dummy argument.10

8 If the v‑list of the edit descriptor appears in the parent data transfer statement, the processor shall provide11
the values from it in the v_list dummy argument, with the same number of elements in the same order12
as v‑list. If there is no v‑list in the edit descriptor or if the data transfer statement speciϐies list‑directed or13
namelist formatting, the processor shall provide v_list as a zero‑sized array.14

NOTE 4
The user’s procedure might choose to interpret an element of the v_list argument as a ϐield width, but this is not
required. If it does, it would be appropriate to ϐill an output ϐield with “*”s if the width is too small.

9 The iostat argument is used to report whether an error, end‑of‑record, or end‑of‑ϐile condition (12.11)15
occurs. If an error condition occurs, the deϐined input/output procedure shall assign a positive value to16
the iostat argument. Otherwise, if an end‑of‑ϐile condition occurs, the deϐined input procedure shall17
assign the value of the named constant IOSTAT_END (16.10.2.16) to the iostat argument. Otherwise, if18
an end‑of‑record condition occurs, thedeϐined input procedure shall assign the value of thenamed constant19
IOSTAT_EOR (16.10.2.17) toiostat. Otherwise, thedeϐined input/output procedure shall assign the value20
zero to the iostat argument.21

10 If the deϐined input/output procedure returns a nonzero value for the iostat argument, the procedure22
shall also return an explanatorymessage in the iomsg argument. Otherwise, the procedure shall not change23
the value of the iomsg argument.24

NOTE 5
The values of the iostat and iomsg arguments set in a deϐined input/output procedure need not be passed to all
of the parent data transfer statements.

11 If the iostat argument of the deϐined input/output procedure has a nonzero value when that proced‑25
ure returns, and the processor therefore terminates execution of the program as described in 12.11, the26
processor shall make the value of the iomsg argument available in a processor‑dependent manner.27

12 While a parent READ statement is active, an input/output statement shall not read from any external unit28
other than the one speciϐied by the unit dummy argument and shall not perform output to any external29

274 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

unit.1

13 While a parent WRITE or PRINT statement is active, an input/output statement shall not perform output2
to any external unit other than the one speciϐied by the unit dummy argument and shall not read from any3
external unit.4

14 While a parent data transfer statement is active, a data transfer statement that speciϐies an internal ϐile is5
permitted.6

15 OPEN, CLOSE, BACKSPACE, ENDFILE, and REWIND statements shall not be executed while a parent data7
transfer statement is active.8

16 A deϐined input/output procedure may use a format speciϐication with a DT edit descriptor for handling a9
component of the derived type that is itself of a derived type. A child data transfer statement that is a list10
directed or namelist input/output statement may contain a list item of derived type.11

17 Because a child data transfer statement does not position the ϐile prior to data transfer, the child data trans‑12
fer statement starts transferring data fromwhere the ϐile was positioned by the parent data transfer state‑13
ment’s most recently processed effective item or edit descriptor. This is not necessarily at the beginning of14
a record.15

18 The edit descriptors T and TL used on unit by a child data transfer statement shall not cause the ϐile to be16
positioned before the ϐile position at the time the deϐined input/output procedure was invoked.17

NOTE 6
A deϐined input/output procedure could use INQUIRE to determine the settings of BLANK=, PAD=, ROUND=,
DECIMAL=, and DELIM= for an external unit. The INQUIRE statement provides values as speciϐied in 12.10.

19 Neither a parent nor child data transfer statement shall be asynchronous.18

20 A deϐined input/output procedure, and any procedures invoked therefrom, shall not deϐine, nor cause to19
become undeϐined, any storage unit referenced by any input/output list item, the corresponding format, or20
any speciϐier in any active parent data transfer statement, except through the dtv argument.21

NOTE 7
A data transfer statement with an ID=, POS=, or REC= speciϐier cannot be a child data transfer statement in a
standard‑conforming program.

NOTE 8
A simple example of derived type formatted output follows. The derived type variable chairman has two compon‑
ents. The type and an associated write formatted procedure are deϐined in a module so as to be accessible from
wherever theymight be needed. It would also be possible to check that iotype indeed has the value ’DT’ and to set
iostat and iomsg accordingly.

MODULE p

TYPE :: person
CHARACTER (LEN=20) :: name
INTEGER :: age

CONTAINS
PROCEDURE,PRIVATE :: pwf
GENERIC :: WRITE(FORMATTED) => pwf

END TYPE person

CONTAINS

SUBROUTINE pwf (dtv,unit,iotype,vlist,iostat,iomsg)
! argument definitions

J3/25‑007 275

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 8 (cont.)
CLASS(person), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: vlist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

! local variable
CHARACTER (LEN=9) :: pfmt

! vlist(1) and (2) are to be used as the field widths of the two
! components of the derived type variable. First set up the format to
! be used for output.

WRITE(pfmt,'(A,I2,A,I2,A)') '(A', vlist(1), ',I', vlist(2), ')'

! now the basic output statement
WRITE(unit, FMT=pfmt, IOSTAT=iostat) dtv%name, dtv%age

END SUBROUTINE pwf

END MODULE p

PROGRAM committee
USE p
INTEGER id, members
TYPE (person) :: chairman
…
WRITE(6, FMT="(I2, DT (15,6), I5)") id, chairman, members

! this writes a record with four fields, with lengths 2, 15, 6, 5
! respectively

END PROGRAM

NOTE 9
In the following example, the variables of the derived type node form a linked list, with a single value at each node.
The subroutine pwf is used to write the values in the list, one per line.

MODULE p

TYPE node
INTEGER :: value = 0
TYPE (NODE), POINTER :: next_node => NULL ()

CONTAINS
PROCEDURE,PRIVATE :: pwf
GENERIC :: WRITE(FORMATTED) => pwf

END TYPE node

CONTAINS

SUBROUTINE pwf (dtv,unit,iotype,vlist,iostat,iomsg)
! Write the chain of values, each on a separate line in I9 format.

CLASS(node), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: vlist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

WRITE(unit,'(i9 /)', IOSTAT = iostat) dtv%value
IF(iostat/=0) RETURN
IF(ASSOCIATED(dtv%next_node)) WRITE(unit,'(dt)', IOSTAT=iostat) dtv%next_node

END SUBROUTINE pwf

END MODULE p

276 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.6.4.8.4 Resolving deϐined input/output procedure references1

1 A suitable generic interface for deϐined input/output of an effective item is one that has a deϔined‑io‑generic‑2
spec that is appropriate to the direction (read or write) and form (formatted or unformatted) of the data3
transfer as speciϐied in 12.6.4.8.2, and has a speciϐic interface whose dtv argument is compatible with the4
effective item according to the rules for argument association in 15.5.2.5.5

2 When an effective item (12.6.3) that is of derived type is encountered during a data transfer, deϐined in‑6
put/output occurs if both of the following conditions are true.7

(1) The circumstances of the input/output are such that deϐined input/output is permitted; that is,8
either9

(a) the transfer was initiated by a list‑directed, namelist, or unformatted input/output state‑10
ment, or11

(b) a format speciϐication is supplied for the data transfer statement, and the edit descriptor12
corresponding to the effective item is a DT edit descriptor.13

(2) A suitable deϐined input/output procedure is available; that is, either14

(a) the declared type of the effective item has a suitable generic type‑bound procedure, or15
(b) a suitable generic interface is accessible.16

3 If (2a) is true, the procedure referenced is determined as for explicit type‑bound procedure references17
(15.5); that is, the binding with the appropriate speciϐic interface is located in the declared type of the18
effective item, and the corresponding binding in the dynamic type of the effective item is selected.19

4 If (2a) is false and (2b) is true, the reference is to the procedure identiϐied by the appropriate speciϐic20
interface in the interface block.21

12.6.5 Termination of data transfer statements22

1 Termination of a data transfer statement occurs when23

• format processing encounters a colon or data edit descriptor and there are no remaining elements in24
the input‑item‑list or output‑item‑list,25

• unformatted or list‑directed data transfer exhausts the input‑item‑list or output‑item‑list,26
• namelist output exhausts the namelist‑group‑object‑list,27
• an error condition occurs,28
• an end‑of‑ϐile condition occurs,29
• a slash (/) is encountered as a value separator (13.10, 13.11) in the record being read during list‑30
directed or namelist input, or31

• an end‑of‑record condition occurs during execution of a nonadvancing input statement (12.11).32

12.7 Waiting on pending data transfer33

12.7.1 Wait operation34

1 Execution of an asynchronous data transfer statement in which neither an error, end‑of‑record, nor end‑35
of‑ϐile condition occurs initiates a pending data transfer operation. There may be multiple pending data36

J3/25‑007 277

J3/25‑007 WD 1539‑1 2024‑12‑29

transfer operations for the same or multiple units simultaneously. A pending data transfer operation re‑1
mains pending until a corresponding wait operation is performed. A wait operation can be performed by2
a BACKSPACE, CLOSE, ENDFILE, FLUSH, INQUIRE, PRINT, READ, REWIND, WAIT, or WRITE statement.3

2 Await operation completes the processing of a pending data transfer operation. Each wait operation com‑4
pletes only a single data transfer operation, although a single statement may performmultiple wait opera‑5
tions.6

3 If the actual data transfer is not yet complete, the wait operation ϐirst waits for its completion. If the data7
transfer operation is an input operation that completedwithout error, the storage units of the input/output8
storage sequence then become deϐined with the values as described in 12.6.2.16 and 12.6.4.5.9

4 If any error, end‑of‑ϐile, or end‑of‑record conditions occur, the applicable actions speciϐied by the IOSTAT=,10
IOMSG=, ERR=, END=, and EOR= speciϐiers of the statement that performs the wait operation are taken.11

5 If an error or end‑of‑ϐile condition occurs during a wait operation for a unit, the processor performs a wait12
operation for all pending data transfer operations for that unit.13

NOTE
Error, end‑of‑ϐile, and end‑of‑record conditions can be raised either during the data transfer statement that initiates
asynchronous input/output, a subsequent asynchronous data transfer statement for the same unit, or during the
wait operation. If raised during a data transfer statement, they trigger actions according to the IOSTAT=, ERR=,
END=, and EOR= speciϐiers of that statement; if raised during thewait operation, the actions are in accordancewith
the speciϐiers of the statement that performs the wait operation.

6 After completion of the wait operation, the data transfer operation and its input/output storage sequence14
are no longer considered to be pending.15

12.7.2 WAIT statement16

1 AWAIT statement performs await operation for speciϐied pending asynchronous data transfer operations.17

R1222 wait‑stmt is WAIT (wait‑spec‑list)18

R1223 wait‑spec is [UNIT =] ϔile‑unit‑number19
or END = label20
or EOR = label21
or ERR = label22
or ID = scalar‑int‑expr23
or IOMSG = iomsg‑variable24
or IOSTAT = stat‑variable25

C1238 No speciϐier shall appear more than once in a givenwait‑spec‑list.26

C1239 A ϔile‑unit‑number shall be speciϐied in await‑spec‑list; if theoptional charactersUNIT=areomitted,27
the ϔile‑unit‑number shall be the ϐirst item in the wait‑spec‑list.28

C1240 (R1223) The label in the ERR=, EOR=, or END= speciϐier shall be the statement label of a branch29
target statement that appears in the same inclusive scope as the WAIT statement.30

2 The IOSTAT=, ERR=, EOR=, END=, and IOMSG= speciϐiers are described in 12.11.31

3 The value of the expression speciϐied in the ID= speciϐier shall be zero or the identiϐier of a pending data32
transfer operation for the speciϐied unit. If the ID= speciϐier appears, a wait operation for the speciϐied data33

278 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

transfer operation, if any, is performed. If the ID= speciϐier is omitted, wait operations for all pending data1
transfers for the speciϐied unit are performed.2

4 Execution of a WAIT statement specifying a unit that does not exist, has no ϐile connected to it, or is not3
open for asynchronous input/output is permitted, provided that the WAIT statement has no ID= speciϐier;4
such a WAIT statement does not cause an error or end‑of‑ϐile condition to occur.5

NOTE
AnEOR= speciϐier has no effect if the pending data transfer operation is not a nonadvancing read. AnEND= speciϐier
has no effect if the pending data transfer operation is not a READ.

12.8 File positioning statements6

12.8.1 Syntax7

R1224 backspace‑stmt is BACKSPACE ϔile‑unit‑number8
or BACKSPACE (position‑spec‑list)9

R1225 endϔile‑stmt is ENDFILE ϔile‑unit‑number10
or ENDFILE (position‑spec‑list)11

R1226 rewind‑stmt is REWIND ϔile‑unit‑number12
or REWIND (position‑spec‑list)13

1 A unit that is connected for direct access shall not be referred to by a BACKSPACE, ENDFILE, or REWIND14
statement. A unit that is connected for unformatted stream access shall not be referred to by a BACKSPACE15
statement. A unit that is connected with an ACTION= speciϐier having the value READ shall not be referred16
to by an ENDFILE statement.17

R1227 position‑spec is [UNIT =] ϔile‑unit‑number18
or IOMSG = iomsg‑variable19
or IOSTAT = stat‑variable20
or ERR = label21

C1241 No speciϐier shall appear more than once in a given position‑spec‑list.22

C1242 A ϔile‑unit‑number shall be speciϐied in a position‑spec‑list; if the optional characters UNIT= are23
omitted, the ϔile‑unit‑number shall be the ϐirst item in the position‑spec‑list.24

C1243 (R1227) The label in the ERR= speciϐier shall be the statement label of a branch target statement25
that appears in the same inclusive scope as the ϐile positioning statement.26

2 The IOSTAT=, ERR=, and IOMSG= speciϐiers are described in 12.11.27

3 Executionof a ϐile positioning statementperformsawait operation for all pending asynchronousdata trans‑28
fer operations for the speciϐied unit.29

12.8.2 BACKSPACE statement30

1 Execution of a BACKSPACE statement causes the ϐile connected to the speciϐied unit to be positioned before31
the current record if there is a current record, or before the preceding record if there is no current record.32
If the ϐile is at its initial point, the position of the ϐile is not changed.33

J3/25‑007 279

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1
If the preceding record is an endϐile record, the ϐile is positioned before the endϐile record.

2 If a BACKSPACE statement causes the implicit writing of an endϐile record, the ϐile is positioned before the1
record that precedes the endϐile record.2

3 Backspacing a ϐile that is connected but does not exist is prohibited.3

4 Backspacing over records written using list‑directed or namelist formatting is prohibited.4

NOTE 2
An example of a BACKSPACE statement is:

BACKSPACE (10, IOSTAT = N)

12.8.3 ENDFILE statement5

1 Execution of an ENDFILE statement for a ϐile connected for sequential access writes an endϐile record as6
the next record of the ϐile. The ϐile is then positioned after the endϐile record, which becomes the last record7
of the ϐile. If the ϐile can also be connected for direct access, only those records before the endϐile record are8
considered to have been written. Thus, only those records shall be read during subsequent direct access9
connections to the ϐile.10

2 After execution of an ENDFILE statement for a ϐile connected for sequential access, a BACKSPACE or RE‑11
WIND statement shall be used to reposition the ϐile prior to execution of any data transfer input/output12
statement or ENDFILE statement.13

3 Execution of an ENDFILE statement for a ϐile connected for stream access causes the terminal point of the14
ϐile to become equal to the current ϐile position. Only ϐile storage units before the current position are15
considered to have been written; thus only those ϐile storage units shall be subsequently read. Subsequent16
stream output statements may be used to write further data to the ϐile.17

4 Execution of an ENDFILE statement for a ϐile that is connected but does not exist creates the ϐile; if the ϐile18
is connected for sequential access, it is created prior to writing the endϐile record.19

NOTE
An example of an ENDFILE statement is:

ENDFILE K

12.8.4 REWIND statement20

1 Execution of a REWIND statement causes the speciϐied ϐile to be positioned at its initial point.21

NOTE 1
If the ϐile is already positioned at its initial point, execution of this statement has no effect on the position of the ϐile.

2 Execution of a REWIND statement for a ϐile that is connected but does not exist is permitted and has no22
effect on any ϐile.23

NOTE 2
An example of a REWIND statement is:

REWIND 10

280 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.9 FLUSH statement1

R1228 ϔlush‑stmt is FLUSH ϔile‑unit‑number2
or FLUSH (ϔlush‑spec‑list)3

R1229 ϔlush‑spec is [UNIT =] ϔile‑unit‑number4
or IOSTAT = stat‑variable5
or IOMSG = iomsg‑variable6
or ERR = label7

C1244 No speciϐier shall appear more than once in a given ϔlush‑spec‑list.8

C1245 A ϔile‑unit‑number shall be speciϐied in a ϔlush‑spec‑list; if the optional charactersUNIT=areomitted9
from the unit speciϐier, the ϔile‑unit‑number shall be the ϐirst item in the ϔlush‑spec‑list.10

C1246 (R1229) The label in the ERR= speciϐier shall be the statement label of a branch target statement11
that appears in the same inclusive scope as the FLUSH statement.12

1 The IOSTAT=, IOMSG= and ERR= speciϐiers are described in 12.11.13

2 Execution of a FLUSH statement causes data written to an external ϐile to be available to other processes,14
or causes data placed in an external ϐile by means other than Fortran to be available to a READ statement.15
These actions are processor dependent.16

3 Execution of a FLUSH statement for a ϐile that is connected but does not exist is permitted and has no effect17
on any ϐile. A FLUSH statement has no effect on ϐile position.18

4 Execution of a FLUSH statement performs a wait operation for all pending asynchronous data transfer op‑19
erations for the speciϐied unit.20

NOTE 1
Because this document does not specify the mechanism of ϐile storage, the exact meaning of the ϐlush operation is
not precisely deϐined. It is expected that the ϐlush operation will make all data written to a ϐile available to other
processes or devices, or make data recently added to a ϐile by other processes or devices available to the program
via a subsequent read operation. This is commonly called “ϐlushing input/output buffers”.

NOTE 2
An example of a FLUSH statement is:

FLUSH (10, IOSTAT = N)

12.10 File inquiry statement21

12.10.1 Forms of the INQUIRE statement22

1 The INQUIRE statement can be used to inquire about properties of a particular named ϐile, of the con‑23
nection to a particular unit, or the number of ϐile storage units required for an output list. There are three24
forms of the INQUIRE statement: inquire by ϐile, which uses the FILE= speciϐier, inquire by unit, which uses25
the UNIT= speciϐier, and inquire by output list, which uses only the IOLENGTH= speciϐier. Assignments to26
speciϐier variables are converted, truncated, or padded according to the rules of intrinsic assignment.27

2 For inquiry by unit, the unit speciϐied need not exist or be connected to a ϐile. If it is connected to a ϐile, the28
inquiry is being made about the connection and about the ϐile connected.29

J3/25‑007 281

J3/25‑007 WD 1539‑1 2024‑12‑29

3 For inquiry by ϐile, the ϐile speciϐied need not exist or be connected to a unit. If it is connected to a unit, the1
inquiry is being made about the connection as well as about the ϐile.2

4 An INQUIRE statement may be executed before, while, or after a ϐile is connected to a unit. All values as‑3
signed by an INQUIRE statement are those that are current at the time the statement is executed.4

R1230 inquire‑stmt is INQUIRE (inquire‑spec‑list)5
or INQUIRE (IOLENGTH = scalar‑int‑variable)6

output‑item‑list7

NOTE
Examples of INQUIRE statements are:

INQUIRE (IOLENGTH = IOL) A (1:N)
INQUIRE (UNIT = JOAN, OPENED = LOG_01, NAMED = LOG_02, &

FORM = CHAR_VAR, IOSTAT = IOS)

12.10.2 Inquiry speciϐiers8

12.10.2.1 Syntax9

1 Unless constrained, the following inquiry speciϐiers may be used in either of the inquire by ϐile or inquire10
by unit forms of the INQUIRE statement.11

R1231 inquire‑spec is [UNIT =] ϔile‑unit‑number12
or FILE = ϔile‑name‑expr13
or ACCESS = scalar‑default‑char‑variable14
or ACTION = scalar‑default‑char‑variable15
or ASYNCHRONOUS = scalar‑default‑char‑variable16
or BLANK = scalar‑default‑char‑variable17
or DECIMAL = scalar‑default‑char‑variable18
or DELIM = scalar‑default‑char‑variable19
or DIRECT = scalar‑default‑char‑variable20
or ENCODING = scalar‑default‑char‑variable21
or ERR = label22
or EXIST = scalar‑logical‑variable23
or FORM = scalar‑default‑char‑variable24
or FORMATTED = scalar‑default‑char‑variable25
or ID = scalar‑int‑expr26
or IOMSG = iomsg‑variable27
or IOSTAT = stat‑variable28
or LEADING_ZERO = scalar‑default‑char‑variable29
or NAME = scalar‑default‑char‑variable30
or NAMED = scalar‑logical‑variable31
or NEXTREC = scalar‑int‑variable32
or NUMBER = scalar‑int‑variable33
or OPENED = scalar‑logical‑variable34
or PAD = scalar‑default‑char‑variable35
or PENDING = scalar‑logical‑variable36
or POS = scalar‑int‑variable37
or POSITION = scalar‑default‑char‑variable38
or READ = scalar‑default‑char‑variable39

282 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

or READWRITE = scalar‑default‑char‑variable1
or RECL = scalar‑int‑variable2
or ROUND = scalar‑default‑char‑variable3
or SEQUENTIAL = scalar‑default‑char‑variable4
or SIGN = scalar‑default‑char‑variable5
or SIZE = scalar‑int‑variable6
or STREAM = scalar‑default‑char‑variable7
or UNFORMATTED = scalar‑default‑char‑variable8
or WRITE = scalar‑default‑char‑variable9

C1247 No speciϐier shall appear more than once in a given inquire‑spec‑list.10

C1248 An inquire‑spec‑list shall contain one FILE= speciϐier or one ϔile‑unit‑number, but not both.11

C1249 In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are omitted,12
the ϔile‑unit‑number shall be the ϐirst item in the inquire‑spec‑list.13

C1250 If an ID= speciϐier appears in an inquire‑spec‑list, a PENDING= speciϐier shall also appear.14

C1251 (R1229) The label in the ERR= speciϐier shall be the statement label of a branch target statement15
that appears in the same inclusive scope as the INQUIRE statement.16

2 If ϔile‑unit‑number identiϐies an internal unit (12.6.4.8.2), an error condition occurs.17

3 When a returned value of a speciϐier other than theNAME= speciϐier is of type character, the value returned18
is in upper case.19

4 If an error condition occurs during execution of an INQUIRE statement, all of the inquiry speciϐier variables20
become undeϐined, except for variables in the IOSTAT= and IOMSG= speciϐiers (if any).21

5 The IOSTAT=, ERR=, and IOMSG= speciϐiers are described in 12.11.22

12.10.2.2 FILE= speciϐier in the INQUIRE statement23

1 The value of the ϔile‑name‑expr in the FILE= speciϐier speciϐies the name of the ϐile being inquired about.24
The named ϐile need not exist or be connected to a unit. The value of the ϔile‑name‑expr shall be of a form25
acceptable to the processor as a ϐile name. Any trailing blanks are ignored. The interpretation of case is26
processor dependent.27

12.10.2.3 ACCESS= speciϐier in the INQUIRE statement28

1 The scalar‑default‑char‑variable in the ACCESS= speciϐier is assigned the value SEQUENTIAL if the connec‑29
tion is for sequential access, DIRECT if the connection is for direct access, or STREAM if the connection is30
for stream access. If there is no connection, it is assigned the value UNDEFINED.31

12.10.2.4 ACTION= speciϐier in the INQUIRE statement32

1 The scalar‑default‑char‑variable in theACTION= speciϐier is assigned the valueREAD if the connection is for33
input only, WRITE if the connection is for output only, and READWRITE if the connection is for both input34
and output. If there is no connection, the scalar‑default‑char‑variable is assigned the value UNDEFINED.35

J3/25‑007 283

J3/25‑007 WD 1539‑1 2024‑12‑29

12.10.2.5 ASYNCHRONOUS= speciϐier in the INQUIRE statement1

1 The scalar‑default‑char‑variable in the ASYNCHRONOUS= speciϐier is assigned the value YES if the con‑2
nection allows asynchronous input/output; it is assigned the value NO if the connection does not allow3
asynchronous input/output. If there is no connection, the scalar‑default‑char‑variable is assigned the value4
UNDEFINED.5

12.10.2.6 BLANK= speciϐier in the INQUIRE statement6

1 The scalar‑default‑char‑variable in the BLANK= speciϐier is assigned the value ZERO or NULL, correspond‑7
ing to the blank interpretation mode in effect for a connection for formatted input/output. If there is no8
connection, or if the connection is not for formatted input/output, the scalar‑default‑char‑variable is as‑9
signed the value UNDEFINED.10

12.10.2.7 DECIMAL= speciϐier in the INQUIRE statement11

1 The scalar‑default‑char‑variable in the DECIMAL= speciϐier is assigned the value COMMA or POINT, cor‑12
responding to the decimal edit mode in effect for a connection for formatted input/output. If there is no13
connection, or if the connection is not for formatted input/output, the scalar‑default‑char‑variable is as‑14
signed the value UNDEFINED.15

12.10.2.8 DELIM= speciϐier in the INQUIRE statement16

1 The scalar‑default‑char‑variable in the DELIM= speciϐier is assigned the value APOSTROPHE, QUOTE, or17
NONE, corresponding to the delimiter mode in effect for a connection for formatted input/output. If there18
is no connection or if the connection is not for formatted input/output, the scalar‑default‑char‑variable is19
assigned the value UNDEFINED.20

12.10.2.9 DIRECT= speciϐier in the INQUIRE statement21

1 The scalar‑default‑char‑variable in the DIRECT= speciϐier is assigned the value YES if DIRECT is included22
in the set of allowed access methods for the ϐile, NO if DIRECT is not included in the set of allowed access23
methods for the ϐile, and UNKNOWN if the processor is unable to determine whether DIRECT is included24
in the set of allowed accessmethods for the ϐile or if the unit identiϐied by ϔile‑unit‑number is not connected25
to a ϐile.26

12.10.2.10 ENCODING= speciϐier in the INQUIRE statement27

1 The scalar‑default‑char‑variable in the ENCODING= speciϐier is assigned the value UTF‑8 if the connection28
is for formatted input/output with an encoding form of UTF‑8, and is assigned the value UNDEFINED if29
the connection is for unformatted input/output. If there is no connection, it is assigned the value UTF‑830
if the processor is able to determine that the encoding form of the ϐile is UTF‑8; if the processor is unable31
to determine the encoding form of the ϐile or if the unit identiϐied by ϔile‑unit‑number is not connected to a32
ϐile, the variable is assigned the value UNKNOWN.33

NOTE
The value assigned could be something other than UTF‑8, UNDEFINED, or UNKNOWN if the processor supports
other speciϐic encoding forms (e.g. UTF‑16BE).

284 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.10.2.11 EXIST= speciϐier in the INQUIRE statement1

1 Execution of an INQUIRE by ϐile statement causes the scalar‑logical‑variable in the EXIST= speciϐier to be2
assigned the value true if there exists a ϐile with the speciϐied name; otherwise, false is assigned. Execution3
of an INQUIRE by unit statement causes true to be assigned if the speciϐied unit exists; otherwise, false is4
assigned.5

12.10.2.12 FORM= speciϐier in the INQUIRE statement6

1 The scalar‑default‑char‑variable in the FORM=speciϐier is assigned the value FORMATTED if the connection7
is for formatted input/output, and is assigned the value UNFORMATTED if the connection is for unformat‑8
ted input/output. If there is no connection, it is assigned the value UNDEFINED.9

12.10.2.13 FORMATTED= speciϐier in the INQUIRE statement10

1 The scalar‑default‑char‑variable in the FORMATTED= speciϐier is assigned the value YES if FORMATTED is11
included in the set of allowed forms for the ϐile, NO if FORMATTED is not included in the set of allowed12
forms for the ϐile, and UNKNOWN if the processor is unable to determinewhether FORMATTED is included13
in the set of allowed forms for the ϐile or if the unit identiϐied by ϔile‑unit‑number is not connected to a ϐile.14

12.10.2.14 ID= speciϐier in the INQUIRE statement15

1 The value of the expression speciϐied in the ID= speciϐier shall be the identiϐier of a pending data transfer16
operation for the speciϐied unit. This speciϐier interacts with the PENDING= speciϐier (12.10.2.22).17

12.10.2.15 LEADING_ZERO= speciϐier in the INQUIRE statement18

1 The scalar‑default‑char‑variable in the LEADING_ZERO= speciϐier is assigned the value PRINT, SUPPRESS,19
or PROCESSOR_DEFINED, corresponding to the leading zero mode in effect for a connection for formatted20
input/output. If there is no connection, or if the connection is not for formatted input/output, the scalar‑21
default‑char‑variable is assigned the value UNDEFINED.22

12.10.2.16 NAME= speciϐier in the INQUIRE statement23

1 The scalar‑default‑char‑variable in the NAME= speciϐier is assigned the value of the name of the ϐile if the24
ϐile has a name; otherwise, it becomes undeϐined. The value assigned shall be suitable for use as the value25
of the ϔile‑name‑expr in the FILE= speciϐier in an OPEN statement.26

NOTE
If this speciϐier appears in an INQUIRE by ϐile statement, its value is not necessarily the same as the name given in
the FILE= speciϐier.
The processor could assign a ϐile name qualiϐied by a user identiϐication, device, directory, or other relevant inform‑
ation.

2 The case of the characters assigned to scalar‑default‑char‑variable is processor dependent.27

12.10.2.17 NAMED= speciϐier in the INQUIRE statement28

1 The scalar‑logical‑variable in the NAMED= speciϐier is assigned the value true if the ϐile has a name; other‑29
wise, it is assigned the value false.30

J3/25‑007 285

J3/25‑007 WD 1539‑1 2024‑12‑29

12.10.2.18 NEXTREC= speciϐier in the INQUIRE statement1

1 The scalar‑int‑variable in the NEXTREC= speciϐier is assigned the valuen+1, wheren is the record number2
of the last record read from or written to the connection for direct access. If there is a connection but no3
records have been read or written since the connection, the scalar‑int‑variable is assigned the value 1. If4
there is no connection, the connection is not for direct access, or the position is indeterminate because of5
a previous error condition, the scalar‑int‑variable becomes undeϐined. If there are pending data transfer6
operations for the speciϐied unit, the value assigned is computed as if all the pending data transfers had7
already completed.8

12.10.2.19 NUMBER= speciϐier in the INQUIRE statement9

1 Execution of an INQUIRE by ϐile statement causes the scalar‑int‑variable in the NUMBER= speciϐier to be10
assigned the value of the external unit number of the unit that is connected to the ϐile. If more than one11
unit on an image is connected to the ϐile, which of the connected external unit numbers is assigned to the12
scalar‑int‑variable is processor dependent. If there is no unit connected to the ϐile, the value−1 is assigned.13
Execution of an INQUIRE by unit statement causes the scalar‑int‑variable to be assigned the value of ϔile‑14
unit‑number.15

12.10.2.20 OPENED= speciϐier in the INQUIRE statement16

1 Execution of an INQUIRE by ϐile statement causes the scalar‑logical‑variable in the OPENED= speciϐier to be17
assigned the value true if the ϐile speciϐied is connected to a unit; otherwise, false is assigned. Execution of18
an INQUIREbyunit statement causes the scalar‑logical‑variable to be assigned the value true if the speciϐied19
unit is connected to a ϐile; otherwise, false is assigned.20

12.10.2.21 PAD= speciϐier in the INQUIRE statement21

1 The scalar‑default‑char‑variable in the PAD= speciϐier is assigned the value YES or NO, corresponding to the22
padmode in effect for a connection for formatted input/output. If there is no connectionor if the connection23
is not for formatted input/output, the scalar‑default‑char‑variable is assigned the value UNDEFINED.24

12.10.2.22 PENDING= speciϐier in the INQUIRE statement25

1 The PENDING= speciϐier is used to determinewhether previously pending asynchronous data transfers are26
complete. A data transfer operation is previously pending if it is pending at the beginning of execution of27
the INQUIRE statement.28

2 If an ID= speciϐier appears and the speciϐied data transfer operation is complete, then the variable spe‑29
ciϐied in the PENDING= speciϐier is assigned the value false and the INQUIRE statement performs the wait30
operation for the speciϐied data transfer.31

3 If the ID= speciϐier is omitted and all previously pending data transfer operations for the speciϐied unit are32
complete, then the variable speciϐied in the PENDING= speciϐier is assigned the value false and the INQUIRE33
statement performs wait operations for all previously pending data transfers for the speciϐied unit.34

4 In all other cases, the variable speciϐied in the PENDING= speciϐier is assigned the value true, no wait oper‑35
ations are performed, and the previously pending data transfers remain pending after the execution of the36
INQUIRE statement.37

286 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
The processor has considerable ϐlexibility in deϐining when it considers a transfer to be complete. Any of the fol‑
lowing approaches could be used:

• The INQUIRE statement could consider an asynchronous data transfer to be incomplete until after the cor‑
respondingwait operation. In this case PENDING=would always return true unless therewere no previously
pending data transfers for the unit.

• The INQUIRE statement could wait for all speciϐied data transfers to complete and then always return false
for PENDING=.

• The INQUIRE statement could actually test the state of the speciϐied data transfer operations.

12.10.2.23 POS= speciϐier in the INQUIRE statement1

1 The scalar‑int‑variable in the POS= speciϐier is assigned the number of the ϐile storage unit immediately2
following the current position of a ϐile connected for stream access. If the ϐile is positioned at its terminal3
position, the variable is assigned a value one greater than the number of the highest‑numbered ϐile storage4
unit in the ϐile. If there are pending data transfer operations for the speciϐied unit, the value assigned is5
computed as if all the pending data transfers had already completed. If there is no connection, the ϐile is6
not connected for stream access, or if the position of the ϐile is indeterminate because of previous error7
conditions, the variable becomes undeϐined.8

12.10.2.24 POSITION= speciϐier in the INQUIRE statement9

1 The scalar‑default‑char‑variable in the POSITION= speciϐier is assigned the value REWIND if the connection10
was opened for positioning at its initial point, APPEND if the connection was opened for positioning before11
its endϐile record or at its terminal point, and ASIS if the connection was opened without changing its posi‑12
tion. If there is no connection or if the ϐile is connected for direct access, the scalar‑default‑char‑variable is13
assigned the value UNDEFINED. If the ϐile has been repositioned since the connection, the scalar‑default‑14
char‑variable is assigned a processor‑dependent value, which shall not be REWIND unless the ϐile is posi‑15
tioned at its initial point and shall not be APPEND unless the ϐile is positioned so that its endϐile record is16
the next record or at its terminal point if it has no endϐile record.17

12.10.2.25 READ= speciϐier in the INQUIRE statement18

1 The scalar‑default‑char‑variable in the READ= speciϐier is assigned the value YES if READ is included in the19
set of allowed actions for the ϐile, NO if READ is not included in the set of allowed actions for the ϐile, and20
UNKNOWN if the processor is unable to determine whether READ is included in the set of allowed actions21
for the ϐile or if the unit identiϐied by ϔile‑unit‑number is not connected to a ϐile.22

12.10.2.26 READWRITE= speciϐier in the INQUIRE statement23

1 The scalar‑default‑char‑variable in the READWRITE= speciϐier is assigned the value YES if READWRITE is24
included in the set of allowed actions for the ϐile, NO if READWRITE is not included in the set of allowed25
actions for the ϐile, andUNKNOWN if the processor is unable to determinewhetherREADWRITE is included26
in the set of allowed actions for the ϐile or if the unit identiϐied by ϔile‑unit‑number is not connected to a ϐile.27

12.10.2.27 RECL= speciϐier in the INQUIRE statement28

1 The scalar‑int‑variable in the RECL= speciϐier is assigned the value of the record length of a connection29
for direct access, or the value of the maximum record length of a connection for sequential access. If the30
connection is for formatted input/output, the length is the number of characters for all records that contain31

J3/25‑007 287

J3/25‑007 WD 1539‑1 2024‑12‑29

only characters of default kind. If the connection is for unformatted input/output, the length is measured1
in ϐile storage units. If there is no connection, the scalar‑int‑variable is assigned the value −1, and if the2
connection is for stream access, the scalar‑int‑variable is assigned the value−2.3

12.10.2.28 ROUND= speciϐier in the INQUIRE statement4

1 The scalar‑default‑char‑variable in the ROUND= speciϐier is assigned the value UP, DOWN, ZERO, NEAREST,5
COMPATIBLE, or PROCESSOR_DEFINED, corresponding to the input/output rounding mode in effect for a6
connection for formatted input/output. If there is no connection or if the connection is not for formatted7
input/output, the scalar‑default‑char‑variable is assigned thevalueUNDEFINED.Theprocessor shall return8
the value PROCESSOR_DEFINED only if the behavior of the input/output rounding mode is different from9
that of the UP, DOWN, ZERO, NEAREST, and COMPATIBLE modes.10

12.10.2.29 SEQUENTIAL= speciϐier in the INQUIRE statement11

1 The scalar‑default‑char‑variable in the SEQUENTIAL= speciϐier is assigned the value YES if SEQUENTIAL12
is included in the set of allowed access methods for the ϐile, NO if SEQUENTIAL is not included in the set13
of allowed access methods for the ϐile, and UNKNOWN if the processor is unable to determine whether14
SEQUENTIAL is included in the set of allowed access methods for the ϐile or if the unit identiϐied by ϔile‑15
unit‑number is not connected to a ϐile.16

12.10.2.30 SIGN= speciϐier in the INQUIRE statement17

1 The scalar‑default‑char‑variable in the SIGN= speciϐier is assigned the value PLUS, SUPPRESS, or PRO‑18
CESSOR_DEFINED, corresponding to the sign mode in effect for a connection for formatted input/output.19
If there is no connection, or if the connection is not for formatted input/output, the scalar‑default‑char‑20
variable is assigned the value UNDEFINED.21

12.10.2.31 SIZE= speciϐier in the INQUIRE statement22

1 The scalar‑int‑variable in the SIZE= speciϐier is assigned the size of the ϐile in ϐile storage units. If the ϐile23
size cannot be determined or if the unit identiϐied by ϔile‑unit‑number is not connected to a ϐile, the variable24
is assigned the value−1.25

2 For a ϐile that can be connected for stream access, the ϐile size is the number of the highest‑numbered ϐile26
storage unit in the ϐile.27

3 For a ϐile that canbe connected for sequential or direct access, the ϐile sizemaybedifferent from thenumber28
of storage units implied by the data in the records; the exact relationship is processor dependent.29

4 If there are pending data transfer operations for the speciϐied unit, the value assigned is computed as if all30
the pending data transfers had already completed.31

12.10.2.32 STREAM= speciϐier in the INQUIRE statement32

1 The scalar‑default‑char‑variable in the STREAM= speciϐier is assigned the value YES if STREAM is included33
in the set of allowed access methods for the ϐile, NO if STREAM is not included in the set of allowed access34
methods for the ϐile, and UNKNOWN if the processor is unable to determine whether STREAM is included35
in the set of allowed accessmethods for the ϐile or if the unit identiϐied by ϔile‑unit‑number is not connected36
to a ϐile.37

288 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

12.10.2.33 UNFORMATTED= speciϐier in the INQUIRE statement1

1 The scalar‑default‑char‑variable in the UNFORMATTED= speciϐier is assigned the value YES if UNFORMAT‑2
TED is included in the set of allowed forms for the ϐile, NO if UNFORMATTED is not included in the set of3
allowed forms for the ϐile, and UNKNOWN if the processor is unable to determine whether UNFORMAT‑4
TED is included in the set of allowed forms for the ϐile or if the unit identiϐied by ϔile‑unit‑number is not5
connected to a ϐile.6

12.10.2.34 WRITE= speciϐier in the INQUIRE statement7

1 The scalar‑default‑char‑variable in the WRITE= speciϐier is assigned the value YES if WRITE is included in8
the set of allowed actions for the ϐile, NO if WRITE is not included in the set of allowed actions for the ϐile,9
and UNKNOWN if the processor is unable to determine whether WRITE is included in the set of allowed10
actions for the ϐile or if the unit identiϐied by ϔile‑unit‑number is not connected to a ϐile.11

12.10.3 Inquire by output list12

1 The scalar‑int‑variable in the IOLENGTH= speciϐier is assigned the processor‑dependent number of ϐile13
storage units that would be required to store the data of the output list in an unformatted ϐile. The value14
shall be suitable as a RECL= speciϐier in an OPEN statement that connects a ϐile for unformatted direct15
access if data will be read from or written to the ϐile using data transfer statements with an input/output16
list that speciϐies transfer of a sequence of objects having the same types, type parameters, and extents, in17
the same order as the output list in the INQUIRE statement.18

2 The output list in an INQUIRE statement shall not contain any derived‑type list items that require a deϐined19
input/output procedure as described in 12.6.3. If a derived‑type list item appears in the output list, the20
value returned for the IOLENGTH= speciϐier assumes that no deϐined input/output procedure will be in‑21
voked.22

12.11 Error, end‑of‑record, and end‑of‑ϐile conditions23

12.11.1 Occurrence of input/output conditions24

1 The set of input/output error conditions is processor dependent. Except as otherwise speciϐied, when an25
error condition occurs or is detected is processor dependent.26

2 An end‑of‑record condition occurs when a nonadvancing input statement attempts to transfer data from a27
position beyond the end of the current record, unless the ϐile is a stream ϐile and the current record is at28
the end of the ϐile (an end‑of‑ϐile condition occurs instead).29

3 An end‑of‑ϐile condition occurs when30

• an endϐile record is encountered during the reading of a ϐile connected for sequential access,31
• an attempt is made to read a record beyond the end of an internal ϐile, or32
• an attempt is made to read beyond the end of a stream ϐile.33

4 An end‑of‑ϐile condition may occur at the beginning of execution of an input statement. An end‑of‑ϐile34
condition also may occur during execution of a formatted input statement when more than one record is35
required by the interaction of the input list and the format. An end‑of‑ϐile condition also may occur during36
execution of a stream input statement.37

J3/25‑007 289

J3/25‑007 WD 1539‑1 2024‑12‑29

12.11.2 Error conditions and the ERR= speciϐier1

1 If an error condition occurs during execution of an input/output statement, the position of the ϐile becomes2
indeterminate.3

2 If an error condition occurs during execution of an input/output statement that contains neither an ERR=4
nor IOSTAT= speciϐier, error termination is initiated. If an error condition occurs during execution of an5
input/output statement that contains either an ERR= speciϐier or an IOSTAT= speciϐier then:6

(1) processing of the input/output list, if any, terminates;7
(2) if the statement is a data transfer statement or the error condition occurs during a wait opera‑8

tion, all do‑variables in the statement that initiated the transfer become undeϐined;9
(3) if an IOSTAT= speciϐier appears, the stat‑variable in the IOSTAT= speciϐier becomes deϐined as10

speciϐied in 12.11.5;11
(4) if an IOMSG= speciϐier appears, the iomsg‑variable becomes deϐined as speciϐied in 12.11.6;12
(5) if the statement is a READ statement and it contains a SIZE= speciϐier, the scalar‑int‑variable in13

the SIZE= speciϐier becomes deϐined as speciϐied in 12.6.2.16;14
(6) if the statement is a READ statement or the error condition occurs in a wait operation for a15

transfer initiated by a READ statement, all input items or namelist group objects in the state‑16
ment that initiated the transfer become undeϐined;17

(7) if an ERR= speciϐier appears, a branch to the statement labeled by the label in the ERR= speciϐier18
occurs.19

12.11.3 End‑of‑ϐile condition and the END= speciϐier20

1 If an end‑of‑ϐile condition occurs during execution of an input/output statement that contains neither an21
END= speciϐier nor an IOSTAT= speciϐier, error termination is initiated. If an end‑of‑ϐile condition occurs22
during execution of an input/output statement that contains either an END= speciϐier or an IOSTAT= spe‑23
ciϐier, and an error condition does not occur then:24

(1) processing of the input list, if any, terminates;25
(2) if the statement is a data transfer statement or the end‑of‑ϐile condition occurs during a wait26

operation, all do‑variables in the statement that initiated the transfer become undeϐined;27
(3) if the statement is an input statement or the end‑of‑ϐile conditionoccurs during await operation28

for a transfer initiated by an input statement, all effective items resulting from the expansion of29
list items or the namelist group in the statement that initiated the transfer become undeϐined;30

(4) if the ϐile speciϐied in the input statement is an external record ϐile, it is positioned after the31
endϐile record;32

(5) if an IOSTAT= speciϐier appears, the stat‑variable in the IOSTAT= speciϐier becomes deϐined as33
speciϐied in 12.11.5;34

(6) if an IOMSG= speciϐier appears, the iomsg‑variable becomes deϐined as speciϐied in 12.11.6;35
(7) if anEND=speciϐier appears, a branch to the statement labeledby the label in theEND=speciϐier36

occurs.37

12.11.4 End‑of‑record condition and the EOR= speciϐier38

1 If an end‑of‑record condition occurs during execution of an input/output statement that contains neither39
an EOR= speciϐier nor an IOSTAT= speciϐier, error termination is initiated. If an end‑of‑record condition40
occurs during execution of an input/output statement that contains either an EOR= speciϐier or an IOSTAT=41
speciϐier, and an error condition does not occur then:42

290 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

(1) if the pad mode has the value1

(a) YES, the record is paddedwith blanks to satisfy the effective item (12.6.4.5.3) and corres‑2
ponding data edit descriptors that require more characters than the record contains,3

(b) NO, the effective item becomes undeϐined;4

(2) processing of the input list, if any, terminates;5
(3) if the statement is a data transfer statement or the end‑of‑record condition occurs during await6

operation, all do‑variables in the statement that initiated the transfer become undeϐined;7
(4) the ϐile speciϐied in the input statement is positioned after the current record;8
(5) if an IOSTAT= speciϐier appears, the stat‑variable in the IOSTAT= speciϐier becomes deϐined as9

speciϐied in 12.11.5;10
(6) if an IOMSG= speciϐier appears, the iomsg‑variable becomes deϐined as speciϐied in 12.11.6;11
(7) if a SIZE= speciϐier appears, the scalar‑int‑variable in the SIZE= speciϐier becomes deϐined as12

speciϐied in (12.6.2.16);13
(8) if anEOR= speciϐier appears, a branch to the statement labeled by the label in the EOR= speciϐier14

occurs.15

12.11.5 IOSTAT= speciϐier16

1 Execution of an input/output statement containing the IOSTAT= speciϐier causes the stat‑variable in the17
IOSTAT= speciϐier to become deϐined with18

• a zero value if neither an error condition, an end‑of‑ϐile condition, nor an end‑of‑record condition19
occurs,20

• the processor‑dependent positive integer value of the constant IOSTAT_INQUIRE_INTERNAL_UNIT21
from the intrinsic module ISO_FORTRAN_ENV (16.10.2) if a unit number in an INQUIRE statement22
identiϐies an internal ϐile,23

• a processor‑dependent positive integer value different from IOSTAT_INQUIRE_INTERNAL_UNIT if24
any other error condition occurs,25

• the processor‑dependent negative integer value of the constant IOSTAT_END (16.10.2.16) from the26
intrinsicmodule ISO_FORTRAN_ENV if an end‑of‑ϐile condition occurs and no error condition occurs,27

• the processor‑dependent negative integer value of the constant IOSTAT_EOR (16.10.2.17) from the28
intrinsic module ISO_FORTRAN_ENV if an end‑of‑record condition occurs and no error condition or29
end‑of‑ϐile condition occurs, or30

• a processor‑dependent negative integer value different from IOSTAT_EOR and IOSTAT_END, if the IO‑31
STAT= speciϐier appears in a FLUSH statement and the processor does not support the ϐlush operation32
for the speciϐied unit.33

NOTE
An end‑of‑ϐile condition can occur only for sequential or stream input and an end‑of‑record condition can occur
only for nonadvancing input. For example,

READ (FMT = "(E8.3)", UNIT = 3, IOSTAT = IOSS) X
IF (IOSS < 0) THEN

! Perform end-of-file processing on the file connected to unit 3.
CALL END_PROCESSING

ELSE IF (IOSS > 0) THEN
! Perform error processing
CALL ERROR_PROCESSING

END IF

J3/25‑007 291

J3/25‑007 WD 1539‑1 2024‑12‑29

12.11.6 IOMSG= speciϐier1

1 If an error, end‑of‑ϐile, or end‑of‑record condition occurs during execution of an input/output statement,2
iomsg‑variable is assigned an explanatory message, as if by intrinsic assignment. If no such condition oc‑3
curs, the deϐinition status and value of iomsg‑variable are unchanged.4

12.12 Restrictions on input/output statements5

1 If a unit, or a ϐile connected to a unit, does not have all of the properties required for the execution of certain6
input/output statements, those statements shall not refer to the unit.7

2 An input/output statement that is executedwhile another input/output statement is being executed is a re‑8
cursive input/output statement. A recursive input/output statement shall not identify an external unit that9
is identiϐied by another input/output statement being executed except that a child data transfer statement10
may identify its parent data transfer statement external unit.11

3 An input/output statement shall not cause the value of any established format speciϐication to bemodiϐied.12

4 A recursive input/output statement shall not modify the value of any internal unit except that a recursive13
WRITE statement may modify the internal unit identiϐied by that recursive WRITE statement.14

5 The value of a speciϐier in an input/output statement shall not depend on the deϐinition or evaluation of15
any other speciϐier in the io‑control‑spec‑list or inquire‑spec‑list in that statement. The value of an internal‑16
ϔile‑variable or of a FMT=, ID=, IOMSG=, IOSTAT=, or SIZE= speciϐier shall not depend on the value of any17
input‑item or io‑implied‑do do‑variable in the same statement.18

6 The value of any subscript or substring bound of a variable that appears in a speciϐier in an input/output19
statement shall not depend on any input‑item, io‑implied‑do do‑variable, or on the deϐinition or evaluation20
of any other speciϐier in the io‑control‑spec‑list or inquire‑spec‑list in that statement.21

7 In a data transfer statement, the variable speciϐied in an IOSTAT=, IOMSG=, or SIZE= speciϐier, if any, shall22
not be associated with any entity in the data transfer input/output list (12.6.3) or namelist‑group‑object‑23
list, nor with a do‑variable of an io‑implied‑do in the data transfer input/output list.24

8 In a data transfer statement, if a variable speciϐied in an IOSTAT=, IOMSG=, or SIZE= speciϐier is an array ele‑25
ment reference, its subscript values shall not be affected by the data transfer, the io‑implied‑do processing,26
or the deϐinition or evaluation of any other speciϐier in the io‑control‑spec‑list.27

9 Avariable that can becomedeϐined or undeϐined as a result of its use in a speciϐier in an INQUIRE statement,28
or any associated entity, shall not appear in another speciϐier in the same INQUIRE statement.29

NOTE
Restrictions on the evaluation of expressions (10.1.4) prohibit certain side effects.

292 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

13 Input/output editing1

13.1 Format speciϐications2

1 A format used in conjunction with a data transfer statement provides information that directs the editing3
between the internal representation of data and the characters of a sequence of formatted records.4

2 A format (12.6.2.2) in a data transfer statement can refer to a FORMAT statement or to a character ex‑5
pression that contains a format speciϐication. A format speciϐication provides explicit editing information.6
The format alternatively can be an asterisk (*), which indicates list‑directed formatting (13.10). Namelist7
formatting (13.11) is indicated by specifying a namelist‑group‑name instead of a format.8

13.2 Explicit format speciϐication methods9

13.2.1 FORMAT statement10

R1301 format‑stmt is FORMAT format‑speciϔication11

R1302 format‑speciϔication is ([format‑items])12
or ([format‑items,] unlimited‑format‑item)13

C1301 (R1301) The format‑stmt shall be labeled.14

1 Blank charactersmay precede the initial left parenthesis of the format speciϐication. Additional blank char‑15
acters may appear at any point within the format speciϐication, with no effect on the interpretation of the16
format speciϐication, except within a character string edit descriptor (13.9).17

NOTE
Examples of FORMAT statements are:

5 FORMAT (1PE12.4, I10)
9 FORMAT (I12, /, ' Dates: ', 2 (2I3, I5))

13.2.2 Character format speciϐication18

1 A character expression used as a format in a formatted input/output statement shall evaluate to a character19
string whose leading part is a valid format speciϐication.20

NOTE 1
The format speciϐication begins with a left parenthesis and ends with a right parenthesis.

2 All character positions up to and including the ϐinal right parenthesis of the format speciϐication shall be21
deϐined at the time the data transfer statement is executed, and shall not become redeϐined or undeϐined22
during the execution of the statement. Character positions, if any, following the right parenthesis that ends23
the format speciϐication need not be deϐined and may contain any character data with no effect on the24
interpretation of the format speciϐication.25

3 If the format is a character array, it is treated as if all of the elements of the array were speciϐied in ar‑26
ray element order and were concatenated. However, if a format is a character array element, the format27

J3/25‑007 293

J3/25‑007 WD 1539‑1 2024‑12‑29

speciϐication shall be entirely within that array element.1

NOTE 2
If a character constant is used as a format in data transfer statement, care needs to be taken that the value of the
character constant is a valid format speciϐication. In particular, if a format speciϐication delimited by apostrophes
contains a character constant edit descriptor delimited with apostrophes, two apostrophes are needed to delimit
the edit descriptor and four apostrophes are needed for each apostrophe that occurs within the edit descriptor. For
example, the text:
2 ISN'T 3

can be written by various combinations of output statements and format speciϐications:
WRITE (6, 100) 2, 3

100 FORMAT (1X, I1, 1X, 'ISN''T', 1X, I1)
WRITE (6, '(1X, I1, 1X, ''ISN''''T'', 1X, I1)') 2, 3
WRITE (6, '(A)') ' 2 ISN''T 3'

Doubling of internal apostrophes usually can be avoided by using quotation marks to delimit the format speciϐica‑
tion and doubling of internal quotation marks usually can be avoided by using apostrophes as delimiters.

13.3 Form of a format item list2

13.3.1 Syntax3

R1303 format‑items is format‑item [[,] format‑item] ...4

R1304 format‑item is [r] data‑edit‑desc5
or control‑edit‑desc6
or char‑string‑edit‑desc7
or [r] (format‑items)8

R1305 unlimited‑format‑item is * (format‑items)9

R1306 r is int‑literal‑constant10

C1302 (R1303) The optional comma shall not be omitted except11

• between a P edit descriptor and an immediately following F, E, EN, ES, EX, D, or G edit descriptor12
(13.8.6), possibly preceded by a repeat speciϐication,13

• before a slash edit descriptor when the optional repeat speciϐication does not appear (13.8.2),14

• after a slash edit descriptor, or15

• before or after a colon edit descriptor (13.8.3)16

C1303 (R1305) An unlimited‑format‑item shall contain at least one data edit descriptor.17

C1304 (R1306) r shall be positive.18

C1305 (R1306) A kind parameter shall not be speciϐied for r.19

1 The integer literal constant r is called a repeat speciϐication.20

13.3.2 Edit descriptors21

1 An edit descriptor is a data edit descriptor (data‑edit‑desc), control edit descriptor (control‑edit‑desc), or22
character string edit descriptor (char‑string‑edit‑desc).23

294 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

R1307 data‑edit‑desc is I w [. m]1
or B w [. m]2
or O w [. m]3
or Z w [. m]4
or F w . d5
or E w . d [E e]6
or EN w . d [E e]7
or ES w . d [E e]8
or EX w . d [E e]9
or G w [. d [E e]]10
or L w11
or A [w]12
or AT13
or D w . d14
or DT [char‑literal‑constant] [(v‑list)]15

R1308 w is int‑literal‑constant16

R1309 m is int‑literal‑constant17

R1310 d is int‑literal‑constant18

R1311 e is int‑literal‑constant19

R1312 v is signed‑int‑literal‑constant20

C1306 (R1308) w shall be zero or positive for the I, B, O, Z, D, E, EN, ES, EX, F, and G edit descriptors. w21
shall be positive for all other edit descriptors.22

C1307 (R1307) For the G edit descriptor, d shall be speciϐied if w is not zero.23

C1308 (R1307) For the G edit descriptor, e shall not be speciϐied if w is zero.24

C1309 (R1307)Akindparameter shall not be speciϐied for the char‑literal‑constant in theDTedit descript‑25
or, or forw,m, d, e, and v.26

2 An I, B, O, Z, F, E, EN, ES, EX, G, L, A, AT, D, or DT edit descriptor indicates the manner of editing.27

R1313 control‑edit‑desc is blank‑interp‑edit‑desc28
or decimal‑edit‑desc29
or leading‑zero‑edit‑desc30
or position‑edit‑desc31
or round‑edit‑desc32
or sign‑edit‑desc33
or k P34
or :35
or [r] /36

R1314 k is signed‑int‑literal‑constant37

C1310 (R1314) A kind parameter shall not be speciϐied for k.38

3 In k P, k is called the scale factor.39

J3/25‑007 295

J3/25‑007 WD 1539‑1 2024‑12‑29

R1315 position‑edit‑desc is T n1
or TL n2
or TR n3
or n X4

R1316 n is int‑literal‑constant5

C1311 (R1316) n shall be positive.6

C1312 (R1316) A kind parameter shall not be speciϐied for n.7

R1317 blank‑interp‑edit‑desc is BN8
or BZ9

R1318 decimal‑edit‑desc is DC10
or DP11

R1319 leading‑zero‑edit‑desc is LZS12
or LZP13
or LZ14

R1320 round‑edit‑desc is RU15
or RD16
or RZ17
or RN18
or RC19
or RP20

R1321 sign‑edit‑desc is SS21
or SP22
or S23

4 A T, TL, TR, X, slash, colon, SS, SP, S, LZS, LZP, LZ, P, BN, BZ, RU, RD, RZ, RN, RC, RP, DC, or DP edit descriptor24
indicates the manner of editing.25

R1322 char‑string‑edit‑desc is char‑literal‑constant26

C1313 (R1322) A kind parameter shall not be speciϐied for the char‑literal‑constant.27

5 Each rep‑char in a character string edit descriptor shall be capable of representation by the processor.28

6 A character string edit descriptor provides constant data to be output, and is not valid for input.29

7 The edit descriptors are without regard to case except within a character string edit descriptor.30

13.3.3 Fields31

1 A ϐield is a part of a record that is read on input orwritten on outputwhen format control encounters a data32
edit descriptor or a character string edit descriptor. The ϐield width is the size in characters of the ϐield.33

13.4 Interaction between input/output list and format34

1 The start of formatted data transfer using a format speciϐication initiates format control (12.6.4.5.3). Each35
action of format control depends on information jointly provided by the next edit descriptor in the format36

296 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

speciϐication and the next effective item in the input/output list, if one exists.1

2 If an input/output list speciϐies at least one effective item, at least one data edit descriptor shall exist in the2
format speciϐication.3

NOTE 1
An empty format speciϐication of the form () can be used only if the input/output list has no effective item (12.6.4.5).
A zero length character item is an effective item, but a zero sized array and an implied DO list with an iteration count
of zero is not.

3 A format speciϐication is interpreted from left to right. The exceptions are format items preceded by a4
repeat speciϐication r, and format reversion (described below).5

4 A format itempreceded by a repeat speciϐication is processed as a list of r items, each identical to the format6
item but without the repeat speciϐication and separated by commas.7

NOTE 2
An omitted repeat speciϐication is treated in the same way as a repeat speciϐication whose value is one.

5 To each data edit descriptor interpreted in a format speciϐication, there corresponds one effective item8
speciϐied by the input/output list (12.6.3), except that an effective item of type complex requires the inter‑9
pretation of two F, E, EN, ES, EX, D, or G edit descriptors. For each control edit descriptor or character edit10
descriptor, there is no corresponding item speciϐied by the input/output list, and format control commu‑11
nicates information directly with the record.12

6 Whenever format control encounters a data edit descriptor in a format speciϐication, it determineswhether13
there is a corresponding effective item speciϐied by the input/output list. If there is such an item, it trans‑14
mits appropriately edited information between the item and the record, and then format control proceeds.15
If there is no such item, format control terminates.16

7 If format control encounters a colon edit descriptor in a format speciϐication and another effective item is17
not speciϐied, format control terminates.18

8 If format control encounters the rightmost parenthesis of an unlimited format item, control reverts to the19
leftmost parenthesis of that unlimited format item. This reversion of format control has no effect on the20
changeable modes (12.5.2).21

9 If format control encounters the rightmost parenthesis of a complete format speciϐication and another ef‑22
fective item is not speciϐied, format control terminates. However, if another effective item is speciϐied,23
format control then reverts to the beginning of the format item terminated by the last preceding right par‑24
enthesis that is not part of a DT edit descriptor. If there is no such preceding right parenthesis, format25
control reverts to the ϐirst left parenthesis of the format speciϐication. If any reversion occurs, the reused26
portion of the format speciϐication shall contain at least one data edit descriptor. If format control reverts27
to a parenthesis that is preceded by a repeat speciϐication, the repeat speciϐication is reused. Reversion of28
format control, of itself, has no effect on the changeable modes. The ϐile is positioned in a manner identical29
to the way it is positioned when a slash edit descriptor is processed (13.8.2).30

NOTE 3
Example: The format speciϐication:

10 FORMAT (1X, 2(F10.3, I5))
with the output statement

WRITE (10,10) 10.1, 3, 4.7, 1, 12.4, 5, 5.2, 6

J3/25‑007 297

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 3 (cont.)
produces the same output as the format speciϐication:

10 FORMAT (1X, F10.3, I5, F10.3, I5/F10.3, I5, F10.3, I5)

NOTE 4
The effect of an unlimited‑format‑item is as if its enclosed list were preceded by a very large repeat count. There is
no ϐile positioning implied by unlimited‑format‑item reversion. This can be used to write what is commonly called
a comma separated value record.
For example,

WRITE(10, '("IARRAY =", *(I0, :, ","))') IARRAY

produces a single record with a header and a comma separated list of integer values.

13.5 Positioning by format control1

1 After each data edit descriptor or character string edit descriptor is processed, the ϐile is positioned after2
the last character read or written in the current record.3

2 After each T, TL, TR, or X edit descriptor is processed, the ϐile is positioned as described in 13.8.1.1. After4
each slash edit descriptor is processed, the ϐile is positioned as described in 13.8.2.5

3 During formatted streamoutput, processing of an A or AT edit descriptor can cause ϐile positioning to occur6
(13.7.4).7

4 If format control reverts as described in 13.4, the ϐile is positioned in a manner identical to the way it is8
positioned when a slash edit descriptor is processed (13.8.2).9

5 During a read operation, any unprocessed characters of the current record are skipped whenever the next10
record is read.11

13.6 Decimal symbol12

1 The decimal symbol is the character that separates the whole and fractional parts in the decimal repres‑13
entation of a real number in an internal or external ϐile. When the decimal edit mode is POINT, the decimal14
symbol is a decimal point. When the decimal edit mode is COMMA, the decimal symbol is a comma.15

2 If the decimal edit mode is COMMA during list‑directed input/output, the character used as a value separ‑16
ator is a semicolon in place of a comma.17

13.7 Data edit descriptors18

13.7.1 Purpose of data edit descriptors19

1 A data edit descriptor causes the conversion of data to or from its internal representation; during format‑20
ted stream output, an A or AT data edit descriptor can also cause ϐile positioning. On input, the speciϐied21
variable becomes deϐined unless an error condition, an end‑of‑ϐile condition, or an end‑of‑record condition22
occurs. On output, the speciϐied expression is evaluated.23

2 During input from a Unicode ϐile,24

298 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• characters in the record that correspond to an ASCII character variable shall have a position in the1
ISO 10646 character collating sequence of 127 or less, and2

• characters in the record that correspond to a default character variable shall be representable as3
default characters.4

3 During input from a non‑Unicode ϐile,5

• characters in the record that correspond to a character variable shall have the kind of the character6
variable, and7

• characters in the record that correspond to a numeric or logical variable shall be default characters.8

4 During output to a Unicode ϐile, all characters transmitted to the record are of ISO 10646 character kind. If9
a character effective item or character string edit descriptor contains a character that is not representable10
as an ISO 10646 character, the result is processor dependent.11

5 During output to a non‑Unicode ϐile, characters transmitted to the record as a result of processing a char‑12
acter string edit descriptor or as a result of evaluating a numeric, logical, or default character data entity,13
are of default kind.14

13.7.2 Numeric editing15

13.7.2.1 General rules16

1 The I, B, O, Z, F, E, EN, ES, EX, D, and G edit descriptors can be used to specify the input/output of integer,17
real, and complex data. The I, B, O, Z and G edit descriptors can be used to specify the input/output of enum18
type data. The I, B, O, and Z edit descriptors can be used to specify input/output of enumeration type data.19
The following general rules apply.20

(1) On input, leading blanks are not signiϐicant. When the input ϐield is not an IEEE exceptional spe‑21
ciϐication or hexadecimal‑signiϐicand number (13.7.2.3.2), the interpretation of blanks, other22
than leading blanks, is determined by the blank interpretation mode (13.8.7). Plus signs may23
be omitted. A ϐield containing only blanks is considered to be zero.24

(2) On input, with F, E, EN, ES, EX, D, and G editing, a decimal symbol appearing in the input ϐield25
overrides the portion of an edit descriptor that speciϐies the decimal symbol location. The input26
ϐield may have more digits than the processor uses to approximate the value of the datum.27

(3) On output with I, F, E, EN, ES, EX, D, and G editing, the representation of a nonnegative in‑28
ternal value in the ϐield may be preϐixed with a plus sign, as controlled by the S, SP, and SS29
edit descriptors or the processor. The representation of a negative internal value in the ϐield30
shall be preϐixed with a minus sign.31

(4) Onoutput, the representation is right justiϐied in the ϐield. If the number of characters produced32
by the editing is smaller than the ϐield width, leading blanks are inserted in the ϐield.33

(5) On output, if an exponent exceeds its speciϐied or implied width using the E, EN, ES, EX, D, or34
G edit descriptor, or the number of characters produced exceeds the ϐield width, the processor35
shall ϐill the entire ϐield of width w with asterisks. However, the processor shall not produce36
asterisks if the ϐield width is not exceeded when optional characters are omitted.37

NOTE
When the sign mode is PLUS, a plus sign is not optional.

J3/25‑007 299

J3/25‑007 WD 1539‑1 2024‑12‑29

(6) On output, with I, B, O, Z, D, E, EN, ES, EX, F, and G editing, the speciϐied value of the ϐield width1
wmay be zero. In such cases, the processor selects the smallest positive actual ϐield width that2
does not result in a ϐield ϐilledwith asterisks. The speciϐied value ofw shall not be zero on input.3

(7) On output of a real zero value, the digits in the exponent ϐield shall all be zero.4

13.7.2.2 Integer editing5

1 The Iw and Iw.m edit descriptors indicate that the ϐield to be edited occupiesw positions, except whenw is6
zero. Whenw is zero, the processor selects the ϐieldwidth. On input,w shall not be zero. The corresponding7
effective item shall be of type integer or of enum or enumeration type. The G, B, O, and Z edit descriptors8
also may be used to edit integer data (13.7.5.2.2, 13.7.2.4).9

2 On input,m has no effect.10

3 In the standard form of the input ϐield for the I edit descriptor, the character string is a signed‑digit‑string11
(R710), except for the interpretation of blanks. If the input ϐield does not have the standard form and is not12
acceptable to the processor, an error condition occurs.13

4 The output ϐield for the Iw edit descriptor consists of zero or more leading blanks followed by a minus14
sign if the internal value is negative, or an optional plus sign otherwise, followed by the magnitude of the15
internal value as a digit‑stringwithout leading zeros.16

NOTE
A digit‑string always consists of at least one digit.

5 The output ϐield for the Iw.m edit descriptor is the same as for the Iw edit descriptor, except that the digit‑17
string consists of at leastmdigits. If necessary, sufϐicient leading zeros are included to achieve theminimum18
ofmdigits. The value ofm shall not exceed the value ofw, exceptwhenw is zero. Ifm is zero and the internal19
value is zero, the output ϐield consists of only blank characters, regardless of the sign control in effect. When20
m and w are both zero, and the internal value is zero, one blank character is produced.21

6 If the effective item for output is of enumeration type, the value output is its ordinal position. If the effective22
item for input is of enumeration type, the value of the input ϐield shall be positive and less than or equal23
to the number of enumerators; the value assigned to the effective item is the enumeration value with that24
ordinal position.25

7 If the effective item for output is of enum type, the value output is its corresponding integer value. If the26
effective item for input is of enum type, the value assigned is the enum value corresponding to the value of27
the input ϐield.28

13.7.2.3 Real and complex editing29

13.7.2.3.1 General30

1 The F, E, EN, ES, EX, and D edit descriptors specify the editing of real and complex data. An effective item31
corresponding to an F, E, EN, ES, EX, or D edit descriptor shall be real or complex. The G, B, O, and Z edit32
descriptors also may be used to edit real and complex data (13.7.5.2.3, 13.7.2.4).33

13.7.2.3.2 F editing34

1 The Fw.d edit descriptor indicates that the ϐield occupiesw positions, except when w is zero in which case35
the processor selects the ϐield width. The fractional part of the ϐield consists of d digits. On input, w shall36

300 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

not be zero.1

2 A lower‑case letter is equivalent to the corresponding upper‑case letter in an IEEE exceptional speciϐication2
or the exponent in a numeric input ϐield.3

3 The standard form of the input ϐield is an IEEE exceptional speciϐication, a hexadecimal‑signiϐicand num‑4
ber, or consists of a mantissa optionally followed by an exponent. The form of the mantissa is an optional5
sign, followed by a string of one ormore digits optionally containing a decimal symbol, including any blanks6
interpreted as zeros. The d has no effect on input if the input ϐield contains a decimal symbol. If the decimal7
symbol is omitted, the rightmost d digits of the string, with leading zeros assumed if necessary, are inter‑8
preted as the fractional part of the value represented. The string of digits may contain more digits than a9
processor uses to approximate the value. The form of the exponent is one of the following:10

• a sign followed by a digit‑string;11
• the letter E followed by zero or more blanks, followed by a signed‑digit‑string;12
• the letter D followed by zero or more blanks, followed by a signed‑digit‑string.13

4 An exponent containing a D is processed identically to an exponent containing an E.14

NOTE 1
If the input ϐield does not contain an exponent, the effect is as if the basic form were followed by an exponent with
a value of−k, where k is the established scale factor (13.8.6).

5 An input ϐield that is an IEEE exceptional speciϐication consists of optional blanks, followed by either15

• an optional sign, followed by the string ’INF’ or the string ’INFINITY’, or16
• an optional sign, followed by the string ’NAN’, optionally followed by zero or more alphanumeric17
characters enclosed in parentheses,18

optionally followed by blanks.19

6 The value speciϐied by ’INF’ or ’INFINITY’ is an IEEE inϐinity; this form shall not be used if the processor20
does not support IEEE inϐinities for the input variable. The value speciϐied by ’NAN’ is an IEEE NaN; this21
form shall not be used if the processor does not support IEEE NaNs for the input variable. The NaN value22
is a quiet NaN if the only nonblank characters in the ϐield are ’NAN’ or ’NAN()’; otherwise, the NaN value is23
processor dependent. The interpretation of a sign in a NaN input ϐield is processor dependent.24

7 An input ϐield that is a hexadecimal‑signiϐicand number consists of an optional sign, followed by the hexa‑25
decimal indicator which is the digit 0 immediately followed by the letter X, followed by a hexadecimal sig‑26
niϐicand followed by a hexadecimal exponent. A hexadecimal signiϐicand is a string of one or more hexa‑27
decimal characters optionally containing a decimal symbol. The decimal symbol indicates the position28
of the hexadecimal point; if no decimal symbol appears, the hexadecimal point implicitly follows the last29
hexadecimal symbol. A hexadecimal exponent is the letter P followed by a (decimal) signed‑digit‑string.30
Embedded blanks are not permitted in a hexadecimal‑signiϐicand number; trailing blanks are ignored. The31
value is equal to the signiϐicand multiplied by two raised to the power of the exponent, negated if the op‑32
tional sign is minus.33

8 If the input ϐield does not have one of the standard forms, and is not acceptable to the processor, an error34
condition occurs.35

9 For an internal value that is an IEEE inϐinity, the output ϐield consists of blanks, if necessary, followed by a36
minus sign for negative inϐinity or an optional plus sign otherwise, followed by the letters ’Inf’ or ’Inϐinity’,37

J3/25‑007 301

J3/25‑007 WD 1539‑1 2024‑12‑29

right justiϐiedwithin the ϐield. Theminimum ϐieldwidth required for output of the form ’Inf’ is 3 if no sign is1
produced, and 4 otherwise. Theminimum ϐieldwidth required for output of the form ’Inϐinity’ is 8 if no sign2
is produced, and 9 otherwise. If w is greater than or equal to the minimum required for the form ’Inϐinity’,3
the form ’Inϐinity’ is output. If w is zero or w is less than the minimum required for the form ’Inϐinity’ and4
greater than or equal to the minimum required for the form ’Inf’, the form ’Inf’ is output. Otherwise (w is5
greater than zero but less than the minimum required for any form), the ϐield is ϐilled with asterisks.6

10 For an internal value that is an IEEE NaN, the output ϐield consists of blanks, if necessary, followed by7
the letters ’NaN’ and optionally followed by one to w−5 alphanumeric processor‑dependent characters8
enclosed in parentheses, right justiϐied within the ϐield. If w is greater than zero and less than 3, the ϐield9
is ϐilled with asterisks. If w is zero, the output ϐield is ’NaN’.10

NOTE 2
The processor‑dependent characters following ’NaN’ might convey additional information about that particular
NaN.

11 For an internal value that is neither an IEEE inϐinity nor a NaN, the output ϐield consists of blanks, if neces‑11
sary, followed by a minus sign if the internal value is negative, or an optional plus sign otherwise, followed12
by a string of digits that contains a decimal symbol and represents the magnitude of the internal value, as13
modiϐied by the established scale factor and rounded (13.7.2.3.8) to d fractional digits. Leading zeros are14
not permitted except for an optional zero immediately to the left of the decimal symbol if the magnitude of15
the value in the output ϐield is less than one. The optional zero shall appear if there would otherwise be no16
digits in the output ϐield.17

13.7.2.3.3 E and D editing18

1 The Ew.d, Dw.d, and Ew.d Ee edit descriptors indicate that the external ϐield occupies w positions, except19
whenw is zero in which case the processor selects the ϐield width. The fractional part of the ϐield contains20
d digits, unless a scale factor greater than one is in effect. If e is positive the exponent part contains e digits,21
otherwise it contains the minimum number of digits required to represent the exponent value. The e has22
no effect on input.23

2 The form and interpretation of the input ϐield is the same as for Fw.d editing (13.7.2.3.2).24

3 For an internal value that is an IEEE inϐinity or NaN, the form of the output ϐield is the same as for Fw.d.25

4 For an internal value that is neither an IEEE inϐinity nor a NaN, the form of the output ϐield for a scale factor26
of zero is27

[±] [0].x1x2 . . . xdexp28
where:29

• ± signiϐies a plus sign or a minus sign;30
• . signiϐies a decimal symbol (13.6);31
• x1x2 . . . xd are the dmost signiϐicant digits of the internal value after rounding (13.7.2.3.8);32
• exp is a decimal exponent having one of the forms speciϐied in Table 13.1.33

Table 13.1— E and D exponent forms
Edit Descriptor Absolute Value of Exponent Form of Exponent1
Ew.dwith w > 0 |exp| ≤ 99 E±z1z2 or±0z1z2

99 < |exp| ≤ 999 ±z1z2z3

302 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

E and D exponent forms (cont.)
Edit Descriptor Absolute Value of Exponent Form of Exponent1

Ew.d Eewith e > 0 |exp| ≤ 10e − 1 E±z1z2 . . . ze
Ew.d E0 or E0.d any E±z1z2 . . . zs
Dw.dwith w > 0 |exp| ≤ 99 D±z1z2 or E±z1z2

or±0z1z2
99 < |exp| ≤ 999 ±z1z2z3

D0.d any D±z1z2 . . . zs or E±z1z2 . . . zs
(1) where each z is a digit, and s is the minimum number of digits required to represent
the exponent. A plus sign is produced if the exponent value is zero.

5 The scale factor k controls the decimal normalization (13.3.2, 13.8.6). If −d < k ≤ 0, the output ϐield1
contains exactly |k| leading zeros and d − |k| signiϐicant digits after the decimal symbol. If 0 < k < d + 2,2
the output ϐield contains exactly k signiϐicant digits to the left of the decimal symbol and d−k+1 signiϐicant3
digits to the right of the decimal symbol. Other values of k are not permitted.4

13.7.2.3.4 EN editing5

1 The EN edit descriptor produces an output ϐield in the form of a real number in engineering notation such6
that the decimal exponent is divisible by three and the absolute value of the signiϐicand (R715) is greater7
than or equal to 1 and less than 1000, except when the output value is zero. The scale factor has no effect8
on output.9

2 The forms of the edit descriptor are ENw.d and ENw.d Ee indicating that the external ϐield occupiesw pos‑10
itions, except when w is zero in which case the processor selects the ϐield width. The fractional part of the11
ϐield contains d digits. If e is positive the exponent part contains e digits, otherwise it contains theminimum12
number of digits required to represent the exponent value.13

3 The form and interpretation of the input ϐield is the same as for Fw.d editing (13.7.2.3.2).14

4 For an internal value that is an IEEE inϐinity or NaN, the form of the output ϐield is the same as for Fw.d.15

5 For an internal value that is neither an IEEE inϐinity nor a NaN, the form of the output ϐield is16
[±] yyy . x1x2 . . . xdexp17

where:18

• ± signiϐies a plus sign or a minus sign;19
• yyy are the 1 to 3 decimal digits representative of themost signiϐicant digits of the internal value after20
rounding (13.7.2.3.8);21

• yyy is an integer such that 1 ≤ yyy < 1000 or, if the output value is zero, yyy = 0;22
• . signiϐies a decimal symbol (13.6);23
• x1x2 . . . xd are the d next most signiϐicant digits of the internal value after rounding;24
• exp is a decimal exponent, divisible by three, having one of the forms speciϐied in Table 13.2.25

J3/25‑007 303

J3/25‑007 WD 1539‑1 2024‑12‑29

Table 13.2— EN exponent forms
Edit Descriptor Absolute Value of Exponent Form of Exponent1

ENw.dwith w > 0 |exp| ≤ 99 E±z1z2 or±0z1z2
99 < |exp| ≤ 999 ±z1z2z3

ENw.d Eewith e > 0 |exp| ≤ 10e − 1 E±z1z2 . . . ze
ENw.d E0 or EN0.d any E±z1z2 . . . zs
(1) where each z is a digit, and s is the minimum number of digits required to
represent the exponent. A plus sign is produced if the exponent value is zero.

NOTE
Examples:

Internal value Output ϐield using SS, EN12.3
6.421 6.421E+00
-.5 -500.000E-03
.00217 2.170E-03

4721.3 4.721E+03

13.7.2.3.5 ES editing1

1 The ES edit descriptor produces an output ϐield in the form of a real number in scientiϐic notation such that2
the absolute value of the signiϐicand (R715) is greater than or equal to 1 and less than 10, except when the3
output value is zero. The scale factor has no effect on output.4

2 The forms of the edit descriptor are ESw.d and ESw.d Ee indicating that the external ϐield occupies w posi‑5
tions, except when w is zero in which case the processor selects the ϐield width. The fractional part of the6
ϐield contains d digits. If e is positive the exponent part contains e digits, otherwise it contains theminimum7
number of digits required to represent the exponent value.8

3 The form and interpretation of the input ϐield is the same as for Fw.d editing (13.7.2.3.2).9

4 For an internal value that is an IEEE inϐinity or NaN, the form of the output ϐield is the same as for Fw.d.10

5 For an internal value that is neither an IEEE inϐinity nor a NaN, the form of the output ϐield is11
[±] y . x1x2 . . . xdexp12

where:13

• ± signiϐies a plus sign or a minus sign;14
• y is a decimal digit representative of the most signiϐicant digit of the internal value after rounding15
(13.7.2.3.8);16

• . signiϐies a decimal symbol (13.6);17
• x1x2 . . . xd are the d next most signiϐicant digits of the internal value after rounding;18
• exp is a decimal exponent having one of the forms speciϐied in Table 13.3.19

Table 13.3— ES exponent forms
Edit Descriptor Absolute Value of Exponent Form of Exponent1
ESw.dwith w > 0 |exp| ≤ 99 E±z1z2 or±0z1z2

99 < |exp| ≤ 999 ±z1z2z3
ESw.d Eewith e > 0 |exp| ≤ 10e − 1 E±z1z2 . . . ze
ESw.d E0 or ES0.d any E±z1z2 . . . zs

304 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

ES exponent forms (cont.)
Edit Descriptor Absolute Value of Exponent Form of Exponent1

(1) where each z is a digit, and s is the minimum number of digits required to
represent the exponent. A plus sign is produced if the exponent value is zero.

NOTE
Examples:

Internal value Output ϐield using SS, ES12.3
6.421 6.421E+00
-.5 -5.000E-01
.00217 2.170E-03

4721.3 4.721E+03

13.7.2.3.6 EX editing1

1 The EX edit descriptor produces an output ϐield in the form of a hexadecimal‑signiϐicand number.2

2 The EXw.d and EXw.dEe edit descriptors indicate that the external ϐield occupiesw positions, except when3
w is zero inwhich case the processor selects the ϐieldwidth. The fractional part of the ϐield contains d hexa‑4
decimal digits, except when d is zero in which case the processor selects the number of hexadecimal digits5
to be the minimum required so that the output ϐield is equal to the internal value; d shall not be zero if the6
radix of the internal value is not a power of two. The hexadecimal point, represented by a decimal symbol,7
appears after the ϐirst hexadecimal digit. For the form EXw.d, and for EXw.dE0, the exponent part contains8
theminimumnumber of digits needed to represent the exponent; otherwise the exponent contains e digits.9
The e has no effect on input. The scale factor has no effect on output.10

3 The form and interpretation of the input ϐield is the same as for Fw.d editing (13.7.2.3.2).11

4 For an internal value that is an IEEE inϐinity or NaN, the form of the output ϐield is the same as for Fw.d.12

5 For an internal value that is neither an IEEE inϐinity nor a NaN, the form of the output ϐield is13
[±] 0X x0 . x1x2 . . . exp14

where:15

• ± signiϐies a plus sign or a minus sign;16
• . signiϐies a decimal symbol (13.6);17
• x0x1x2 . . . are the most signiϐicant hexadecimal digits of the internal value, after rounding if d is not18
zero (13.7.2.3.8);19

• exp is a binary exponent expressed as a decimal integer; for EXw.d and EXw.dE0, the form of the ex‑20
ponent is P ±z1 . . . zn, where n is the minimum number of digits needed to represent exp, and for21
EXw.dEewith e greater than zero the form is P±z1 . . . ze. The choice of binary exponent is processor22
dependent. If the most signiϐicant binary digits of the internal value are b0b1b2 . . ., the binary expo‑23
nent might make the value of x0 be that of b0, b0b1, b0b1b2, or b0b1b2b3. A plus sign is produced if the24
exponent value is zero.25

NOTE
Examples:

J3/25‑007 305

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
Internal value Edit descriptor Possible output with SS in effect

1.375 EX0.1 0X1.6P+0
−15.625 EX14.4E3 -0X1.F400P+003
1048580.0 EX0.0 0X1.00004P+20
2.375 EX0.1 0X2.6P+0

13.7.2.3.7 Complex editing1

1 A complex datum consists of a pair of separate real data. The editing of a scalar datum of complex type is2
speciϐied by two edit descriptors each of which speciϐies the editing of real data. The ϐirst edit descriptor3
speciϐies the editing for the real part; the second speciϐies it for the imaginary part. The two edit descriptors4
maybedifferent. Control and character string edit descriptorsmaybeprocessed between the edit descript‑5
or for the real part and the edit descriptor for the imaginary part.6

13.7.2.3.8 Input/output rounding mode7

1 The input/output roundingmode canbe speciϐied by anOPENstatement (12.5.2), a data transfer statement8
(12.6.2.14), or an edit descriptor (13.8.8).9

2 In what follows, the term “decimal value”means the exact decimal number as given by the character string,10
while the term “internal value” means the number actually stored in the processor. For example, in dealing11
with the decimal constant 0.1, the decimal value is the mathematical quantity 1/10, which has no exact12
representation in binary form. Formatted output of real data involves conversion from an internal value to13
a decimal value; formatted input involves conversion from a decimal value to an internal value.14

3 When the input/output rounding mode is UP, the value resulting from conversion shall be the smallest15
representable value that is greater than or equal to the original value. When the input/output rounding16
mode is DOWN, the value resulting from conversion shall be the largest representable value that is less17
than or equal to the original value. When the input/output rounding mode is ZERO, the value resulting18
from conversion shall be the value closest to the original value and no greater in magnitude than the ori‑19
ginal value. When the input/output rounding mode is NEAREST, the value resulting from conversion shall20
be the closer of the two nearest representable values if one is closer than the other. If the two nearest rep‑21
resentable values are equidistant from the original value, it is processor dependent which one of them is22
chosen. When the input/output rounding mode is COMPATIBLE, the value resulting from conversion shall23
be the closer of the two nearest representable values or the value away from zero if halfway between them.24
When the input/output rounding mode is PROCESSOR_DEFINED, rounding during conversion shall be a25
processor‑dependent default mode, which may correspond to one of the other modes.26

4 On processors that support IEEE rounding on conversions (17.4), NEAREST shall correspond to round to27
nearest, as speciϐied in ISO/IEC 60559:2020.28

NOTE
On processors that support IEEE rounding on conversions, the input/output rounding modes COMPATIBLE and
NEAREST will produce the same results except when the datum is halfway between the two nearest representable
values. In that case, NEAREST will pick the even value, but COMPATIBLE will pick the value away from zero. The
input/output roundingmodes UP, DOWN, and ZERO have the same effect as those speciϐied in ISO/IEC 60559:2020
for round toward+∞, round toward−∞, and round toward zero, respectively.

13.7.2.4 B, O, and Z editing29

1 The Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate that the ϐield to be edited occupies w30
positions, except when w is zero. When w is zero, the processor selects the ϐield width. On input, w shall31

306 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

not be zero. The corresponding effective item shall be of type integer, real, or complex, or of enum or1
enumeration type.2

2 On input,m has no effect.3

3 In the standard form of the input ϐield for the B, O, and Z edit descriptors the character string consists of4
binary, octal, or hexadecimal digits (as in R774, R775, R776) in the respective input ϐield. The lower‑case5
hexadecimal digits a through f in a hexadecimal input ϐield are equivalent to the corresponding upper‑case6
hexadecimal digits. If the input ϐield does not have the standard form, and is not acceptable to the processor,7
an error condition occurs.8

4 Input editing produces the value INT (X) if the effective item is of type integer and REAL (X) if the effective9
item is of type real or complex, where X is a boz‑literal‑constant that speciϐies the same bit sequence as the10
digits of the input ϐield. If the effective item is of enum or enumeration type ET, the value is ET (INT (X)).11

5 The output ϐield for the Bw, Ow, and Zw descriptors consists of zero ormore leading blanks followed by the12
internal value in a form identical to the digits of a binary, octal, or hexadecimal constant, respectively, that13
speciϐies the same bit sequence but without leading zero bits.14

NOTE
A binary, octal, or hexadecimal constant always consists of at least one digit or hexadecimal digit.

R1323 hex‑digit‑string is hex‑digit [hex‑digit] ...15

6 The output ϐield for the Bw.m, Ow.m, and Zw.m edit descriptor is the same as for the Bw, Ow, and Zw edit16
descriptor, except that the digit‑string or hex‑digit‑string consists of at leastm digits. If necessary, sufϐicient17
leading zeros are included to achieve the minimum ofm digits. The value ofm shall not exceed the value of18
w, exceptwhenw is zero. Ifm is zero and the internal value consists of all zero bits, the output ϐield consists19
of only blank characters. Whenm and w are both zero, and the internal value consists of all zero bits, one20
blank character is produced.21

13.7.3 Logical editing22

1 The Lw edit descriptor indicates that the ϐield occupiesw positions. The corresponding effective item shall23
be of type logical. The G edit descriptor also may be used to edit logical data (13.7.5.3).24

2 The standard form of the input ϐield consists of optional blanks, optionally followed by a period, followed25
by a T for true or F for false. The T or F may be followed by additional characters in the ϐield, which are26
ignored. If the input ϐield does not have the standard form, and is not acceptable to the processor, an error27
condition occurs.28

3 A lower‑case letter is equivalent to the corresponding upper‑case letter in a logical input ϐield.29

NOTE
The logical constants .TRUE. and .FALSE. are acceptable input forms.

4 The output ϐield consists of w−1 blanks followed by a T or F, depending on whether the internal value is30
true or false, respectively.31

J3/25‑007 307

J3/25‑007 WD 1539‑1 2024‑12‑29

13.7.4 Character editing1

1 The A[w] edit descriptor is used with an effective item of type character. The AT edit descriptor is used2
with an effective item of type character in an output statement; it shall not be used for input. The G edit3
descriptor also may be used to edit character data (13.7.5.4). The kind type parameter of all characters4
transferred and converted under control of one A, AT, or G edit descriptor is implied by the kind of the5
corresponding effective item.6

2 If a ϐield widthw is speciϐied with the A edit descriptor, the ϐield consists ofw characters. If a ϐield widthw7
is not speciϐied with the A edit descriptor, the number of characters in the ϐield is the length of the corres‑8
ponding effective item, regardless of the value of the kind type parameter.9

3 Let len be the length of the effective item. If the speciϐied ϐield widthw for an A edit descriptor correspond‑10
ing to an effective item on input is greater than or equal to len, the rightmost len characters will be taken11
from the input ϐield. If the speciϐied ϐield widthw is less than len, thew characters will appear left justiϐied12
with len−w trailing blanks in the internal value.13

4 If the speciϐied ϐieldwidthw for an A edit descriptor corresponding to an effective item on output is greater14
than len, the output ϐieldwill consist ofw−len blanks followed by the len characters from the internal value.15
If the speciϐied ϐield width w is less than or equal to len, the output ϐield will consist of the leftmost w16
characters from the internal value.17

5 The ϐield width for an AT edit descriptor is the length of the value of the effective item after any trailing18
blanks are removed. The output ϐield consists of the value of the effective item after any trailing blanks are19
removed; if the value of the effective item is all blanks, no output is produced by the edit descriptor.20

NOTE 1
For nondefault character kinds, the blank padding character is processor dependent.

6 If the ϐile is connected for stream access, the output may be split across more than one record if it contains21
newline characters. A newline character is a nonblank character returned by the intrinsic function NEW_‑22
LINE. Beginning with the ϐirst character of the output ϐield, each character that is not a newline is written23
to the current record in successive positions; each newline character causes ϐile positioning at that point as24
if by slash editing (the current record is terminated at that point, a new empty record is created following25
the current record, this new record becomes the last and current record of the ϐile, and the ϐile is positioned26
at the beginning of this new record).27

NOTE 2
If the intrinsic function NEW_LINE returns a blank character for a particular character kind, then the processor
does not support using a character of that kind to cause record termination in a formatted stream ϐile.

13.7.5 Generalized editing28

13.7.5.1 Overview29

1 The Gw, Gw.d and Gw.d Ee edit descriptors are used with an effective item of enum type or any intrinsic30
type. When w is nonzero, these edit descriptors indicate that the external ϐield occupies w positions. For31
real or complex data the fractional part consists of a maximum of d digits and the exponent part consists32
of e digits. When these edit descriptors are used to specify the input/output of integer, logical, or character33
data, d and e have no effect. When w is zero the processor selects the ϐield width. On input, w shall not be34
zero.35

308 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

13.7.5.2 Generalized numeric editing1

13.7.5.2.1 Overview2

1 When used to specify the input/output of integer, real, complex, and enum data, the Gw, Gw.d and Gw.d Ee3
edit descriptors follow the general rules for numeric editing (13.7.2).4

NOTE
The Gw.d Ee edit descriptor follows any additional rules for the Ew.d Ee edit descriptor.

13.7.5.2.2 Generalized integer and enum editing5

1 When used to specify the input/output of integer or enum data, the Gw, Gw.d, and Gw.d Ee edit descriptors6
follow the rules for the Iw edit descriptor (13.7.2.2). Note thatw cannot be zero for input editing (13.7.5.1).7

13.7.5.2.3 Generalized real and complex editing8

1 The form and interpretation of the input ϐield for Gw.d and Gw.d Ee editing is the same as for Fw.d editing9
(13.7.2.3.2). The rest of this subclause applies only to output editing.10

2 If w is nonzero and d is zero, kPEw.0 or kPEw.0Ee editing is used for Gw.0 editing or Gw.0Ee editing re‑11
spectively.12

3 When used to specify the output of real or complex data that is not an IEEE inϐinity or NaN, the G0 and G0.d13
edit descriptors follow the rules for the Gw.dEe edit descriptor, except that any leading or trailing blanks14
are removed. Reasonable processor‑dependent values of w, d (if not speciϐied), and e are used with each15
output value.16

4 For an internal value that is an IEEE inϐinity or NaN, the form of the output ϐield for the Gw.d and Gw.d Ee17
edit descriptors is the same as for Fw.d, and the form of the output ϐield for the G0 and G0.d edit descriptors18
is the same as for F0.0.19

5 Otherwise, themethod of representation in the output ϐield depends on themagnitude of the internal value20
being edited. If the internal value is zero, let s be one. If the internal value is a number other than zero, let21
N be the decimal value that is the result of converting the internal value to d signiϐicant digits according to22
the input/output rounding mode and let s be the integer such that 10s−1 ≤ |N | < 10s. If s < 0 or s > d,23
kPEw.d or kPEw.dEe editing is used for Gw.d editing or Gw.dEe editing respectively, where k is the scale24
factor (13.8.6). If 0 ≤ s ≤ d, the scale factor has no effect and F(w− n).(d− s),n(’b’) editing is used where25
b is a blank and n is 4 for Gw.d editing, e+ 2 for Gw.dEe editing if e > 0, and 4 for Gw.dE0 editing.26

6 The value of w−n shall be positive.27

NOTE
The scale factor has no effect on output unless the magnitude of the datum to be edited is outside the range that
permits effective use of F editing.

13.7.5.3 Generalized logical editing28

1 When used to specify the input/output of logical data, the Gw.d and Gw.d Ee edit descriptors with nonzero29
w follow the rules for the Lw edit descriptor (13.7.3). When used to specify the output of logical data, the30
G0 and G0.d edit descriptors follow the rules for the L1 edit descriptor.31

J3/25‑007 309

J3/25‑007 WD 1539‑1 2024‑12‑29

13.7.5.4 Generalized character editing1

1 When used to specify the input/output of character data, the Gw.d and Gw.d Ee edit descriptors with non‑2
zero w follow the rules for the Aw edit descriptor (13.7.4). When used to specify the output of character3
data, the G0 and G0.d edit descriptors follow the rules for the A edit descriptor with no ϐield width.4

13.7.6 User‑deϐined derived‑type editing5

1 The DT edit descriptor speciϐies that a user‑provided procedure shall be used instead of the processor’s6
default input/output formatting for processing an effective item of derived type.7

2 The DT edit descriptor may include a character literal constant. The character value “DT” concatenated8
with the character literal constant is passed to the deϐined input/output procedure as the iotype argument9
(12.6.4.8). The v values of the edit descriptor are passed to the deϐined input/output procedure as the v_-10
list array argument.11

NOTE
For the edit descriptor DT'Link List'(10, 4, 2), iotype is "DTLink List" and v_list is [10, 4, 2].

3 If a derived‑type variable or value corresponds to a DT edit descriptor, there shall be an accessible interface12
to a corresponding deϐined input/output procedure for that derived type (12.6.4.8). A DT edit descriptor13
shall not correspond to an effective item that is not of a derived type.14

13.8 Control edit descriptors15

13.8.1 Position edit descriptors16

13.8.1.1 Position editing17

1 The position edit descriptors T, TL, TR, and X, specify the position at which the next character will be trans‑18
mitted to or from the record. If any character skipped by a position edit descriptor is of type nondefault19
character, and the unit is a default character internal ϐile or an external non‑Unicode ϐile, the result of that20
position editing is processor dependent.21

2 On input, if the position speciϐied by a position edit descriptor is before the current position, portions of a22
record can be processed more than once, possibly with different editing.23

3 On input, a positionbeyond the last character of the recordmaybe speciϐied if no characters are transmitted24
from such positions.25

4 On output, a position edit descriptor does not by itself cause characters to be transmitted and therefore26
does not by itself affect the length of the record. If characters are transmitted to positions at or after the27
position speciϐied by a position edit descriptor, positions skipped and not previously ϐilled are ϐilled with28
blanks. The result is as if the entire record were initially ϐilled with blanks.29

5 On output, a character in the record can be replaced. A position edit descriptor never directly causes a30
character alreadyplaced in the record to be replaced, but itmight result in positioning such that subsequent31
editing causes a replacement.32

310 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

13.8.1.2 T, TL, and TR editing1

1 The left tab limit affects ϐile positioning by the T and TL edit descriptors. Immediately prior to nonchild2
data transfer (12.6.4.8.3), the left tab limit becomes deϐined as the character position of the current record3
or the current position of the stream ϐile. If, during data transfer, the ϐile is positioned to another record,4
the left tab limit becomes deϐined as character position one of that record.5

2 The Tn edit descriptor indicates that the transmission of the next character to or from a record is to occur at6
the nth character position of the record, relative to the left tab limit. This position can be in either direction7
from the current position.8

3 The TLn edit descriptor indicates that the transmission of the next character to or from the record is to9
occur at the character position n characters backward from the current position. However, if n is greater10
than the difference between the current position and the left tab limit, the TLn edit descriptor indicates11
that the transmission of the next character to or from the record is to occur at the left tab limit.12

4 The TRn edit descriptor indicates that the transmission of the next character to or from the record is to13
occur at the character position n characters forward from the current position.14

13.8.1.3 X editing15

1 The nX edit descriptor indicates that the transmission of the next character to or from a record is to occur16
at the character position n characters forward from the current position.17

NOTE
An nX edit descriptor has the same effect as a TRn edit descriptor.

13.8.2 Slash editing18

1 The slash edit descriptor indicates the end of data transfer to or from the current record.19

2 On input from a ϐile connected for sequential or stream access, the remaining portion of the current record20
is skipped and the ϐile is positioned at the beginning of the next record. This record becomes the current21
record. On output to a ϐile connected for sequential or stream access, a new empty record is created fol‑22
lowing the current record; this new record then becomes the last and current record of the ϐile and the ϐile23
is positioned at the beginning of this new record.24

3 For a ϐile connected for direct access, the record number is increased by one and the ϐile is positioned at25
the beginning of the record that has that record number, if there is such a record, and this record becomes26
the current record.27

NOTE
A record that contains no characters can be written on output; if the ϐile is an internal ϐile or a ϐile connected for
direct access, the record is ϐilled with blank characters.
An entire record can be skipped on input.

4 The repeat speciϐication is optional in the slash edit descriptor. If it is not speciϐied, the default value is one.28

13.8.3 Colon editing29

1 The colon edit descriptor terminates format control if there are nomore effective items in the input/output30
list (12.6.3). The colon edit descriptor has no effect if there are more effective items in the input/output31

J3/25‑007 311

J3/25‑007 WD 1539‑1 2024‑12‑29

list.1

13.8.4 SS, SP, and S editing2

1 The SS, SP, and S edit descriptors temporarily change (12.5.2) the sign mode (12.5.6.18, 12.6.2.15) for the3
connection. The edit descriptors SS, SP, and S set the signmode corresponding to the SIGN= speciϐier values4
SUPPRESS, PLUS, and PROCESSOR_DEFINED, respectively.5

2 The signmode controls optional plus characters in numeric output ϐields. When the signmode is PLUS, the6
processor shall produce a plus sign in any position that normally contains an optional plus sign. When the7
signmode is SUPPRESS, the processor shall not produce a plus sign in such positions. When the signmode8
is PROCESSOR_DEFINED, the processor has the option of producing a plus sign or not in such positions,9
subject to 13.7.2(5).10

3 The SS, SP, and S edit descriptors affect only I, F, E, EN, ES, EX, D, and G editing during the execution of11
an output statement. The SS, SP, and S edit descriptors have no effect during the execution of an input12
statement.13

13.8.5 LZS, LZP and LZ editing14

1 The LZS, LZP, and LZ edit descriptors temporarily change (12.5.2) the leading zeromode for the connection.15
The edit descriptors LZS, LZP, and LZ set the leading zero mode corresponding to the LEADING_ZERO=16
speciϐier (12.5.6.12, 12.6.2.10) values SUPPRESS, PRINT, and PROCESSOR_DEFINED, respectively.17

2 The leading zeromode controls optional leading zero characters in numeric output ϐields. When the leading18
zero mode is PRINT, the processor shall produce a leading zero in any position that normally contains an19
optional leading zero. When the leading zeromode is SUPPRESS, the processor shall not produce a leading20
zero in such positions. When the leading zeromode is PROCESSOR_DEFINED, the processor has the option21
of producing a leading zero or not in such positions, subject to 13.7.2(5).22

3 The LZS, LZP, and LZ edit descriptors affect only F, E, D, and G editing during the execution of an output23
statement. The LZS, LZP, and LZ edit descriptors have no effect during the execution of an input statement.24

13.8.6 P editing25

1 The kP edit descriptor temporarily changes (12.5.2) the scale factor for the connection to k. The scale factor26
affects the editing done by the F, E, EN, ES, EX, D, and G edit descriptors for real and complex quantities.27

2 The scale factor k affects the appropriate editing in the following manner.28

• On input, with F, E, EN, ES, EX, D, and G editing (provided that no exponent exists in the ϐield), the29
effect is that the externally represented number equals the internally represented numbermultiplied30
by 10k; the scale factor is applied to the external decimal value and then this is converted using the31
input/output rounding mode.32

• On input, with F, E, EN, ES, EX, D, and G editing, the scale factor has no effect if there is an exponent33
in the ϐield.34

• On output, with F output editing, the effect is that the externally represented number equals the in‑35
ternally representednumbermultipliedby10k; the internal value is convertedusing the input/output36
rounding mode and then the scale factor is applied to the converted decimal value.37

• On output, with E and D editing, the effect is that the signiϐicand (R715) part of the quantity to be38
produced is multiplied by 10k and the exponent is reduced by k.39

312 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• On output, with G editing, the effect is suspended unless the magnitude of the datum to be edited is1
outside the range that permits the use of F editing. If the use of E editing is required, the scale factor2
has the same effect as with E output editing.3

• On output, with EN, ES, and EX editing, the scale factor has no effect.4

13.8.7 BN and BZ editing5

1 The BN and BZ edit descriptors temporarily change (12.5.2) the blank interpretation mode for the con‑6
nection. The edit descriptors BN and BZ set the blank interpretation mode corresponding to the BLANK=7
speciϐier (12.5.6.6, 12.6.2.6) values NULL and ZERO, respectively.8

2 The blank interpretation mode controls the interpretation of nonleading blanks in numeric input ϐields.9
Such blank characters are interpreted as zeros when the blank interpretation mode has the value ZERO;10
they are ignored when the blank interpretation mode has the value NULL. The effect of ignoring blanks is11
to treat the input ϐield as if blanks had been removed, the remaining portion of the ϐield right justiϐied, and12
the blanks replaced as leading blanks. However, a ϐield containing only blanks has the value zero.13

3 The blank interpretation mode affects only numeric editing (13.7.2) and generalized numeric editing14
(13.7.5.2) on input. It has no effect on output.15

13.8.8 RU, RD, RZ, RN, RC, and RP editing16

1 The round edit descriptors temporarily change (12.5.2) the connection’s input/output rounding mode17
(12.5.6.17, 12.6.2.14, 13.7.2.3.8). The roundedit descriptorsRU,RD,RZ,RN,RC, andRPset the input/output18
rounding mode corresponding to the ROUND= speciϐier values UP, DOWN, ZERO, NEAREST, COMPATIBLE,19
and PROCESSOR_DEFINED, respectively. The input/output rounding mode affects the conversion of real20
and complex values in formatted input/output. It affects only D, E, EN, ES, EX, F, and G editing.21

13.8.9 DC and DP editing22

1 The decimal edit descriptors temporarily change (12.5.2) the decimal edit mode for the connection. The23
edit descriptors DC and DP set the decimal edit mode corresponding to the DECIMAL= speciϐier (12.5.6.7,24
12.6.2.7, 13.6) values COMMA and POINT, respectively.25

2 The decimal edit mode controls the representation of the decimal symbol (13.6) during conversion of real26
and complex values in formatted input/output. The decimal edit mode affects only D, E, EN, ES, EX, F, and27
G editing.28

13.9 Character string edit descriptors29

1 A character string edit descriptor shall not be used on input.30

2 The character string edit descriptor causes characters to bewritten from the enclosed characters of the edit31
descriptor itself, including blanks. For a character string edit descriptor, thewidth of the ϐield is the number32
of characters between the delimiting characters. Within the ϐield, two consecutive delimiting characters are33
counted as a single character.34

NOTE
A delimiter for a character string edit descriptor is either an apostrophe or quote.

J3/25‑007 313

J3/25‑007 WD 1539‑1 2024‑12‑29

13.10 List‑directed formatting1

13.10.1 Purpose of list‑directed formatting2

1 List‑directed input/output allows data editing according to the type of the effective item instead of by a3
format speciϐication. It also allows data to be free‑ϐield, that is, separated by commas (or semicolons) or4
blanks.5

13.10.2 Values and value separators6

1 The characters in one or more list‑directed records constitute a sequence of values and value separators.7
The end of a record has the same effect as a blank character, unless it is within a character constant. Any8
sequence of two or more consecutive blanks is treated as a single blank, unless it is within a character9
constant.10

2 Each value is either a null value, c, r*c, or r*, where c is a literal constant, optionally signed if integer or real,11
or an undelimited character constant and r is an unsigned, nonzero, integer literal constant. Neither c nor12
r shall have kind type parameters speciϐied. The constant c is interpreted as though it had the same kind13
type parameter as the corresponding effective item. The r*c form is equivalent to r successive appearances14
of the constant c, and the r* form is equivalent to r successive appearances of the null value. Neither of15
these forms shall contain embedded blanks, except where permitted within the constant c.16

3 A value separator is17

• a comma optionally preceded by one or more contiguous blanks and optionally followed by one or18
more contiguous blanks, unless the decimal edit mode is COMMA, in which case a semicolon is used19
in place of the comma,20

• a slash optionally preceded by one ormore contiguous blanks and optionally followed by one ormore21
contiguous blanks, or22

• one or more contiguous blanks between two nonblank values or following the last nonblank value,23
where a nonblank value is a constant, an r*c form, or an r* form.24

NOTE 1
Although a slash encountered in an input record is referred to as a separator, it actually causes termination of list‑
directed and namelist input statements; it does not actually separate two values.

NOTE 2
If no effective item is speciϐied in a list‑directed input/output statement, one input record is skipped or one empty
output record is written.

13.10.3 List‑directed input25

13.10.3.1 List‑directed input forms26

1 Input formsacceptable to edit descriptors for a given type are acceptable for list‑directed formatting, except27
as noted below. If the form of the input value is not acceptable to the processor for the type of the next28
effective item in the list, an error condition occurs. Blanks are never used as zeros, and embedded blanks29
arenot permitted in constants, exceptwithin character constants and complex constants as speciϐiedbelow.30

2 For the r*c form of an input value, the constant c is interpreted as an undelimited character constant if the31
ϐirst effective item corresponding to this value is default, ASCII, or ISO 10646 character, there is a nonblank32

314 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

character immediately after r*, and that character is not an apostrophe or a quotation mark; otherwise, c1
is interpreted as a literal constant.2

NOTE 1
The end of a record has the effect of a blank, except when it appears within a character constant.

3 When thenext effective item is of type integer or of an enumtype, the value in the input record is interpreted3
as if an Iw edit descriptor with a suitable value of wwere used.4

4 When the next effective item is of type real, the input form is that of a numeric input ϐield. A numeric input5
ϐield is a ϐield suitable for F editing (13.7.2.3.2) that is assumed to have no fractional digits unless a decimal6
symbol appears within the ϐield.7

5 When the next effective item is of type complex, the input form consists of a left parenthesis followed by an8
orderedpair of numeric input ϐields separatedby a comma (if the decimal editmode is POINT) or semicolon9
(if the decimal edit mode is COMMA), and followed by a right parenthesis. The ϐirst numeric input ϐield is10
the real part of the complex constant and the second is the imaginary part. Each of the numeric input ϐields11
may be preceded or followed by any number of blanks and ends of records. The end of a record may occur12
after the real part or before the imaginary part.13

6 When the next effective item is of type logical, the input form shall not include value separators among the14
optional characters permitted for L editing.15

7 When the next effective item is of type character, the input form consists of a possibly delimited sequence16
of zero ormore rep‑chars whose kind type parameter is implied by the kind of the effective item. Character17
sequences may be continued from the end of one record to the beginning of the next record, but the end of18
record shall not occur between a doubled apostrophe in an apostrophe‑delimited character sequence, nor19
between a doubled quote in a quote‑delimited character sequence. The end of the record does not cause20
a blank or any other character to become part of the character sequence. The character sequence may be21
continued on as many records as needed. The characters blank, comma, semicolon, and slash may appear22
in default, ASCII, or ISO 10646 character sequences.23

8 If the next effective item is default, ASCII, or ISO 10646 character and24

• the character sequence does not contain value separators,25
• the character sequence does not cross a record boundary,26
• the ϐirst nonblank character is not a quotation mark or an apostrophe,27
• the leading characters are not digits followed by an asterisk, and28
• the character sequence contains at least one character,29

the delimiting apostrophes or quotationmarks are not required. If the delimiters are omitted, the character30
sequence is terminated by the ϐirst blank, comma (if the decimal edit mode is POINT), semicolon (if the31
decimal editmode is COMMA), slash, or end of record; in this case apostrophes and quotationmarkswithin32
the datum are not to be doubled.33

9 Let len be the current length of the next effective item, and letw be the length of the character sequence. If34
len is less than or equal tow, the leftmost len characters of the sequence are transmitted to the next effective35
item. If len is greater than w, the sequence is transmitted to the leftmost w characters of the next effective36
item and the remaining len−w characters of the next effective item are ϐilled with blanks.37

J3/25‑007 315

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2
An allocatable, deferred‑length character effective item does not have its allocation status or allocated length
changed as a result of list‑directed input.

13.10.3.2 Null values1

1 A null value is speciϐied by2

• the r* form,3
• no characters between consecutive value separators, or4
• no characters before the ϐirst value separator in the ϐirst record read by each execution of a list‑5
directed input statement.6

NOTE 1
The end of a record following any other value separator, with or without separating blanks, does not specify a null
value in list‑directed input.

2 A null value has no effect on the deϐinition status of the next effective item. A null value shall not be used7
for either the real or imaginary part of a complex constant, but a single null value may represent an entire8
complex constant.9

3 A slash encountered as a value separator during execution of a list‑directed input statement causes ter‑10
mination of execution of that input statement after the transference of the previous value. Any characters11
remaining in the current record are ignored. If there are additional effective items, the effect is as if null val‑12
ues had been supplied for them. Any do‑variable in the input list becomes deϐined as if enough null values13
had been supplied for any remaining effective items.14

NOTE 2
All blanks encountered during list‑directed input are considered to be part of some value separator except for

• blanks embedded in a character sequence,
• embedded blanks surrounding the real or imaginary part of a complex constant, and
• leading blanks in the ϐirst record readby each execution of a list‑directed input statement, unless immediately
followed by a slash or comma.

NOTE 3
List‑directed input example:

INTEGER I; REAL X (8); CHARACTER (11) P; COMPLEX Z; LOGICAL G
…
READ *, I, X, P, Z, G

The input data records are:
12345,12345,,2*1.5,4*
ISN'T_BOB'S,(123,0),.TEXAS$

The results are:

316 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 3 (cont.)
Variable Value
I 12345
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) – X (8) unchanged
P ISN’T_BOB’S
Z (123.0,0.0)
G true

13.10.4 List‑directed output1

1 The form of the values produced is the same as that required for input, except as noted otherwise. With the2
exception of adjacent undelimited character sequences, the values are separated by one or more blanks or3
by a comma, or a semicolon if the decimal edit mode is COMMA, optionally preceded by one ormore blanks4
and optionally followed by one ormore blanks. Two undelimited character sequences are considered adja‑5
cent when bothwerewritten using list‑directed input/output, no intervening data transfer or ϐile position‑6
ing operations on that unit occurred, and both were written either by a single data transfer statement, or7
during the execution of a parent data transfer statement along with its child data transfer statements. The8
form of the values produced by deϐined output (12.6.4.8) is determined by the deϐined output procedure;9
this form need not be compatible with list‑directed input.10

2 The processor may begin new records as necessary, but the end of record shall not occur within a constant11
except as speciϐied for complex constants and character sequences. The processor shall not insert blanks12
within character sequences or within constants, except as speciϐied for complex constants.13

3 Logical output values are T for the value true and F for the value false.14

4 Integer output constants are produced with the effect of an Iw edit descriptor.15

5 Real constants are producedwith the effect of either an F edit descriptor or an E edit descriptor, depending16
on themagnitude x of the value and a range 10d1 ≤ x < 10d2 , where d1 and d2 are processor‑dependent in‑17
tegers. If the magnitude x is within this range or is zero, the constant is produced using 0PFw.d; otherwise,18
1PEw.d Ee is used.19

6 For numeric output, reasonable processor‑dependent values ofw, d, and e are used for each of the numeric20
constants output.21

7 Complex constants are enclosed in parentheses with a separator between the real and imaginary parts,22
each produced as deϐined above for real constants. The separator is a comma if the decimal edit mode is23
POINT; it is a semicolon if the decimal editmode is COMMA. The end of a record shall not occur between the24
separator and the imaginary part unless the entire constant is as long as, or longer than, an entire record.25
The only embedded blanks permitted within a complex constant are between the separator and the end of26
a record and one blank at the beginning of the next record.27

8 Character sequences produced when the delimiter mode has a value of NONE28

• are not delimited by apostrophes or quotation marks,29
• are not separated from each other by value separators,30

J3/25‑007 317

J3/25‑007 WD 1539‑1 2024‑12‑29

• have each internal apostrophe or quotation mark represented externally by one apostrophe or quo‑1
tation mark, and2

• have a blank character inserted by the processor at the beginning of any record that begins with the3
continuation of a character sequence from the preceding record.4

9 Character sequences produced when the delimiter mode has a value of QUOTE are delimited by quotes,5
are preceded and followed by a value separator, and have each internal quote represented on the external6
medium by two contiguous quotes.7

10 Character sequences producedwhen the delimitermode has a value of APOSTROPHE are delimited by apo‑8
strophes, are preceded and followed by a value separator, and have each internal apostrophe represented9
on the external medium by two contiguous apostrophes.10

11 If two or more successive values in an output record have identical values, the processor has the option of11
producing a repeated constant of the form r*c instead of the sequence of identical values.12

12 Slashes, as value separators, and null values are not produced as output by list‑directed formatting.13

13 Except for new records created by explicit formattingwithin a deϐined output procedure or by continuation14
of delimited character sequences, each output record begins with a blank character.15

NOTE
The length of the output records is not speciϐied and is processor dependent.

13.11 Namelist formatting16

13.11.1 Purpose of namelist formatting17

1 Namelist input/output allows data editing with name‑value subsequences. This facilitates documentation18
of input and output ϐiles and more ϐlexibility on input.19

13.11.2 Name‑value subsequences20

1 The characters in one ormore namelist records constitute a sequence of name‑value subsequences, each of21
which consists of an object designator followed by an equals and followed by one ormore values and value22
separators. The equalsmay optionally be preceded or followed by one ormore contiguous blanks. The end23
of a record has the same effect as a blank character, unless it is within a character constant. Any sequence24
of two or more consecutive blanks is treated as a single blank, unless it is within a character constant.25

2 Each object designator shall begin with a name from the namelist‑group‑object‑list (8.9) and shall follow26
the syntax of designator (R901). It shall not contain a vector subscript or an image‑selector and shall not27
designate a zero‑sized array, a zero‑sized array section, or a zero‑length character string. Each subscript,28
stride, and substring range expression shall be an optionally signed integer literal constant with no kind29
type parameter speciϐied. If a section subscript list appears, the number of section subscripts shall be equal30
to the rank of the object. If the namelist group object is of derived type, the designator in the input record31
may be either the name of the variable or the designator of one of its components, indicated by qualifying32
the variable name with the appropriate component name. Successive qualiϐications may be applied as ap‑33
propriate to the shape and type of the variable represented. Each designatormay be preceded and followed34
by one or more optional blanks but shall not contain embedded blanks.35

318 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3 A value separator for namelist formatting is the same as for list‑directed formatting (13.10.2), or one or1
more contiguous blanks between a nonblank value and the following object designator or namelist com‑2
ment (13.11.3.6).3

13.11.3 Namelist input4

13.11.3.1 Overall syntax5

1 Input for a namelist input statement consists of6

(1) optional blanks and namelist comments,7
(2) the character& followed immediately by thenamelist‑group‑name as speciϐied in theNAMELIST8

statement,9
(3) one or more blanks,10
(4) a sequence of zero or more name‑value subsequences separated by value separators, and11
(5) a slash to terminate the namelist input.12

NOTE
A slash encountered in a namelist input record causes the input statement to terminate. A slash cannot be used to
separate two values in a namelist input statement.

2 The order of the name‑value subsequences in the input records need not match the order of the namelist‑13
group‑object‑list. The input records need not specify all objects in the namelist‑group‑object‑list. Theymay14
specify a part of an object more than once.15

3 A group name or object name is without regard to case.16

13.11.3.2 Namelist input processing17

1 The name‑value subsequences are evaluated serially, in left‑to‑right order. A namelist group object desig‑18
nator may appear in more than one name‑value subsequence. The deϐinition status of an object that is not19
a subobject of a designator in any name‑value subsequence remains unchanged.20

2 When the designator in the input record represents an array variable or a variable of derived type, the effect21
is as if the variable represented were expanded into a sequence of scalar list items (effective items), in the22
same way that formatted input/output list items are expanded (12.6.3). The number of values following23
the equals shall not exceed the number of effective items, butmay be less; in the latter case, the effect is as if24
sufϐicient null values hadbeen appended tomatch any remaining effective items. Except as noted elsewhere25
in this subclause, if an input value is not acceptable to the processor for the type of the corresponding26
effective item, an error condition occurs.27

NOTE
For example, if the designator in the input record designates an integer array of size 100, at most 100 values, each
of which is either a digit string or a null value, can follow the equals; these values would then be assigned to the
elements of the array in array element order.

3 A slash encountered as a value separator during the execution of a namelist input statement causes termin‑28
ation of execution of that input statement after transference of the previous value. If there are additional29
items in the namelist group object being transferred, the effect is as if null values had been supplied for30
them.31

J3/25‑007 319

J3/25‑007 WD 1539‑1 2024‑12‑29

4 Successive namelist records are read by namelist input until a slash is encountered; the remainder of the1
record is ignored.2

5 A namelist comment may appear after any value separator except a slash (which terminates namelist in‑3
put). A namelist comment is also permitted to start in the ϐirst nonblank position of an input record except4
within a character literal constant.5

13.11.3.3 Namelist input values6

1 Each value is either a null value (13.11.3.4), c, r*c, or r*, where c is a literal constant, optionally signed if7
integer or real, and r is an unsigned, nonzero, integer literal constant. A kind type parameter shall not be8
speciϐied for c or r. The constant c is interpreted as though it had the same kind type parameter as the9
corresponding effective item. The r*c form is equivalent to r successive appearances of the constant c, and10
the r* form is equivalent to r successive null values. Neither of these forms shall contain embedded blanks,11
except where permitted within the constant c.12

2 The datum c (13.11) is any input value acceptable to format speciϐications for a given type, except for re‑13
strictions on the form of input values speciϐied in this subclause. The form of a real or complex value is14
dependent on the decimal edit mode in effect (13.6). The form of an input value shall be acceptable for the15
type of the corresponding effective item. The number and forms of the input values that may follow the16
equals in a name‑value subsequence depend on the shape and type of the object represented by the name17
in the input record. When the name in the input record is that of a scalar variable of an intrinsic type, the18
equals shall not be followed bymore than one value. Blanks are never used as zeros, and embedded blanks19
are not permitted in constants exceptwithin character constants and complex constants as speciϐied in this20
subclause.21

3 When the next effective item is of type real, the input form of the input value is that of a numeric input ϐield.22
A numeric input ϐield is a ϐield suitable for F editing (13.7.2.3.2) that is assumed to have no fractional digits23
unless a decimal symbol appears within the ϐield.24

4 When the next effective item is of type complex, the input form of the input value consists of a left paren‑25
thesis followed by an ordered pair of numeric input ϐields separated by a comma (if the decimal edit mode26
is POINT) or a semicolon (if the decimal edit mode is COMMA), and followed by a right parenthesis. The27
ϐirst numeric input ϐield is the real part of the complex constant and the second ϐield is the imaginary part.28
Each of the numeric input ϐieldsmay be preceded or followed by any number of blanks and ends of records.29
The end of a record may occur between the real part and the comma or semicolon, or between the comma30
or semicolon and the imaginary part.31

5 When the next effective item is of type logical, the input form of the input value shall not include equals or32
value separators among the optional characters permitted for L editing (13.7.3).33

6 When thenext effective item is of type integer or of an enumtype, the value in the input record is interpreted34
as if an Iw edit descriptor with a suitable value of wwere used.35

7 When the next effective item is of type character, the input form consists of a sequence of zero or more rep‑36
chars whose kind type parameter is implied by the kind of that effective item, delimited by apostrophes or37
quotes. Such a sequence may be continued from the end of one record to the beginning of the next record,38
but the end of record shall not occur between a doubled apostrophe in an apostrophe‑delimited sequence,39
nor between a doubled quote in a quote‑delimited sequence. The end of the record does not cause a blank40
or any other character to become part of the sequence. The sequencemay be continued on asmany records41
as needed. The characters blank, comma, semicolon, and slash may appear in such character sequences.42

320 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
The delimiters in the input form for a namelist input item of type character avoid the ambiguity that could arise
between undelimited character sequences and object names. The value of the DELIM= speciϐier, if any, in the OPEN
statement for an external ϐile is ignored during namelist input (12.5.6.8).

8 Let len be the length of the next effective item, and letw be the length of the character sequence. If len is less1
than or equal tow, the leftmost len characters of the sequence are transmitted to the next effective item. If2
len is greater thanw, the constant is transmitted to the leftmostw characters of the next effective item and3
the remaining len−w characters of the next effective item are ϐilled with blanks. The effect is as though the4
sequence were assigned to the next effective item in an intrinsic assignment statement (10.2.1.3).5

13.11.3.4 Null values6

1 A null value is speciϐied by7

• the r* form,8
• blanks between two consecutive nonblank value separators following an equals,9
• a value separator that is the ϐirst nonblank character following an equals, or10
• two consecutive nonblank value separators.11

2 A null value has no effect on the deϐinition status of the corresponding effective item. If the effective item is12
deϐined, it retains its previous value; if it is undeϐined, it remains undeϐined. A null value shall not be used13
as either the real or imaginary part of a complex constant, but a single null value may represent an entire14
complex constant.15

NOTE
The end of a record following a value separator, with or without intervening blanks, does not specify a null value in
namelist input.

13.11.3.5 Blanks16

1 All blanks in a namelist input record are considered to be part of some value separator except for17

• blanks embedded in a character constant,18
• embedded blanks surrounding the real or imaginary part of a complex constant,19
• leading blanks following the equals unless followed immediately by a slash or comma, or a semicolon20
if the decimal edit mode is COMMA, and21

• blanks between a name and the following equals.22

13.11.3.6 Namelist comments23

1 Except within a character literal constant, a “!” character after a value separator or in the ϐirst nonblank24
position of a namelist input record initiates a comment. The comment extends to the end of the record and25
may contain any graphic character in the processor‑dependent character set. The comment is ignored. A26
slashwithin the namelist comment does not terminate execution of the namelist input statement. Namelist27
comments are not allowed in stream input because comments depend on record structure.28

NOTE
Namelist input example:

J3/25‑007 321

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
INTEGER I; REAL X (8); CHARACTER (11) P; COMPLEX Z; LOGICAL G
NAMELIST / TODAY / G, I, P, Z, X
READ (*, NML = TODAY)

The input data records are:
&TODAY I = 12345, X(1) = 12345, X(3:4) = 2*1.5, I=6, ! This is a comment.
P = ''ISN'T_BOB'S'', Z = (123,0)/

The results stored are:
Variable Value
I 6
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) – X (8) unchanged
P ISN’T_BOB’S
Z (123.0,0.0)
G unchanged

13.11.4 Namelist output1

13.11.4.1 Form of namelist output2

1 The form of the output produced by intrinsic namelist output shall be suitable for input, except for char‑3
acter output. The names in the output are in upper case. With the exception of adjacent undelimited char‑4
acter values, the values are separated by one or more blanks or by a comma, or a semicolon if the decimal5
edit mode is COMMA, optionally preceded by one or more blanks and optionally followed by one or more6
blanks. The form of the output produced by deϐined output (12.6.4.8) is determined by the deϐined output7
procedure; this form need not be compatible with namelist input.8

2 Namelist output shall not include namelist comments.9

3 The processor may begin new records as necessary. However, except for complex constants and character10
values, the end of a record shall not occur within a constant, character value, or name, and blanks shall not11
appear within a constant, character value, or name.12

NOTE
The length of the output records is not speciϐied exactly and is processor dependent.

13.11.4.2 Namelist output editing13

1 Values in namelist output records are edited as for list‑directed output (13.10.4).14

NOTE
Namelist output records produced with a DELIM= speciϐier with a value of NONE and which contain a character
sequence might not be acceptable as namelist input records.

13.11.4.3 Namelist output records15

1 If two or more successive values for the same namelist‑group‑object in an output record produced have16
identical values, the processor has the option of producing a repeated constant of the form r*c instead of17
the sequence of identical values.18

322 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 The name of each namelist‑group‑object is placed in the output record followed by an equals and a list of1
values of that namelist‑group‑object.2

3 An ampersand character followed immediately by a namelist‑group‑name is placed at the start of the ϐirst3
output record to indicate which particular group of data objects is being output. A slash is placed in the4
output record to indicate the end of the namelist formatting.5

4 A null value is not produced by namelist formatting.6

5 Except for new records created by explicit formattingwithin a deϐined output procedure or by continuation7
of delimited character sequences, each output record begins with a blank character.8

J3/25‑007 323

J3/25‑007 WD 1539‑1 2024‑12‑29

14 Program units1

14.1 Main program2

1 A Fortran main program is a program unit that does not contain a SUBROUTINE, FUNCTION, MODULE,3
SUBMODULE, or BLOCK DATA statement as its ϐirst statement.4

R1401 main‑program is [program‑stmt]5
[speciϔication‑part]6
[execution‑part]7
[internal‑subprogram‑part]8
end‑program‑stmt9

R1402 program‑stmt is PROGRAM program‑name10

R1403 end‑program‑stmt is END [PROGRAM [program‑name]]11

C1401 The program‑name shall not be included in an end‑program‑stmt unless the main‑program has12
the optional program‑stmt. If included, it shall be identical to the program‑name speciϐied in the13
program‑stmt.14

NOTE 1
The program name is global to the program (19.2). For explanatory information about uses for the program name,
see C.10.1.

NOTE 2
An example of a main program is:

PROGRAM ANALYZE
REAL A, B, C (10,10) ! Specification part
CALL FIND ! Execution part

CONTAINS
SUBROUTINE FIND ! Internal subprogram
…
END SUBROUTINE FIND

END PROGRAM ANALYZE

2 Themain programmay be deϐined bymeans other than Fortran; in that case, the program shall not contain15
amain‑program program unit.16

3 A reference to a Fortranmain‑program shall not appear in any programunit in the program, including itself.17

14.2 Modules18

14.2.1 Module syntax and semantics19

1 A module contains declarations, speciϐications, and deϐinitions. Public identiϐiers of module entities are20
accessible to other program units by use association as speciϐied in 14.2.2. A module that is provided as21
an inherent part of the processor is an intrinsic module. A nonintrinsic module is deϐined by a module22
program unit or a means other than Fortran.23

324 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 Procedures and types deϐined in an intrinsic module are not themselves intrinsic.1

R1404 module is module‑stmt2
[speciϔication‑part]3
[module‑subprogram‑part]4
end‑module‑stmt5

R1405 module‑stmt is MODULEmodule‑name6

R1406 end‑module‑stmt is END [MODULE [module‑name]]7

R1407 module‑subprogram‑part is contains‑stmt8
[module‑subprogram] ...9

R1408 module‑subprogram is function‑subprogram10
or subroutine‑subprogram11
or separate‑module‑subprogram12

C1402 (R1404) If themodule‑name is speciϐied in the end‑module‑stmt, it shall be identical to themodule‑13
name speciϐied in themodule‑stmt.14

C1403 (R1404) A module speciϔication‑part shall not contain a stmt‑function‑stmt, an entry‑stmt, or a15
format‑stmt.116

3 If a procedure declared in the scoping unit of a module has an implicit interface, it shall be given the EX‑17
TERNAL attribute in that scoping unit; if it is a function, its type and type parameters shall be explicitly18
declared in a type declaration statement in that scoping unit.19

4 If an intrinsic procedure is declared in the scoping unit of amodule, it shall explicitly be given the INTRINSIC20
attribute in that scoping unit or be used as an intrinsic procedure in that scoping unit.21

NOTE 1
The module name is global to the program (19.2).

NOTE 2
Although statement function deϐinitions, ENTRY statements, and FORMAT statements cannot appear in the spe‑
ciϐication part of a module, they can appear in the speciϐication part of a module subprogram in the module.

NOTE 3
For a discussion of the impact of modules on dependent compilation, see C.10.2.

NOTE 4
For examples of the use of modules, see C.10.3.

14.2.2 The USE statement and use association22

1 The USE statement speciϐies use association. A USE statement is a reference to the module it speciϐies. At23
the time a USE statement is processed, the public portions of the speciϐied module shall be available. A24
module shall not reference itself, either directly or indirectly.25

1ENTRY statements and statement function statements are obsolescent.

J3/25‑007 325

J3/25‑007 WD 1539‑1 2024‑12‑29

2 The USE statement provides the means by which a scoping unit accesses named data objects, nonintrinsic1
types, procedures, abstract interfaces, generic identiϐiers, and namelist groups in a module. The entities2
in the scoping unit are use associated with the entities in the module. The accessed entities have the at‑3
tributes speciϐied in the module, except that an accessed entity may have a different accessibility attribute,4
it may have the ASYNCHRONOUS attribute even if the associated module entity does not, and if it is not5
a coarray it may have the VOLATILE attribute even if the associated module entity does not. The entities6
made accessible are identiϐied by the names or generic identiϐiers used to identify them in the module.7
By default, the accessed entities are identiϐied by the same identiϐiers in the scoping unit containing the8
USE statement, but it is possible to specify that different identiϐiers are used. A use‑associated variable is9
considered to have been previously declared; any other use‑associated entity is considered to have been10
previously deϐined.11

NOTE 1
The accessibility ofmodule entities can be controlled by accessibility attributes (7.5.2.2, 8.5.2), and theONLY option
of the USE statement. Deϐinability of module entities can be controlled by the PROTECTED attribute (8.5.15).

R1409 use‑stmt is USE [[,module‑nature] ::] module‑name [, rename‑list]12
or USE [[,module‑nature] ::] module‑name ,13

ONLY : [only‑list]14

R1410 module‑nature is INTRINSIC15
or NON_INTRINSIC16

R1411 rename is local‑name => use‑name17
or OPERATOR (local‑deϔined‑operator) =>18

OPERATOR (use‑deϔined‑operator)19

R1412 only is generic‑spec20
or only‑use‑name21
or rename22

R1413 only‑use‑name is use‑name23

C1404 (R1409) Ifmodule‑nature is INTRINSIC,module‑name shall be the name of an intrinsic module.24

C1405 (R1409) If module‑nature is NON_INTRINSIC, module‑name shall be the name of a nonintrinsic25
module.26

C1406 (R1409) A scoping unit shall not directly reference an intrinsic module and a nonintrinsic module27
of the same name.28

C1407 (R1411) OPERATOR (use‑deϔined‑operator) shall not identify a type‑bound generic interface.29

C1408 (R1412) The generic‑spec shall not identify a type‑bound generic interface.30

NOTE 2
Constraints C1407 and C1408 do not prevent accessing a generic‑spec that is declared by an interface block, even if
a type‑bound generic interface has the same generic‑spec.

C1409 Each generic‑spec, use‑name, and use‑deϔined‑operator in a USE statement shall be a public identi‑31
ϐier of the module.32

C1410 An only‑use‑name shall be a nongeneric name.33

326 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

R1414 local‑deϔined‑operator is deϔined‑unary‑op1
or deϔined‑binary‑op2

R1415 use‑deϔined‑operator is deϔined‑unary‑op3
or deϔined‑binary‑op4

3 A use‑stmt without a module‑nature provides access either to an intrinsic or to a nonintrinsic module. If5
the module‑name is the name of both an intrinsic and a nonintrinsic module, the nonintrinsic module is6
accessed.7

4 The USE statement without the ONLY option provides access to all public entities in the speciϐied module.8

5 A USE statement with the ONLY option provides access only to those entities that appear as generic‑specs,9
use‑names, or use‑deϔined‑operators in the only‑list.10

6 More than one USE statement for a givenmodulemay appear in a speciϐication part. If one of the USE state‑11
ments is without an ONLY option, all public entities in the module are accessible. If all the USE statements12
have ONLY options, only those entities in one or more of the only‑lists are accessible.13

7 An accessible entity in the referenced module is associated with one or more accessed entities, each with14
its own identiϐier. These identiϐiers are15

• the identiϐier of the entity in the referenced module if that identiϐier appears as an only‑use‑name or16
as the deϔined‑operator of a generic‑spec in any only for that module,17

• each of the local‑names or local‑deϔined‑operators that the entity is given in any rename for that mod‑18
ule, and19

• the identiϐier of the entity in the referenced module if that identiϐier does not appear as a use‑name20
or use‑deϔined‑operator in any rename for that module.21

8 An ultimate entity is a module entity that is not accessed by use association. An accessed entity shall not22
be associated with two or more ultimate entities unless its identiϐier is not used, or the ultimate entities23
are generic interfaces. Generic interfaces are handled as described in 15.4.3.4.24

NOTE 3
There is no prohibition against a use‑name or use‑deϔined‑operator appearing multiple times in one USE statement
or in multiple USE statements involving the samemodule. As a result, it is possible for one use‑associated entity to
be accessible by more than one local identiϐier.

9 The local identiϐier of an entity made accessible by a USE statement shall not appear in any other nonex‑25
ecutable statement that would cause any attribute (8.5) of the entity to be speciϐied in the scoping unit that26
contains the USE statement, except that it may appear in a PUBLIC or PRIVATE statement in the scoping27
unit of a module and it may be given the ASYNCHRONOUS or VOLATILE attribute.28

10 An entity in a scoping unit that is accessed by use association through more than one use path, has the29
ASYNCHRONOUS or VOLATILE attribute in any of those use paths, and is not given that attribute in that30
scoping unit, shall have that attribute in all use paths.31

NOTE 4
The constraints in 8.10.2, 8.10.3, and 8.9 prohibit the local‑name from appearing as a common‑block‑object in a
COMMON statement, an equivalence‑object in an EQUIVALENCE statement, or a namelist‑group‑name in a NAMEL‑
IST statement, respectively. There is no prohibition against the local‑name appearing as a common‑block‑name or
a namelist‑group‑object.2

J3/25‑007 327

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 5
For a discussion of the impact of the ONLY option and renaming on dependent compilation, see C.10.2.2.

NOTE 6
Examples:

USE STATS_LIB
provides access to all public entities in the module STATS_LIB.

USE MATH_LIB; USE STATS_LIB, SPROD => PROD
provides access to all public identiϐiers in both MATH_LIB and STATS_LIB. If MATH_LIB contains an entity named
PROD, it can be accessed by that name, while the entity PROD of STATS_LIB can be accessed by the name SPROD.

USE STATS_LIB, ONLY: YPROD; USE STATS_LIB, ONLY : PROD
provides access to YPROD and PROD in STAT_LIB.

USE STATS_LIB, ONLY : YPROD; USE STATS_LIB
provides access to all public identiϐiers in STAT_LIB.

14.2.3 Submodules1

1 A submodule is a program unit that extends a module or another submodule. The program unit that it2
extends is its host, and is speciϐied by the parent‑identiϔier in the submodule‑stmt.3

2 A module or submodule is an ancestor program unit of all of its descendants, which are its submodules4
and their descendants. The submodule identiϐier is the ordered pair whose ϐirst element is the ancestor5
module name and whose second element is the submodule name; the submodule name by itself is not a6
local or global identiϐier.7

NOTE
Amodule and its submodules stand in a tree‑like relationship one to another, with themodule at the root. Therefore,
a submodule has exactly one ancestor module and can have one or more ancestor submodules.

3 A submodule may provide implementations for separate module procedures (15.6.2.5), each of which is8
declared (15.4.3.2) within that submodule or one of its ancestors, and declarations and deϐinitions of other9
entities that are accessible by host association in its descendants.10

R1416 submodule is submodule‑stmt11
[speciϔication‑part]12
[module‑subprogram‑part]13
end‑submodule‑stmt14

R1417 submodule‑stmt is SUBMODULE (parent‑identiϔier) submodule‑name15

R1418 parent‑identiϔier is ancestor‑module‑name [: parent‑submodule‑name]16

R1419 end‑submodule‑stmt is END [SUBMODULE [submodule‑name]]17

C1411 A submodule speciϔication‑part shall not contain a format‑stmt, entry‑stmt, or stmt‑function‑stmt.318

C1412 (R1418) The ancestor‑module‑name shall be the name of a nonintrinsic module that declares a19
separate module procedure; the parent‑submodule‑name shall be the name of a descendant of that20

3ENTRY and statement function statements are obsolescent.

328 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

module.1

C1413 (R1416) If a submodule‑name appears in the end‑submodule‑stmt, it shall be identical to the one in2
the submodule‑stmt.3

14.3 Block data program units4

1 A block data program unit is used to provide initial values for data objects in named common blocks.5

2 Block data program units are obsolescent.6

R1420 block‑data is block‑data‑stmt7
[speciϔication‑part]8
end‑block‑data‑stmt9

R1421 block‑data‑stmt is BLOCK DATA [block‑data‑name]10

R1422 end‑block‑data‑stmt is END [BLOCK DATA [block‑data‑name]]11

C1414 (R1420) The block‑data‑name shall be included in the end‑block‑data‑stmt only if it was provided12
in the block‑data‑stmt and, if included, shall be identical to the block‑data‑name in the block‑data‑13
stmt.14

C1415 A block‑data speciϔication‑part shall contain only derived‑type deϐinitions and ASYNCHRONOUS,15
BIND, COMMON,DATA,DIMENSION, EQUIVALENCE, IMPLICIT, INTRINSIC, PARAMETER, POINTER,16
SAVE, TARGET, USE, VOLATILE, and type declaration statements.17

C1416 (R1420) A type declaration statement in a block‑data speciϔication‑part shall not contain ALLOC‑18
ATABLE, EXTERNAL, or BIND attribute speciϐiers.19

3 If an object in a named common block is initially deϐined, all storage units in the common block storage20
sequence shall be speciϐied even if they are not all initially deϐined. More than one named common block21
may have objects initially deϐined in a single block data program unit.22

4 An object that is initially deϐined in a block data program unit shall be in a named common block.23

5 The same named common block shall not be speciϐied in more than one block data program unit in a pro‑24
gram.25

6 There shall not be more than one unnamed block data program unit in a program.26

J3/25‑007 329

J3/25‑007 WD 1539‑1 2024‑12‑29

15 Procedures1

15.1 Concepts2

1 The concept of a procedure was introduced in 5.2.3. This clause contains a complete description of pro‑3
cedures. The actions speciϐied by a procedure are performed when the procedure is invoked by execution4
of a reference to it.5

2 The sequence of actions encapsulated by a procedure has access to entities in the procedure reference6
by way of argument association (15.5.2). A name that appears as a dummy‑arg‑name in the SUBROUTINE,7
FUNCTION, or ENTRY1 statement in the declaration of a procedure (R1539) is a dummy argument. Dummy8
arguments are also speciϐied for intrinsic procedures and procedures in intrinsic modules in Clauses 16,9
17, and 18.10

15.2 Procedure classiϐications11

15.2.1 Procedure classiϐication by reference12

1 The deϐinition of a procedure speciϐies it to be a function or a subroutine. A reference to a function either13
appears explicitly as a primarywithin an expression, or is implied by a deϐined operation (10.1.6)within an14
expression. A reference to a subroutine is a CALL statement, a deϐined assignment statement (10.2.1.4), the15
appearance of an object processedbydeϐined input/output (12.6.4.8) in an input/output list, or ϐinalization16
(7.5.6).17

2 A procedure is classiϐied as elemental if it is a procedure that can be referenced elementally (15.9).18

15.2.2 Procedure classiϐication by means of deϐinition19

15.2.2.1 Intrinsic procedures20

1 A procedure that is provided as an inherent part of the processor is an intrinsic procedure.21

15.2.2.2 External, internal, and module procedures22

1 An external procedure is a procedure that is deϐined by an external subprogram or by a means other than23
Fortran.24

2 An internal procedure is a procedure that is deϐined by an internal subprogram. Internal subprograms25
may appear in the main program, in an external subprogram, or in a module subprogram. Internal sub‑26
programs shall not appear in other internal subprograms. Internal subprograms are the same as external27
subprograms except that the name of the internal procedure is not a global identiϐier, an internal subpro‑28
gram shall not contain an ENTRY statement, and the internal subprogram has access to host entities by29
host association.30

3 Amodule procedure is a procedure that is deϐined by amodule subprogram, or a speciϐic procedure provid‑31
ed by an intrinsic module.32

1The ENTRY statement is obsolescent.

330 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 A subprogram deϐines a procedure for the SUBROUTINE or FUNCTION statement. If the subprogram has1
one or more ENTRY statements, it also deϐines a procedure for each of them.2

15.2.2.3 Dummy procedures3

1 A dummy argument that is speciϐied to be a procedure or appears as the procedure designator in a pro‑4
cedure reference is a dummy procedure. A dummy procedure with the POINTER attribute is a dummy5
procedure pointer.6

15.2.2.4 Procedure pointers7

1 A procedure pointer is a procedure that has the POINTER attribute. A procedure pointer can be pointer8
associated with an external, internal, intrinsic, or module procedure.9

15.2.2.5 Statement functions (obsolescent)10

1 A function that is deϐined by a single statement is a statement function (15.6.4).11

15.3 Characteristics12

15.3.1 Characteristics of procedures13

1 The characteristics of a procedure are the classiϐication of theprocedure as a function or subroutine, wheth‑14
er it is pure, whether it is simple, whether it is elemental, whether it has the BIND attribute, the character‑15
istics of its dummy arguments, and the characteristics of its function result if it is a function.16

15.3.2 Characteristics of dummy arguments17

15.3.2.1 General18

1 Each dummy argument has the characteristic that it is a dummy data object, a dummy procedure, or an19
asterisk (alternate return indicator)2.20

15.3.2.2 Characteristics of dummy data objects21

1 The characteristics of a dummy data object are its declared type, its type parameters, its shape (unless it is22
assumed‑rank), its corank, its codimensions, its intent (8.5.10, 8.6.9), whether it is optional (8.5.12, 8.6.10),23
whether it is allocatable (8.5.3), whether it has the ASYNCHRONOUS (8.5.4), CONTIGUOUS (8.5.7), TARGET24
(8.5.18, 8.6.15), VALUE (8.5.19), or VOLATILE (8.5.20) attributes, whether it is polymorphic, and whether25
it is a pointer (8.5.14, 8.6.12). If a type parameter of an object or a bound of an array is not a constant26
expression, the exact dependence on the entities in the expression is a characteristic. If a rank, shape, size,27
type, or type parameter is assumed or deferred, it is a characteristic.28

15.3.2.3 Characteristics of dummy procedures29

1 The characteristics of a dummy procedure are the explicitness of its interface (15.4.2), its characteristics30
as a procedure if the interface is explicit, whether it is a pointer, and whether it is optional (8.5.12, 8.6.10).31

2Alternate return indicators are obsolescent.

J3/25‑007 331

J3/25‑007 WD 1539‑1 2024‑12‑29

15.3.2.4 Characteristics of asterisk dummy arguments1

1 A dummy argument that is an asterisk has no other characteristic.2

15.3.3 Characteristics of function results3

1 The characteristics of a function result are its declared type, type parameters, rank, whether it is poly‑4
morphic, whether it is allocatable, whether it is a pointer, whether it has the CONTIGUOUS attribute, and5
whether it is a procedure pointer. If a function result is an array that is not allocatable or a pointer, its6
shape is a characteristic. If a type parameter of a function result or a bound of a function result array is7
not a constant expression, the exact dependence on the entities in the expression is a characteristic. If type8
parameters of a function result are deferred, which parameters are deferred is a characteristic. Whether9
the length of a character function result is assumed is a characteristic.310

15.4 Procedure interface11

15.4.1 Interface and abstract interface12

1 The interface of a procedure determines the forms of reference through which it can be invoked. The pro‑13
cedure’s interface consists of its name, binding label, generic identiϐiers, characteristics, and the names of14
its dummy arguments. The characteristics and binding label of a procedure are ϐixed, but the remainder of15
the interface may differ in differing contexts, except that for a separate module procedure body (15.6.2.5),16
the dummy argument names and whether it has the NON_RECURSIVE attribute shall be the same as in its17
corresponding module procedure interface body (15.4.3.2).18

2 An abstract interface is a set of procedure characteristics with the dummy argument names.19

15.4.2 Implicit and explicit interfaces20

15.4.2.1 Interfaces and scopes21

1 The interface of a procedure is either explicit or implicit. It is explicit if it is22
• an internal procedure, module procedure, or intrinsic procedure,23
• a subroutine, or a function with a separate result name, within the scoping unit that deϐines it, or24
• a procedure declared by a procedure declaration statement that speciϐies an explicit interface, or by25
an interface body.26

Otherwise, the interface of the identiϐier is implicit. The interface of a statement function is always impli‑27
cit.428

NOTE
For example, the subroutine LLS of C.10.3.4 has an explicit interface.

15.4.2.2 Explicit interface29

1 Within the scope of a procedure identiϐier, the procedure shall have an explicit interface if it is not a30
statement function and31

(1) a reference to the procedure appears with an argument keyword (15.5.2),32
3Assumed‑length character functions are obsolescent.
4Statement functions are obsolescent.

332 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

(2) the procedure is used in a context that requires it to be pure (15.7),1
(3) the procedure is used in a context that requires it to be simple (15.8),2
(4) the procedure has a dummy argument that3

(a) has the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER, TARGET, VALUE, or4
VOLATILE attribute,5

(b) is an assumed‑shape array,6
(c) is assumed‑rank,7
(d) is a coarray,8
(e) is of a parameterized derived type, or9
(f) is polymorphic,10

(5) the procedure has a result that11

(a) is an array,12
(b) is a pointer or is allocatable, or13
(c) has a nonassumed type parameter value that is not a constant expression,14

(6) the procedure is elemental, or15
(7) the procedure has the BIND attribute.16

15.4.3 Speciϐication of the procedure interface17

15.4.3.1 General18

1 The interface for an internal, external, module, or dummy procedure is speciϐied by a FUNCTION, SUB‑19
ROUTINE, or ENTRY5 statement and by speciϐication statements for the dummy arguments and the result20
of a function. These statementsmay appear in the procedure deϐinition, in an interface body, or both, except21
that the ENTRY statement shall not appear in an interface body.22

NOTE
An interface body cannot be used to describe the interface of an internal procedure, a module procedure that is
not a separate module procedure, or an intrinsic procedure because the interfaces of such procedures are already
explicit. However, the name of a procedure can appear in a PROCEDURE statement in an interface block (15.4.3.2).

15.4.3.2 Interface block23

R1501 interface‑block is interface‑stmt24
[interface‑speciϔication] ...25
end‑interface‑stmt26

R1502 interface‑speciϔication is interface‑body27
or procedure‑stmt28

R1503 interface‑stmt is INTERFACE [generic‑spec]29
or ABSTRACT INTERFACE30

R1504 end‑interface‑stmt is END INTERFACE [generic‑spec]31

R1505 interface‑body is function‑stmt32
[speciϔication‑part]33

5The ENTRY statement is obsolescent.

J3/25‑007 333

J3/25‑007 WD 1539‑1 2024‑12‑29

end‑function‑stmt1
or subroutine‑stmt2

[speciϔication‑part]3
end‑subroutine‑stmt4

R1506 procedure‑stmt is [MODULE] PROCEDURE [::] speciϔic‑procedure‑list5

R1507 speciϔic‑procedure is procedure‑name6

R1508 generic‑spec is generic‑name7
or OPERATOR (deϔined‑operator)8
or ASSIGNMENT (=)9
or deϔined‑io‑generic‑spec10

R1509 deϔined‑io‑generic‑spec is READ (FORMATTED)11
or READ (UNFORMATTED)12
or WRITE (FORMATTED)13
or WRITE (UNFORMATTED)14

C1501 (R1501) An interface‑block in a subprogram shall not contain an interface‑body for a procedure15
deϐined by that subprogram.16

C1502 (R1501) If the end‑interface‑stmt includes a generic‑spec, the interface‑stmt shall specify the same17
generic‑spec, except that if one generic‑spec has a deϔined‑operator that is .LT., .LE., .GT., .GE., .EQ., or18
.NE., the other generic‑specmay have a deϔined‑operator that is the corresponding operator<,<=,19
>,>=, ==, or /=.20

C1503 (R1503) If the interface‑stmt is ABSTRACT INTERFACE, then the function‑name in the function‑stmt21
or the subroutine‑name in the subroutine‑stmt shall not be the same as a keyword that speciϐies an22
intrinsic type.23

C1504 (R1502) A procedure‑stmt is allowed only in an interface block that has a generic‑spec.24

C1505 (R1505)An interface‑body of a pure procedure shall specify the intents of all dummyarguments ex‑25
cept alternate return indicators6, dummy procedures, and arguments with the POINTER or VALUE26
attribute.27

C1506 (R1505) An interface‑body shall not contain a data‑stmt, format‑stmt, entry‑stmt, or stmt‑function‑28
stmt7.29

C1507 (R1506) If MODULE appears in a procedure‑stmt, each procedure‑name in that statement shall de‑30
note a module procedure.31

C1508 (R1507) A procedure‑name shall denote a nonintrinsic procedure that has an explicit interface.32

C1509 (R1501) An interface‑speciϔication in a generic interface block shall not specify a procedure that33
was speciϐied previously in any accessible interface with the same generic identiϐier.34

1 An external ormodule subprogram speciϐies a speciϐic interface for each procedure deϐined in that subpro‑35
gram.36

2 An interface block introduced by ABSTRACT INTERFACE is an abstract interface block. An interface body in37
6Alternate return indicators are obsolescent.
7The ENTRY statement and statement functions are obsolescent.

334 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

an abstract interface block speciϐies an abstract interface. An interface block with a generic speciϐication is1
a generic interface block. An interface blockwith neither ABSTRACT nor a generic speciϐication is a speciϐic2
interface block.3

3 The name of the entity declared by an interface body is the function‑name in the function‑stmt or the4
subroutine‑name in the subroutine‑stmt that begins the interface body.5

4 Amodule procedure interface body is an interfacebodywhose initial statement contains the keywordMOD‑6
ULE. It speciϐies the interface for a separate module procedure (15.6.2.5). A separate module procedure is7
accessible by use association if and only if its interface body is declared in the speciϐication part of amodule8
and is public. If a corresponding (15.6.2.5) separate module procedure is not deϐined, the interface may be9
used to specify an explicit speciϐic interface but the procedure shall not be used in any other way.10

5 An interface body in a generic or speciϐic interface block speciϐies the EXTERNAL attribute and an explicit11
speciϐic interface for an external procedure, dummy procedure, or procedure pointer. If the name of the12
declared procedure is that of a dummy argument in the subprogram containing the interface body, the13
procedure is a dummy procedure. If the procedure has the POINTER attribute, it is a procedure pointer. If14
it is not a dummy procedure or procedure pointer, it is an external procedure.15

6 An interface body speciϐies all of the characteristics of the explicit speciϐic interface or abstract interface.16
The speciϐication part of an interface body may specify attributes or deϐine values for data entities that do17
not determine characteristics of the procedure. Such speciϐications have no effect.18

7 If an explicit speciϐic interface for an external procedure is speciϐied by an interface body or a procedure19
declaration statement (15.4.3.6), the characteristics shall be consistent with those speciϐied in the proced‑20
ure deϐinition, except that the interface may specify a procedure that is not pure even if the procedure is21
deϐined to be pure, and the interface may specify a procedure that is not simple even if the procedure is22
deϐined to be simple. An interface for a procedure deϐined by an ENTRY statement may be speciϐied by us‑23
ing the entry name as the procedure name in the interface body.8 If an external procedure does not exist in24
the program, an interface body for it may be used to specify an explicit speciϐic interface but the procedure25
shall not be used in any other way. A procedure shall not have more than one explicit speciϐic interface in a26
given scoping unit, except that if the interface is accessed by use association, there may be more than one27
local name for the procedure. If a procedure is accessed by use association, each access shall be to the same28
procedure declaration or deϐinition.29

NOTE 1
The dummyargument names in an interface body can be different from the corresponding dummyargument names
in the procedure deϐinition because the name of a dummy argument is not a characteristic.

NOTE 2
An example of a speciϐic interface block is:

INTERFACE
SUBROUTINE EXT1 (X, Y, Z)

REAL, DIMENSION (100, 100) :: X, Y, Z
END SUBROUTINE EXT1
SUBROUTINE EXT2 (X, Z)

REAL X
COMPLEX (KIND = 4) Z (2000)

END SUBROUTINE EXT2
FUNCTION EXT3 (P, Q)

LOGICAL EXT3
INTEGER P (1000)
LOGICAL Q (1000)

8The ENTRY statement is obsolescent.

J3/25‑007 335

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2 (cont.)
END FUNCTION EXT3

END INTERFACE
This interface block speciϐies explicit interfaces for the three external procedures EXT1, EXT2, and EXT3. Invoca‑
tions of these procedures can use argument keywords (15.5.2); for example:

PRINT *, EXT3 (Q = P_MASK (N+1 : N+1000), P = ACTUAL_P)

15.4.3.3 GENERIC statement1

1 A GENERIC statement speciϐies a generic identiϐier for one ormore speciϐic procedures, in the sameway as2
a generic interface block that does not contain interface bodies.3

R1510 generic‑stmt is GENERIC [, access‑spec] :: generic‑spec => speciϔic‑procedure‑list4

C1510 (R1510) A speciϔic‑procedure in a GENERIC statement shall not specify a procedure that was spe‑5
ciϐied previously in any accessible interface with the same generic identiϐier.6

2 If access‑spec appears, it speciϐies the accessibility (8.5.2) of generic‑spec.7

15.4.3.4 Generic interfaces8

15.4.3.4.1 Generic identiϐiers9

1 A generic interface block speciϐies a generic interface for each of the procedures in the interface block. The10
PROCEDURE statement lists nonintrinsic procedures with explicit interfaces that have this generic inter‑11
face. A GENERIC statement speciϐies a generic interface for each of the procedures named in its speciϔic‑12
procedure‑list. A generic interface is always explicit.13

2 The generic‑spec in an interface‑stmt is a generic identiϐier for all the procedures in the interface block. The14
generic‑spec in a GENERIC statement is a generic identiϐier for all of the procedures named in its speciϔic‑15
procedure‑list. The rules specifying how any two procedures with the same generic identiϐier shall differ16
are given in 15.4.3.4.5. They ensure that any generic invocation applies to at most one speciϐic procedure.17
If a speciϐic procedure in a generic interface has a function dummy argument, that argument shall have its18
type and type parameters explicitly declared in the speciϐic interface.19

3 A generic name is a generic identiϐier that refers to all of the procedure names in the generic interface. A20
generic name may be the same as any one of the procedure names in the generic interface, or the same as21
any accessible generic name.22

4 A generic namemay be the same as a derived‑type name, in which case all of the procedures in the generic23
interface shall be functions.24

5 An interface‑stmt having a deϔined‑io‑generic‑spec is an interface for a deϐined input/output procedure25
(12.6.4.8).26

NOTE 1
An example of a generic procedure interface is:

INTERFACE SWITCH
SUBROUTINE INT_SWITCH (X, Y)

INTEGER, INTENT (INOUT) :: X, Y
END SUBROUTINE INT_SWITCH
SUBROUTINE REAL_SWITCH (X, Y)

REAL, INTENT (INOUT) :: X, Y
END SUBROUTINE REAL_SWITCH

336 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 1 (cont.)
SUBROUTINE COMPLEX_SWITCH (X, Y)

COMPLEX, INTENT (INOUT) :: X, Y
END SUBROUTINE COMPLEX_SWITCH

END INTERFACE SWITCH
Any of these three subroutines (INT_SWITCH, REAL_SWITCH, COMPLEX_SWITCH) can be referenced with the gen‑
eric name SWITCH, as well as by its speciϐic name. For example, a reference to INT_SWITCH could take the form:

CALL SWITCH (MAX_VAL, LOC_VAL) ! MAX_VAL and LOC_VAL are of type INTEGER

NOTE 2
A type‑bound‑generic‑stmt within a derived‑type deϐinition (7.5.5) speciϐies a generic identiϐier for a set of type‑
bound procedures.

15.4.3.4.2 Deϐined operations1

1 If OPERATOR is speciϐied in a generic speciϐication, all of the procedures speciϐied in the generic interface2
shall be functions that can be referenced as deϐined operations (10.1.6, 15.5). In the case of functions of two3
arguments, inϐix binary operator notation is implied. In the case of functions of one argument, preϐix oper‑4
ator notation is implied. OPERATOR shall not be speciϐied for functions with no arguments or for functions5
withmore than two arguments. The dummy arguments shall be nonoptional dummydata objects and shall6
have the INTENT (IN) or VALUE attribute. The function result shall not have assumed character length9.7
If the operator is an intrinsic‑operator (R608), the number of dummy arguments shall be consistent with8
the intrinsic uses of that operator, and the types, kind type parameters, or ranks of the dummy arguments9
shall differ from those required for the intrinsic operation (10.1.5), treating a CLASS (*) dummy argument10
as not differing in type or kind.11

2 A deϐined operation is treated as a reference to the function. For a unary deϐined operation, the operand12
corresponds to the function’s dummy argument; for a binary operation, the left‑hand operand corresponds13
to the ϐirst dummy argument of the function and the right‑hand operand corresponds to the second dummy14
argument. All restrictions and constraints that apply to actual arguments in a reference to the function also15
apply to the corresponding operands in the expression as if they were used as actual arguments.16

3 A given deϐined operator may, as with generic names, apply to more than one function, in which case it is17
generic in exact analogy to generic procedure names. For intrinsic operator symbols, the generic proper‑18
ties include the intrinsic operations they represent. Because both forms of each relational operator have19
the same interpretation (10.1.6.2), extending one form (such as <=) has the effect of deϐining both forms20
(<= and .LE.).21

NOTE
An example of the use of the OPERATOR generic speciϐication is:

INTERFACE OPERATOR (*)
FUNCTION BOOLEAN_AND (B1, B2)

LOGICAL, INTENT (IN) :: B1 (:), B2 (SIZE (B1))
LOGICAL :: BOOLEAN_AND (SIZE (B1))

END FUNCTION BOOLEAN_AND
END INTERFACE OPERATOR (*)

This allows, for example
SENSOR (1:N) * ACTION (1:N)

as an alternative to the function reference
9Assumed character length functions are obsolescent.

J3/25‑007 337

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
BOOLEAN_AND (SENSOR (1:N), ACTION (1:N)) ! SENSOR and ACTION are of type LOGICAL

15.4.3.4.3 Deϐined assignments1

1 If ASSIGNMENT (=) is speciϐied in a generic speciϐication, all the procedures in the generic interface shall2
be subroutines that can be referenced as deϐined assignments (10.2.1.4, 10.2.1.5). Deϐined assignmentmay,3
as with generic names, apply to more than one subroutine, in which case it is generic in exact analogy to4
generic procedure names.5

2 Each of these subroutines shall have exactly two dummy arguments. The dummy arguments shall be non‑6
optional dummy data objects. The ϐirst argument shall have INTENT (OUT) or INTENT (INOUT) and the7
second argument shall have the INTENT (IN) or VALUE attribute. Either the second argument shall be an8
array whose rank differs from that of the ϐirst argument, the declared types and kind type parameters of9
the arguments shall not conform as speciϐied in Table 10.8, or the ϐirst argument shall be of derived type. A10
deϐined assignment is treated as a reference to the subroutine, with the left‑hand side as the ϐirst argument11
and the right‑hand side enclosed in parentheses as the second argument. All restrictions and constraints12
that apply to actual arguments in a reference to the subroutine also apply to the left‑hand‑side and to the13
right‑hand‑side enclosed in parentheses as if they were used as actual arguments. The ASSIGNMENT gen‑14
eric speciϐication speciϐies that assignment is extended or redeϐined.15

NOTE 1
An example of the use of the ASSIGNMENT generic speciϐication is:

INTERFACE ASSIGNMENT (=)
SUBROUTINE LOGICAL_TO_NUMERIC (N, B)

INTEGER, INTENT (OUT) :: N
LOGICAL, INTENT (IN) :: B

END SUBROUTINE LOGICAL_TO_NUMERIC
SUBROUTINE CHAR_TO_STRING (S, C)

USE STRING_MODULE ! Contains definition of type STRING
TYPE (STRING), INTENT (OUT) :: S ! A variable-length string
CHARACTER (*), INTENT (IN) :: C

END SUBROUTINE CHAR_TO_STRING
END INTERFACE ASSIGNMENT (=)

Example assignments are:
KOUNT = SENSOR (J) ! CALL LOGICAL_TO_NUMERIC (KOUNT, (SENSOR (J)))
NOTE = '89AB' ! CALL CHAR_TO_STRING (NOTE, ('89AB'))

NOTE 2
A procedure which has a generic identiϐier of ASSIGNMENT (=) and whose second dummy argument has the AL‑
LOCATABLE or POINTER attribute cannot be directly invoked by deϐined assignment. This is because the actual
argument associated with that dummy argument is the right‑hand side of the assignment enclosed in parentheses,
which makes the actual argument an expression that does not have the ALLOCATABLE, POINTER, or TARGET at‑
tribute.

15.4.3.4.4 Deϐined input/output procedure interfaces16

1 All of the procedures speciϐied in an interface block for a deϐined input/output procedure shall be sub‑17
routines that have interfaces as described in 12.6.4.8.2.18

338 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

15.4.3.4.5 Restrictions on generic declarations1

1 This subclause contains the rules that shall be satisϐied by every pair of speciϐic procedures that have the2
same generic identiϐier within the scope of the identiϐier. If a generic procedure is accessed from amodule,3
the rules apply to all the speciϐic versions even if some of them are inaccessible by their speciϐic names.4

NOTE 1
In most scoping units, the possible sources of procedures with a particular generic identiϐier are the accessible
generic identiϐiers speciϐied by generic interface blocks or GENERIC statements and the generic bindings other than
names for the accessible objects in that scoping unit. In a type deϐinition, they are the generic bindings, including
those from a parent type.

2 A dummy argument is type, kind, and rank compatible, or TKR compatible, with another dummy argument5
if the ϐirst is type compatible with the second, the kind type parameters of the ϐirst have the same values as6
the corresponding kind type parameters of the second, and both have the same rank or either is assumed‑7
rank.8

3 Two dummy arguments are distinguishable if9

• one is a procedure and the other is a data object,10
• they are both data objects or known to be functions, and neither is TKR compatible with the other,11
• one has the ALLOCATABLE attribute and the other has the POINTER attribute and not the INTENT12
(IN) attribute, or13

• one is a function with nonzero rank and the other is not known to be a function.14

C1511 Within the scope of a generic operator, if twoprocedureswith that identiϐier have the samenumber15
of arguments, one shall have a dummy argument that corresponds by position in the argument list16
to a dummy argument of the other that is distinguishable from it.17

C1512 Within the scope of the generic ASSIGNMENT (=) identiϐier, if two procedures have that identiϐier,18
one shall have a dummy argument that corresponds by position in the argument list to a dummy19
argument of the other that is distinguishable from it.20

C1513 Within the scope of a deϔined‑io‑generic‑spec, if two procedures have that generic identiϐier, their21
dtv arguments (12.6.4.8.2) shall be distinguishable.22

C1514 Within the scope of a generic name, each pair of procedures identiϐied by that name shall both be23
subroutines or both be functions, and24

(1) there is a non‑passed‑object dummy data object in one or the other of them such that25

(a) the number of dummy data objects in one that are nonoptional, are not passed‑object,26
and with which that dummy data object is TKR compatible, possibly including that27
dummy data object itself,28

exceeds29

(b) the number of non‑passed‑object dummy data objects, both optional and nonoptional,30
in the other that are not distinguishable from that dummy data object,31

(2) the number of nonoptional dummyprocedures in one of them exceeds the number of dummy32
procedures in the other,33

(3) both have passed‑object dummy arguments and the passed‑object dummy arguments are34
distinguishable, or35

(4) at least one of them shall have both36

J3/25‑007 339

J3/25‑007 WD 1539‑1 2024‑12‑29

(a) a nonoptional non‑passed‑object dummy argument at an effective position such that1
either the other procedure has no dummy argument at that effective position or the2
dummy argument at that position is distinguishable from it, and3

(b) a nonoptional non‑passed‑object dummy argument whose name is such that either the4
other procedure has nodummyargumentwith that nameor the dummyargumentwith5
that name is distinguishable from it,6

and the dummy argument that disambiguates by position shall either be the same as or occur7
earlier in the argument list than the one that disambiguates by name.8

4 The effective position of a dummy argument is its position in the argument list after any passed‑object9
dummy argument has been removed.10

5 Within the scope of a generic name that is the same as the generic name of an intrinsic procedure, the11
intrinsic procedure is not accessible by its generic name if the procedures in the interface and the intrinsic12
procedure are not all functions or not all subroutines. If a generic invocation is consistent with both a13
speciϐic procedure from an interface and an accessible intrinsic procedure, it is the speciϐic procedure from14
the interface that is referenced.15

NOTE 2
An extensive explanation of the application of these rules is in C.11.6.

15.4.3.5 EXTERNAL statement16

1 An EXTERNAL statement speciϐies the EXTERNAL attribute (8.5.9) for a list of names.17

R1511 external‑stmt is EXTERNAL [::] external‑name‑list18

2 The appearance of the name of a block data program unit in an EXTERNAL statement conϐirms that the19
block data program unit is a part of the program.20

NOTE 1
For explanatory information on potential portability problems with external procedures, see C.11.1.

NOTE 2
An example of an EXTERNAL statement is:

EXTERNAL FOCUS

15.4.3.6 Procedure declaration statement21

1 A procedure declaration statement declares procedure pointers, dummy procedures, and external proced‑22
ures. It speciϐies the EXTERNAL attribute (8.5.9) for all entities in the proc‑decl‑list.23

R1512 procedure‑declaration‑stmtis PROCEDURE ([proc‑interface])24

[[, proc‑attr‑spec] ... ::] proc‑decl‑list25

R1513 proc‑interface is interface‑name26
or declaration‑type‑spec27

R1514 proc‑attr‑spec is access‑spec28
or proc‑language‑binding‑spec29

340 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

or INTENT (intent‑spec)1
or OPTIONAL2
or POINTER3
or PROTECTED4
or SAVE5

R1515 proc‑decl is procedure‑entity‑name [=> proc‑pointer‑init]6

R1516 interface‑name is name7

R1517 proc‑pointer‑init is null‑init8
or initial‑proc‑target9

R1518 initial‑proc‑target is procedure‑name10

C1515 (R1516) The name shall be the name of an abstract interface or of a procedure that has an explicit11
interface. If name is declared by a procedure‑declaration‑stmt it shall be previously declared. If12
name denotes an intrinsic procedure it shall be one that is listed in Table 16.2.1013

C1516 (R1516) The name shall not be the same as a keyword that speciϐies an intrinsic type.14

C1517 (R1512) If a proc‑interface describes an elemental procedure, each procedure‑entity‑name shall15
specify an external procedure.16

C1518 (R1515) If => appears in proc‑decl, the procedure entity shall have the POINTER attribute.17

C1519 (R1518) The procedure‑name shall be the name of a nonelemental external or module procedure,18
or a speciϐic intrinsic function listed in Table 16.211.19

C1520 (R1512) If proc‑language‑binding‑spec with NAME= is speciϐied, then proc‑decl‑list shall contain20
exactly one proc‑decl, which shall neither have the POINTER attribute nor be a dummy procedure.21

C1521 (R1512) If proc‑language‑binding‑spec is speciϐied, the proc‑interface shall appear, it shall be an22
interface‑name, and interface‑name shall be declared with a proc‑language‑binding‑spec.23

2 If proc‑interface appears and consists of interface‑name, it speciϐies an explicit speciϐic interface (15.4.3.2)24
for the declared procedure entities. The abstract interface (15.4) is that speciϐied by the interface named25
by interface‑name. The interface speciϐied by interface‑name shall not depend on any characteristic of a26
procedure identiϐied by a procedure‑entity‑name in the proc‑decl‑list of the same procedure declaration27
statement.28

3 If proc‑interface appears and consists of declaration‑type‑spec, it speciϐies that the declared procedure en‑29
tities are functions having implicit interfaces and the speciϐied result type. If a type is speciϐied for an30
external function, its function deϐinition (15.6.2.2) shall specify the same result type and type parameters.31

4 If proc‑interface does not appear, the procedure declaration statement does not specify whether the de‑32
clared procedure entities are subroutines or functions.33

5 If a proc‑attr‑spec other than a proc‑language‑binding‑spec appears, it speciϐies that the declared procedure34
entities have that attribute. These attributes are described in 8.5. If a proc‑language‑binding‑spec with35
NAME=appears, it speciϐies abinding label or its absence, as described in18.10.2. Aproc‑language‑binding‑36
specwithout NAME= is allowed, but is redundant with the proc‑interface required by C1521.37

10Speciϐic intrinsic procedure names are obsolescent.
11Speciϐic intrinsic function names are obsolescent.

J3/25‑007 341

J3/25‑007 WD 1539‑1 2024‑12‑29

6 If => appears in a proc‑decl in a procedure‑declaration‑stmt it speciϐies the initial association status of the1
corresponding procedure entity, and implies the SAVE attribute, which may be conϐirmed by explicit spe‑2
ciϐication. If => null‑init appears, the procedure entity is initially disassociated. If => initial‑proc‑target3
appears, the procedure entity is initially associated with the target.4

7 If procedure‑entity‑name has an explicit interface, its characteristics shall be the same as initial‑proc‑target5
except that initial‑proc‑targetmaybepure even ifprocedure‑entity‑name is not pure, initial‑proc‑targetmay6
be simple even if procedure‑entity‑name is not simple, and initial‑proc‑targetmay be an elemental intrinsic7
procedure12.8

8 If the characteristics of procedure‑entity‑name or initial‑proc‑target are such that an explicit interface is9
required, both procedure‑entity‑name and initial‑proc‑target shall have an explicit interface.10

9 If procedure‑entity‑name has an implicit interface and is explicitly typed or referenced as a function, initial‑11
proc‑target shall be a function. If procedure‑entity‑name has an implicit interface and is referenced as a12
subroutine, initial‑proc‑target shall be a subroutine.13

10 If initial‑proc‑target and procedure‑entity‑name are functions, their results shall have the same character‑14
istics.15

NOTE
The following code illustrates procedure declaration statements. 10.2.2.5, NOTE 1 illustrates the use of the P and
BESSEL deϐined by this code.

ABSTRACT INTERFACE
FUNCTION REAL_FUNC (X)

REAL, INTENT (IN) :: X
REAL :: REAL_FUNC

END FUNCTION REAL_FUNC
END INTERFACE

INTERFACE
SUBROUTINE SUB (X)

REAL, INTENT (IN) :: X
END SUBROUTINE SUB

END INTERFACE

!-- Some external or dummy procedures with explicit interface.
PROCEDURE (REAL_FUNC) :: BESSEL, GFUN
PROCEDURE (SUB) :: PRINT_REAL
!-- Some procedure pointers with explicit interface,
!-- one initialized to NULL().
PROCEDURE (REAL_FUNC), POINTER :: P, R => NULL ()
PROCEDURE (REAL_FUNC), POINTER :: PTR_TO_GFUN
!-- A derived type with a procedure pointer component ...
TYPE STRUCT_TYPE

PROCEDURE (REAL_FUNC), POINTER, NOPASS :: COMPONENT
END TYPE STRUCT_TYPE
!-- ... and a variable of that type.
TYPE(STRUCT_TYPE) :: STRUCT
!-- An external or dummy function with implicit interface
PROCEDURE (REAL) :: PSI

15.4.3.7 INTRINSIC statement16

1 An INTRINSIC statement speciϐies the INTRINSIC attribute (8.5.11) for a list of names.17

R1519 intrinsic‑stmt is INTRINSIC [::] intrinsic‑procedure‑name‑list18

C1522 (R1519) Each intrinsic‑procedure‑name shall be the name of an intrinsic procedure.19
12Speciϐic intrinsic procedure names are obsolescent.

342 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

15.4.3.8 Implicit interface speciϐication1

1 If the interface of a function is implicit, the type and type parameters of the function result are speciϐied2
by an implicit or explicit type speciϐication of the function name. The type, type parameters, and shape3
of the dummy arguments of a procedure invoked from where the interface of the procedure is implicit4
shall be such that each actual argument is consistent with the characteristics of the corresponding dummy5
argument.6

15.5 Procedure reference7

15.5.1 Syntax of a procedure reference8

1 The form of a procedure reference is dependent on the interface of the procedure or procedure pointer, but9
is independent of the means by which the procedure is deϐined. The forms of procedure references are as10
follows.11

R1520 function‑reference is procedure‑designator ([actual‑arg‑spec‑list])12

C1523 (R1520) The procedure‑designator shall designate a function.13

C1524 (R1520) The actual‑arg‑spec‑list shall not contain an alt‑return‑spec.14

R1521 call‑stmt is CALL procedure‑designator [([actual‑arg‑spec‑list])]15

C1525 (R1521) The procedure‑designator shall designate a subroutine.16

R1522 procedure‑designator is procedure‑name17
or proc‑component‑ref18
or data‑ref % binding‑name19

C1526 (R1522) A procedure‑name shall be a generic name or the name of a procedure.20

C1527 (R1522) A binding‑name shall be a binding name (7.5.5) of the declared type of data‑ref .21

C1528 (R1522) A data‑ref shall not be a polymorphic subobject of a coindexed object.22

C1529 (R1522) If data‑ref is an array, the referenced type‑bound procedure shall have the PASS attribute.23

2 The data‑ref in a procedure‑designator shall not be an unallocated allocatable variable or a pointer that is24
not associated.25

3 Resolving references to type‑bound procedures is described in 15.5.6.26

4 A function may also be referenced as a deϐined operation (10.1.6). A subroutine may also be referenced as27
a deϐined assignment (10.2.1.4, 10.2.1.5), by deϐined input/output (12.6.4.8), or by ϐinalization (7.5.6).28

NOTE 1
When resolving type‑bound procedure references, constraints on the use of coindexed objects ensure that the coin‑
dexed object (on the remote image) has the same dynamic type as the corresponding object on the local image.
Thus a processor can resolve the type‑bound procedure using the coarray variable on its own image and pass the
coindexed object as the actual argument.

R1523 actual‑arg‑spec is [keyword =] actual‑arg29

R1524 actual‑arg is expr30

J3/25‑007 343

J3/25‑007 WD 1539‑1 2024‑12‑29

or variable1
or procedure‑name2
or proc‑component‑ref3
or conditional‑arg4
or alt‑return‑spec5

R1525 alt‑return‑spec is * label6

C1530 (R1523) The keyword = shall not appear if the interface of the procedure is implicit.7

C1531 (R1523) The keyword = shall not be omitted from an actual‑arg‑spec unless it has been omitted8
from each preceding actual‑arg‑spec in the argument list.9

C1532 (R1523) Each keyword shall be the name of a dummy argument in the explicit interface of the10
procedure.11

C1533 (R1524) A nonintrinsic elemental procedure shall not be used as an actual argument.12

C1534 (R1524) A procedure‑name shall be the name of an external, internal, module, or dummy proced‑13
ure, a speciϐic intrinsic function listed in Table 16.2, or a procedure pointer.14

C1535 An actual‑arg that is an expr shall not be a variable or a conditional‑arg.15

C1536 (R1525) The label shall be the statement label of a branch target statement that appears in the16
same inclusive scope as the call‑stmt.17

C1537 An actual argument that is a coindexed object shall not have a pointer ultimate component.18

R1526 conditional‑arg is (scalar‑logical‑expr ? consequent19
[: scalar‑logical‑expr ? consequent]... : consequent)20

R1527 consequent is consequent‑arg21
or .NIL.22

R1528 consequent‑arg is expr23
or variable24

C1538 Each consequent‑arg of a conditional‑arg shall have the same declared type, and kind type para‑25
meters.26

C1539 Either all consequent‑args in a conditional‑arg shall have the same rank, or be assumed‑rank.27

C1540 At least one consequent in a conditional‑arg shall be a consequent‑arg. If the corresponding dummy28
argument is not optional, .NIL. shall not appear.29

C1541 If its corresponding dummy argument is INTENT (OUT) or INTENT (INOUT), each consequent‑arg30
in a conditional‑arg shall be a variable.31

C1542 If its corresponding dummy argument is allocatable, a pointer, or a coarray, the attributes of each32
consequent‑arg in a conditional‑arg shall satisfy the requirements of that dummy argument.33

C1543 A consequent‑arg shall not be assumed‑rank unless its corresponding dummy argument is also34
assumed‑rank.35

C1544 A consequent‑arg that is an expr shall not be a variable.36

344 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C1545 In a reference to a generic procedure, each consequent‑arg in a conditional‑arg shall have the same1
corank, and if any consequent‑arg of a conditional‑arg has the ALLOCATABLE or POINTER attribute,2
each consequent‑arg shall have that attribute.3

NOTE 2
Examples of procedure reference using procedure pointers:

P => BESSEL
WRITE (*, *) P(2.5) !-- BESSEL(2.5)

S => PRINT_REAL
CALL S(3.14)

NOTE 3
An internal procedure cannot be invoked using a procedure pointer from either Fortran or C after the host instance
completes execution, because the pointer is then undeϐined. While the host instance is active, however, if an internal
procedurewas passed as an actual argument or is the target of a procedure pointer, it could be invoked fromoutside
of the host subprogram.

Assume there is a procedure with the following interface that calculates
∫ b

a
f(x) dx.

INTERFACE
FUNCTION INTEGRATE(F, A, B) RESULT(INTEGRAL) BIND(C)

USE ISO_C_BINDING
INTERFACE

FUNCTION F(X) BIND(C) ! Integrand
USE ISO_C_BINDING
REAL(C_FLOAT), VALUE :: X
REAL(C_FLOAT) :: F

END FUNCTION
END INTERFACE
REAL(C_FLOAT), VALUE :: A, B ! Bounds
REAL(C_FLOAT) :: INTEGRAL

END FUNCTION INTEGRATE
END INTERFACE

This procedure can be called from Fortran or C, and could be written in either Fortran or C. The argument F repres‑
enting the mathematical function f(x) can be written as an internal procedure; this internal procedure will have
access to any host instance local variables necessary to actually calculate f(x). For example:

REAL FUNCTION MY_INTEGRATION(N, A, B) RESULT(INTEGRAL)
! Integrate f(x)=x^n over [a,b]
USE ISO_C_BINDING
INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: A, B

INTEGRAL = INTEGRATE(MY_F, REAL (A, C_FLOAT), REAL (B, C_FLOAT))
! This will call the internal function MY_F to calculate f(x).
! The above interface of INTEGRATE needs to be explicit and available.

CONTAINS
REAL(C_FLOAT) FUNCTION MY_F(X) BIND(C) ! Integrand

REAL(C_FLOAT), VALUE :: X
MY_F = X**N ! N is taken from the host instance of MY_INTEGRATION.

END FUNCTION
END FUNCTION MY_INTEGRATION

The function INTEGRATE cannot retain a function pointer to MY_F and use it after INTEGRATE has ϐinished execu‑
tion, because the host instance of MY_F might no longer exist, making the pointer undeϐined. If such a pointer is
retained, then it can only be used to invoke MY_F during the execution of the instance of MY_INTEGRATION that
called INTEGRATE.

J3/25‑007 345

J3/25‑007 WD 1539‑1 2024‑12‑29

15.5.2 Actual arguments, dummy arguments, and argument association1

15.5.2.1 Argument correspondence2

1 In either a subroutine reference or a function reference, the actual argument list identiϐies the correspond‑3
ence between the actual arguments and the dummy arguments of the procedure. This correspondence can4
be established either by keyword or by position. If an argument keyword appears, the actual argument cor‑5
responds to the dummy argument whose name is the same as the argument keyword (using the dummy6
argument names from the interface accessible by the procedure reference). In the absence of an argument7
keyword, an actual argument corresponds to the dummy argument occupying the corresponding position8
in the reduced dummy argument list; that is, the ϐirst actual argument corresponds to the ϐirst dummy ar‑9
gument in the reduced list, the second actual argument corresponds to the second dummy argument in the10
reduced list, etc. The reduced dummy argument list is either the full dummy argument list or, if there is11
a passed‑object dummy argument (7.5.4.5), the dummy argument list with the passed‑object dummy ar‑12
gument omitted. Exactly one actual argument shall correspond to each nonoptional dummy argument. At13
most one actual argument shall correspond to each optional dummy argument. Each actual argument shall14
correspond to a dummy argument.15

NOTE
For example, the procedure deϐined by

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT)
INTERFACE

FUNCTION FUNCT (X)
REAL FUNCT, X

END FUNCTION FUNCT
END INTERFACE
REAL SOLUTION
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT
…

can be invoked with
CALL SOLVE (FUN, SOL, PRINT = 6)

provided its interface is explicit, and if the interface is speciϐied by an interface body, the name of the last argument
is PRINT.

15.5.2.2 The passed‑object dummy argument and argument correspondence16

1 In a reference to a type‑bound procedure, or a procedure pointer component, that has a passed‑object17
dummy argument (7.5.4.5), the data‑ref of the function‑reference or call‑stmt corresponds, as an actual18
argument, with the passed‑object dummy argument.19

15.5.2.3 Conditional argument correspondence20

1 If an actual‑arg is a conditional‑arg, each scalar‑logical‑expr is evaluated in order, until the value of a scalar‑21
logical‑expr is true, or there are no more scalar‑logical‑exprs. If the value of a scalar‑logical‑expr is true, its22
subsequent consequent is chosen; otherwise, the last consequent is chosen.23

2 If the chosen consequent is a consequent‑arg, its expr or variable is the actual argument for the corres‑24
ponding dummy argument, and if it is an expr, it is evaluated. If the chosen consequent is .NIL., the actual25
argument for that dummy argument is not present.26

3 Each consequent‑arg in a conditional‑arg shall satisfy any requirements of the dummy argument on de‑27
clared type, kind type parameters, attributes, and properties that do not depend on evaluation of the28
consequent‑arg or any contained expressions.29

346 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 The declared type, kind type parameters, and rank of a conditional‑arg are those of its consequent‑args. It1
has the ALLOCATABLE or POINTER attribute if and only if all of its consequent‑args have that attribute. It2
is polymorphic if and only if one or more of its consequent‑args is polymorphic. If all of its consequent‑args3
have the same corank, it has that corank; otherwise it has corank zero. It is simply contiguous if and only if4
all of its consequent‑args are simply contiguous.5

NOTE
An example of conditional arguments in a procedure reference is:

CALL sub ((x>0 ? x : y>0 ? y : z), &
(edge>0 ? edge : mode==3 ? 1.0 : .NIL.), &
some, other, arguments)

15.5.2.4 Argument association6

1 Except in references to intrinsic inquiry functions, a pointer actual argument that corresponds to a nonop‑7
tional nonpointer dummy argument shall be pointer associated with a target.8

2 If a nonpointer dummy argument without the VALUE attribute corresponds to a pointer actual argument9
that is pointer associated with a target,10

• if the dummy argument is polymorphic, it becomes argument associated with that target;11
• if the dummy argument is nonpolymorphic, it becomes argument associated with the declared type12
part of that target.13

3 If a present nonpointer dummy argument without the VALUE attribute corresponds to a nonpointer actual14
argument,15

• if the dummy argument is polymorphic, it becomes argument associated with that actual argument;16
• if the dummy argument is nonpolymorphic, it becomes argument associated with the declared type17
part of that actual argument.18

4 A present dummy argument with the VALUE attribute becomes argument associated with a deϐinable an‑19
onymous data object whose initial value is the value of the actual argument.20

5 A present pointer dummy argument that corresponds to a pointer actual argument becomes argument21
associated with that actual argument. A present pointer dummy argument that does not correspond to a22
pointer actual argument is not argument associated.23

6 The entity that is argument associated with a dummy argument is called its effective argument.24

7 The ultimate argument is the effective argument if the effective argument is not a dummy argument or a25
subobject of a dummy argument. If the effective argument is a dummy argument, the ultimate argument26
is the ultimate argument of that dummy argument. If the effective argument is a subobject of a dummy27
argument, the ultimate argument is the corresponding subobject of the ultimate argument of that dummy28
argument.29

NOTE 1
For the sequence of subroutine calls

INTEGER :: X(100)
CALL SUBA (X)
…
SUBROUTINE SUBA(A)
INTEGER :: A(:)
CALL SUBB (A(1:5), A(5:1:-1))

J3/25‑007 347

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1 (cont.)
…
SUBROUTINE SUBB(B, C)
INTEGER :: B(:), C(:)

the ultimate argument of B is X(1:5). The ultimate argument of C is X(5:1:‑1) and this is not the same object as the
ultimate argument of B.

NOTE 2
Fortran argument association is usually similar to call by reference and call by value‑result. If the VALUE attribute
is speciϐied, the effect is as if the actual argument were assigned to a temporary variable, and that variable were
then argument associated with the dummy argument. Subsequent changes to the value or deϐinition status of the
dummy argument do not affect the actual argument. The actual mechanism by which this happens is determined
by the processor.

15.5.2.5 Ordinary dummy variables1

1 The requirements in this subclause apply to actual arguments that correspond to nonallocatable non‑2
pointer dummy data objects.3

2 The dummy argument shall be type compatible with the actual argument. If the actual argument is a poly‑4
morphic coindexed object, the dummy argument shall not be polymorphic. If the actual argument is a5
polymorphic assumed‑size array, the dummy argument shall be polymorphic. If the actual argument is of a6
derived type that has type parameters, type‑bound procedures, or ϐinal subroutines, the dummy argument7
shall not be assumed‑type.8

3 The kind type parameter values of the actual argument shall agree with the corresponding ones of the9
dummy argument. The length type parameter values of a present actual argument shall agree with the10
corresponding ones of the dummy argument that are not assumed, except for the case of the character11
length parameter of an actual argument of type character with default kind or C character kind (18.2.2)12
associated with a dummy argument that is not assumed‑shape or assumed‑rank.13

4 If a present scalar dummy argument is of type character with default kind or C character kind, the length14
len of the dummy argument shall be less than or equal to the length of the actual argument. The dummy15
argument becomes associated with the leftmost len characters of the actual argument. If a present array16
dummy argument is of type character with default kind or C character kind and is not assumed‑shape or17
assumed‑rank, it becomes associatedwith the leftmost characters of the actual argument element sequence18
(15.5.2.12).19

5 The values of assumed type parameters of a dummy argument are assumed from the corresponding type20
parameters of its effective argument.21

6 If the actual argument is a coindexed object with an allocatable ultimate component, the dummy argument22
shall have the INTENT (IN) or the VALUE attribute.23

NOTE 1
If the actual argument is a coindexed object, a processor that uses distributed memory might create a copy on the
executing image of the actual argument, including copies of any allocated allocatable subobjects, and associate the
dummy argument with that copy. If necessary, on return from the procedure, the value of the copy would be copied
back to the actual argument.

7 Except in references to intrinsic inquiry functions, if the dummy argument is nonoptional and the actual24
argument is allocatable, the corresponding actual argument shall be allocated.25

8 If the dummy argument does not have the TARGET attribute, any pointers associated with the effective26

348 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

argument do not become associated with the corresponding dummy argument on invocation of the pro‑1
cedure. If such a dummy argument is used as an actual argument that corresponds to a dummy argument2
with the TARGET attribute, whether any pointers associated with the original effective argument become3
associated with the dummy argument with the TARGET attribute is processor dependent.4

9 If the dummy argument has the TARGET attribute, does not have the VALUE attribute, and either the effect‑5
ive argument is simply contiguous or the dummy argument is scalar, assumed‑rank, or assumed‑shape,6
and does not have the CONTIGUOUS attribute, and the effective argument has the TARGET attribute but is7
not a coindexed object or an array section with a vector subscript then8

• any pointers associatedwith the effective argument become associatedwith the corresponding dum‑9
my argument on invocation of the procedure, and10

• when execution of the procedure completes, any pointers that do not become undeϐined (19.5.2.5)11
and are associated with the dummy argument remain associated with the effective argument.12

10 If the dummy argument has the TARGET attribute and is an explicit‑shape array, an assumed‑shape array13
with the CONTIGUOUS attribute, an assumed‑rank object with the CONTIGUOUS attribute, or an assumed‑14
size array, and the effective argument has the TARGET attribute but is not simply contiguous and is not an15
array section with a vector subscript then16

• on invocation of the procedure, whether any pointers associatedwith the effective argument become17
associated with the corresponding dummy argument is processor dependent, and18

• when execution of the procedure completes, the pointer association status of any pointer that is19
pointer associated with the dummy argument is processor dependent.20

11 If the dummy argument has the TARGET attribute and the effective argument does not have the TARGET21
attribute or is an array section with a vector subscript, any pointers associated with the dummy argument22
become undeϐined when execution of the procedure completes.23

12 If the dummy argument has the TARGET attribute and the VALUE attribute, any pointers associated with24
the dummy argument become undeϐined when execution of the procedure completes.25

13 If the actual argument is a coindexed scalar, the corresponding dummy argument shall be scalar.26

14 If the actual argument is a noncoindexed scalar, the corresponding dummy argument shall be scalar unless27
• the actual argument is default character, of type character with the C character kind (18.2.2), or is an28
element or substring of an element of an array that is not an assumed‑shape, pointer, or polymorphic29
array,30

• the dummy argument has assumed‑rank, or31
• the dummy argument is an assumed‑type assumed‑size array.32

15 If the procedure is nonelemental and is referenced by a generic name or as a deϐined operator or deϐined33
assignment, the ranks of the actual arguments and corresponding dummy arguments shall agree.34

16 If a dummy argument is an assumed‑shape array, the rank of the actual argument shall be the same as the35
rank of the dummy argument, and the actual argument shall not be an assumed‑size array.36

17 An actual argument of any rank may correspond to an assumed‑rank dummy argument. The rank and37
extents of the dummy argument are the rank and extents of the corresponding actual argument. The lower38
bound of each dimension of the dummy argument is equal to one. The upper bound is equal to the extent,39
except for the last dimension when the actual argument is assumed‑size.40

J3/25‑007 349

J3/25‑007 WD 1539‑1 2024‑12‑29

18 Except when a procedure reference is elemental (15.9), each element of an array actual argument or of a1
sequence in a sequence association (15.5.2.12) is associated with the element of the dummy array that has2
the same position in array element order (9.5.3.3).3

NOTE 2
For default character sequence associations, the interpretation of element is provided in 15.5.2.12.

19 A scalar dummy argument of a nonelemental procedure shall correspond only to a scalar actual argument.4

20 If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument shall be deϐinable. If a5
dummyargument has INTENT (OUT), the effective argument becomesundeϐined at the time the association6
is established, except for direct components of an object of derived type for which default initialization has7
been speciϐied.8

21 If the procedure is nonelemental, the dummy argument does not have the VALUE attribute, and the actual9
argument is an array section having a vector subscript, the dummy argument is not deϐinable and shall not10
have the ASYNCHRONOUS, INTENT (OUT), INTENT (INOUT), or VOLATILE attributes.11

22 If the dummy argument has a coarray potential subobject component, the corresponding actual argument12
shall have the VOLATILE attribute if and only if the dummy argument has the VOLATILE attribute. If the13
dummy argument is an array with a coarray potential subobject component, the corresponding actual ar‑14
gument shall be simply contiguous or an element of a simply contiguous array.15

NOTE 3
Argument intent speciϐications serve several purposes. See 8.5.10, NOTE 4.

NOTE 4
For more explanatory information on targets as dummy arguments, see C.11.4.

C1546 An actual argument that is a coindexed object with the ASYNCHRONOUS or VOLATILE attribute16
shall not correspond to a dummy argument that has the ASYNCHRONOUS attribute, unless the17
dummy argument has the VALUE attribute.18

C1547 An actual argument that is a coindexed object with the ASYNCHRONOUS or VOLATILE attribute19
shall not correspond to a dummy argument that has the VOLATILE attribute.20

C1548 (R1524) If an actual argument is a nonpointer array that has the ASYNCHRONOUS or VOLATILE21
attribute but is not simply contiguous (9.5.4), and the corresponding dummy argument has either22
the ASYNCHRONOUS or VOLATILE attribute, but does not have the VALUE attribute, that dummy23
argument shall be assumed‑shape or assumed‑rank and shall not have the CONTIGUOUS attribute.24

C1549 (R1524) If an actual argument is an array pointer that has the ASYNCHRONOUS or VOLATILE at‑25
tribute but does not have the CONTIGUOUS attribute, and the corresponding dummy argument has26
either the ASYNCHRONOUS or VOLATILE attribute, but does not have the VALUE attribute, that27
dummy argument shall be an array pointer, an assumed‑shape array without the CONTIGUOUS28
attribute, or an assumed‑rank entity without the CONTIGUOUS attribute.29

NOTE 5
The constraints on an actual argument with the ASYNCHRONOUS or VOLATILE attribute that corresponds to a
dummy argumentwith either the ASYNCHRONOUS or VOLATILE attribute are designed to avoid forcing a processor
to use the so‑called copy‑in/copy‑out argument passing mechanism. Making a copy of an actual argument whose

350 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 5 (cont.)
value is likely to change due to an asynchronous input/output operation completing or in some unpredictableman‑
ner will cause the new value to be lost when a called procedure returns and the copy‑out overwrites the actual
argument.

NOTE 6
If an effective argument is a discontiguous array, and the dummy argument is an assumed‑shape array with the
CONTIGUOUS attribute, an assumed‑rank dummy data object with the CONTIGUOUS attribute, an explicit‑shape
array, or an assumed‑size array, the processor might need to use the so‑called copy‑in/copy‑out argument passing
mechanism, so as to ensure that the dummy array is contiguous even when the actual argument is not.

15.5.2.6 Allocatable and pointer dummy variables1

1 The requirements in this subclause apply to an actual argument with the ALLOCATABLE or POINTER at‑2
tribute that corresponds to a dummy argument with the same attribute.3

2 The actual argument shall be polymorphic if and only if the associated dummy argument is polymorphic,4
and either both the actual and dummy arguments shall be unlimited polymorphic, or the declared type of5
the actual argument shall be the same as the declared type of the dummy argument.6

NOTE
Thedynamic type of a polymorphic allocatable or pointer dummyargument can change as a result of execution of an
ALLOCATE statement or pointer assignment in the subprogram. Because of this the corresponding actual argument
needs to be polymorphic and have a declared type that is the same as the declared type of the dummy argument or
an extension of that type. However, type compatibility requires that the declared type of the dummy argument be
the same as, or an extension of, the type of the actual argument. Therefore, the dummy and actual arguments need
to have the same declared type.
Dynamic type information is not maintained for a nonpolymorphic allocatable or pointer dummy argument. How‑
ever, allocating or pointer‑assigning such a dummy argument would require maintenance of this information if the
corresponding actual argument is polymorphic. Therefore, the corresponding actual argument needs to be non‑
polymorphic.

3 The rank of the actual argument shall be the same as that of the dummy argument, unless the dummy7
argument is assumed‑rank. The type parameter values of the actual argument shall agree with the cor‑8
responding ones of the dummy argument that are not assumed or deferred. The values of assumed type9
parameters of the dummy argument are assumed from the corresponding type parameters of its effective10
argument.11

4 The actual argument shall have deferred the same type parameters as the dummy argument.12

15.5.2.7 Allocatable dummy variables13

1 The requirements in this subclause apply to actual arguments that correspond to allocatable dummy data14
objects.15

2 The actual argument shall be allocatable. It is permissible for the actual argument to have an allocation16
status of unallocated.17

3 The corank of the actual argument shall be the same as that of the dummy argument.18

4 If the actual argument is a coindexed object, the dummy argument shall have the INTENT (IN) attribute.19

5 If the dummy argument does not have the TARGET attribute, any pointers associated with the actual argu‑20
ment do not become associated with the corresponding dummy argument on invocation of the procedure.21

J3/25‑007 351

J3/25‑007 WD 1539‑1 2024‑12‑29

If such a dummy argument is used as an actual argument that is associated with a dummy argument with1
the TARGET attribute, whether any pointers associated with the original actual argument become associ‑2
ated with the dummy argument with the TARGET attribute is processor dependent.3

6 If the dummy argument has the TARGET attribute, does not have the INTENT (OUT) or VALUE attribute,4
and the corresponding actual argument has the TARGET attribute then5

• any pointers associatedwith the actual argument become associatedwith the corresponding dummy6
argument on invocation of the procedure, and7

• when execution of the procedure completes, any pointers that do not become undeϐined (19.5.2.5)8
and are associated with the dummy argument remain associated with the actual argument.9

7 If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument shall be deϐinable. If a10
dummy argument has INTENT (OUT) and its associated actual argument is allocated, the actual argument11
is deallocated on procedure invocation (9.7.3.2).12

15.5.2.8 Pointer dummy variables13

1 The requirements in this subclause apply to actual arguments that correspond to dummy data pointers.14

C1550 The actual argument corresponding to a dummy pointer with the CONTIGUOUS attribute shall be15
simply contiguous (9.5.4).16

C1551 The actual argument corresponding to a dummy pointer shall not be a coindexed object.17

NOTE 1
Constraint C1551 does not apply to any intrinsic procedure because an intrinsic procedure is deϐined in terms of
its actual arguments.

2 If the dummy argument does not have INTENT (IN), the actual argument shall be a pointer. Otherwise,18
the actual argument shall be a pointer or a valid target for the dummy pointer in a pointer assignment19
statement. If the actual argument is not a pointer, the dummy pointer becomes pointer associated with the20
actual argument.21

3 If the dummy argument has INTENT (OUT), the pointer association status of the actual argument becomes22
undeϐined on invocation of the procedure.23

NOTE 2
For more explanatory information on pointers as dummy arguments, see C.11.4.

15.5.2.9 Coarray dummy variables24

1 If the dummy argument is a coarray, the corresponding actual argument shall be a coarray and shall have25
the VOLATILE attribute if and only if the dummy argument has the VOLATILE attribute.26

2 If the dummy argument is an array coarray that has the CONTIGUOUS attribute or is not of assumed shape,27
the corresponding actual argument shall be simply contiguous or an element of a simply contiguous array.28

NOTE 1
The requirements on an actual argument that corresponds to a dummy coarray that is not of assumed‑shape or
has the CONTIGUOUS attribute are designed to avoid forcing a processor to use the so‑called copy‑in/copy‑out
argument passing mechanism.

352 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2
Consider the invocation of a procedure on a particular image. Each dummy coarray is associated with its ultimate
argument on the image. In addition, during this execution of the procedure, this image can access the coarray
corresponding to the ultimate argument on any other image. For example, consider

INTERFACE
SUBROUTINE SUB(X)

REAL :: X[*]
END SUBROUTINE SUB

END INTERFACE
REAL :: A(1000)[*]
…
CALL SUB(A(10))

During execution of this invocation of SUB, the executing image has access through the syntax X[P] to A(10) on
image P.

NOTE 3
Each invocationof a procedurewith anonallocatable coarraydummyargument establishes adummycoarray for the
imagewith its ownbounds and cobounds. During this execution of the procedure, this image canuse its ownbounds
and cobounds to access the coarray corresponding to the ultimate argument on any other image. For example,
consider

INTERFACE
SUBROUTINE SUB(X,N)

INTEGER :: N
REAL :: X(N,N)[N,*]

END SUBROUTINE SUB
END INTERFACE
REAL :: A(1000)[*]
…
CALL SUB(A,10)

During execution of this invocation of SUB, the executing image has access through the syntax X(1,2)[3,4] to A(11)
on the image with image index 33.

15.5.2.10 Actual arguments associated with dummy procedure entities1

1 If the interface of a dummyprocedure is explicit, its characteristics as a procedure (15.3.1) shall be the same2
as those of its effective argument, except that a pure effective argument may be associated with a dummy3
argument that is not pure, a simple effective argument may be associated with a dummy argument that4
is not simple, and an elemental intrinsic actual procedure13 may be associated with a dummy procedure5
(which cannot be elemental).6

2 If the interface of a dummy procedure is implicit and either the dummy argument is explicitly typed or7
referenced as a function, it shall not be referenced as a subroutine and any corresponding actual argument8
shall be a function, function procedure pointer, or dummy procedure. If both the actual argument and9
dummy argument are known to be functions, they shall have the same type and type parameters. If only10
the dummy argument is known to be a function, the function that would be invoked by a reference to the11
dummy argument shall have the same type and type parameters, except that an external function with12
assumed character length14 may be associated with a dummy argument with explicit character length.13

3 If the interface of a dummyprocedure is implicit and a reference to it appears as a subroutine reference, any14
corresponding actual argument shall be a subroutine, subroutine procedure pointer, or dummy procedure.15

4 If a dummy argument is a dummy procedure without the POINTER attribute, its effective argument shall16
be an external, internal, module, or dummy procedure, or a speciϐic intrinsic procedure listed in Table17

13Speciϐic intrinsic procedure names are obsolescent.
14Assumed character length functions are obsolescent.

J3/25‑007 353

J3/25‑007 WD 1539‑1 2024‑12‑29

16.215. If the speciϐic name is also a generic name, only the speciϐic procedure is associatedwith the dummy1
argument.2

5 If a dummy argument is a procedure pointer, the corresponding actual argument shall be a procedure3
pointer, a reference to a function that returns a procedure pointer, a reference to the intrinsic function4
NULL, or a valid target for the dummy pointer in a pointer assignment statement. If the actual argument5
is not a pointer, the dummy argument shall have INTENT (IN); if the actual argument is not a dummy ar‑6
gument it becomes pointer associated with the actual argument, otherwise it becomes pointer associated7
with the ultimate argument of the actual argument.8

6 When the actual argument is a procedure, the host instance of the dummy argument is the host instance of9
the actual argument (15.6.2.4).10

7 If an external procedure or a dummy procedure is used as an actual argument, its interface shall be explicit11
or it shall be explicitly declared to have the EXTERNAL attribute.12

15.5.2.11 Actual arguments and alternate return indicators (obsolescent)13

1 If a dummy argument is an asterisk (15.6.2.3), the corresponding actual argument shall be an alternate14
return speciϐier (R1525).15

2 Asterisk dummy arguments (alternate return indicators) and alternate return speciϐiers are obsolescent.16

15.5.2.12 Sequence association17

1 Sequence association only applies when the dummy argument is an explicit‑shape or assumed‑size array.18
The rest of this subclause only applies in that case.19

2 An actual argument represents an element sequence if it is an array expression, an array element desig‑20
nator, a default character scalar, or a scalar of type character with the C character kind (18.2.2).21

3 If the dummy argument is not of type character with default or C character kind:22

• if the actual argument is an array expression, the element sequence consists of the elements in array23
element order;24

• if the actual argument is an array element designator of a simply contiguous array, the element se‑25
quence consists of that array element and each element that follows it in array element order;26

• otherwise, if the actual argument is scalar, the element sequence consists of that scalar.27

4 If the dummy argument is of type character with default or C character kind, and has nonzero character28
length, the storage unit sequence is as follows:29

• if the actual argument is an array expression, the storage units of the array;30
• if the actual argument is an array element or array element substring designator of a simply contigu‑31
ous array, the storage units starting from the ϐirst storage unit of the designator and continuing to32
the end of the array;33

• otherwise, if the actual argument is scalar, the storage units of the scalar object.34

The element sequence is the sequence of consecutive groups of storage units in the storage unit sequence,35
grouped by the character length of the dummy array. The sequence terminateswhen the number of storage36
units left is less than the character length of the dummy array.37

15Speciϐic intrinsic procedure names are obsolescent.

354 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
Some of the elements in the element sequencemight consist of storage units from different elements of the original
array.

5 If the dummy argument is of type character with default or C character kind, and has zero character length,1
the element sequence consists of a sequence of elements each with zero character length, the number of2
elements being the maximum number that is supported by the processor.3

6 An actual argument that represents an element sequence and corresponds to a dummy argument that is an4
array is sequence associated with the dummy argument. The rank and shape of the actual argument need5
not agree with the rank and shape of the dummy argument, but the number of elements in the dummy6
argument shall not exceed the number of elements in the element sequence of the actual argument. If the7
dummy argument is assumed‑size, the number of elements in the dummy argument is exactly the number8
of elements in the element sequence.9

15.5.2.13 Argument presence and restrictions on arguments not present10

1 Adummyargument or an entity that is host associatedwith a dummyargument is not present if the dummy11
argument12

• does not correspond to an actual argument,13
• corresponds to an actual argument that is not present, or14
• does not have the ALLOCATABLE or POINTER attribute, and corresponds to an actual argument that15

– has the ALLOCATABLE attribute and is not allocated, or16
– has the POINTER attribute and is disassociated;17

otherwise, it is present.18

2 Anonoptional dummyargument shall be present. If an optional nonpointer dummyargument corresponds19
to a present pointer actual argument, the pointer association status of the actual argument shall not be20
undeϐined.21

3 An optional dummy argument that is not present is subject to the following restrictions.22

(1) If it is a data object, it shall not be referenced or be deϐined. If it is of a type that has default23
initialization, the initialization has no effect.24

(2) It shall not be used as the data‑target or proc‑target of a pointer assignment.25
(3) If it is a procedure or procedure pointer, it shall not be invoked.26
(4) It shall not be supplied as an actual argument corresponding to anonoptional dummyargument27

other than as the argument of the intrinsic function PRESENT or as an argument of a function28
reference that is a constant expression.29

(5) A designator with it as the base object and with one or more subobject selectors shall not be30
supplied as an actual argument.31

(6) If it is an array, it shall not be supplied as an actual argument to an elemental procedure unless32
an array of the same rank is supplied as an actual argument corresponding to a nonoptional33
dummy argument of that elemental procedure.34

(7) If it is a pointer, it shall not be allocated, deallocated, nulliϐied, pointer‑assigned, or supplied as35
an actual argument corresponding to an optional nonpointer dummy argument.36

(8) If it is allocatable, it shall not be allocated, deallocated, or supplied as an actual argument cor‑37
responding to an optional nonallocatable dummy argument.38

J3/25‑007 355

J3/25‑007 WD 1539‑1 2024‑12‑29

(9) If it has length type parameters, they shall not be the subject of an inquiry.1
(10) It shall not be used as a selector in an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT2

TYPE construct.3
(11) It shall not be supplied as the data‑ref in a procedure‑designator.4
(12) If shall not be supplied as the scalar‑variable in a proc‑component‑ref .5

4 Except as noted in the list above, it may be supplied as an actual argument corresponding to an optional6
dummy argument, which is then also considered not to be present.7

15.5.2.14 Restrictions on entities associated with dummy arguments8

1 While an entity is associated with a dummy argument, the following restrictions hold.9

(1) Action that affects the allocation status of the entity, or of a subobject thereof, shall be taken10
through the dummy argument.11

(2) If the allocation status of the entity or a subobject thereof is affected through the dummy argu‑12
ment, then at any time during the invocation and execution of the procedure, either before or13
after the allocation or deallocation, it shall be referenced only through the dummy argument.14

(3) Action that affects the value of the entity or any subobject of it shall be taken only through the15
dummy argument unless16

(a) the dummy argument has the POINTER attribute,17
(b) the dummy argument is a scalar, assumed‑shape, or assumed‑rank object, and has the18

TARGET attribute but not the INTENT (IN) or CONTIGUOUS attributes, and the actual19
argument is a target other than a coindexed object or an array section with a vector sub‑20
script,21

(c) the dummy argument is an assumed‑rank object with the TARGET attribute and not the22
INTENT (IN) attribute, and the actual argument is a scalar target,23

(d) the dummy argument is a coarray and the action is a coindexed deϐinition of the corres‑24
ponding ultimate argument coarray by a different image, or25

(e) the dummy argument has a coarray potential subobject component and the action is a26
coindexed deϐinition of the corresponding coarray by a different image.27

(4) If the value of the entity or any subobject of it is affected through the dummy argument, then28
at any time during the invocation and execution of the procedure, either before or after the29
deϐinition, it shall be referenced only through that dummy argument unless30

(a) the dummy argument has the POINTER attribute,31
(b) the dummy argument is a scalar, assumed‑shape, or assumed‑rank object, and has the32

TARGET attribute but not the INTENT (IN) or CONTIGUOUS attributes, and the actual33
argument is a target other than a coindexed object or an array section with a vector sub‑34
script,35

(c) the dummy argument is an assumed‑rank object with the TARGET attribute and not the36
INTENT (IN) attribute, and the actual argument is a scalar target,37

(d) the dummy argument is a coarray and the reference is a coindexed reference of its cor‑38
responding ultimate argument coarray by a different image, or39

(e) the dummy argument has a coarray potential subobject component and the reference is40
a coindexed reference of the corresponding coarray by a different image.41

356 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 1
In

SUBROUTINE OUTER
REAL, POINTER :: A (:)
…
ALLOCATE (A (1:N))
…
CALL INNER (A)
…

CONTAINS
SUBROUTINE INNER (B)

REAL :: B (:)
…

END SUBROUTINE INNER
SUBROUTINE SET (C, D)

REAL, INTENT (OUT) :: C
REAL, INTENT (IN) :: D
C = D

END SUBROUTINE SET
END SUBROUTINE OUTER

an assignment statement such as
A (1) = 1.0

would not be permitted during the execution of INNER because this would be changing A without using B, but
statements such as

B (1) = 1.0

or
CALL SET (B (1), 1.0)

would be allowed. Similarly,
DEALLOCATE (A)

would not be allowed because this affects the allocation of B without using B. In this case,
DEALLOCATE (B)

also would not be permitted. If B were declared with the POINTER attribute, either of the statements
DEALLOCATE (A)

and
DEALLOCATE (B)

would be permitted, but not both.

NOTE 2
If there is a partial or complete overlap between the effective arguments of two different dummy arguments of
the same procedure and the dummy arguments have neither the POINTER nor TARGET attribute, the overlapped
portions cannot be deϐined, redeϐined, or become undeϐined during the execution of the procedure. For example, in

CALL SUB (A (1:5), A (3:9))

the array section A (3:5) cannot be deϐined, redeϐined, or become undeϐined through the ϐirst dummy argument
because it is part of the argument associated with the second dummy argument and cannot be deϐined, redeϐined,
or become undeϐined through the second dummy argument because it is part of the argument associated with the
ϐirst dummy argument. The array section A (1:2) remains deϐinable through the ϐirst dummy argument and A (6:9)
remains deϐinable through the second dummy argument.
This restriction applies equally to pointer targets. In

REAL, DIMENSION (10), TARGET :: A
REAL, DIMENSION (:), POINTER :: B, C
B => A (1:5)
C => A (3:9)
CALL SUB (B, C) ! The dummy arguments of SUB are neither pointers nor targets.

the array section B (3:5) cannot be deϐined because it is part of the argument associated with the second dummy
argument. The array section C (1:3) cannot be deϐined because it is part of the argument associated with the ϐirst

J3/25‑007 357

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 2 (cont.)
dummy argument. The array section A (1:2), which is associated with B (1:2), remains deϐinable through the ϐirst
dummy argument and A (6:9), which is associated with C (4:7), remains deϐinable through the second dummy
argument.

NOTE 3
In

MODULE DATA
REAL :: W, X, Y, Z

END MODULE DATA

PROGRAM MAIN
USE DATA

...
CALL INIT (X)

...
END PROGRAM MAIN
SUBROUTINE INIT (V)

USE DATA
...

READ (*, *) V
...

END SUBROUTINE INIT

variable X cannot be directly referenced at any time during the execution of INIT because it is being deϐined through
the dummy argument V. X can be (indirectly) referenced through V. W, Y, and Z can be directly referenced. X can, of
course, be directly referenced once execution of INIT is complete.

NOTE 4
The restrictions on entities associated with dummy arguments are intended to facilitate a variety of optimizations
in the translation of the subprogram, including implementations of argument association in which the value of an
actual argument that is neither a pointer nor a target is maintained in a register or in local storage.

NOTE 5
The exceptions to the aliasing restrictions for dummy arguments that are coarrays or have coarray potential sub‑
object components enable cross‑image access while the procedure is executing. Because nonatomic accesses from
different images typically need to be separated by an image control statement, code optimization within segments
is not unduly inhibited.

15.5.3 Function reference1

1 A function is invoked during expression evaluation either by a function‑reference or by a deϐined opera‑2
tion (10.1.6). When it is invoked, all actual argument expressions are evaluated, then the arguments are3
associated, and then the function is executed. When execution of the function is complete, the value of the4
function result is available for use in the expression that caused the function to be invoked. The charac‑5
teristics of the function result (15.3.3) are determined by the interface of the function. If a reference to an6
elemental function (15.9) is an elemental reference, all array arguments shall have the same shape.7

15.5.4 Subroutine reference8

1 A subroutine is invoked by execution of a CALL statement, execution of a deϐined assignment statement9
(10.2.1.4), deϐined input/output (12.6.4.8.3), or ϐinalization(7.5.6). When a subroutine is invoked, all ac‑10
tual argument expressions are evaluated, then the arguments are associated, and then the subroutine is ex‑11
ecuted. When the actions speciϐied by the subroutine are completed, the execution of the CALL statement,12
the execution of the deϐined assignment statement, the processing of an effective item, or ϐinalization of an13

358 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

object is also completed. If a CALL statement includes one or more alternate return speciϐiers16 among its1
arguments, a branch to one of the statements indicated might occur, depending on the action speciϐied by2
the subroutine. If a reference to an elemental subroutine (15.9) is an elemental reference, at least one ac‑3
tual argument shall correspond to an INTENT (OUT) or INTENT (INOUT) dummy argument, all such actual4
arguments shall be arrays, and all actual arguments shall be conformable.5

15.5.5 Resolving named procedure references6

15.5.5.1 Establishment of procedure names7

1 The rules for interpreting a procedure reference depend onwhether the procedure name in the reference is8
established by the available declarations and speciϐications to be generic in the scoping unit containing the9
reference, is established tobeonly speciϐic in the scopingunit containing the reference, or is not established.10

2 A procedure name is established to be generic in a scoping unit11

(1) if that scoping unit contains an interface block with that name;12
(2) if that scoping unit contains a GENERIC statement with a generic‑spec that is that name;13
(3) if that scoping unit contains an INTRINSIC attribute speciϐication for that name and it is the14

generic name of an intrinsic procedure;15
(4) if that scoping unit contains a USE statement that makes that procedure name accessible and16

the corresponding name in the module is established to be generic; or17
(5) if that scoping unit contains no declarations of that name, that scoping unit has a host scoping18

unit, and that name is established to be generic in the host scoping unit.19

3 A procedure name is established to be only speciϐic in a scoping unit if it is established to be speciϐic and20
not established to be generic. It is established to be speciϐic21

(1) if that scoping unit contains amodule subprogram, internal subprogram, or statement function22
statement17 that deϐines a procedure with that name;23

(2) if that scoping unit is of a subprogram that deϐines a procedure with that name;24
(3) if that scoping unit contains an INTRINSIC attribute speciϐication for that name and it is the25

name of a speciϐic intrinsic procedure18;26
(4) if that scoping unit contains an explicit EXTERNAL attribute speciϐication for that name;27
(5) if that scoping unit contains a USE statement that makes that procedure name accessible and28

the corresponding name in the module is established to be speciϐic; or29
(6) if that scoping unit contains no declarations of that name, that scoping unit has a host scoping30

unit, and that name is established to be speciϐic in the host scoping unit.31

4 A procedure name is not established in a scoping unit if it is neither established to be generic nor estab‑32
lished to be speciϐic.33

15.5.5.2 Resolving procedure references to names established to be generic34

1 If the reference is consistent with a nonelemental reference to one of the speciϐic interfaces of a generic35
interface that has that name and either is deϐined in the scoping unit in which the reference appears or is36
made accessible by a USE statement in the scoping unit, the reference is to the speciϐic procedure in the37

16Alternate return speciϐiers are obsolescent.
17Statement functions are obsolescent.
18Speciϐic intrinsic procedure names are obsolescent.

J3/25‑007 359

J3/25‑007 WD 1539‑1 2024‑12‑29

interface block that provides that interface. The rules in 15.4.3.4.5 ensure that there can be at most one1
such speciϐic procedure.2

2 Otherwise, if the reference is consistent with an elemental reference to one of the speciϐic interfaces of a3
generic interface that has that name and either is deϐined in the scoping unit inwhich the reference appears4
or is made accessible by a USE statement in the scoping unit, the reference is to the speciϐic elemental5
procedure in the interface block that provides that interface. The rules in 15.4.3.4.5 ensure that there can6
be at most one such speciϐic elemental procedure.7

3 Otherwise, if the scoping unit contains either an INTRINSIC attribute speciϐication for that name or a USE8
statement that makes that name accessible from amodule in which the corresponding name is speciϐied to9
have the INTRINSIC attribute, and if the reference is consistent with the interface of that intrinsic proced‑10
ure, the reference is to that intrinsic procedure.11

4 Otherwise, if the scoping unit has a host scoping unit, the name is established to be generic in that host12
scoping unit, and there is agreement between the scoping unit and the host scoping unit as to whether the13
name is a function name or a subroutine name, the name is resolved by applying the rules in this subclause14
to the host scoping unit as if the reference appeared there.15

5 Otherwise, if the name is that of an intrinsic procedure and the reference is consistent with that intrinsic16
procedure, the reference is to that intrinsic procedure.17

NOTE 1
Because of the renaming facility of the USE statement, the name in the reference can be different from the usual
name of the intrinsic procedure.

NOTE 2
These rules allow particular speciϐic procedures with the same generic identiϐier to be used for particular array
ranks and a general elemental version to be used for other ranks. For example, given an interface block such as

INTERFACE RANF
ELEMENTAL FUNCTION SCALAR_RANF(X)

REAL, INTENT(IN) :: X
END FUNCTION SCALAR_RANF
FUNCTION VECTOR_RANDOM(X)

REAL X(:)
REAL VECTOR_RANDOM(SIZE(X))

END FUNCTION VECTOR_RANDOM
END INTERFACE RANF

and a declaration such as:
REAL A(10,10), AA(10,10)

then the statement
A = RANF(AA)

is an elemental reference to SCALAR_RANF. The statement
A(6:10,2) = RANF(AA(6:10,2))

is a nonelemental reference to VECTOR_RANDOM.

15.5.5.3 Resolving procedure references to names established to be only speciϐic18

1 If the name has the EXTERNAL attribute,19

• if it is a procedure pointer, the reference is to its target;20
• if it is a dummy procedure that is not a procedure pointer, the reference is to the effective argument21
corresponding to that name;22

360 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• otherwise, the reference is to the external procedure with that name.1

2 If the name is that of an accessible external procedure, internal procedure, module procedure, intrinsic2
procedure, or statement function19, the reference is to that procedure.3

NOTE
Because of the renaming facility of the USE statement, the name in the reference can be different from the original
name of the procedure.

15.5.5.4 Resolving procedure references to names not established4

1 If the name is the name of a dummy argument of the scoping unit, the dummy argument is a dummy pro‑5
cedure and the reference is to that dummy procedure. That is, the procedure invoked by executing that6
reference is the effective argument corresponding to that dummy procedure.7

2 Otherwise, if the name is the name of an intrinsic procedure, and if there is agreement between the ref‑8
erence and the status of the intrinsic procedure as being a function or subroutine, the reference is to that9
intrinsic procedure.10

3 Otherwise, the reference is to an external procedure with that name.11

15.5.6 Resolving type‑bound procedure references12

1 If the binding‑name in a procedure‑designator (R1522) is that of a speciϐic type‑bound procedure, the pro‑13
cedure referenced is the one bound to that name in the dynamic type of the data‑ref .14

2 If the binding‑name in aprocedure‑designator is that of a generic type‑boundprocedure, the generic binding15
with that name in the declared type of the data‑ref is used to select a speciϐic binding using the following16
criteria.17

• If the reference is consistent with one of the speciϐic bindings of that generic binding, that speciϐic18
binding is selected.19

• Otherwise, the reference shall be consistent with an elemental reference to one of the speciϐic bind‑20
ings of that generic binding; that speciϐic binding is selected.21

3 The reference is to the procedure bound to the same name as the selected speciϐic binding in the dynamic22
type of the data‑ref .23

15.6 Procedure deϐinition24

15.6.1 Intrinsic procedure deϐinition25

1 Intrinsic procedures are deϐined as an inherent part of the processor. A standard‑conforming processor26
shall include the intrinsic procedures described in Clause 16, butmay include others. However, a standard‑27
conforming program shall not make use of intrinsic procedures other than those described in Clause 16.28

19Statement functions are obsolescent.

J3/25‑007 361

J3/25‑007 WD 1539‑1 2024‑12‑29

15.6.2 Procedures deϐined by subprograms1

15.6.2.1 General2

1 A procedure is deϐined by the initial SUBROUTINE or FUNCTION statement of a subprogram, and each3
ENTRY statement20 deϐines an additional procedure (15.6.2.6).4

2 A subprogram is speciϐied to have the NON_RECURSIVE attribute, or to be elemental (15.9), pure (15.7), or5
a separate module subprogram (15.6.2.5) by a preϔix in its initial SUBROUTINE or FUNCTION statement.6

R1529 preϔix is preϔix‑spec [preϔix‑spec] ...7

R1530 preϔix‑spec is declaration‑type‑spec8
or ELEMENTAL9
or IMPURE10
or MODULE11
or NON_RECURSIVE12
or PURE13
or RECURSIVE14
or SIMPLE15

C1552 (R1529) A preϔix shall contain at most one of each preϔix‑spec.16

C1553 (R1529) A preϔix that speciϐies IMPURE shall specify neither PURE nor SIMPLE.17

C1554 (R1529) A preϔix shall not specify both NON_RECURSIVE and RECURSIVE.18

C1555 An elemental procedure shall not have the BIND attribute.19

C1556 (R1529) MODULE shall appear only in the function‑stmt or subroutine‑stmt of a module subpro‑20
gram or of a nonabstract interface body that is declared in the scoping unit of a module or submod‑21
ule.22

C1557 (R1529) IfMODULE appears in the preϔix of amodule subprogram, it shall have been declared to be23
a separate module procedure in the containing program unit or an ancestor of that program unit.24

C1558 (R1529) If MODULE appears in the preϔix of a module subprogram, the subprogram shall specify25
the same characteristics and dummy argument names as its corresponding module procedure in‑26
terface body.27

C1559 (R1529) If MODULE appears in the preϔix of a module subprogram and a binding label is speciϐied,28
it shall be the same as the binding label speciϐied in the correspondingmodule procedure interface29
body.30

C1560 (R1529) IfMODULEappears in thepreϔix of amodule subprogram, NON_RECURSIVE shall appear if31
and only if NON_RECURSIVE appears in the preϔix in the correspondingmodule procedure interface32
body.33

3 The NON_RECURSIVE preϔix‑spec shall not appear if any procedure deϐined by the subprogram directly or34
indirectly invokes itself or any other procedure deϐined by the subprogram. If a subprogramdeϐines a func‑35
tionwhose name is declaredwith an asterisk type‑param‑value21, no procedure deϐined by the subprogram36
shall directly or indirectly invoke itself or any other procedure deϐined by the subprogram. TheRECURSIVE37

20The ENTRY statement is obsolescent.
21That is, an assumed character length function; such functions are obsolescent.

362 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

preϔix‑spec is advisory only.1

4 If the preϔix‑spec PURE or the preϔix‑spec SIMPLE appears, or the preϔix‑spec ELEMENTAL appears and IM‑2
PURE does not appear, the subprogram is a pure subprogram and shall meet the additional constraints of3
15.7. If the preϔix‑spec SIMPLE appears, the subprogram is a simple subprogram and shall meet the addi‑4
tional constraints of 15.8.5

5 If the preϔix‑spec ELEMENTAL appears, the subprogram is an elemental subprogram and shall meet the6
additional constraints of 15.9.1.7

R1531 proc‑language‑binding‑spec is language‑binding‑spec8

6 A proc‑language‑binding‑spec speciϐies that the procedure deϐined or declared by the statement is interop‑9
erable (18.3.7).10

C1561 A proc‑language‑binding‑spec with a NAME= speciϐier shall not be speciϐied in the function‑stmt11
or subroutine‑stmt of an internal procedure, or of an interface body for an abstract interface or a12
dummy procedure.13

C1562 If proc‑language‑binding‑spec is speciϐied for a function, the function result shall be an interoper‑14
able scalar variable.15

C1563 If proc‑language‑binding‑spec is speciϐied for a procedure, each of its dummy arguments shall be16
an interoperable procedure (18.3.7) or a variable that is interoperable (18.3.5, 18.3.6), assumed‑17
shape, assumed‑rank, assumed‑type, of type CHARACTER with assumed length, or that has the18
ALLOCATABLE or POINTER attribute.19

C1564 If proc‑language‑binding‑spec is speciϐied for a procedure, each dummy argument of type CHAR‑20
ACTER with the ALLOCATABLE or POINTER attribute shall have deferred character length.21

C1565 A variable that is a dummy argument of a procedure that has a proc‑language‑binding‑spec shall be22
assumed‑type or of interoperable type and kind type parameters.23

C1566 If proc‑language‑binding‑spec is speciϐied for a procedure, it shall not have a default‑initialized24
dummy argument with the ALLOCATABLE or POINTER attribute.25

C1567 If proc‑language‑binding‑spec is speciϐied for a procedure, it shall not have a dummy argument that26
is a coarray.27

C1568 If proc‑language‑binding‑spec is speciϐied for a procedure, it shall not have an array dummy argu‑28
ment with the VALUE attribute.29

15.6.2.2 Function subprogram30

1 A function subprogram is a subprogram that has a FUNCTION statement as its ϐirst statement.31

R1532 function‑subprogram is function‑stmt32
[speciϔication‑part]33
[execution‑part]34
[internal‑subprogram‑part]35
end‑function‑stmt36

R1533 function‑stmt is [preϔix] FUNCTION function‑name37
([dummy‑arg‑name‑list]) [sufϔix]38

J3/25‑007 363

J3/25‑007 WD 1539‑1 2024‑12‑29

C1569 (R1533) If RESULT appears, result‑name shall not be the same as function‑name and shall not be1
the same as the entry‑name in any ENTRY statement22 in the subprogram.2

C1570 (R1533) If RESULT appears, the function‑name shall not appear in any speciϐication statement in3
the scoping unit of the function subprogram.4

R1534 dummy‑arg‑name is name5

C1571 (R1534) A dummy‑arg‑name shall be the name of a dummy argument.6

R1535 sufϔix is proc‑language‑binding‑spec [RESULT (result‑name)]7
or RESULT (result‑name) [proc‑language‑binding‑spec]8

R1536 end‑function‑stmt is END [FUNCTION [function‑name]]9

C1572 (R1532) An internal function subprogram shall not contain an internal‑subprogram‑part.10

C1573 (R1536) If a function‑name appears in the end‑function‑stmt, it shall be identical to the function‑11
name speciϐied in the function‑stmt.12

2 The name of the function is function‑name.13

3 The type and type parameters (if any) of the result of the function deϐined by a function subprogrammay be14
speciϐied by a type speciϐication in the FUNCTION statement or by the nameof the function result appearing15
in a type declaration statement in the speciϐication part of the function subprogram. They shall not be16
speciϐied both ways. If they are not speciϐied either way, they are determined by the implicit typing rules in17
effect within the function subprogram. If the function result is an array, allocatable, or a pointer, this shall18
be speciϐied by speciϐications of the name of the function result within the function body. The speciϐications19
of the function result attributes, the speciϐication of dummy argument attributes, and the information in20
the FUNCTION statement collectively deϐine the characteristics of the function (15.3.1).21

4 If RESULT appears, the name of the function result of the function is result‑name and all occurrences of22
the function name in execution‑part statements in its scope refer to the function itself. If RESULT does23
not appear, the name of the function result is function‑name and all occurrences of the function name in24
execution‑part statements in its scope are references to the function result. On completion of execution of25
the function, the value returned is that of its function result. If the function result is a data pointer, the shape26
of the value returned by the function is determined by the shape of the function result when the execution27
of the function is completed. If the function result is not a pointer, its value shall be deϐined by the function.28
If the function result is a pointer, on return the pointer association status of the function result shall not be29
undeϐined.30

NOTE 1
The function result is similar to any other entity (variable or procedure pointer) local to a function subprogram. Its
existence begins when execution of the function is initiated and ends when execution of the function is terminated.
However, because the ϐinal value of this entity is used subsequently in the evaluation of the expression that invoked
the function, an implementation might defer releasing the storage occupied by that entity until after its value has
been used in expression evaluation.

NOTE 2
The following is an example of the declaration of an interface body with the BIND attribute, and a reference to the
procedure declared.

USE, INTRINSIC :: ISO_C_BINDING

22The ENTRY statement is obsolescent.

364 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 2 (cont.)

INTERFACE
FUNCTION JOE (I, J, R) BIND(C,NAME="FrEd")

USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT) :: JOE
INTEGER(C_INT), VALUE :: I, J
REAL(C_FLOAT), VALUE :: R

END FUNCTION JOE
END INTERFACE

INT = JOE(1_C_INT, 3_C_INT, 4.0_C_FLOAT)
END PROGRAM

The invocation of the function JOE results in a reference to a function with a binding label "FrEd". FrEd could be a
C function described by the C prototype

int FrEd(int n, int m, float x);

15.6.2.3 Subroutine subprogram1

1 A subroutine subprogram is a subprogram that has a SUBROUTINE statement as its ϐirst statement.2

R1537 subroutine‑subprogram is subroutine‑stmt3
[speciϔication‑part]4
[execution‑part]5
[internal‑subprogram‑part]6
end‑subroutine‑stmt7

R1538 subroutine‑stmt is [preϔix] SUBROUTINE subroutine‑name8
[([dummy‑arg‑list]) [proc‑language‑binding‑spec]]9

C1574 (R1538) The preϔix of a subroutine‑stmt shall not contain a declaration‑type‑spec.10

R1539 dummy‑arg is dummy‑arg‑name11
or *12

R1540 end‑subroutine‑stmt is END [SUBROUTINE [subroutine‑name]]13

C1575 (R1537) An internal subroutine subprogram shall not contain an internal‑subprogram‑part.14

C1576 If a subroutine‑name appears in an end‑subroutine‑stmt, it shall be identical to the subroutine‑name15
speciϐied in the subprogram’s subroutine‑stmt.16

2 The name of the subroutine is subroutine‑name.17

15.6.2.4 Instances of a subprogram18

1 When a procedure deϐined by a subprogram is invoked, an instance of that subprogram is created. Each19
instance has an independent sequence of execution and an independent set of dummy arguments, unsaved20
local variables, and unsaved local procedure pointers. Saved local entities are shared by all instances of the21
subprogram.22

2 When a statement function23 is invoked, an instance of that statement function is created.23

3 When execution of an instance completes it ceases to exist.24
23Statement functions are obsolescent.

J3/25‑007 365

J3/25‑007 WD 1539‑1 2024‑12‑29

4 The caller of an instance of a procedure is the instance of the main program, subprogram, or statement1
function that invoked it. The call sequence of an instance of a procedure is its caller, followed by the call2
sequence of its caller. The call sequence of the main program is empty. The host instance of an instance3
of a statement function or an internal procedure that is invoked by its name is the ϐirst element of the call4
sequence that is an instance of the host of the statement function or internal subprogram. Thehost instance5
of an internal procedure that is invoked via a dummyprocedure or procedure pointer is the host instance of6
the associating entity fromwhen the argument association or pointer associationwas established (19.5.5).7
Thehost instance of amodule procedure is themodule or submodule inwhich it is deϐined. Amain program8
or external subprogram has no host instance.9

15.6.2.5 Separate module procedures10

1 A separate module procedure is a module procedure deϐined by a separate‑module‑subprogram, by a func‑11
tion‑subprogram whose initial statement contains the keyword MODULE, or by a subroutine‑subprogram12
whose initial statement contains the keyword MODULE.13

R1541 separate‑module‑subprogram is mp‑subprogram‑stmt14
[speciϔication‑part]15
[execution‑part]16
[internal‑subprogram‑part]17
end‑mp‑subprogram‑stmt18

R1542 mp‑subprogram‑stmt is MODULE PROCEDURE procedure‑name19

R1543 end‑mp‑subprogram‑stmt is END [PROCEDURE [procedure‑name]]20

C1577 (R1541) The procedure‑name shall have been declared to be a separate module procedure in the21
containing program unit or an ancestor of that program unit.22

C1578 (R1543) If a procedure‑name appears in the end‑mp‑subprogram‑stmt, it shall be identical to the23
procedure‑name in themp‑subprogram‑stmt.24

2 A separate module procedure shall not be deϐined more than once.25

3 The interface of a procedure deϐined by a separate‑module‑subprogram is explicitly declared by the mp‑26
subprogram‑stmt to be the same as its module procedure interface body. It has the NON_RECURSIVE at‑27
tribute if and only if it was declared to have that attribute by the interface body. If it is a function its result28
name is determined by the FUNCTION statement in the interface body.29

NOTE
A separate module procedure can be accessed by use association only if its interface body is declared in the spe‑
ciϐication part of a module and is public.

15.6.2.6 ENTRY statement (obsolescent)30

1 An ENTRY statement permits a procedure reference to beginwith a particular executable statementwithin31
the function or subroutine subprogram in which the ENTRY statement appears.32

2 The ENTRY statement is obsolescent.33

R1544 entry‑stmt is ENTRY entry‑name [([dummy‑arg‑list]) [sufϔix]]34

C1579 (R1544) If RESULT appears, the entry‑name shall not appear in any speciϐication or type declara‑35

366 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

tion statement in the scoping unit of the function subprogram.1

C1580 (R1544) An entry‑stmt shall appear only in an external‑subprogram or amodule‑subprogram that2
does not deϐine a separatemodule procedure. An entry‑stmt shall not appear within an executable‑3
construct.4

C1581 (R1544) RESULT shall appear only if the entry‑stmt is in a function subprogram.5

C1582 (R1544) A dummy‑arg shall not be an alternate return indicator if the ENTRY statement is in a6
function subprogram.7

C1583 (R1544) If RESULT appears, result‑name shall not be the same as the function‑name in the FUNC‑8
TION statement and shall not be the same as the entry‑name in any ENTRY statement in the sub‑9
program.10

3 Optionally, a subprogrammay have one or more ENTRY statements.11

4 If the ENTRY statement is in a function subprogram, an additional function is deϐined by that subprogram.12
Thenameof the function is entry‑name and the nameof its result is result‑name or is entry‑name if no result‑13
name is provided. The dummy arguments of the function are those speciϐied in the ENTRY statement. If the14
characteristics of the result of the function named in the ENTRY statement are the same as the character‑15
istics of the result of the function named in the FUNCTION statement, their result names identify the same16
entity, although their names need not be the same. Otherwise, they are storage associated and shall all17
be nonpointer, nonallocatable scalar variables that are default integer, default real, double precision real,18
default complex, or default logical.19

5 If the ENTRY statement is in a subroutine subprogram, an additional subroutine is deϐined by that sub‑20
program. The name of the subroutine is entry‑name. The dummy arguments of the subroutine are those21
speciϐied in the ENTRY statement.22

6 The order, number, types, kind type parameters, and names of the dummy arguments in an ENTRY state‑23
mentmay differ from the order, number, types, kind type parameters, and names of the dummy arguments24
in the FUNCTION or SUBROUTINE statement in the containing subprogram.25

7 Because an ENTRY statement deϐines an additional function or an additional subroutine, it is referenced in26
the same manner as any other function or subroutine (15.5).27

8 In a subprogram, a dummy argument speciϐied in an ENTRY statement shall not appear in an executable28
statement preceding that ENTRY statement, unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY29
statement that precedes the executable statement. A function result speciϐied by a result‑name in an ENTRY30
statement shall not appear in any executable statement that precedes the ϐirst RESULT clause with that31
name.32

9 In a subprogram, a dummy argument speciϐied in an ENTRY statement shall not appear in the expression33
of a statement function that precedes the ϐirst dummy‑arg with that name in the subprogram. A function34
result speciϐied by a result‑name in an ENTRY statement shall not appear in the expression of a statement35
function that precedes the ϐirst RESULT clause with that name.36

10 If a dummy argument appears in an executable statement, the execution of the executable statement is37
permitted during the execution of a reference to the function or subroutine only if the dummy argument38
appears in the dummy argument list of the referenced procedure.39

11 If a dummy argument is used in a speciϐication expression to specify an array bound or character length40

J3/25‑007 367

J3/25‑007 WD 1539‑1 2024‑12‑29

of an object, the appearance of the object in a statement that is executed during a procedure reference is1
permitted only if the dummy argument appears in the dummy argument list of the referenced procedure2
and it is present (15.5.2.13).3

12 TheNON_RECURSIVEandRECURSIVEkeywords arenotused in anENTRYstatement. Instead, thepresence4
or absence of NON_RECURSIVE in the initial SUBROUTINE or FUNCTION statement controls whether the5
procedure deϐined by an ENTRY statement is permitted to reference itself or another procedure deϐined by6
the subprogram.7

13 The keywords PURE and IMPURE are not used in an ENTRY statement. Instead, the procedure deϐined by8
an ENTRY statement is pure if and only if the subprogram is a pure subprogram.9

14 The keyword ELEMENTAL is not used in an ENTRY statement. Instead, the procedure deϐined by an ENTRY10
statement is elemental if and only if ELEMENTAL is speciϐied in the SUBROUTINE or FUNCTION statement.11

15.6.2.7 RETURN statement12

R1545 return‑stmt is RETURN [scalar‑int‑expr]13

C1584 (R1545) The return‑stmt shall be in the inclusive scope of a function or subroutine subprogram.14

C1585 (R1545) The scalar‑int‑expr is allowed only in the inclusive scope of a subroutine subprogram.15

1 Execution of the RETURN statement completes execution of the instance of the subprogram in which it ap‑16
pears. If the expression appears and has a value n between 1 and the number of asterisks in the dummy17
argument list, the CALL statement that invoked the subroutine branches (11.2) to the branch target state‑18
ment identiϐied by thenth alternate return speciϐier in the actual argument list of the referenced procedure.19
Such an expression is also known as an alternate return indicator; these are obsolescent. If the expression20
is omitted or has a value outside the required range, there is no transfer of control to an alternate return.21

2 Execution of an end‑function‑stmt, end‑mp‑subprogram‑stmt, or end‑subroutine‑stmt is equivalent to exe‑22
cution of a RETURN statement with no expression.23

15.6.2.8 CONTAINS statement24

R1546 contains‑stmt is CONTAINS25

1 The CONTAINS statement separates the body of a main program, module, submodule, or subprogram from26
any internal or module subprograms it might contain, or it introduces the type‑bound procedure part of a27
derived‑type deϐinition (7.5.5). The CONTAINS statement is not executable.28

15.6.3 Deϐinition and invocation of procedures by means other than Fortran29

1 A procedure may be deϐined by means other than Fortran. The interface of a procedure deϐined by means30
other than Fortran may be speciϐied by an interface body or procedure declaration statement. A reference31
to such a procedure is made as though it were deϐined by an external subprogram.32

2 A procedure deϐined by means other than Fortran that is invoked by a Fortran procedure and does not33
cause termination of execution shall return to its caller.34

NOTE 1
Examples of code that might cause a transfer of control that bypasses the normal return mechanism of a Fortran
procedure are setjmp and longjmp in C and exception handling in other languages. No such behavior is permitted
by this document.

368 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3 If the interface of a procedure has a proc‑language‑binding‑spec, the procedure is interoperable (18.10).1

4 Interoperation with C functions is described in 18.10.2

NOTE 2
For explanatory information on deϐinition of procedures by means other than Fortran, see C.11.2.

15.6.4 Statement function (obsolescent)3

1 A statement function is a function deϐined by a single statement. Statement functions are obsolescent.4

R1547 stmt‑function‑stmt is function‑name ([dummy‑arg‑name‑list]) = scalar‑expr5

C1586 (R1547) Each primary in scalar‑expr shall be a constant (literal or named), a reference to a variable,6
a reference to a function, or an expression in parentheses. Each operation shall be intrinsic. If7
scalar‑expr contains a reference to a function, the reference shall not require an explicit interface,8
the function shall not require an explicit interface unless it is an intrinsic function, the function9
shall not be a transformational intrinsic, and the result shall be scalar. If an argument to a function10
is an array, it shall be an array name. If a reference to a statement function appears in scalar‑expr,11
its deϐinition shall have been provided earlier in the scoping unit and shall not be the name of the12
statement function being deϐined.13

C1587 (R1547) Named constants in scalar‑expr shall have been declared earlier in the scoping unit or14
made accessible by use or host association. If array elements appear in scalar‑expr, the array shall15
have been declared as an array earlier in the scoping unit or made accessible by use or host asso‑16
ciation.17

C1588 (R1547) If a dummy‑arg‑name, variable, function reference, or dummy function reference is typed18
by the implicit typing rules, its appearance in any subsequent type declaration statement shall con‑19
ϐirm this implied type and the values of any implied type parameters.20

C1589 (R1547) The function‑name and each dummy‑arg‑name shall be speciϐied, explicitly or implicitly,21
to be scalar.22

C1590 (R1547) A given dummy‑arg‑name shall not appear more than once in a given dummy‑arg‑name‑23
list.24

C1591 A statement function shall not be of a parameterized derived type.25

2 The deϐinition of a statement function with the same name as an accessible entity from the host shall be26
preceded by the declaration of its type in a type declaration statement.27

3 The dummy arguments have a scope of the statement function statement. Each dummy argument has the28
same type and type parameters as the entity of the same name in the scoping unit containing the statement29
function statement.30

4 A statement function shall not be supplied as an actual argument.31

5 Execution of a statement function consists of evaluating the expression using the values of the actual argu‑32
ments for the values of the corresponding dummy arguments and, if necessary, converting the result to the33
declared type and type parameters of the function.34

6 A function reference in the scalar expression shall not cause a dummy argument of the statement function35
to become redeϐined or undeϐined.36

J3/25‑007 369

J3/25‑007 WD 1539‑1 2024‑12‑29

15.7 Pure procedures1

1 A pure procedure is2

• a simple procedure,3
• a pure intrinsic procedure (16.1),4
• a module procedure in an intrinsic module, if it is speciϐied to be pure,5
• deϐined by a pure subprogram,6
• a dummy procedure that has been speciϐied to be PURE,7
• a procedure pointer that has been speciϐied to be PURE,8
• a type‑bound procedure that is bound to a pure procedure, or9
• a statement function24 that references only pure functions and does not contain the designator of a10
variable with the VOLATILE attribute.11

2 A pure subprogram is a subprogram that has the preϔix‑spec PURE or the preϔix‑spec SIMPLE, or that has12
the preϔix‑specELEMENTAL anddoes not have the preϔix‑spec IMPURE. The following additional constraints13
apply to pure subprograms.14

C1592 The speciϔication‑part of a pure function subprogram shall specify that all its nonpointer dummy15
data objects have the INTENT (IN) or the VALUE attribute.16

C1593 The function result of a pure function shall not be such that ϐinalization of a reference to the func‑17
tion would reference an impure procedure.18

C1594 The function result of a pure function shall not be both polymorphic and allocatable, or have a19
polymorphic allocatable ultimate component.20

C1595 The speciϔication‑part of a pure subroutine subprogram shall specify the intents of all its non‑21
pointer dummy data objects that do not have the VALUE attribute.22

C1596 An INTENT (OUT) dummy argument of a pure procedure shall not be such that ϐinalization of the23
actual argument would reference an impure procedure.24

C1597 An INTENT (OUT) dummy argument of a pure procedure shall not be polymorphic or have a poly‑25
morphic allocatable ultimate component.26

C1598 A local variable of a pure subprogram, or of a BLOCK construct within a pure subprogram, shall27
not have the SAVE or VOLATILE attribute.28

NOTE 1
Variable initialization in a type‑declaration‑stmt or a data‑stmt implies the SAVE attribute; therefore, such initializ‑
ation is also disallowed.

C1599 A named local entity or construct entity of a pure subprogram shall not be of a type that has default29
initialization of a data pointer component to a target at any level of component selection.30

C15100 The speciϔication‑part of a pure subprogram shall specify that all its dummy procedures are pure.31

C15101 If a procedure that is neither an intrinsic procedure nor a statement function is used in a context32
that requires it to be pure, then its interface shall be explicit in the scope of that use. The interface33
shall specify that the procedure is pure.34

24Statement functions are obsolescent.

370 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C15102 All internal subprograms in a pure subprogram shall be pure.1

C15103 A designator of a variable with the VOLATILE attribute shall not appear in a pure subprogram.2

C15104 In a pure subprogram any designator with a base object that is in common or accessed by use or3
host association, is a pointer dummy argument of a pure function, is a dummy argument with the4
INTENT (IN) attribute, is a coindexed object, or an object that is storage associated25 with any such5
variable, shall not be used6

(1) in a variable deϐinition context (19.6.7),7
(2) in a pointer association context (19.6.8),8
(3) as the data‑target in a pointer‑assignment‑stmt,9
(4) as the expr corresponding to a component in a structure‑constructor if the component has the10

POINTER attribute or has a pointer component at any level of component selection,11
(5) as the expr of an intrinsic assignment statement in which the variable is of a derived type if12

the derived type has a pointer component at any level of component selection,13
(6) as the source‑expr in a SOURCE= speciϐier if the designator is of a derived type that has a14

pointer component at any level of component selection,15
(7) as an actual argument corresponding to a dummy argument with the POINTER attribute, or16
(8) as the actual argument to the function C_LOC from the intrinsic module ISO_C_BINDING.17

NOTE 2
Item 5 requires that processors be able to determine if entities with the PRIVATE attribute or with private compon‑
ents have a pointer component.

C15105 Any procedure referenced in a pure subprogram, including one referenced via a deϐined opera‑18
tion, deϐined assignment, deϐined input/output, or ϐinalization, shall be pure.19

C15106 A statement that might result in the deallocation of a polymorphic entity is not permitted in a20
pure procedure.21

NOTE 3
This includes intrinsic assignment to a variable that has a potential subobject component that is polymorphic and
allocatable.

C15107 A pure subprogram shall not contain a print‑stmt, open‑stmt, close‑stmt, backspace‑stmt, endϔile‑22
stmt, rewind‑stmt, ϔlush‑stmt, wait‑stmt, or inquire‑stmt.23

C15108 A pure subprogram shall not contain a read‑stmt orwrite‑stmtwhose io‑unit is a ϔile‑unit‑number24
or *.25

C15109 A pure subprogram shall not contain an image control statement (11.7.1).26

C15110 A reference to the function C_FUNLOC from the intrinsic module ISO_C_BINDING shall not appear27
in a pure subprogram if its argument is impure.28

NOTE 4
The above constraints are designed to guarantee that a pure procedure is free from side effects (modiϐications of
data visible outside theprocedure),whichmeans that it is safe to reference it in constructs suchasDOCONCURRENT
and FORALL, where there is no explicit order of evaluation.

25Common blocks and storage association are obsolescent.

J3/25‑007 371

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 4 (cont.)
The constraints on pure subprograms appear to be complicated, but it is not necessary for a programmer to be in‑
timately familiar with them. From the programmer’s point of view, these constraints can be summarized as follows:
a pure subprogram cannot contain any operation that could conceivably result in an assignment or pointer assign‑
ment to a common variable, a variable accessed by use or host association, or an INTENT (IN) dummy argument;
nor can a pure subprogram contain any operation that could conceivably perform any external ϐile input/output or
execute an image control statement (including a STOP statement). Note the use of the word conceivably; it is not
sufϐicient for a pure subprogram merely to be side‑effect free in practice. For example, a function that contains an
assignment to a global variable but in a block that is not executed in any invocation of the function is nevertheless
not a pure function. The exclusion of functions of this nature is required if strict compile‑time checking is to be
used.
It is expected that most library procedures will conform to the constraints required of pure procedures, and so can
be declared pure and referenced in DO CONCURRENT constructs, FORALL statements and constructs, and within
user‑deϐined pure procedures.

NOTE 5
Pure subroutines are included to allow subroutine calls from pure procedures in a safe way, and to allow forall‑
assignment‑stmts to be deϐined assignments. The constraints for pure subroutines are based on the same principles
as for pure functions, except that side effects to INTENT (OUT), INTENT (INOUT), and pointer dummy arguments
are permitted.

15.8 Simple procedures1

1 A simple procedure is2

• an intrinsic procedure (16.1), if it is speciϐied to be simple,3
• a module procedure, if it is speciϐied to be simple,4
• a procedure deϐined by a simple subprogram,5
• a dummy procedure that has been speciϐied to be simple,6
• a procedure pointer that has been speciϐied to be simple,7
• a type‑bound procedure that is bound to a simple procedure,8
• a deferred type‑bound procedure whose interface speciϐies it to be simple,9
• a statement function26 deϐined in a simple subprogram.10

2 A simple procedure is also a pure procedure and is subject to the constraints for pure procedures (15.7). A11
simple procedure can also be an elemental procedure.12

3 A simple subprogram is a subprogram that has the preϔix‑spec SIMPLE. The following additional constraints13
apply to simple subprograms.14

C15111 The speciϔication‑part of a simple subprogram shall specify that all of its dummy procedures are15
simple.16

C15112 If a procedure that is not an intrinsic procedure, a module procedure of an intrinsic module, or17
a statement function is used in a context that requires it to be simple, then its interface shall be18
explicit in the scope of that use. The interface shall specify that the procedure is simple.19

C15113 All internal subprograms in a simple subprogram shall be simple.20

C15114 Any procedure referenced in a simple subprogram shall be simple.21
26Statement functions are obsolescent.

372 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C15115 A simple subprogram shall not contain a designator of a variable that is accessed by use or host1
association, unless the designator is part of a speciϐication inquiry (10.1.11) that is a constant ex‑2
pression.3

C15116 A simple subprogram shall not contain a reference to a variable in a common block27.4

C15117 A simple subprogram shall not contain an ENTRY statement28.5

15.9 Elemental procedures6

15.9.1 Elemental procedure declaration and interface7

1 An elemental procedure is8

• an elemental intrinsic procedure (16.1),9
• a module procedure in an intrinsic module, if it is speciϐied to be elemental,10
• a procedure that is deϐined by an elemental subprogram, or11
• a type‑bound procedure that is bound to an elemental procedure.12

An elemental procedure has only scalar dummy arguments, but may have array actual arguments.13

2 A dummy procedure or procedure pointer shall not be speciϐied to be ELEMENTAL.14

3 An elemental subprogramhas the preϔix‑specELEMENTAL. An elemental subprogram is a pure subprogram15
unless it has the preϔix‑spec IMPURE. The following additional constraints apply to elemental subprograms.16

C15118 All dummy arguments of an elemental procedure shall be scalar noncoarray dummy data objects17
and shall not have the POINTER or ALLOCATABLE attribute.18

C15119 The result of an elemental function shall be scalar, and shall not have the POINTER or ALLOCAT‑19
ABLE attribute.20

C15120 The speciϔication‑part of an elemental subprogram shall specify the intents of all of its dummy21
arguments that do not have the VALUE attribute.22

C15121 In the speciϔication‑expr that speciϐies a type parameter value of the result of an elemental func‑23
tion, an object designator with a dummy argument of the function as the base object shall appear24
only as the subject of a speciϐication inquiry (10.1.11), and that speciϐication inquiry shall not de‑25
pend on a property that is deferred.26

4 In a reference to an elemental procedure, if any argument is an array, each actual argument that corres‑27
ponds to an INTENT (OUT) or INTENT (INOUT) dummy argument shall be an array. All actual arguments28
shall be conformable. An array actual argument is considered to be associated with the scalar dummy ar‑29
guments of the procedure throughout the entire execution of the elemental reference; thus, the restrictions30
on actions speciϐied in 15.5.2.14 apply to the entirety of the actual array argument.31

15.9.2 Elemental function actual arguments and results32

1 If a generic name or a speciϐic name is used to reference an elemental function, the shape of the result is33
the same as the shape of the actual argument with the greatest rank. If there are no actual arguments or34
the actual arguments are all scalar, the result is scalar. In the array case, the values of the elements, if any,35

27Common blocks are obsolescent.
28The ENTRY statement is obsolescent.

J3/25‑007 373

J3/25‑007 WD 1539‑1 2024‑12‑29

of the result are the same as would have been obtained if the scalar function had been applied separately,1
in array element order, to corresponding elements of each array actual argument.2

NOTE
An example of an elemental reference to the intrinsic function MAX: if X and Y are arrays with bounds (1:M, 1:N),
then

MAX (X, 0.0, Y)
is an array expression of shape [M, N] whose elements in order have the values of

[((MAX (X(I, J), 0.0, Y(I, J)), I = 1, M), J = 1, N)]

15.9.3 Elemental subroutine actual arguments3

1 In a reference to an elemental subroutine, if the actual arguments corresponding to INTENT (OUT) and IN‑4
TENT (INOUT) dummy arguments are arrays, the values of the elements, if any, of the results are the same5
as would be obtained if the subroutine had been applied separately, in array element order, to correspond‑6
ing elements of each array actual argument.7

374 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16 Intrinsic procedures andmodules1

16.1 Classes of intrinsic procedures2

1 Intrinsic procedures are divided into eight classes: inquiry functions, elemental functions, transforma‑3
tional functions, elemental subroutines, simple subroutines, atomic subroutines, collective subroutines,4
and (impure) subroutines.5

2 An intrinsic inquiry function is one whose result depends on the properties of one or more of its argu‑6
ments instead of their values; in fact, these argument values may be undeϐined. Unless the description of7
an intrinsic inquiry function states otherwise, these arguments are permitted to be unallocated allocatable8
variables or pointers that are undeϐined or disassociated. An elemental intrinsic function is one that is spe‑9
ciϐied for scalar arguments, but may be applied to array arguments as described in 15.9. All other intrinsic10
functions are transformational functions; they almost all have one or more array arguments or an array11
result. All standard intrinsic functions are simple.12

3 An atomic subroutine is an intrinsic subroutine that performs an atomic action. The semantics of atomic13
actions are described in 16.5.14

4 A collective subroutine is an intrinsic subroutine that performs a cooperative calculation on a team of im‑15
ages without requiring synchronization. The semantics of collective subroutines are described in 16.6.16

5 The subroutineMOVE_ALLOCwithnoncoarray argument FROM, the subroutine SPLIT, the subroutineTOK‑17
ENIZE, and the elemental subroutine MVBITS, are simple. No other standard intrinsic subroutine is pure18
or simple.19

6 Generic names of standard intrinsic procedures are listed in 16.7. In most cases, generic functions accept20
arguments ofmore thanone type and the type of the result is the sameas the type of the arguments. Speciϐic21
names1 of standard intrinsic functions with corresponding generic names are listed in 16.8.22

7 If an intrinsic procedure is used as an actual argument to a procedure, its speciϐic name shall be used and it23
shall be referenced in the called procedure only with scalar arguments. If an intrinsic procedure does not24
have a speciϐic name, it shall not be used as an actual argument (15.5.2.10).25

8 Elemental intrinsic procedures behave as described in 15.9.26

16.2 Arguments to intrinsic procedures27

16.2.1 General rules28

1 All intrinsic procedures canbe invokedwith either positional arguments or argument keywords (15.5). The29
descriptions in 16.7 through 16.9 give the argument keyword names and positional sequence for standard30
intrinsic procedures.31

2 Many of the intrinsic procedures have optional arguments. These arguments are identiϐied by the notation32
“optional” in the argument descriptions. In addition, the names of the optional arguments are enclosed33

1Speciϐic intrinsic procedure names are obsolescent.

J3/25‑007 375

J3/25‑007 WD 1539‑1 2024‑12‑29

in square brackets in description headings and in lists of procedures. The valid forms of reference for1
procedures with optional arguments are described in 15.5.2.2

NOTE 1
The text CMPLX (X [, Y, KIND]) indicates that Y andKIND are both optional arguments. Valid reference forms include
CMPLX(x), CMPLX(x, y), CMPLX(x, KIND=kind), CMPLX(x, y, kind), and CMPLX(KIND=kind, X=x, Y=y).

NOTE 2
Some intrinsic procedures impose additional requirements on their optional arguments. For example, SELECTED_‑
REAL_KIND requires that at least one of its optional arguments be present, and RANDOM_SEED requires that at
most one of its optional arguments be present.

3 The dummy arguments of the speciϐic intrinsic procedures2 in 16.8 have INTENT (IN). The dummy argu‑3
ments of the intrinsic procedures in 16.9 have INTENT (IN) if the intent is not stated explicitly.4

4 The actual argument corresponding to an intrinsic function dummyargument namedKIND shall be a scalar5
integer constant expression and its value shall specify a representation method for the function result that6
exists on the processor.7

5 Intrinsic subroutines that assign values to arguments of type character do so in accordance with the rules8
of intrinsic assignment (10.2.1.3).9

6 In a reference to the intrinsic subroutineMVBITS, the actual arguments corresponding to the TO and FROM10
dummy arguments may be the same variable and may be associated scalar variables or associated array11
variables all of whose corresponding elements are associated. Apart from this, the actual arguments in12
a reference to an intrinsic subroutine shall be such that the execution of the intrinsic subroutine would13
satisfy the restrictions of 15.5.2.14.14

7 An argument to an intrinsic procedure other than ASSOCIATED, NULL, or PRESENT shall be a data object.15

16.2.2 The shape of array arguments16

1 Unless otherwise speciϐied, the intrinsic inquiry functions accept array arguments forwhich the shapeneed17
not be deϐined. The shape of array arguments to transformational and elemental intrinsic functions shall18
be deϐined.19

16.2.3 Mask arguments20

1 Some array intrinsic functions have an optional MASK argument of type logical that is used by the function21
to select the elements of oneormore arguments tobeoperatedonby the function. Any element not selected22
by the mask need not be deϐined at the time the function is invoked.23

2 The MASK affects only the value of the function, and does not affect the evaluation, prior to invoking the24
function, of arguments that are array expressions.25

16.2.4 DIM arguments and reduction functions26

1 Some array intrinsic functions are “reduction” functions; that is, they reduce the rank of an array by col‑27
lapsing one dimension (or all dimensions, usually producing a scalar result). These functions have a DIM28
argument that can specify the dimension to be reduced.29

2Speciϐic intrinsic procedure names are obsolescent.

376 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 The process of reducing a dimension usually combines the selected elements with a simple operation such1
as addition or an intrinsic function such as MAX, but more sophisticated reductions are also provided, e.g.2
by COUNT and MAXLOC.3

16.3 Bit model4

16.3.1 General5

1 The bit manipulation procedures are described in terms of a model for the representation and behavior of6
bits on a processor.7

2 For the purposes of these procedures, a bit is deϐined to be a binary digit w located at position k of a non‑8
negative integer scalar object based on a model nonnegative integer deϐined by9

j =

z−1∑
k=0

wk × 2k

and for which wk has the value 0 or 1. This deϐines a sequence of bits wz−1 . . . w0, with wz−1 the leftmost10
bit and w0 the rightmost bit. The positions of bits in the sequence are numbered from right to left, with11
the position of the rightmost bit being zero. The length of a sequence of bits is z. An example of a model12
number compatible with the examples used in 16.4 would have z = 32, thereby deϐining a 32‑bit integer.13

3 The interpretation of a negative integer as a sequence of bits is processor dependent.14

4 The inquiry function BIT_SIZE provides the value of the parameter z of the model.15

5 Effectively, this model deϐines an integer object to consist of z bits in sequence numbered from right to left16
from 0 to z − 1. This model is valid only in the context of the use of such an object as the argument or17
result of an intrinsic procedure that interprets that object as a sequence of bits. In all other contexts, the18
model deϐined for an integer in 16.4 applies. In particular, whereas the models are identical for r = 2 and19
wz−1 = 0, they do not correspond for r ̸= 2 or wz−1 = 1 and the interpretation of bits in such objects is20
processor dependent.21

16.3.2 Bit sequence comparisons22

1 When bit sequences of unequal length are compared, the shorter sequence is considered to be extended to23
the length of the longer sequence by padding with zero bits on the left.24

2 Bit sequences are compared from left to right, one bit at a time, until unequal bits are found or all bits have25
been compared and found to be equal. If unequal bits are found, the sequencewith zero in the unequal pos‑26
ition is considered to be less than the sequence with one in the unequal position. Otherwise the sequences27
are considered to be equal.28

16.3.3 Bit sequences as arguments to INT and REAL29

1 When a boz‑literal‑constant is the argument A of the intrinsic function INT or REAL,30

• if the length of the sequence of bits speciϐied by A is less than the size in bits of a scalar variable of31
the same type and kind type parameter as the result, the boz‑literal‑constant is treated as if it were32
extended to a length equal to the size in bits of the result by padding on the left with zero bits, and33

J3/25‑007 377

J3/25‑007 WD 1539‑1 2024‑12‑29

• if the length of the sequence of bits speciϐied by A is greater than the size in bits of a scalar variable of1
the same type and kind type parameter as the result, the boz‑literal‑constant is treated as if it were2
truncated from the left to a length equal to the size in bits of the result.3

C1601 If a boz‑literal‑constant is truncated as an argument to the intrinsic function REAL, the discarded4
bits shall all be zero.5

NOTE
The result values of the intrinsic functions CMPLX and DBLE are deϐined by references to the intrinsic function
REAL with the same arguments. Therefore, the padding and truncation of boz‑literal‑constant arguments to those
intrinsic functions is the same as for the intrinsic function REAL.

16.4 Numeric models6

1 The numeric manipulation and inquiry functions are described in terms of a model for the representation7
and behavior of numbers on a processor. The model has parameters that are determined so as to make the8
model best ϐit the machine on which the program is executed.9

2 The model set for integer i is deϐined by10

i = s×
q−1∑
k=0

wk × rk

where r is an integer exceeding one, q is a positive integer, eachwk is a nonnegative integer less than r, and11
s is +1 or−1. The integer parameters r and q determine the set of model integers.12

3 The model set for real x is deϐined by13

x =

0 or

s× be ×
p∑

k=1

fk × b−k

where b and p are integers exceeding one; each fk is a nonnegative integer less than b, with f1 nonzero; s14
is +1 or−1; and e is an integer that lies between some integer maximum emax and some integer minimum15
emin inclusively. For x = 0, its exponent e and digits fk are deϐined to be zero. The integer parameters b, p,16
emin, and emax determine the set of model ϐloating‑point numbers.17

4 The parameters of the integer and real models are available for each representation method of the integer18
and real types. The parameters characterize the set of available numbers in the deϐinition of the model.19
Intrinsic functions provide the values of some parameters and other values related to the models.20

5 There is also an extendedmodel set for each kind of real x; this extendedmodel is the same as the ordinary21
model except that there are no limits on the range of the exponent e.22

NOTE
Some of the function descriptions use the models

i = s×
30∑
k=0

wk × 2k

and

378 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE (cont.)

x = 0 or s× 2e ×

(
1

2
+

24∑
k=2

fk × 2−k

)
, −126 ≤ e ≤ 127

16.5 Atomic subroutines1

1 An atomic subroutine is an intrinsic subroutine that performs an action on its ATOM argument, and if it2
has an OLD argument, determination of the value to be assigned to that argument, atomically. Deϐinition3
or evaluation of any argument other than ATOM is not performed atomically.4

2 For any two executions in unordered segments of atomic subroutines whose ATOM argument is the same5
object, the effect is as if one of the executions is performed completely before the other execution begins.6
Which execution is performed ϐirst is processor dependent. The sequence of atomic actionswithin ordered7
segments is speciϐied in 5.3.5. If successive atomic subroutine invocations on image P redeϐine a variable8
atomically in segments Pi and Pj , atomic references to that variable from imageQ in a segmentQk that is9
unordered relative to Pi and Pj may observe the changes in the value of that variable in any order.10

3 Atomic operations shall make asynchronous progress. If a variable X on image P is deϐined by an atomic11
subroutine on image Q, image R repeatedly references X [P] by an atomic subroutine in an unordered12
segment, and no other image deϐines X [P] in an unordered segment, imageR shall eventually receive the13
value assigned by imageQ, even if none of the images P ,Q, orR execute an image control statement until14
after the deϐinition of X [P] by imageQ and the reception of that value by imageR.15

4 If the STAT argument is present in an invocation of an atomic subroutine and no error condition occurs, it16
is assigned the value zero.17

5 If the STAT argument is present in an invocation of an atomic subroutine and an error condition occurs, any18
other argument that is not INTENT (IN) becomes undeϐined. If the ATOM argument is on a failed image, an19
error condition occurs and the value STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV20
is assigned to the STAT argument. If any other error condition occurs, the STAT argument is assigned a21
processor‑dependent positive value that is different from the value of STAT_FAILED_IMAGE.22

6 If the STAT argument is not present in an invocation of an atomic subroutine and an error condition occurs,23
error termination is initiated.24

NOTE
The properties of atomic subroutines are intended to support custom synchronization mechanisms. The program
will need to handle all possible orderings of sequences of atomic subroutine executions that can arise as a con‑
sequence of the above rules; note that the orderings can appear to be different on different images even in the same
program execution.

16.6 Collective subroutines25

1 Successful execution of a collective subroutine performs a calculation on all the images of the current team26
and assigns a computed value on one or all of them. If it is invoked by one image, it shall be invoked by the27
same statement on all active images of its current team in segments that are not ordered with respect to28
each other; corresponding references participate in the same collective computation.29

2 Before execution of the ϐirst CHANGE TEAM statement on an image, in between executions of CHANGE30

J3/25‑007 379

J3/25‑007 WD 1539‑1 2024‑12‑29

TEAMand/or ENDTEAM statements, and after the last execution of an ENDTEAM statement, the sequence1
of invocations of collective subroutines shall be the same on all active images of a team. A collective sub‑2
routine shall not be referenced when an image control statement is not permitted to be executed (for ex‑3
ample, in a procedure invoked from a CRITICAL construct).4

C1602 A reference to a collective subroutine shall not appear in a context where an image control state‑5
ment is not permitted to appear.6

3 If the A argument in a reference to a collective subroutine is a coarray, the corresponding ultimate argu‑7
ments on all active images of the current team shall be corresponding coarrays as described in 5.4.7.8

4 If the STAT argument is present in a reference to a collective subroutine on one image:9
• it shall be present on all the corresponding references;10
• if no error condition occurs on that image, it is assigned the value zero;11
• if an error condition occurs on that image, the A argument becomes undeϐined;12
• if an error condition occurs other than that an image in the current team has stopped or failed, the13
STAT argument is assigned a processor‑dependent positive value that is different from the value of14
STAT_STOPPED_IMAGE or STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV.15

5 A reference to a collective subroutine on an image may be successful even if an error condition occurs16
during the corresponding reference on another image. If error conditions occur on more than one image,17
the error conditions may be different.18

6 If the current team contains an image that is known to have stopped, an error condition occurs, and if the19
STAT argument is present it is assigned the value STAT_STOPPED_IMAGE from the intrinsic module ISO_‑20
FORTRAN_ENV. Otherwise, if the current team contained an image that is known to have failed, an error21
condition occurs, and if the STAT argument is present it is assigned the value STAT_FAILED_IMAGE from22
the intrinsic module ISO_FORTRAN_ENV.23

7 If the STAT argument is not present in a reference to a collective subroutine and an error condition occurs,24
error termination is initiated.25

8 If the ERRMSG argument is present in a reference to a collective subroutine and an error condition occurs, it26
is assigned an explanatorymessage, as if by intrinsic assignment. If no error condition occurs, the deϐinition27
status and value of ERRMSG are unchanged.28

NOTE 1
The argument A becomes undeϐined if an error condition occurs during execution of a collective subroutine because
it is intended to allow the processor to use A for intermediate values during calculation.

NOTE 2
Although the calculations performed by a collective subroutine have some internal synchronizations, a reference to
a collective subroutine is not an image control statement.

16.7 Standard generic intrinsic procedures29

1 For all of the standard intrinsic procedures, the arguments shown are the names that shall be used for30
argument keywords if the keyword form is used for actual arguments.31

380 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 1
For example, a reference to CMPLX can be written in the form CMPLX (A, B, M) or in the form
CMPLX (Y = B, KIND = M, X = A).

NOTE 2
Many of the argument keywords have names that are indicative of their usage. For example:

KIND Describes the kind type parameter of the result
STRING, STRING_A An arbitrary character string
BACK Controls the direction of string scan

(forward or backward)
MASK A mask to be applied to the arguments
DIM A selected dimension of an array argument

2 In the Class column of Table 16.1,1

A indicates that the procedure is an atomic subroutine,2
C indicates that the procedure is a collective subroutine,3
E indicates that the procedure is an elemental function,4
ES indicates that the procedure is a simple elemental subroutine,5
I indicates that the procedure is an inquiry function,6

PS indicates that the procedure is a simple subroutine when the FROM argument is not a coarray,7
S indicates that the procedure is an impure subroutine,8
SS indicates that the procedure is a simple subroutine, and9
T indicates that the procedure in a transformational function.10

Table 16.1— Standard generic intrinsic procedure summary
Procedure (arguments) Class Description
ABS (A) E Absolute value.
ACHAR (I [, KIND]) E Character from ASCII code value.
ACOS (X) E Arccosine (inverse cosine) function.
ACOSD (X) E Arc cosine function in degrees.
ACOSH (X) E Inverse hyperbolic cosine function.
ACOSPI (X) E Circular arc cosine function.
ADJUSTL (STRING) E Left‑justiϐied string value.
ADJUSTR (STRING) E Right‑justiϐied string value.
AIMAG (Z) E Imaginary part of a complex number.
AINT (A [, KIND]) E Truncation toward 0 to a whole number.
ALL (MASK) or ALL (MASK, DIM) T Array reduced by .AND. operator.
ALLOCATED (ARRAY) or ALLOCATED (SCALAR) I Allocation status of allocatable variable.
ANINT (A [, KIND]) E Nearest whole number.
ANY (MASK) or ANY (MASK, DIM) T Array reduced by .OR. operator.
ASIN (X) E Arcsine (inverse sine) function.
ASIND (X) E Arc sine function in degrees.
ASINH (X) E Inverse hyperbolic sine function.
ASINPI (X) E Circular arc sine function.
ASSOCIATED (POINTER [, TARGET]) I Pointer association status inquiry.
ATAN (X) or ATAN (Y, X) E Arctangent (inverse tangent) function.
ATAN2 (Y, X) E Arctangent (inverse tangent) function.
ATAN2D (Y, X) E Arc tangent function in degrees.
ATAN2PI (Y, X) E Circular arc tangent function.
ATAND (X) or ATAND (Y, X) E Arc tangent function in degrees.
ATANH (X) E Inverse hyperbolic tangent function.
ATANPI (X) or ATANPI (Y, X) E Circular arc tangent function.
ATOMIC_ADD (ATOM, VALUE [, STAT]) A Atomic addition.
ATOMIC_AND (ATOM, VALUE [, STAT]) A Atomic bitwise AND.
ATOMIC_CAS (ATOM, OLD, COMPARE, NEW[, STAT]) A Atomic compare and swap.

J3/25‑007 381

J3/25‑007 WD 1539‑1 2024‑12‑29

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure (arguments) Class Description
ATOMIC_DEFINE (ATOM, VALUE [, STAT]) A Deϐine a variable atomically.
ATOMIC_FETCH_ADD (ATOM, VALUE, OLD [, STAT]) A Atomic fetch and add.
ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT]) A Atomic fetch and bitwise AND.
ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT]) A Atomic fetch and bitwise OR.
ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT]) A Atomic fetch and bitwise exclusive OR.
ATOMIC_OR (ATOM, VALUE [, STAT]) A Atomic bitwise OR.
ATOMIC_REF (VALUE, ATOM [, STAT]) A Reference a variable atomically.
ATOMIC_XOR (ATOM, VALUE [, STAT]) A Atomic bitwise exclusive OR.
BESSEL_J0 (X) E Bessel function of the 1st kind, order 0.
BESSEL_J1 (X) E Bessel function of the 1st kind, order 1.
BESSEL_JN (N, X) E Bessel function of the 1st kind, order N.
BESSEL_JN (N1, N2, X) T Bessel functions of the 1st kind.
BESSEL_Y0 (X) E Bessel function of the 2nd kind, order 0.
BESSEL_Y1 (X) E Bessel function of the 2nd kind, order 1.
BESSEL_YN (N, X) E Bessel function of the 2nd kind, order N.
BESSEL_YN (N1, N2, X) T Bessel functions of the 2nd kind.
BGE (I, J) E Bitwise greater than or equal to.
BGT (I, J) E Bitwise greater than.
BIT_SIZE (I) I Number of bits in integer model 16.3.
BLE (I, J) E Bitwise less than or equal to.
BLT (I, J) E Bitwise less than.
BTEST (I, POS) E Test single bit in an integer.
CEILING (A [, KIND]) E Least integer greater than or equal to A.
CHAR (I [, KIND]) E Character from code value.
CMPLX (X [, KIND]) or CMPLX (X [, Y, KIND]) E Conversion to complex type.
CO_BROADCAST (A, SOURCE_IMAGE [, STAT, ERRMSG]) C Broadcast value to images.
CO_MAX (A [, RESULT_IMAGE, STAT, ERRMSG]) C Compute maximum value across images.
CO_MIN (A [, RESULT_IMAGE, STAT, ERRMSG]) C Compute minimum value across images.
CO_REDUCE (A, OPERATION [, RESULT_IMAGE, STAT, C Generalized reduction across images.
ERRMSG])

CO_SUM (A [, RESULT_IMAGE, STAT, ERRMSG]) C Compute sum across images.
COMMAND_ARGUMENT_COUNT () T Number of command arguments.
CONJG (Z) E Conjugate of a complex number.
COS (X) E Cosine function.
COSD (X) E Degree cosine function.
COSH (X) E Hyperbolic cosine function.
COSHAPE (COARRAY [, KIND]) I Sizes of codimensions of a coarray.
COSPI (X) E Circular cosine function.
COUNT (MASK [, DIM, KIND]) T Array reduced by counting true values.
CPU_TIME (TIME) S Processor time used.
CSHIFT (ARRAY, SHIFT [, DIM]) T Circular shift of an array.
DATE_AND_TIME ([DATE, TIME, ZONE, VALUES]) S Date and time.
DBLE (A) E Conversion to double precision real.
DIGITS (X) I Signiϐicant digits in numeric model.
DIM (X, Y) E Maximum of X− Y and zero.
DOT_PRODUCT (VECTOR_A, VECTOR_B) T Dot product of two vectors.
DPROD (X, Y) E Double precision real product.
DSHIFTL (I, J, SHIFT) E Combined left shift.
DSHIFTR (I, J, SHIFT) E Combined right shift.
EOSHIFT (ARRAY, SHIFT [, BOUNDARY, DIM]) T End‑off shift of the elements of an array.
EPSILON (X) I Model number that is small compared to 1.
ERF (X) E Error function.
ERFC (X) E Complementary error function.
ERFC_SCALED (X) E Scaled complementary error function.
EVENT_QUERY (EVENT, COUNT [, STAT]) S Query event count.
EXECUTE_COMMAND_LINE (COMMAND [, WAIT, EXITSTAT, S Execute a command line.
CMDSTAT, CMDMSG])

EXP (X) E Exponential function.
EXPONENT (X) E Exponent of ϐloating‑point number.
EXTENDS_TYPE_OF (A, MOLD) I Dynamic type extension inquiry.
FAILED_IMAGES ([TEAM, KIND]) T Indices of failed images.
FINDLOC (ARRAY, VALUE [, MASK, KIND, BACK]) or T Location(s) of a speciϐied value.
FINDLOC (ARRAY, VALUE, DIM [, MASK, KIND, BACK])

382 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure (arguments) Class Description
FLOOR (A [, KIND]) E Greatest integer less than or equal to A.
FRACTION (X) E Fractional part of number.
GAMMA (X) E Gamma function.
GET_COMMAND ([COMMAND, LENGTH, STATUS, ERRMSG]) S Get program invocation command.
GET_COMMAND_ARGUMENT (NUMBER [, VALUE, LENGTH, S Get program invocation argument.
STATUS, ERRMSG])

GET_ENVIRONMENT_VARIABLE (NAME [, VALUE, LENGTH, S Get environment variable.
STATUS, TRIM_NAME, ERRMSG])

GET_TEAM ([LEVEL]) T Team.
HUGE (X) I Largest model value or last enumeration value.
HYPOT (X, Y) E Euclidean distance function.
IACHAR (C [, KIND]) E ASCII code value for character.
IALL (ARRAY, DIM [, MASK]) or IALL (ARRAY [, MASK]) T Array reduced by IAND function.
IAND (I, J) E Bitwise AND.
IANY (ARRAY, DIM [, MASK]) or IANY (ARRAY [, MASK]) T Array reduced by IOR function.
IBCLR (I, POS) E I with bit POS replaced by zero.
IBITS (I, POS, LEN) E Speciϐied sequence of bits.
IBSET (I, POS) E I with bit POS replaced by one.
ICHAR (C [, KIND]) E Code value for character.
IEOR (I, J) E Bitwise exclusive OR.
IMAGE_INDEX (COARRAY, SUB, TEAM_NUMBER) or T Image index from cosubscripts.
IMAGE_INDEX (COARRAY, SUB, TEAM) or
IMAGE_INDEX (COARRAY, SUB)
IMAGE_STATUS (IMAGE [, TEAM]) E Image execution state.
INDEX (STRING, SUBSTRING [, BACK, KIND]) E Character string search.
INT (A [, KIND]) E Conversion to integer type.
IOR (I, J) E Bitwise inclusive OR.
IPARITY (ARRAY, DIM [, MASK]) or IPARITY (ARRAY [, MASK]) T Array reduced by IEOR function.
ISHFT (I, SHIFT) E Logical shift.
ISHFTC (I, SHIFT [, SIZE]) E Circular shift of the rightmost bits.
IS_CONTIGUOUS (ARRAY) I Array contiguity test (8.5.7).
IS_IOSTAT_END (I) E IOSTAT value test for end of ϐile.
IS_IOSTAT_EOR (I) E IOSTAT value test for end of record.
KIND (X) I Value of the kind type parameter of X.
LBOUND (ARRAY [, DIM, KIND]) I Lower bound(s).
LCOBOUND (COARRAY [, DIM, KIND]) I Lower cobound(s) of a coarray.
LEADZ (I) E Number of leading zero bits.
LEN (STRING [, KIND]) I Length of a character entity.
LEN_TRIM (STRING [, KIND]) E Length without trailing blanks.
LGE (STRING_A, STRING_B) E ASCII greater than or equal.
LGT (STRING_A, STRING_B) E ASCII greater than.
LLE (STRING_A, STRING_B) E ASCII less than or equal.
LLT (STRING_A, STRING_B) E ASCII less than.
LOG (X) E Natural logarithm.
LOG_GAMMA (X) E Logarithm of the absolute value of the gamma

function.
LOG10 (X) E Common logarithm.
LOGICAL (L [, KIND]) E Conversion between kinds of logical.
MASKL (I [, KIND]) E Left justiϐied mask.
MASKR (I [, KIND]) E Right justiϐied mask.
MATMUL (MATRIX_A, MATRIX_B) T Matrix multiplication.
MAX (A1, A2 [, A3, ...]) E Maximum value.
MAXEXPONENT (X) I Maximum exponent of a real model.
MAXLOC (ARRAY, DIM [, MASK, KIND, BACK]) or T Location(s) of maximum value.
MAXLOC (ARRAY [, MASK, KIND, BACK])
MAXVAL (ARRAY, DIM [, MASK]) orMAXVAL (ARRAY [, MASK]) T Maximum value(s) of array.
MERGE (TSOURCE, FSOURCE, MASK) E Expression value selection.
MERGE_BITS (I, J, MASK) E Merge of bits under mask.
MIN (A1, A2 [, A3, ...]) E Minimum value.
MINEXPONENT (X) I Minimum exponent of a real model.
MINLOC (ARRAY, DIM [, MASK, KIND, BACK]) or T Location(s) of minimum value.
MINLOC (ARRAY [, MASK, KIND, BACK])
MINVAL (ARRAY, DIM [, MASK]) or MINVAL (ARRAY [, MASK]) T Minimum value(s) of array.
MOD (A, P) E Remainder function.

J3/25‑007 383

J3/25‑007 WD 1539‑1 2024‑12‑29

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure (arguments) Class Description
MODULO (A, P) E Modulo function.
MOVE_ALLOC (FROM, TO [, STAT, ERRMSG]) PS Move an allocation.
MVBITS (FROM, FROMPOS, LEN, TO, TOPOS) ES Copy a sequence of bits.
NEAREST (X, S) E Adjacent machine number.
NEW_LINE (A) I Newline character.
NEXT (A [, STAT]) E Next enumeration value.
NINT (A [, KIND]) E Nearest integer.
NORM2 (X) or NORM2 (X, DIM) T L2 norm of an array.
NOT (I) E Bitwise complement.
NULL ([MOLD]) T Disassociated pointer or unallocated

allocatable entity.
NUM_IMAGES () or NUM_IMAGES (TEAM) or T Number of images.
NUM_IMAGES (TEAM_NUMBER)
OUT_OF_RANGE (X, MOLD [, ROUND]) E Whether a value cannot be converted safely.
PACK (ARRAY, MASK [, VECTOR]) T Array packed into a vector.
PARITY (MASK) or PARITY (MASK, DIM) T Array reduced by .NEQV. operator.
POPCNT (I) E Number of one bits.
POPPAR (I) E Parity expressed as 0 or 1.
PRECISION (X) I Decimal precision of a real model.
PRESENT (A) I Presence of optional argument.
PREVIOUS (A [, STAT]) E Previous enumeration value.
PRODUCT (ARRAY, DIM [, MASK]) or T Array reduced by multiplication.
PRODUCT (ARRAY [, MASK])
RADIX (X) I Base of a numeric model.
RANDOM_INIT (REPEATABLE, IMAGE_DISTINCT) S Initialize pseudorandom number generator.
RANDOM_NUMBER (HARVEST) S Generate pseudorandom number(s).
RANDOM_SEED ([SIZE, PUT, GET]) S Pseudorandom number generator control.
RANGE (X) I Decimal exponent range of a numeric model

(16.4).
RANK (A) I Rank of a data object.
REAL (A [, KIND]) E Conversion to real type.
REDUCE (ARRAY, OPERATION [,MASK, IDENTITY, ORDERED]) T General reduction of array
or REDUCE (ARRAY, OPERATION, DIM
[, MASK, IDENTITY, ORDERED])

REPEAT (STRING, NCOPIES) T Repetitive string concatenation.
RESHAPE (SOURCE, SHAPE [, PAD, ORDER]) T Arbitrary shape array construction.
RRSPACING (X) E Reciprocal of relative spacing of model

numbers.
SAME_TYPE_AS (A, B) I Dynamic type equality test.
SCALE (X, I) E Real number scaled by radix power.
SCAN (STRING, SET [, BACK, KIND]) E Character set membership search.
SELECTED_CHAR_KIND (NAME) T Character kind selection.
SELECTED_INT_KIND (R) T Integer kind selection.
SELECTED_LOGICAL_KIND (BITS) T Logical kind selection.
SELECTED_REAL_KIND ([P, R, RADIX]) T Real kind selection.
SET_EXPONENT (X, I) E Real value with speciϐied exponent.
SHAPE (SOURCE [, KIND]) I Shape of an array or a scalar.
SHIFTA (I, SHIFT) E Right shift with ϐill.
SHIFTL (I, SHIFT) E Left shift.
SHIFTR (I, SHIFT) E Right shift.
SIGN (A, B) E Magnitude of A with the sign of B.
SIN (X) E Sine function.
SIND (X) E Degree sine function.
SINH (X) E Hyperbolic sine function.
SINPI (X) E Circular sine function.
SIZE (ARRAY [, DIM, KIND]) I Size of an array or one extent.
SPACING (X) E Spacing of model numbers.
SPLIT (STRING, SET, POS [, BACK]) SS Parse a string into tokens, one at a time.
SPREAD (SOURCE, DIM, NCOPIES) T Value replicated in a new dimension.
SQRT (X) E Square root.
STOPPED_IMAGES ([TEAM, KIND]) T Indices of stopped images.
STORAGE_SIZE (A [, KIND]) I Storage size in bits.
SUM (ARRAY, DIM [, MASK]) or SUM (ARRAY [, MASK]) T Array reduced by addition.
SYSTEM_CLOCK ([COUNT, COUNT_RATE, COUNT_MAX]) S Query system clock.

384 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Table 16.1: Standard generic intrinsic procedure summary (cont.)
Procedure (arguments) Class Description
TAN (X) E Tangent function.
TAND (X) E Degree tangent function.
TANH (X) E Hyperbolic tangent function.
TANPI (X) E Circular tangent function.
TEAM_NUMBER ([TEAM]) T Team number.
THIS_IMAGE ([TEAM]) T Index of the invoking image.
THIS_IMAGE (COARRAY [, TEAM]) or T Cosubscript(s) for this image.
THIS_IMAGE (COARRAY, DIM [, TEAM])
TINY (X) I Smallest positive model number.
TOKENIZE (STRING, SET, TOKENS [, SEPARATOR]) or SS Parse a string into tokens.
TOKENIZE (STRING, SET, FIRST, LAST)
TRAILZ (I) E Number of trailing zero bits.
TRANSFER (SOURCE, MOLD [, SIZE]) T Transfer physical representation.
TRANSPOSE (MATRIX) T Transpose of an array of rank two.
TRIM (STRING) T String without trailing blanks.
UBOUND (ARRAY [, DIM, KIND]) I Upper bound(s).
UCOBOUND (COARRAY [, DIM, KIND]) I Upper cobound(s) of a coarray.
UNPACK (VECTOR, MASK, FIELD) T Vector unpacked into an array.
VERIFY (STRING, SET [, BACK, KIND]) E Character set non‑membership search.

3 The effect of calling EXECUTE_COMMAND_LINE on any image other than image 1 in the initial team is pro‑1
cessor dependent.2

4 The use of all other standard intrinsic procedures in unordered segments is subject only to their argument3
use following the rules in 11.7.2.4

16.8 Speciϐic names for standard intrinsic functions (obsolescent)5

1 Speciϐic names for standard intrinsic functions are obsolescent.6

2 Except for AMAX0, AMIN0, MAX1, and MIN1, the result type of the speciϐic function is the same that the7
result type of the corresponding generic function reference would be if it were invoked with the same8
arguments as the speciϐic function.9

3 A function listed in Table 16.3 is not permitted to be used as an actual argument (15.5.1, C1534), as a10
target in a procedure pointer assignment statement (10.2.2.2, C1033), as an initial target in a procedure11
declaration statement (15.4.3.6, C1519), or to specify an interface (15.4.3.6, C1515).12

Table 16.2— Unrestricted speciϐic intrinsic functions

Speciϐic name Generic name Argument type and kind
ABS ABS default real
ACOS ACOS default real
AIMAG AIMAG default complex
AINT AINT default real
ALOG LOG default real
ALOG10 LOG10 default real
AMOD MOD default real
ANINT ANINT default real
ASIN ASIN default real
ATAN ATAN (X) default real
ATAN2 ATAN2 default real
CABS ABS default complex
CCOS COS default complex
CEXP EXP default complex
CLOG LOG default complex
CONJG CONJG default complex

J3/25‑007 385

J3/25‑007 WD 1539‑1 2024‑12‑29

Unrestricted speciϐic intrinsic functions (cont.)
Speciϐic name Generic name Argument type and kind
COS COS default real
COSH COSH default real
CSIN SIN default complex
CSQRT SQRT default complex
DABS ABS double precision real
DACOS ACOS double precision real
DASIN ASIN double precision real
DATAN ATAN double precision real
DATAN2 ATAN2 double precision real
DCOS COS double precision real
DCOSH COSH double precision real
DDIM DIM double precision real
DEXP EXP double precision real
DIM DIM default real
DINT AINT double precision real
DLOG LOG double precision real
DLOG10 LOG10 double precision real
DMOD MOD double precision real
DNINT ANINT double precision real
DPROD DPROD default real
DSIGN SIGN double precision real
DSIN SIN double precision real
DSINH SINH double precision real
DSQRT SQRT double precision real
DTAN TAN double precision real
DTANH TANH double precision real
EXP EXP default real
IABS ABS default integer
IDIM DIM default integer
IDNINT NINT double precision real
INDEX INDEX default character
ISIGN SIGN default integer
LEN LEN default character
MOD MOD default integer
NINT NINT default real
SIGN SIGN default real
SIN SIN default real
SINH SINH default real
SQRT SQRT default real
TAN TAN default real
TANH TANH default real

Table 16.3— Restricted speciϐic intrinsic functions

Speciϐic name Generic name Argument type and kind
AMAX0 (…) REAL (MAX (…)) default integer
AMAX1 MAX default real
AMIN0 (…) REAL (MIN (…)) default integer
AMIN1 MIN default real
CHAR CHAR default integer
DMAX1 MAX double precision real
DMIN1 MIN double precision real
FLOAT REAL default integer
ICHAR ICHAR default character
IDINT INT double precision real
IFIX INT default real
INT INT default real
LGE LGE default character
LGT LGT default character
LLE LLE default character
LLT LLT default character

386 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Restricted speciϐic intrinsic functions (cont.)

Speciϐic name Generic name Argument type and kind
MAX0 MAX default integer
MAX1 (…) INT (MAX (…)) default real
MIN0 MIN default integer
MIN1 (…) INT (MIN (…)) default real
REAL REAL default integer
SNGL REAL double precision real

16.9 Speciϐications of the standard intrinsic procedures1

16.9.1 General2

1 Detailed speciϐications of the standard generic intrinsic procedures are provided in 16.9 in alphabetical3
order.4

2 The types and type parameters of standard intrinsic procedure arguments and function results are determ‑5
ined by these speciϐications. The “Argument(s)” paragraphs specify requirements on the actual arguments6
of the procedures. The result characteristics are sometimes speciϐied in terms of the characteristics of the7
arguments. A program shall not invoke an intrinsic procedure under circumstances where a value to be8
assigned to a subroutine argument or returned as a function result is not representable by objects of the9
speciϐied type and type parameters.10

3 When an allocatable deferred‑length character scalar corresponding to an INTENT (INOUT) or INTENT11
(OUT) argument is assigned a value, the value is assigned as if by intrinsic assignment.12

4 If an IEEE inϐinity is assignedor returnedbyan intrinsic procedure, the intrinsicmodule IEEE_ARITHMETIC13
is accessible, and the actual arguments were ϐinite numbers, the ϐlag IEEE_OVERFLOW or IEEE_DIVIDE_‑14
BY_ZERO shall signal. If an IEEE NaN is assigned or returned, the actual arguments were ϐinite numbers,15
the intrinsic module IEEE_ARITHMETIC is accessible, and the exception IEEE_INVALID is supported, the16
ϐlag IEEE_INVALID shall signal. If no IEEE inϐinity or NaN is assigned or returned, these ϐlags shall have the17
same status as when the intrinsic procedure was invoked.18

5 The result values of some functions are described using pseudo‑subscripts (s1 to sn) of the argument ar‑19
ray(s). These should be interpreted as if the lower bounds of the arrays were all equal to one.20

16.9.2 ABS (A)21

1 Description. Absolute value.22

2 Class. Elemental function.23

3 Argument. A shall be of type integer, real, or complex.24

4 Result Characteristics. The same as A except that if A is complex, the result is real.25

5 Result Value. If A is of type integer or real, the value of the result is |A|; if A is complexwith value (x, y), the26
result is equal to a processor‑dependent approximation to

√
x2 + y2 computedwithout undue overϐlow or27

underϐlow.28

6 Example. ABS ((3.0, 4.0)) has the value 5.0 (approximately).29

J3/25‑007 387

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.3 ACHAR (I [, KIND])1

1 Description. Character from ASCII code value.2

2 Class. Elemental function.3

3 Arguments.4
I shall be of type integer.5
KIND (optional) shall be a scalar integer constant expression.6

4 Result Characteristics. Character of length one. If KIND is present, the kind type parameter is that spe‑7
ciϐied by the value of KIND; otherwise, the kind type parameter is that of default character.8

5 Result Value. If I has a value in the range 0 ≤ I ≤ 127, the result is the character in position I of the ASCII9
collating sequence, provided the processor is capable of representing that character in the character kind10
of the result; otherwise, the result is processor dependent. ACHAR (IACHAR (C)) shall have the value C for11
any character C capable of representation as a default character.12

6 Example. ACHAR (88) has the value ’X’.13

16.9.4 ACOS (X)14

1 Description. Arccosine (inverse cosine) function.15

2 Class. Elemental function.16

3 Argument. X shall be of type real with a value that satisϐies the inequality |X| ≤ 1, or of type complex.17

4 Result Characteristics. Same as X.18

5 Result Value. The result has a value equal to a processor‑dependent approximation to arccos(X). If it is real19
it is expressed in radians and lies in the range 0 ≤ ACOS (X) ≤ π. If it is complex the real part is expressed20
in radians and lies in the range 0 ≤ REAL (ACOS (X)) ≤ π.21

6 Example. ACOS (0.54030231) has the value 1.0 (approximately).22

16.9.5 ACOSD (X)23

1 Description. Arc cosine function in degrees.24

2 Class. Elemental function.25

3 Argument. X shall be of type real with a value that satisϐies the inequality |X| ≤ 1.26

4 Result Characteristics. Same as X.27

5 Result Value. The result has a value equal to a processor‑dependent approximation to the arc cosine of X.28
It is expressed in degrees and lies in the range 0 ≤ ACOSD (X) ≤ 180.29

6 Example. ACOSD (−1.0) has the value 180.0 (approximately).30

388 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.6 ACOSH (X)1

1 Description. Inverse hyperbolic cosine function.2

2 Class. Elemental function.3

3 Argument. X shall be of type real or complex.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor‑dependent approximation to the inverse hyper‑6
bolic cosine function of X. If the result is complex the real part is nonnegative, and the imaginary part is7
expressed in radians and lies in the range−π ≤ AIMAG (ACOSH (X)) ≤ π8

6 Example. ACOSH (1.5430806) has the value 1.0 (approximately).9

16.9.7 ACOSPI (X)10

1 Description. Circular arc cosine function.11

2 Class. Elemental function.12

3 Argument. X shall be of type real with a value that satisϐies the inequality |X| ≤ 1.13

4 Result Characteristics. Same as X.14

5 Result Value. The result has a value equal to a processor‑dependent approximation to the arc cosine of X.15
It is expressed in half‑revolutions and lies in the range 0 ≤ ACOSPI (X) ≤ 1.16

6 Example. ACOSPI (−1.0) has the value 1.0 (approximately).17

16.9.8 ADJUSTL (STRING)18

1 Description. Left‑justiϐied string value.19

2 Class. Elemental function.20

3 Argument. STRING shall be of type character.21

4 Result Characteristics. Character of the same length and kind type parameter as STRING.22

5 Result Value. The value of the result is the same as STRING except that any leading blanks have been23
deleted and the same number of trailing blanks have been inserted.24

6 Example. ADJUSTL (’ WORD’) has the value ’WORD ’.25

16.9.9 ADJUSTR (STRING)26

1 Description. Right‑justiϐied string value.27

2 Class. Elemental function.28

3 Argument. STRING shall be of type character.29

4 Result Characteristics. Character of the same length and kind type parameter as STRING.30

J3/25‑007 389

J3/25‑007 WD 1539‑1 2024‑12‑29

5 Result Value. The value of the result is the same as STRING except that any trailing blanks have been1
deleted and the same number of leading blanks have been inserted.2

6 Example. ADJUSTR (’WORD ’) has the value ’ WORD’.3

16.9.10 AIMAG (Z)4

1 Description. Imaginary part of a complex number.5

2 Class. Elemental function.6

3 Argument. Z shall be of type complex.7

4 Result Characteristics. Real with the same kind type parameter as Z.8

5 Result Value. If Z has the value (x, y), the result has the value y.9

6 Example. AIMAG ((2.0, 3.0)) has the value 3.0.10

16.9.11 AINT (A [, KIND])11

1 Description. Truncation toward 0 to a whole number.12

2 Class. Elemental function.13

3 Arguments.14
A shall be of type real.15
KIND (optional) shall be a scalar integer constant expression.16

4 Result Characteristics. The result is of type real. If KIND is present, the kind type parameter is that17
speciϐied by the value of KIND; otherwise, the kind type parameter is that of A.18

5 Result Value. If |A| < 1, AINT (A) has the value 0; if |A| ≥ 1, AINT (A) has a value equal to the integer19
whosemagnitude is the largest integer that does not exceed themagnitude of A andwhose sign is the same20
as the sign of A.21

6 Examples. AINT (2.783) has the value 2.0. AINT (−2.783) has the value−2.0.22

16.9.12 ALL (MASK) or ALL (MASK, DIM)23

1 Description. Array reduced by .AND. operator.24

2 Class. Transformational function.25

3 Arguments.26
MASK shall be a logical array.27
DIM shall be an integer scalar with value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.28

4 Result Characteristics. The result is of type logicalwith the same kind type parameter asMASK. It is scalar29
if DIM does not appear or n = 1; otherwise, the result has rank n− 1 and shape [d1, d2, …, dDIM−1, dDIM+1,30
…, dn] where [d1, d2, …, dn] is the shape of MASK.31

390 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Result Value.1

Case (i): The result of ALL (MASK) has the value true if all elements of MASK are true or if MASK has2
size zero, and the result has value false if any element of MASK is false.3

Case (ii): If MASK has rank one, ALL (MASK, DIM) is equal to ALL (MASK). Otherwise, the value of ele‑4
ment (s1, s2, …, sDIM−1, sDIM+1, …, sn) of ALL (MASK, DIM) is equal to ALL (MASK (s1, s2, …,5
sDIM−1, :, sDIM+1, …, sn)).6

6 Examples.7

Case (i): The value of ALL ([.TRUE., .FALSE., .TRUE.]) is false.8

Case (ii): If B is the array
[
1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ALL (B /= C, DIM = 1) is9

[true, false, false] and ALL (B /= C, DIM = 2) is [false, false].10

16.9.13 ALLOCATED (ARRAY) or ALLOCATED (SCALAR)11

1 Description. Allocation status of allocatable variable.12

2 Class. Inquiry function.13

3 Arguments.14
ARRAY shall be an allocatable array.15
SCALAR shall be an allocatable scalar.16

4 Result Characteristics. Default logical scalar.17

5 Result Value. The result has the value true if the argument (ARRAY or SCALAR) is allocated and has the18
value false if the argument is unallocated.19

16.9.14 ANINT (A [, KIND])20

1 Description. Nearest whole number.21

2 Class. Elemental function.22

3 Arguments.23
A shall be of type real.24
KIND (optional) shall be a scalar integer constant expression.25

4 Result Characteristics. The result is of type real. If KIND is present, the kind type parameter is that26
speciϐied by the value of KIND; otherwise, the kind type parameter is that of A.27

5 Result Value. The result is the integer nearest A, or if there are two integers equally near A, the result is28
whichever such integer has the greater magnitude.29

6 Examples. ANINT (2.783) has the value 3.0. ANINT (−2.783) has the value−3.0.30

16.9.15 ANY (MASK) or ANY (MASK, DIM)31

1 Description. Array reduced by .OR. operator.32

2 Class. Transformational function.33

J3/25‑007 391

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Arguments.1
MASK shall be a logical array.2
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.3

4 Result Characteristics. The result is of type logicalwith the same kind type parameter asMASK. It is scalar4
if DIM does not appear or n = 1; otherwise, the result has rank n− 1 and shape [d1, d2, …, dDIM−1, dDIM+1,5
…, dn] where [d1, d2, …, dn] is the shape of MASK.6

5 Result Value.7

Case (i): The result of ANY (MASK) has the value true if any element of MASK is true and has the value8
false if no elements are true or if MASK has size zero.9

Case (ii): If MASK has rank one, ANY (MASK, DIM) is equal to ANY (MASK). Otherwise, the value of ele‑10
ment (s1, s2, …, sDIM−1, sDIM+1, …, sn) of ANY (MASK, DIM) is equal to ANY (MASK (s1, s2, …,11
sDIM−1, :, sDIM+1, …, sn)).12

6 Examples.13

Case (i): The value of ANY ([.TRUE., .FALSE., .TRUE.]) is true.14

Case (ii): If B is the array
[
1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ANY (B /= C, DIM = 1) is [true,15

false, true] and ANY (B /= C, DIM = 2) is [true, true].16

16.9.16 ASIN (X)17

1 Description. Arcsine (inverse sine) function.18

2 Class. Elemental function.19

3 Argument. X shall be of type real with a value that satisϐies the inequality |X| ≤ 1, or of type complex.20

4 Result Characteristics. Same as X.21

5 Result Value. The result has a value equal to a processor‑dependent approximation to arcsin(X). If it is22
real it is expressed in radians and lies in the range−π/2 ≤ ASIN (X) ≤ π/2. If it is complex the real part is23
expressed in radians and lies in the range−π/2 ≤ REAL (ASIN (X)) ≤ π/2.24

6 Example. ASIN (0.84147098) has the value 1.0 (approximately).25

16.9.17 ASIND (X)26

1 Description. Arc sine function in degrees.27

2 Class. Elemental function.28

3 Argument. X shall be of type real with a value that satisϐies the inequality |X| ≤ 1.29

4 Result Characteristics. Same as X.30

5 Result Value. The result has a value equal to a processor‑dependent approximation to the arc sine of X. It31
is expressed in degrees and lies in the range−90 ≤ ASIND (X) ≤ 90.32

6 Example. ASIND (1.0) has the value 90.0 (approximately).33

392 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.18 ASINH (X)1

1 Description. Inverse hyperbolic sine function.2

2 Class. Elemental function.3

3 Argument. X shall be of type real or complex.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor‑dependent approximation to the inverse hyper‑6
bolic sine function of X. If the result is complex the imaginary part is expressed in radians and lies in the7
range−π/2 ≤ AIMAG (ASINH (X)) ≤ π/2.8

6 Example. ASINH (1.1752012) has the value 1.0 (approximately).9

16.9.19 ASINPI (X)10

1 Description. Circular arc sine function.11

2 Class. Elemental function.12

3 Argument. X shall be of type real with a value that satisϐies the inequality |X| ≤ 1.13

4 Result Characteristics. Same as X.14

5 Result Value. The result has a value equal to a processor‑dependent approximation to the arc sine of X. It15
is expressed in half‑revolutions and lies in the range−1

2 ≤ ASINPI (X) ≤ 1
2 .16

6 Example. ASINPI (1.0) has the value 0.5 (approximately).17

16.9.20 ASSOCIATED (POINTER [, TARGET])18

1 Description. Pointer association status inquiry.19

2 Class. Inquiry function.20

3 Arguments.21
POINTER shall be a pointer. It may be of any type or may be a procedure pointer. Its pointer association22

status shall not be undeϐined.23
TARGET (optional) shall be a pointer or an entity that could be a target. If TARGET is a pointer then its24

pointer association status shall not be undeϐined.25

If POINTER is a procedure pointer, TARGET shall be a procedure (or procedure pointer) that26
would be allowable as the target of a pointer assignment (10.2.2) for a procedure pointerwith27
the same characteristics as POINTER.28

Otherwise, TARGET shall be a noncoindexed variable that is not an array section with a vector29
subscript, or a reference to a function that returns a data pointer. If POINTER is not unlimited30
polymorphic, TARGET shall be type compatible with it, and the corresponding kind type para‑31
meters shall be equal. If POINTER is not assumed‑rank, TARGET shall have the same rank as32
POINTER.33

4 Result Characteristics. Default logical scalar.34

J3/25‑007 393

J3/25‑007 WD 1539‑1 2024‑12‑29

5 Result Value.1

Case (i): If TARGET is absent, the result is true if and only if POINTER is associated with a target.2
Case (ii): If TARGET is present and is a procedure other than a dummy procedure or procedure pointer,3

the result is true if andonly if POINTER is associatedwithTARGETand, if TARGET is an internal4
procedure, they have the same host instance.5

Case (iii): If TARGET is present and is a dummy procedure that is not a procedure pointer, the result is6
true if and only if POINTER is associated with the procedure that is the ultimate argument of7
TARGET and, if the procedure is an internal procedure, they have the same host instance.8

Case (iv): If TARGET is present and is a procedure pointer, the result is true if and only if POINTER and9
TARGETare associatedwith the sameprocedure and, if theprocedure is an internal procedure,10
they have the same host instance.11

Case (v): If TARGET is present and is a scalar target, the result is true if and only if TARGET is not a12
zero‑sized storage sequence and POINTER is associated with a target that occupies the same13
storage units as TARGET.14

Case (vi): If TARGET is present and is an array target, the result is true if and only if POINTER is asso‑15
ciated with a target that has the same shape as TARGET, is neither of size zero nor an array16
whose elements are zero‑sized storage sequences, and occupies the same storage units as17
TARGET in array element order.18

Case (vii): If TARGET is present and is a scalar pointer, the result is true if and only if POINTER and TAR‑19
GET are associated, the targets are not zero‑sized storage sequences, and they occupy the20
same storage units.21

Case (viii): If TARGET is present and is an array pointer, the result is true if and only if POINTER and22
TARGET are both associated, have the same shape, are neither of size zero nor arrays whose23
elements are zero‑sized storage sequences, and occupy the same storage units in array ele‑24
ment order.25

NOTE
The references to TARGET in the above cases are referring to properties that might be possessed by the actual
argument, so the case of TARGET being a disassociated pointer will be covered by case (iv), (vii), or (viii).

6 Examples. ASSOCIATED (CURRENT, HEAD) is true if CURRENT is associated with the target HEAD. After26
the execution of27

A_PART => A (:N)28
ASSOCIATED (A_PART, A) is true if N is equal to UBOUND (A, DIM = 1). After the execution of29

NULLIFY (CUR); NULLIFY (TOP)30
ASSOCIATED (CUR, TOP) is false.31

16.9.21 ATAN (X) or ATAN (Y, X)32

1 Description. Arctangent (inverse tangent) function.33

2 Class. Elemental function.34

3 Arguments.35
Y shall be of type real.36
X If Y appears, X shall be of type real with the same kind type parameter as Y. If Y has the value37

zero, X shall not have the value zero. If Y does not appear, X shall be of type real or complex.38

394 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 Result Characteristics. Same as X.1

5 Result Value. If Y appears, the result is the same as the result of ATAN2 (Y,X). If Y does not appear, the2
result has a value equal to a processor‑dependent approximation to arctan(X) whose real part is expressed3
in radians and lies in the range−π/2 ≤ ATAN (X) ≤ π/2.4

6 Example. ATAN (1.5574077) has the value 1.0 (approximately).5

16.9.22 ATAN2 (Y, X)6

1 Description. Arctangent (inverse tangent) function.7

2 Class. Elemental function.8

3 Arguments.9
Y shall be of type real.10
X shall be of the same type and kind type parameter as Y. If Y has the value zero, X shall not have11

the value zero.12

4 Result Characteristics. Same as X.13

5 Result Value. The result has a value equal to a processor‑dependent approximation to the principal value14
of the argument of the complex number (X, Y), expressed in radians. It lies in the range−π ≤ ATAN2 (Y,X)15
≤ π and is equal to a processor‑dependent approximation to a value of arctan(Y/X) if X ̸= 0. If Y > 0, the16
result is positive. If Y = 0 and X > 0, the result is Y. If Y = 0 and X < 0, then the result is approximately π17
if Y is positive real zero or the processor does not distinguish between positive and negative real zero, and18
approximately −π if Y is negative real zero. If Y < 0, the result is negative. If X = 0, the absolute value of19
the result is approximately π/2.20

6 Examples. ATAN2 (1.5574077, 1.0) has the value 1.0 (approximately). If Y has the value
[

1 1
−1 −1

]
and21

X has the value
[
−1 1
−1 1

]
, the value of ATAN2 (Y, X) is approximately

[
3π/4 π/4
−3π/4 −π/4

]
.22

16.9.23 ATAN2D (Y, X)23

1 Description. Arc tangent function in degrees.24

2 Class. Elemental function.25

3 Arguments.26
Y shall be of type real.27
X shall be of the same type and kind type parameter as Y. If Y has the value zero, X shall not have28

the value zero.29

4 Result Characteristics. Same as X.30

5 Result Value. The result is expressed in degrees and lies in the range−180 ≤ ATAN2D (Y, X)≤ 180. It has31
a value equal to a processor‑dependent approximation to ATAN2 (Y, X)×180/π.32

6 Examples. ATAN2D (1.0, 1.0) has the value 45.0 (approximately). If Y has the value
[

1 1
−1 −1

]
and X has33

J3/25‑007 395

J3/25‑007 WD 1539‑1 2024‑12‑29

the value
[
−1 1
−1 1

]
, the value of ATAN2D (Y, X) is approximately

[
135.0 45.0
−135.0 −45.0

]
.1

16.9.24 ATAN2PI (Y, X)2

1 Description. Circular arc tangent function.3

2 Class. Elemental function.4

3 Arguments.5
Y shall be of type real.6
X shall be of the same type and kind type parameter as Y. If Y has the value zero, X shall not have7

the value zero.8

4 Result Characteristics. Same as X.9

5 Result Value. The result is expressed in half‑revolutions and lies in the range−1 ≤ ATAN2PI (Y, X)≤ 1. It10
has a value equal to a processor‑dependent approximation to ATAN2 (Y, X)÷π.11

6 Examples. ATAN2PI (1.0, 1.0) has the value 0.25 (approximately). If Y has the value
[

1 1
−1 −1

]
and X12

has the value
[
−1 1
−1 1

]
, the value of ATAN2PI (Y, X) is approximately

[
0.75 0.25
−0.75 −0.25

]
.13

16.9.25 ATAND (X) or ATAND (Y, X)14

1 Description. Arc tangent function in degrees.15

2 Class. Elemental function.16

3 Arguments.17
Y shall be of type real.18
X If Y appears, X shall be of type real with the same kind type parameter as Y. If Y has the value19

zero, X shall not have the value zero. If Y does not appear, X shall be of type real.20

4 Result Characteristics. Same as X.21

5 Result Value. If Y appears, the result is the same as the result of ATAN2D (Y, X). If Y does not appear, the22
result has a value equal to a processor‑dependent approximation to the arc tangent of X; it is expressed in23
degrees and lies in the range−90 ≤ ATAND (X) ≤ 90.24

6 Example. ATAND (1.0) has the value 45.0 (approximately).25

16.9.26 ATANH (X)26

1 Description. Inverse hyperbolic tangent function.27

2 Class. Elemental function.28

3 Argument. X shall be of type real or complex.29

4 Result Characteristics. Same as X.30

396 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Result Value. The result has a value equal to a processor‑dependent approximation to the inverse hyper‑1
bolic tangent function of X. If the result is complex the imaginary part is expressed in radians and lies in2
the range−π/2 ≤ AIMAG (ATANH (X)) ≤ π/2.3

6 Example. ATANH (0.76159416) has the value 1.0 (approximately).4

16.9.27 ATANPI (X) or ATANPI (Y, X)5

1 Description. Circular arc tangent function.6

2 Class. Elemental function.7

3 Arguments.8
Y shall be of type real.9
X If Y appears, X shall be of type real with the same kind type parameter as Y. If Y has the value10

zero, X shall not have the value zero. If Y does not appear, X shall be of type real.11

4 Result Characteristics. Same as X.12

5 Result Value. If Y appears, the result is the same as the result of ATAN2PI (Y, X). If Y does not appear, the13
result has a value equal to a processor‑dependent approximation to the arc tangent of X; it is expressed in14
half‑revolutions and lies in the range−0.5 ≤ ATANPI (X) ≤ 0.5.15

6 Example. ATANPI (1.0) has the value 0.25 (approximately).16

16.9.28 ATOMIC_ADD (ATOM, VALUE [, STAT])17

1 Description. Atomic addition.18

2 Class. Atomic subroutine.19

3 Arguments.20
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑21

INT_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument.22
If an error condition occurs, ATOM becomes undeϐined; otherwise, it becomes deϐined with23
the value of ATOM+ VALUE.24

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The values of VALUE and ATOM +25
VALUE shall be representable in kind ATOMIC_INT_KIND.26

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is27
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition28
occurs and STAT is not present, error termination is initiated.29

4 Example. CALL ATOMIC_ADD (I [3], 42) will cause I on image 3 to become deϐined with the value 46 if the30
value of I [3] is 4 when the atomic operation is executed.31

16.9.29 ATOMIC_AND (ATOM, VALUE [, STAT])32

1 Description. Atomic bitwise AND.33

2 Class. Atomic subroutine.34

3 Arguments.35

J3/25‑007 397

J3/25‑007 WD 1539‑1 2024‑12‑29

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑1
INT_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument.2
If an error condition occurs, ATOM becomes undeϐined; otherwise, it becomes deϐined with3
the value of IAND (ATOM, INT (VALUE, ATOMIC_INT_KIND)).4

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres‑5
entable in kind ATOMIC_INT_KIND.6

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is7
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition8
occurs and STAT is not present, error termination is initiated.9

4 Example. CALL ATOMIC_AND (I [3], 6) will cause I on image 3 to become deϐined with the value 4 if the10
value of I [3] is 5 when the atomic operation is executed.11

16.9.30 ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])12

1 Description. Atomic compare and swap.13

2 Class. Atomic subroutine.14

3 Arguments.15
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑16

INT_KIND fromthe intrinsicmodule ISO_FORTRAN_ENV, or of type logicalwith kindATOMIC_‑17
LOGICAL_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argu‑18
ment. If an error condition occurs, ATOMbecomes undeϐined; otherwise, if ATOM is of type in‑19
teger andequal toCOMPARE, or of type logical and equivalent toCOMPARE, it becomesdeϐined20
with the value of NEW.21

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If an22
error condition occurs, it becomes undeϐined; otherwise, it becomes deϐined with the value23
that ATOM had at the start of the atomic operation.24

COMPARE shall be scalar and of the same type and kind as ATOM. It is an INTENT (IN) argument.25
NEW shall be scalar and of the same type and kind as ATOM. It is an INTENT (IN) argument.26
STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is27

an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition28
occurs and STAT is not present, error termination is initiated.29

4 Example. If the value of I on image 3 is equal to 13 at the beginning of the atomic operation performed30
by CALL ATOMIC_CAS (I [3], OLD, 0, 1), the value of I on image 3 will be unchanged, and OLD will become31
deϐined with the value 13. If the value of I on image 3 is equal to 0 at the beginning of the atomic operation32
performed by CALL ATOMIC_CAS (I [3], OLD, 0, 1), I on image 3 will become deϐined with the value 1, and33
OLD will become deϐined with the value 0.34

16.9.31 ATOMIC_DEFINE (ATOM, VALUE [, STAT])35

1 Description. Deϐine a variable atomically.36

2 Class. Atomic subroutine.37

3 Arguments.38
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑39

INT_KIND fromthe intrinsicmodule ISO_FORTRAN_ENV, or of type logicalwith kindATOMIC_‑40

398 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

LOGICAL_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (OUT) argu‑1
ment. On successful execution, it becomes deϐined with the value of VALUE. If an error condi‑2
tion occurs, it becomes undeϐined.3

VALUE shall be scalar and of the same type as ATOM. It is an INTENT (IN) argument.4
STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is5

an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition6
occurs and STAT is not present, error termination is initiated.7

4 Example. CALL ATOMIC_DEFINE (I [3], 4) causes I on image 3 to become deϐined with the value 4.8

16.9.32 ATOMIC_FETCH_ADD (ATOM, VALUE, OLD [, STAT])9

1 Description. Atomic fetch and add.10

2 Class. Atomic subroutine.11

3 Arguments.12
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑13

INT_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument.14
If an error condition occurs, ATOM becomes undeϐined; otherwise, it becomes deϐined with15
the value of ATOM+ VALUE.16

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The values of VALUE and ATOM +17
VALUE shall be representable in kind ATOMIC_INT_KIND.18

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If an19
error condition occurs, it becomes undeϐined; otherwise, it becomes deϐined with the value20
that ATOM had at the start of the atomic operation.21

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is22
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition23
occurs and STAT is not present, error termination is initiated.24

4 Example. CALL ATOMIC_FETCH_ADD (I [3], 7, J) will cause I on image 3 to become deϐined with the value25
12, and J to become deϐinedwith the value 5, if the value of I [3] is 5 when the atomic operation is executed.26

16.9.33 ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])27

1 Description. Atomic fetch and bitwise AND.28

2 Class. Atomic subroutine.29

3 Arguments.30
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑31

INT_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument.32
If an error condition occurs, ATOM becomes undeϐined; otherwise, it becomes deϐined with33
the value of IAND (ATOM, INT (VALUE, ATOMIC_INT_KIND)).34

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres‑35
entable in kind ATOMIC_INT_KIND.36

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If an37
error condition occurs, it becomes undeϐined; otherwise, it becomes deϐined with the value38
that ATOM had at the start of the atomic operation.39

J3/25‑007 399

J3/25‑007 WD 1539‑1 2024‑12‑29

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is1
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition2
occurs and STAT is not present, error termination is initiated.3

4 Example. CALL ATOMIC_FETCH_AND (I [3], 6, J) will cause I on image 3 to become deϐined with the value4
4, and J to become deϐined with the value 5, if the value of I [3] is 5 when the atomic operation is executed.5

16.9.34 ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])6

1 Description. Atomic fetch and bitwise OR.7

2 Class. Atomic subroutine.8

3 Arguments.9
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑10

INT_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument.11
If an error condition occurs, ATOM becomes undeϐined; otherwise, it becomes deϐined with12
the value of IOR (ATOM, INT (VALUE, ATOMIC_INT_KIND)).13

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres‑14
entable in kind ATOMIC_INT_KIND.15

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If an16
error condition occurs, it becomes undeϐined; otherwise, it becomes deϐined with the value17
that ATOM had at the start of the atomic operation.18

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is19
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition20
occurs and STAT is not present, error termination is initiated.21

4 Example. CALL ATOMIC_FETCH_OR (I [3], 1, J) will cause I on image 3 to become deϐined with the value 3,22
and J to become deϐined with the value 2, if the value of I [3] is 2 when the atomic operation is executed.23

16.9.35 ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])24

1 Description. Atomic fetch and bitwise exclusive OR.25

2 Class. Atomic subroutine.26

3 Arguments.27
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑28

INT_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument.29
If an error condition occurs, ATOM becomes undeϐined; otherwise, it becomes deϐined with30
the value of IEOR (ATOM, INT (VALUE, ATOMIC_INT_KIND)).31

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres‑32
entable in kind ATOMIC_INT_KIND.33

OLD shall be scalar and of the same type and kind as ATOM. It is an INTENT (OUT) argument. If an34
error condition occurs, it becomes undeϐined; otherwise, it becomes deϐined with the value35
that ATOM had at the start of the atomic operation.36

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is37
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition38
occurs and STAT is not present, error termination is initiated.39

400 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 Example. CALL ATOMIC_FETCH_XOR (I [3], 1, J) will cause I on image 3 to become deϐined with the value1
2, and J to become deϐined with the value 3, if the value of I [3] is 3 when the atomic operation is executed.2

16.9.36 ATOMIC_OR (ATOM, VALUE [, STAT])3

1 Description. Atomic bitwise OR.4

2 Class. Atomic subroutine.5

3 Arguments.6
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑7

INT_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument.8
If an error condition occurs, ATOM becomes undeϐined; otherwise, it becomes deϐined with9
the value of IOR (ATOM, INT (VALUE, ATOMIC_INT_KIND)).10

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres‑11
entable in kind ATOMIC_INT_KIND.12

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is13
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition14
occurs and STAT is not present, error termination is initiated.15

4 Example. CALLATOMIC_OR (I [3], 1)will cause I on image 3 to become deϐinedwith the value 3 if the value16
of I [3] is 2 when the atomic operation is executed.17

16.9.37 ATOMIC_REF (VALUE, ATOM [, STAT])18

1 Description. Reference a variable atomically.19

2 Class. Atomic subroutine.20

3 Arguments.21
VALUE shall be scalar and of the same type as ATOM. It is an INTENT (OUT) argument. On successful22

execution, it becomes deϐinedwith the value of ATOM. If an error condition occurs, it becomes23
undeϐined.24

ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑25
INT_KIND fromthe intrinsicmodule ISO_FORTRAN_ENV, or of type logicalwith kindATOMIC_‑26
LOGICAL_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (IN) argument.27

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is28
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition29
occurs and STAT is not present, error termination is initiated.30

4 Example. CALL ATOMIC_REF (VAL, I [3]) causes VAL to become deϐined with the value of I on image 3.31

16.9.38 ATOMIC_XOR (ATOM, VALUE [, STAT])32

1 Description. Atomic bitwise exclusive OR.33

2 Class. Atomic subroutine.34

3 Arguments.35
ATOM shall be a scalar coarray or coindexed object. It shall be of type integer with kind ATOMIC_‑36

INT_KIND from the intrinsic module ISO_FORTRAN_ENV. It is an INTENT (INOUT) argument.37

J3/25‑007 401

J3/25‑007 WD 1539‑1 2024‑12‑29

If an error condition occurs, ATOM becomes undeϐined; otherwise, it becomes deϐined with1
the value of IEOR (ATOM, INT (VALUE, ATOMIC_INT_KIND)).2

VALUE shall be an integer scalar. It is an INTENT (IN) argument. The value of VALUE shall be repres‑3
entable in kind ATOMIC_INT_KIND.4

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is5
an INTENT (OUT) argument. It is assigned a value as speciϐied in 16.5. If an error condition6
occurs and STAT is not present, error termination is initiated.7

4 Example. CALL ATOMIC_XOR (I [3], 1) will cause I on image 3 to become deϐined with the value 2 if the8
value of I [3] is 3 when the atomic operation is executed.9

16.9.39 BESSEL_J0 (X)10

1 Description. Bessel function of the 1st kind, order 0.11

2 Class. Elemental function.12

3 Argument. X shall be of type real.13

4 Result Characteristics. Same as X.14

5 Result Value. The result has a value equal to a processor‑dependent approximation to the Bessel function15
of the ϐirst kind and order zero of X.16

6 Example. BESSEL_J0 (1.0) has the value 0.765 (approximately).17

16.9.40 BESSEL_J1 (X)18

1 Description. Bessel function of the 1st kind, order 1.19

2 Class. Elemental function.20

3 Argument. X shall be of type real.21

4 Result Characteristics. Same as X.22

5 Result Value. The result has a value equal to a processor‑dependent approximation to the Bessel function23
of the ϐirst kind and order one of X.24

6 Example. BESSEL_J1 (1.0) has the value 0.440 (approximately).25

16.9.41 BESSEL_JN (N, X) or BESSEL_JN (N1, N2, X)26

1 Description. Bessel functions of the 1st kind.27

2 Class.28

Case (i): BESSEL_JN (N,X) is an elemental function.29
Case (ii): BESSEL_JN (N1,N2,X) is a transformational function.30

3 Arguments.31
N shall be of type integer and nonnegative.32
N1 shall be an integer scalar with a nonnegative value.33
N2 shall be an integer scalar with a nonnegative value.34

402 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

X shall be of type real; if the function is transformational, X shall be scalar.1

4 Result Characteristics. Same type and kind as X. The result of BESSEL_JN (N1, N2, X) is a rank‑one array2
with extent MAX (N2−N1+1, 0).3

5 Result Value.4

Case (i): The result value of BESSEL_JN (N, X) is a processor‑dependent approximation to the Bessel5
function of the ϐirst kind and order N of X.6

Case (ii): Element iof the result value of BESSEL_JN (N1, N2, X) is a processor‑dependent approximation7
to the Bessel function of the ϐirst kind and order N1+i− 1 of X.8

6 Example. BESSEL_JN (2, 1.0) has the value 0.115 (approximately).9

16.9.42 BESSEL_Y0 (X)10

1 Description. Bessel function of the 2nd kind, order 0.11

2 Class. Elemental function.12

3 Argument. X shall be of type real. Its value shall be greater than zero.13

4 Result Characteristics. Same as X.14

5 Result Value. The result has a value equal to a processor‑dependent approximation to the Bessel function15
of the second kind and order zero of X.16

6 Example. BESSEL_Y0 (1.0) has the value 0.088 (approximately).17

16.9.43 BESSEL_Y1 (X)18

1 Description. Bessel function of the 2nd kind, order 1.19

2 Class. Elemental function.20

3 Argument. X shall be of type real. Its value shall be greater than zero.21

4 Result Characteristics. Same as X.22

5 Result Value. The result has a value equal to a processor‑dependent approximation to the Bessel function23
of the second kind and order one of X.24

6 Example. BESSEL_Y1 (1.0) has the value−0.781 (approximately).25

16.9.44 BESSEL_YN (N, X) or BESSEL_YN (N1, N2, X)26

1 Description. Bessel functions of the 2nd kind.27

2 Class.28

Case (i): BESSEL_YN (N, X) is an elemental function.29
Case (ii): BESSEL_YN (N1, N2, X) is a transformational function.30

3 Arguments.31
N shall be of type integer and nonnegative.32
N1 shall be an integer scalar with a nonnegative value.33

J3/25‑007 403

J3/25‑007 WD 1539‑1 2024‑12‑29

N2 shall be an integer scalar with a nonnegative value.1
X shall be of type real; if the function is transformational, X shall be scalar. Its value shall be2

greater than zero.3

4 Result Characteristics. Same type and kind as X. The result of BESSEL_YN (N1, N2, X) is a rank‑one array4
with extent MAX (N2−N1+1, 0).5

5 Result Value.6

Case (i): The result value of BESSEL_YN (N, X) is a processor‑dependent approximation to the Bessel7
function of the second kind and order N of X.8

Case (ii): Element i of the result value of BESSEL_YN (N1, N2, X) is a processor‑dependent approxima‑9
tion to the Bessel function of the second kind and order N1+i− 1 of X.10

6 Example. BESSEL_YN (2, 1.0) has the value−1.651 (approximately).11

16.9.45 BGE (I, J)12

1 Description. Bitwise greater than or equal to.13

2 Class. Elemental function.14

3 Arguments.15
I shall be of type integer or a boz‑literal‑constant.16
J shall be of type integer or a boz‑literal‑constant.17

4 Result Characteristics. Default logical.18

5 Result Value. The result is true if the sequence of bits represented by I is greater than or equal to the19
sequence of bits represented by J, according to themethod of bit sequence comparison in 16.3.2; otherwise20
the result is false.21

6 The interpretation of a boz‑literal‑constant as a sequence of bits is described in 7.7. The interpretation of22
an integer value as a sequence of bits is described in 16.3.23

7 Example. If BIT_SIZE (J) has the value 8, BGE (Z’FF’, J) has the value true for any value of J. BGE (0,−1) has24
the value false.25

16.9.46 BGT (I, J)26

1 Description. Bitwise greater than.27

2 Class. Elemental function.28

3 Arguments.29
I shall be of type integer or a boz‑literal‑constant.30
J shall be of type integer or a boz‑literal‑constant.31

4 Result Characteristics. Default logical.32

5 Result Value. The result is true if the sequence of bits represented by I is greater than the sequence of33
bits represented by J, according to the method of bit sequence comparison in 16.3.2; otherwise the result34
is false.35

404 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 The interpretation of a boz‑literal‑constant as a sequence of bits is described in 7.7. The interpretation of1
an integer value as a sequence of bits is described in 16.3.2

7 Example. BGT (Z’FF’, Z’FC’) has the value true. BGT (0,−1) has the value false.3

16.9.47 BIT_SIZE (I)4

1 Description. Number of bits in integer model 16.3.5

2 Class. Inquiry function.6

3 Argument. I shall be of type integer. It may be a scalar or an array.7

4 Result Characteristics. Scalar integer with the same kind type parameter as I.8

5 Result Value. The result has the value of the number of bits z of the model integer deϐined for bit manip‑9
ulation contexts in 16.3.10

6 Example. BIT_SIZE (1) has the value 32 if z of the model is 32.11

16.9.48 BLE (I, J)12

1 Description. Bitwise less than or equal to.13

2 Class. Elemental function.14

3 Arguments.15
I shall be of type integer or a boz‑literal‑constant.16
J shall be of type integer or a boz‑literal‑constant.17

4 Result Characteristics. Default logical.18

5 Result Value. The result is true if the sequence of bits represented by I is less than or equal to the sequence19
of bits represented by J, according to themethod of bit sequence comparison in 16.3.2; otherwise the result20
is false.21

6 The interpretation of a boz‑literal‑constant as a sequence of bits is described in 7.7. The interpretation of22
an integer value as a sequence of bits is described in 16.3.23

7 Example. BLE (0, J) has the value true for any value of J. BLE (−1, 0) has the value false.24

16.9.49 BLT (I, J)25

1 Description. Bitwise less than.26

2 Class. Elemental function.27

3 Arguments.28
I shall be of type integer or a boz‑literal‑constant.29
J shall be of type integer or a boz‑literal‑constant.30

4 Result Characteristics. Default logical.31

5 Result Value. The result is true if the sequence of bits represented by I is less than the sequence of bits32

J3/25‑007 405

J3/25‑007 WD 1539‑1 2024‑12‑29

represented by J, according to the method of bit sequence comparison in 16.3.2; otherwise the result is1
false.2

6 The interpretation of a boz‑literal‑constant as a sequence of bits is described in 7.7. The interpretation of3
an integer value as a sequence of bits is described in 16.3.4

7 Example. BLT (0,−1) has the value true. BLT (Z’FF’, Z’FC’) has the value false.5

16.9.50 BTEST (I, POS)6

1 Description. Test single bit in an integer.7

2 Class. Elemental function.8

3 Arguments.9
I shall be of type integer.10
POS shall be of type integer. It shall be nonnegative and be less than BIT_SIZE (I).11

4 Result Characteristics. Default logical.12

5 Result Value. The result has the value true if bit POS of I has the value 1 and has the value false if bit POS13
of I has the value 0. The model for the interpretation of an integer value as a sequence of bits is in 16.3.14

6 Examples. BTEST (8, 3) has the value true. If A has the value
[
1 2
3 4

]
, the value of BTEST (A, 2) is15 [

false false
false true

]
and the value of BTEST (2, A) is

[
true false
false false

]
.16

16.9.51 CEILING (A [, KIND])17

1 Description. Least integer greater than or equal to A.18

2 Class. Elemental function.19

3 Arguments.20
A shall be of type real.21
KIND (optional) shall be a scalar integer constant expression.22

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value23
of KIND; otherwise, the kind type parameter is that of default integer type.24

5 Result Value. The result has a value equal to the least integer greater than or equal to A.25

6 Examples. CEILING (3.7) has the value 4. CEILING (−3.7) has the value−3.26

16.9.52 CHAR (I [, KIND])27

1 Description. Character from code value.28

2 Class. Elemental function.29

3 Arguments.30

406 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

I shall be of type integer with a value in the range 0 ≤ I ≤ n − 1, where n is the number of1
characters in the collating sequence associated with the speciϐied kind type parameter.2

KIND (optional) shall be a scalar integer constant expression.3

4 Result Characteristics. Character of length one. If KIND is present, the kind type parameter is that spe‑4
ciϐied by the value of KIND; otherwise, the kind type parameter is that of default character.5

5 Result Value. The result is the character in position I of the collating sequence associated with the spe‑6
ciϐied kind type parameter. ICHAR (CHAR (I, KIND (C))) shall have the value I for 0 ≤ I ≤ n − 1 and7
CHAR (ICHAR (C), KIND (C)) shall have the value C for any character C capable of representation in the8
processor.9

6 Example. CHAR (88) has the value ’X’ on a processor using the ASCII collating sequence for default char‑10
acters.11

16.9.53 CMPLX (X [, KIND]) or CMPLX (X [, Y, KIND])12

1 Description. Conversion to complex type.13

2 Class. Elemental function.14

3 Arguments for CMPLX(X [, KIND]).15
X shall be of type complex.16
KIND (optional) shall be a scalar integer constant expression.17

4 Arguments for CMPLX(X [, Y, KIND]).18
X shall be of type integer or real, or a boz‑literal‑constant.19
Y (optional) shall be of type integer or real, or a boz‑literal‑constant.20
KIND (optional) shall be a scalar integer constant expression.21

5 Result Characteristics. The result is of type complex. If KIND is present, the kind type parameter is that22
speciϐied by the value of KIND; otherwise, the kind type parameter is that of default real kind.23

6 Result Value. If Y is absent and X is not complex, it is as if Y were present with the value zero. If KIND is24
absent, it is as if KINDwere present with the value KIND (0.0). If X is complex, the result is the same as that25
of CMPLX (REAL (X), AIMAG (X), KIND). The result of CMPLX (X, Y, KIND) has the complex value whose real26
part is REAL (X, KIND) and whose imaginary part is REAL (Y, KIND).27

7 Example. CMPLX (−3) has the value (−3.0, 0.0).28

16.9.54 CO_BROADCAST (A, SOURCE_IMAGE [, STAT, ERRMSG])29

1 Description. Broadcast value to images.30

2 Class. Collective subroutine.31

3 Arguments.32
A shall have the same shape, type, and type parameter values, in corresponding references. It33

shall not be polymorphic or a coindexed object. It is an INTENT (INOUT) argument. If no error34
condition occurs, A becomes deϐined, as if by intrinsic assignment, on all images in the current35
teamwith the value of A on image SOURCE_IMAGE, including (re)allocation of any allocatable36

J3/25‑007 407

J3/25‑007 WD 1539‑1 2024‑12‑29

potential subobject component, and setting the dynamic type of any polymorphic allocatable1
potential subobject component.2

SOURCE_IMAGE shall be an integer scalar. It is an INTENT (IN) argument. Its value shall be that of an3
image index of an image in the current team. The value shall be the same in all corresponding4
references.5

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is6
an INTENT (OUT) argument.7

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.8

4 The semantics of STAT and ERRMSG are described in 16.6.9

5 Example. If A is the array [1, 5, 3] on image one, after execution of10
CALL CO_BROADCAST (A, 1)11

the value of A on all images of the current team is [1, 5, 3].12

16.9.55 CO_MAX (A [, RESULT_IMAGE, STAT, ERRMSG])13

1 Description. Compute maximum value across images.14

2 Class. Collective subroutine.15

3 Arguments.16
A shall be of type integer, real, or character. It shall have the same shape, type, and type para‑17

meter values, in corresponding references. It shall not be a coindexed object. It is an INTENT18
(INOUT) argument. If it is scalar, the computed value is equal to the maximum value of A in19
all corresponding references. If it is an array each element of the computed value is equal to20
the maximum value of all corresponding elements of A in all corresponding references.21
The computed value is assigned to A if no error condition occurs, and either RESULT_IMAGE is22
absent, or the executing image is the one identiϐied by RESULT_IMAGE. Otherwise, A becomes23
undeϐined.24

RESULT_IMAGE (optional) shall be an integer scalar. It is an INTENT (IN) argument. Its presence, and25
value if present, shall be the same in all corresponding references. If it is present, its value26
shall be that of an image index in the current team.27

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is28
an INTENT (OUT) argument.29

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.30

4 The semantics of STAT and ERRMSG are described in 16.6.31

5 Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and32
[4, 1, 6] on the other image, the value of A after executing the statement CALL CO_MAX (A) is [4, 5, 6] on33
both images.34

16.9.56 CO_MIN (A [, RESULT_IMAGE, STAT, ERRMSG])35

1 Description. Compute minimum value across images.36

2 Class. Collective subroutine.37

3 Arguments.38

408 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

A shall be of type integer, real, or character. It shall have the same shape, type, and type para‑1
meter values, in corresponding references. It shall not be a coindexed object. It is an INTENT2
(INOUT) argument. If it is scalar, the computed value is equal to the minimum value of A in all3
corresponding references. If it is an array each element of the computed value is equal to the4
minimum value of all corresponding elements of A in all corresponding references.5
The computed value is assigned to A if no error condition occurs, and either RESULT_IMAGE is6
absent, or the executing image is the one identiϐied by RESULT_IMAGE. Otherwise, A becomes7
undeϐined.8

RESULT_IMAGE (optional) shall be an integer scalar. It is an INTENT (IN) argument. Its presence, and9
value if present, shall be the same in all corresponding references. If it is present, its value10
shall be that of an image index in the current team.11

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is12
an INTENT (OUT) argument.13

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.14

4 The semantics of STAT and ERRMSG are described in 16.6.15

5 Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and16
[4, 1, 6] on the other image, the value of A after executing the statement CALL CO_MIN (A) is [1, 1, 3] on17
both images.18

16.9.57 CO_REDUCE (A, OPERATION [, RESULT_IMAGE, STAT, ERRMSG])19

1 Description. Generalized reduction across images.20

2 Class. Collective subroutine.21

3 Arguments.22
A shall not be polymorphic. It shall not be of a type with an ultimate component that is alloc‑23

atable or a pointer. It shall have the same shape, type, and type parameter values, in corres‑24
ponding references. It shall not be a coindexed object. It is an INTENT (INOUT) argument.25
If A is scalar, the computed value is the result of the reduction operation of applying OPERA‑26
TION to the values of A in all corresponding references. If A is an array, each element of the27
computed value is equal to the result of the reduction operation of applying OPERATION to28
corresponding elements of A in all corresponding references.29
The computed value is assigned to A if no error condition occurs, and either RESULT_IMAGE is30
absent, or the executing image is the one identiϐied by RESULT_IMAGE. Otherwise, A becomes31
undeϐined.32

OPERATION shall be a pure function with exactly two arguments; the result and each argument shall be33
a scalar, nonallocatable, noncoarray, nonpointer, nonpolymorphic data object with the same34
type and type parameters as A. The arguments shall not be optional. If one argument has the35
ASYNCHRONOUS, TARGET, or VALUE attribute, the other shall have that attribute. OPERA‑36
TION shall implement a mathematically associative operation. OPERATION shall be the same37
function on all images in corresponding references.38
The computed value of a reduction operation over a set of values is the result of an iterative39
process. Each iteration involves the evaluation of OPERATION (x, y) for x and y in the set, the40
removal of x and y from the set, and the addition of the value of OPERATION (x, y) to the set.41
The process terminates when the set has only one element; this is the computed value.42

J3/25‑007 409

J3/25‑007 WD 1539‑1 2024‑12‑29

RESULT_IMAGE (optional) shall be an integer scalar. It is an INTENT (IN) argument. Its presence, and1
value if present, shall be the same in all corresponding references. If it is present, its value2
shall be that of an image index in the current team.3

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is4
an INTENT (OUT) argument.5

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.6

4 The semantics of STAT and ERRMSG are described in 16.6.7

5 Example. The subroutine below demonstrates how to use CO_REDUCE to create a collective counterpart8
to the intrinsic function ALL:9

SUBROUTINE co_all(boolean)10
LOGICAL, INTENT(INOUT) :: boolean11
CALL CO_REDUCE(boolean,both)12

CONTAINS13
PURE FUNCTION both(lhs,rhs) RESULT(lhs_and_rhs)14

LOGICAL, INTENT(IN) :: lhs,rhs15
LOGICAL :: lhs_and_rhs16
lhs_and_rhs = lhs .AND. rhs17

END FUNCTION both18
END SUBROUTINE co_all19

NOTE
If the OPERATION function is not mathematically commutative, the result of calling CO_REDUCE can depend on the
order of evaluations.

16.9.58 CO_SUM (A [, RESULT_IMAGE, STAT, ERRMSG])20

1 Description. Compute sum across images.21

2 Class. Collective subroutine.22

3 Arguments.23
A shall be of numeric type. It shall have the same shape, type, and type parameter values, in cor‑24

responding references. It shall not be a coindexed object. It is an INTENT (INOUT) argument.25
If it is scalar, the computed value is equal to a processor‑dependent approximation to the sum26
of the values of A in corresponding references. If it is an array, each element of the computed27
value is equal to a processor‑dependent approximation to the sum of all corresponding ele‑28
ments of A in corresponding references.29
The computed value is assigned to A if no error condition occurs, and either RESULT_IMAGE is30
absent, or the executing image is the one identiϐied by RESULT_IMAGE. Otherwise, A becomes31
undeϐined.32

RESULT_IMAGE (optional) shall be an integer scalar. It is an INTENT (IN) argument. Its presence, and33
value if present, shall be the same in all corresponding references. If it is present, its value34
shall be that of an image index in the current team.35

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is36
an INTENT (OUT) argument.37

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.38

4 The semantics of STAT and ERRMSG are described in 16.6.39

410 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Example. If the number of images in the current team is two and A is the array [1, 5, 3] on one image and1
[4, 1, 6] on the other image, the value of A after executing the statement CALL CO_SUM(A) is [5, 6, 9] on2
both images.3

16.9.59 COMMAND_ARGUMENT_COUNT ()4

1 Description. Number of command arguments.5

2 Class. Transformational function.6

3 Argument. None.7

4 Result Characteristics. Default integer scalar.8

5 Result Value. The result value is equal to the number of command arguments available. If there are no9
command arguments available or if the processor does not support command arguments, then the result10
has the value zero. If the processor has a concept of a command name, the command name does not count11
as one of the command arguments.12

6 Example. See 16.9.93.13

16.9.60 CONJG (Z)14

1 Description. Conjugate of a complex number.15

2 Class. Elemental function.16

3 Argument. Z shall be of type complex.17

4 Result Characteristics. Same as Z.18

5 Result Value. If Z has the value (x, y), the result has the value (x,−y).19

6 Example. CONJG ((2.0, 3.0)) has the value (2.0,−3.0).20

16.9.61 COS (X)21

1 Description. Cosine function.22

2 Class. Elemental function.23

3 Argument. X shall be of type real or complex.24

4 Result Characteristics. Same as X.25

5 Result Value. The result has a value equal to a processor‑dependent approximation to cos(X). If X is of26
type real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in27
radians.28

6 Example. COS (1.0) has the value 0.54030231 (approximately).29

16.9.62 COSD (X)30

1 Description. Degree cosine function.31

2 Class. Elemental function.32

J3/25‑007 411

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Argument. X shall be of type real.1

4 Result Characteristics. Same as X.2

5 Result Value. The result has a value equal to a processor‑dependent approximation to the cosine of X,3
which is regarded as a value in degrees.4

6 Example. COSD (180.0) has the value−1.0 (approximately).5

16.9.63 COSH (X)6

1 Description. Hyperbolic cosine function.7

2 Class. Elemental function.8

3 Argument. X shall be of type real or complex.9

4 Result Characteristics. Same as X.10

5 Result Value. The result has a value equal to a processor‑dependent approximation to cosh(X). If X is of11
type complex its imaginary part is regarded as a value in radians.12

6 Example. COSH (1.0) has the value 1.5430806 (approximately).13

16.9.64 COSHAPE (COARRAY [, KIND])14

1 Description. Sizes of codimensions of a coarray.15

2 Class. Inquiry function.16

3 Arguments.17
COARRAY shall be a coarrayof any type. It shall not be anunallocated allocatable coarray. If itsdesignator18

has more than one part‑ref , the rightmost part‑ref shall have nonzero corank.19
KIND (optional) shall be a scalar integer constant expression.20

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value21
of KIND; otherwise the kind type parameter is that of default integer type. The result is an array of rank22
one whose size is equal to the corank of COARRAY.23

5 Result Value. The result has a value whose ith element is equal to the size of the ith codimension of COAR‑24
RAY, as given by UCOBOUND (COARRAY, i)− LCOBOUND (COARRAY, i)+1.25

6 Example.26
The following code allocates the coarray Dwith the same size in each codimension as that of the coarray C,27
with the lower cobound 1.28

REAL, ALLOCATABLE :: C[:,:], D[:,:]29
INTEGER, ALLOCATABLE :: COSHAPE_C(:)30
…31
COSHAPE_C = COSHAPE(C)32
ALLOCATE (D[COSHAPE_C(1),*])33

412 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.65 COSPI (X)1

1 Description. Circular cosine function.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has a value equal to a processor‑dependent approximation to the cosine of X,6
which is regarded as a value in half‑revolutions; thus COSPI (X) is approximately equal to COS (X×π).7

6 Example. COSPI (1.0) has the value−1.0 (approximately).8

16.9.66 COUNT (MASK [, DIM, KIND])9

1 Description. Array reduced by counting true values.10

2 Class. Transformational function.11

3 Arguments.12
MASK shall be a logical array.13
DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank14

of MASK. The corresponding actual argument shall not be an optional dummy argument, a15
disassociated pointer, or an unallocated allocatable.16

KIND (optional) shall be a scalar integer constant expression.17

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value18
of KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is19
absent or n = 1; otherwise, the result has rank n − 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn] where20
[d1, d2, …, dn] is the shape of MASK.21

5 Result Value.22

Case (i): If DIM is absent or MASK has rank one, the result has a value equal to the number of true23
elements of MASK or has the value zero if MASK has size zero.24

Case (ii): If DIM is present and MASK has rank n > 1, the value of element (s1, s2, …, sDIM−1, sDIM+1, …,25
sn) of the result is equal to the number of true elements of MASK (s1, s2, …, sDIM−1, :, sDIM+1,26
…, sn).27

6 Examples.28

Case (i): The value of COUNT ([.TRUE., .FALSE., .TRUE.]) is 2.29

Case (ii): If B is the array
[
1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
, COUNT (B /= C, DIM=1) is [2, 0, 1]30

and COUNT (B /= C, DIM = 2) is [1, 2].31

16.9.67 CPU_TIME (TIME)32

1 Description. Processor time used.33

2 Class. Subroutine.34

J3/25‑007 413

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Argument. TIME shall be a real scalar. It is an INTENT (OUT) argument. If the processor cannot provide a1
meaningful value for the time, it is assigned a processor‑dependent negative value; otherwise, it is assigned2
a processor‑dependent approximation to the processor time in seconds. Whether the value assigned is an3
approximation to the amount of time used by the invoking image, or the amount of time used by the whole4
program, is processor dependent.5

4 Example.6

REAL T1, T27
…8
CALL CPU_TIME(T1)9
… Code to be timed.10
CALL CPU_TIME(T2)11
WRITE (*,*) 'Time taken by code was ', T2-T1, ' seconds'12

writes the processor time taken by a piece of code.13

NOTE
A processor for which a single result is inadequate (for example, a parallel processor) might choose to provide an
additional version for which time is an array.

The exact deϐinition of time is left imprecise because of the variability in what different processors are able to
provide. The primary purpose is to compare different algorithms on the same processor or discover which parts of
a calculation are the most expensive.

The start time is left imprecise because the purpose is to time sections of code, as in the example.

Most computer systems have multiple concepts of time. One common concept is that of time expended by the
processor for a given program. This might or might not include system overhead, and has no obvious connection to
elapsed “wall clock” time.

16.9.68 CSHIFT (ARRAY, SHIFT [, DIM])14

1 Description. Circular shift of an array.15

2 Class. Transformational function.16

3 Arguments.17
ARRAY may be of any type. It shall be an array.18
SHIFT shall be of type integer and shall be scalar if ARRAY has rank one; otherwise, it shall be scalar19

or of rank n−1 and of shape [d1, d2, …, dDIM−1, dDIM+1, …, dn] where [d1, d2, …, dn] is the shape20
of ARRAY.21

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of22
ARRAY. If DIM is absent, it is as if it were present with the value 1.23

4 Result Characteristics. The result is of the type and type parameters of ARRAY, and has the shape of24
ARRAY.25

5 Result Value.26
Case (i): If ARRAY has rank one, element i of the result is ARRAY (LBOUND (ARRAY, 1) + MODULO (i+27

SHIFT− 1, SIZE (ARRAY))).28
Case (ii): If ARRAY has rank greater than one, section (s1, s2, …, sDIM−1, :, sDIM+1, …, sn) of the result has29

a value equal to CSHIFT (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn), sh, 1), where sh is SHIFT or30
SHIFT (s1, s2, …, sDIM−1, sDIM+1, …, sn).31

414 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 Examples.1

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V circularly to the left by two positions2
is achieved by CSHIFT (V, SHIFT = 2) which has the value [3, 4, 5, 6, 1, 2]; CSHIFT (V, SHIFT =3
−2) achieves a circular shift to the right by two positions and has the value [5, 6, 1, 2, 3, 4].4

Case (ii): The rows of an array of rank twomay be shifted by the same amount or by different amounts.5

If M is the array

 1 2 3
4 5 6
7 8 9

, the value of CSHIFT (M, SHIFT =−1, DIM = 2) is

 3 1 2
6 4 5
9 7 8

,6

and the value of CSHIFT (M, SHIFT = [−1, 1, 0], DIM = 2) is

 3 1 2
5 6 4
7 8 9

.7

16.9.69 DATE_AND_TIME ([DATE, TIME, ZONE, VALUES])8

1 Description. Date and time.9

2 Class. Subroutine.10

3 Arguments.11
DATE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value12

of the form YYYYMMDD, where YYYY is the year in the Gregorian calendar, MM is the month13
within the year, and DD is the day within the month. The characters of this value shall all be14
decimal digits. If there is no date available, DATE is assigned all blanks.15

TIME (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value16
of the formhhmmss.sss, wherehh is the hour of the day,mm is theminutes of the hour, and ss.sss17
is the seconds and milliseconds of the minute. Except for the decimal point, the characters of18
this value shall all be decimal digits. If there is no clock available, TIME is assigned all blanks.19

ZONE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value20
of the form +hhmm or ‑hhmm, where hh and mm are the time difference with respect to Co‑21
ordinated Universal Time (UTC) in hours and minutes, respectively. The characters of this22
value following the sign character shall all be decimal digits. If this information is not avail‑23
able, ZONE is assigned all blanks.24

VALUES (optional) shall be a rank‑one array of type integer with a decimal exponent range of at least four.25
It is an INTENT (OUT) argument. Its size shall be at least 8. The values assigned to VALUES26
are as follows:27

VALUES (1) the year, including the century (for example, 2008), or −HUGE (VALUES) if there is no date28
available;29

VALUES (2) the month of the year, or−HUGE (VALUES) if there is no date available;30
VALUES (3) the day of the month, or−HUGE (VALUES) if there is no date available;31
VALUES (4) the time difference fromCoordinated Universal Time (UTC) inminutes, or−HUGE (VALUES)32

if this information is not available;33
VALUES (5) the hour of the day, in the range of 0 to 23, or−HUGE (VALUES) if there is no clock;34
VALUES (6) the minutes of the hour, in the range 0 to 59, or−HUGE (VALUES) if there is no clock;35
VALUES (7) the seconds of the minute, in the range 0 to 60, or−HUGE (VALUES) if there is no clock;36
VALUES (8) themilliseconds of the second, in the range 0 to 999, or−HUGE (VALUES) if there is no clock.37

4 The date, clock, and time zone information might be available on some images and not others. If the date,38

J3/25‑007 415

J3/25‑007 WD 1539‑1 2024‑12‑29

clock, or time zone information is available on more than one image, it is processor dependent whether or1
not those images share the same information.2

5 Example. If run in Geneva, Switzerland on April 12, 2008 at 15:27:35.5 with a system conϐigured for3
the local time zone, this example would have assigned the value 20080412 to BIG_BEN (1), the value4
152735.500 to BIG_BEN (2), the value +0100 to BIG_BEN (3), and the value [2008, 4, 12, 60, 15, 27, 35,5
500] to DATE_TIME.6

INTEGER DATE_TIME (8)7
CHARACTER (LEN = 10) BIG_BEN (3)8
CALL DATE_AND_TIME (BIG_BEN (1), BIG_BEN (2), BIG_BEN (3), DATE_TIME)9

NOTE
These forms are compatible with the representations deϐined in ISO 8601:2004. UTC is established by the Interna‑
tional Bureau ofWeights andMeasures (BIPM, i.e. Bureau International des Poids etMesures) and the International
Earth Rotation Service (IERS).

16.9.70 DBLE (A)10

1 Description. Conversion to double precision real.11

2 Class. Elemental function.12

3 Argument. A shall be of type integer, real, complex, or a boz‑literal‑constant.13

4 Result Characteristics. Double precision real.14

5 Result Value. The result has the value REAL (A, KIND (0.0D0)).15

6 Example. DBLE (−3) has the value−3.0D0.16

16.9.71 DIGITS (X)17

1 Description. Signiϐicant digits in numeric model.18

2 Class. Inquiry function.19

3 Argument. X shall be of type integer or real. It may be a scalar or an array.20

4 Result Characteristics. Default integer scalar.21

5 Result Value. The result has the value q if X is of type integer and p if X is of type real, where q and p are as22
deϐined in 16.4 for the model representing numbers of the same type and kind type parameter as X.23

6 Example. DIGITS (X) has the value 24 for real X whose model is as in 16.4, NOTE.24

16.9.72 DIM (X, Y)25

1 Description. Maximum of X− Y and zero.26

2 Class. Elemental function.27

3 Arguments.28
X shall be of type integer or real.29

416 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Y shall be of the same type and kind type parameter as X.1

4 Result Characteristics. Same as X.2

5 Result Value. The value of the result is the maximum of X− Y and zero.3

6 Example. DIM (−3.0, 2.0) has the value 0.0.4

16.9.73 DOT_PRODUCT (VECTOR_A, VECTOR_B)5

1 Description. Dot product of two vectors.6

2 Class. Transformational function.7

3 Arguments.8
VECTOR_A shall be of numeric type (integer, real, or complex) or of logical type. It shall be a rank‑one9

array.10
VECTOR_B shall be of numeric type if VECTOR_A is of numeric type or of type logical if VECTOR_A is of11

type logical. It shall be a rank‑one array. It shall be of the same size as VECTOR_A.12

4 Result Characteristics. If the arguments are of numeric type, the type and kind type parameter of the res‑13
ult are those of the expression VECTOR_A * VECTOR_B determined by the types and kinds of the arguments14
according to 10.1.9.3. If the arguments are of type logical, the result is of type logical with the kind type15
parameter of the expression VECTOR_A .AND. VECTOR_B according to 10.1.9.3. The result is scalar.16

5 Result Value.17

Case (i): If VECTOR_A is of type integer or real, the result has the value SUM (VECTOR_A*VECTOR_B).18
If the vectors have size zero, the result has the value zero.19

Case (ii): If VECTOR_A is of type complex, the result has the value SUM (CONJG (VECTOR_A)*VECTOR_‑20
B). If the vectors have size zero, the result has the value zero.21

Case (iii): If VECTOR_A is of type logical, the result has the value ANY (VECTOR_A .AND. VECTOR_B). If22
the vectors have size zero, the result has the value false.23

6 Example. DOT_PRODUCT ([1, 2, 3], [2, 3, 4]) has the value 20.24

16.9.74 DPROD (X, Y)25

1 Description. Double precision real product.26

2 Class. Elemental function.27

3 Arguments.28
X shall be default real.29
Y shall be default real.30

4 Result Characteristics. Double precision real.31

5 Result Value. The result has a value equal to a processor‑dependent approximation to the product of X32
and Y. DPROD (X, Y) should have the same value as DBLE (X) * DBLE (Y).33

6 Example. DPROD (−3.0, 2.0) has the value−6.0D0.34

J3/25‑007 417

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.75 DSHIFTL (I, J, SHIFT)1

1 Description. Combined left shift.2

2 Class. Elemental function.3

3 Arguments.4
I shall be of type integer or a boz‑literal‑constant.5
J shall be of type integer or a boz‑literal‑constant. If both I and J are of type integer, they shall6

have the same kind type parameter. I and J shall not both be boz‑literal‑constants.7
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I) if I is of8

type integer; otherwise, it shall be less than or equal to BIT_SIZE (J).9

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.10

5 Result Value. If either I or J is a boz‑literal‑constant, it is ϐirst converted as if by the intrinsic function INT to11
type integer with the kind type parameter of the other. The rightmost SHIFT bits of the result value are the12
same as the leftmost bits of J, and the remaining bits of the result value are the same as the rightmost bits of13
I. This is equal to IOR (SHIFTL (I, SHIFT), SHIFTR (J, BIT_SIZE (J)−SHIFT)). Themodel for the interpretation14
of an integer value as a sequence of bits is in 16.3.15

6 Examples. DSHIFTL (1, 2**30, 2) has the value 5 if default integer has 32 bits. DSHIFTL (I, I, SHIFT) has16
the same result value as ISHFTC (I, SHIFT).17

16.9.76 DSHIFTR (I, J, SHIFT)18

1 Description. Combined right shift.19

2 Class. Elemental function.20

3 Arguments.21
I shall be of type integer or a boz‑literal‑constant.22
J shall be of type integer or a boz‑literal‑constant. If both I and J are of type integer, they shall23

have the same kind type parameter. I and J shall not both be boz‑literal‑constants.24
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I) if I is of25

type integer; otherwise, it shall be less than or equal to BIT_SIZE (J).26

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.27

5 Result Value. If either I or J is a boz‑literal‑constant, it is ϐirst converted as if by the intrinsic function INT to28
type integer with the kind type parameter of the other. The leftmost SHIFT bits of the result value are the29
same as the rightmost bits of I, and the remaining bits of the result value are the same as the leftmost bits of30
J. This is equal to IOR (SHIFTL (I, BIT_SIZE (I)−SHIFT), SHIFTR (J, SHIFT)). Themodel for the interpretation31
of an integer value as a sequence of bits is in 16.3.32

6 Examples. DSHIFTR (1, 16, 3) has the value 229+2 if default integer has 32 bits. DSHIFTR (I, I, SHIFT) has33
the same result value as ISHFTC (I,−SHIFT).34

418 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.77 EOSHIFT (ARRAY, SHIFT [, BOUNDARY, DIM])1

1 Description. End‑off shift of the elements of an array.2

2 Class. Transformational function.3

3 Arguments.4
ARRAY shall be an array be of any type.5
SHIFT shall be of type integer and shall be scalar if ARRAY has rank one; otherwise, it shall be scalar6

or of rank n−1 and of shape [d1, d2, …, dDIM−1, dDIM+1, …, dn] where [d1, d2, …, dn] is the shape7
of ARRAY.8

BOUNDARY (optional) shall beof the same typeand typeparameters asARRAYandshall be scalar if ARRAY9
has rank one; otherwise, it shall be either scalar or of rankn−1 and of shape [d1, d2, …, dDIM−1,10
dDIM+1, …, dn]. BOUNDARY is permitted to be absent only for the types in Table 16.4, and in11
this case it is as if it were present with the scalar value shown, converted if necessary to the12
kind type parameter value of ARRAY.13

Table 16.4— Default BOUNDARY values for EOSHIFT
Type of ARRAY Value of BOUNDARY

Integer 0
Real 0.0

Complex (0.0, 0.0)
Logical .FALSE.

Character (len) len blanks

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of14
ARRAY. If DIM is absent, it is as if it were present with the value 1.15

4 Result Characteristics. The result has the type, type parameters, and shape of ARRAY.16

5 Result Value. Element (s1, s2, …, sn) of the result has the value ARRAY (s1, s2, …, sDIM−1, sDIM + sh, sDIM+1,17
…, sn)where sh is SHIFTor SHIFT (s1, s2, …, sDIM−1, sDIM+1, …, sn) provided the inequality LBOUND (ARRAY,18
DIM) ≤ sDIM + sh ≤ UBOUND (ARRAY, DIM) holds and is otherwise BOUNDARY or BOUNDARY (s1, s2, …,19
sDIM−1, sDIM+1, …, sn).20

6 Examples.21

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V end‑off to the left by 3 positions is22
achieved by EOSHIFT (V, SHIFT = 3), which has the value [4, 5, 6, 0, 0, 0]; EOSHIFT (V, SHIFT =23
−2, BOUNDARY = 99) achieves an end‑off shift to the right by 2 positions with the boundary24
value of 99 and has the value [99, 99, 1, 2, 3, 4].25

Case (ii): The rowsof an arrayof rank twomayall be shiftedby the sameamount or bydifferent amounts26

and the boundary elements can be the same or different. If M is the array

 A B C
D E F
G H I

, then27

the value of EOSHIFT (M, SHIFT=−1, BOUNDARY= ’*’, DIM=2) is

 * A B
* D E
∗ G H

, and the value28

of EOSHIFT (M, SHIFT = [−1, 1, 0], BOUNDARY = [’*’, ’/’, ’?’], DIM = 2) is

 * A B
E F /
G H I

.29

J3/25‑007 419

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.78 EPSILON (X)1

1 Description. Model number that is small compared to 1.2

2 Class. Inquiry function.3

3 Argument. X shall be of type real. It may be a scalar or an array.4

4 Result Characteristics. Scalar of the same type and kind type parameter as X.5

5 Result Value. The result has the value b1−p where b and p are as deϐined in 16.4 for themodel representing6
numbers of the same type and kind type parameter as X.7

6 Example. EPSILON (X) has the value 2−23 for real X whose model is as in 16.4, NOTE.8

16.9.79 ERF (X)9

1 Description. Error function.10

2 Class. Elemental function.11

3 Argument. X shall be of type real.12

4 Result Characteristics. Same as X.13

5 Result Value. The result has a value equal to a processor‑dependent approximation to the error function14
of X, 2√

π

∫ X
0 exp(−t2) dt.15

6 Example. ERF (1.0) has the value 0.843 (approximately).16

16.9.80 ERFC (X)17

1 Description. Complementary error function.18

2 Class. Elemental function.19

3 Argument. X shall be of type real.20

4 Result Characteristics. Same as X.21

5 Result Value. The result has a value equal to a processor‑dependent approximation to the complementary22
error function of X, 1− ERF (X); this is equivalent to 2√

π

∫∞
X exp(−t2)dt.23

6 Example. ERFC (1.0) has the value 0.157 (approximately).24

16.9.81 ERFC_SCALED (X)25

1 Description. Scaled complementary error function.26

2 Class. Elemental function.27

3 Argument. X shall be of type real.28

4 Result Characteristics. Same as X.29

5 Result Value. The result has a value equal to a processor‑dependent approximation to the exponentially‑30
scaled complementary error function of X, exp(X2) 2√

π

∫∞
X exp(−t2) dt.31

420 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 Example. ERFC_SCALED (20.0) has the value 0.02817434874 (approximately).1

NOTE
The complementary error function is asymptotic to exp(−X2)/(X

√
π). As such it underϐlows forX >≈ 9when us‑

ing ISO/IEC/IEEE60559:2020 single precision arithmetic. The exponentially‑scaled complementary error function
is asymptotic to 1/(X√

π). As such it does not underϐlow untilX > HUGE (X)/√π.

16.9.82 EVENT_QUERY (EVENT, COUNT [, STAT])2

1 Description. Query event count.3

2 Class. Subroutine.4

3 Arguments.5
EVENT shall be an event variable (16.10.2.10). It shall not be coindexed. It is an INTENT (IN) argu‑6

ment. The EVENT argument is accessed atomically with respect to the execution of EVENT7
POST statements in unordered segments, in exact analogy to atomic subroutines.8

COUNT shall be an integer scalarwith a decimal exponent range no smaller than that of default integer.9
It is an INTENT (OUT) argument. If no error condition occurs, COUNT is assigned the value of10
the count of EVENT; otherwise, it is assigned the value−1.11

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It12
is an INTENT (OUT) argument. If the STAT argument is present, it is assigned a processor‑13
dependent positive value if an error conditionoccurs; otherwise it is assigned the value zero. If14
the STAT argument is not present and an error condition occurs, error termination is initiated.15

4 Example. If EVENT is an event variable forwhich there have been no successful posts orwaits in preceding16
segments, and for which there are no posts or waits in an unordered segment, after execution of17

CALL EVENT_QUERY (EVENT, COUNT)18

the integer variable COUNT will have the value zero. If there have been ten successful posts to EVENT and19
two successful waits without an UNTIL_COUNT= speciϐier in preceding segments, and for which there are20
no posts or waits in an unordered segment, after execution of21

CALL EVENT_QUERY (EVENT, COUNT)22

the variable COUNT will have the value eight.23

NOTE
Execution of EVENT_QUERY does not imply any synchronization.

16.9.83 EXECUTE_COMMAND_LINE (COMMAND [, WAIT, EXITSTAT, CMDSTAT,
CMDMSG])

24

1 Description. Execute a command line.25

2 Class. Subroutine.26

3 Arguments.27
COMMAND shall be a default character scalar. It is an INTENT (IN) argument. Its value is the command28

line to be executed. The interpretation is processor dependent.29

J3/25‑007 421

J3/25‑007 WD 1539‑1 2024‑12‑29

WAIT (optional) shall be a logical scalar. It is an INTENT (IN) argument. If WAIT is present with the value1
false, and the processor supports asynchronous execution of the command, the command is2
executed asynchronously; otherwise it is executed synchronously.3

EXITSTAT (optional) shall be a scalar of type integer with a decimal exponent range of at least nine. It is4
an INTENT (INOUT) argument. If the command is executed synchronously, it is assigned the5
value of the processor‑dependent exit status. Otherwise, the value of EXITSTAT is unchanged.6

CMDSTAT (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is7
an INTENT (OUT) argument. It is assigned the value −1 if the processor does not support8
command line execution, a processor‑dependent positive value if an error condition occurs,9
or the value −2 if no error condition occurs but WAIT is present with the value false and the10
processor does not support asynchronous execution. Otherwise it is assigned the value 0.11

CMDMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. If an error12
condition occurs, it is assigned a processor‑dependent explanatory message. Otherwise, it is13
unchanged.14

4 If the processor supports command line execution, it shall support synchronous and may support asyn‑15
chronous execution of the command line.16

5 When the command is executed synchronously, EXECUTE_COMMAND_LINE returns after the command17
line has completed execution. Otherwise, EXECUTE_COMMAND_LINE returns without waiting.18

6 If a condition occurs that would assign a nonzero value to CMDSTAT but the CMDSTAT variable is not19
present, error termination is initiated.20

16.9.84 EXP (X)21

1 Description. Exponential function.22

2 Class. Elemental function.23

3 Argument. X shall be of type real or complex.24

4 Result Characteristics. Same as X.25

5 Result Value. The result has a value equal to a processor‑dependent approximation to eX. If X is of type26
complex, its imaginary part is regarded as a value in radians.27

6 Example. EXP (1.0) has the value 2.7182818 (approximately).28

16.9.85 EXPONENT (X)29

1 Description. Exponent of ϐloating‑point number.30

2 Class. Elemental function.31

3 Argument. X shall be of type real.32

4 Result Characteristics. Default integer.33

5 Result Value. The result has a value equal to the exponent e of the representation for the value of X in the34
extended real model for the kind of X (16.4), provided X is nonzero and e is within the range for default35
integers. If X has the value zero, the result has the value zero. If X is an IEEE inϐinity or NaN, the result has36
the value HUGE (0).37

422 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 Examples. EXPONENT (1.0) has the value 1 and EXPONENT (4.1) has the value 3 for reals whose model is1
as in 16.4, NOTE.2

16.9.86 EXTENDS_TYPE_OF (A, MOLD)3

1 Description. Dynamic type extension inquiry.4

2 Class. Inquiry function.5

3 Arguments.6
A shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic7

pointer, it shall not have an undeϐined association status.8
MOLD shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic9

pointer, it shall not have an undeϐined association status.10

4 Result Characteristics. Default logical scalar.11

5 Result Value. If MOLD is unlimited polymorphic and is either a disassociated pointer or unallocated al‑12
locatable variable, the result is true; otherwise if A is unlimited polymorphic and is either a disassociated13
pointer or unallocated allocatable variable, the result is false; otherwise if the dynamic type of A or MOLD14
is extensible, the result is true if and only if the dynamic type of A is an extension type of the dynamic type15
of MOLD; otherwise the result is processor dependent.16

NOTE 1
The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type.

NOTE 2
The test performed by EXTENDS_TYPE_OF is not the same as the test performed by the type guard CLASS IS. The
test performed by EXTENDS_TYPE_OF does not consider kind type parameters.

6 Example. Given the declarations and assignments17

TYPE T118
REAL C19

END TYPE20
TYPE, EXTENDS(T1) :: T221
END TYPE22
CLASS(T1), POINTER :: P, Q23
ALLOCATE (P)24
ALLOCATE (T2 :: Q)25

the result of EXTENDS_TYPE_OF (P, Q)will be false, and the result of EXTENDS_TYPE_OF (Q, P)will be true.26

16.9.87 FAILED_IMAGES ([TEAM, KIND])27

1 Description. Indices of failed images.28

2 Class. Transformational function.29

3 Arguments.30
TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV. Its31

value shall be that of the current or an ancestor team. If TEAM is absent, the team speciϐied is32
the current team.33

J3/25‑007 423

J3/25‑007 WD 1539‑1 2024‑12‑29

KIND (optional) shall be a scalar integer constant expression.1

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value2
of KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank3
onewhose size is equal to the number of images in the speciϐied team that are knownby the invoking image4
to have failed.5

5 Result Value. The elements of the result are the values of the image indices of the known failed images6
in the speciϐied team, in numerically increasing order. If the executing image has previously executed an7
image control statement whose STAT= speciϐier assigned the value STAT_FAILED_IMAGE from the intrinsic8
module ISO_FORTRAN_ENV, or referenced a collective subroutine whose STAT argument was set to STAT_‑9
FAILED_IMAGE, at least one image in the set of images participating in that image control statement or10
collective subroutine reference shall be known to have failed.11

6 Examples. If image 3 is the only image in the current team that is known by the invoking image to have12
failed, FAILED_IMAGES() will have the value [3]. If there are no images in the current team that are known13
by the invoking image to have failed, the value of FAILED_IMAGES() will be a zero‑sized array.14

16.9.88 FINDLOC (ARRAY, VALUE, DIM [, MASK, KIND, BACK]) or
FINDLOC (ARRAY, VALUE [, MASK, KIND, BACK])

15

1 Description. Location(s) of a speciϐied value.16

2 Class. Transformational function.17

3 Arguments.18
ARRAY shall be an array of intrinsic type.19
VALUE shall be scalar and in type conformancewith ARRAY, as speciϐied in Table 10.2 for the operator20

== or the operator .EQV..21
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.22
MASK (optional) shall be of type logical and shall be conformable with ARRAY.23
KIND (optional) shall be a scalar integer constant expression.24
BACK (optional) shall be a logical scalar.25

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value of26
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result27
is an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and28
shape [d1, d2, …, dDIM−1, dDIM+1, …, dn], where [d1, d2, …, dn] is the shape of ARRAY.29

5 Result Value.30

Case (i): The result of FINDLOC (ARRAY, VALUE) is a rank‑one array whose element values are the val‑31
ues of the subscripts of an element of ARRAY whose value matches VALUE. If there is such a32
value, the ith element value is in the range 1 to ei, where ei is the extent of the ith dimension33
of ARRAY. If no elements match VALUE or ARRAY has size zero, all elements of the result are34
zero.35

Case (ii): The result of FINDLOC (ARRAY, VALUE, MASK = MASK) is a rank‑one array whose element36
values are the values of the subscripts of an element of ARRAY, corresponding to a true element37
of MASK, whose value matches VALUE. If there is such a value, the ith element value is in the38
range 1 to ei, where ei is the extent of the ith dimension of ARRAY. If no elementsmatch VALUE,39

424 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

ARRAY has size zero, or every element of MASK has the value false, all elements of the result1
are zero.2

Case (iii): If ARRAY has rank one, the result of FINDLOC (ARRAY, VALUE, DIM=DIM [, MASK = MASK]) is3
a scalar whose value is equal to that of the ϐirst element of FINDLOC (ARRAY, VALUE [, MASK =4
MASK]). Otherwise, the value of element (s1, s2, …, sDIM−1, sDIM+1, …, sn) of the result is equal5
to FINDLOC (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn), VALUE, DIM=1 [, MASK = MASK (s1, s2,6
…, sDIM−1, :, sDIM+1, …, sn)]).7

6 If both ARRAY and VALUE are of type logical, the comparison is performed with the .EQV. operator; other‑8
wise, the comparison is performedwith the == operator. If the value of the comparison is true, that element9
of ARRAY matches VALUE.10

7 If DIM is not present, more than one elementmatches VALUE, and BACK is absent or present with the value11
false, the value returned indicates the ϐirst such element, taken in array element order. If DIM is not present12
and BACK is present with the value true, the value returned indicates the last such element, taken in array13
element order.14

8 Examples.15

Case (i): The value of FINDLOC ([2, 6, 4, 6], VALUE=6) is [2], and the value of FINDLOC ([2, 6, 4, 6],16
VALUE=6, BACK= .TRUE.) is [4].17

Case (ii): If A has the value

 0 −5 7 7
3 4 −1 2
1 5 6 7

, and M has the value

 T T F T
T T F T
T T F T

,18

FINDLOC (A, 7, MASK = M) has the value [1, 4] and FINDLOC (A, 7, MASK = M, BACK = .TRUE.)19
has the value [3, 4]. This is independent of the declared lower bounds for A.20

Case (iii): The value of FINDLOC ([2, 6, 4], VALUE=6, DIM=1) is 2. If B has the value
[
1 2 −9
2 2 6

]
,21

FINDLOC (B, VALUE=2, DIM=1) has the value [2, 1, 0] and FINDLOC (B, VALUE=2, DIM=2)22
has the value [2, 1]. This is independent of the declared lower bounds for B.23

16.9.89 FLOOR (A [, KIND])24

1 Description. Greatest integer less than or equal to A.25

2 Class. Elemental function.26

3 Arguments.27
A shall be of type real.28
KIND (optional) shall be a scalar integer constant expression.29

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value30
of KIND; otherwise, the kind type parameter is that of default integer type.31

5 Result Value. The result has a value equal to the greatest integer less than or equal to A.32

6 Examples. FLOOR (3.7) has the value 3. FLOOR (−3.7) has the value−4.33

J3/25‑007 425

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.90 FRACTION (X)1

1 Description. Fractional part of number.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Result Characteristics. Same as X.5

5 Result Value. The result has the value X× b−e, where b and e are as deϐined in 16.4 for the representation6
of X in the extended real model for the kind of X. If X has the value zero, the result is zero. If X is an IEEE7
NaN, the result is that NaN. If X is an IEEE inϐinity, the result is an IEEE NaN.8

6 Example. FRACTION (3.0) has the value 0.75 for reals whose model is as in 16.4, NOTE.9

16.9.91 GAMMA (X)10

1 Description. Gamma function.11

2 Class. Elemental function.12

3 Argument. X shall be of type real. Its value shall not be a negative integer or zero.13

4 Result Characteristics. Same as X.14

5 Result Value. The result has a value equal to a processor‑dependent approximation to the gamma function
of X,

Γ(X) =

∫∞
0 tX−1 exp(−t) dt X > 0

∫∞
0 tX−1

(
exp(−t)−

∑n
k=0

(−t)k

k!

)
dt −n− 1 < X < −n, n an integer ≥ 0

6 Example. GAMMA (1.0) has the value 1.000 (approximately).15

16.9.92 GET_COMMAND ([COMMAND, LENGTH, STATUS, ERRMSG])16

1 Description. Get program invocation command.17

2 Class. Subroutine.18

3 Arguments.19
COMMAND (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned20

the entire command by which the program was invoked. If the command cannot be determ‑21
ined, COMMAND is assigned all blanks.22

LENGTH (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is23
an INTENT (OUT) argument. It is assigned the signiϐicant length of the command by which24
the program was invoked. The signiϐicant length may include trailing blanks if the processor25
allows commands with signiϐicant trailing blanks. This length does not consider any possible26
truncation or padding in assigning the command to the COMMANDargument; in fact the COM‑27
MAND argument need not even be present. If the command length cannot be determined, a28
length of 0 is assigned.29

426 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

STATUS (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an1
INTENT (OUT) argument. It is assigned the value −1 if the COMMAND argument is present2
and has a length less than the signiϐicant length of the command. It is assigned a processor‑3
dependent positive value if the command retrieval fails. Otherwise it is assigned the value4
0.5

ERRMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. It is assigned6
a processor‑dependent explanatory message if the command retrieval fails. Otherwise, it is7
unchanged.8

4 Example. If the program below is invoked with the command “example” on a processor that supports9
command retrieval, it will display “Hello example”.10

PROGRAM hello11
CHARACTER(:), ALLOCATABLE :: cmd12
CALL GET_COMMAND(cmd)13
PRINT *, 'Hello ', cmd14

END PROGRAM15

16.9.93 GET_COMMAND_ARGUMENT (NUMBER [, VALUE, LENGTH, STATUS,
ERRMSG])

16

1 Description. Get program invocation argument.17

2 Class. Subroutine.18

3 Arguments.19
NUMBER shall be an integer scalar. It is an INTENT (IN) argument that speciϐies the number of the20

command argument that the other arguments give information about.21
Command argument 0 always exists, and is the command name by which the program was22
invoked if the processor has such a concept; otherwise, the value of command argument 0 is23
processor dependent. The remaining command arguments are numbered consecutively from24
1 to the argument count in an order determined by the processor.25

VALUE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. If the command26
argument speciϐied by NUMBER exists, its value is assigned to VALUE; otherwise, VALUE is27
assigned all blanks.28

LENGTH (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is29
an INTENT (OUT) argument. If the command argument speciϐied by NUMBER exists, its sig‑30
niϐicant length is assigned to LENGTH; otherwise, LENGTH is assigned the value zero. It is31
processor dependent whether the signiϐicant length includes trailing blanks. This length does32
not consider any possible truncation or padding in assigning the command argument value to33
the VALUE argument; in fact the VALUE argument need not even be present.34

STATUS (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an35
INTENT (OUT) argument. If NUMBER is less than zero or greater than the argument count that36
would be returned by the intrinsic function COMMAND_ARGUMENT_COUNT, or command re‑37
trieval fails, STATUS is assigned a processor‑dependent positive value. Otherwise, if VALUE is38
present and has a length less than the signiϐicant length of the speciϐied command argument,39
it is assigned the value−1. Otherwise it is assigned the value 0.40

ERRMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. It is assigned a41
processor‑dependent explanatory message if the optional argument STATUS is, or would be if42
present, assigned a positive value. Otherwise, it is unchanged.43

J3/25‑007 427

J3/25‑007 WD 1539‑1 2024‑12‑29

4 Example. On a processor that supports command arguments, the following program displays the argu‑1
ments of the command by which it was invoked.2

PROGRAM show_arguments3
INTEGER :: i4
CHARACTER :: command*32, arg*1285
CALL get_command_argument(0, command)6
WRITE (*,*) "Command name is: ", command7
DO i = 1, command_argument_count()8

CALL get_command_argument(i, arg)9
WRITE (*,*) "Argument ", i, " is ", arg10

END DO11
END PROGRAM show_arguments12

16.9.94 GET_ENVIRONMENT_VARIABLE (NAME [, VALUE, LENGTH, STATUS,
TRIM_NAME, ERRMSG])

13

1 Description. Get environment variable.14

2 Class. Subroutine.15

3 Arguments.16
NAME shall be a default character scalar. It is an INTENT (IN) argument. The interpretation of case17

is processor dependent.18
VALUE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned the19

value of the environment variable speciϐied byNAME. VALUE is assigned all blanks if the envir‑20
onment variable does not exist or does not have a value, or if the processor does not support21
environment variables.22

LENGTH (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is23
an INTENT (OUT) argument. If the speciϐied environment variable exists and has a value,24
LENGTH is assigned the value of its length. Otherwise LENGTH is assigned the value zero.25

STATUS (optional) shall be a scalar of type integer with a decimal exponent range of at least four. It is an26
INTENT (OUT) argument. If the environment variable exists and either has no value, its value27
is successfully assigned to VALUE, or the VALUE argument is not present, STATUS is assigned28
the value zero. STATUS is assigned the value −1 if the VALUE argument is present and has29
a length less than the signiϐicant length of the environment variable. It is assigned the value30
1 if the speciϐied environment variable does not exist, or 2 if the processor does not support31
environment variables. Processor‑dependent values greater than 2may be assigned for other32
error conditions.33

TRIM_NAME (optional) shall be a logical scalar. It is an INTENT (IN) argument. If TRIM_NAME is present34
with the value false then trailing blanks in NAME are considered signiϐicant if the processor35
supports trailing blanks in environment variable names. Otherwise trailing blanks in NAME36
are not considered part of the environment variable’s name.37

ERRMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. It is assigned a38
processor‑dependent explanatory message if the optional argument STATUS is, or would be if39
present, assigned a positive value. Otherwise, it is unchanged.40

4 It is processor dependent whether an environment variable that exists on an image also exists on another41
image, and if it does exist on both images, whether the values are the same or different.42

428 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Example. If the value of the environment variable DATAFILE is dataϐile.dat, executing the statement se‑1
quence below will assign the value ’dataϐile.dat’ to FILENAME.2

CHARACTER(:),ALLOCATABLE :: FILENAME3
CALL GET_ENVIRONMENT_VARIABLE("DATAFILE", FILENAME)4

16.9.95 GET_TEAM ([LEVEL])5

1 Description. Team.6

2 Class. Transformational function.7

3 Argument. LEVEL (optional) shall be a scalar integer whose value is equal to one of the named constants8
INITIAL_TEAM, PARENT_TEAM, or CURRENT_TEAM from the intrinsic module ISO_FORTRAN_ENV.9

4 Result Characteristics. Scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.10

5 Result Value. The result is a TEAM_TYPE value that identiϐies the current team if LEVEL is not present,11
present with the value CURRENT_TEAM, or if the current team is the initial team. Otherwise, the result12
identiϐies the parent team if LEVEL is present with the value PARENT_TEAM, and identiϐies the initial team13
if LEVEL is present with the value INITIAL_TEAM.14

6 Examples.15

PROGRAM EXAMPLE116
USE,INTRINSIC :: ISO_FORTRAN_ENV, ONLY: TEAM_TYPE17
TYPE(TEAM_TYPE) :: WORLD_TEAM, TEAM218

19
! Define a team variable representing the initial team20
WORLD_TEAM = GET_TEAM()21

END PROGRAM22
23

SUBROUTINE EXAMPLE2 (A)24
USE,INTRINSIC :: ISO_FORTRAN_ENV, ONLY: TEAM_TYPE25
REAL A[*]26
TYPE(TEAM_TYPE) :: NEW_TEAM, PARENT_TEAM27

28
... ! Form NEW_TEAM29

30
PARENT_TEAM = GET_TEAM ()31

32
CHANGE TEAM (NEW_TEAM)33

34
! Reference image 1 in parent's team35
A [1,TEAM=PARENT_TEAM] = 4.236

37
! Reference image 1 in current team38
A [1] = 9.039

END TEAM40
END SUBROUTINE EXAMPLE241

NOTE
Because the result of GET_TEAM is of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, a program
unit that assigns the result of a reference to GET_TEAM to a local variable will also need access to the deϐinition of
TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV.

J3/25‑007 429

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.96 HUGE (X)1

1 Description. Largest model value or last enumeration value.2

2 Class. Inquiry function.3

3 Argument. X shall be of type integer or real, or of enumeration type. It may be a scalar or an array.4

4 Result Characteristics. Scalar of the same type and kind type parameter as X.5

5 Result Value. The result has the value rq − 1 if X is of type integer and (1 − b−p)bemax if X is of type real,6
where r, q, b, p, and emax are as deϐined in 16.4 for the model representing numbers of the same type and7
kind type parameter as X. If X is of enumeration type, the result has the value of the last enumerator in the8
type deϐinition.9

6 Example. HUGE (X) has the value (1− 2−24)× 2127 for real X whose model is as in 16.4, NOTE.10

16.9.97 HYPOT (X, Y)11

1 Description. Euclidean distance function.12

2 Class. Elemental function.13

3 Arguments.14
X shall be of type real.15
Y shall be of type real with the same kind type parameter as X.16

4 Result Characteristics. Same as X.17

5 Result Value. The result has a value equal to a processor‑dependent approximation to the Euclidean dis‑18
tance,

√
X2 + Y2, without undue overϐlow or underϐlow.19

6 Example. HYPOT (3.0, 4.0) has the value 5.0 (approximately).20

16.9.98 IACHAR (C [, KIND])21

1 Description. ASCII code value for character.22

2 Class. Elemental function.23

3 Arguments.24
C shall be of type character and of length one.25
KIND (optional) shall be a scalar integer constant expression.26

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value27
of KIND; otherwise, the kind type parameter is that of default integer type.28

5 Result Value. If C is in the collating sequence deϐined by the codes speciϐied in ISO/IEC 646:1991 (Inter‑29
national Reference Version), the result is the position of C in that sequence; it is nonnegative and less than30
or equal to 127. The value of the result is processor dependent if C is not in the ASCII collating sequence.31
The results are consistent with the LGE, LGT, LLE, and LLT comparison functions. For example, if LLE (C,32
D) is true, IACHAR (C) <= IACHAR (D) is true where C and D are any two characters representable by the33
processor.34

430 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 Example. IACHAR (’X’) has the value 88.1

16.9.99 IALL (ARRAY, DIM [, MASK]) or IALL (ARRAY [, MASK])2

1 Description. Array reduced by IAND function.3

2 Class. Transformational function.4

3 Arguments.5
ARRAY shall be an array of type integer.6
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.7
MASK (optional) shall be of type logical and shall be conformable with ARRAY.8

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if DIM9
does not appear or if ARRAY has rank one; otherwise, the result is an array of rank n− 1 and shape [d1, d2,10
…, dDIM−1, dDIM+1, …, dn] where [d1, d2, …, dn] is the shape of ARRAY.11

5 Result Value.12

Case (i): If ARRAY has size zero the result value is equal to NOT (INT (0, KIND (ARRAY))). Otherwise,13
the result of IALL (ARRAY) has a value equal to the bitwise AND of all the elements of ARRAY.14

Case (ii): The result of IALL (ARRAY, MASK=MASK) has a value equal to IALL (PACK (ARRAY, MASK)).15
Case (iii): The result of IALL (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of IALL (AR‑16

RAY [, MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element (s1, s2, …,17
sDIM−1, sDIM+1, …, sn) of the result is equal to IALL (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …,18
sn) [, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)]).19

6 Examples. IALL ([14, 13, 11]) has the value 8. IALL ([14, 13, 11], MASK=[.true., .false., .true.]) has the value20
10.21

16.9.100 IAND (I, J)22

1 Description. Bitwise AND.23

2 Class. Elemental function.24

3 Arguments.25
I shall be of type integer or a boz‑literal‑constant.26
J shall be of type integer or a boz‑literal‑constant. If both I and J are of type integer, they shall27

have the same kind type parameter. I and J shall not both be boz‑literal‑constants.28

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.29

5 Result Value. If either I or J is a boz‑literal‑constant, it is ϐirst converted as if by the intrinsic function INT30
to type integer with the kind type parameter of the other. The result has the value obtained by combining31
I and J bit‑by‑bit according to Table 16.5.32

Table 16.5— Bitwise result table for IAND
I J IAND (I, J)
1 1 1
1 0 0

J3/25‑007 431

J3/25‑007 WD 1539‑1 2024‑12‑29

Bitwise result table for IAND (cont.)
I J IAND (I, J)
0 1 0
0 0 0

6 The model for the interpretation of an integer value as a sequence of bits is in 16.3.1

7 Example. IAND (1, 3) has the value 1.2

16.9.101 IANY (ARRAY, DIM [, MASK]) or IANY (ARRAY [, MASK])3

1 Description. Reduce array with bitwise OR operation.4

2 Class. Transformational function.5

3 Arguments.6
ARRAY shall be of type integer. It shall be an array.7
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of8

ARRAY.9
MASK (optional) shall be of type logical and shall be conformable with ARRAY.10

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if DIM11
does not appear or if ARRAY has rank one; otherwise, the result is an array of rank n− 1 and shape [d1, d2,12
…, dDIM−1, dDIM+1, …, dn] where [d1, d2, …, dn] is the shape of ARRAY.13

5 Result Value.14

Case (i): The result of IANY (ARRAY) is the bitwise OR of all the elements of ARRAY. If ARRAY has size15
zero the result value is equal to zero.16

Case (ii): The result of IANY (ARRAY, MASK=MASK) has a value equal to IANY (PACK (ARRAY, MASK)).17
Case (iii): The result of IANY (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of IANY (AR‑18

RAY [, MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element (s1, s2, …,19
sDIM−1, sDIM+1, …, sn) of the result is equal to IANY (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …,20
sn) [, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)]).21

6 Examples. IANY ([14, 13, 8]) has the value 15. IANY ([14, 13, 8], MASK=[.true., .false., .true.]) has the value22
14.23

16.9.102 IBCLR (I, POS)24

1 Description. I with bit POS replaced by zero.25

2 Class. Elemental function.26

3 Arguments.27
I shall be of type integer.28
POS shall be of type integer. It shall be nonnegative and less than BIT_SIZE (I).29

4 Result Characteristics. Same as I.30

432 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Result Value. The result has the value of the sequence of bits of I, except that bit POS is zero. The model1
for the interpretation of an integer value as a sequence of bits is in 16.3.2

6 Examples. IBCLR (14, 1) has the value 12. If V has the value [1, 2, 3, 4], the value of IBCLR (POS = V, I = 31)3
is [29, 27, 23, 15].4

16.9.103 IBITS (I, POS, LEN)5

1 Description. Speciϐied sequence of bits.6

2 Class. Elemental function.7

3 Arguments.8
I shall be of type integer.9
POS shall be of type integer. It shall be nonnegative and POS + LEN shall be less than or equal to10

BIT_SIZE (I).11
LEN shall be of type integer and nonnegative.12

4 Result Characteristics. Same as I.13

5 Result Value. The result has the value of the sequence of LEN bits in I beginning at bit POS, right‑adjusted14
and with all other bits zero. The model for the interpretation of an integer value as a sequence of bits is in15
16.3.16

6 Example. IBITS (14, 1, 3) has the value 7.17

16.9.104 IBSET (I, POS)18

1 Description. I with bit POS replaced by one.19

2 Class. Elemental function.20

3 Arguments.21
I shall be of type integer.22
POS shall be of type integer. It shall be nonnegative and less than BIT_SIZE (I).23

4 Result Characteristics. Same as I.24

5 Result Value. The result has the value of the sequence of bits of I, except that bit POS is one. Themodel for25
the interpretation of an integer value as a sequence of bits is in 16.3.26

6 Examples. IBSET (12, 1) has the value 14. If V has the value [1, 2, 3, 4], the value of IBSET (POS =V, I = 0)27
is [2, 4, 8, 16].28

16.9.105 ICHAR (C [, KIND])29

1 Description. Code value for character.30

2 Class. Elemental function.31

3 Arguments.32
C shall be of type character and of length one. Its value shall be that of a character capable of33

representation in the processor.34

J3/25‑007 433

J3/25‑007 WD 1539‑1 2024‑12‑29

KIND (optional) shall be a scalar integer constant expression.1

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value2
of KIND; otherwise, the kind type parameter is that of default integer type.3

5 Result Value. The result is the position of C in the processor collating sequence associated with the kind4
type parameter of C; it is nonnegative and less than n, where n is the number of characters in the collating5
sequence. The kind type parameter of the result shall specify an integer kind that is capable of represent‑6
ing n. For any characters C and D capable of representation in the processor, C <= D is true if and only if7
ICHAR (C) <= ICHAR (D) is true and C == D is true if and only if ICHAR (C) == ICHAR (D) is true.8

6 Example. ICHAR (’X’) has the value 88 on a processor using the ASCII collating sequence for default char‑9
acters.10

16.9.106 IEOR (I, J)11

1 Description. Bitwise exclusive OR.12

2 Class. Elemental function.13

3 Arguments.14
I shall be of type integer or a boz‑literal‑constant.15
J shall be of type integer or a boz‑literal‑constant. If both I and J are of type integer, they shall16

have the same kind type parameter. I and J shall not both be boz‑literal‑constants.17

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.18

5 Result Value. If either I or J is a boz‑literal‑constant, it is ϐirst converted as if by the intrinsic function INT19
to type integer with the kind type parameter of the other. The result has the value obtained by combining20
I and J bit‑by‑bit according to Table 16.6.21

Table 16.6— Bitwise result table for IEOR
I J IEOR (I, J)
1 1 0
1 0 1
0 1 1
0 0 0

6 The model for the interpretation of an integer value as a sequence of bits is in 16.3.22

7 Example. IEOR (1, 3) has the value 2.23

16.9.107 IMAGE_INDEX (COARRAY, SUB) or (COARRAY, SUB, TEAM) or
(COARRAY, SUB, TEAM_NUMBER)

24

1 Description. Image index from cosubscripts.25

2 Class. Transformational function.26

3 Arguments.27
COARRAY shall be a coarray of any type. If its designator has more than one part‑ref , the rightmost28

part‑ref shall have nonzero corank. If TEAM_NUMBER appears and the current team is not29

434 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

the initial team, it shall be established in the parent of the current team. If TEAM_NUMBER1
appears and the current team is the initial team, it shall be established in the initial team and2
the value of TEAM_NUMBER shall be the team number for the initial team. If TEAM appears,3
it shall be established in that team. If neither TEAM nor TEAM_NUMBER appears, it shall be4
established in the current team.5

SUB shall be a rank‑one integer array of size equal to the corank of COARRAY.6
TEAM shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, with a7

value that identiϐies the current or an ancestor team.8
TEAM_NUMBER shall be an integer scalar. It shall identify the initial team or a sibling team of the current9

team.10

4 Result Characteristics. Default integer scalar.11

5 Result Value. If the value of SUB is a valid sequence of cosubscripts for COARRAY in the team speciϐied by12
TEAM or TEAM_NUMBER, or the current team if neither TEAM nor TEAM_NUMBER appears, the result is13
the index of the corresponding image in that team. Otherwise, the result is zero.14

6 Examples. If A and B are declared as A [0:*] and B (10, 20) [10, 0:9, 0:*] respectively, IMAGE_INDEX (A, [0])15
has the value 1 and IMAGE_INDEX (B, [3, 1, 2]) has the value 213 (on any image, provided the number of16
images is at least 213).17

16.9.108 IMAGE_STATUS (IMAGE [, TEAM])18

1 Description. Image execution state.19

2 Class. Elemental function.20

3 Arguments.21
IMAGE shall be of type integer. Its value shall be positive and less than or equal to the number of22

images in the speciϐied team.23
TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV. Its24

value shall represent the current or an ancestor team. If TEAM is absent, the team speciϐied is25
the current team.26

4 Result Characteristics. Default integer.27

5 Result Value. The result value is STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV if28
the speciϐied image has failed, STAT_STOPPED_IMAGE from the intrinsicmodule ISO_FORTRAN_ENV if that29
image has initiated normal termination, and zero otherwise.30

6 Example. If image 3 of the current team has failed, IMAGE_STATUS (3) has the value STAT_FAILED_IMAGE.31

16.9.109 INDEX (STRING, SUBSTRING [, BACK, KIND])32

1 Description. Character string search.33

2 Class. Elemental function.34

3 Arguments.35
STRING shall be of type character.36
SUBSTRING shall be of type character with the same kind type parameter as STRING.37

J3/25‑007 435

J3/25‑007 WD 1539‑1 2024‑12‑29

BACK (optional) shall be of type logical.1
KIND (optional) shall be a scalar integer constant expression.2

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value3
of KIND; otherwise the kind type parameter is that of default integer type.4

5 Result Value.5

Case (i): If STRING% LEN< SUBSTRING% LEN, the result has the value zero.6
Case (ii): Otherwise, if there is an integer I in the range 1≤ I≤ STRING% LEN− SUBSTRING% LEN+7

1, such that STRING(I : I + SUBSTRING % LEN− 1) is equal to SUBSTRING, the result has the8
value of the smallest such I if BACK is absent or present with the value false, and the greatest9
such I if BACK is present with the value true.10

Case (iii): Otherwise, the result has the value zero.11

6 Examples. INDEX (’FORTRAN’, ’R’) has the value 3.12
INDEX (’FORTRAN’, ’R’, BACK = .TRUE.) has the value 5.13

16.9.110 INT (A [, KIND])14

1 Description. Conversion to integer type.15

2 Class. Elemental function.16

3 Arguments.17
A shall be of type integer, real, or complex, or of enum or enumeration type, or a boz‑literal‑18

constant.19
KIND (optional) shall be a scalar integer constant expression.20

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value21
of KIND; otherwise, the kind type parameter is that of default integer type.22

5 Result Value.23

Case (i): If A is of type integer, INT (A) = A.24
Case (ii): If A is of type real, there are two cases: if |A| < 1, INT (A) has the value 0; if |A| ≥ 1, INT (A)25

is the integer whose magnitude is the largest integer that does not exceed the magnitude of A26
and whose sign is the same as the sign of A.27

Case (iii): If A is of type complex, INT (A) = INT (REAL (A, KIND (A))).28
Case (iv): If A is of enum type, INT (A) has the value of the corresponding integer value.29
Case (v): If A is of enumeration type, INT (A) has the value of the ordinal position of A.30
Case (vi): If A is a boz‑literal‑constant, the value of the result is the value whose bit sequence according31

to the model in 16.3 is the same as that of A as modiϐied by padding or truncation according32
to 16.3.3. The interpretation of a bit sequence whose most signiϐicant bit is 1 is processor33
dependent.34

6 Example. INT (−3.7) has the value−3.35

436 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.111 IOR (I, J)1

1 Description. Bitwise inclusive OR.2

2 Class. Elemental function.3

3 Arguments.4
I shall be of type integer or a boz‑literal‑constant.5
J shall be of type integer or a boz‑literal‑constant. If both I and J are of type integer, they shall6

have the same kind type parameter. I and J shall not both be boz‑literal‑constants.7

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.8

5 Result Value. If either I or J is a boz‑literal‑constant, it is ϐirst converted as if by the intrinsic function INT9
to type integer with the kind type parameter of the other. The result has the value obtained by combining10
I and J bit‑by‑bit according to Table 16.7.11

Table 16.7— Bitwise result table for IOR
I J IOR (I, J)
1 1 1
1 0 1
0 1 1
0 0 0

6 The model for the interpretation of an integer value as a sequence of bits is in 16.3.12

7 Example. IOR (5, 3) has the value 7.13

16.9.112 IPARITY (ARRAY, DIM [, MASK]) or IPARITY (ARRAY [, MASK])14

1 Description. Array reduced by IEOR function.15

2 Class. Transformational function.16

3 Arguments.17
ARRAY shall be of type integer. It shall be an array.18
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.19
MASK (optional) shall be of type logical and shall be conformable with ARRAY.20

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if DIM21
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn] where22
[d1, d2, …, dn] is the shape of ARRAY.23

5 Result Value.24

Case (i): The result of IPARITY (ARRAY) has a value equal to the bitwise exclusive OR of all the elements25
of ARRAY. If ARRAY has size zero the result has the value zero.26

Case (ii): The result of IPARITY (ARRAY, MASK=MASK) has a value equal to that of IPARITY (PACK (AR‑27
RAY, MASK)).28

Case (iii): The result of IPARITY (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of IPAR‑29
ITY (ARRAY [, MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element (s1, s2,30

J3/25‑007 437

J3/25‑007 WD 1539‑1 2024‑12‑29

…, sDIM−1, sDIM+1, …, sn) of the result is equal to IPARITY (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1,1
…, sn) [, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)]).2

6 Examples. IPARITY ([14, 13, 8]) has the value 11. IPARITY ([14, 13, 8], MASK=[.true., .false., .true.]) has3
the value 6.4

16.9.113 ISHFT (I, SHIFT)5

1 Description. Logical shift.6

2 Class. Elemental function.7

3 Arguments.8
I shall be of type integer.9
SHIFT shall be of type integer. The absolute value of SHIFT shall be less than or equal to BIT_SIZE (I).10

4 Result Characteristics. Same as I.11

5 Result Value. The result has the value obtained by shifting the bits of I by SHIFT positions. If SHIFT is12
positive, the shift is to the left; if SHIFT is negative, the shift is to the right; if SHIFT is zero, no shift is13
performed. Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in14
from the opposite end. The model for the interpretation of an integer value as a sequence of bits is in 16.3.15

6 Example. ISHFT (3, 1) has the value 6.16

16.9.114 ISHFTC (I, SHIFT [, SIZE])17

1 Description. Circular shift of the rightmost bits.18

2 Class. Elemental function.19

3 Arguments.20
I shall be of type integer.21
SHIFT shall be of type integer. The absolute value of SHIFT shall be less than or equal to SIZE.22
SIZE (optional) shall be of type integer. The value of SIZE shall be positive and shall not exceedBIT_SIZE (I).23

If SIZE is absent, it is as if it were present with the value of BIT_SIZE (I).24

4 Result Characteristics. Same as I.25

5 Result Value. The result has the value obtained by shifting the SIZE rightmost bits of I circularly by SHIFT26
positions. If SHIFT is positive, the shift is to the left; if SHIFT is negative, the shift is to the right; and if27
SHIFT is zero, no shift is performed. No bits are lost. The unshifted bits are unaltered. The model for the28
interpretation of an integer value as a sequence of bits is in 16.3.29

6 Example. ISHFTC (3, 2, 3) has the value 5.30

16.9.115 IS_CONTIGUOUS (ARRAY)31

1 Description. Array contiguity test (8.5.7).32

2 Class. Inquiry function.33

438 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3 Argument. ARRAY may be of any type. It shall be assumed‑rank or an array. If it is a pointer it shall be1
associated.2

4 Result Characteristics. Default logical scalar.3

5 Result Value. The result has the value true if ARRAY has rank zero or is contiguous, and false otherwise.4

6 Example. After the pointer assignment AP => TARGET (1:10:2), IS_CONTIGUOUS (AP) has the value false.5

16.9.116 IS_IOSTAT_END (I)6

1 Description. IOSTAT value test for end of ϐile.7

2 Class. Elemental function.8

3 Argument. I shall be of type integer.9

4 Result Characteristics. Default logical.10

5 Result Value. The result has the value true if and only if I is a value for the stat‑variable in an IOSTAT=11
speciϐier (12.11.5) that would indicate an end‑of‑ϐile condition.12

16.9.117 IS_IOSTAT_EOR (I)13

1 Description. IOSTAT value test for end of record.14

2 Class. Elemental function.15

3 Argument. I shall be of type integer.16

4 Result Characteristics. Default logical.17

5 Result Value. The result has the value true if and only if I is a value for the stat‑variable in an IOSTAT=18
speciϐier (12.11.5) that would indicate an end‑of‑record condition.19

16.9.118 KIND (X)20

1 Description. Value of the kind type parameter of X.21

2 Class. Inquiry function.22

3 Argument. X may be of any intrinsic type. It may be a scalar or an array.23

4 Result Characteristics. Default integer scalar.24

5 Result Value. The result has a value equal to the kind type parameter value of X.25

6 Example. KIND (0.0) has the kind type parameter value of default real.26

16.9.119 LBOUND (ARRAY [, DIM, KIND])27

1 Description. Lower bound(s).28

2 Class. Inquiry function.29

3 Arguments.30

J3/25‑007 439

J3/25‑007 WD 1539‑1 2024‑12‑29

ARRAY shall be assumed‑rank or an array. It shall not be an unallocated allocatable variable or a1
pointer that is not associated.2

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank3
of ARRAY. The corresponding actual argument shall not be an optional dummy argument, a4
disassociated pointer, or an unallocated allocatable.5

KIND (optional) shall be a scalar integer constant expression.6

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value7
of KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is8
present; otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.9

5 Result Value.10

Case (i): If DIM is present, ARRAY is a whole array, and either ARRAY is an assumed‑size array of rank11
DIM or dimension DIM of ARRAY has nonzero extent, the result has a value equal to the lower12
bound for subscript DIM of ARRAY. Otherwise, if DIM is present, the result value is 1.13

Case (ii): LBOUND (ARRAY) has a value whose ith element is equal to LBOUND (ARRAY, i), for i = 1, 2,14
. . . , n, where n is the rank of ARRAY. LBOUND (ARRAY, KIND=KIND) has a value whose ith15
element is equal to LBOUND (ARRAY, i, KIND), for i = 1, 2, . . . , n, where n is the rank of16
ARRAY.17

NOTE
If ARRAY is assumed‑rank and has rank zero, DIM cannot be present since it cannot satisfy the requirement 1 ≤
DIM ≤ 0.

6 Examples. If A is declared by the statement18

REAL A (2:3, 7:10)19

then LBOUND (A) is [2, 7] and LBOUND (A, DIM=2) is 7.20

16.9.120 LCOBOUND (COARRAY [, DIM, KIND])21

1 Description. Lower cobound(s) of a coarray.22

2 Class. Inquiry function.23

3 Arguments.24
COARRAY shall be a coarray and may be of any type. It may be a scalar or an array. If it is allocatable25

it shall be allocated. If its designator has more than one part‑ref , the rightmost part‑ref shall26
have nonzero corank.27

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the corank28
of COARRAY. The corresponding actual argument shall not be an optional dummy argument,29
a disassociated pointer, or an unallocated allocatable.30

KIND (optional) shall be a scalar integer constant expression.31

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value32
of KIND; otherwise, the kind type parameter is that of default integer type. The result is scalar if DIM is33
present; otherwise, the result is an array of rank one and size n, where n is the corank of COARRAY.34

5 Result Value.35

440 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Case (i): If DIM is present, the result has a value equal to the lower cobound for codimension DIM of1
COARRAY.2

Case (ii): If DIM is absent, the result has a value whose ith element is equal to the lower cobound for3
codimension i of COARRAY, for i = 1, 2,…, n, where n is the corank of COARRAY.4

6 Examples. If A is allocated by the statement ALLOCATE (A [2:3, 7:*]) then LCOBOUND (A) is [2, 7] and5
LCOBOUND (A, DIM=2) is 7.6

16.9.121 LEADZ (I)7

1 Description. Number of leading zero bits.8

2 Class. Elemental function.9

3 Argument. I shall be of type integer.10

4 Result Characteristics. Default integer.11

5 Result Value. If all of the bits of I are zero, the result has the valueBIT_SIZE (I). Otherwise, the result has the12
value BIT_SIZE (I)−1−k, where k is the position of the leftmost 1 bit in I. Themodel for the interpretation13
of an integer value as a sequence of bits is in 16.3.14

6 Examples. LEADZ (1) has the value 31 if BIT_SIZE (1) has the value 32.15

16.9.122 LEN (STRING [, KIND])16

1 Description. Length of a character entity.17

2 Class. Inquiry function.18

3 Arguments.19
STRING shall be of type character. If it is an unallocated allocatable variable or a pointer that is not20

associated, its length type parameter shall not be deferred.21
KIND (optional) shall be a scalar integer constant expression.22

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that speciϐied by the23
value of KIND; otherwise the kind type parameter is that of default integer type.24

5 Result Value. The result has a value equal to the number of characters in STRING if it is scalar or in an25
element of STRING if it is an array.26

6 Example. If C is declared by the statement27

7 CHARACTER (11) C (100)28

8 LEN (C) has the value 11.29

16.9.123 LEN_TRIM (STRING [, KIND])30

1 Description. Length without trailing blanks.31

2 Class. Elemental function.32

3 Arguments.33

J3/25‑007 441

J3/25‑007 WD 1539‑1 2024‑12‑29

STRING shall be of type character.1
KIND (optional) shall be a scalar integer constant expression.2

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value3
of KIND; otherwise the kind type parameter is that of default integer type.4

5 Result Value. The result has a value equal to the number of characters remaining after any trailing blanks5
in STRING are removed. If the argument contains no nonblank characters, the result is zero.6

6 Examples. LEN_TRIM (’ A B ’) has the value 4 and LEN_TRIM (’ ’) has the value 0.7

16.9.124 LGE (STRING_A, STRING_B)8

1 Description. ASCII greater than or equal.9

2 Class. Elemental function.10

3 Arguments.11
STRING_A shall be default character or ASCII character.12
STRING_B shall be of type character with the same kind type parameter as STRING_A.13

4 Result Characteristics. Default logical.14

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were15
extended on the right with blanks to the length of the longer string. If either string contains a character not16
in the ASCII character set, the result is processor dependent. The result is true if the strings are equal or if17
STRING_A follows STRING_B in the ASCII collating sequence; otherwise, the result is false.18

NOTE
The result is true if both STRING_A and STRING_B are of zero length.

6 Example. LGE (’ONE’, ’TWO’) has the value false.19

16.9.125 LGT (STRING_A, STRING_B)20

1 Description. ASCII greater than.21

2 Class. Elemental function.22

3 Arguments.23
STRING_A shall be default character or ASCII character.24
STRING_B shall be of type character with the same kind type parameter as STRING_A.25

4 Result Characteristics. Default logical.26

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were27
extended on the right with blanks to the length of the longer string. If either string contains a character28
not in the ASCII character set, the result is processor dependent. The result is true if STRING_A follows29
STRING_B in the ASCII collating sequence; otherwise, the result is false.30

442 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
The result is false if both STRING_A and STRING_B are of zero length.

6 Example. LGT (’ONE’, ’TWO’) has the value false.1

16.9.126 LLE (STRING_A, STRING_B)2

1 Description. ASCII less than or equal.3

2 Class. Elemental function.4

3 Arguments.5
STRING_A shall be default character or ASCII character.6
STRING_B shall be of type character with the same kind type parameter as STRING_A.7

4 Result Characteristics. Default logical.8

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were9
extended on the right with blanks to the length of the longer string. If either string contains a character not10
in the ASCII character set, the result is processor dependent. The result is true if the strings are equal or if11
STRING_A precedes STRING_B in the ASCII collating sequence; otherwise, the result is false.12

NOTE
The result is true if both STRING_A and STRING_B are of zero length.

6 Example. LLE (’ONE’, ’TWO’) has the value true.13

16.9.127 LLT (STRING_A, STRING_B)14

1 Description. ASCII less than.15

2 Class. Elemental function.16

3 Arguments.17
STRING_A shall be default character or ASCII character.18
STRING_B shall be of type character with the same kind type parameter as STRING_A.19

4 Result Characteristics. Default logical.20

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were21
extended on the right with blanks to the length of the longer string. If either string contains a character22
not in the ASCII character set, the result is processor dependent. The result is true if STRING_A precedes23
STRING_B in the ASCII collating sequence; otherwise, the result is false.24

NOTE
The result is false if both STRING_A and STRING_B are of zero length.

6 Example. LLT (’ONE’, ’TWO’) has the value true.25

J3/25‑007 443

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.128 LOG (X)1

1 Description. Natural logarithm.2

2 Class. Elemental function.3

3 Argument. X shall be of type real or complex. If X is real, its value shall be greater than zero. If X is complex,4
its value shall not be zero.5

4 Result Characteristics. Same as X.6

5 Result Value. The result has a value equal to a processor‑dependent approximation to logeX. A result of7
type complex is the principal value with imaginary part ω in the range−π ≤ ω ≤ π. If the real part of X is8
less than zero and the imaginary part of X is zero, then the imaginary part of the result is approximately π9
if the imaginary part of X is positive real zero or the processor does not distinguish between positive and10
negative real zero, and approximately−π if the imaginary part of X is negative real zero.11

6 Example. LOG (10.0) has the value 2.3025851 (approximately).12

16.9.129 LOG_GAMMA (X)13

1 Description. Logarithm of the absolute value of the gamma function.14

2 Class. Elemental function.15

3 Argument. X shall be of type real. Its value shall not be a negative integer or zero.16

4 Result Characteristics. Same as X.17

5 Result Value. The result has a value equal to a processor‑dependent approximation to the natural logar‑18
ithm of the absolute value of the gamma function of X.19

6 Example. LOG_GAMMA (3.0) has the value 0.693 (approximately).20

16.9.130 LOG10 (X)21

1 Description. Common logarithm.22

2 Class. Elemental function.23

3 Argument. X shall be of type real. The value of X shall be greater than zero.24

4 Result Characteristics. Same as X.25

5 Result Value. The result has a value equal to a processor‑dependent approximation to log10X.26

6 Example. LOG10 (10.0) has the value 1.0 (approximately).27

16.9.131 LOGICAL (L [, KIND])28

1 Description. Conversion between kinds of logical.29

2 Class. Elemental function.30

3 Arguments.31
L shall be of type logical.32

444 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

KIND (optional) shall be a scalar integer constant expression.1

4 Result Characteristics. Logical. If KIND is present, the kind type parameter is that speciϐied by the value2
of KIND; otherwise, the kind type parameter is that of default logical.3

5 Result Value. The value is that of L.4

6 Example. LOGICAL (L .OR. .NOT. L) has the value true and is default logical, regardless of the kind type5
parameter of the logical variable L.6

16.9.132 MASKL (I [, KIND])7

1 Description. Left justiϐied mask.8

2 Class. Elemental function.9

3 Arguments.10
I shall be of type integer. It shall be nonnegative and less than or equal to the number of bits z11

of the model integer deϐined for bit manipulation contexts in 16.3 for the kind of the result.12
KIND (optional) shall be a scalar integer constant expression.13

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value14
of KIND; otherwise, the kind type parameter is that of default integer type.15

5 Result Value. The result value has its leftmost I bits set to 1 and the remaining bits set to 0. The model for16
the interpretation of an integer value as a sequence of bits is in 16.3.17

6 Example. MASKL (3) has the value SHIFTL (7, BIT_SIZE (0)− 3).18

16.9.133 MASKR (I [, KIND])19

1 Description. Right justiϐied mask.20

2 Class. Elemental function.21

3 Arguments.22
I shall be of type integer. It shall be nonnegative and less than or equal to the number of bits z23

of the model integer deϐined for bit manipulation contexts in 16.3 for the kind of the result.24
KIND (optional) shall be a scalar integer constant expression.25

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value26
of KIND; otherwise, the kind type parameter is that of default integer type.27

5 Result Value. The result value has its rightmost I bits set to 1 and the remaining bits set to 0. The model28
for the interpretation of an integer value as a sequence of bits is in 16.3.29

6 Example. MASKR (3) has the value 7.30

16.9.134 MATMUL (MATRIX_A, MATRIX_B)31

1 Description. Matrix multiplication.32

2 Class. Transformational function.33

J3/25‑007 445

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Arguments.1
MATRIX_A shall be a rank‑one or rank‑two array of numeric type or logical type.2
MATRIX_B shall be of numeric type if MATRIX_A is of numeric type and of logical type if MATRIX_A is of3

logical type. It shall be an array of rank one or two. MATRIX_A and MATRIX_B shall not both4
have rank one. The size of the ϐirst (or only) dimension of MATRIX_B shall equal the size of5
the last (or only) dimension of MATRIX_A.6

4 Result Characteristics. If the arguments are of numeric type, the type and kind type parameter of the7
result are determined by the types of the arguments as speciϐied in 10.1.9.3 for the * operator. If the ar‑8
guments are of type logical, the result is of type logical with the kind type parameter of the arguments as9
speciϐied in 10.1.9.3 for the .AND. operator. The shape of the result depends on the shapes of the arguments10
as follows:11

Case (i): If MATRIX_A has shape [n,m] and MATRIX_B has shape [m, k], the result has shape [n, k].12
Case (ii): If MATRIX_A has shape [m] and MATRIX_B has shape [m, k], the result has shape [k].13
Case (iii): If MATRIX_A has shape [n,m] and MATRIX_B has shape [m], the result has shape [n].14

5 Result Value.15

Case (i): Element (i, j) of the result has the value SUM (MATRIX_A (i, :) * MATRIX_B (:, j)) if the argu‑16
ments are of numeric type and has the value ANY (MATRIX_A (i, :) .AND. MATRIX_B (:, j)) if17
the arguments are of logical type.18

Case (ii): Element (j) of the result has the value SUM (MATRIX_A (:) * MATRIX_B (:, j)) if the arguments19
are of numeric type and has the value ANY (MATRIX_A (:) .AND. MATRIX_B (:, j)) if the argu‑20
ments are of logical type.21

Case (iii): Element (i) of the result has the value SUM (MATRIX_A (i, :) * MATRIX_B (:)) if the arguments22
are of numeric type and has the value ANY (MATRIX_A (i, :) .AND. MATRIX_B (:)) if the argu‑23
ments are of logical type.24

6 Examples. Let A and B be the matrices
[
1 2 3
2 3 4

]
and

 1 2
2 3
3 4

; let X and Y be the vectors [1, 2] and25

[1, 2, 3].26

Case (i): The result of MATMUL (A, B) is the matrix‑matrix product AB with the value
[
14 20
20 29

]
.27

Case (ii): The result of MATMUL (X, A) is the vector‑matrix product XA with the value [5, 8, 11].28
Case (iii): The result of MATMUL (A, Y) is the matrix‑vector product AY with the value [14, 20].29

16.9.135 MAX (A1, A2 [, A3, ...])30

1 Description. Maximum value.31

2 Class. Elemental function.32

3 Arguments. The arguments shall all have the same type which shall be integer, real, or character and they33
shall all have the same kind type parameter.34

4 Result Characteristics. The type and kind type parameter of the result are the same as those of the argu‑35
ments. For arguments of character type, the length of the result is the length of the longest argument.36

446 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Result Value. The value of the result is that of the largest argument. For arguments of character type,1
the result is the value that would be selected by application of intrinsic relational operators; that is, the2
collating sequence for characters with the kind type parameter of the arguments is applied. If the selected3
argument is shorter than the longest argument, the result is extendedwith blanks on the right to the length4
of the longest argument.5

6 Examples. MAX (−9.0, 7.0, 2.0) has the value 7.0, MAX (’Z’, ’BB’) has the value ’Z ’, and MAX ([’A’, ’Z’], [’BB’,6
’Y ’]) has the value [’BB’, ’Z ’].7

16.9.136 MAXEXPONENT (X)8

1 Description. Maximum exponent of a real model.9

2 Class. Inquiry function.10

3 Argument. X shall be of type real. It may be a scalar or an array.11

4 Result Characteristics. Default integer scalar.12

5 Result Value. The result has the value emax, as deϐined in 16.4 for the model representing numbers of the13
same type and kind type parameter as X.14

6 Example. MAXEXPONENT (X) has the value 127 for real X whose model is as in 16.4, NOTE.15

16.9.137 MAXLOC (ARRAY, DIM [, MASK, KIND, BACK]) or
MAXLOC (ARRAY [, MASK, KIND, BACK])

16

1 Description. Location(s) of maximum value.17

2 Class. Transformational function.18

3 Arguments.19
ARRAY shall be an array of type integer, real, or character.20
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.21
MASK (optional) shall be of type logical and shall be conformable with ARRAY.22
KIND (optional) shall be a scalar integer constant expression.23
BACK (optional) shall be a logical scalar.24

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value of25
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result26
is an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and27
shape [d1, d2, …, dDIM−1, dDIM+1, …, dn], where [d1, d2, …, dn] is the shape of ARRAY.28

5 Result Value.29

Case (i): If DIM does not appear and MASK is absent, the result is a rank‑one array whose element val‑30
ues are the values of the subscripts of an element of ARRAYwhose value equals the maximum31
value of all of the elements of ARRAY. The ith subscript returned lies in the range 1 to ei, where32
ei is the extent of the ith dimension of ARRAY. If ARRAY has size zero, all elements of the result33
are zero.34

Case (ii): If DIM does not appear andMASK is present, the result is a rank‑one arraywhose element val‑35
ues are the values of the subscripts of an element of ARRAY, corresponding to a true element36

J3/25‑007 447

J3/25‑007 WD 1539‑1 2024‑12‑29

of MASK, whose value equals the maximum value of all such elements of ARRAY. The ith sub‑1
script returned lies in the range 1 to ei, where ei is the extent of the ith dimension of ARRAY.2
If ARRAY has size zero or every element of MASK has the value false, all elements of the result3
are zero.4

Case (iii): If ARRAY has rank one and DIM is speciϐied, the result has a value equal to that of the ϐirst5
element of MAXLOC (ARRAY [, MASK = MASK, KIND = KIND, BACK = BACK]). Otherwise, if6
DIM is speciϐied, the value of element (s1, s2, …, sDIM−1, sDIM+1, …, sn) of the result is equal to7

MAXLOC (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn),
DIM = 1
[, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn),
KIND = KIND,
BACK = BACK]).

8

6 If only one element has the maximum value, that element’s subscripts are returned. Otherwise, if more9
than one element has the maximum value and BACK is absent or present with the value false, the element10
whose subscripts are returned is the ϐirst such element, taken in array element order. If BACK is present11
with the value true, the element whose subscripts are returned is the last such element, taken in array12
element order.13

7 If ARRAY has type character, the result is the value that would be selected by application of intrinsic rela‑14
tional operators; that is, the collating sequence for characters with the kind type parameter of the argu‑15
ments is applied.16

8 Examples.17

Case (i): The value of MAXLOC ([2, 6, 4, 6]) is [2] and the value of MAXLOC ([2, 6, 4, 6], BACK=.TRUE.)18
is [4].19

Case (ii): If A has the value

 0 −5 8 −3
3 4 −1 2
1 5 6 −4

, MAXLOC (A, MASK = A< 6) has the value [3, 2]. This20

is independent of the declared lower bounds for A.21

Case (iii): The value of MAXLOC ([5, −9, 3], DIM = 1) is 1. If B has the value
[
1 3 −9
2 2 6

]
, MAXLOC22

(B, DIM = 1) is [2, 1, 2] and MAXLOC (B, DIM = 2) is [2, 3]. This is independent of the declared23
lower bounds for B.24

16.9.138 MAXVAL (ARRAY, DIM [, MASK]) or MAXVAL (ARRAY [, MASK])25

1 Description. Maximum value(s) of array.26

2 Class. Transformational function.27

3 Arguments.28
ARRAY shall be an array of type integer, real, or character.29
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.30
MASK (optional) shall be of type logical and shall be conformable with ARRAY.31

4 Result Characteristics. The result is of the same type and type parameters as ARRAY. It is scalar if DIM32
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn] where33
[d1, d2, …, dn] is the shape of ARRAY.34

5 Result Value.35

448 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Case (i): The result of MAXVAL (ARRAY) has a value equal to the maximum value of all the elements1
of ARRAY if the size of ARRAY is not zero. If ARRAY has size zero and type integer or real,2
the result has the value of the negative number of the largest magnitude supported by the3
processor for numbers of the type and kind type parameter of ARRAY. If ARRAY has size zero4
and type character, the result has the value of a string of characters of length LEN (ARRAY),5
with each character equal to CHAR (0, KIND (ARRAY)).6

Case (ii): The result of MAXVAL (ARRAY, MASK = MASK) has a value equal to that of MAXVAL (PACK7
(ARRAY, MASK)).8

Case (iii): The result of MAXVAL (ARRAY, DIM = DIM [,MASK = MASK]) has a value equal to that of9
MAXVAL (ARRAY [,MASK = MASK]) if ARRAY has rank one. Otherwise, the value of element10
(s1, s2, …, sDIM−1, sDIM+1, …, sn) of the result is equal to11

MAXVAL (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)
[, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)]).12

6 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic re‑13
lational operators; that is, the collating sequence for characters with the kind type parameter of the argu‑14
ments is applied.15

7 Examples.16

Case (i): The value of MAXVAL ([1, 2, 3]) is 3.17
Case (ii): MAXVAL (C, MASK = C < 0.0) is the maximum of the negative elements of C.18

Case (iii): If B is the array
[
1 3 5
2 7 6

]
, MAXVAL (B, DIM=1) is [2, 7, 6] andMAXVAL (B, DIM=2) is [5, 7].19

16.9.139 MERGE (TSOURCE, FSOURCE, MASK)20

1 Description. Expression value selection.21

2 Class. Elemental function.22

3 Arguments.23
TSOURCE may be of any type.24
FSOURCE shall be of the same type and type parameters as TSOURCE.25
MASK shall be of type logical.26

4 Result Characteristics. Same type and type parameters as TSOURCE. Because TSOURCE and FSOURCE27
are required to have the same type and type parameters (for both the declared and dynamic types), the28
result is polymorphic if and only if both TSOURCE and FSOURCE are polymorphic.29

5 Result Value. The result is TSOURCE if MASK is true and FSOURCE otherwise.30

6 Examples. If TSOURCE is the array
[
1 6 5
2 4 6

]
, FSOURCE is the array

[
0 3 2
7 4 8

]
andMASK is the array31 [

T . T
. . T

]
, where “T” represents true and “.” represents false, then MERGE (TSOURCE, FSOURCE, MASK)32

is
[
1 3 5
7 4 6

]
. The value of MERGE (1.0, 0.0, K> 0) is 1.0 for K = 5 and 0.0 for K =−2.33

J3/25‑007 449

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.140 MERGE_BITS (I, J, MASK)1

1 Description. Merge of bits under mask.2

2 Class. Elemental function.3

3 Arguments.4
I shall be of type integer or a boz‑literal‑constant.5
J shall be of type integer or a boz‑literal‑constant. If both I and J are of type integer they shall6

have the same kind type parameter. I and J shall not both be boz‑literal‑constants.7
MASK shall be of type integer or a boz‑literal‑constant. If MASK is of type integer, it shall have the8

same kind type parameter as each other argument of type integer.9

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.10

5 Result Value. If any argument is a boz‑literal‑constant, it is ϐirst converted as if by the intrinsic function11
INT to the type and kind type parameter of the result. The result has the value of IOR (IAND (I, MASK),12
IAND (J, NOT (MASK))).13

6 Example. MERGE_BITS (13, 18, 22) has the value 4.14

16.9.141 MIN (A1, A2 [, A3, ...])15

1 Description. Minimum value.16

2 Class. Elemental function.17

3 Arguments. The arguments shall all be of the same type which shall be integer, real, or character and they18
shall all have the same kind type parameter.19

4 Result Characteristics. The type and kind type parameter of the result are the same as those of the argu‑20
ments. For arguments of character type, the length of the result is the length of the longest argument.21

5 Result Value. The value of the result is that of the smallest argument. For arguments of character type,22
the result is the value that would be selected by application of intrinsic relational operators; that is, the23
collating sequence for characters with the kind type parameter of the arguments is applied. If the selected24
argument is shorter than the longest argument, the result is extendedwith blanks on the right to the length25
of the longest argument.26

6 Examples. MIN (−9.0, 7.0, 2.0) has the value−9.0, MIN (’A’, ’YY’) has the value ’A ’, and27
MIN ([’Z’, ’A’], [’YY’, ’B ’]) has the value [’YY’, ’A ’].28

16.9.142 MINEXPONENT (X)29

1 Description. Minimum exponent of a real model.30

2 Class. Inquiry function.31

3 Argument. X shall be of type real. It may be a scalar or an array.32

4 Result Characteristics. Default integer scalar.33

5 Result Value. The result has the value emin, as deϐined in 16.4 for the model representing numbers of the34
same type and kind type parameter as X.35

450 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 Example. MINEXPONENT (X) has the value−126 for real X whose model is as in 16.4, NOTE.1

16.9.143 MINLOC (ARRAY, DIM [, MASK, KIND, BACK]) or
MINLOC (ARRAY [, MASK, KIND, BACK])

2

1 Description. Location(s) of minimum value.3

2 Class. Transformational function.4

3 Arguments.5
ARRAY shall be an array of type integer, real, or character.6
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.7
MASK (optional) shall be of type logical and shall be conformable with ARRAY.8
KIND (optional) shall be a scalar integer constant expression.9
BACK (optional) shall be a logical scalar.10

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value of11
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result12
is an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and13
shape [d1, d2, …, dDIM−1, dDIM+1, …, dn], where [d1, d2, …, dn] is the shape of ARRAY.14

5 Result Value.15

Case (i): If DIMdoes not appear andMASK is absent the result is a rank‑one arraywhose element values16
are the values of the subscripts of an element of ARRAYwhose value equals theminimumvalue17
of all the elements of ARRAY. The ith subscript returned lies in the range 1 to ei, where ei is18
the extent of the ith dimension of ARRAY. If ARRAY has size zero, all elements of the result are19
zero.20

Case (ii): If DIM does not appear andMASK is present, the result is a rank‑one arraywhose element val‑21
ues are the values of the subscripts of an element of ARRAY, corresponding to a true element22
of MASK, whose value equals the minimum value of all such elements of ARRAY. The ith sub‑23
script returned lies in the range 1 to ei, where ei is the extent of the ith dimension of ARRAY.24
If ARRAY has size zero or every element of MASK has the value false, all elements of the result25
are zero.26

Case (iii): If ARRAY has rank one and DIM is speciϐied, the result has a value equal to that of the ϐirst27
element of MINLOC (ARRAY [, MASK = MASK, KIND = KIND, BACK = BACK]). Otherwise, if28
DIM is speciϐied, the value of element (s1, s2, …, sDIM−1, sDIM+1, …, sn) of the result is equal to29

MINLOC (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn),
DIM = 1
[, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn),
KIND = KIND,
BACK = BACK]).

30

6 If only one element has theminimumvalue, that element’s subscripts are returned. Otherwise, ifmore than31
one element has theminimum value and BACK is absent or present with the value false, the element whose32
subscripts are returned is the ϐirst such element, taken in array element order. If BACK is present with33
the value true, the element whose subscripts are returned is the last such element, taken in array element34
order.35

7 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic re‑36
lational operators; that is, the collating sequence for characters with the kind type parameter of the argu‑37

J3/25‑007 451

J3/25‑007 WD 1539‑1 2024‑12‑29

ments is applied.1

8 Examples.2

Case (i): The value of MINLOC ([4, 3, 6, 3]) is [2] and the value of MINLOC ([4, 3, 6, 3], BACK = .TRUE.)3
is [4].4

Case (ii): If A has the value

 0 −5 8 −3
3 4 −1 2
1 5 6 −4

, MINLOC (A,MASK =A>−4) has the value [1, 4]. This5

is independent of the declared lower bounds for A.6

Case (iii): The value of MINLOC ([5,−9, 3], DIM = 1) is 2. If B has the value
[
1 3 −9
2 2 6

]
,7

MINLOC (B, DIM = 1) is [1, 2, 1] and MINLOC (B, DIM = 2) is [3, 1]. This is independent of the8
declared lower bounds for B.9

16.9.144 MINVAL (ARRAY, DIM [, MASK]) or MINVAL (ARRAY [, MASK])10

1 Description. Minimum value(s) of array.11

2 Class. Transformational function.12

3 Arguments.13
ARRAY shall be an array of type integer, real, or character.14
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.15
MASK (optional) shall be of type logical and shall be conformable with ARRAY.16

4 Result Characteristics. The result is of the same type and type parameters as ARRAY. It is scalar if DIM17
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn] where18
[d1, d2, …, dn] is the shape of ARRAY.19

5 Result Value.20

Case (i): The result of MINVAL (ARRAY) has a value equal to the minimum value of all the elements21
of ARRAY if the size of ARRAY is not zero. If ARRAY has size zero and type integer or real,22
the result has the value of the positive number of the largest magnitude supported by the23
processor for numbers of the type and kind type parameter of ARRAY. If ARRAY has size zero24
and type character, the result has the value of a string of characters of length LEN (ARRAY),25
with each character equal to CHAR (n−1, KIND (ARRAY)),wheren is the number of characters26
in the collating sequence for characters with the kind type parameter of ARRAY.27

Case (ii): The result of MINVAL (ARRAY, MASK = MASK) has a value equal to that of MINVAL (PACK28
(ARRAY, MASK)).29

Case (iii): The result of MINVAL (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal to that of MIN‑30
VAL (ARRAY [, MASK =MASK]) if ARRAY has rank one. Otherwise, the value of element (s1, s2,31
…, sDIM−1, sDIM+1, …, sn) of the result is equal to32

MINVAL (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)
[, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)]).33

6 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic re‑34
lational operators; that is, the collating sequence for characters with the kind type parameter of the argu‑35
ments is applied.36

7 Examples.37

452 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Case (i): The value of MINVAL ([1, 2, 3]) is 1.1
Case (ii): MINVAL (C, MASK = C > 0.0) is the minimum of the positive elements of C.2

Case (iii): If B is the array
[
1 3 5
2 4 6

]
, MINVAL (B, DIM = 1) is [1, 3, 5] andMINVAL (B, DIM = 2) is [1, 2].3

16.9.145 MOD (A, P)4

1 Description. Remainder function.5

2 Class. Elemental function.6

3 Arguments.7
A shall be of type integer or real.8
P shall be of the same type and kind type parameter as A. P shall not be zero.9

4 Result Characteristics. Same as A.10

5 Result Value. The value of the result is A− INT (A/P) * P.11

6 Examples. MOD (3.0, 2.0) has the value 1.0 (approximately). MOD (8, 5) has the value 3. MOD (−8, 5) has12
the value−3. MOD (8,−5) has the value 3. MOD (−8,−5) has the value−3.13

16.9.146 MODULO (A, P)14

1 Description. Modulo function.15

2 Class. Elemental function.16

3 Arguments.17
A shall be of type integer or real.18
P shall be of the same type and kind type parameter as A. P shall not be zero.19

4 Result Characteristics. Same as A.20

5 Result Value.21

Case (i): A is of type integer. MODULO (A, P) has the value R such that A = Q × P + R, where Q is an22
integer, the inequalities 0 ≤ R < P hold if P> 0, and P < R ≤ 0 hold if P< 0.23

Case (ii): A is of type real. The value of the result is A− FLOOR (A / P) * P.24

6 Examples. MODULO (8, 5) has the value 3. MODULO (−8, 5) has the value 2. MODULO (8, −5) has the25
value−2. MODULO (−8,−5) has the value−3.26

16.9.147 MOVE_ALLOC (FROM, TO [, STAT, ERRMSG])27

1 Description. Move an allocation.28

2 Class. Subroutine, simple if and only if FROM is not a coarray.29

3 Arguments.30
FROM maybe of any type, rank, and corank. It shall be allocatable and shall not be a coindexed object.31

It is an INTENT (INOUT) argument.32

J3/25‑007 453

J3/25‑007 WD 1539‑1 2024‑12‑29

TO shall be type compatible (7.3.3) with FROM and have the same rank and corank. It shall be1
allocatable and shall not be a coindexedobject. It shall bepolymorphic if FROMispolymorphic.2
It is an INTENT (OUT) argument. Each nondeferred parameter of the declared type of TO shall3
have the same value as the corresponding parameter of the declared type of FROM.4

STAT (optional) shall be a noncoindexed integer scalar with a decimal exponent range of at least four. It is5
an INTENT (OUT) argument.6

ERRMSG (optional) shall be a noncoindexed default character scalar. It is an INTENT (INOUT) argument.7

4 If execution of MOVE_ALLOC is successful, or if STAT_FAILED_IMAGE is assigned to STAT,8

• On invocation of MOVE_ALLOC, if the allocation status of TO is allocated, it is deallocated. Then, if9
FROM has an allocation status of allocated on entry to MOVE_ALLOC, TO becomes allocated with10
dynamic type, type parameters, bounds, cobounds, and value identical to those that FROM had on11
entry to MOVE_ALLOC. Note that if FROM and TO are the same variable, it shall be unallocated when12
MOVE_ALLOC is invoked.13

• If TOhas the TARGET attribute, any pointer associatedwith FROMon entry toMOVE_ALLOCbecomes14
correspondingly associated with TO. If TO does not have the TARGET attribute, the pointer associ‑15
ation status of any pointer associated with FROM on entry becomes undeϐined.16

• The allocation status of FROM becomes unallocated.17

5 When a reference to MOVE_ALLOC is executed for which the FROM argument is a coarray, there is an im‑18
plicit synchronization of all active images of the current team. On those images, execution of the segment19
(11.7.2) following the CALL statement is delayed until all other active images of the current team have ex‑20
ecuted the same statement the same number of times. When such a reference is executed, if any image of21
the current team has stopped or failed, an error condition occurs.22

6 If STAT is present and execution is successful, it is assigned the value zero.23

7 If an error condition occurs,24
• if STAT is absent, error termination is initiated;25
• otherwise, if FROM is a coarray and the current team contains a stopped image, STAT is assigned the26
value STAT_STOPPED_IMAGE from the intrinsic module ISO_FORTRAN_ENV;27

• otherwise, if FROM is a coarray and the current team contains a failed image, and no other error28
condition occurs, STAT is assigned the value STAT_FAILED_IMAGE from the intrinsic module ISO_‑29
FORTRAN_ENV;30

• otherwise, STAT is assigned a processor‑dependent positive value that differs from that of STAT_‑31
STOPPED_IMAGE or STAT_FAILED_IMAGE.32

8 If the ERRMSG argument is present and an error condition occurs, it is assigned an explanatory message.33
If no error condition occurs, the deϐinition status and value of ERRMSG are unchanged.34

9 Example. The example below demonstrates reallocation of GRID to twice its previous size, with its previ‑35
ous contents evenly distributed over the new elements so that intermediate points can be inserted.36

REAL,ALLOCATABLE :: GRID(:),TEMPGRID(:)37
…38
ALLOCATE(GRID(-N:N)) ! initial allocation of GRID39
…40
ALLOCATE(TEMPGRID(-2*N:2*N)) ! allocate bigger grid41
TEMPGRID(::2)=GRID ! distribute values to new locations42
CALL MOVE_ALLOC(TO=GRID,FROM=TEMPGRID)43

454 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

The old grid is deallocated because TO is INTENT (OUT), and GRID then takes over the new grid allocation.1

NOTE
It is expected that the implementation of allocatable objects will typically involve descriptors to locate the allocated
storage; MOVE_ALLOC could then be implemented by transferring the contents of the descriptor for FROM to the
descriptor for TO and clearing the descriptor for FROM.

16.9.148 MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)2

1 Description. Copy a sequence of bits.3

2 Class. Simple elemental subroutine.4

3 Arguments.5
FROM shall be of type integer. It is an INTENT (IN) argument.6
FROMPOS shall be of type integer and nonnegative. It is an INTENT (IN) argument. FROMPOS + LEN7

shall be less than or equal to BIT_SIZE (FROM). The model for the interpretation of an integer8
value as a sequence of bits is in 16.3.9

LEN shall be of type integer and nonnegative. It is an INTENT (IN) argument.10
TO shall be a variable of the same type and kind type parameter value as FROM andmay be asso‑11

ciated with FROM (15.9.3). It is an INTENT (INOUT) argument. TO is deϐined by copying the12
sequence of bits of length LEN, starting at position FROMPOS of FROM to position TOPOS of13
TO. No other bits of TO are altered. On return, the LEN bits of TO starting at TOPOS are equal14
to the value that the LEN bits of FROM starting at FROMPOS had on entry. The model for the15
interpretation of an integer value as a sequence of bits is in 16.3.16

TOPOS shall be of type integer and nonnegative. It is an INTENT (IN) argument. TOPOS + LEN shall17
be less than or equal to BIT_SIZE (TO).18

4 Example. If TO has the initial value 6, its value after the statement CALL MVBITS (7, 2, 2, TO, 0) is 5.19

16.9.149 NEAREST (X, S)20

1 Description. Adjacent machine number.21

2 Class. Elemental function.22

3 Arguments.23
X shall be of type real.24
S shall be of type real and not equal to zero.25

4 Result Characteristics. Same as X.26

5 Result Value. The result has a value equal to the machine‑representable number distinct from X and27
nearest to it in the direction of the∞with the same sign as S.28

6 Example. NEAREST (3.0, 2.0) has the value 3+ 2−22 on a machine whose representation for default real is29
that of the model in 16.4, NOTE.30

J3/25‑007 455

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE
Unlike other ϐloating‑point manipulation functions, NEAREST operates on machine‑representable numbers rather
thanmodel numbers. Onmany systems there aremachine‑representable numbers that lie between adjacentmodel
numbers.

16.9.150 NEW_LINE (A)1

1 Description. Newline character.2

2 Class. Inquiry function.3

3 Argument. A shall be of type character. It may be a scalar or an array.4

4 Result Characteristics. Character scalar of length one with the same kind type parameter as A.5

5 Result Value.6

Case (i): If A is default character and the character in position 10 of the ASCII collating sequence is7
representable in the default character set, then the result is ACHAR (10).8

Case (ii): If A is ASCII character or ISO 10646 character, then the result is CHAR (10, KIND (A)).9
Case (iii): Otherwise, the result is a processor‑dependent character that represents a newline in output10

to ϐiles connected for formatted stream output if there is such a character.11
Case (iv): Otherwise, the result is the blank character.12

6 Example. If there is a suitable newline character, and unit 10 is connected for formatted stream output,13
the statement14

WRITE (10, '(A)') 'New'//NEW_LINE('a')//'Line'15

will write a record containing “New” and then a record containing “Line”.16

16.9.151 NEXT (A [, STAT])17

1 Description. Next enumeration value.18

2 Class. Elemental function.19

3 Arguments.20
A shall be of enumeration type.21
STAT (optional) shall be an integer scalar with a decimal exponent range of at least four. It is an INTENT22

(OUT) argument. If A is equal to the last enumerator of its type, it is assigned a processor‑23
dependent positive value; otherwise, it is assigned the value zero. If STAT would have been24
assigned a nonzero value but is not present, error termination is initiated.25

4 Result Characteristics. Same as A.26

5 Result Value. If A is equal to the last enumerator of its type, the value of the result is that of A. Otherwise,27
the value of the result is the next enumerator following the value of A.28

6 Example. If the enumerators of an enumeration type are EN1, EN2, EN3, and EN4, NEXT (EN1) is equal to29
EN2, and NEXT (EN4, ISTAT) is equal to EN4 and a positive value is assigned to ISTAT.30

456 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.152 NINT (A [, KIND])1

1 Description. Nearest integer.2

2 Class. Elemental function.3

3 Arguments.4
A shall be of type real.5
KIND (optional) shall be a scalar integer constant expression.6

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value7
of KIND; otherwise, the kind type parameter is that of default integer type.8

5 Result Value. The result is the integer nearest A, or if there are two integers equally near A, the result is9
whichever such integer has the greater magnitude.10

6 Example. NINT (2.783) has the value 3.11

16.9.153 NORM2 (X) or NORM2 (X, DIM)12

1 Description. L2 norm of an array.13

2 Class. Transformational function.14

3 Arguments.15
X shall be a real array.16
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of X.17

4 Result Characteristics. The result is of the same type and type parameters as X. It is scalar if DIM does18
not appear; otherwise the result has rank n− 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn], where n is the19
rank of X and [d1, d2, …, dn] is the shape of X.20

5 Result Value.21

Case (i): The result of NORM2 (X) has a value equal to a processor‑dependent approximation to the22
generalized L2 norm of X, which is the square root of the sum of the squares of the elements23
of X. If X has size zero, the result has the value zero.24

Case (ii): The result of NORM2 (X, DIM=DIM) has a value equal to that of NORM2 (X) if X has rank25
one. Otherwise, the value of element (s1, s2, …, sDIM−1, sDIM+1, … sn) of the result is equal26
to NORM2 (X(s1, s2, …, sDIM−1, :, sDIM+1, … sn)).27

6 It is recommended that the processor compute the result without undue overϐlow or underϐlow.28

7 Example. The value of NORM2 ([3.0, 4.0]) is 5.0 (approximately). If X has the value
[
1.0 2.0
3.0 4.0

]
then the29

value of NORM2 (X, DIM=1) is [3.162, 4.472] (approximately) and the value of NORM2 (X, DIM=2) is [2.236,30
5.0] (approximately).31

16.9.154 NOT (I)32

1 Description. Bitwise complement.33

2 Class. Elemental function.34

J3/25‑007 457

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Argument. I shall be of type integer.1

4 Result Characteristics. Same as I.2

5 Result Value. The result has the value obtained by complementing I bit‑by‑bit according to Table 16.8.3

Table 16.8— Bitwise result table for NOT
I NOT (I)
1 0
0 1

6 The model for the interpretation of an integer value as a sequence of bits is in 16.3.4

7 Example. If I is represented by the string of bits 01010101, NOT (I) has the binary value 10101010.5

16.9.155 NULL ([MOLD])6

1 Description. Disassociated pointer or unallocated allocatable entity.7

2 Class. Transformational function.8

3 Argument. MOLD shall be a pointer or allocatable. It may be of any type or may be a procedure pointer. If9
MOLD is a pointer its pointer association status may be undeϐined, disassociated, or associated. If MOLD is10
allocatable its allocation status may be allocated or unallocated. It need not be deϐined with a value.11

4 Result Characteristics. IfMOLD is present, the characteristics are the sameasMOLD. IfMOLDhasdeferred12
type parameters, those type parameters of the result are deferred.13

5 If MOLD is absent, the characteristics of the result are determined by the entity with which the reference14
is associated. See Table 16.9. MOLD shall not be absent in any other context. If any type parameters of the15
contextual entity are deferred, those type parameters of the result are deferred. If any type parameters of16
the contextual entity are assumed, MOLD shall be present.17

6 If the context of the reference to NULL is an actual argument in a generic procedure reference, MOLD shall18
be present if the type, type parameters, or rank are required to resolve the generic reference. If the context19
of the reference toNULL is an actual argument corresponding to an assumed‑rankdummyargument,MOLD20
shall be present.21

Table 16.9— Characteristics of the result of NULL ()

Appearance of NULL () Type, type parameters, and rank of result:
right side of a pointer assignment pointer on the left side
initialization for an object in a declaration the object
default initialization for a component the component
in a structure constructor the corresponding component
as an actual argument the corresponding dummy argument
in a DATA statement the corresponding pointer object

7 Result. The result is a disassociated pointer or an unallocated allocatable entity.22

8 Examples.23

458 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Case (i): REAL, POINTER, DIMENSION (:) :: VEC => NULL () deϐines the initial association status of1
VEC to be disassociated.2

Case (ii): The MOLD argument is required in the following:3
INTERFACE GEN4

SUBROUTINE S1 (J, PI)5
INTEGER J6
INTEGER, POINTER :: PI7

END SUBROUTINE S18
SUBROUTINE S2 (K, PR)9

INTEGER K10
REAL, POINTER :: PR11

END SUBROUTINE S212
END INTERFACE13
REAL, POINTER :: REAL_PTR14
CALL GEN (7, NULL (REAL_PTR)) ! Invokes S215

16.9.156 NUM_IMAGES () or NUM_IMAGES (TEAM) or
NUM_IMAGES (TEAM_NUMBER)

16

1 Description. Number of images.17

2 Class. Transformational function.18

3 Arguments.19
TEAM shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, with a20

value that identiϐies the current or an ancestor team.21
TEAM_NUMBER shall be an integer scalar. It shall identify the initial team or a sibling team of the current22

team.23

4 Result Characteristics. Default integer scalar.24

5 Result Value. The number of images in the speciϐied team, or in the current team if no team is speciϐied.25

6 Example. The following code uses image 1 to read data and broadcast it to other images.26

REAL :: P[*]27
IF (THIS_IMAGE()==1) THEN28

READ (6,*) P29
DO I = 2, NUM_IMAGES()30

P[I] = P31
END DO32

END IF33
SYNC ALL34

16.9.157 OUT_OF_RANGE (X, MOLD [, ROUND])35

1 Description. Whether a value cannot be converted safely.36

2 Class. Elemental function.37

3 Arguments.38
X shall be of type integer or real.39

J3/25‑007 459

J3/25‑007 WD 1539‑1 2024‑12‑29

MOLD shall be an integer or real scalar. If it is a variable, it need not be deϐined.1
ROUND (optional) shall be a logical scalar. ROUND shall be present only if X is of type real and MOLD is of2

type integer.3

4 Result Characteristics. Default logical.4

5 Result Value.5

Case (i): If MOLD is of type integer, and ROUND is absent or present with the value false, the result6
is true if and only if the value of X is an IEEE inϐinity or NaN, or if the integer with largest7
magnitude that lies between zero and X inclusive is not representable by objects with the type8
and kind of MOLD.9

Case (ii): If MOLD is of type integer, and ROUND is present with the value true, the result is true if and10
only if the value of X is an IEEE inϐinity or NaN, or if the integer nearest X, or the integer of11
greater magnitude if two integers are equally near to X, is not representable by objects with12
the type and kind of MOLD.13

Case (iii): Otherwise, the result is true if and only if the value of X is an IEEE inϐinity or NaN that is not14
supported by objects of the type and kind of MOLD, or if X is a ϐinite number and the result of15
rounding the value of X (according to the IEEE roundingmode if appropriate) to the extended16
model for the kind of MOLD has magnitude larger than that of the largest ϐinite number with17
the same sign as X that is representable by objects with the type and kind of MOLD.18

6 Examples. If INT8 is the kind value for an 8‑bit binary integer type, OUT_OF_RANGE (−128.5, 0_INT8)will19
have the value false and OUT_OF_RANGE (−128.5, 0_INT8, .TRUE.) will have the value true.20

NOTE
MOLD is required to be a scalar because the only information taken from it is its type and kind. Allowing an array
MOLD would require that it be conformable with X. ROUND is scalar because allowing an array rounding mode
would have severe performance difϐiculties on many processors.

16.9.158 PACK (ARRAY, MASK [, VECTOR])21

1 Description. Array packed into a vector.22

2 Class. Transformational function.23

3 Arguments.24
ARRAY shall be an array of any type.25
MASK shall be of type logical and shall be conformable with ARRAY.26
VECTOR (optional) shall be of the same type and type parameters as ARRAY and shall have rank one. VEC‑27

TOR shall have at least asmany elements as there are true elements inMASK. If MASK is scalar28
with the value true, VECTOR shall have at least as many elements as there are in ARRAY.29

4 Result Characteristics. The result is an array of rank one with the same type and type parameters as30
ARRAY. If VECTOR is present, the result size is that of VECTOR; otherwise, the result size is the number t of31
true elements in MASK unless MASK is scalar with the value true, in which case the result size is the size of32
ARRAY.33

5 Result Value. Element i of the result is the element of ARRAY that corresponds to the ith true element of34
MASK, taking elements in array element order, for i = 1, 2, …, t. If VECTOR is present and has size n > t,35
element i of the result has the value VECTOR (i), for i = t + 1, …, n.36

460 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 Examples. The nonzero elements of an array M with the value

 0 0 0
9 0 0
0 0 7

 can be “gathered” by the1

function PACK. The result of PACK (M, MASK = M/=0) is [9, 7] and the result of PACK (M, M /= 0, VEC‑2
TOR = [2, 4, 6, 8, 10, 12]) is [9, 7, 6, 8, 10, 12].3

16.9.159 PARITY (MASK) or PARITY (MASK, DIM)4

1 Description. Array reduced by .NEQV. operation.5

2 Class. Transformational function.6

3 Arguments.7
MASK shall be a logical array.8
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.9

4 Result Characteristics. The result is of type logicalwith the same kind type parameter asMASK. It is scalar10
if DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn]11
where [d1, d2, …, dn] is the shape of MASK.12

5 Result Value.13

Case (i): The result of PARITY (MASK) has the value true if an odd number of the elements of MASK are14
true, and false otherwise.15

Case (ii): IfMASKhas rank one, PARITY (MASK, DIM) is equal to PARITY (MASK). Otherwise, the value of16
element (s1, s2, …, sDIM−1, sDIM+1, …, sn) of PARITY (MASK, DIM) is equal to PARITY (MASK (s1,17
s2, …, sDIM−1, :, sDIM+1, …, sn)).18

6 Examples.19

Case (i): The value of PARITY ([T, T, T, F]) is true if T has the value true and F has the value false.20

Case (ii): If B is the array
[
T T F
T T T

]
, where T has the value true and F has the value false, then21

PARITY (B, DIM=1) has the value [F, F, T] and PARITY (B, DIM=2) has the value [F, T].22

16.9.160 POPCNT (I)23

1 Description. Number of one bits.24

2 Class. Elemental function.25

3 Argument. I shall be of type integer.26

4 Result Characteristics. Default integer.27

5 Result Value. The result value is equal to the number of one bits in the sequence of bits of I. The model for28
the interpretation of an integer value as a sequence of bits is in 16.3.29

6 Examples. POPCNT ([1, 2, 3, 4, 5, 6]) has the value [1, 1, 2, 1, 2, 2].30

J3/25‑007 461

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.161 POPPAR (I)1

1 Description. Parity expressed as 0 or 1.2

2 Class. Elemental function.3

3 Argument. I shall be of type integer.4

4 Result Characteristics. Default integer.5

5 Result Value. POPPAR (I) has the value 1 if POPCNT (I) is odd, and 0 if POPCNT (I) is even.6

6 Examples. POPPAR ([1, 2, 3, 4, 5, 6]) has the value [1, 1, 0, 1, 0, 0].7

16.9.162 PRECISION (X)8

1 Description. Decimal precision of a real model.9

2 Class. Inquiry function.10

3 Argument. X shall be of type real or complex. It may be a scalar or an array.11

4 Result Characteristics. Default integer scalar.12

5 Result Value. The result has the value INT ((p − 1) * LOG10 (b)) + k, where b and p are as deϐined in 16.413
for the model representing real numbers with the same value for the kind type parameter as X, and where14
k is 1 if b is an integral power of 10 and 0 otherwise.15

6 Example. PRECISION (X) has the value INT (23 * LOG10 (2.)) = INT (6.92…) = 6 for real X whose model is16
as in 16.4, NOTE.17

16.9.163 PRESENT (A)18

1 Description. Presence of optional argument.19

2 Class. Inquiry function.20

3 Argument. A shall be the name of an optional dummy argument that is accessible in the subprogram in21
which the PRESENT function reference appears. There are no other requirements on A.22

4 Result Characteristics. Default logical scalar.23

5 Result Value. The result has the value true if A is present (15.5.2.13) and otherwise has the value false.24

16.9.164 PREVIOUS (A [, STAT])25

1 Description. Previous enumeration value.26

2 Class. Elemental function.27

3 Arguments.28
A shall be of enumeration type.29
STAT (optional) shall be an integer scalar with a decimal exponent range of at least four. It is an INTENT30

(OUT) argument. If A is equal to the ϐirst enumerator of its type, it is assigned a processor‑31
dependent positive value; otherwise, it is assigned the value zero. If STAT would have been32

462 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

assigned a nonzero value but is not present, error termination is initiated.1

4 Result Characteristics. Same as A.2

5 Result Value. If A is equal to the ϐirst enumerator of its type, the value of the result is that of A. Otherwise,3
the value of the result is the enumerator preceding the value of A.4

6 Example. If the enumerators of an enumeration type are EN1, EN2, EN3, and EN4, PREVIOUS (EN3) is5
equal to EN2, and PREVIOUS (EN1, ISTAT) is equal to EN1 and a positive value is assigned to ISTAT.6

16.9.165 PRODUCT (ARRAY, DIM [, MASK]) or PRODUCT (ARRAY [, MASK])7

1 Description. Array reduced by multiplication.8

2 Class. Transformational function.9

3 Arguments.10
ARRAY shall be an array of numeric type.11
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.12
MASK (optional) shall be of type logical and shall be conformable with ARRAY.13

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if DIM14
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn] where15
[d1, d2, …, dn] is the shape of ARRAY.16

5 Result Value.17

Case (i): The result of PRODUCT (ARRAY) has a value equal to a processor‑dependent approximation18
to the product of all the elements of ARRAY or has the value one if ARRAY has size zero.19

Case (ii): The result of PRODUCT (ARRAY, MASK = MASK) has a value equal to a processor‑dependent20
approximation to the product of the elements of ARRAY corresponding to the true elements21
of MASK or has the value one if there are no true elements.22

Case (iii): If ARRAY has rank one, PRODUCT (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal to23
that of PRODUCT (ARRAY [, MASK=MASK]). Otherwise, the value of element (s1, s2, …, sDIM−1,24
sDIM+1, …, sn) of PRODUCT (ARRAY, DIM = DIM [, MASK = MASK]) is equal to25

PRODUCT (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)
[, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)]).26

6 Examples.27

Case (i): The value of PRODUCT ([1, 2, 3]) is 6.28
Case (ii): PRODUCT (C, MASK = C > 0.0) forms the product of the positive elements of C.29

Case (iii): If B is the array
[
1 3 5
2 4 6

]
, PRODUCT (B, DIM = 1) is [2, 12, 30] and PRODUCT (B, DIM = 2)30

is [15, 48].31

16.9.166 RADIX (X)32

1 Description. Base of a numeric model.33

2 Class. Inquiry function.34

3 Argument. X shall be of type integer or real. It may be a scalar or an array.35

J3/25‑007 463

J3/25‑007 WD 1539‑1 2024‑12‑29

4 Result Characteristics. Default integer scalar.1

5 Result Value. The result has the value r if X is of type integer and the value b if X is of type real, where r2
and b are as deϐined in 16.4 for the model representing numbers of the same type and kind type parameter3
as X.4

6 Example. RADIX (X) has the value 2 for real X whose model is as in 16.4, NOTE.5

16.9.167 RANDOM_INIT (REPEATABLE, IMAGE_DISTINCT)6

1 Description. Initialize pseudorandom number generator.7

2 Class. Subroutine.8

3 Arguments.9
REPEATABLE shall be a logical scalar. It is an INTENT (IN) argument.10
IMAGE_DISTINCT shall be a logical scalar. It is an INTENT (IN) argument.11

4 The effect of calling RANDOM_INIT depends on the values of the REPEATABLE and IMAGE_DISTINCT ar‑12
guments:13

Case (i): CALL RANDOM_INIT (REPEATABLE=true, IMAGE_DISTINCT=true) is equivalent to invoking14
RANDOM_SEEDwith a processor‑dependent value for PUT that is different on every invoking15
image. In each execution of the programwith the same execution environment, if the invoking16
image index value in the initial team is the same, the value for PUT shall be the same.17

Case (ii): CALL RANDOM_INIT(REPEATABLE=true, IMAGE_DISTINCT=false) is equivalent to invoking18
RANDOM_SEEDwith a processor‑dependent value for PUT that is the same on every invoking19
image. In each execution of the program with the same execution environment, the value for20
PUT shall be the same.21

Case (iii): CALL RANDOM_INIT(REPEATABLE=false, IMAGE_DISTINCT=true) is equivalent to invoking22
RANDOM_SEED with a processor‑dependent value for PUT that is different on every invok‑23
ing image. Different values for PUT shall be used for subsequent invocations, and for each24
execution of the program.25

Case (iv): CALL RANDOM_INIT(REPEATABLE=false, IMAGE_DISTINCT=false) is equivalent to invoking26
RANDOM_SEED with a processor‑dependent value for PUT that is the same on every invok‑27
ing image. Different values for PUT shall be used for subsequent invocations, and for each28
execution of the program.29

5 In each of these cases, a different processor‑dependent value for PUT shall result in a different sequence of30
pseudorandom numbers.31

6 Example. The following statement initializes the pseudorandom number generator of the invoking image32
so that the pseudorandom number sequence will differ from that of other images that execute a similar33
statement, and will be different on subsequent execution of the program.34

CALL RANDOM_INIT (REPEATABLE=.FALSE., IMAGE_DISTINCT=.TRUE.)35

464 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.168 RANDOM_NUMBER (HARVEST)1

1 Description. Generate pseudorandom number(s).2

2 Class. Subroutine.3

3 Argument. HARVEST shall be of type real. It is an INTENT (OUT) argument. It may be a scalar or an array.4
It is assigned pseudorandom numbers from the uniform distribution in the interval 0 ≤ x < 1.5

4 Example.6

REAL X, Y (10, 10)7
! Initialize X with a pseudorandom number8
CALL RANDOM_NUMBER (HARVEST = X)9
CALL RANDOM_NUMBER (Y)10
! X and Y contain uniformly distributed random numbers11

16.9.169 RANDOM_SEED ([SIZE, PUT, GET])12

1 Description. Pseudorandom number generator control.13

2 Class. Subroutine.14

3 Arguments. There shall either be exactly one or no arguments present.15
SIZE (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. It is assigned the number16

N of integers that the processor uses to hold the value of the seed.17
PUT (optional) shall be a default integer array of rank one and size ≥ N . It is an INTENT (IN) argument.18

It is used in a processor‑dependent manner to compute the seed value accessed by the pseu‑19
dorandom number generator.20

GET (optional) shall be a default integer array of rank one and size≥N . It is an INTENT (OUT) argument.21
It is assigned the value of the seed.22

4 If no argument is present, the processor assigns a processor‑dependent value to the seed.23

5 The pseudorandom number generator used by RANDOM_NUMBERmaintains a seed on each image that is24
updated during the execution of RANDOM_NUMBER and that can be retrieved or changed by RANDOM_‑25
INIT or RANDOM_SEED3. Computation of the seed from the argument PUT is performed in a processor‑26
dependent manner. The value assigned to GET need not be the same as the value of PUT in an immediately27
preceding reference to RANDOM_SEED. For example, following execution of the statements28

CALL RANDOM_SEED (PUT=SEED1)29
CALL RANDOM_SEED (GET=SEED2)30

SEED2 need not equal SEED1. When the values differ, the use of either value as the PUT argument in31
a subsequent call to RANDOM_SEED shall result in the same sequence of pseudorandom numbers being32
generated. For example, after execution of the statements33

CALL RANDOM_SEED (PUT=SEED1)34
CALL RANDOM_SEED (GET=SEED2)35
CALL RANDOM_NUMBER (X1)36
CALL RANDOM_SEED (PUT=SEED2)37
CALL RANDOM_NUMBER (X2)38

X2 equals X1.39
3These three procedures only affect the value of the seed on the invoking image.

J3/25‑007 465

J3/25‑007 WD 1539‑1 2024‑12‑29

6 Examples.1

CALL RANDOM_SEED ! Processor-dependent initialization2
CALL RANDOM_SEED (SIZE = K) ! Puts size of seed in K3
CALL RANDOM_SEED (PUT = SEED (1 : K)) ! Define seed4
CALL RANDOM_SEED (GET = OLD (1 : K)) ! Read current seed5

16.9.170 RANGE (X)6

1 Description. Decimal exponent range of a numeric model (16.4).7

2 Class. Inquiry function.8

3 Argument. X shall be of type integer, real, or complex. It may be a scalar or an array.9

4 Result Characteristics. Default integer scalar.10

5 Result Value.11

Case (i): If X is of type integer, the result has the value INT (LOG10 (HUGE (X))).12
Case (ii): If X is of type real, the result has the value INT (MIN (LOG10 (HUGE (X)),−LOG10 (TINY (X)))).13
Case (iii): If X is of type complex, the result has the value RANGE (REAL (X)).14

6 Examples. RANGE (X) has the value 38 for real X whose model is as in 16.4, NOTE, because in this case15
HUGE (X) = (1− 2−24)× 2127 and TINY (X) = 2−127.16

16.9.171 RANK (A)17

1 Description. Rank of a data object.18

2 Class. Inquiry function.19

3 Argument. A shall be a data object of any type.20

4 Result Characteristics. Default integer scalar.21

5 Result Value. The value of the result is the rank of A.22

6 Example. If X is an assumed‑rank dummy argument and its associated effective argument is an array of23
rank 3, RANK(X) has the value 3.24

16.9.172 REAL (A [, KIND])25

1 Description. Conversion to real type.26

2 Class. Elemental function.27

3 Arguments.28
A shall be of type integer, real, or complex, or a boz‑literal‑constant.29
KIND (optional) shall be a scalar integer constant expression.30

4 Result Characteristics. Real.31

Case (i): If A is of type integer or real and KIND is present, the kind type parameter is that speciϐied32
by the value of KIND. If A is of type integer or real and KIND is not present, the kind type33
parameter is that of default real kind.34

466 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Case (ii): If A is of type complex and KIND is present, the kind type parameter is that speciϐied by the1
value of KIND. If A is of type complex and KIND is not present, the kind type parameter is the2
kind type parameter of A.3

Case (iii): If A is a boz‑literal‑constant and KIND is present, the kind type parameter is that speciϐied by4
the valueofKIND. If A is aboz‑literal‑constant andKIND isnotpresent, thekind typeparameter5
is that of default real kind.6

5 Result Value.7

Case (i): If A is of type integer or real, the result is equal to a processor‑dependent approximation to A.8
Case (ii): If A is of type complex, the result is equal to a processor‑dependent approximation to the real9

part of A.10
Case (iii): If A is a boz‑literal‑constant, the value of the result is the value whose internal representation11

as a bit sequence is the same as that of A as modiϐied by padding or truncation according to12
16.3.3. The interpretation of the bit sequence is processor dependent.13

6 Examples. REAL (−3) has the value−3.0. REAL (Z) has the same kind type parameter and the same value14
as the real part of the complex variable Z.15

16.9.173 REDUCE (ARRAY, OPERATION [, MASK, IDENTITY, ORDERED]) or
REDUCE (ARRAY, OPERATION, DIM [, MASK, IDENTITY, ORDERED])

16

1 Description. General reduction of array.17

2 Class. Transformational function.18

3 Arguments.19
ARRAY shall be an array of any type.20
OPERATION shall be a pure function with exactly two arguments; each argument shall be a scalar, nonal‑21

locatable, noncoarray, nonpointer, nonpolymorphic, nonoptional dummy data object with the22
same declared type and type parameters as ARRAY. If one argument has the ASYNCHRONOUS,23
TARGET, or VALUE attribute, the other shall have that attribute. Its result shall be a nonpoly‑24
morphic scalar and have the same declared type and type parameters as ARRAY. OPERATION25
should implement a mathematically associative operation. It need not be commutative.26

DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.27
MASK (optional) shall be of type logical and shall be conformable with ARRAY.28
IDENTITY (optional) shall be scalar with the same declared type and type parameters as ARRAY.29
ORDERED (optional) shall be a logical scalar.30

4 Result Characteristics. The result is of the same declared type and type parameters as ARRAY. It is scalar31
if DIM does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn]32
where [d1, d2, …, dn] is the shape of ARRAY.33

5 Result Value.34

Case (i): The result of REDUCE (ARRAY, OPERATION [, IDENTITY = IDENTITY, ORDERED =ORDERED])35
over the sequence of values in ARRAY is the result of an iterative process. The initial order of36
the sequence is array element order. While the sequence hasmore thanone element, each iter‑37
ation involves the execution of r = OPERATION(x, y) for adjacent x and y in the sequence, with38
x immediately preceding y, and the subsequent replacement of x and y with r; if ORDERED is39

J3/25‑007 467

J3/25‑007 WD 1539‑1 2024‑12‑29

present with the value true, x and y shall be the ϐirst two elements of the sequence. The pro‑1
cess continues until the sequence has only one element which is the value of the reduction. If2
the initial sequence is empty, the result has the value IDENTITY if IDENTITY is present, and3
otherwise, error termination is initiated.4

Case (ii): The result of REDUCE (ARRAY,OPERATION,MASK=MASK [, IDENTITY= IDENTITY,ORDERED5
=ORDERED]) is as for Case (i) except that the initial sequence is only those elements of ARRAY6
for which the corresponding elements of MASK are true.7

Case (iii): If ARRAYhas rank one, REDUCE (ARRAY,OPERATION,DIM=DIM [,MASK=MASK, IDENTITY=8
IDENTITY, ORDERED = ORDERED]) has a value equal to that of REDUCE (ARRAY, OPERATION9
[, MASK = MASK, IDENTITY = IDENTITY, ORDERED = ORDERED]). Otherwise, the value of10
element (s1, s2, …, sDIM−1, sDIM+1, …, sn) of REDUCE (ARRAY, OPERATION,DIM=DIM [,MASK=11
MASK, IDENTITY = IDENTITY, ORDERED = ORDERED]) is equal to12

REDUCE (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn),
OPERATION = OPERATION,
DIM=1
[, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn),
IDENTITY = IDENTITY,
ORDERED = ORDERED]).

13

6 Examples. The following examples all use the function MY_MULT, which returns the product of its two14
integer arguments.15

Case (i): The value of REDUCE ([1, 2, 3], MY_MULT) is 6.16
Case (ii): REDUCE (C, MY_MULT, MASK= C > 0, IDENTITY=1) forms the product of the positive elements17

of C.18

Case (iii): If B is the array
[
1 3 5
2 4 6

]
, REDUCE (B, MY_MULT, DIM = 1) is [2, 12, 30] and REDUCE (B,19

MY_MULT, DIM = 2) is [15, 48].20

NOTE
If OPERATION is not computationally associative, REDUCEwithout ORDERED=.TRUE. with the same argument val‑
ues might not always produce the same result, as the processor can apply the associative law to the evaluation.

16.9.174 REPEAT (STRING, NCOPIES)21

1 Description. Repetitive string concatenation.22

2 Class. Transformational function.23

3 Arguments.24
STRING shall be a character scalar.25
NCOPIES shall be an integer scalar. Its value shall not be negative.26

4 Result Characteristics. Character scalar of length NCOPIES times that of STRING, with the same kind type27
parameter as STRING.28

5 Result Value. The value of the result is the concatenation of NCOPIES copies of STRING.29

6 Examples. REPEAT (’H’, 2) has the value HH. REPEAT (’XYZ’, 0) has the value of a zero‑length string.30

468 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.175 RESHAPE (SOURCE, SHAPE [, PAD, ORDER])1

1 Description. Arbitrary shape array construction.2

2 Class. Transformational function.3

3 Arguments.4
SOURCE shall be an array of any type. If PAD is absent or of size zero, the size of SOURCE shall be greater5

than or equal to PRODUCT (SHAPE). The size of the result is the product of the values of the6
elements of SHAPE.7

SHAPE shall be a rank‑one integer array. SIZE (x), where x is the actual argument corresponding to8
SHAPE, shall be a constant expression whose value is positive and less than 16. It shall not9
have an element whose value is negative.10

PAD (optional) shall be an array of the same type and type parameters as SOURCE.11
ORDER (optional) shall be of type integer, shall have the same shape as SHAPE, and its value shall be a12

permutation of (1, 2, …, n), where n is the size of SHAPE. If absent, it is as if it were present13
with value (1, 2, …, n).14

4 Result Characteristics. The result is an array of shape SHAPE (that is, SHAPE (RESHAPE (SOURCE, SHAPE,15
PAD, ORDER)) is equal to SHAPE) with the same type and type parameters as SOURCE.16

5 Result Value. The elements of the result, taken in permuted subscript order ORDER (1), …, ORDER (n),17
are those of SOURCE in normal array element order followed if necessary by those of PAD in array element18
order, followed if necessary by additional copies of PAD in array element order.19

6 Examples. RESHAPE ([1, 2, 3, 4, 5, 6], [2, 3]) has the value
[
1 3 5
2 4 6

]
.20

RESHAPE ([1, 2, 3, 4, 5, 6], [2, 4], [0, 0], [2, 1]) has the value
[
1 2 3 4
5 6 0 0

]
.21

16.9.176 RRSPACING (X)22

1 Description. Reciprocal of relative spacing of model numbers.23

2 Class. Elemental function.24

3 Argument. X shall be of type real.25

4 Result Characteristics. Same as X.26

5 Result Value. The result has the value |Y × b−e| × bp = ABS (FRACTION (Y)) * RADIX (X) / EPSILON (X),27
where b, e, and p are as deϐined in 16.4 for Y, the value nearest to X in the model for real values whose kind28
type parameter is that of X; if there are two such values, the value of greater absolute value is taken. If X is29
an IEEE inϐinity, the result is an IEEE NaN. If X is an IEEE NaN, the result is that NaN.30

6 Example. RRSPACING (−3.0) has the value 0.75× 224 for reals whose model is as in 16.4, NOTE.31

16.9.177 SAME_TYPE_AS (A, B)32

1 Description. Dynamic type equality test.33

2 Class. Inquiry function.34

J3/25‑007 469

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Arguments.1
A shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic2

pointer, it shall not have an undeϐined association status.3
B shall be an object of extensible declared type or unlimited polymorphic. If it is a polymorphic4

pointer, it shall not have an undeϐined association status.5

4 Result Characteristics. Default logical scalar.6

5 Result Value. If the dynamic type of A or B is extensible, the result is true if and only if the dynamic type of7
A is the same as the dynamic type of B. If neither A norBhas extensible dynamic type, the result is processor8
dependent.9

NOTE 1
The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type. An unlimited
polymorphic entity has no declared type.

NOTE 2
The test performed by SAME_TYPE_AS is not the same as the test performed by the type guard TYPE IS. The test
performed by SAME_TYPE_AS does not consider kind type parameters.

6 Example. Given the declarations and assignments10

TYPE T111
REAL C12

END TYPE13
TYPE, EXTENDS(T1) :: T214
END TYPE15
CLASS(T1), POINTER :: P, Q, R16
ALLOCATE(P, Q)17
ALLOCATE(T2 :: R)18

the value of SAME_TYPE_AS (P, Q) will be true, and the value of SAME_TYPE_AS (P, R) will be false.19

16.9.178 SCALE (X, I)20

1 Description. Real number scaled by radix power.21

2 Class. Elemental function.22

3 Arguments.23
X shall be of type real.24
I shall be of type integer.25

4 Result Characteristics. Same as X.26

5 Result Value. The result has the value X × bI, where b is deϐined in 16.4 for model numbers representing27
values of X, provided this result is representable; if not, the result is processor dependent.28

6 Example. SCALE (3.0, 2) has the value 12.0 for reals whose model is as in 16.4, NOTE.29

470 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.179 SCAN (STRING, SET [, BACK, KIND])1

1 Description. Character set membership search.2

2 Class. Elemental function.3

3 Arguments.4
STRING shall be of type character.5
SET shall be of type character with the same kind type parameter as STRING.6
BACK (optional) shall be of type logical.7
KIND (optional) shall be a scalar integer constant expression.8

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value9
of KIND; otherwise the kind type parameter is that of default integer type.10

5 Result Value.11
Case (i): If BACK is absent or is presentwith the value false and if STRINGcontains at least one character12

that is in SET, the value of the result is the position of the leftmost character of STRING that is13
in SET.14

Case (ii): If BACK is present with the value true and if STRING contains at least one character that is in15
SET, the value of the result is the position of the rightmost character of STRING that is in SET.16

Case (iii): The value of the result is zero if no character of STRING is in SET or if the length of STRING or17
SET is zero.18

6 Examples.19
Case (i): SCAN (’FORTRAN’, ’TR’) has the value 3.20
Case (ii): SCAN (’FORTRAN’, ’TR’, BACK = .TRUE.) has the value 5.21
Case (iii): SCAN (’FORTRAN’, ’BCD’) has the value 0.22

16.9.180 SELECTED_CHAR_KIND (NAME)23

1 Description. Character kind selection.24

2 Class. Transformational function.25

3 Argument. NAME shall be default character scalar.26

4 Result Characteristics. Default integer scalar.27

5 Result Value. If NAME has the value DEFAULT, then the result has a value equal to that of the kind type28
parameter of default character. If NAME has the value ASCII, then the result has a value equal to that of29
the kind type parameter of ASCII character if the processor supports such a kind; otherwise the result has30
the value −1. If NAME has the value ISO_10646, then the result has a value equal to that of the kind type31
parameter of the ISO 10646 character kind (corresponding to UCS‑4 as speciϐied in ISO/IEC 10646) if the32
processor supports such a kind; otherwise the result has the value −1. If NAME is a processor‑deϐined33
name of some other character kind supported by the processor, then the result has a value equal to that34
kind type parameter value. If NAME is not the name of a supported character type, then the result has the35
value−1. The NAME is interpreted without respect to case or trailing blanks.36

6 Examples. SELECTED_CHAR_KIND (’ASCII’) has the value 1 on a processor that uses 1 as the kind type37
parameter for the ASCII character set. The following subroutine produces a Japanese date stamp.38

J3/25‑007 471

J3/25‑007 WD 1539‑1 2024‑12‑29

SUBROUTINE create_date_string(string)1
INTRINSIC date_and_time,selected_char_kind2
INTEGER,PARAMETER :: ucs4 = selected_char_kind("ISO_10646")3
CHARACTER(1,UCS4),PARAMETER :: nen=CHAR(INT(Z'5e74'),UCS4), & !year4

gatsu=CHAR(INT(Z'6708'),UCS4), & !month5
nichi=CHAR(INT(Z'65e5'),UCS4) !day6

CHARACTER(len= *, kind= ucs4) string7
INTEGER values(8)8
CALL date_and_time(values=values)9
WRITE(string,1) values(1),nen,values(2),gatsu,values(3),nichi10

1 FORMAT(I0,A,I0,A,I0,A)11
END SUBROUTINE12

16.9.181 SELECTED_INT_KIND (R)13

1 Description. Integer kind selection.14

2 Class. Transformational function.15

3 Argument. R shall be an integer scalar.16

4 Result Characteristics. Default integer scalar.17

5 Result Value. The result has a value equal to the value of the kind type parameter of an integer type that18
represents all values n in the range−10R < n < 10R, or if no such kind type parameter is available on the19
processor, the result is−1. If more than one kind type parameter meets the criterion, the value returned is20
the one with the smallest decimal exponent range, unless there are several such values, in which case the21
smallest of these kind values is returned.22

6 Example. Assume a processor supports two integer kinds, 32 with representation method r = 2 and23
q = 31, and 64 with representation method r = 2 and q = 63. On this processor SELECTED_INT_KIND (9)24
has the value 32 and SELECTED_INT_KIND (10) has the value 64.25

16.9.182 SELECTED_LOGICAL_KIND (BITS)26

1 Description. Logical kind selection.27

2 Class. Transformational function.28

3 Argument. BITS shall be an integer scalar.29

4 Result Characteristics. Default integer scalar.30

5 Result Value. The result has a value equal to the value of the kind type parameter of a logical type whose31
storage size in bits is at least BITS, or if no such kind type parameter is available on the processor, the32
result is −1. If more than one kind type parameter meets the criterion, the value returned is the one with33
the smallest storage size, unless there are several such values, in which case the smallest of these kind34
values is returned.35

6 Example. Assume a processor supports four logical kinds with kind type parameter values 8, 16, 32, and36
64 for representations with those storage sizes. On this processor, SELECTED_LOGICAL_KIND (1) has the37
value 8, SELECTED_LOGICAL_KIND (12) has the value 16, and SELECTED_LOGICAL_KIND (128) has the38
value−1.39

472 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.183 SELECTED_REAL_KIND ([P, R, RADIX])1

1 Description. Real kind selection.2

2 Class. Transformational function.3

3 Arguments. At least one argument shall be present.4
P (optional) shall be an integer scalar.5
R (optional) shall be an integer scalar.6
RADIX (optional) shall be an integer scalar.7

4 Result Characteristics. Default integer scalar.8

5 Result Value. If P or R is absent, the result value is the same as if it were present with the value zero. If9
RADIX is absent, there is no requirement on the radix of the selected kind.10

6 The result has a value equal to a value of the kind type parameter of a real type with decimal precision,11
as returned by the function PRECISION, of at least P digits, a decimal exponent range, as returned by the12
function RANGE, of at least R, and a radix, as returned by the function RADIX, of RADIX, if such a kind type13
parameter is available on the processor.14

7 Otherwise, the result is −1 if the processor supports a real type with radix RADIX and exponent range of15
at least R but not with precision of at least P, −2 if the processor supports a real type with radix RADIX16
and precision of at least P but not with exponent range of at least R, −3 if the processor supports a real17
type with radix RADIX but with neither precision of at least P nor exponent range of at least R, −4 if the18
processor supports a real type with radix RADIX and either precision of at least P or exponent range of at19
least R but not both together, and−5 if the processor supports no real type with radix RADIX.20

8 If more than one kind type parameter value meets the criteria, the value returned is the one with the smal‑21
lest decimal precision, unless there are several such values, in which case the smallest of these kind values22
is returned.23

9 Example. SELECTED_REAL_KIND (6, 70) has the value KIND (0.0) on a machine that supports a default24
real approximation method with b = 16, p = 6, emin = −64, and emax = 63 and does not have a less precise25
approximation method.26

16.9.184 SET_EXPONENT (X, I)27

1 Description. Real value with speciϐied exponent.28

2 Class. Elemental function.29

3 Arguments.30
X shall be of type real.31
I shall be of type integer.32

4 Result Characteristics. Same as X.33

5 Result Value. If X has the value zero, the result has the same value as X. If X is an IEEE inϐinity, the result is34
an IEEE NaN. If X is an IEEE NaN, the result is the same NaN. Otherwise, the result has the value X × bI−e,35
where b and e are as deϐined in 16.4 for the representation for the value of X in the extended real model for36
the kind of X.37

J3/25‑007 473

J3/25‑007 WD 1539‑1 2024‑12‑29

6 Example. SET_EXPONENT (3.0, 1) has the value 1.5 for reals whose model is as in 16.4, NOTE.1

16.9.185 SHAPE (SOURCE [, KIND])2

1 Description. Shape of an array or a scalar.3

2 Class. Inquiry function.4

3 Arguments.5
SOURCE may be of any type. It shall not be an unallocated allocatable variable or a pointer that is not6

associated. It shall not be an assumed‑size array.7
KIND (optional) shall be a scalar integer constant expression.8

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value9
of KIND; otherwise the kind type parameter is that of default integer type. The result is an array of rank10
one whose size is equal to the rank of SOURCE.11

5 Result Value. The result has a value whose ith element is equal to the extent of dimension i of SOURCE,12
except that if SOURCE is assumed‑rank, and associatedwith an assumed‑size array, the last element is equal13
to−1.14

6 Examples. The value of SHAPE (A (2:5, −1:1)) is [4, 3]. The value of SHAPE (3) is the rank‑one array of15
size zero.16

16.9.186 SHIFTA (I, SHIFT)17

1 Description. Right shift with ϐill.18

2 Class. Elemental function.19

3 Arguments.20
I shall be of type integer.21
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I).22

4 Result Characteristics. Same as I.23

5 Result Value. The result has the value obtained by shifting the bits of I to the right SHIFT bits and replic‑24
ating the leftmost bit of I in the left SHIFT bits.25

6 If SHIFT is zero the result is I. Bits shifted out from the right are lost. The model for the interpretation of26
an integer value as a sequence of bits is in 16.3.27

7 Example. SHIFTA (IBSET (0, BIT_SIZE (0)− 1), 2) is equal to SHIFTL (7, BIT_SIZE (0)− 3).28

16.9.187 SHIFTL (I, SHIFT)29

1 Description. Left shift.30

2 Class. Elemental function.31

3 Arguments.32
I shall be of type integer.33
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I).34

474 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 Result Characteristics. Same as I.1

5 Result Value. The value of the result is ISHFT (I, SHIFT).2

6 Examples. SHIFTL (3, 1) has the value 6.3

16.9.188 SHIFTR (I, SHIFT)4

1 Description. Right shift.5

2 Class. Elemental function.6

3 Arguments.7
I shall be of type integer.8
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT_SIZE (I).9

4 Result Characteristics. Same as I.10

5 Result Value. The value of the result is ISHFT (I,−SHIFT).11

6 Examples. SHIFTR (3, 1) has the value 1.12

16.9.189 SIGN (A, B)13

1 Description. Magnitude of A with the sign of B.14

2 Class. Elemental function.15

3 Arguments.16
A shall be of type integer or real.17
B shall be of the same type as A.18

4 Result Characteristics. Same as A.19

5 Result Value.20

Case (i): If B> 0, the value of the result is |A|.21
Case (ii): If B< 0, the value of the result is ‑|A|.22
Case (iii): If B is of type integer and B=0, the value of the result is |A|.23
Case (iv): If B is of type real and is zero, then:24

• if the processor does not distinguish between positive and negative real zero, or if B is25
positive real zero, the value of the result is |A|;26

• if the processor distinguishes between positive and negative real zero, and B is negative27
real zero, the value of the result is ‑|A|.28

6 Example. SIGN (−3.0, 2.0) has the value 3.0.29

16.9.190 SIN (X)30

1 Description. Sine function.31

2 Class. Elemental function.32

J3/25‑007 475

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Argument. X shall be of type real or complex.1

4 Result Characteristics. Same as X.2

5 Result Value. The result has a value equal to a processor‑dependent approximation to sin(X). If X is of type3
real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in radians.4

6 Example. SIN (1.0) has the value 0.84147098 (approximately).5

16.9.191 SIND (X)6

1 Description. Degree sine function.7

2 Class. Elemental function.8

3 Argument. X shall be of type real.9

4 Result Characteristics. Same as X.10

5 Result Value. The result has a value equal to a processor‑dependent approximation to the sine of X, which11
is regarded as a value in degrees.12

6 Example. SIND (180.0) has the value 0.0 (approximately).13

16.9.192 SINH (X)14

1 Description. Hyperbolic sine function.15

2 Class. Elemental function.16

3 Argument. X shall be of type real or complex.17

4 Result Characteristics. Same as X.18

5 Result Value. The result has a value equal to a processor‑dependent approximation to sinh(X). If X is of19
type complex its imaginary part is regarded as a value in radians.20

6 Example. SINH (1.0) has the value 1.1752012 (approximately).21

16.9.193 SINPI (X)22

1 Description. Circular sine function.23

2 Class. Elemental function.24

3 Argument. X shall be of type real.25

4 Result Characteristics. Same as X.26

5 Result Value. The result has a value equal to a processor‑dependent approximation to the sine of X, which27
is regarded as a value in half‑revolutions; thus, SINPI (X) is approximately equal to SIN (X×π).28

6 Example. SINPI (1.0) has the value 0.0 (approximately).29

476 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.194 SIZE (ARRAY [, DIM, KIND])1

1 Description. Size of an array or one extent.2

2 Class. Inquiry function.3

3 Arguments.4
ARRAY shall be assumed‑rank or an array. It shall not be an unallocated allocatable variable or a5

pointer that is not associated. If ARRAY is an assumed‑size array, DIM shall be present with a6
value less than the rank of ARRAY.7

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of8
ARRAY.9

KIND (optional) shall be a scalar integer constant expression.10

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that speciϐied by the11
value of KIND; otherwise the kind type parameter is that of default integer type.12

5 Result Value. If DIM is present, the result has a value equal to the extent of dimensionDIMof ARRAY, except13
that if ARRAY is assumed‑rank and associated with an assumed‑size array and DIM is present with a value14
equal to the rank of ARRAY, the value is−1.15

6 If DIM is absent and ARRAY is assumed‑rank, the result has a value equal to PRODUCT(SHAPE(ARRAY,16
KIND)). Otherwise, the result has a value equal to the total number of elements of ARRAY.17

7 Examples. The value of SIZE (A (2:5,−1:1), DIM=2) is 3. The value of SIZE (A (2:5,−1:1)) is 12.18

NOTE
If ARRAY is assumed‑rank and has rank zero, DIM cannot be present since it cannot satisfy the requirement 1 ≤
DIM ≤ 0.

16.9.195 SPACING (X)19

1 Description. Spacing of model numbers.20

2 Class. Elemental function.21

3 Argument. X shall be of type real.22

4 Result Characteristics. Same as X.23

5 Result Value. If X does not have the value zero and is not an IEEE inϐinity or NaN, the result has the value24
be−p, where b, e, and p are as deϐined in 16.4 for the value nearest to X in the model for real values whose25
kind type parameter is that of X, provided this result is representable; otherwise, the result is the same as26
that of TINY (X). If there are two extended model values equally near to X, the value of greater absolute27
value is taken. If X has the value zero, the result is the same as that of TINY (X). If X is an IEEE inϐinity, the28
result is an IEEE NaN. If X is an IEEE NaN, the result is that NaN.29

6 Example. SPACING (3.0) has the value 2−22 for reals whose model is as in 16.4, NOTE.30

J3/25‑007 477

J3/25‑007 WD 1539‑1 2024‑12‑29

16.9.196 SPLIT (STRING, SET, POS [, BACK])1

1 Description. Parse a string into tokens, one at a time.2

2 Class. Simple subroutine.3

3 Arguments.4
STRING shall be a scalar of type character. It is an INTENT (IN) argument.5
SET shall be a scalar of type character with the same kind type parameter as STRING. It is an IN‑6

TENT (IN) argument. Each character in SET is a token delimiter. A sequence of zero or more7
characters in STRING delimited by any token delimiter, or the beginning or end of STRING,8
comprise a token. Thus, two consecutive token delimiters in STRING, or a token delimiter in9
the ϐirst or last character of STRING, indicate a token with zero length.10

POS shall be an integer scalar. It is an INTENT (INOUT) argument. If BACK is presentwith the value11
true, the value of POS shall be in the range 0 < POS ≤ LEN (STRING) + 1; otherwise it shall12
be in the range 0 ≤ POS ≤ LEN (STRING).13

If BACK is absent or is present with the value false, POS is assigned the position of the leftmost14
tokendelimiter in STRINGwhoseposition is greater thanPOS, or if there is no such character, it15
is assigned a value one greater than the length of STRING. This identiϐies a tokenwith starting16
position one greater than the value of POS on invocation, and ending position one less than17
the value of POS on return.18

If BACK is present with the value true, POS is assigned the position of the rightmost token de‑19
limiter in STRINGwhose position is less than POS, or if there is no such character, it is assigned20
the value zero. This identiϐies a token with ending position one less than the value of POS on21
invocation, and starting position one greater than the value of POS on return.22

If SPLIT is invoked with a value for POS in the range 1 ≤ POS ≤ LEN (STRING), and the value23
of STRING (POS:POS) is not equal to any character in SET, the token identiϐied by SPLIT will24
not comprise a complete token as described in the description of the SET argument, but rather25
a partial token.26

BACK (optional) shall be a logical scalar. It is an INTENT (IN) argument.27

4 Example.28

Execution of29
CHARACTER (LEN=:), ALLOCATABLE :: INPUT30
CHARACTER (LEN=2) :: SET = ', '31
INTEGER P32
INPUT = "one,last example"33
P = 034
DO35

IF (P > LEN (INPUT)) EXIT36
ISTART = P + 137
CALL SPLIT (INPUT, SET, P)38
IEND = P - 139
PRINT '(T7,A)', INPUT (ISTART:IEND)40

END DO41

will print42
one43
last44
example45

478 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.197 SPREAD (SOURCE, DIM, NCOPIES)1

1 Description. Value replicated in a new dimension.2

2 Class. Transformational function.3

3 Arguments.4
SOURCE shall be a scalar or array of any type. The rank of SOURCE shall be less than 15.5
DIM shall be an integer scalar with value in the range 1 ≤ DIM ≤ n + 1, where n is the rank of6

SOURCE.7
NCOPIES shall be an integer scalar.8

4 Result Characteristics. The result is an array of the same type and type parameters as SOURCE and of9
rank n+ 1, where n is the rank of SOURCE.10

Case (i): If SOURCE is scalar, the shape of the result is (MAX (NCOPIES, 0)).11
Case (ii): If SOURCE is an array with shape [d1, d2, …, dn], the shape of the result is [d1, d2, …, dDIM−1,12

MAX (NCOPIES, 0), dDIM, …, dn].13

5 Result Value.14

Case (i): If SOURCE is scalar, each element of the result has a value equal to SOURCE.15
Case (ii): If SOURCE is an array, the element of the result with subscripts (r1, r2, …, rn+1) has the value16

SOURCE (r1, r2, …, rDIM−1, rDIM+1, …, rn+1).17

6 Examples. If A is the array [2, 3, 4], SPREAD (A, DIM=1, NCOPIES=NC) is the array

 2 3 4
2 3 4
2 3 4

 if NC has18

the value 3 and is a zero‑sized array if NC has the value 0.19

16.9.198 SQRT (X)20

1 Description. Square root.21

2 Class. Elemental function.22

3 Argument. X shall be of type real or complex. If X is real, its value shall be greater than or equal to zero.23

4 Result Characteristics. Same as X.24

5 Result Value. The result has a value equal to a processor‑dependent approximation to the square root of25
X. A result of type complex is the principal value with the real part greater than or equal to zero. When the26
real part of the result is zero, the imaginary part has the same sign as the imaginary part of X.27

6 Example. SQRT (4.0) has the value 2.0 (approximately).28

16.9.199 STOPPED_IMAGES ([TEAM, KIND])29

1 Description. Indices of stopped images.30

2 Class. Transformational function.31

3 Arguments.32

J3/25‑007 479

J3/25‑007 WD 1539‑1 2024‑12‑29

TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV,1
whose value identiϐies the current or an ancestor team. If TEAM is absent the team speciϐied2
is the current team.3

KIND (optional) shall be a scalar integer constant expression.4

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value of5
KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank one6
whose size is equal to the number of images in the speciϐied team that have initiated normal termination.7

5 Result Value. The elements of the result are the values of the indices of the images that are known to8
have initiated normal termination in the speciϐied team, in numerically increasing order. If the executing9
imagehaspreviously executed an image control statementwhose STAT= speciϐier assigned the value STAT_‑10
STOPPED_IMAGE from the intrinsic module ISO_FORTRAN_ENV or invoked a collective subroutine whose11
STAT argument was assigned STAT_STOPPED_IMAGE, at least one of the images participating in that image12
control statement or collective invocation shall be known to have initiated normal termination.13

6 Examples. If image 3 is the only image in the current team that is known to have initiated normal ter‑14
mination, STOPPED_IMAGES() will have the value [3]. If there are no images in the current team that have15
initiated normal termination, the value of STOPPED_IMAGES() will be a zero‑sized array.16

16.9.200 STORAGE_SIZE (A [, KIND])17

1 Description. Storage size in bits.18

2 Class. Inquiry function.19

3 Arguments.20
A shall be a data object of any type. If it is polymorphic it shall not be an undeϐined pointer. If it21

is unlimited polymorphic or has any deferred type parameters, it shall not be an unallocated22
allocatable variable or a disassociated or undeϐined pointer.23

KIND (optional) shall be a scalar integer constant expression.24

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that speciϐied by the25
value of KIND; otherwise, the kind type parameter is that of default integer type.26

5 Result Value. The result value is the size expressed in bits for an element of an array that has the dynamic27
type and type parameters of A. If the type and type parameters are such that storage association (19.5.3)28
applies, the result is consistent with the named constants deϐined in the intrinsic module ISO_FORTRAN_‑29
ENV.30

NOTE 1
An array element might take more bits to store than an isolated scalar, since any hardware‑imposed alignment
requirements for array elements might not apply to a simple scalar variable.

NOTE 2
This is intended to be the size in memory that an object takes when it is stored; this might differ from the size it
takes during expression handling (which might be the native register size) or when stored in a ϐile. If an object is
never stored in memory but only in a register, this function nonetheless returns the size it would take if it were
stored in memory.

6 Example. STORAGE_SIZE (1.0) has the same value as the named constant NUMERIC_STORAGE_SIZE in the31

480 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

intrinsic module ISO_FORTRAN_ENV.1

16.9.201 SUM (ARRAY, DIM [, MASK]) or SUM (ARRAY [, MASK])2

1 Description. Array reduced by addition.3

2 Class. Transformational function.4

3 Arguments.5
ARRAY shall be an array of numeric type.6
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.7
MASK (optional) shall be of type logical and shall be conformable with ARRAY.8

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if DIM9
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, …, dDIM−1, dDIM+1, …, dn] where10
[d1, d2, …, dn] is the shape of ARRAY.11

5 Result Value.12

Case (i): The result of SUM (ARRAY) has a value equal to a processor‑dependent approximation to the13
sum of all the elements of ARRAY or has the value zero if ARRAY has size zero.14

Case (ii): The result of SUM (ARRAY,MASK =MASK) has a value equal to a processor‑dependent approx‑15
imation to the sum of the elements of ARRAY corresponding to the true elements of MASK or16
has the value zero if there are no true elements.17

Case (iii): If ARRAY has rank one, SUM (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal to that18
of SUM (ARRAY [,MASK = MASK]). Otherwise, the value of element (s1, s2, …, sDIM−1, sDIM+1,19
…, sn) of SUM (ARRAY, DIM = DIM [, MASK = MASK]) is equal to20

SUM (ARRAY (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)
[, MASK = MASK (s1, s2, …, sDIM−1, :, sDIM+1, …, sn)]).21

6 Examples.22

Case (i): The value of SUM ([1, 2, 3]) is 6.23
Case (ii): SUM (C, MASK= C > 0.0) forms the sum of the positive elements of C.24

Case (iii): If B is the array
[
1 3 5
2 4 6

]
, SUM (B, DIM = 1) is [3, 7, 11] and SUM (B, DIM = 2) is [9, 12].25

16.9.202 SYSTEM_CLOCK ([COUNT, COUNT_RATE, COUNT_MAX])26

1 Description. Query system clock.27

2 Class. Subroutine.28

3 Arguments.29
COUNT (optional) shall be an integer scalar with a decimal exponent range no smaller than that of default30

integer. It is an INTENT (OUT) argument. It is assigned a processor‑dependent value based31
on the value of a processor clock, or −HUGE (COUNT) if there is no clock for the invoking32
image. The processor‑dependent value is incremented by one for each clock count until the33
value COUNT_MAX is reached and is reset to zero at the next count. It lies in the range 0 to34
COUNT_MAX if there is a clock.35

J3/25‑007 481

J3/25‑007 WD 1539‑1 2024‑12‑29

COUNT_RATE (optional) shall be an integer or real scalar. If it is of type integer, it shall have a decimal1
exponent range no smaller than that of default integer. It is an INTENT (OUT) argument. It is2
assigned a processor‑dependent approximation to the number of processor clock counts per3
second, or zero if there is no clock for the invoking image.4

COUNT_MAX (optional) shall be an integer scalarwith adecimal exponent rangeno smaller than that of de‑5
fault integer. It is an INTENT (OUT) argument. It is assigned the maximum value that COUNT6
can have, or zero if there is no clock for the invoking image.7

4 In a reference to SYSTEM_CLOCK, all integer arguments shall have the same kind type parameter.8

5 Whether an image has no clock, has one or more clocks of its own, or shares a clock with another image, is9
processor dependent.10

6 If more than one clock is available, the types and kinds of the arguments to SYSTEM_CLOCK determine11
which clock is accessed. The processor should document the relationship between the clock selection and12
the argument characteristics.13

7 Different invocations of SYSTEM_CLOCK should use the same types and kinds for the arguments, to ensure14
that any timing calculations are based on the same clock.15

8 It it recommended that all references to SYSTEM_CLOCK use integer arguments with a decimal exponent16
range of at least 18. This lets the processor select the most accurate clock available while minimizing how17
often the COUNT value resets to zero.18

9 Example. If the processor clock is a 24‑hour clock that registers time at approximately 18.20648193 ticks19
per second, at 11:30 A.M. the reference20

CALL SYSTEM_CLOCK (COUNT = C, COUNT_RATE = R, COUNT_MAX = M)21
deϐines C = (11 × 3600 + 30 × 60) × 18.20648193 = 753748, R = 18.20648193, and M = 24 × 3600 ×22
18.20648193− 1 = 1573039.23

16.9.203 TAN (X)24

1 Description. Tangent function.25

2 Class. Elemental function.26

3 Argument. X shall be of type real or complex.27

4 Result Characteristics. Same as X.28

5 Result Value. The result has a value equal to a processor‑dependent approximation to tan(X). If X is of29
type real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in30
radians.31

6 Example. TAN (1.0) has the value 1.5574077 (approximately).32

16.9.204 TAND (X)33

1 Description. Degree tangent function.34

2 Class. Elemental function.35

3 Argument. X shall be of type real.36

482 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 Result Characteristics. Same as X.1

5 Result Value. The result has a value equal to a processor‑dependent approximation to the tangent of X,2
which is regarded as a value in degrees.3

6 Example. TAND (180.0) has the value 0.0 (approximately).4

16.9.205 TANH (X)5

1 Description. Hyperbolic tangent function.6

2 Class. Elemental function.7

3 Argument. X shall be of type real or complex.8

4 Result Characteristics. Same as X.9

5 Result Value. The result has a value equal to a processor‑dependent approximation to tanh(X). If X is of10
type complex its imaginary part is regarded as a value in radians.11

6 Example. TANH (1.0) has the value 0.76159416 (approximately).12

16.9.206 TANPI (X)13

1 Description. Circular tangent function.14

2 Class. Elemental function.15

3 Argument. X shall be of type real.16

4 Result Characteristics. Same as X.17

5 Result Value. The result has a value equal to a processor‑dependent approximation to the tangent of X,18
which is regarded as a value in half‑revolutions; thus, TANPI (X) is approximately equal to TAN (X×π).19

6 Example. TANPI (1.0) has the value 0.0 (approximately).20

16.9.207 TEAM_NUMBER ([TEAM])21

1 Description. Team number.22

2 Class. Transformational function.23

3 Argument. TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FOR‑24
TRAN_ENV, whose value identiϐies the current or an ancestor team. If TEAM is absent, the team speciϐied25
is the current team.26

4 Result Characteristics. Default integer scalar.27

5 Result Value. The result has the value −1 if the speciϐied team is the initial team; otherwise, the result28
value is equal to the positive integer that identiϐies the speciϐied team among its sibling teams.29

6 Example. The team number can be used to control which statements get executed, for example:30

TYPE(TEAM_TYPE) :: ODD_EVEN31
...32
FORM TEAM (2-MOD(ME,2), ODD_EVEN)33

J3/25‑007 483

J3/25‑007 WD 1539‑1 2024‑12‑29

...1
CHANGE TEAM (ODD_EVEN)2
SELECT CASE (TEAM_NUMBER())3
CASE (1)4

! Case for images with odd image indices in the parent team.5
CASE (2)6

! Case for images with even image indices in the parent team.7
END SELECT8

END TEAM9

16.9.208 THIS_IMAGE ([TEAM]) or THIS_IMAGE (COARRAY [, TEAM]) or
THIS_IMAGE (COARRAY, DIM [, TEAM])

10

1 Description. Cosubscript(s) for this image.11

2 Class. Transformational function.12

3 Arguments.13
COARRAY shall be a coarray of any type. If it is allocatable it shall be allocated. If its designator has more14

than one part‑ref , the rightmost part‑ref shall have nonzero corank.15
DIM shall be an integer scalar. Its value shall be in the range 1 ≤ DIM ≤ n, where n is the corank16

of COARRAY.17
TEAM (optional) shall be a scalar of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV,18

whose value identiϐies the current or an ancestor team. If COARRAY appears, it shall be19
established in that team.20

4 Result Characteristics. Default integer. It is scalar if COARRAYdoesnot appear orDIMappears; otherwise,21
the result has rank one and its size is equal to the corank of COARRAY.22

5 Result Value.23

Case (i): The result of THIS_IMAGE ([TEAM]) is a scalar with a value equal to the index of the invoking24
image in the team speciϐied by TEAM, if present, or in the current team if absent.25

Case (ii): The result of THIS_IMAGE (COARRAY [, TEAM = TEAM]) is the sequence of cosubscript values26
for COARRAY that would specify the invoking image in the team speciϐied by TEAM, if present,27
or in the current team if absent.28

Case (iii): The result of THIS_IMAGE (COARRAY, DIM [, TEAM = TEAM]) is the value of cosubscript DIM29
in the sequence of cosubscript values for COARRAY that would specify the invoking image in30
the team speciϐied by TEAM, if present, or in the current team if absent.31

6 Examples.32

Case (i): If A is declared by the statement33
REAL A (10, 20) [10, 0:9, 0:*]34

then on image 5, THIS_IMAGE () has the value 5 and THIS_IMAGE (A) has the value [5, 0, 0].35
For the same coarray on image 213, THIS_IMAGE (A) has the value [3, 1, 2].36

Case (ii): The following code uses image 1 to read data. The other images then copy the data.37
IF (THIS_IMAGE()==1) READ (*,*) P38
SYNC ALL39
P = P[1]40

484 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.9.209 TINY (X)1

1 Description. Smallest positive model number.2

2 Class. Inquiry function.3

3 Argument. X shall be a real scalar or array.4

4 Result Characteristics. Scalar with the same type and kind type parameter as X.5

5 Result Value. The result has the value bemin−1 where b and emin are as deϐined in 16.4 for the model repres‑6
enting numbers of the same type and kind type parameter as X.7

6 Example. TINY (X) has the value 2−127 for real X whose model is as in 16.4, NOTE.8

16.9.210 TOKENIZE (STRING, SET, TOKENS [, SEPARATOR]) or TOKENIZE (STRING,
SET, FIRST, LAST)

9

1 Description. Parse a string into tokens.10

2 Class. Simple subroutine.11

3 Arguments.12
STRING shall be a scalar of type character. It is an INTENT (IN) argument.13
SET shall be a scalar of type character with the same kind type parameter as STRING. It is an IN‑14

TENT (IN) argument. Each character in SET is a token delimiter. A sequence of zero or more15
characters in STRING delimited by any token delimiter, or the beginning or end of STRING,16
comprise a token. Thus, two consecutive token delimiters in STRING, or a token delimiter in17
the ϐirst or last character of STRING, indicate a token with zero length.18

TOKENS shall be of type characterwith the samekind type parameter as STRING. It is an INTENT (OUT)19
argument. It shall not be a coarray or a coindexed object. It shall be an allocatable array of20
rank onewith deferred length. It is allocatedwith the lower bound equal to one and the upper21
bound equal to the number of tokens in STRING, andwith character length equal to the length22
of the longest token.23

The tokens in STRING are assigned in the order found, as if by intrinsic assignment, to the24
elements of TOKENS, in array element order.25

SEPARATOR (optional) shall be of type character with the same kind type parameter as STRING. It is an26
INTENT (OUT) argument. It shall not be a coarray or a coindexed object. It shall be an allocat‑27
able array of rank one with deferred length. It is allocated with the lower bound equal to one28
and the upper bound equal to one less than the number of tokens in STRING, and with char‑29
acter length equal to one. Each element SEPARATOR(i) is assigned the value of the ith token30
delimiter in STRING.31

FIRST shall be an allocatable array of type integer and rank one. It is an INTENT (OUT) argument.32
It shall not be a coarray or a coindexed object. It is allocated with the lower bound equal to33
one and the upper bound equal to the number of tokens in STRING. Each element is assigned,34
in array element order, the starting position of each token in STRING, in the order found. If a35
token has zero length, the starting position is equal to one if the token is at the beginning of36
STRING, and one greater than the position of the preceding delimiter otherwise.37

LAST shall be an allocatable array of type integer and rank one. It is an INTENT (OUT) argument.38
It shall not be a coarray or a coindexed object. It is allocated with the lower bound equal to39

J3/25‑007 485

J3/25‑007 WD 1539‑1 2024‑12‑29

one and the upper bound equal to the number of tokens in STRING. Each element is assigned,1
in array element order, the ending position of each token in STRING, in the order found. If a2
token has zero length, the ending position is one less than the starting position.3

4 Examples.4

Execution of5
CHARACTER (LEN=:), ALLOCATABLE :: STRING6
CHARACTER (LEN=:), ALLOCATABLE, DIMENSION (:) :: TOKENS7
CHARACTER (LEN=2) :: SET = ',;'8
STRING = 'first,second,third'9
CALL TOKENIZE (STRING, SET, TOKENS)10

will assign the value ['first ', 'second', 'third '] to TOKENS.11

Execution of12
CHARACTER (LEN=:), ALLOCATABLE :: STRING13
CHARACTER (LEN=2) :: SET = ',;'14
INTEGER, DIMENSION (:), ALLOCATABLE :: FIRST, LAST15
STRING = 'first,second,,fourth'16
CALL TOKENIZE (STRING, SET, FIRST, LAST)17

will assign the value [1, 7, 14, 15] to FIRST, and the value [5, 12, 13, 20] to LAST.18

16.9.211 TRAILZ (I)19

1 Description. Number of trailing zero bits.20

2 Class. Elemental function.21

3 Argument. I shall be of type integer.22

4 Result Characteristics. Default integer.23

5 Result Value. If all of the bits of I are zero, the result value is BIT_SIZE (I). Otherwise, the result value is24
the position of the rightmost 1 bit in I. The model for the interpretation of an integer value as a sequence25
of bits is in 16.3.26

6 Examples. TRAILZ (8) has the value 3.27

16.9.212 TRANSFER (SOURCE, MOLD [, SIZE])28

1 Description. Transfer physical representation.29

2 Class. Transformational function.30

3 Arguments.31
SOURCE shall be a scalar or array of any type.32
MOLD shall be a scalar or array of any type. If it is a variable, it need not be deϐined. If the storage33

size of SOURCE is greater than zero and MOLD is an array, a scalar with the type and type34
parameters of MOLD shall not have a storage size equal to zero.35

SIZE (optional) shall be an integer scalar. The corresponding actual argument shall not be an optional36
dummy argument.37

4 Result Characteristics. The result is of the same type and type parameters as MOLD.38

Case (i): If MOLD is a scalar and SIZE is absent, the result is a scalar.39

486 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Case (ii): If MOLD is an array and SIZE is absent, the result is an array and of rank one. Its size is as small1
as possible such that its physical representation is not shorter than that of SOURCE.2

Case (iii): If SIZE is present, the result is an array of rank one and size SIZE.3

5 Result Value. If the physical representation of the result has the same length as that of SOURCE, the phys‑4
ical representation of the result is that of SOURCE. If the physical representation of the result is longer than5
that of SOURCE, the physical representation of the leading part is that of SOURCE and the remainder is pro‑6
cessor dependent. If the physical representation of the result is shorter than that of SOURCE, the physical7
representation of the result is the leading part of SOURCE. If D and E are scalar variables such that the phys‑8
ical representation of D is as long as or longer than that of E, the value of TRANSFER (TRANSFER (E, D), E)9
shall be the value of E. IF D is an array and E is an array of rank one, the value of TRANSFER (TRANS‑10
FER (E, D), E, SIZE (E)) shall be the value of E.11

6 Examples.12

Case (i): TRANSFER (1082130432, 0.0) has the value 4.0 on a processor that represents the values 4.013
and 1082130432 as the string of binary digits 0100 0000 1000 0000 0000 0000 0000 0000.14

Case (ii): TRANSFER ([1.1, 2.2, 3.3], [(0.0, 0.0)])) is a complex rank‑one array of length two whose ϐirst15
element has the value (1.1, 2.2) and whose second element has a real part with the value 3.3.16
The imaginary part of the second element is processor dependent.17

Case (iii): TRANSFER ([1.1, 2.2, 3.3], [(0.0, 0.0)], 1) is a complex rank‑one array of length onewhose only18
element has the value (1.1, 2.2).19

16.9.213 TRANSPOSE (MATRIX)20

1 Description. Transpose of an array of rank two.21

2 Class. Transformational function.22

3 Argument. MATRIX shall be a rank‑two array of any type.23

4 Result Characteristics. The result is an array of the same type and type parameters as MATRIX and with24
rank two and shape [n,m] where [m,n] is the shape of MATRIX.25

5 Result Value. Element (i, j) of the result has the valueMATRIX (j + LBOUND (MATRIX, 1)− 1, i + LBOUND26
(MATRIX, 2)− 1).27

6 Example. If A is the array

 1 2 3
4 5 6
7 8 9

, then TRANSPOSE (A) has the value

 1 4 7
2 5 8
3 6 9

.28

16.9.214 TRIM (STRING)29

1 Description. String without trailing blanks.30

2 Class. Transformational function.31

3 Argument. STRING shall be a character scalar.32

4 Result Characteristics. Character with the same kind type parameter value as STRING and with a length33
that is the length of STRING less the number of trailing blanks in STRING. If STRING contains no nonblank34
characters, the result has zero length.35

5 Result Value. The value of the result is the same as STRING except any trailing blanks are removed.36

J3/25‑007 487

J3/25‑007 WD 1539‑1 2024‑12‑29

6 Example. TRIM (’ A B ’) has the value ’ A B’.1

16.9.215 UBOUND (ARRAY [, DIM, KIND])2

1 Description. Upper bound(s).3

2 Class. Inquiry function.4

3 Arguments.5
ARRAY shall be assumed‑rank or an array. It shall not be an unallocated allocatable array or a pointer6

that is not associated. If ARRAY is an assumed‑size array, DIM shall be present with a value7
less than the rank of ARRAY.8

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank9
of ARRAY. The corresponding actual argument shall not be an optional dummy argument, a10
disassociated pointer, or an unallocated allocatable.11

KIND (optional) shall be a scalar integer constant expression.12

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value13
of KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is14
present; otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.15

5 Result Value.16

Case (i): If DIM is present, ARRAY is a whole array, and dimension DIM of ARRAY has nonzero extent,17
the result has a value equal to theupperbound for subscriptDIMofARRAY.Otherwise, if DIM is18
present and ARRAY is assumed‑rank, the value of the result is as if ARRAYwere a whole array,19
with the extent of the ϐinal dimension of ARRAY when ARRAY is associated with an assumed‑20
size array being considered to be−1. Otherwise, if DIM is present, the result has a value equal21
to the number of elements in dimension DIM of ARRAY.22

Case (ii): If ARRAY has rank zero, UBOUND (ARRAY) has a value that is a zero‑sized array. Otherwise,23
UBOUND (ARRAY) has a valuewhose ith element is equal to UBOUND (ARRAY, i), for i = 1, 2,24
. . . , n, where n is the rank of ARRAY. UBOUND (ARRAY, KIND=KIND) has a value whose ith25
element is equal to UBOUND (ARRAY, i, KIND=KIND), for i = 1, 2, . . . , n, where n is the rank26
of ARRAY.27

6 Examples. If A is declared by the statement28
REAL A (2:3, 7:10)29

then UBOUND (A) is [3, 10] and UBOUND (A, DIM = 2) is 10.30

NOTE
If ARRAY is assumed‑rank and has rank zero, DIM cannot be present since it cannot satisfy the requirement 1 ≤
DIM ≤ 0.

16.9.216 UCOBOUND (COARRAY [, DIM, KIND])31

1 Description. Upper cobound(s) of a coarray.32

2 Class. Inquiry function.33

488 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

3 Arguments.1
COARRAY shall be a coarray of any type. It may be a scalar or an array. If it is allocatable it shall be alloc‑2

ated. If its designator has more than one part‑ref , the rightmost part‑ref shall have nonzero3
corank.4

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the corank5
of COARRAY. The corresponding actual argument shall not be an optional dummy argument,6
a disassociated pointer, or an unallocated allocatable.7

KIND (optional) shall be a scalar integer constant expression.8

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value9
of KIND; otherwise, the kind type parameter is that of default integer type. The result is scalar if DIM is10
present; otherwise, the result is an array of rank one and size n, where n is the corank of COARRAY.11

5 Result Value. The ϐinal upper cobound is the ϐinal cosubscript in the cosubscript list for the coarray that12
selects the image whose index is equal to the number of images in the current team.13

Case (i): If DIM is present, the result has a value equal to the upper cobound for codimension DIM of14
COARRAY.15

Case (ii): If DIM is absent, the result has a value whose ith element is equal to the upper cobound for16
codimension i of COARRAY, for i = 1, 2,…, n, where n is the corank of COARRAY.17

6 Examples. If NUM_IMAGES() has the value 30 and A is allocated by the statement18

ALLOCATE (A [2:3, 0:7, *])19

then UCOBOUND (A) is [3, 7, 2] and UCOBOUND (A, DIM=2) is 7. Note that the cosubscripts [3, 7, 2] do not20
correspond to an actual image.21

16.9.217 UNPACK (VECTOR, MASK, FIELD)22

1 Description. Vector unpacked into an array.23

2 Class. Transformational function.24

3 Arguments.25
VECTOR shall be a rank‑one array of any type. Its size shall be at least t where t is the number of true26

elements in MASK.27
MASK shall be a logical array.28
FIELD shall be of the same type and type parameters as VECTOR and shall be conformable with29

MASK.30

4 Result Characteristics. The result is an array of the same type and type parameters as VECTOR and the31
same shape as MASK.32

5 Result Value. The element of the result that corresponds to the ith true element of MASK, in array element33
order, has the value VECTOR (i) for i = 1, 2, …, t, where t is the number of true values in MASK. Each other34
element has a value equal to FIELD if FIELD is scalar or to the corresponding element of FIELD if it is an35
array.36

6 Examples. Particular values can be “scattered” to particular positions in an array by using UNPACK. If M is37

J3/25‑007 489

J3/25‑007 WD 1539‑1 2024‑12‑29

the array

 1 0 0
0 1 0
0 0 1

, V is the array [1, 2, 3], and Q is the logicalmask

 . T .
T . .
. . T

, where “T” represents1

true and “.” represents false, then the result of UNPACK (V,MASK=Q, FIELD =M) has the value

 1 2 0
1 1 0
0 0 3

2

and the result of UNPACK (V, MASK = Q, FIELD = 0) has the value

 0 2 0
1 0 0
0 0 3

.3

16.9.218 VERIFY (STRING, SET [, BACK, KIND])4

1 Description. Character set non‑membership search.5

2 Class. Elemental function.6

3 Arguments.7
STRING shall be of type character.8
SET shall be of type character with the same kind type parameter as STRING.9
BACK (optional) shall be of type logical.10
KIND (optional) shall be a scalar integer constant expression.11

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value12
of KIND; otherwise the kind type parameter is that of default integer type.13

5 Result Value.14

Case (i): If BACK is absent or has the value false and if STRING contains at least one character that is15
not in SET, the value of the result is the position of the leftmost character of STRING that is not16
in SET.17

Case (ii): If BACK is present with the value true and if STRING contains at least one character that is not18
in SET, the value of the result is the position of the rightmost character of STRING that is not19
in SET.20

Case (iii): The value of the result is zero if each character in STRING is in SETor if STRINGhas zero length.21

6 Examples.22

Case (i): VERIFY (’ABBA’, ’A’) has the value 2.23
Case (ii): VERIFY (’ABBA’, ’A’, BACK = .TRUE.) has the value 3.24
Case (iii): VERIFY (’ABBA’, ’AB’) has the value 0.25

16.10 Standard intrinsic modules26

16.10.1 General27

1 This document deϐines ϐive standard intrinsic modules: a Fortran environmentmodule, a set of threemod‑28
ules to support ϐloating‑point exceptions and IEEE arithmetic, and a module to support interoperability29
with the C programming language.30

490 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 The intrinsicmodules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES are described in Clause1
17. The intrinsic module ISO_C_BINDING is described in Clause 18. The module procedures described in2
16.10.2 are simple.3

NOTE
The types and procedures deϐined in standard intrinsic modules are not themselves intrinsic.

3 A processor may extend the standard intrinsic modules to provide public entities in them in addition to4
those speciϐied in this document.5

16.10.2 The ISO_FORTRAN_ENV intrinsic module6

16.10.2.1 General7

1 The intrinsic module ISO_FORTRAN_ENV provides public entities relating to the Fortran environment.8

2 The processor shall provide the named constants, derived types, and procedures described in 16.10.2. In9
the detailed descriptions below, procedure names are generic and not speciϐic.10

16.10.2.2 ATOMIC_INT_KIND11

1 The value of the default integer scalar constant ATOMIC_INT_KIND is the kind type parameter value of type12
integer variables for which the processor supports atomic operations speciϐied by atomic subroutines.13

16.10.2.3 ATOMIC_LOGICAL_KIND14

1 The value of the default integer scalar constant ATOMIC_LOGICAL_KIND is the kind type parameter value of15
type logical variables for which the processor supports atomic operations speciϐied by atomic subroutines.16

16.10.2.4 CHARACTER_KINDS17

1 The values of the elements of the default integer array constant CHARACTER_KINDS are the kind values18
supported by the processor for variables of type character. The order of the values is processor dependent.19
The rank of the array is one, its lower bound is one, and its size is the number of character kinds supported.20

16.10.2.5 CHARACTER_STORAGE_SIZE21

1 The value of the default integer scalar constant CHARACTER_STORAGE_SIZE is the size expressed in bits of22
the character storage unit (19.5.3.2).23

16.10.2.6 COMPILER_OPTIONS ()24

1 Description. Processor‑dependent string describing the options that controlled the program translation25
phase.26

2 Class. Transformational function.27

3 Argument. None.28

4 Result Characteristics. Default character scalar with processor‑dependent length.29

J3/25‑007 491

J3/25‑007 WD 1539‑1 2024‑12‑29

5 Result Value. A processor‑dependent value which describes the options that controlled the translation1
phase of program execution. This value should include relevant information that could be useful for dia‑2
gnosing problems at a later date.3

6 Example. COMPILER_OPTIONS () might have the value ’/OPTIMIZE /FLOAT=IEEE’.4

16.10.2.7 COMPILER_VERSION ()5

1 Description. Processor‑dependent string identifying the program translation phase.6

2 Class. Transformational function.7

3 Argument. None.8

4 Result Characteristics. Default character scalar with processor‑dependent length.9

5 ResultValue. Aprocessor‑dependent value that identiϐies the nameandversion of the program translation10
phase of the processor. This value should include relevant information that could be useful for diagnosing11
problems at a later date.12

6 Example. COMPILER_VERSION () might have the value ’Fast KL‑10 Compiler Version 7’.13

NOTE
Relevant information that could be useful for diagnosing problems at a later date might include compiler release
and patch level, default compiler arguments, environment variable values, and run time library requirements. A
processor might include this information in an object ϐile automatically, without the user needing to save the result
of this function in a variable.

16.10.2.8 CURRENT_TEAM14

1 The value of the default integer scalar constant CURRENT_TEAM identiϐies the current teamwhen it is used15
as the LEVEL argument to GET_TEAM.16

16.10.2.9 ERROR_UNIT17

1 The value of the default integer scalar constant ERROR_UNIT identiϐies the processor‑dependent precon‑18
nected external unit used for the purpose of error reporting (12.5). This unitmay be the same as OUTPUT_‑19
UNIT. The value shall not be−1.20

16.10.2.10 EVENT_TYPE21

1 EVENT_TYPE is a derived type with private components. It is an extensible type with no type parameters.22
Each nonallocatable component is fully default‑initialized.23

2 A scalar variable of type EVENT_TYPE is an event variable. The value of an event variable includes its event24
count, which is updated by execution of a sequence of EVENT POST or EVENTWAIT statements. The effect25
of each change is as if the intrinsic subroutine ATOMIC_ADD were executed with a variable that stores the26
event count as its ATOM argument. A coarray that is of type EVENT_TYPE may be referenced or deϐined27
during execution of a segment that is unordered relative to the execution of another segment in which28
that coarray is deϐined. The event count is of type integer with kind ATOMIC_INT_KIND from the intrinsic29
module ISO_FORTRAN_ENV. The initial value of the event count of an event variable is zero.30

492 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C1603 A named entity with declared type EVENT_TYPE, or which has a noncoarray potential subobject1
componentwith declared type EVENT_TYPE, shall be a variable. A component that is of such a type2
shall be a data component.3

C1604 A named variable with declared type EVENT_TYPE shall be a coarray. A named variable with a4
noncoarray potential subobject component of type EVENT_TYPE shall be a coarray.5

C1605 An event variable shall not appear in a variable deϐinition context except as the event‑variable in an6
EVENT POST or EVENTWAIT statement, as an allocate‑object, or as an actual argument in a refer‑7
ence to a procedure with an explicit interface if the corresponding dummy argument has INTENT8
(INOUT).9

C1606 A variable with a nonpointer subobject of type EVENT_TYPE shall not appear in a variable deϐini‑10
tion context except as an allocate‑object in an ALLOCATE statement without a SOURCE= speciϐier,11
as an allocate‑object in a DEALLOCATE statement, or as an actual argument in a reference to a pro‑12
cedure with an explicit interface if the corresponding dummy argument has INTENT (INOUT).13

NOTE 1
The restrictions against changing an event variable except via EVENT POST and EVENT WAIT statements ensure
the integrity of its value and facilitate efϐicient implementation, particularlywhen special synchronization is needed
for correct event handling.

NOTE 2
Updates to variables via atomic subroutines are coherent but not necessarily consistent, so a processor might have
to use extra synchronization to obtain the consistency required for the segments ordered by EVENT POST and
EVENTWAIT statements.

16.10.2.11 FILE_STORAGE_SIZE14

1 The value of the default integer scalar constant FILE_STORAGE_SIZE is the size expressed in bits of the ϐile15
storage unit (12.3.5).16

16.10.2.12 INITIAL_TEAM17

1 The value of the default integer scalar constant INITIAL_TEAM identiϐies the initial teamwhen it is used as18
the LEVEL argument to GET_TEAM.19

16.10.2.13 INPUT_UNIT20

1 The value of the default integer scalar constant INPUT_UNIT identiϐies the same processor‑dependent ex‑21
ternal unit as the one identiϐied by an asterisk in a READ statement; this unit is the one used for a READ22
statement that does not contain an input/output control list (12.6.4.3). This unit is preconnected for se‑23
quential formatted input on image one in the initial team only, and is not preconnected on any other image.24
The value shall not be−1.25

16.10.2.14 INT8, INT16, INT32, and INT6426

1 The values of these default integer scalar named constants shall be those of the kind type parameters that27
specify an INTEGER type whose storage size expressed in bits is 8, 16, 32, and 64 respectively. If, for any of28
these constants, the processor supports more than one kind of that size, it is processor dependent which29

J3/25‑007 493

J3/25‑007 WD 1539‑1 2024‑12‑29

kind value is provided. If the processor supports no kind of a particular size, that constant shall be equal1
to−2 if the processor supports a kind with larger size and−1 otherwise.2

16.10.2.15 INTEGER_KINDS3

1 The values of the elements of the default integer array constant INTEGER_KINDS are the kind values sup‑4
ported by the processor for variables of type integer. The order of the values is processor dependent. The5
rank of the array is one, its lower bound is one, and its size is the number of integer kinds supported.6

16.10.2.16 IOSTAT_END7

1 The value of the default integer scalar constant IOSTAT_END is assigned to the variable speciϐied in an8
IOSTAT= speciϐier (12.11.5) if an end‑of‑ϐile condition occurs during execution of an input statement and9
no error condition occurs. This value shall be negative.10

16.10.2.17 IOSTAT_EOR11

1 The value of the default integer scalar constant IOSTAT_EOR is assigned to the variable speciϐied in an12
IOSTAT= speciϐier (12.11.5) if an end‑of‑record condition occurs during execution of an input statement13
and no end‑of‑ϐile or error condition occurs. This value shall be negative and different from the value of14
IOSTAT_END.15

16.10.2.18 IOSTAT_INQUIRE_INTERNAL_UNIT16

1 The value of the default integer scalar constant IOSTAT_INQUIRE_INTERNAL_UNIT is assigned to the vari‑17
able speciϐied in an IOSTAT= speciϐier in an INQUIRE statement (12.10) if a ϔile‑unit‑number identiϐies an18
internal unit in that statement.19

NOTE
This can only occur when a deϐined input/output procedure is called by the processor as the result of executing a
parent data transfer statement (12.6.4.8.3) for an internal unit.

16.10.2.19 LOCK_TYPE20

1 LOCK_TYPE is a derived type with private components; no component is allocatable or a pointer. It is an21
extensible type with no type parameters. All components have default initialization.22

2 A scalar variable of type LOCK_TYPE is a lock variable. A lock variable can have one of two states: locked23
and unlocked. The unlocked state is represented by the one value that is the default value of a LOCK_‑24
TYPE variable; this is the value speciϐied by the structure constructor LOCK_TYPE (). The locked state is25
represented by all other values. The value of a lock variable can be changed with the LOCK and UNLOCK26
statements (11.7.10).27

C1607 A named entity with declared type LOCK_TYPE, or which has a noncoarray potential subobject28
component with declared type LOCK_TYPE, shall be a variable. A component that is of such a type29
shall be a data component.30

C1608 A named variable with declared type LOCK_TYPE shall be a coarray. A named variable with a non‑31
coarray potential subobject component of type LOCK_TYPE shall be a coarray.32

494 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C1609 A lock variable shall not appear in a variable deϐinition context except as the lock‑variable in a LOCK1
or UNLOCK statement, as an allocate‑object, or as an actual argument in a reference to a procedure2
with an explicit interface where the corresponding dummy argument has INTENT (INOUT).3

C1610 A variable with a subobject of type LOCK_TYPE shall not appear in a variable deϐinition context4
except as an allocate‑object or as an actual argument in a reference to a procedure with an explicit5
interface where the corresponding dummy argument has INTENT (INOUT).6

NOTE
The restrictions against changing a lock variable except via the LOCK and UNLOCK statements ensure the integrity
of its value and facilitate efϐicient implementation, particularly when special synchronization is needed for correct
lock operation.

16.10.2.20 LOGICAL_KINDS7

1 The values of the elements of the default integer array constant LOGICAL_KINDS are the kind values sup‑8
ported by the processor for variables of type logical. The order of the values is processor dependent. The9
rank of the array is one, its lower bound is one, and its size is the number of logical kinds supported.10

16.10.2.21 LOGICAL8, LOGICAL16, LOGICAL32, and LOGICAL6411

1 The values of these default integer scalar named constants shall be those of the kind type parameters that12
specify a LOGICAL type whose storage size expressed in bits is 8, 16, 32, and 64 respectively. If, for any of13
these constants, the processor supports more than one kind of that size, it is processor dependent which14
kind value is provided. If the processor supports no kind of a particular size, that constant shall be equal15
to−2 if the processor supports a kind with larger size and−1 otherwise.16

16.10.2.22 NOTIFY_TYPE17

1 NOTIFY_TYPE is a derived type with private components. It is an extensible type with no type parameters.18
Each nonallocatable component is fully default‑initialized.19

2 A scalar variable of type NOTIFY_TYPE is a notify variable. The value of a notify variable includes its notify20
count, which is updated by execution of assignment statements that have a NOTIFY= speciϐier and NOTIFY21
WAIT statements.22

3 The effect of each update is as if the intrinsic subroutine ATOMIC_ADD were executed with a variable that23
stores the notify count as its ATOM argument. A coarray that is of type NOTIFY_TYPE may be referenced24
or deϐined during execution of a segment that is unordered relative to the execution of another segment25
in which that coarray is deϐined. The notify count is of type integer with kind ATOMIC_INT_KIND from the26
intrinsic module ISO_FORTRAN_ENV. The initial value of the notify count of a notify variable is zero.27

C1611 A named entity with declared type NOTIFY_TYPE, or which has a noncoarray potential subobject28
component with declared type NOTIFY_TYPE, shall be a variable. A component that is of such a29
type shall be a data component.30

C1612 A named variable with declared type NOTIFY_TYPE shall be a coarray. A named variable with a31
noncoarray potential subobject component of type NOTIFY_TYPE shall be a coarray.32

C1613 A notify variable shall not appear in a variable deϐinition context except as the notify‑variable of33
a NOTIFY= speciϐier or NOTIFY WAIT statement, as an allocate‑object, or as an actual argument34

J3/25‑007 495

J3/25‑007 WD 1539‑1 2024‑12‑29

in a reference to a procedure with an explicit interface if the corresponding dummy argument has1
INTENT (INOUT).2

C1614 A variable with a nonpointer subobject of type NOTIFY_TYPE shall not appear in a variable deϐini‑3
tion context except as an allocate‑object in an ALLOCATE statement without a SOURCE= speciϐier,4
as an allocate‑object in a DEALLOCATE statement, or as an actual argument in a reference to a pro‑5
cedure with an explicit interface if the corresponding dummy argument has INTENT (INOUT).6

NOTE
The restrictions on changing anotify variable ensure the integrity of its value and facilitate efϐicient implementation,
particularly when special synchronization is needed for correct notify handling.

16.10.2.23 NUMERIC_STORAGE_SIZE7

1 The value of the default integer scalar constant NUMERIC_STORAGE_SIZE is the size expressed in bits of8
the numeric storage unit (19.5.3.2).9

16.10.2.24 OUTPUT_UNIT10

1 The value of the default integer scalar constant OUTPUT_UNIT identiϐies the same processor‑dependent11
external unit preconnected for sequential formatted output as the one identiϐied by an asterisk in aWRITE12
statement (12.6.4.3); this unit is the one used by a PRINT statement. The value shall not be−1.13

16.10.2.25 PARENT_TEAM14

1 The value of the default integer scalar constant PARENT_TEAM identiϐies the parent team when it is used15
as the LEVEL argument to GET_TEAM.16

16.10.2.26 REAL_KINDS17

1 The values of the elements of the default integer array constant REAL_KINDS are the kind values supported18
by the processor for variables of type real. The order of the values is processor dependent. The rank of the19
array is one, its lower bound is one, and its size is the number of real kinds supported.20

16.10.2.27 REAL16, REAL32, REAL64, and REAL12821

1 The values of these default integer scalar named constants shall be those of the kind type parameters that22
specify a REAL type whose storage size expressed in bits is 16, 32, 64, and 128 respectively. If, for any of23
these constants, the processor supports more than one kind of that size, it is processor dependent which24
kind value is provided. If the processor supports no kind of a particular size, that constant shall be equal25
to−2 if the processor supports kinds of a larger size and−1 otherwise.26

16.10.2.28 STAT_FAILED_IMAGE27

1 If the processor has the ability to detect that an image has failed, the value of the default integer scalar28
constant STAT_FAILED_IMAGE is positive; otherwise, the value of STAT_FAILED_IMAGE is negative. If an29
image involved in execution of an image control statement, a reference to a coindexed object, or execution30
of a collective or atomic subroutine has failed, and no other error condition occurs, the value of STAT_‑31
FAILED_IMAGE is assigned to the variable speciϐied in a STAT= speciϐier in the execution of an image control32
statement or reference to a coindexed object, or to the STAT argument in an invocation of a collective or33
atomic subroutine.34

496 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

16.10.2.29 STAT_LOCKED1

1 The value of the default integer scalar constant STAT_LOCKED is assigned to the variable speciϐied in a2
STAT= speciϐier (11.7.11) of a LOCK statement if the lock variable is locked by the executing image.3

16.10.2.30 STAT_LOCKED_OTHER_IMAGE4

1 The value of the default integer scalar constant STAT_LOCKED_OTHER_IMAGE is assigned to the variable5
speciϐied in a STAT= speciϐier (11.7.11) of an UNLOCK statement if the lock variable is locked by another6
image.7

16.10.2.31 STAT_STOPPED_IMAGE8

1 The value of the default integer scalar constant STAT_STOPPED_IMAGE is assigned to the variable speciϐied9
in a STAT= speciϐier (9.7.4, 11.7.11), if execution of the statement with that speciϐier requires synchroniza‑10
tionwith an image that has initiated normal termination. It is assigned to a STAT argument in a reference to11
a collective subroutine if any image of the current team has initiated normal termination. This value shall12
be positive.13

16.10.2.32 STAT_UNLOCKED14

1 The value of the default integer scalar constant STAT_UNLOCKED is assigned to the variable speciϐied in a15
STAT= speciϐier (11.7.11) of an UNLOCK statement if the lock variable is unlocked.16

16.10.2.33 STAT_UNLOCKED_FAILED_IMAGE17

1 Thevalue of thedefault integer scalar constant STAT_UNLOCKED_FAILED_IMAGE is assigned to the variable18
speciϐied in a STAT= speciϐier (11.7.11) of a LOCK statement if the lock variable is unlocked because of the19
failure of the image that locked it.20

16.10.2.34 TEAM_TYPE21

1 TEAM_TYPE is a derived type with private components. It is an extensible type with no type parameters.22
Each nonallocatable component is fully default‑initialized.23

2 A scalar variable of type TEAM_TYPE is a team variable, and can identify a team. The default initial value24
of a team variable does not identify any team.25

16.10.2.35 Uniqueness of named constant values26

1 The values of these named constants shall be distinct:27

IOSTAT_INQUIRE_INTERNAL_UNIT STAT_STOPPED_IMAGE
STAT_FAILED_IMAGE STAT_UNLOCKED
STAT_LOCKED STAT_UNLOCKED_FAILED_IMAGE
STAT_LOCKED_OTHER_IMAGE

28

J3/25‑007 497

J3/25‑007 WD 1539‑1 2024‑12‑29

17 Exceptions and IEEE arithmetic1

17.1 Overview of IEEE arithmetic support2

1 The intrinsic modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES provide support for3
the facilities deϐined by ISO/IEC 60559:2020∗. Whether themodules are provided is processor dependent.4
If the module IEEE_FEATURES is provided, which of the named constants deϐined in this document are in‑5
cluded is processor dependent. The module IEEE_ARITHMETIC behaves as if it contained a USE statement6
for IEEE_EXCEPTIONS; everything that is public in IEEE_EXCEPTIONS is public in IEEE_ARITHMETIC.7

NOTE 1
The types and procedures deϐined in these modules are not themselves intrinsic.

2 If IEEE_EXCEPTIONS or IEEE_ARITHMETIC is accessible in a scoping unit, the exceptions IEEE_OVERFLOW8
and IEEE_DIVIDE_BY_ZEROare supported in the scopingunit for all kinds of real and complex IEEE ϐloating‑9
point data. Which other exceptions are supported in the scoping unit can be determined by the function10
IEEE_SUPPORT_FLAG (17.11.55); whether control of halting is supported can be determined by the func‑11
tion IEEE_SUPPORT_HALTING. The extent of support of the other exceptions can be inϐluenced by the ac‑12
cessibility of the named constants IEEE_INEXACT_FLAG, IEEE_INVALID_FLAG, and IEEE_UNDERFLOW_‑13
FLAG of the module IEEE_FEATURES. If IEEE_UNDERFLOW_FLAG is accessible, within the scoping unit the14
processor shall support underϐlow for at least one kind of real. Similarly, if IEEE_INEXACT_FLAG or IEEE_‑15
INVALID_FLAG is accessible, within the scoping unit the processor shall support the exception for at least16
one kind of real. If IEEE_HALTING is accessible, within the scoping unit the processor shall support control17
of halting.18

NOTE 2
IEEE_INVALID is not required to be supportedwhenever IEEE_EXCEPTIONS is accessed. This is to allow a processor
whose arithmetic does not conform to ISO/IEC 60559:2020 to provide support for overϐlow and divide_by_zero. On
a processor which does support ISO/IEC 60559:2020, invalid is an equally serious condition.

3 If a scoping unit does not access IEEE_FEATURES, IEEE_EXCEPTIONS, or IEEE_ARITHMETIC, the level of19
support is processor dependent, and need not include support for any exceptions. If a ϐlag is signaling on20
entry to such a scoping unit, the processor ensures that it is signaling on exit. If a ϐlag is quiet on entry to21
such a scoping unit, whether it is signaling on exit is processor dependent.22

4 Additional ISO/IEC/IEEE 60559:2020 facilities are available from the module IEEE_ARITHMETIC. The ex‑23
tent of support can be inϐluenced by the accessibility of the named constants of the module IEEE_FEA‑24
TURES. If IEEE_DATATYPE of IEEE_FEATURES is accessible, within the scoping unit the processor shall25
support IEEE arithmetic for at least one kind of real. Similarly, if IEEE_DENORMAL, IEEE_DIVIDE, IEEE_‑26
INF, IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT, or IEEE_SUBNORMAL is accessible, within the scoping unit27
the processor shall support the feature for at least one kind of real. In the case of IEEE_ROUNDING, it28
shall support the rounding modes IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, and IEEE_DOWN; support for29
IEEE_AWAY is also required if there is at least one kind of real X for which IEEE_SUPPORT_DATATYPE (X)30

∗ Because ISO/IEC 60559:2020 was originally an IEEE standard, its facilities are widely known as “IEEE arithmetic”, and this
terminology is used by this document.

498 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

is true and RADIX (X) is equal to ten. Note that the effect of IEEE_DENORMAL is the same as that of IEEE_‑1
SUBNORMAL.2

5 Execution might be slowed on some processors by the support of some features. If IEEE_EXCEPTIONS or3
IEEE_ARITHMETIC is accessed but IEEE_FEATURES is not accessed, the supported subset of features is4
processor dependent. The processor’s fullest support is provided when all of IEEE_FEATURES is accessed5
as in6

USE, INTRINSIC :: IEEE_ARITHMETIC; USE, INTRINSIC :: IEEE_FEATURES7

but execution might then be slowed by the presence of a feature that is not needed.8

17.2 Derived types, constants, and operators deϐined in the modules9

1 The modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES deϐine derived types whose10
components are all private. No direct component of any of these types is allocatable or a pointer.11

2 The module IEEE_EXCEPTIONS deϐines the following types and constants.12

• IEEE_FLAG_TYPE is for identifying a particular exception ϐlag. Its only possible values are those13
of named constants deϐined in the module: IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_‑14
ZERO, IEEE_UNDERFLOW, and IEEE_INEXACT. The module also deϐines the array named constants15
IEEE_USUAL = [IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_INVALID] and IEEE_ALL = [IEEE_‑16
USUAL, IEEE_UNDERFLOW, IEEE_INEXACT].17

• IEEE_MODES_TYPE is for representing the ϐloating‑point modes.18
• IEEE_STATUS_TYPE is for representing the ϐloating‑point status.19

3 The module IEEE_ARITHMETIC deϐines the following types, constants, and operators.20

• The type IEEE_CLASS_TYPE, for identifying a class of ϐloating‑point values. Its only possible val‑21
ues are those of named constants deϐined in the module: IEEE_SIGNALING_NAN, IEEE_QUIET_NAN,22
IEEE_NEGATIVE_INF, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_SUBNORMAL, IEEE_NEGATIVE_‑23
ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_SUBNORMAL, IEEE_POSITIVE_NORMAL, IEEE_POSIT‑24
IVE_INF, and IEEE_OTHER_VALUE. The named constants IEEE_NEGATIVE_DENORMAL and IEEE_‑25
POSITIVE_DENORMAL are deϐined with the same value as IEEE_NEGATIVE_SUBNORMAL and IEEE_‑26
POSITIVE_SUBNORMAL respectively.27

• The type IEEE_ROUND_TYPE, for identifying a particular roundingmode. Its only possible values are28
those of named constants deϐined in the module: IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, IEEE_‑29
DOWN, IEEE_AWAY and IEEE_OTHER for the rounding modes speciϐied in this document.30

• The simple elemental operator == for two values of one of these types to return true if the values are31
the same and false otherwise.32

• The simple elemental operator /= for two values of one of these types to return true if the values33
differ and false otherwise.34

4 The module IEEE_FEATURES deϐines the following types and constants.35

• The type IEEE_FEATURES_TYPE, for expressing the need for particular ISO/IEC/IEEE 60559:202036
features. Its only possible values are those of named constants deϐined in the module: IEEE_DATA‑37
TYPE, IEEE_DENORMAL, IEEE_DIVIDE, IEEE_HALTING, IEEE_INEXACT_FLAG, IEEE_INF, IEEE_IN‑38
VALID_FLAG, IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT, IEEE_SUBNORMAL, and IEEE_UNDERFLOW_‑39
FLAG.40

J3/25‑007 499

J3/25‑007 WD 1539‑1 2024‑12‑29

17.3 The exceptions1

1 The exceptions are the following.2

• IEEE_OVERFLOW occurs in an intrinsic real addition, subtraction, multiplication, division, or con‑3
version by the intrinsic function REAL, as speciϐied by ISO/IEC/IEEE 60559:2020 if IEEE_SUPPORT_‑4
DATATYPE is true for the operands of the operation or conversion, and as determined by the pro‑5
cessor otherwise. It occurs in an intrinsic real exponentiation as determined by the processor. It6
occurs in a complex operation, or conversion by the intrinsic function CMPLX, if it is caused by the7
calculation of the real or imaginary part of the result.8

• IEEE_DIVIDE_BY_ZERO occurs in a real division as speciϐied by ISO/IEC/IEEE 60559:2020 if IEEE_‑9
SUPPORT_DATATYPE is true for the operands of the division, and as determined by the processor10
otherwise. It is processor‑dependent whether it occurs in a real exponentiation with a negative ex‑11
ponent. It occurs in a complex division if it is caused by the calculation of the real or imaginary part12
of the result.13

• IEEE_INVALID occurs when a real or complex operation or assignment is invalid; possible examples14
are SQRT (X) when X is real and has a nonzero negative value, and conversion to an integer (by as‑15
signment, an intrinsic procedure, or a procedure deϐined in an intrinsic module) when the result is16
too large to be representable. IEEE_INVALID occurs for numeric relational intrinsic operations as17
speciϐied below.18

• IEEE_UNDERFLOW occurs when the result for an intrinsic real operation or assignment has an ab‑19
solute value less than a processor‑dependent limit, or the real or imaginary part of the result for an20
intrinsic complex operation or assignment has an absolute value less than a processor‑dependent21
limit.22

• IEEE_INEXACT occurs when the result of a real or complex operation or assignment is not exact.23

2 Each exception has a ϐlag whose value is either quiet or signaling. The value can be determined by the sub‑24
routine IEEE_GET_FLAG. Its initial value is quiet. It is set to signalingwhen the associated exception occurs,25
except that the ϐlag for IEEE_UNDERFLOW is not set if the result of the operation that caused the exception26
was exact and default ISO/IEC/IEEE 60559:2020 exception handling is in effect for IEEE_UNDERFLOW. Its27
status can also be changed by the subroutine IEEE_SET_FLAG or the subroutine IEEE_SET_STATUS. Once28
signalingwithin a procedure, it remains signaling unless set quiet by an invocation of the subroutine IEEE_‑29
SET_FLAG or the subroutine IEEE_SET_STATUS.30

3 If a ϐlag is signaling on entry to a procedure other than IEEE_GET_FLAGor IEEE_GET_STATUS, the processor31
will set it to quiet on entry and restore it to signaling on return. If a ϐlag signals during execution of a32
procedure, the processor shall not set it to quiet on return.33

4 Evaluation of a speciϐication expression might cause an exception to signal.34

5 In a scoping unit that has access to IEEE_EXCEPTIONS or IEEE_ARITHMETIC, if an intrinsic procedure or35
a procedure deϐined in an intrinsic module executes normally, the values of the ϐlags IEEE_OVERFLOW,36
IEEE_DIVIDE_BY_ZERO, and IEEE_INVALID shall be as on entry to the procedure, even if one or more of37
them signals during the calculation. If a real or complex result is too large for the procedure to handle,38
IEEE_OVERFLOW may signal. If a real or complex result is a NaN because of an invalid operation (for ex‑39
ample, LOG (−1.0)), IEEE_INVALID may signal. Similar rules apply to format processing and to intrinsic40
operations: no signaling ϐlag shall be set quiet and no quiet ϐlag shall be set signaling because of an inter‑41
mediate calculation that does not affect the result.42

6 In a scoping unit that has access to IEEE_EXCEPTIONS or IEEE_ARITHMETIC, if x1 and x2 are numeric entit‑43

500 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

ies, the type of x1 + x2 is real, and IEEE_SUPPORT_NAN (x1 + x2) is true, the relational intrinsic operation1
x1 rel‑op x2 shall signal IEEE_INVALID as speciϐied for the conditional predicate of ISO/IEC 60559:20202
corresponding to rel‑op indicated by Table 17.1. If the types or kind type parameters of x1 or x2 differ, the3
conversions (10.1.5.5.1) might signal exceptions instead of or in addition to an IEEE_INVALID exception4
signaled by the comparison.5

NOTE
Each comparison predicate deϐined by ISO/IEC 60559:2020 is either unordered signaling or unordered quiet. An
unordered signaling predicate signals an invalid operation exception if and only if one of the values being compared
is a NaN. An unordered quiet predicate signals an invalid operation exception if and only if one of the values being
compared is a signaling NaN. The comparison predicates do not signal any other exceptions.

Table 17.1— IEEE relational operator correspondence
Operator ISO/IEC/IEEE 60559:2020 comparison predicate
.LT. or< compareSignalingLess
.LE. or <= compareSignalingLessEqual
.GT. or > compareSignalingGreater
.GE. or >= compareSignalingGreaterEqual
.EQ. or == compareQuietEqual
.NE. or /= compareQuietNotEqual

7 In a scopingunit that has access to IEEE_EXCEPTIONSor IEEE_ARITHMETIC, ifx1 orx2 arenumeric entities,6
the type of x1 + x2 is complex, and IEEE_SUPPORT_NAN (REAL (x1 + x2)) is true, the intrinsic equality or7
inequality operation between x1 and x2 may signal IEEE_INVALID if the value of the real or imaginary part8
of either operand is a signaling NaN. If any conversions are done before the values are compared, those9
conversions might signal exceptions instead of or in addition to an IEEE_INVALID exception signaled by10
the comparison.11

8 In a sequenceof statements that hasno invocations of IEEE_GET_FLAG, IEEE_SET_FLAG, IEEE_GET_STATUS,12
IEEE_SET_HALTING_MODE, or IEEE_SET_STATUS, if the executionof anoperationwould cause an exception13
to signal but after execution of the sequence no value of a variable depends on the operation, whether the14
exception is signaling is processor dependent. For example, when Y has the value zero, whether the code15

X = 1.0/Y16
X = 3.017

signals IEEE_DIVIDE_BY_ZERO is processor dependent. Another example is the following:18

REAL, PARAMETER :: X=0.0, Y=6.019
IF (1.0/X == Y) PRINT *,'Hello world'20

where the processor is permitted to discard the IF statement because the logical expression can never be21
true and no value of a variable depends on it.22

9 An exception shall not signal if this could arise only during execution of an operation beyond those required23
or permitted by the standard. For example, the statement24

IF (F (X) > 0.0) Y = 1.0/Z25

shall not signal IEEE_DIVIDE_BY_ZERO when both F (X) and Z are zero and the statement26

WHERE (A > 0.0) A = 1.0/A27

J3/25‑007 501

J3/25‑007 WD 1539‑1 2024‑12‑29

shall not signal IEEE_DIVIDE_BY_ZERO. On the other hand, when X has the value 1.0 and Y has the value1
0.0, the expression2

X>0.00001 .OR. X/Y>0.000013

is permitted to cause the signaling of IEEE_DIVIDE_BY_ZERO.4

10 The processor need not support IEEE_INVALID, IEEE_UNDERFLOW, and IEEE_INEXACT. If an exception is5
not supported, its ϐlag is always quiet.6

17.4 The rounding modes7

1 This document speciϐies a binary rounding mode that affects ϐloating‑point arithmetic with radix two, and8
a decimal rounding mode that affects ϐloating‑point arithmetic with radix ten. Unqualiϐied references to9
the roundingmodewith respect to a particular arithmetic operation or operands refers to themode for the10
radix of the operation or operands, and other unqualiϐied references to the rounding mode refers to both11
binary and decimal rounding modes.12

2 ISO/IEC 60559:2020 speciϐies ϐive possible rounding‑direction attributes: roundTiesToEven, roundTo‑13
wardZero, roundTowardPositive, roundTowardNegative, and roundTiesToAway. These correspond to the14
rounding modes IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, IEEE_DOWN, and IEEE_AWAY respectively. The15
rounding mode IEEE_OTHER does not correspond to any ISO/IEC/IEEE 60559:2020 rounding‑direction16
attribute; if supported, the effect of this rounding mode is processor dependent.17

3 The subroutine IEEE_GET_ROUNDING_MODE can be used to get the rounding modes. The initial rounding18
modes are processor dependent.19

4 If the processor supports the alteration of the rounding modes during execution, the subroutine IEEE_‑20
SET_ROUNDING_MODE can be used to alter them.21

5 In a procedure other than IEEE_SET_ROUNDING_MODE or IEEE_SET_STATUS, the processor shall not22
change the rounding modes on entry, and on return shall ensure that the rounding modes are the same23
as they were on entry.24

NOTE 1
ISO/IEC 60559:2020 requires support for roundTiesToAway only for decimal ϐloating‑point.

NOTE 2
ISO/IEC 60559:2020 requires that there is a language‑deϐined means to specify a constant value for the rounding‑
direction attribute for all standard operations in a block. The means provided by this document are a CALL to
IEEE_GET_ROUNDING_MODE at the beginning of the block followed by a CALL to IEEE_SET_ROUNDING_MODEwith
constant arguments, together with another CALL to IEEE_SET_ROUNDING_MODE at the end of the block to restore
the rounding mode.

NOTE 3
Within a program, all literal constants that have the same form have the same value (7.1.4). Therefore, the value of
a literal constant is not affected by the rounding modes.

502 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

17.5 Underϐlowmode1

1 Some processors allow control during program execution of whether underϐlow produces a subnormal2
number in conformance with ISO/IEC 60559:2020 (gradual underϐlow) or produces zero instead (abrupt3
underϐlow). On some processors, ϐloating‑point performance is typically better in abrupt underϐlowmode4
than in gradual underϐlow mode.5

2 Control over the underϐlow mode is exercised by invocation of IEEE_SET_UNDERFLOW_MODE. The sub‑6
routine IEEE_GET_UNDERFLOW_MODE can be used to get the underϐlow mode. The inquiry function7
IEEE_SUPPORT_UNDERFLOW_CONTROL can be used to inquire whether this facility is available. The ini‑8
tial underϐlowmode is processor dependent. In a procedure other than IEEE_SET_UNDERFLOW_MODE or9
IEEE_SET_STATUS, the processor shall not change the underϐlowmode on entry, and on return shall ensure10
that the underϐlow mode is the same as it was on entry.11

3 The underϐlow mode affects only ϐloating‑point calculations whose type is that of an X for which IEEE_‑12
SUPPORT_UNDERFLOW_CONTROL returns true.13

17.6 Halting14

1 Some processors allow control during program execution of whether to abort or continue execution after15
an exception. Such control is exercised by invocation of the subroutine IEEE_SET_HALTING_MODE. Halting16
is not precise andmayoccur any time after the exceptionhas occurred. The initial haltingmode is processor17
dependent. In a procedure other than IEEE_SET_HALTING_MODEor IEEE_SET_STATUS, the processor shall18
not change the halting mode on entry, and on return shall ensure that the halting mode is the same as it19
was on entry.20

17.7 The ϐloating‑point modes and status21

1 The values of the rounding modes, underϐlow mode, and halting mode are collectively called the ϐloating‑22
point modes. The values of all the supported ϐlags for exceptions and the ϐloating‑point modes are collect‑23
ively called the ϐloating‑point status. The ϐloating‑point modes can be stored in a scalar variable of type24
IEEE_MODES_TYPE with the subroutine IEEE_GET_MODES and restored with the subroutine IEEE_SET_‑25
MODES. The ϐloating‑point status can be stored in a scalar variable of type IEEE_STATUS_TYPE with the26
subroutine IEEE_GET_STATUS and restored with the subroutine IEEE_SET_STATUS. There are no facilities27
for ϐinding the values of particular ϐlags represented by such a variable.28

NOTE 1
Each image has its own ϐloating‑point status (5.3.4).

NOTE 2
Some processors hold all these ϐlags and modes in one or two status registers that can be obtained and set as a
whole faster than all individual ϐlags and modes can be obtained and set. These procedures are provided to exploit
this feature.

NOTE 3
The processor is required to ensure that a call to a Fortran procedure does not change the ϐloating‑point status
other than by setting exception ϐlags to signaling.

J3/25‑007 503

J3/25‑007 WD 1539‑1 2024‑12‑29

17.8 Exceptional values1

1 ISO/IEC 60559:2020 speciϐies the following exceptional ϐloating‑point values.2

• Subnormal values have very small absolute values and reduced precision.3
• Inϐinite values (+inϐinity and−inϐinity) are created by overϐlow or division by zero.4
• Not‑a‑Number (NaN) values are undeϐined values or values created by an invalid operation.5

2 A value that does not fall into the above classes is called a normal number.6

3 The functions IEEE_IS_FINITE, IEEE_IS_NAN, IEEE_IS_NEGATIVE, and IEEE_IS_NORMAL are provided to7
testwhether a value is ϐinite, NaN, negative, or normal. The function IEEE_VALUE is provided to generate an8
IEEE number of any class, including an inϐinity or a NaN. The inquiry functions IEEE_SUPPORT_SUBNOR‑9
MAL, IEEE_SUPPORT_INF, and IEEE_SUPPORT_NAN are provided to determine whether these facilities are10
available for a particular kind of real.11

17.9 IEEE arithmetic12

1 The inquiry function IEEE_SUPPORT_DATATYPE can be used to inquirewhether IEEE arithmetic is suppor‑13
ted for a particular kind of real. Complete conformance with ISO/IEC 60559:2020 is not required, but14

• the normal numbers shall be exactly those of an ISO/IEC/IEEE 60559:2020 ϐloating‑point format,15
• for at least one rounding mode, the intrinsic operations of addition, subtraction and multiplication16
shall conformwhenever the operands and result speciϐied by ISO/IEC 60559:2020 are normal num‑17
bers,18

• the IEEE function abs shall be provided by the intrinsic function ABS,19
• the IEEE operation remainder shall be provided by the function IEEE_REM, and20
• the IEEE functions copySign, logB, and compareQuietUnordered shall be provided by the functions21
IEEE_COPY_SIGN, IEEE_LOGB, and IEEE_UNORDERED, respectively,22

for that kind of real.23

2 The inquiry function IEEE_SUPPORT_NAN is provided to inquire whether the processor supports IEEE24
NaNs. Where these are supported, the result of the intrinsic operations +,−, and *, and the functions IEEE_‑25
REM and IEEE_RINT from the intrinsic module IEEE_ARITHMETIC, shall conform to ISO/IEC 60559:202026
when the result is an IEEE NaN.27

3 The inquiry function IEEE_SUPPORT_INF is provided to inquirewhether the processor supports IEEE inϐin‑28
ities. Where these are supported, the result of the intrinsic operations +,−, and *, and the functions IEEE_‑29
REM and IEEE_RINT from the intrinsic module IEEE_ARITHMETIC, shall conform to ISO/IEC 60559:202030
when exactly one operand or the result speciϐied by ISO/IEC 60559:2020 is an IEEE inϐinity.31

4 The inquiry function IEEE_SUPPORT_SUBNORMAL is provided to inquire whether the processor supports32
subnormal numbers. Where these are supported, the result of the intrinsic operations +, −, and *, and33
the functions IEEE_REM and IEEE_RINT from the intrinsic module IEEE_ARITHMETIC, shall conform to34
ISO/IEC 60559:2020 when the result speciϐied by ISO/IEC 60559:2020 is subnormal, or any operand is35
subnormal and either the result is not an IEEE inϐinity or IEEE_SUPPORT_INF is true.36

5 The inquiry function IEEE_SUPPORT_DIVIDE is provided to inquire whether, on kinds of real for which37
IEEE_SUPPORT_DATATYPE returns true, the intrinsic division operation conforms to ISO/IEC 60559:202038

504 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

when both operands and the result speciϐied by ISO/IEC 60559:2020 are normal numbers. If IEEE_SUP‑1
PORT_NAN is also true for a particular kind of real, the intrinsic division operation on that kind conforms2
to ISO/IEC 60559:2020 when the result speciϐied by ISO/IEC 60559:2020 is a NaN. If IEEE_SUPPORT_INF3
is also true for a particular kind of real, the intrinsic division operation on that kind conforms to ISO/IEC4
60559:2020 when one operand or the result speciϐied by ISO/IEC 60559:2020 is an IEEE inϐinity. If IEEE_‑5
SUPPORT_SUBNORMAL is also true for a particular kind of real, the intrinsic division operation on that6
kind conforms to ISO/IEC 60559:2020 when the result speciϐied by ISO/IEC 60559:2020 is subnormal, or7
when any operand is subnormal and either the result speciϐied by ISO/IEC 60559:2020 is not an inϐinity or8
IEEE_SUPPORT_INF is true.9

6 ISO/IEC 60559:2020 speciϐies a square root function that returns negative real zero for the square root of10
negative real zero and has certain accuracy requirements. The inquiry function IEEE_SUPPORT_SQRT can11
be used to inquire whether the intrinsic function SQRT conforms to ISO/IEC 60559:2020 for a particular12
kind of real. If IEEE_SUPPORT_NAN is also true for a particular kind of real, the intrinsic function SQRT13
on that kind conforms to ISO/IEC 60559:2020 when the result speciϐied by ISO/IEC 60559:2020 is a NaN.14
If IEEE_SUPPORT_INF is also true for a particular kind of real, the intrinsic function SQRT on that kind15
conforms to ISO/IEC 60559:2020 when the result speciϐied by ISO/IEC 60559:2020 is an IEEE inϐinity. If16
IEEE_SUPPORT_SUBNORMAL is also true for a particular kind of real, the intrinsic function SQRT on that17
kind conforms to ISO/IEC 60559:2020 when the argument is subnormal.18

7 The inquiry function IEEE_SUPPORT_STANDARD is provided to inquirewhether the processor supports all19
the ISO/IEC/IEEE 60559:2020 facilities deϐined in this document for a particular kind of real.20

17.10 Summary of the procedures21

1 For all of the procedures deϐined in themodules, the arguments shown are the names that shall be used for22
argument keywords if the keyword form is used for the actual arguments.23

2 A procedure classiϐied in 17.10 as an inquiry function depends on the properties of one or more of its24
arguments instead of their values; in fact, these argument values may be undeϐined. Unless the descrip‑25
tion of one of these inquiry functions states otherwise, these arguments are permitted to be unallocated26
allocatable variables or pointers that are undeϐined or disassociated. A procedure that is classiϐied as a27
transformational function is neither an inquiry function nor elemental.28

3 In the Class column of Tables 17.2 and 17.3,29

E indicates that the procedure is an elemental function,30
ES indicates that the procedure is a simple elemental subroutine,31
I indicates that the procedure is an inquiry function,32

SS indicates that the procedure is a simple subroutine, and33
T indicates that the procedure in a transformational function.34

Table 17.2— IEEE_ARITHMETIC module procedure summary
Procedure (arguments) Class Description
IEEE_CLASS (X) E Classify number.
IEEE_COPY_SIGN (X, Y) E Copy sign.
IEEE_FMA (A, B, C) E Fused multiply‑add operation.
IEEE_GET_ROUNDING_MODE (ROUND_VALUE [, RADIX]) SS Get rounding mode.
IEEE_GET_UNDERFLOW_MODE (GRADUAL) SS Get underϐlow mode.
IEEE_INT (A, ROUND [, KIND]) E Conversion to integer type.

J3/25‑007 505

J3/25‑007 WD 1539‑1 2024‑12‑29

Table 17.2: IEEE_ARITHMETIC module procedure summary (cont.)
Procedure (arguments) Class Description
IEEE_IS_FINITE (X) E Whether a value is ϐinite.
IEEE_IS_NAN (X) E Whether a value is an IEEE NaN.
IEEE_IS_NEGATIVE (X) E Whether a value is negative.
IEEE_IS_NORMAL (X) E Whether a value is a normal number.
IEEE_LOGB (X) E Exponent.
IEEE_MAX (X, Y) E Maximum value.
IEEE_MAX_MAG (X, Y) E Maximummagnitude value.
IEEE_MAX_NUM (X, Y) E Maximum numeric value.
IEEE_MAX_NUM_MAG (X, Y) E Maximummagnitude numeric value.
IEEE_MIN (X, Y) E Minimum value.
IEEE_MIN_MAG (X, Y) E Minimummagnitude value.
IEEE_MIN_NUM (X, Y) E Minimum numeric value.
IEEE_MIN_NUM_MAG (X, Y) E Minimummagnitude numeric value.
IEEE_NEXT_AFTER (X, Y) E Adjacent machine number.
IEEE_NEXT_DOWN (X) E Adjacent lower machine number.
IEEE_NEXT_UP (X) E Adjacent higher machine number.
IEEE_QUIET_EQ (A, B) E Quiet compares equal.
IEEE_QUIET_GE (A, B) E Quiet compares greater than or equal.
IEEE_QUIET_GT (A, B) E Quiet compares greater than.
IEEE_QUIET_LE (A, B) E Quiet compares less than or equal.
IEEE_QUIET_LT (A, B) E Quiet compares less than.
IEEE_QUIET_NE (A, B) E Quiet compares not equal.
IEEE_REAL (A [, KIND]) E Conversion to real type.
IEEE_REM (X, Y) E Exact remainder.
IEEE_RINT (X) E Round to integer.
IEEE_SCALB (X, I) E X × 2I .
IEEE_SELECTED_REAL_KIND ([P, R, RADIX]) T IEEE kind type parameter value.
IEEE_SET_ROUNDING_MODE (ROUND_VALUE [, RADIX]) SS Set rounding mode.
IEEE_SET_UNDERFLOW_MODE (GRADUAL) SS Set underϐlow mode.
IEEE_SIGNALING_EQ (A, B) E Signaling compares equal.
IEEE_SIGNALING_GE (A, B) E Signaling compares greater than or equal.
IEEE_SIGNALING_GT (A, B) E Signaling compares greater than.
IEEE_SIGNALING_LE (A, B) E Signaling compares less than or equal.
IEEE_SIGNALING_LT (A, B) E Signaling compares less than.
IEEE_SIGNALING_NE (A, B) E Signaling compares not equal.
IEEE_SIGNBIT (X) E Test sign bit.
IEEE_SUPPORT_DATATYPE ([X]) I Query IEEE arithmetic support.
IEEE_SUPPORT_DENORMAL ([X]) I Query subnormal number support.
IEEE_SUPPORT_DIVIDE ([X]) I Query IEEE division support.
IEEE_SUPPORT_INF ([X]) I Query IEEE inϐinity support.
IEEE_SUPPORT_IO ([X]) I Query IEEE formatting support.
IEEE_SUPPORT_NAN ([X]) I Query IEEE NaN support.
IEEE_SUPPORT_ROUNDING (ROUND_VALUE [, X]) T Query IEEE rounding support.
IEEE_SUPPORT_SQRT ([X]) I Query IEEE square root support.
IEEE_SUPPORT_SUBNORMAL ([X]) I Query subnormal number support.
IEEE_SUPPORT_STANDARD ([X]) I Query IEEE standard support.
IEEE_SUPPORT_UNDERFLOW_CONTROL ([X]) I Query underϐlow control support.
IEEE_UNORDERED (X, Y) E Whether two values are unordered.
IEEE_VALUE (X, CLASS) E Return number in a class.

506 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Table 17.3— IEEE_EXCEPTIONS module procedure summary
Procedure (arguments) Class Description
IEEE_GET_FLAG (FLAG, FLAG_VALUE) ES Get an exception ϐlag.
IEEE_GET_HALTING_MODE (FLAG, HALTING) ES Get a halting mode.
IEEE_GET_MODES (MODES) SS Get ϐloating‑point modes.
IEEE_GET_STATUS (STATUS_VALUE) SS Get ϐloating‑point status.
IEEE_SET_FLAG (FLAG, FLAG_VALUE) SS Set an exception ϐlag.
IEEE_SET_HALTING_MODE (FLAG, HALTING) SS Set a halting mode.
IEEE_SET_MODES (MODES) SS Set ϐloating‑point modes.
IEEE_SET_STATUS (STATUS_VALUE) SS Restore ϐloating‑point status.
IEEE_SUPPORT_FLAG (FLAG [, X]) T Query exception support.
IEEE_SUPPORT_HALTING (FLAG) T Query halting mode support.

4 In the intrinsic module IEEE_ARITHMETIC, the elemental functions listed are provided for all reals X and1
Y.2

17.11 Speciϐications of the procedures3

17.11.1 General4

1 In the detailed descriptions in 17.11, procedure names are generic and are not speciϐic. All the functions5
are simple and all the subroutines are impure unless otherwise stated. All dummy arguments have INTENT6
(IN) if the intent is not stated explicitly. In the examples, it is assumed that the processor supports IEEE7
arithmetic for default real.8

2 For the elemental functions of IEEE_ARITHMETIC that return a ϐloating‑point result, if X or Y has a value9
that is an inϐinity or a NaN, the result shall be consistent with the general rules in 6.1 and 6.2 of ISO/IEC10
60559:2020. For example, the result for an inϐinity shall be constructed as the limiting case of the result11
with a value of arbitrarily large magnitude, if such a limit exists.12

3 A programmay contain statements that, if executed, would violate the requirements listed in aRestriction13
paragraph.14

NOTE
A program can avoid violating those requirements by using IF constructs to check whether particular features are
supported. For example,

IF (IEEE_SUPPORT_DATATYPE (X)) THEN
C = IEEE_CLASS (X)

ELSE
…

END IF

avoids invoking IEEE_CLASS except on a processor which supports that facility.

17.11.2 IEEE_CLASS (X)15

1 Description. Classify number.16

2 Class. Elemental function.17

3 Argument. X shall be of type real.18

4 Restriction. IEEE_CLASS (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.19

J3/25‑007 507

J3/25‑007 WD 1539‑1 2024‑12‑29

5 Result Characteristics. IEEE_CLASS_TYPE.1

6 Result Value. The result value shall be IEEE_SIGNALING_NAN or IEEE_QUIET_NAN if IEEE_SUPPORT_‑2
NAN (X) has the value true and the value of X is a signaling or quiet NaN, respectively. The result value3
shall be IEEE_NEGATIVE_INF or IEEE_POSITIVE_INF if IEEE_SUPPORT_INF (X) has the value true and the4
value of X is negative or positive inϐinity, respectively. The result value shall be IEEE_NEGATIVE_SUBNOR‑5
MAL or IEEE_POSITIVE_SUBNORMAL if IEEE_SUPPORT_SUBNORMAL (X) has the value true and the value6
of X is a negative or positive subnormal value, respectively. The result value shall be IEEE_NEGATIVE_‑7
NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, or IEEE_POSITIVE_NORMAL if the value of X is8
negative normal, negative zero, positive zero, or positive normal, respectively. Otherwise, the result value9
shall be IEEE_OTHER_VALUE.10

7 Example. IEEE_CLASS (−1.0) has the value IEEE_NEGATIVE_NORMAL.11

NOTE
The result value IEEE_OTHER_VALUE is useful on systems that are almost IEEE‑compatible, but do not implement
all of it. For example, if a subnormal value is encountered on a system that does not support them.

17.11.3 IEEE_COPY_SIGN (X, Y)12

1 Description. Copy sign.13

2 Class. Elemental function.14

3 Arguments. The arguments shall be of type real.15

4 Restriction. IEEE_COPY_SIGN (X, Y) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) or IEEE_SUP‑16
PORT_DATATYPE (Y) has the value false.17

5 Result Characteristics. Same as X.18

6 Result Value. The result has the absolute value of X with the sign of Y. This is true even for IEEE special19
values, such as a NaN or an inϐinity (on processors supporting such values).20

7 Example. The value of IEEE_COPY_SIGN (X, 1.0) is ABS (X) even when X is a NaN.21

17.11.4 IEEE_FMA (A, B, C)22

1 Description. Fused multiply‑add operation.23

2 Class. Elemental function.24

3 Arguments.25
A shall be of type real.26
B shall be of the same type and kind type parameter as A.27
C shall be of the same type and kind type parameter as A.28

4 Restriction. IEEE_FMA (A, B, C) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value false.29

5 Result Characteristics. Same as A.30

6 Result Value. The result has the value speciϐied by ISO/IEC 60559:2020 for the fusedMultiplyAdd opera‑31
tion; that is, when the result is in range, its value is equal to the mathematical value of (A×B)+C rounded32

508 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

to the representation method of A according to the rounding mode. IEEE_OVERFLOW, IEEE_UNDERFLOW,1
and IEEE_INEXACT shall be signaled according to the ϐinal step in the calculation and not by any interme‑2
diate calculation.3

7 Example. The value of IEEE_FMA (TINY (0.0), TINY (0.0), 1.0), when the roundingmode is IEEE_NEAREST,4
is equal to 1.0; only the IEEE_INEXACT exception is signaled.5

17.11.5 IEEE_GET_FLAG (FLAG, FLAG_VALUE)6

1 Description. Get an exception ϐlag.7

2 Class. Simple elemental subroutine.8

3 Arguments.9
FLAG shall be of type IEEE_FLAG_TYPE. It speciϐies the exception ϐlag to be obtained.10
FLAG_VALUE shall be of type logical. It is an INTENT (OUT) argument. If the value of FLAG is IEEE_‑11

INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT,12
FLAG_VALUE is assigned the value true if the corresponding exception ϐlag is signaling and13
is assigned the value false otherwise.14

4 Example. Following CALL IEEE_GET_FLAG (IEEE_OVERFLOW, FLAG_VALUE), FLAG_VALUE is true if the15
IEEE_OVERFLOW ϐlag is signaling and is false if it is quiet.16

17.11.6 IEEE_GET_HALTING_MODE (FLAG, HALTING)17

1 Description. Get a halting mode.18

2 Class. Simple elemental subroutine.19

3 Arguments.20
FLAG shall be of type IEEE_FLAG_TYPE. It speciϐies the exception ϐlag. It shall have one of the values21

IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEX‑22
ACT.23

HALTING shall be of type logical. It is an INTENT (OUT) argument. It is assigned the value true if the24
exception speciϐied by FLAG will cause halting. Otherwise, it is assigned the value false.25

4 Example. To store the haltingmode for IEEE_OVERFLOW, do a calculation without halting, and restore the26
halting mode later:27

USE, INTRINSIC :: IEEE_ARITHMETIC28
LOGICAL HALTING29
…30
CALL IEEE_GET_HALTING_MODE (IEEE_OVERFLOW, HALTING) ! Store halting mode31
CALL IEEE_SET_HALTING_MODE (IEEE_OVERFLOW, .FALSE.) ! No halting32
… ! calculation without halting33
CALL IEEE_SET_HALTING_MODE (IEEE_OVERFLOW, HALTING) ! Restore halting mode34

17.11.7 IEEE_GET_MODES (MODES)35

1 Description. Get ϐloating‑point modes.36

2 Class. Simple subroutine.37

J3/25‑007 509

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Argument. MODES shall be a scalar of type IEEE_MODES_TYPE. It is an INTENT (OUT) argument that is1
assigned the value of the ϐloating‑point modes.2

4 Example. To save the ϐloating‑point modes, do a calculation with speciϐic rounding and underϐlowmodes,3
and restore them later:4

USE, INTRINSIC :: IEEE_ARITHMETIC5
TYPE (IEEE_MODES_TYPE) SAVE_MODES6
…7
CALL IEEE_GET_MODES (SAVE_MODES) ! Save all modes.8
CALL IEEE_SET_ROUNDING_MODE (IEEE_TO_ZERO)9
CALL IEEE_SET_UNDERFLOW_MODE (GRADUAL=.FALSE.)10
… ! calculation with abrupt round-to-zero.11
CALL IEEE_SET_MODES (SAVE_MODES) ! Restore all modes.12

17.11.8 IEEE_GET_ROUNDING_MODE (ROUND_VALUE [, RADIX])13

1 Description. Get rounding mode.14

2 Class. Simple subroutine.15

3 Arguments.16
ROUND_VALUE shall be a scalar of type IEEE_ROUND_TYPE. It is an INTENT (OUT) argument. It is as‑17

signed the value IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, IEEE_DOWN, or IEEE_AWAY if the18
corresponding rounding mode is in operation and IEEE_OTHER otherwise.19

RADIX (optional) shall be an integer scalarwith the value twoor ten. If RADIX is presentwith the value ten,20
the roundingmode queried is the decimal roundingmode, otherwise it is the binary rounding21
mode.22

4 Example. To save the binary roundingmode, do a calculationwith round to nearest, and restore the round‑23
ing mode later:24

USE, INTRINSIC :: IEEE_ARITHMETIC25
TYPE (IEEE_ROUND_TYPE) ROUND_VALUE26
…27
CALL IEEE_GET_ROUNDING_MODE (ROUND_VALUE) ! Store the rounding mode28
CALL IEEE_SET_ROUNDING_MODE (IEEE_NEAREST)29
… ! calculation with round to nearest30
CALL IEEE_SET_ROUNDING_MODE (ROUND_VALUE) ! Restore the rounding mode31

17.11.9 IEEE_GET_STATUS (STATUS_VALUE)32

1 Description. Get ϐloating‑point status.33

2 Class. Simple subroutine.34

3 Argument. STATUS_VALUE shall be a scalar of type IEEE_STATUS_TYPE. It is an INTENT (OUT) argument.35
It is assigned the value of the ϐloating‑point status.36

4 Example. To store all the exception ϐlags, do a calculation involving exception handling, and restore them37
later:38

USE, INTRINSIC :: IEEE_ARITHMETIC39
TYPE (IEEE_STATUS_TYPE) STATUS_VALUE40

510 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

…1
CALL IEEE_GET_STATUS (STATUS_VALUE) ! Get the flags2
CALL IEEE_SET_FLAG (IEEE_ALL, .FALSE.) ! Set the flags quiet.3
… ! calculation involving exception handling4
CALL IEEE_SET_STATUS (STATUS_VALUE) ! Restore the flags5

17.11.10 IEEE_GET_UNDERFLOW_MODE (GRADUAL)6

1 Description. Get underϐlow mode.7

2 Class. Simple subroutine.8

3 Argument. GRADUAL shall be a logical scalar. It is an INTENT (OUT) argument. It is assigned the value9
true if the underϐlow mode is gradual underϐlow, and false if the underϐlow mode is abrupt underϐlow.10

4 Restriction. IEEE_GET_UNDERFLOW_MODE shall not be invoked unless IEEE_SUPPORT_UNDERFLOW_‑11
CONTROL (X) is true for some X.12

5 Example. After CALL IEEE_SET_UNDERFLOW_MODE (.FALSE.), a subsequent CALL IEEE_GET_UNDER‑13
FLOW_MODE (GRADUAL) will set GRADUAL to false.14

17.11.11 IEEE_INT (A, ROUND [, KIND])15

1 Description. Conversion to integer type.16

2 Class. Elemental function.17

3 Arguments.18
A shall be of type real.19
ROUND shall be of type IEEE_ROUND_TYPE.20
KIND (optional) shall be a scalar integer constant expression.21

4 Restriction. IEEE_INT (A, ROUND, KIND) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the22
value false.23

5 Result Characteristics. Integer. If KIND is present, the kind type parameter is that speciϐied by the value24
of KIND; otherwise, the kind type parameter is that of default integer.25

6 Result Value. The result has the value speciϐied by ISO/IEC 60559:2020 for the convertToInteger{round}26
or the convertToIntegerExact{round} operation; the processor shall consistently choose which operation27
it provides. That is, the value of A is converted to an integer according to the rounding mode speciϐied by28
ROUND; if this value is representable in the representation method of the result, the result has this value,29
otherwise IEEE_INVALID is signaled and the result is processor dependent. If the processor provides the30
convertToIntegerExact operation, IEEE_INVALID did not signal, and the value of the result differs from that31
of A, IEEE_INEXACT will be signaled.32

7 Example. The value of IEEE_INT (12.5, IEEE_UP) is 13; IEEE_INEXACT will be signaled if the processor33
provides the convertToIntegerExact operation.34

J3/25‑007 511

J3/25‑007 WD 1539‑1 2024‑12‑29

17.11.12 IEEE_IS_FINITE (X)1

1 Description. Whether a value is ϐinite.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Restriction. IEEE_IS_FINITE (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.5

5 Result Characteristics. Default logical.6

6 Result Value. The result has the value true if the value of X is ϐinite, that is, IEEE_CLASS (X) has one of7
the values IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_SUBNORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSIT‑8
IVE_ZERO, IEEE_POSITIVE_SUBNORMAL, or IEEE_POSITIVE_NORMAL; otherwise, the result has the value9
false.10

7 Example. IEEE_IS_FINITE (1.0) has the value true.11

17.11.13 IEEE_IS_NAN (X)12

1 Description. Whether a value is an IEEE NaN.13

2 Class. Elemental function.14

3 Argument. X shall be of type real.15

4 Restriction. IEEE_IS_NAN (X) shall not be invoked if IEEE_SUPPORT_NAN (X) has the value false.16

5 Result Characteristics. Default logical.17

6 Result Value. The result has the value true if the value of X is an IEEENaN; otherwise, it has the value false.18

7 Example. IEEE_IS_NAN (SQRT (−1.0)) has the value true if IEEE_SUPPORT_SQRT (1.0) has the value true.19

17.11.14 IEEE_IS_NEGATIVE (X)20

1 Description. Whether a value is negative.21

2 Class. Elemental function.22

3 Argument. X shall be of type real.23

4 Restriction. IEEE_IS_NEGATIVE (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value24
false.25

5 Result Characteristics. Default logical.26

6 Result Value. The result has the value true if IEEE_CLASS (X) has one of the values IEEE_NEGATIVE_‑27
NORMAL, IEEE_NEGATIVE_SUBNORMAL, IEEE_NEGATIVE_ZERO or IEEE_NEGATIVE_INF; otherwise, the28
result has the value false.29

7 Example. IEEE_IS_NEGATIVE (0.0) has the value false.30

512 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

17.11.15 IEEE_IS_NORMAL (X)1

1 Description. Whether a value is a normal number.2

2 Class. Elemental function.3

3 Argument. X shall be of type real.4

4 Restriction. IEEE_IS_NORMAL (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value5
false.6

5 Result Characteristics. Default logical.7

6 Result Value. The result has the value true if IEEE_CLASS (X) has one of the values IEEE_NEGATIVE_‑8
NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZEROor IEEE_POSITIVE_NORMAL; otherwise, the result9
has the value false.10

7 Example. IEEE_IS_NORMAL (SQRT (−1.0) has the value false if IEEE_SUPPORT_SQRT (1.0) has the value11
true.12

17.11.16 IEEE_LOGB (X)13

1 Description. Exponent.14

2 Class. Elemental function.15

3 Argument. X shall be of type real.16

4 Restriction. IEEE_LOGB (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.17

5 Result Characteristics. Same as X.18

6 Result Value.19

Case (i): If the value of X is neither zero, inϐinity, nor NaN, the result has the value of the unbiased20
exponent of X. Note: this value is equal to EXPONENT (X)− 1.21

Case (ii): If X==0, the result is −inϐinity if IEEE_SUPPORT_INF (X) is true and −HUGE (X) otherwise;22
IEEE_DIVIDE_BY_ZERO signals.23

Case (iii): If IEEE_SUPPORT_INF (X) is true and X is inϐinite, the result is+inϐinity.24
Case (iv): If IEEE_SUPPORT_NAN (X) is true and X is a NaN, the result is a NaN.25

7 Example. IEEE_LOGB (−1.1) has the value 0.0.26

17.11.17 IEEE_MAX (X, Y)27

1 Description. Maximum value.28

2 Class. Elemental function.29

3 Arguments.30
X shall be of type real.31
Y shall be of the same type and kind type parameter as X.32

4 Restriction. IEEE_MAX shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.33

J3/25‑007 513

J3/25‑007 WD 1539‑1 2024‑12‑29

5 Result Characteristics. Same as X.1

6 Result Value. The result has the value speciϐied for the maximum operation in ISO/IEC 60559:2020; that2
is,3

• if X> Y the result has the value of X;4
• if Y> X the result has the value of Y;5
• if either operand is a NaN, the result is a quiet Nan;6
• if X= Y and the signs are the same, the result is the value of either X or Y;7
• otherwise (one argument is negative zero and the other is positive zero), the result is positive zero.8

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals; otherwise, no exception is signaled.9

7 Example. The value of IEEE_MAX (1.5, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) is a quiet NaN.10

17.11.18 IEEE_MAX_MAG (X, Y)11

1 Description. Maximummagnitude value.12

2 Class. Elemental function.13

3 Arguments.14
X shall be of type real.15
Y shall be of the same type and kind type parameter as X.16

4 Restriction. IEEE_MAX_MAG shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.17

5 Result Characteristics. Same as X.18

6 Result Value.19

7 The result has the value speciϐied for the maximumMagnitude operation in ISO/IEC 60559:2020; that is,20

• if |X| > |Y| the result has the value of X;21
• if |Y| > |X| the result has the value of Y;22
• otherwise, the result has the value of IEEE_MAX (X, Y).23

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals; otherwise, no exception is signaled.24

8 Example. The value of IEEE_MAX_MAG (1.5,−2.5) is−2.5.25

17.11.19 IEEE_MAX_NUM (X, Y)26

1 Description. Maximum numeric value.27

2 Class. Elemental function.28

3 Arguments.29
X shall be of type real.30
Y shall be of the same type and kind type parameter as X.31

4 Restriction. IEEE_MAX_NUM shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.32

5 Result Characteristics. Same as X.33

514 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

6 Result Value. The result has the value speciϐied for the maximumNumber operation in ISO/IEC1
60559:2020; that is,2

• if X > Y the result has the value of X;3
• if Y> X the result has the value of Y;4
• if exactly one of X and Y is a NaN the result has the value of the other argument;5
• if both X and Y are NaNs, the result is a quiet NaN;6
• if X= Y and the signs are the same, the result is either X or Y;7
• otherwise (one argument is negative zero and the other is positive zero), the result is positive zero.8

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals, but unless X and Y are both signaling9
NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN. No other exceptions are10
signaled.11

7 Example. The value of IEEE_MAX_NUM (1.5, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) is 1.5.12

17.11.20 IEEE_MAX_NUM_MAG (X, Y)13

1 Description. Maximummagnitude numeric value.14

2 Class. Elemental function.15

3 Arguments.16
X shall be of type real.17
Y shall be of the same type and kind type parameter as X.18

4 Restriction. IEEE_MAX_NUM_MAG shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value19
false.20

5 Result Characteristics. Same as X.21

6 Result Value. The result has the value speciϐied for themaximumMagnitudeNumber operation in ISO/IEC22
60559:2020; that is,23

• if |X| > |Y| the result has the value of X;24
• if |Y| > |X| the result has the value of Y;25
• otherwise, the result has the value of IEEE_MAX_NUM (X, Y).26

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals, but unless X and Y are both signaling27
NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN. No other exceptions are28
signaled.29

7 Example. The value of IEEE_MAX_NUM_MAG (1.5,−2.5) is−2.5.30

17.11.21 IEEE_MIN (X, Y)31

1 Description. Minimum value.32

2 Class. Elemental function.33

3 Arguments.34
X shall be of type real.35
Y shall be of the same type and kind type parameter as X.36

J3/25‑007 515

J3/25‑007 WD 1539‑1 2024‑12‑29

4 Restriction. IEEE_MIN shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.1

5 Result Characteristics. Same as X.2

6 Result Value. The result has the value speciϐied for the minimum operation in ISO/IEC 60559:2020; that3
is,4

• if X< Y the result has the value of X;5
• if Y< X the result has the value of Y;6
• if either operand is a NaN, the result is a quiet NaN;7
• if X= Y and the signs are the same, the result is the value of either X or Y;8
• otherwise (one argument is negative zero and the other is positive zero), the result is negative zero.9

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals; otherwise, no exception is signaled.10

7 Example. The value of IEEE_MIN (1.5, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) is a quiet NaN.11

17.11.22 IEEE_MIN_MAG (X, Y)12

1 Description. Minimummagnitude value.13

2 Class. Elemental function.14

3 Arguments.15
X shall be of type real.16
Y shall be of the same type and kind type parameter as X.17

4 Restriction. IEEE_MIN_MAG shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.18

5 Result Characteristics. Same as X.19

6 Result Value.20

7 The result has the value speciϐied for the minimumMagnitude operation in ISO/IEC 60559:2020; that is,21

• if |X| < |Y| the result has the value of X;22
• if |Y| < |X| the result has the value of Y;23
• otherwise, the result has the value of IEEE_MIN (X, Y).24

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals; otherwise, no exception is signaled.25

8 Example. The value of IEEE_MIN_MAG (1.5,−2.5) is 1.5.26

17.11.23 IEEE_MIN_NUM (X, Y)27

1 Description. Minimum numeric value.28

2 Class. Elemental function.29

3 Arguments.30
X shall be of type real.31
Y shall be of the same type and kind type parameter as X.32

4 Restriction. IEEE_MIN_NUM shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.33

516 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Result Characteristics. Same as X.1

6 Result Value. The result has the value speciϐied for the minimumNumber operation in ISO/IEC2
60559:2020; that is,3

• if X< Y the result has the value of X;4
• if Y< X the result has the value of Y;5
• if exactly one of X and Y is a NaN the result has the value of the other argument;6
• if both X and Y are NaNs, the result is a quiet NaN;7
• if X= Y and the signs are the same, the result is either X or Y;8
• otherwise (one argument is negative zero and the other is positive zero), the result is negative zero.9

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals, but unless X and Y are both signaling10
NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN. No other exceptions are11
signaled.12

7 Example. The value of IEEE_MIN_NUM (1.5, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) is 1.5.13

17.11.24 IEEE_MIN_NUM_MAG (X, Y)14

1 Description. Minimummagnitude numeric value.15

2 Class. Elemental function.16

3 Arguments.17
X shall be of type real.18
Y shall be of the same type and kind type parameter as X.19

4 Restriction. IEEE_MIN_NUM_MAG shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value20
false.21

5 Result Characteristics. Same as X.22

6 Result Value. The result has the value speciϐied for theminimumMagnitudeNumber operation in ISO/IEC23
60559:2020; that is,24

• if |X| < |Y| the result has the value of X;25
• if |Y| < |X| the result has the value of Y;26
• otherwise, the result has the value of IEEE_MIN_NUM (X, Y).27

If one or both of X and Y are signaling NaNs, IEEE_INVALID signals, but unless X and Y are both signaling28
NaNs, the signaling NaN is otherwise ignored and not converted to a quiet NaN. No other exceptions are29
signaled.30

7 Example. The value of IEEE_MIN_NUM_MAG (1.5,−2.5) is 1.5.31

17.11.25 IEEE_NEXT_AFTER (X, Y)32

1 Description. Adjacent machine number.33

2 Class. Elemental function.34

3 Arguments. The arguments shall be of type real.35

J3/25‑007 517

J3/25‑007 WD 1539‑1 2024‑12‑29

4 Restriction. IEEE_NEXT_AFTER (X, Y) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) or IEEE_SUP‑1
PORT_DATATYPE (Y) has the value false.2

5 Result Characteristics. Same as X.3

6 Result Value.4

Case (i): If X == Y, the result is X and no exception is signaled.5
Case (ii): If X ̸= Y, the result has the value of the next representable neighbor of X in the direction of Y.6

The neighbors of zero (of either sign) are both nonzero. IEEE_OVERFLOW is signaled when X7
is ϐinite but IEEE_NEXT_AFTER (X, Y) is inϐinite; IEEE_UNDERFLOW is signaled when IEEE_‑8
NEXT_AFTER (X, Y) is subnormal; in both cases, IEEE_INEXACT signals.9

7 Example. The value of IEEE_NEXT_AFTER (1.0, 2.0) is 1.0+ EPSILON (X).10

17.11.26 IEEE_NEXT_DOWN (X)11

1 Description. Adjacent lower machine number.12

2 Class. Elemental function.13

3 Argument. X shall be of type real.14

4 Restriction. IEEE_NEXT_DOWN (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value15
false. IEEE_NEXT_DOWN (−HUGE (X)) shall not be invoked if IEEE_SUPPORT_INF (X) has the value false.16

5 Result Characteristics. Same as X.17

6 Result Value. The result has the value speciϐied for the nextDown operation in ISO/IEC 60559:2020; that18
is, it is the greatest value in the representation method of X that compares less than X, except when X is19
equal to −∞ the result has the value −∞, and when X is a NaN the result is a NaN. If X is a signaling NaN,20
IEEE_INVALID signals; otherwise, no exception is signaled.21

7 Example. If IEEE_SUPPORT_SUBNORMAL (0.0) is true, the value of IEEE_NEXT_DOWN (+0.0) is the neg‑22
ative subnormal number with least magnitude.23

17.11.27 IEEE_NEXT_UP (X)24

1 Description. Adjacent higher machine number.25

2 Class. Elemental function.26

3 Argument. X shall be of type real.27

4 Restriction. IEEE_NEXT_UP (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.28
IEEE_NEXT_UP (HUGE (X)) shall not be invoked if IEEE_SUPPORT_INF (X) has the value false.29

5 Result Characteristics. Same as X.30

6 Result Value. The result has the value speciϐied for the nextUp operation in ISO/IEC 60559:2020; that31
is, it is the least value in the representation method of X that compares greater than X, except when X is32
equal to +∞ the result has the value +∞, and when X is a NaN the result is a NaN. If X is a signaling NaN,33
IEEE_INVALID_signals; otherwise, no exception is signaled.34

7 Example. If IEEE_SUPPORT_INF (X) is true, the value of IEEE_NEXT_UP (HUGE (X)) is+∞.35

518 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

17.11.28 IEEE_QUIET_EQ (A, B)1

1 Description. Quiet compares equal.2

2 Class. Elemental function.3

3 Arguments.4
A shall be of type real.5
B shall have the same type and kind type parameter as A.6

4 Restriction. IEEE_QUIET_EQ (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value7
false.8

5 Result Characteristics. Default logical.9

6 Result Value. The result has the value speciϐied for the compareQuietEqual operation in ISO/IEC10
60559:2020; that is, it is true if and only if A compares equal to B. If A or B is a NaN, the result will be11
false. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.12

7 Example. IEEE_QUIET_EQ (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no exception13
is signaled.14

17.11.29 IEEE_QUIET_GE (A, B)15

1 Description. Quiet compares greater than or equal.16

2 Class. Elemental function.17

3 Arguments.18
A shall be of type real.19
B shall have the same type and kind type parameter as A.20

4 Restriction. IEEE_QUIET_GE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value21
false.22

5 Result Characteristics. Default logical.23

6 Result Value. The result has the value speciϐied for the compareQuietGreaterEqual operation in ISO/IEC24
60559:2020; that is, it is true if and only if A compares greater than or equal to B. If A or B is a NaN, the25
result will be false. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.26

7 Example. IEEE_QUIET_GE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no exception27
is signaled.28

17.11.30 IEEE_QUIET_GT (A, B)29

1 Description. Quiet compares greater than.30

2 Class. Elemental function.31

3 Arguments.32
A shall be of type real.33
B shall have the same type and kind type parameter as A.34

J3/25‑007 519

J3/25‑007 WD 1539‑1 2024‑12‑29

4 Restriction. IEEE_QUIET_GT (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value1
false.2

5 Result Characteristics. Default logical.3

6 Result Value. The result has the value speciϐied for the compareQuietGreater operation in ISO/IEC4
60559:2020; that is, it is true if and only if A compares greater than B. If A or B is a NaN, the result will5
be false. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.6

7 Example. IEEE_QUIET_GT (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no exception7
is signaled.8

17.11.31 IEEE_QUIET_LE (A, B)9

1 Description. Quiet compares less than or equal.10

2 Class. Elemental function.11

3 Arguments.12
A shall be of type real.13
B shall have the same type and kind type parameter as A.14

4 Restriction. IEEE_QUIET_LE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value15
false.16

5 Result Characteristics. Default logical.17

6 Result Value. The result has the value speciϐied for the compareQuietLessEqual operation in ISO/IEC18
60559:2020; that is, it is true if and only if A compares less than or equal to B. If A or B is a NaN, the19
result will be false. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.20

7 Example. IEEE_QUIET_LE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no exception21
is signaled.22

17.11.32 IEEE_QUIET_LT (A, B)23

1 Description. Quiet compares less than.24

2 Class. Elemental function.25

3 Arguments.26
A shall be of type real.27
B shall have the same type and kind type parameter as A.28

4 Restriction. IEEE_QUIET_LT (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value29
false.30

5 Result Characteristics. Default logical.31

6 Result Value. The result has the value speciϐied for the compareQuietLess operation in ISO/IEC32
60559:2020; that is, it is true if and only if A compares less than B. If A or B is a NaN, the result will be33
false. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.34

520 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

7 Example. IEEE_QUIET_LT (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and no exception1
is signaled.2

17.11.33 IEEE_QUIET_NE (A, B)3

1 Description. Quiet compares not equal.4

2 Class. Elemental function.5

3 Arguments.6
A shall be of type real.7
B shall have the same type and kind type parameter as A.8

4 Restriction. IEEE_QUIET_NE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value9
false.10

5 Result Characteristics. Default logical.11

6 Result Value. The result has the value speciϐied for the compareQuietNotEqual operation in ISO/IEC12
60559:2020; that is, it is true if and only if A compares not equal to B. If A or B is a NaN, the result will13
be true. If A or B is a signaling NaN, IEEE_INVALID signals; otherwise, no exception is signaled.14

7 Example. IEEE_QUIET_NE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value true and no exception15
is signaled.16

17.11.34 IEEE_REAL (A [, KIND])17

1 Description. Conversion to real type.18

2 Class. Elemental function.19

3 Arguments.20
A shall be of type integer or real.21
KIND (optional) shall be a scalar integer constant expression.22

4 Restriction. IEEE_REAL shall not be invoked if A is of type real and IEEE_SUPPORT_DATATYPE (A) has the23
value false, or if IEEE_SUPPORT_DATATYPE (IEEE_REAL (A, KIND)) has the value false.24

5 Result Characteristics. Real. If KIND is present, the kind type parameter is that speciϐied by the value of25
KIND; otherwise, the kind type parameter is that of default real.26

6 Result Value. The result has the same value as A if that value is representable in the representationmethod27
of the result, and is rounded according to the rounding mode otherwise. This shall be consistent with the28
speciϐication of ISO/IEC 60559:2020 for the convertFromInt operation when A is of type integer, and with29
the convertFormat operation otherwise.30

7 Example. The value of IEEE_REAL (123) is 123.0.31

17.11.35 IEEE_REM (X, Y)32

1 Description. Exact remainder.33

2 Class. Elemental function.34

J3/25‑007 521

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Arguments. The arguments shall be of type real and have the same radix.1

4 Restriction. IEEE_REM (X, Y) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) or IEEE_SUPPORT_‑2
DATATYPE (Y) has the value false.3

5 Result Characteristics. Real with the kind type parameter of whichever argument has the greater preci‑4
sion.5

6 Result Value. This function computes the remainder operation speciϐied in ISO/IEC 60559:2020.6

7 The result valuewhen X and Y are ϐinite, and Y is nonzero, regardless of the roundingmode, shall be exactly7
X− Y*N, where N is the integer nearest to the exact value X/Y; whenever |N− X/Y| = 1

2 , N shall be even. If8
the result value is zero, the sign shall be that of X.9

8 When X is ϐinite and Y is inϐinite, the result value is X. If Y is zero or X is inϐinite, and neither is a NaN,10
the IEEE_INVALID exception shall occur; if IEEE_SUPPORT_NAN(X+Y) is true, the result is a NaN. If X is11
subnormal and Y is inϐinite, the IEEE_UNDERFLOW exception shall occur. No exception shall signal if X is12
ϐinite and normal, and Y is inϐinite.13

9 Examples. The value of IEEE_REM (4.0, 3.0) is 1.0, the value of IEEE_REM (3.0, 2.0) is−1.0, and the value14
of IEEE_REM (5.0, 2.0) is 1.0.15

17.11.36 IEEE_RINT (X [, ROUND])16

1 Description. Round to integer.17

2 Class. Elemental function.18

3 Arguments.19
X shall be of type real.20
ROUND (optional) shall be of type IEEE_ROUND_TYPE.21

4 Restriction. IEEE_RINT (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.22

5 Result Characteristics. Same as X.23

6 Result Value. If ROUND is present, the value of the result is the value of X rounded to an integer ac‑24
cording to the mode speciϐied by ROUND; this is the ISO/IEC/IEEE 60559:2020 operation roundToInteg‑25
ral{rounding}. Otherwise, the value of the result is that speciϐied for the operation roundToIntegralExact26
in ISO/IEC 60559:2020; this is the value of X rounded to an integer according to the rounding mode. If the27
result has the value zero, the sign is that of X.28

7 Examples. If the rounding mode is round to nearest, the value of IEEE_RINT (1.1) is 1.0. The value of29
IEEE_RINT (1.1, IEEE_UP) is 2.0.30

17.11.37 IEEE_SCALB (X, I)31

1 Description. X × 2I .32

2 Class. Elemental function.33

3 Arguments.34
X shall be of type real.35

522 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

I shall be of type integer.1

4 Restriction. IEEE_SCALB (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.2

5 Result Characteristics. Same as X.3

6 Result Value.4

Case (i): IfX × 2I is representable as a normal number, the result has this value.5
Case (ii): If X is ϐinite and X × 2I is too large, the IEEE_OVERFLOW exception shall occur. If IEEE_‑6

SUPPORT_INF (X) is true, the result value is inϐinity with the sign of X; otherwise, the result7
value is SIGN (HUGE (X), X).8

Case (iii): IfX×2I is too small and there is loss of accuracy, the IEEE_UNDERFLOWexception shall occur.9
The result is the representable number having a magnitude nearest to |2I | and the same sign10
as X.11

Case (iv): If X is inϐinite, the result is the same as X; no exception signals.12

7 Example. The value of IEEE_SCALB (1.0, 2) is 4.0.13

17.11.38 IEEE_SELECTED_REAL_KIND ([P, R, RADIX])14

1 Description. IEEE kind type parameter value.15

2 Class. Transformational function.16

3 Arguments. At least one argument shall be present.17
P (optional) shall be an integer scalar.18
R (optional) shall be an integer scalar.19
RADIX (optional) shall be an integer scalar.20

4 Result Characteristics. Default integer scalar.21

5 Result Value. If P or R is absent, the result value is the same as if it were present with the value zero. If22
RADIX is absent, there is no requirement on the radix of the selected kind. The result has a value equal23
to a value of the kind type parameter of an ISO/IEC/IEEE 60559:2020 ϐloating‑point format with decimal24
precision, as returned by the intrinsic function PRECISION, of at least P digits, a decimal exponent range,25
as returned by the intrinsic function RANGE, of at least R, and a radix, as returned by the intrinsic function26
RADIX, of RADIX, if such a kind type parameter is available on the processor.27

6 Otherwise, the result is−1 if the processor supports an IEEE real typewith radixRADIX andexponent range28
of at least R but not with precision of at least P, −2 if the processor supports an IEEE real type with radix29
RADIX and precision of at least P but not with exponent range of at least R, −3 if the processor supports30
an IEEE real type with radix RADIX but with neither precision of at least P nor exponent range of at least31
R, −4 if the processor supports an IEEE real type with radix RADIX and either precision of at least P or32
exponent range of at least R but not both together, and−5 if the processor supports no IEEE real type with33
radix RADIX.34

7 If more than one kind type parameter value meets the criteria, the value returned is the one with the smal‑35
lest decimal precision, unless there are several such values, in which case the smallest of these kind values36
is returned.37

8 Example. IEEE_SELECTED_REAL_KIND (6, 30) has the value KIND (0.0) on a machine that supports38

J3/25‑007 523

J3/25‑007 WD 1539‑1 2024‑12‑29

ISO/IEC/IEEE 60559:2020 binary32 arithmetic for its default real approximation method.1

17.11.39 IEEE_SET_FLAG (FLAG, FLAG_VALUE)2

1 Class. Simple subroutine.3

2 Arguments.4
FLAG shall be a scalar or array of type IEEE_FLAG_TYPE. If a value of FLAG is IEEE_INVALID, IEEE_‑5

OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT, the correspond‑6
ing exception ϐlag is assigned a value. No two elements of FLAG shall have the same value.7

FLAG_VALUE shall be a logical scalar or array. It shall be conformable with FLAG. If an element has the8
value true, the corresponding ϐlag is set to be signaling; otherwise, the ϐlag is set to be quiet.9

3 Example. CALL IEEE_SET_FLAG (IEEE_OVERFLOW, .TRUE.) sets the IEEE_OVERFLOW ϐlag to be signaling.10

17.11.40 IEEE_SET_HALTING_MODE (FLAG, HALTING)11

1 Description. Set a halting mode.12

2 Class. Simple subroutine.13

3 Arguments.14
FLAG shall be a scalar or array of type IEEE_FLAG_TYPE. It shall have only the values IEEE_INVALID,15

IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT. No two ele‑16
ments of FLAG shall have the same value.17

HALTING shall be a logical scalar or array. It shall be conformablewith FLAG. If an element has the value18
true, the corresponding exception speciϐied by FLAG will cause halting. Otherwise, execution19
will continue after this exception.20

4 Restriction. IEEE_SET_HALTING_MODE (FLAG, HALTING) shall not be invoked if IEEE_SUPPORT_HALT‑21
ING (FLAG) has the value false.22

5 Example. CALL IEEE_SET_HALTING_MODE (IEEE_DIVIDE_BY_ZERO, .TRUE.) causes halting after a divide_‑23
by_zero exception.24

17.11.41 IEEE_SET_MODES (MODES)25

1 Description. Set ϐloating‑point modes.26

2 Class. Simple subroutine.27

3 Argument. MODES shall be a scalar of type IEEE_MODES_TYPE. Its value shall be one that was assigned28
by a previous invocation of IEEE_GET_MODES to its MODES argument. The ϐloating‑pointmodes (17.7) are29
restored to the state at that invocation.30

4 Example.31
To save the ϐloating‑pointmodes, do a calculationwith speciϐic rounding and underϐlowmodes, and restore32
them later:33

USE, INTRINSIC :: IEEE_ARITHMETIC34
TYPE (IEEE_MODES_TYPE) SAVE_MODES35
…36
CALL IEEE_GET_MODES (SAVE_MODES) ! Save all modes.37

524 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

CALL IEEE_SET_ROUNDING_MODE (IEEE_TO_ZERO))1
CALL IEEE_SET_UNDERFLOW_MODE (GRADUAL=.FALSE.)2
… ! calculation with abrupt round-to-zero.3
CALL IEEE_SET_MODES (SAVE_MODES) ! Restore all modes.4

17.11.42 IEEE_SET_ROUNDING_MODE (ROUND_VALUE [, RADIX])5

1 Description. Set rounding mode.6

2 Class. Simple subroutine.7

3 Arguments.8
ROUND_VALUE shall be a scalar of type IEEE_ROUND_TYPE. It speciϐies the rounding mode to be set.9
RADIX (optional) shall be an integer scalar with the value two or ten. If RADIX is present with the value10

ten, the rounding mode set is the decimal rounding mode; otherwise it is the binary rounding11
mode.12

4 Restriction. IEEE_SET_ROUNDING_MODE (ROUND_VALUE) shall not be invoked unless IEEE_SUPPORT_‑13
ROUNDING (ROUND_VALUE, X) is true for some X such that IEEE_SUPPORT_DATATYPE (X) is true. IEEE_‑14
SET_ROUNDING_MODE (ROUND_VALUE, RADIX) shall not be invoked unless IEEE_SUPPORT_ROUND‑15
ING (ROUND_VALUE, X) is true for some X with radix RADIX such that IEEE_SUPPORT_DATATYPE (X) is16
true.17

5 Example. To save the binary roundingmode, do a calculationwith round to nearest, and restore the round‑18
ing mode later:19

USE, INTRINSIC :: IEEE_ARITHMETIC20
TYPE (IEEE_ROUND_TYPE) ROUND_VALUE21
…22
CALL IEEE_GET_ROUNDING_MODE (ROUND_VALUE) ! Store the rounding mode23
CALL IEEE_SET_ROUNDING_MODE (IEEE_NEAREST)24
… ! calculation with round to nearest25
CALL IEEE_SET_ROUNDING_MODE (ROUND_VALUE) ! Restore the rounding mode26

17.11.43 IEEE_SET_STATUS (STATUS_VALUE)27

1 Description. Restore ϐloating‑point status.28

2 Class. Simple subroutine.29

3 Argument. STATUS_VALUE shall be a scalar of type IEEE_STATUS_TYPE. Its value shall be one that was30
assigned by a previous invocation of IEEE_GET_STATUS to its STATUS_VALUE argument. The ϐloating‑point31
status (17.7 is restored to the state at that invocation).32

4 Example. To store all the exceptions ϐlags, do a calculation involving exception handling, and restore them33
later:34

USE, INTRINSIC :: IEEE_EXCEPTIONS35
TYPE (IEEE_STATUS_TYPE) STATUS_VALUE36
…37
CALL IEEE_GET_STATUS (STATUS_VALUE) ! Store the flags38
CALL IEEE_SET_FLAG (IEEE_ALL, .FALSE.) ! Set them quiet39
… ! calculation involving exception handling40
CALL IEEE_SET_STATUS (STATUS_VALUE) ! Restore the flags41

J3/25‑007 525

J3/25‑007 WD 1539‑1 2024‑12‑29

17.11.44 IEEE_SET_UNDERFLOW_MODE (GRADUAL)1

1 Description. Set underϐlow mode.2

2 Class. Simple subroutine.3

3 Argument. GRADUAL shall be a logical scalar. If it is true, the underϐlowmode is set to gradual underϐlow.4
If it is false, the underϐlow mode is set to abrupt underϐlow.5

4 Restriction. IEEE_SET_UNDERFLOW_MODE shall not be invoked unless IEEE_SUPPORT_UNDERFLOW_‑6
CONTROL (X) is true for some X.7

5 Example. To perform some calculations with abrupt underϐlow and then restore the previous mode:8

USE, INTRINSIC :: IEEE_ARITHMETIC9
LOGICAL SAVE_UNDERFLOW_MODE10
…11
CALL IEEE_GET_UNDERFLOW_MODE (SAVE_UNDERFLOW_MODE)12
CALL IEEE_SET_UNDERFLOW_MODE (GRADUAL=.FALSE.)13
… ! Perform some calculations with abrupt underflow14
CALL IEEE_SET_UNDERFLOW_MODE (SAVE_UNDERFLOW_MODE)15

17.11.45 IEEE_SIGNALING_EQ (A, B)16

1 Description. Signaling compares equal.17

2 Class. Elemental function.18

3 Arguments.19
A shall be of type real.20
B shall be of the same type and kind type parameter as A.21

4 Restriction. IEEE_SIGNALING_EQ (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the22
value false.23

5 Result Characteristics. Default logical.24

6 Result Value. The result has the value speciϐied for the compareSignalingEqual operation in ISO/IEC25
60559:2020; that is, it is true if and only if A compares equal to B. If A or B is a NaN, the result will be26
false and IEEE_INVALID signals; otherwise, no exception is signaled.27

7 Example. IEEE_SIGNALING_EQ (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and signals28
IEEE_INVALID.29

17.11.46 IEEE_SIGNALING_GE (A, B)30

1 Description. Signaling compares greater than or equal.31

2 Class. Elemental function.32

3 Arguments.33
A shall be of type real.34
B shall be of the same type and kind type parameter as A.35

526 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 Restriction. IEEE_SIGNALING_GE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the1
value false.2

5 Result Characteristics. Default logical.3

6 Result Value. The result has the value speciϐied for the compareSignalingGreaterEqual operation in4
ISO/IEC 60559:2020; that is, it is true if and only if A compares greater than or equal to B. If A or B is a5
NaN, the result will be false and IEEE_INVALID signals; otherwise, no exception is signaled.6

7 Example. IEEE_SIGNALING_GE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and signals7
IEEE_INVALID.8

17.11.47 IEEE_SIGNALING_GT (A, B)9

1 Description. Signaling compares greater than.10

2 Class. Elemental function.11

3 Arguments.12
A shall be of type real.13
B shall be of the same type and kind type parameter as A.14

4 Restriction. IEEE_SIGNALING_GT (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the15
value false.16

5 Result Characteristics. Default logical.17

6 Result Value. The result has the value speciϐied for the compareSignalingGreater operation in ISO/IEC18
60559:2020; that is, it is true if and only if A compares greater than B. If A or B is a NaN, the result will be19
false and IEEE_INVALID signals; otherwise, no exception is signaled.20

7 Example. IEEE_SIGNALING_GT (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and signals21
IEEE_INVALID.22

17.11.48 IEEE_SIGNALING_LE (A, B)23

1 Description. Signaling compares less than or equal.24

2 Class. Elemental function.25

3 Arguments.26
A shall be of type real.27
B shall be of the same type and kind type parameter as A.28

4 Restriction. IEEE_SIGNALING_LE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A)has the value29
false.30

5 Result Characteristics. Default logical.31

6 Result Value. The result has the value speciϐied for the compareSignalingLessEqual operation in ISO/IEC32
60559:2020; that is, it is true if and only if A compares less than or equal to B. If A or B is a NaN, the result33
will be false and IEEE_INVALID signals; otherwise, no exception is signaled.34

J3/25‑007 527

J3/25‑007 WD 1539‑1 2024‑12‑29

7 Example. IEEE_SIGNALING_LE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and signals1
IEEE_INVALID.2

17.11.49 IEEE_SIGNALING_LT (A, B)3

1 Description. Signaling compares less than.4

2 Class. Elemental function.5

3 Arguments.6
A shall be of type real.7
B shall be of the same type and kind type parameter as A.8

4 Restriction. IEEE_SIGNALING_LT (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the value9
false.10

5 Result Characteristics. Default logical.11

6 Result Value. The result has the value speciϐied for the compareSignalingLess operation in ISO/IEC12
60559:2020; that is, it is true if and only if A compares less than B. If A or B is a NaN, the result will be13
false and IEEE_INVALID signals; otherwise, no exception is signaled.14

7 Example. IEEE_SIGNALING_LT (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value false and signals15
IEEE_INVALID.16

17.11.50 IEEE_SIGNALING_NE (A, B)17

1 Description. Signaling compares not equal.18

2 Class. Elemental function.19

3 Arguments.20
A shall be of type real.21
B shall be of the same type and kind type parameter as A.22

4 Restriction. IEEE_SIGNALING_NE (A, B) shall not be invoked if IEEE_SUPPORT_DATATYPE (A) has the23
value false.24

5 Result Characteristics. Default logical.25

6 Result Value. The result has the value speciϐied for the compareSignalingNotEqual operation in ISO/IEC26
60559:2020; that is, it is true if and only if A compares not equal to B. If A or B is a NaN, the result will be27
true and IEEE_INVALID signals; otherwise, no exception is signaled.28

7 Example. IEEE_SIGNALING_NE (1.0, IEEE_VALUE (1.0, IEEE_QUIET_NAN)) has the value true and signals29
IEEE_INVALID.30

17.11.51 IEEE_SIGNBIT (X)31

1 Description. Test sign bit.32

2 Class. Elemental function.33

3 Argument. X shall be of type real.34

528 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 Restriction. IEEE_SIGNBIT (X) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value false.1

5 Result Characteristics. Default logical.2

6 Result Value. The result has the value speciϐied for the isSignMinus operation in ISO/IEC 60559:2020; that3
is, it is true if and only if the sign bit of X is nonzero. No exception is signaled even if X is a signaling NaN.4

7 Example. IEEE_SIGNBIT (−1.0) has the value true.5

17.11.52 IEEE_SUPPORT_DATATYPE () or IEEE_SUPPORT_DATATYPE (X)6

1 Description. Query IEEE arithmetic support.7

2 Class. Inquiry function.8

3 Argument. X shall be of type real. It may be a scalar or an array.9

4 Result Characteristics. Default logical scalar.10

5 Result Value. The result has the value true if the processor supports IEEE arithmetic for all reals (X does11
not appear) or for real variables of the same kind type parameter as X; otherwise, it has the value false.12
Here, support is as deϐined in the ϐirst paragraph of 17.9.13

6 Example. If default real kind conforms to ISO/IEC 60559:2020 except that underϐlow values ϐlush to zero14
instead of being subnormal, IEEE_SUPPORT_DATATYPE (1.0) has the value true.15

17.11.53 IEEE_SUPPORT_DENORMAL () or IEEE_SUPPORT_DENORMAL (X)16

1 Description. Query subnormal number support.17

2 Class. Inquiry function.18

3 Argument. X shall be of type real. It may be a scalar or an array.19

4 Result Characteristics. Default logical scalar.20

5 Result Value.21

Case (i): IEEE_SUPPORT_DENORMAL (X) has the value true if IEEE_SUPPORT_DATATYPE (X) has the22
value true and the processor supports arithmetic operations and assignmentswith subnormal23
numbers (biased exponent e = 0 and fraction f ̸= 0, see ISO/IEC 60559:2020, 3.2) for real24
variables of the same kind type parameter as X; otherwise, it has the value false.25

Case (ii): IEEE_SUPPORT_DENORMAL () has the value true if IEEE_SUPPORT_DENORMAL (X) has the26
value true for all real X; otherwise, it has the value false.27

6 Example. IEEE_SUPPORT_DENORMAL (X) has the value true if the processor supports subnormal values28
for X.29

NOTE
A reference to IEEE_SUPPORT_DENORMAL will have the same result value as a reference to IEEE_SUPPORT_SUB‑
NORMAL with the same argument list.

J3/25‑007 529

J3/25‑007 WD 1539‑1 2024‑12‑29

17.11.54 IEEE_SUPPORT_DIVIDE () or IEEE_SUPPORT_DIVIDE (X)1

1 Description. Query IEEE division support.2

2 Class. Inquiry function.3

3 Argument. X shall be of type real. It may be a scalar or an array.4

4 Result Characteristics. Default logical scalar.5

5 Result Value.6

Case (i): IEEE_SUPPORT_DIVIDE (X) has the value true if the processor supports division with the ac‑7
curacy speciϐied by ISO/IEC 60559:2020 for real variables of the same kind type parameter8
as X; otherwise, it has the value false.9

Case (ii): IEEE_SUPPORT_DIVIDE () has the value true if IEEE_SUPPORT_DIVIDE (X) has the value true10
for all real X; otherwise, it has the value false.11

6 Example. IEEE_SUPPORT_DIVIDE (X) has the value true if division of operands with the same kind as X12
conforms to ISO/IEC 60559:2020.13

17.11.55 IEEE_SUPPORT_FLAG (FLAG) or IEEE_SUPPORT_FLAG (FLAG, X)14

1 Description. Query exception support.15

2 Class. Transformational function.16

3 Arguments.17
FLAG shall be a scalar of type IEEE_FLAG_TYPE. Its value shall be one of IEEE_INVALID, IEEE_OVER‑18

FLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT.19
X shall be of type real. It may be a scalar or an array.20

4 Result Characteristics. Default logical scalar.21

5 Result Value.22

Case (i): IEEE_SUPPORT_FLAG (FLAG, X) has the value true if the processor supports detection of the23
speciϐied exception for real variables of the same kind type parameter as X; otherwise, it has24
the value false.25

Case (ii): IEEE_SUPPORT_FLAG (FLAG) has the value true if IEEE_SUPPORT_FLAG (FLAG, X) has the26
value true for all real X; otherwise, it has the value false.27

6 Example. IEEE_SUPPORT_FLAG (IEEE_INEXACT) has the value true if the processor supports the inexact28
exception.29

17.11.56 IEEE_SUPPORT_HALTING (FLAG)30

1 Description. Query halting mode support.31

2 Class. Transformational function.32

3 Argument. FLAG shall be a scalar of type IEEE_FLAG_TYPE. Its value shall be one of IEEE_INVALID, IEEE_‑33
OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or IEEE_INEXACT.34

4 Result Characteristics. Default logical scalar.35

530 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

5 Result Value. The result has the value true if the processor supports the ability to control during program1
execution whether to abort or continue execution after the exception speciϐied by FLAG; otherwise, it has2
the value false. Support includes the ability to change themodebyCALL IEEE_SET_HALTING_MODE(FLAG).3

6 Example. IEEE_SUPPORT_HALTING (IEEE_OVERFLOW) has the value true if the processor supports con‑4
trol of halting after an overϐlow.5

17.11.57 IEEE_SUPPORT_INF () or IEEE_SUPPORT_INF (X)6

1 Description. Query IEEE inϐinity support.7

2 Class. Inquiry function.8

3 Argument. X shall be of type real. It may be a scalar or an array.9

4 Result Characteristics. Default logical scalar.10

5 Result Value.11

Case (i): IEEE_SUPPORT_INF (X) has the value true if the processor supports IEEE inϐinities (positive12
and negative) for real variables of the same kind type parameter as X; otherwise, it has the13
value false.14

Case (ii): IEEE_SUPPORT_INF () has the value true if IEEE_SUPPORT_INF (X) has the value true for all15
real X; otherwise, it has the value false.16

6 Example. IEEE_SUPPORT_INF (X) has the value true if the processor supports IEEE inϐinities for X.17

17.11.58 IEEE_SUPPORT_IO () or IEEE_SUPPORT_IO (X)18

1 Description. Query IEEE formatting support.19

2 Class. Inquiry function.20

3 Argument. X shall be of type real. It may be a scalar or an array.21

4 Result Characteristics. Default logical scalar.22

5 Result Value.23

Case (i): IEEE_SUPPORT_IO (X) has the value true if base conversion during formatted input/output24
(12.5.6.17, 12.6.2.14, 13.7.2.3.8) conforms to ISO/IEC 60559:2020 for the modes UP, DOWN,25
ZERO, and NEAREST for real variables of the same kind type parameter as X; otherwise, it has26
the value false.27

Case (ii): IEEE_SUPPORT_IO () has the value true if IEEE_SUPPORT_IO (X) has the value true for all real28
X; otherwise, it has the value false.29

6 Example. IEEE_SUPPORT_IO (X) has the value true if formatted input/output base conversions conform30
to ISO/IEC 60559:2020.31

17.11.59 IEEE_SUPPORT_NAN () or IEEE_SUPPORT_NAN (X)32

1 Description. Query IEEE NaN support.33

2 Class. Inquiry function.34

J3/25‑007 531

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Argument. X shall be of type real. It may be a scalar or an array.1

4 Result Characteristics. Default logical scalar.2

5 Result Value.3

Case (i): IEEE_SUPPORT_NAN (X) has the value true if the processor supports IEEE NaNs for real vari‑4
ables of the same kind type parameter as X; otherwise, it has the value false.5

Case (ii): IEEE_SUPPORT_NAN () has the value true if IEEE_SUPPORT_NAN (X) has the value true for all6
real X; otherwise, it has the value false.7

6 Example. IEEE_SUPPORT_NAN (X) has the value true if the processor supports IEEE NaNs for X.8

17.11.60 IEEE_SUPPORT_ROUNDING (ROUND_VALUE) or
IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X)

9

1 Description. Query IEEE rounding support.10

2 Class. Transformational function.11

3 Arguments.12
ROUND_VALUE shall be of type IEEE_ROUND_TYPE.13
X shall be of type real. It may be a scalar or an array.14

4 Result Characteristics. Default logical scalar.15

5 Result Value.16

Case (i): IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X) has the value true if the processor supports17
the rounding mode deϐined by ROUND_VALUE for real variables of the same kind type para‑18
meter as X; otherwise, it has the value false. Support includes the ability to change the mode19
by CALL IEEE_SET_ROUNDING_MODE (ROUND_VALUE).20

Case (ii): IEEE_SUPPORT_ROUNDING (ROUND_VALUE) has the value true if IEEE_SUPPORT_‑21
ROUNDING (ROUND_VALUE, X) has the value true for all real X; otherwise, it has the22
value false.23

6 Example. IEEE_SUPPORT_ROUNDING (IEEE_TO_ZERO) has the value true if the processor supports round‑24
ing to zero for all reals.25

17.11.61 IEEE_SUPPORT_SQRT () or IEEE_SUPPORT_SQRT (X)26

1 Description. Query IEEE square root support.27

2 Class. Inquiry function.28

3 Argument. X shall be of type real. It may be a scalar or an array.29

4 Result Characteristics. Default logical scalar.30

5 Result Value.31

Case (i): IEEE_SUPPORT_SQRT (X) has the value true if the intrinsic function SQRT conforms to ISO/IEC32
60559:2020 for real variables of the samekind type parameter as X; otherwise, it has the value33
false.34

532 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Case (ii): IEEE_SUPPORT_SQRT () has the value true if IEEE_SUPPORT_SQRT (X) has the value true for1
all real X; otherwise, it has the value false.2

6 Example. If IEEE_SUPPORT_SQRT (1.0) has the value true, SQRT (−0.0) will have the value−0.0.3

17.11.62 IEEE_SUPPORT_STANDARD () or IEEE_SUPPORT_STANDARD (X)4

1 Description. Query IEEE standard support.5

2 Class. Inquiry function.6

3 Argument. X shall be of type real. It may be a scalar or an array.7

4 Result Characteristics. Default logical scalar.8

5 Result Value.9

Case (i): IEEE_SUPPORT_STANDARD (X) has the value true if the results of all the functions IEEE_‑10
SUPPORT_DATATYPE (X), IEEE_SUPPORT_DIVIDE (X), IEEE_SUPPORT_FLAG (FLAG, X) for11
valid FLAG, IEEE_SUPPORT_HALTING (FLAG) for valid FLAG, IEEE_SUPPORT_INF (X), IEEE_‑12
SUPPORT_NAN (X), IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X) for valid ROUND_VALUE,13
IEEE_SUPPORT_SQRT (X), and IEEE_SUPPORT_SUBNORMAL (X) are all true; otherwise, it has14
the value false.15

Case (ii): IEEE_SUPPORT_STANDARD () has the value true if IEEE_SUPPORT_STANDARD (X) has the16
value true for all real X; otherwise, it has the value false.17

6 Example. IEEE_SUPPORT_STANDARD () has the value false if some but not all kinds of reals conform to18
ISO/IEC 60559:2020.19

17.11.63 IEEE_SUPPORT_SUBNORMAL () or IEEE_SUPPORT_SUBNORMAL (X)20

1 Description. Query subnormal number support.21

2 Class. Inquiry function.22

3 Argument. X shall be of type real. It may be a scalar or an array.23

4 Result Characteristics. Default logical scalar.24

5 Result Value.25

Case (i): IEEE_SUPPORT_SUBNORMAL (X) has the value true if IEEE_SUPPORT_DATATYPE (X) has the26
value true and the processor supports arithmetic operations and assignmentswith subnormal27
numbers (biased exponent e = 0 and fraction f ̸= 0, see ISO/IEC 60559:2020, 3.2) for real28
variables of the same kind type parameter as X; otherwise, it has the value false.29

Case (ii): IEEE_SUPPORT_SUBNORMAL () has the value true if IEEE_SUPPORT_SUBNORMAL (X) has the30
value true for all real X; otherwise, it has the value false.31

6 Example. IEEE_SUPPORT_SUBNORMAL (X) has the value true if the processor supports subnormal values32
for X.33

NOTE
The subnormal numbers are not included in the 16.4 model for real numbers; they satisfy the inequality ABS (X)<
TINY (X). They usually occur as a result of an arithmetic operation whose exact result is less than TINY (X). Such an

J3/25‑007 533

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
operation causes IEEE_UNDERFLOW to signal unless the result is exact. IEEE_SUPPORT_SUBNORMAL (X) is false if
the processor never returns a subnormal number as the result of an arithmetic operation.

17.11.64 IEEE_SUPPORT_UNDERFLOW_CONTROL () or
IEEE_SUPPORT_UNDERFLOW_CONTROL (X)

1

1 Description. Query underϐlow control support.2

2 Class. Inquiry function.3

3 Argument. X shall be of type real. It may be a scalar or an array.4

4 Result Characteristics. Default logical scalar.5

5 Result Value.6

Case (i): IEEE_SUPPORT_UNDERFLOW_CONTROL (X) has the value true if the processor supports con‑7
trol of the underϐlow mode for ϐloating‑point calculations with the same type as X, and false8
otherwise.9

Case (ii): IEEE_SUPPORT_UNDERFLOW_CONTROL () has the value true if the processor supports con‑10
trol of the underϐlow mode for all ϐloating‑point calculations, and false otherwise.11

6 Example. IEEE_SUPPORT_UNDERFLOW_CONTROL (2.5) has the value true if the processor supports un‑12
derϐlow mode control for default real calculations.13

17.11.65 IEEE_UNORDERED (X, Y)14

1 Description. Whether two values are unordered.15

2 Class. Elemental function.16

3 Arguments. The arguments shall be of type real.17

4 Restriction. IEEE_UNORDERED (X, Y) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) or IEEE_SUP‑18
PORT_DATATYPE (Y) has the value false.19

5 Result Characteristics. Default logical.20

6 Result Value. The result has the value true if X or Y is a NaN or both are NaNs; otherwise, it has the value21
false. If X or Y is a signaling NaN, IEEE_INVALID may signal.22

7 Example. IEEE_UNORDERED (0.0, SQRT (−1.0)) has the value true if IEEE_SUPPORT_SQRT (1.0) has the23
value true.24

17.11.66 IEEE_VALUE (X, CLASS)25

1 Description. Return number in a class.26

2 Class. Elemental function.27

3 Arguments.28
X shall be of type real.29

534 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

CLASS shall be of type IEEE_CLASS_TYPE. The value is permitted to be: IEEE_SIGNALING_‑1
NAN or IEEE_QUIET_NAN if IEEE_SUPPORT_NAN (X) has the value true, IEEE_NEGAT‑2
IVE_INF or IEEE_POSITIVE_INF if IEEE_SUPPORT_INF (X) has the value true, IEEE_NEG‑3
ATIVE_SUBNORMAL or IEEE_POSITIVE_SUBNORMAL if IEEE_SUPPORT_SUBNORMAL (X) has4
the value true, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO or5
IEEE_POSITIVE_NORMAL.6

4 Restriction. IEEE_VALUE (X, CLASS) shall not be invoked if IEEE_SUPPORT_DATATYPE (X) has the value7
false.8

5 Result Characteristics. Same as X.9

6 Result Value. The result value is an IEEE value as speciϐied by CLASS. Although in most cases the value is10
processor dependent, the value shall not vary between invocations for anyparticular X kind type parameter11
and CLASS value.12

7 Example. IEEE_VALUE (1.0, IEEE_NEGATIVE_INF) has the value−inϐinity.13

8 Whenever IEEE_VALUE returns a signaling NaN, it is processor dependent whether or not invalid is raised14
and processor dependent whether or not the signaling NaN is converted into a quiet NaN.15

NOTE
If the expr in an assignment statement is a reference to the IEEE_VALUE function that returns a signalingNaNand the
variable is of the same type and kind as the function result, it is recommended that the signaling NaN be preserved.

17.12 Examples16

NOTE 1

MODULE DOT
! Module for dot product of two real arrays of rank 1.
! The caller needs to ensure that exceptions do not cause halting.
USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL :: MATRIX_ERROR = .FALSE.
INTERFACE OPERATOR(.dot.)

MODULE PROCEDURE MULT
END INTERFACE

CONTAINS
REAL FUNCTION MULT (A, B)

REAL, INTENT (IN) :: A(:), B(:)
INTEGER I
LOGICAL OVERFLOW
IF (SIZE(A) /= SIZE(B)) THEN

MATRIX_ERROR = .TRUE.
RETURN

END IF
! The processor ensures that IEEE_OVERFLOW is quiet.
MULT = 0.0
DO I = 1, SIZE (A)

MULT = MULT + A(I)*B(I)
END DO
CALL IEEE_GET_FLAG (IEEE_OVERFLOW, OVERFLOW)
IF (OVERFLOW) MATRIX_ERROR = .TRUE.

END FUNCTION MULT

J3/25‑007 535

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 1 (cont.)
END MODULE DOT

This module provides a function that computes the dot product of two real arrays of rank 1. If the sizes of the
arrays are different, an immediate return occurs with MATRIX_ERROR true. If overϐlow occurs during the actual
calculation, the IEEE_OVERFLOW ϐlag will signal and MATRIX_ERROR will be true.

NOTE 2

USE, INTRINSIC :: IEEE_EXCEPTIONS
USE, INTRINSIC :: IEEE_FEATURES, ONLY: IEEE_INVALID_FLAG
! The other exceptions of IEEE_USUAL (IEEE_OVERFLOW and
! IEEE_DIVIDE_BY_ZERO) are always available with IEEE_EXCEPTIONS
TYPE (IEEE_STATUS_TYPE) STATUS_VALUE
LOGICAL, DIMENSION(3) :: FLAG_VALUE
…
CALL IEEE_GET_STATUS (STATUS_VALUE)
CALL IEEE_SET_HALTING_MODE (IEEE_USUAL, .FALSE.) ! Needed in case the
! default on the processor is to halt on exceptions
CALL IEEE_SET_FLAG (IEEE_USUAL, .FALSE.)
! First try the "fast" algorithm for inverting a matrix:
MATRIX1 = FAST_INV (MATRIX) ! This shall not alter MATRIX.
CALL IEEE_GET_FLAG (IEEE_USUAL, FLAG_VALUE)
IF (ANY(FLAG_VALUE)) THEN

! "Fast" algorithm failed; try "slow" one:
CALL IEEE_SET_FLAG (IEEE_USUAL, .FALSE.)
MATRIX1 = SLOW_INV (MATRIX)
CALL IEEE_GET_FLAG (IEEE_USUAL, FLAG_VALUE)
IF (ANY (FLAG_VALUE)) THEN

WRITE (*, *) 'Cannot invert matrix'
STOP

END IF
END IF
CALL IEEE_SET_STATUS (STATUS_VALUE)

In this example, the function FAST_INVmight cause a condition to signal. If it does, another try ismadewith SLOW_‑
INV. If this still fails, a message is printed and the program stops. Note, also, that it is important to set the ϐlags quiet
before the second try. The state of all the ϐlags is stored and restored.

NOTE 3

USE, INTRINSIC :: IEEE_EXCEPTIONS
LOGICAL FLAG_VALUE
…
CALL IEEE_SET_HALTING_MODE (IEEE_OVERFLOW, .FALSE.)
! First try a fast algorithm for inverting a matrix.
CALL IEEE_SET_FLAG (IEEE_OVERFLOW, .FALSE.)
DO K = 1, N

…
CALL IEEE_GET_FLAG (IEEE_OVERFLOW, FLAG_VALUE)
IF (FLAG_VALUE) EXIT

END DO
IF (FLAG_VALUE) THEN
! Alternative code which knows that K-1 steps have executed normally.
…
END IF

Here the code for matrix inversion is in line and the transfer is made more precise by adding extra tests of the ϐlag.

536 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

18 Interoperability with C1

18.1 General2

1 Fortran provides a means of referencing procedures that are deϐined by means of the C programming lan‑3
guage or procedures that can be described by C prototypes as deϐined in ISO/IEC 9899:2018, 6.7.6.3, even4
if they are not actually deϐined by means of C. Conversely, there is a means of specifying that a procedure5
deϐined by a Fortran subprogram can be referenced from a function deϐined by means of C. In addition,6
there is a means of declaring global variables that are associated with C variables whose names have ex‑7
ternal linkage as deϐined in ISO/IEC 9899:2018, 6.2.2.8

2 The ISO_C_BINDING module provides access to named constants that represent kind type parameters of9
data representations compatible with C types. Fortran also provides facilities for deϐining derived types10
(7.5) and interoperable enumerations (7.6.1) that correspond to C types.11

3 The source ϐile ISO_Fortran_binding.h provides deϐinitions and prototypes to enable a C function to in‑12
teroperate with a Fortran procedure that has a dummy data object that is allocatable, assumed‑shape,13
assumed‑rank, pointer, or is of type character with an assumed length.14

4 The conditions under which a Fortran entity is interoperable are deϐined in 18.3. If a Fortran entity is in‑15
teroperable, an equivalent entity could be deϐined bymeans of C and the Fortran entity would interoperate16
with the C entity. There does not have to be such an interoperating C entity.17

NOTE
A Fortran entity can be interoperable with more than one C entity.

18.2 The ISO_C_BINDING intrinsic module18

18.2.1 Summary of contents19

1 The processor shall provide the intrinsic module ISO_C_BINDING. This module shall make accessible the20
following entities: the named constants C_NULL_PTR, C_NULL_FUNPTR, and thosewith names listed in the21
ϐirst column of Table 18.1 and the second column of Table 18.2, the types C_PTR and C_FUNPTR, and the22
procedures in 18.2.3. A processormay provide other public entities in the ISO_C_BINDING intrinsicmodule23
in addition to those listed here.24

18.2.2 Named constants and derived types in the module25

1 The entities listed in the second column of Table 18.2 shall be default integer named constants.26

2 A Fortran intrinsic type whose kind type parameter is one of the values in the module shall have the same27
representation as the C typewithwhich it interoperates, for each value that a variable of that type can have.28
For C_BOOL, the internal representation of .TRUE._C_BOOL and .FALSE._C_BOOL shall be the same as those29
of the C values (_Bool)1 and (_Bool)0 respectively.30

3 The value of C_INT shall be a valid value for an integer kind parameter on the processor. The values of31

J3/25‑007 537

J3/25‑007 WD 1539‑1 2024‑12‑29

C_SHORT, C_LONG, C_LONG_LONG, C_SIGNED_CHAR, C_SIZE_T, C_INT8_T, C_INT16_T,1
C_INT32_T, C_INT64_T, C_INT_LEAST8_T, C_INT_LEAST16_T, C_INT_LEAST32_T, C_INT_LEAST64_T, C_INT_‑2
FAST8_T, C_INT_FAST16_T, C_INT_FAST32_T, C_INT_FAST64_T, C_INTMAX_T, C_INTPTR_T, and C_PTRDIFF_‑3
T shall each be a valid value for an integer kind type parameter on the processor or shall be−1 if the com‑4
panion processor (5.5.7) deϐines the corresponding C type and there is no interoperating Fortran processor5
kind, or−2 if the companion processor does not deϐine the corresponding C type.6

4 The values of C_FLOAT, C_DOUBLE, and C_LONG_DOUBLE shall each be a valid value for a real kind type7
parameter on theprocessor or shall be−1 if the companionprocessor’s typedoesnot have aprecision equal8
to the precision of any of the Fortran processor’s real kinds,−2 if the companion processor’s type does not9
have a range equal to the range of any of the Fortran processor’s real kinds,−3 if the companion processor’s10
type has neither the precision nor range of any of the Fortran processor’s real kinds, and equal to −4 if11
there is no interoperating Fortran processor kind for other reasons. The values of C_FLOAT_COMPLEX, C_‑12
DOUBLE_COMPLEX, and C_LONG_DOUBLE_COMPLEX shall be the same as those of C_FLOAT, C_DOUBLE,13
and C_LONG_DOUBLE, respectively.14

5 The value of C_BOOL shall be a valid value for a logical kind parameter on the processor or shall be−1.15

6 The value of C_CHAR shall be a valid value for a character kind type parameter on the processor or shall be16
−1. If the value of C_CHAR is nonnegative, the character kind speciϐied is the C character kind; otherwise,17
there is no C character kind.18

7 The following entities shall be named constants of type character with a length parameter of one. The19
kind parameter value shall be equal to the value of C_CHAR unless C_CHAR = −1, in which case the kind20
parameter value shall be the same as for default kind. The values of these constants are speciϐied in Table21
18.1. In the case that C_CHAR ̸= −1 the value is speciϐied using C syntax. The semantics of these values are22
explained in ISO/IEC 9899:2018, 5.2.1 and 5.2.2.23

Table 18.1— Names of C characters with special semantics
Value

Name C deϐinition C_CHAR= −1 C_CHAR ̸= −1

C_NULL_CHAR null character CHAR(0) '\0'
C_ALERT alert ACHAR(7) '\a'
C_BACKSPACE backspace ACHAR(8) '\b'
C_FORM_FEED form feed ACHAR(12) '\f'
C_NEW_LINE new line ACHAR(10) '\n'
C_CARRIAGE_RETURN carriage return ACHAR(13) '\r'
C_HORIZONTAL_TAB horizontal tab ACHAR(9) '\t'
C_VERTICAL_TAB vertical tab ACHAR(11) '\v'

8 The entities C_PTR and C_FUNPTR are described in 18.3.2.24

9 The entity C_NULL_PTR shall be a named constant of type C_PTR. The value of C_NULL_PTR shall be the25
same as the value NULL in C. The entity C_NULL_FUNPTR shall be a named constant of type C_FUNPTR.26
The value of C_NULL_FUNPTR shall be that of a null pointer to a function in C.27

NOTE
The value of NEW_LINE (C_NEW_LINE) is C_NEW_LINE (16.9.150).

538 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

18.2.3 Procedures in the module1

18.2.3.1 General2

1 In the detailed descriptions below, procedure names are generic and not speciϐic. The C_F_POINTER, C_‑3
F_PROCPOINTER, and C_F_STRPOINTER subroutines are impure; all other procedures in the module are4
simple.5

18.2.3.2 C_ASSOCIATED (C_PTR_1 [, C_PTR_2])6

1 Description. Query C pointer status.7

2 Class. Transformational function.8

3 Arguments.9
C_PTR_1 shall be a scalar of type C_PTR or C_FUNPTR.10
C_PTR_2 (optional) shall be a scalar of the same type as C_PTR_1.11

4 Result Characteristics. Default logical scalar.12

5 Result Value.13

Case (i): If C_PTR_2 is absent, the result is false if C_PTR_1 is a C null pointer and true otherwise.14
Case (ii): If C_PTR_2 is present, the result is false if C_PTR_1 is a C null pointer. If C_PTR_1 is not a C15

null pointer, the result is true if C_PTR_1 compares equal to C_PTR_2 in the sense of ISO/IEC16
9899:2018, 6.3.2.3 and 6.5.9, and false otherwise.17

6 Examples.18

Case (i): If variable P of type C_PTR has been assigned the value of C_NULL_PTR, the value of C_ASSO‑19
CIATED (P) is false.20

Case (ii): For the interoperable variable REAL (C_DOUBLE), TARGET, BIND (C) :: X, if variable P of type21
C_PTR has been assigned the address of X, perhaps by a C function that used “&x”, the value of22
C_ASSOCIATED (P, C_LOC (X)) is true.23

18.2.3.3 C_F_POINTER (CPTR, FPTR [, SHAPE, LOWER])24

1 Description. Associate a data pointer with the target of a C pointer and specify its shape.25

2 Class. Subroutine.26

3 Arguments.27
CPTR shall be a scalar of type C_PTR. It is an INTENT (IN) argument. Its value shall be28

• the C address of an interoperable data entity,29
• the result of a reference to C_LOC with a noninteroperable argument, or30
• the C address of a storage sequence that is not in use by any other Fortran entity.31

The value of CPTR shall not be the C address of a Fortran variable that does not have the TAR‑32
GET attribute.33

FPTR shall be a pointer, shall not have a deferred typeparameter, and shall not be a coindexedobject.34
It is an INTENT (OUT) argument. If FPTR is an array, its shape is speciϐied by SHAPE; the lower35
bounds are speciϐied by LOWER if it is present, otherwise each lower bound is equal to 1.36

J3/25‑007 539

J3/25‑007 WD 1539‑1 2024‑12‑29

Case (i): If the value of CPTR is the C address of an interoperable data entity, FPTR1
shall be a data pointer with type and type parameter values interoperable2
with the type of the entity. If the target T of CPTR is scalar, FPTR becomes3
pointer associated with T; if FPTR is an array, SHAPE shall specify a size of4
1. If T is an array, and FPTR is scalar, FPTR becomes associated with the ϐirst5
element of T. If both T and FPTR are arrays, SHAPE shall specify a size that6
is less than or equal to the size of T, and FPTR becomes associated with the7
ϐirst PRODUCT (SHAPE) elements of T (this could be the entirety of T).8

Case (ii): If the value of CPTR is the result of a reference to C_LOC with a noninterop‑9
erable effective argument X, FPTR shall be a nonpolymorphic pointer with10
the same type and type parameters as X. In this case, X shall not have been11
deallocated or have become undeϐined due to execution of a RETURNor END12
statement since the reference. If X is scalar, FPTR becomes pointer associ‑13
atedwith X; if FPTR is an array, SHAPE shall specify a size of 1. If X is an array14
and FPTR is scalar, FPTR becomes associated with the ϐirst element of X. If15
both X and FPTR are arrays, SHAPE shall specify a size that is less than or16
equal to the size of X, and FPTR becomes associated with the ϐirst PRODUCT17
(SHAPE) elements of X (this could be the entirety of X).18

Case (iii): If the value of CPTR is the C address of a storage sequence that is not in use19
by any other Fortran entity, FPTR becomes associated with that storage se‑20
quence. The storage sequence shall be large enough to contain the target21
object described by FPTR and shall satisfy any other processor‑dependent22
requirement for association.23

SHAPE (optional) shall be a rank‑one integer array. It is an INTENT (IN) argument. SHAPE shall be present24
if and only if FPTR is an array; its size shall be equal to the rank of FPTR.25

LOWER (optional) shall be a rank‑one integer array. It is an INTENT (IN) argument. It shall not be present26
if SHAPE is not present. If LOWER is present, its size shall be equal to the rank of FPTR.27

4 Examples.28

Case (i): extern double c_x;29
void *address_of_x (void)30
{31

return &c_x;32
}33

34
! Assume interface to "address_of_x" is available.35
Real (C_double), Pointer :: xp36
Call C_F_Pointer (address_of_x (), xp)37

Case (ii): Type t38
Real, Allocatable :: v(:,:)39

End Type40
Type(t), Target :: x(0:2)41
Type(C_ptr) :: xloc42
xloc = C_Loc (x)43
...44
Type(t), Pointer :: y(:)45
Call C_F_Pointer (xloc, y, [3], [0])46

Case (iii): void *getmem (int nbits)47
{48

return malloc ((nbits+CHAR_BIT-1)/CHAR_BIT);49
}50

51

540 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

! Assume interface to "getmem" is available,1
! and there is a derived type "mytype" accessible.2
Type(mytype), Pointer :: x3
Call C_F_Pointer (getmem (Storage_Size (x)), x)4

Case (iv): The following statements illustrate the use of C_F_POINTER when the pointer to be set has a5
deferred type parameter:6

Character(42), Pointer :: C17
Character(:), Pointer :: C28
Call C_F_Pointer (CPTR, C1)9
C2 => C110

This will associate C2with the entity at the C address speciϐied by CPTR, and specify its length11
to be the same as that of C1.12

NOTE
In the case of associating FPTR with a storage sequence, there might be processor‑dependent requirements such
as alignment of the memory address or placement in memory.

18.2.3.4 C_F_PROCPOINTER (CPTR, FPTR)13

1 Description. Associate a procedure pointer with the target of a C function pointer.14

2 Class. Subroutine.15

3 Arguments.16
CPTR shall be a scalar of type C_FUNPTR. It is an INTENT (IN) argument. Its value shall be the C17

address of a procedure that is interoperable, or the result of a reference to the function C_‑18
FUNLOC from the intrinsic module ISO_C_BINDING.19

FPTR shall be a procedure pointer, and shall not be a component of a coindexed object. It is an20
INTENT (OUT) argument. If the target of CPTR is interoperable, the interface for FPTR shall21
be interoperablewith the prototype that describes the target of CPTR; otherwise, the interface22
for FPTR shall have the same characteristics as that target. FPTR becomes pointer associated23
with the target of CPTR.24

4 Example.25
The following C code provides a function, dispatch, that returns a C function pointer to the C library cube26
root function:27

#include <math.h>28
typedef double (*simplefun)(double);29

30
simplefun dispatch (void) {31
return &cbrt;32

}33

The following Fortran interface interoperates with dispatch:34

Interface35
Type(C_FUNPTR) Function dispatch () Bind(C)36

Use Iso_C_Binding, Only: C_FUNPTR37
End Function dispatch38

End Interface39

With the abstract interface SIMPLE_FUNCTION (analogous to simplefun), a procedure pointer suitable for40
referring to the C library function cbrt can be created:41

J3/25‑007 541

J3/25‑007 WD 1539‑1 2024‑12‑29

Abstract Interface1
Real (C_double) Function simple_function (x) Bind(C)2

Use Iso_C_Binding, Only: C_double3
Real (C_double), Value :: x4

End Function simple_function5
End Interface6
Procedure (simple_function), Pointer :: psimp7

Once the procedure pointer is associated, it can be used to invoke cbrt:8

Call C_F_Procpointer (dispatch (), psimp)9
Write (*,*) psimp (4.5_C_double)10

NOTE
The term “target” in the descriptions of C_F_POINTER and C_F_PROCPOINTER denotes the entity referenced by a C
pointer, as described in ISO/IEC 9899:2018, 6.2.5.

18.2.3.5 C_F_STRPOINTER (CSTRARRAY, FSTRPTR [, NCHARS]) or
C_F_STRPOINTER (CSTRPTR, FSTRPTR [, NCHARS])

11

1 Description. Associate a character pointer with a C string.12

2 Class. Subroutine.13

3 Arguments.14
CSTRARRAY shall be a rank one character array of kind C_CHAR, with a length type parameter equal to15

one. It is an INTENT (IN) argument. Its actual argument shall be simply contiguous and have16
the TARGET attribute.17

CSTRPTR shall be a scalar of type C_PTR. It is an INTENT (IN) argument. Its value shall be the C address18
of a contiguous array S of NCHARS characters. Its value shall not be the C address of a Fortran19
variable that does not have the TARGET attribute.20

FSTRPTR shall be a scalar deferred‑length character pointer of kind C_CHAR. It is an INTENT (OUT)21
argument. FSTRPTR becomes pointer associated with the leftmost characters of the actual22
argument element sequence (15.5.2.12) of CSTRARRAY if it appears, orwith the leftmost char‑23
acters (in array element order) of the array S if CSTRPTR appears.24

The length type parameter of FSTRPTR becomes the largest value for which no C null charac‑25
ters appear in the sequence, andwhich is less than or equal to NCHARS if present, and the size26
of CSTRARRAY otherwise.27

NCHARS (optional) shall be an integer scalar with a nonnegative value. It is an INTENT (IN) argument.28
NCHARS shall be present if CSTRARRAY is assumed‑size, or if CSTRPTR appears. If CSTRAR‑29
RAY appears, NCHARS shall not be greater than the size of CSTRARRAY.30

4 If C_CHAR has the value −1, indicating that there is no C character kind, the generic subroutine C_F_‑31
STRPOINTER does not have any speciϐic procedure.32

5 Example.33

Case (i): This interoperable procedure prints a C string to a Fortran ϐile.34
Subroutine logstring (str) Bind (C)35

Use Iso_C_Binding36
Character (Kind=C_char), Dimension(*), Target :: str37

542 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Character (:, C_char), Pointer :: sval1
Integer, Parameter :: logunit = 172
Call C_F_Strpointer (str, sval, 1020) ! Limit result to 1020 characters.3
Write (logunit, *) 'C: ', sval4

End Subroutine5
Case (ii): This program shows how to use C_F_STRPOINTER to display the result of calling the C library6

function getenv.7
Program cfs_example8

Use Iso_C_Binding9
Character (:, C_char), Pointer :: evalue10
Type (C_ptr) :: envptr11
Interface12
Function getenv (name) Bind (C)13

Import C_char, C_ptr14
Character (Kind=C_char), Intent (In) :: name (*)15
Type (C_ptr) :: getenv16

End Function17
End Interface18
envptr = getenv ("CFS"//C_Null_Char)19
If (C_associated (envptr)) Then20
Call C_F_Strpointer (envptr, evalue, 1023) ! Max length 1023.21
Print *, 'CFS value is "', evalue, '"'22

Else23
Print *, 'CFS has no value'24

End If25
End Program26

18.2.3.6 C_FUNLOC (X)27

1 Description. C address of the argument.28

2 Class. Transformational function.29

3 Argument. X shall be a procedure; if it is a procedure pointer it shall be associated. It shall not be a coin‑30
dexed object.31

4 Result Characteristics. Scalar of type C_FUNPTR.32

5 Result Value. The result value is described using the result name FUNPTR. The result is determined as if33
C_FUNPTR were a derived type containing a procedure pointer component PX with an implicit interface34
and the pointer assignment FUNPTR%PX => X were executed. The result value can be used as an actual35
CPTR argument in a call to C_F_PROCPOINTER where the FPTR argument has attributes that would allow36
the pointer assignment FPTR => X. Such a call to C_F_PROCPOINTER shall have the effect of the pointer37
assignment FPTR => X.38

6 Example. This code fragment shows how C_FUNLOC can be used to register an “atexit” procedure with the39
C library.40

Use Iso_C_Binding41
Interface42
Function atexit (func) Bind (C)43

Import44
Integer (C_int) :: atexit45
Type (C_funptr), Value :: func46

End Function47
Subroutine my_atexit_sub() Bind(C)48
End Subroutine49

End Interface50

J3/25‑007 543

J3/25‑007 WD 1539‑1 2024‑12‑29

Integer (C_int) :: errno1
errno = atexit (C_funloc (my_atexit_sub))2
If (errno==0) Then3
Print *, 'At exit sub registered'4

Else5
Print *, 'Error', errno, 'from atexit'6

End If7

18.2.3.7 C_LOC (X)8

1 Description. C address of the argument.9

2 Class. Transformational function.10

3 Argument. X shall have either the POINTER or TARGET attribute. It shall not be a coindexed object. It11
shall be a variable with interoperable type and kind type parameters, an assumed‑type variable, or a non‑12
polymorphic variable that has no length type parameter. If it is allocatable, it shall be allocated. If it is a13
pointer, it shall be associated. If it is an array, it shall be contiguous and have nonzero size. It shall not be14
a zero‑length string.15

4 Result Characteristics. Scalar of type C_PTR.16

5 Result Value. The result value is described using the result name CPTR.17

Case (i): If X is a scalar data entity, the result is determined as if C_PTRwere a derived type containing a18
scalar pointer component PX of the type and type parameters of X and the pointer assignment19
CPTR%PX => X were executed.20

Case (ii): If X is an array data entity, the result is determined as if C_PTRwere a derived type containing a21
scalar pointer component PX of the type and type parameters of X and the pointer assignment22
of CPTR%PX to the ϐirst element of X were executed.23

Case (iii): If X is a data entity that is interoperable or has interoperable type and type parameters, the24
result is the value that the C processor returns as the result of applying the unary “&” operator25
(as deϐined in ISO/IEC 9899:2018, 6.5.3.2) to the target of CPTR%PX.26

The result value can be used as an actual CPTR argument in a call to C_F_POINTER where FPTR has attrib‑27
utes that would allow the pointer assignment FPTR => X. Such a call to C_F_POINTER shall have the effect28
of the pointer assignment FPTR => X.29

6 Example. This function uses C_LOC to return the address of a Fortran ϐloating‑point vector to a C caller.30

Function new_fortran_float_vec (n) Bind (C) Result (r)31
Use Iso_C_Binding32
Integer (C_size_t), Value :: n33
Type (C_ptr) :: r34
Real (C_float), Pointer :: rp (:)35
Allocate (rp (n), Stat=istat)36
If (istat==0) Then37

r = C_loc (rp (1))38
Else39

r = C_null_ptr40
End If41

End Function42

An example using C_LOC on an array of noninteroperable type appears in Case (ii) of the Examples para‑43
graph of 18.2.3.3.44

544 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE
Where the actual argument is of noninteroperable type or type parameters, the result of C_LOC provides an opaque
“handle” for it. In an actual implementation, this handle might be the C address of the argument; however, only a
C function that treats it as a void (generic) C pointer that cannot be dereferenced (ISO/IEC 9899:2018, 6.5.3.2) is
likely to be portable.

18.2.3.8 C_SIZEOF (X)1

1 Description. Size of X in bytes.2

2 Class. Inquiry function.3

3 Argument. X shall be a data entity with interoperable type and type parameters, and shall not be an4
assumed‑size array, an assumed‑rank array that is associated with an assumed‑size array, an unallocated5
allocatable variable, or a pointer that is not associated.6

4 Result Characteristics. Scalar integer of kind C_SIZE_T (18.3.1).7

5 Result Value.8

Case (i): If X is scalar, the result value is the value that the companion processor returns as the result9
of applying the sizeof operator (ISO/IEC 9899:2018, 6.5.3.4) to an object of a type that inter‑10
operates with the type and type parameters of X.11

Case (ii): If X is an array, the result value is the value that the companion processor returns as the result12
of applying the sizeof operator to an object of a type that interoperates with the type and type13
parameters of X, multiplied by the number of elements in X.14

6 Example. With eight‑bit bytes and the declaration INTEGER (C_INT32_T) :: X (3), the result value of C_‑15
SIZEOF (X) is twelve.16

18.2.3.9 F_C_STRING (STRING [, ASIS])17

1 Description. String with appended null character.18

2 Class. Transformational function.19

3 Arguments.20
STRING shall be a character scalar of kind C_CHAR. If C_CHAR has the value −1, indicating that there21

is no C character kind, the generic function F_C_STRING has no speciϐic procedure.22
ASIS (optional) shall be a logical scalar.23

4 Result Characteristics. Character scalar of kind C_CHAR. If ASIS is present with the value true, the length24
type parameter of the result is equal to one plus the length of STRING, otherwise it is equal to one plus the25
length of STRING without trailing blanks.26

5 Result Value. The leftmost characters of the result, up to the penultimate character, are equal to the cor‑27
responding characters of STRING. The ϐinal character of the result is equal to C_NULL_CHAR.28

6 Example. If X is declared as CHARACTER(6,C_CHAR), and has the value 'abc ' (with three trailing29
blanks), then F_C_STRING (X, .TRUE.) has length seven and the value 'abc '//C_NULL_CHAR, and F_C_‑30
STRING (X) has length four and the value 'abc'//C_NULL_CHAR.31

J3/25‑007 545

J3/25‑007 WD 1539‑1 2024‑12‑29

18.3 Interoperability between Fortran and C entities1

18.3.1 Interoperability of intrinsic types2

1 Table 18.2 shows the interoperability between Fortran intrinsic types and C types. A Fortran intrinsic type3
with particular type parameter values is interoperable with a C type if the type and kind type parameter4
value are listed in the table on the same rowas that C type. If the type is character, the length typeparameter5
is interoperable if and only if its value is one. A combination of Fortran type and type parameters that6
is interoperable with a C type listed in the table is also interoperable with any unqualiϐied C type that is7
compatible with the listed C type.8

2 The second column of the table refers to the named constants made accessible by the ISO_C_BINDING in‑9
trinsic module. If the value of any of these named constants is negative, there is no combination of Fortran10
type and type parameters interoperable with the C type shown in that row.11

3 A combination of intrinsic type and type parameters is interoperable if it is interoperable with a C type.12
The C types mentioned in Table 18.2 are deϐined in ISO/IEC 9899:2018, 6.2.5, 7.19, and 7.20.1.13

Table 18.2— Interoperability between Fortran and C types

Fortran type Named constant from the ISO_C_BINDING module
(kind type parameter if value is positive)

C type

C_INT int
C_SHORT short int
C_LONG long int
C_LONG_LONG long long int
C_SIGNED_CHAR signed char

unsigned char
C_SIZE_T size_t
C_INT8_T int8_t
C_INT16_T int16_t
C_INT32_T int32_t
C_INT64_T int64_t
C_INT_LEAST8_T int_least8_t
C_INT_LEAST16_T int_least16_t
C_INT_LEAST32_T int_least32_t

INTEGER C_INT_LEAST64_T int_least64_t
C_INT_FAST8_T int_fast8_t
C_INT_FAST16_T int_fast16_t
C_INT_FAST32_T int_fast32_t
C_INT_FAST64_T int_fast64_t
C_INTMAX_T intmax_t
C_INTPTR_T intptr_t
C_PTRDIFF_T ptrdiff_t
C_FLOAT ϐloat

REAL C_DOUBLE double
C_LONG_DOUBLE long double
C_FLOAT_COMPLEX ϐloat _Complex

COMPLEX C_DOUBLE_COMPLEX double _Complex

546 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Interoperability between Fortran and C types (cont.)
Fortran type Named constant from the ISO_C_BINDING module

(kind type parameter if value is positive)
C type

C_LONG_DOUBLE_COMPLEX long double _Complex
LOGICAL C_BOOL _Bool
CHARACTER C_CHAR char

NOTE
ISO/IEC 9899:2018 speciϐies that the representations for nonnegative signed integers are the same as the cor‑
responding values of unsigned integers. Because Fortran does not provide direct support for unsigned kinds of
integers, the ISO_C_BINDINGmodule does not make accessible named constants for their kind type parameter val‑
ues. A user can use the signed kinds of integers to interoperate with the unsigned types and all their qualiϐied
versions as well. This has the potentially surprising side effect that the C type unsigned char is interoperable with
the type integer with a kind type parameter of C_SIGNED_CHAR.

18.3.2 Interoperability with C pointer types1

1 C_PTR and C_FUNPTR shall be derived types with only private components. No direct component of either2
of these types is allocatable or a pointer. C_PTR is interoperable with any C object pointer type. C_FUNPTR3
is interoperable with any C function pointer type.4

NOTE 1
Thismeans that only a C processorwith the same representationmethod for all C object pointer types, and the same
representation method for all C function pointer types, can be the target of interoperability of a Fortran processor.
ISO/IEC 9899:2018 does not require this to be the case.

NOTE 2
The function C_LOC can be used to return a value of type C_PTR that is the C address of an allocated allocatable vari‑
able. The function C_FUNLOC can be used to return a value of type C_FUNPTR that is the C address of a procedure.
For C_LOC and C_FUNLOC the returned value is of an interoperable type and thus can be used in contexts where the
procedure or allocatable variable is not directly allowed. For example, it could be passed as an actual argument to
a C function.

Similarly, type C_FUNPTR or C_PTR can be used in a dummy argument or structure component and can have a
value that is the C address of a procedure or allocatable variable, even in contexts where a procedure or allocatable
variable is not directly allowed.

18.3.3 Interoperability of enum types5

1 An enum type interoperates with its corresponding C enumerated type. It also interoperates with the C6
integer type that interoperates with its enumerators.7

18.3.4 Interoperability of derived types and C structure types8

1 Interoperability between a derived type in Fortran and a structure type in C is provided by the BIND attrib‑9
ute on the Fortran type.10

C1801 (R726) A derived type with the BIND attribute shall not have the SEQUENCE attribute.11

C1802 (R726) A derived type with the BIND attribute shall not have type parameters.12

J3/25‑007 547

J3/25‑007 WD 1539‑1 2024‑12‑29

C1803 (R726) A derived type with the BIND attribute shall not have the EXTENDS attribute.1

C1804 (R726) A derived‑type‑def that deϐines a derived typewith the BIND attribute shall not have a type‑2
bound‑procedure‑part.3

C1805 (R726) A derived type with the BIND attribute shall have at least one component.4

C1806 (R726) Each component of a derived type with the BIND attribute shall be a nonpointer, nonalloc‑5
atable data component with interoperable type and type parameters.6

NOTE 1
The syntax rules and their constraints require that a derived type that is interoperable with a C structure type
have components that are all data entities that are interoperable. No component is permitted to be allocatable or a
pointer, but the value of a component of type C_FUNPTR or C_PTR can be the C address of such an entity.

2 A derived type is interoperable with a C structure type if and only if the derived type has the BIND at‑7
tribute (7.5.2), the derived type and the C structure type have the same number of components, and the8
components of the derived type would interoperate with corresponding components of the C structure9
type as described in 18.3.5 and 18.3.6 if the components were variables. A component of a derived type10
and a component of a C structure type correspond if they are declared in the same relative position in their11
respective type deϐinitions.12

NOTE 2
The names of the corresponding components of the derived type and the C structure type need not be the same.

3 There is no Fortran type that is interoperablewith a C structure type that contains a bit ϐield or that contains13
a ϐlexible array member. There is no Fortran type that is interoperable with a C union type.14

NOTE 3
For example, the C type myctype, declared below, is interoperable with the Fortran type myftype, declared below.

typedef struct {
int m, n;
float r;

} myctype;

USE, INTRINSIC :: ISO_C_BINDING
TYPE, BIND(C) :: MYFTYPE

INTEGER(C_INT) :: I, J
REAL(C_FLOAT) :: S

END TYPE MYFTYPE

The names of the types and the names of the components are not signiϐicant for the purposes of determining
whether a Fortran derived type is interoperable with a C structure type.

NOTE 4
ISO/IEC 9899:2018 requires the names and component names to be the same in order for the types to be compat‑
ible (ISO/IEC 9899:2018, 6.2.7). This is similar to Fortran’s rule describing when different derived type deϐinitions
describe the same sequence type. This rule was not extended to determine whether a Fortran derived type is inter‑
operable with a C structure type because the case of identiϐiers is signiϐicant in C but not in Fortran.

548 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

18.3.5 Interoperability of scalar variables1

1 A named scalar Fortran variable is interoperable if and only if its type and type parameters are interop‑2
erable, it is not a coarray, it has neither the ALLOCATABLE nor the POINTER attribute, and if it is of type3
character its length is not assumed or declared by an expression that is not a constant expression.4

2 An interoperable scalar Fortran variable is interoperable with a scalar C entity if their types and type para‑5
meters are interoperable.6

18.3.6 Interoperability of array variables7

1 A Fortran variable that is a named array is interoperable if and only if its type and type parameters are8
interoperable, it is not a coarray, it is of explicit shape or assumed size, and if it is of type character its9
length is not assumed or declared by an expression that is not a constant expression.10

2 An explicit‑shape or assumed‑size array of rank r, with a shape of
[
e1 . . . er

]
is interoperable with a11

C array if its size is nonzero and12

(1) either13

(a) the array is assumed‑size, and the C array does not specify a size, or14
(b) the array is an explicit‑shape array, and the extent of the last dimension (er) is the same15

as the size of the C array, and16

(2) either17

(a) r is equal to one, and an element of the array is interoperable with an element of the C18
array, or19

(b) r is greater than one, and an explicit‑shape array with shape of
[
e1 . . . er−1

]
, with20

the same type and type parameters as the original array, is interoperable with a C array21
of a type equal to the element type of the original C array.22

NOTE 1
An element of a multi‑dimensional C array is an array type, so a Fortran array of rank one is not interoperable with
a multidimensional C array.

NOTE 2
An allocatable array or array pointer is never interoperable. Such an array does not meet the requirement of being
an explicit‑shape or assumed‑size array.

NOTE 3
For example, a Fortran array declared as

INTEGER(C_INT) :: A(18, 3:7, *)

is interoperable with a C array declared as
int b[][5][18];

NOTE 4
The C programming language deϐines null‑terminated strings, which are actually arrays of the C type char that have
a C null character in them to indicate the last valid element. A Fortran array of type character with a kind type
parameter equal to C_CHAR is interoperable with a C string.

J3/25‑007 549

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 4 (cont.)
Fortran’s rules of sequence association (15.5.2.12) permit a character scalar actual argument to correspond to a
dummy argument array. This makes it possible to argument associate a Fortran character string with a C string.

18.3.7, NOTE 4 has an example of interoperation between Fortran and C strings.

18.3.7 Interoperability of procedures and procedure interfaces1

1 AFortranprocedure is interoperable if andonly if it has theBINDattribute, that is, if its interface is speciϐied2
with a proc‑language‑binding‑spec.3

2 A Fortran procedure interface is interoperable with a C function prototype if4

(1) the interface has the BIND attribute,5
(2) either6

(a) the interface describes a function whose result is a scalar variable that is interoperable7
with the result of the prototype or8

(b) the interface describes a subroutine and the prototype has a result type of void,9

(3) the number of dummy arguments of the interface is equal to the number of formal parameters10
of the prototype,11

(4) any scalar dummy argument with the VALUE attribute is interoperable with the corresponding12
formal parameter of the prototype,13

(5) any dummy argument without the VALUE attribute corresponds to a formal parameter of the14
prototype that is of a pointer type, and either15

• the dummy argument is interoperable with an entity of the referenced type (ISO/IEC16
9899:2018, 6.2.5, 7.19, and 7.20.1) of the formal parameter,17

• the dummy argument is a nonallocatable nonpointer variable of type CHARACTER with18
assumed character length and the formal parameter is a pointer to CFI_cdesc_t,19

• the dummy argument is allocatable, assumed‑shape, assumed‑rank, or a pointer without20
the CONTIGUOUS attribute, and the formal parameter is a pointer to CFI_cdesc_t, or21

• the dummy argument is assumed‑type and not allocatable, assumed‑shape, assumed‑22
rank, or a pointer, and the formal parameter is a pointer to void,23

(6) each allocatable or pointer dummy argument of type CHARACTER has deferred character24
length, and25

(7) the prototype does not have variable arguments as denoted by the ellipsis (...).26

NOTE 1
The referenced type of a C pointer type is the C type of the object that the C pointer type points to. For example,
the referenced type of the pointer type int * is int.

NOTE 2
The C language allows speciϐication of a C function that can take a variable number of arguments (ISO/IEC
9899:2018, 7.16). This document does not provide a mechanism for Fortran procedures to interoperate with such
C functions.

3 A formal parameter of a C function prototype corresponds to a dummy argument of a Fortran interface if27
they are in the same relative positions in the C parameter list and the dummy argument list, respectively.28

550 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 In a reference from C to a Fortran procedure with an interoperable interface, a C actual argument shall be1
the address of a C descriptor for the intended effective argument if the corresponding dummy argument2
interoperates with a C formal parameter that is a pointer to CFI_cdesc_t. In this C descriptor, the mem‑3
bers other than attribute and type shall describe an object with the same characteristics as the intended4
effective argument. The value of the attribute member of the C descriptor shall be compatible with the5
characteristics of the dummy argument. The typemember shall have a value that depends on the intended6
effective argument as follows:7

• if the dynamic type of the intended effective argument is an interoperable type listed in Table 18.4,8
the corresponding value for that type;9

• if the dynamic type of the intended effective argument is an intrinsic type for which the processor10
deϐines a nonnegative type speciϐier value not listed in Table 18.4, that type speciϐier value;11

• otherwise, CFI_type_other.12

5 When an interoperable Fortran procedure that is invoked from C has a dummy argument with the CON‑13
TIGUOUS attribute or that is an assumed‑length CHARACTER explicit‑shape or assumed‑size array, and14
the actual argument is the address of a C descriptor for a discontiguous object, the Fortran processor shall15
handle the difference in contiguity.16

6 When an interoperable C procedure whose Fortran interface has a dummy argument with the CONTIGU‑17
OUS attribute or that is an assumed‑length CHARACTER explicit‑shape or assumed‑size array is invoked18
from Fortran and the effective argument is discontiguous, the Fortran processor shall ensure that the C19
procedure receives a descriptor for a contiguous object.20

7 If an interoperable procedure deϐined by means other than Fortran has an optional dummy argument, and21
the corresponding actual argument in a reference from Fortran is absent, the procedure is invoked with22
a null pointer for that argument. If an interoperable procedure deϐined by means of Fortran is invoked23
by a C function, an optional dummy argument is absent if and only if the corresponding argument in the24
invocation is a null pointer.25

NOTE 3
For example, a Fortran procedure interface described by

INTERFACE
FUNCTION FUNC(I, J, K, L, M) BIND(C)

USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_SHORT) :: FUNC
INTEGER(C_INT), VALUE :: I
REAL(C_DOUBLE) :: J
INTEGER(C_INT) :: K, L(10)
TYPE(C_PTR), VALUE :: M

END FUNCTION FUNC
END INTERFACE

is interoperable with the C function prototype
short func(int i, double *j, int *k, int l[10], void *m);

A C pointer can correspond to a Fortran dummy argument of type C_PTR with the VALUE attribute or to a Fortran
scalar that does not have the VALUE attribute. In the above example, the C pointers j and k correspond to the
Fortran scalars J and K, respectively, and the C pointer m corresponds to the Fortran dummy argument M of type
C_PTR.

J3/25‑007 551

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE 4
The interoperability of Fortran procedure interfaces with C function prototypes is only one part of invocation of a C
function fromFortran. There are four pieces to consider in such an invocation: the procedure reference, the Fortran
procedure interface, the C function prototype, and the C function. Conversely, the invocation of a Fortran procedure
from C involves the function reference, the C function prototype, the Fortran procedure interface, and the Fortran
procedure. In order to determine whether a reference is allowed, it is necessary to consider all four pieces.

For example, consider a C function that can be described by the C function prototype
void copy(char in[], char out[]);

Such a function can be invoked from Fortran as follows:
USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_CHAR, C_NULL_CHAR
INTERFACE

SUBROUTINE COPY(IN, OUT) BIND(C)
IMPORT C_CHAR
CHARACTER(KIND=C_CHAR), DIMENSION(*) :: IN, OUT

END SUBROUTINE COPY
END INTERFACE

CHARACTER(LEN=10, KIND=C_CHAR) :: &
& DIGIT_STRING = C_CHAR_'123456789' // C_NULL_CHAR
CHARACTER(KIND=C_CHAR) :: DIGIT_ARR(10)

CALL COPY(DIGIT_STRING, DIGIT_ARR)
PRINT '(1X, A1)', DIGIT_ARR(1:9)
END

The procedure reference has character string actual arguments. These correspond to character array dummy ar‑
guments in the procedure interface body as allowed by Fortran’s rules of sequence association (15.5.2.12). Those
array dummy arguments in the procedure interface are interoperable with the formal parameters of the C function
prototype. The C function is not shown here, but is assumed to be compatible with the C function prototype.

NOTE 5
If an interoperable C procedure whose Fortran interface has a dummy argument which has the CONTIGUOUS at‑
tribute, or is an assumed‑length CHARACTER explicit‑shape or assumed‑size array, is invoked from C, because the
invoking routine is responsible for the contents of the C descriptor, it therefore might not describe a contiguous
data object.

18.4 C descriptors1

1 A C descriptor is a C structure of type CFI_cdesc_t. Together with library functions that have standard pro‑2
totypes, it provides ameans for describing andmanipulating Fortran data objects fromwithin a C function.3
This C structure is deϐined in the source ϐile ISO_Fortran_binding.h.4

18.5 The source ϐile ISO_Fortran_binding.h5

18.5.1 Summary of contents6

1 The source ϐile ISO_Fortran_binding.h shall contain the C structure deϐinitions, typedef declarations,mac‑7
ro deϐinitions, and function prototypes speciϐied in 18.5.2 to 18.5.5. The deϐinitions and declarations in8
ISO_Fortran_binding.h can be used by a C function to interpret and manipulate a C descriptor. These9
provide ameans to specify aCprototype that interoperateswith aFortran interface that has anoninteroper‑10
able dummy variable (18.3.7).11

552 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 The source ϐile ISO_Fortran_binding.h may be included in any order relative to the standard C headers,1
and may be included more than once in a given scope, with no effect different from being included only2
once, other than the effect on line numbers.3

3 A C source ϐile that includes the ISO_Fortran_binding.h header ϐile shall not use any names starting with4
CFI_ that are not deϐined in the header, and shall not deϐine any of the structure names deϐined in the header5
as macro names. All names other than structure member names deϐined in the header begin with CFI_ or6
an underscore character, or are deϐined by a standard C header that it includes.7

18.5.2 The CFI_dim_t structure type8

1 CFI_dim_t is a typedef name for a C structure. It is used to represent lower bound, extent, and memory9
stride information for one dimension of an array. The type CFI_index_t is described in 18.5.4. CFI_dim_t10
contains at least the following members in any order.11

CFI_index_t lower_bound; The value is equal to the value of the lower bound for the dimension being12
described.13

CFI_index_t extent; The value is equal to the number of elements in the dimension being described, or−114
for the ϐinal dimension of an assumed‑size array.15

CFI_index_t sm; The value is equal to the memory stride for a dimension; this is the difference in bytes16
between the addresses of successive elements in the dimension being described.17

18.5.3 The CFI_cdesc_t structure type18

1 CFI_cdesc_t is a typedef name for a C structure, which contains a ϐlexible array member. It shall contain at19
least the members described in this subclause. The values of these members of a structure of type CFI_‑20
cdesc_t that is produced by the functions andmacros speciϐied in this document, or received by a C function21
when invoked by a Fortran procedure, shall have the properties described in this subclause.22

2 The ϐirst three members of the structure shall be base_addr, elem_len, and version in that order. The ϐinal23
member shall be dim. All other members shall be between version and dim, in any order. The types CFI_‑24
attribute_t, CFI_rank_t, and CFI_type_t are described in 18.5.4. The type CFI_dim_t is described in 18.5.2.25

void * base_addr; If the object is an unallocated allocatable variable or a pointer that is disassociated, the26
value is a null pointer; otherwise, if the object has zero size, the value is not a null pointer but is oth‑27
erwise processor‑dependent. Otherwise, the value is the base address of the object being described.28
The base address of a scalar is its C address. The base address of an array is the C address of the ϐirst29
element in Fortran array element order.30

size_t elem_len; If the object is scalar, the value is the storage size in bytes of the object; otherwise, the31
value is the storage size in bytes of an element of the object.32

int version; The value is equal to the value of CFI_VERSION in the source ϐile ISO_Fortran_binding.h that33
deϐined the format and meaning of this C descriptor.34

CFI_rank_t rank; The value is equal to the number of dimensions of the Fortran object being described; if35
the object is scalar, the value is zero.36

J3/25‑007 553

J3/25‑007 WD 1539‑1 2024‑12‑29

CFI_type_t type; The value is equal to the speciϐier for the type of the object. Each interoperable intrinsic1
C type has a speciϐier. Speciϐiers are also provided to indicate that the type of the object is an inter‑2
operable structure, or is unknown. The macros listed in Table 18.4 provide values that correspond3
to each speciϐier.4

CFI_attribute_t attribute; The value is equal to the value of an attribute code that indicates whether the5
object described is allocatable, a data pointer, or a nonallocatable nonpointer data object. Themacros6
listed in Table 18.3 provide values that correspond to each code.7

CFI_dim_t dim; The number of elements in the dim array is equal to the rank of the object. Each element8
of the array contains the lower bound, extent, and memory stride information for the corresponding9
dimension of the Fortran object.10

3 For a C descriptor of an array pointer or allocatable array, the value of the lower_bound member of each11
element of the dimmember of the descriptor is determined by argument association, allocation, or pointer12
association. For a C descriptor of a nonallocatable nonpointer object, the value of the lower_boundmember13
of each element of the dimmember of the descriptor is zero.14

4 There shall be an ordering of the dimensions such that the absolute value of the sm member of the ϐirst15
dimension is not less than the elem_lenmember of the C descriptor and the absolute value of the smmem‑16
ber of each subsequent dimension is not less than the absolute value of the sm member of the previous17
dimension multiplied by the extent of the previous dimension.18

5 In a C descriptor of an assumed‑size array, the extentmember of the last element of the dimmember has19
the value−1.20

NOTE 1
The reason for the restriction on the absolute values of the smmembers is to ensure that there is no overlap between
the elements of the array that is being described, while allowing for the reordering of subscripts. Within Fortran,
such a reordering can be achieved with the intrinsic function TRANSPOSE or the intrinsic function RESHAPE with
the optional argument ORDER, and an optimizing compiler can accommodate it without making a copy by con‑
structing the appropriate descriptor whenever it can determine that a copy is not needed.

NOTE 2
The value of elem_len for a Fortran CHARACTER object is equal to the character length times the number of bytes
of a single character of that kind. If the kind is C_CHAR, this value will be equal to the character length.

18.5.4 Macros and typedefs in ISO_Fortran_binding.h21

1 Except for CFI_CDESC_T, each macro deϐined in ISO_Fortran_binding.h expands to an integer constant22
expression that is either a single token or a parenthesized expression that is suitable for use in #if prepro‑23
cessing directives.24

2 CFI_CDESC_T is a function‑like macro that takes one argument, which is the rank of the C descriptor to25
create, and evaluates to an unqualiϐied type of suitable size and alignment for deϐining a variable to use26
as a C descriptor of that rank. The argument shall be an integer constant expression with a value that is27
greater than or equal to zero and less than or equal to CFI_MAX_RANK. A pointer to a variable declared28
using CFI_CDESC_T can be cast to CFI_cdesc_t *. A variable declared using CFI_CDESC_T shall not have an29
initializer.30

554 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 1
The CFI_CDESC_Tmacro provides thememory for a C descriptor. The address of an entity declared using themacro
is not usable as an actual argument corresponding to a formal parameter of type CFI_cdesc_t * without an explicit
cast. For example, the following code uses CFI_CDESC_T to declare a C descriptor of rank 5 and pass it to CFI_‑
deallocate (18.5.5.4).

CFI_CDESC_T(5) object;
int ind;
… Code to deϔine and use C descriptor.
ind = CFI_deallocate((CFI_cdesc_t *)&object);

3 CFI_index_t is a typedef name for a standard signed integer type capable of representing the result of sub‑1
tracting two pointers.2

4 TheCFI_MAX_RANKmacro has a processor‑dependent value equal to the largest rank supported. The value3
shall be greater than or equal to 15. CFI_rank_t is a typedef name for a standard integer type capable of4
representing the largest supported rank.5

5 The CFI_VERSION macro has a processor‑dependent value that encodes the version of the ISO_Fortran_-6
binding.h source ϐile containing this macro. This value should be increased if a new version of the source7
ϐile is incompatible with the previous version.8

6 Themacros in Table 18.3 are for use as attribute codes. The values shall be nonnegative and distinct. CFI_‑9
attribute_t is a typedef name for a standard integer type capable of representing the values of the attribute10
codes.11

Table 18.3— ISO_Fortran_binding.h macros for attribute codes
Macro name Attribute

CFI_attribute_pointer data pointer
CFI_attribute_allocatable allocatable
CFI_attribute_other nonallocatable nonpointer

7 CFI_attribute_pointer speciϐies a data object with the Fortran POINTER attribute. CFI_attribute_allocatable12
speciϐies an objectwith the FortranALLOCATABLE attribute. CFI_attribute_other speciϐies a nonallocatable13
nonpointer object.14

8 The macros in Table 18.4 are for use as type speciϐiers. The value for CFI_type_other shall be negative and15
distinct from all other type speciϐiers. CFI_type_struct speciϐies a C structure that is interoperable with a16
Fortran derived type; its value shall be positive and distinct from all other type speciϐiers. If a C type is not17
interoperable with a Fortran type and kind supported by the Fortran processor, its macro shall evaluate to18
a negative value. Otherwise, the value for a macro listed in Table 18.4 shall be positive.19

9 If the processor supports interoperability of a Fortran intrinsic type with a C type not listed in Table 18.4,20
the processor shall deϐine a type speciϐier value for that type which is positive and distinct from all other21
type speciϐiers.22

10 CFI_type_t is a typedef name for a standard integer type capable of representing the values for the suppor‑23
ted type speciϐiers.24

J3/25‑007 555

J3/25‑007 WD 1539‑1 2024‑12‑29

Table 18.4— ISO_Fortran_binding.h macros for type codes
Macro name C Type

CFI_type_signed_char signed char
CFI_type_short short int
CFI_type_int int
CFI_type_long long int
CFI_type_long_long long long int
CFI_type_size_t size_t
CFI_type_int8_t int8_t
CFI_type_int16_t int16_t
CFI_type_int32_t int32_t
CFI_type_int64_t int64_t
CFI_type_int_least8_t int_least8_t
CFI_type_int_least16_t int_least16_t
CFI_type_int_least32_t int_least32_t
CFI_type_int_least64_t int_least64_t
CFI_type_int_fast8_t int_fast8_t
CFI_type_int_fast16_t int_fast16_t
CFI_type_int_fast32_t int_fast32_t
CFI_type_int_fast64_t int_fast64_t
CFI_type_intmax_t intmax_t
CFI_type_intptr_t intptr_t
CFI_type_ptrdiff_t ptrdiff_t
CFI_type_ϐloat ϐloat
CFI_type_double double
CFI_type_long_double long double
CFI_type_ϐloat_Complex ϐloat _Complex
CFI_type_double_Complex double _Complex
CFI_type_long_double_Complex long double _Complex
CFI_type_Bool _Bool
CFI_type_char char
CFI_type_cptr void *
CFI_type_struct interoperable C structure
CFI_type_other Not otherwise speciϐied

NOTE 2
The values for different C types can be the same; for example, CFI_type_int and CFI_type_int32_t might have the
same value.

11 The macros in Table 18.5 are for use as error codes. The macro CFI_SUCCESS shall be deϐined to be the1
integer constant zero. The value of each macro other than CFI_SUCCESS shall be nonzero and shall be2
different from the values of the other macros speciϐied in this subclause. Error conditions other than those3
listed in this subclause should be indicated by error codes different from the values of the macros named4
in this subclause.5

12 The values of the macros in Table 18.5 indicate the error condition described.6

556 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Table 18.5— ISO_Fortran_binding.h macros for error codes
Macro name Error condition
CFI_SUCCESS No error detected.
CFI_ERROR_BASE_ADDR_NULL The base address member of a C descriptor is a null pointer

in a context that requires a non‑null pointer value.
CFI_ERROR_BASE_ADDR_NOT_NULL In a context that requires a null pointer value, the base

address member of a C descriptor is not a null pointer.
CFI_INVALID_ELEM_LEN The value supplied for the element length member of a

C descriptor is not valid.
CFI_INVALID_RANK The value supplied for the rank member of a C descriptor is

not valid.
CFI_INVALID_TYPE The value supplied for the type member of a C descriptor is

not valid.
CFI_INVALID_ATTRIBUTE The value supplied for the attribute member of a

C descriptor is not valid.
CFI_INVALID_EXTENT The value supplied for the extent member of a CFI_dim_t

structure is not valid.
CFI_INVALID_DESCRIPTOR A C descriptor is invalid in some way.
CFI_ERROR_MEM_ALLOCATION Memory allocation failed.
CFI_ERROR_OUT_OF_BOUNDS A reference is out of bounds.

18.5.5 Functions declared in ISO_Fortran_binding.h1

18.5.5.1 Arguments and results of the functions2

1 Some of the functions described in 18.5.5 return an error indicator; this is an integer value that indicates3
whether an error condition was detected. The value zero indicates that no error condition was detected,4
and a nonzero value indicates which error condition was detected. Table 18.5 lists standard error condi‑5
tions andmacro names for their corresponding error codes. A processor is permitted to detect other error6
conditions. If an invocation of a function deϐined in 18.5.5 could detect more than one error condition and7
an error condition is detected, which error condition is detected is processor dependent.8

2 In function arguments representing subscripts, bounds, extents, or strides, the ordering of the elements is9
the same as the ordering of the elements of the dimmember of a C descriptor.10

3 Prototypes for these functions, or equivalent macros, are provided in the ISO_Fortran_binding.h ϐile as11
described in 18.5.5. It is unspeciϐiedwhether the functions deϐined by this header aremacros or identiϐiers12
declaredwith external linkage. If a macro deϐinition is suppressed in order to access an actual function, the13
behavior is undeϐined.14

NOTE
These functions are allowed to be macros to provide extra implementation ϐlexibility. For example, CFI_establish
could include the value of CFI_VERSION in the header used to compile the call to CFI_establish as an extra argument
of the actual function used to establish the C descriptor.

18.5.5.2 The CFI_address function15

1 Synopsis. C address of an object described by a C descriptor.16

void *CFI_address(const CFI_cdesc_t *dv, const CFI_index_t subscripts[]);17

J3/25‑007 557

J3/25‑007 WD 1539‑1 2024‑12‑29

2 Formal Parameters.1
dv shall be the address of a C descriptor describing the object. The object shall not be an unalloc‑2

ated allocatable variable or a pointer that is not associated.3
subscripts shall be a null pointer or the address of an array of type CFI_index_t. If the object is an array,4

subscripts shall be the address of an array of CFI_index_t with at least n elements, where n is5
the rank of the object. The value of subscripts[i] shall be within the bounds of dimension i6
speciϐied by the dimmember of the C descriptor except for the last dimension of a C descriptor7
for an assumed‑size array. For the C descriptor of an assumed‑size array, the value of the8
subscript for the last dimension shall not be less than the lower bound, and the subscript9
order value speciϐied by the subscripts shall not exceed the size of the array.10

3 Result Value. If the object is an array of rank n, the result is the C address of the element of the object that11
the ϐirst n elements of the subscripts argument would specify if used as subscripts. If the object is scalar,12
the result is its C address.13

4 Example. If dv is the address of a C descriptor for the Fortran array A declared as14

REAL(C_FLOAT) :: A(100, 100)15

the following code calculates the C address of A(5, 10):16

CFI_index_t subscripts[2];17
float *address;18
subscripts[0] = 4;19
subscripts[1] = 9;20
address = (float *) CFI_address(dv, subscripts);21

18.5.5.3 The CFI_allocate function22

1 Synopsis. Allocate memory for an object described by a C descriptor.23

int CFI_allocate(CFI_cdesc_t *dv, const CFI_index_t lower_bounds[],24
const CFI_index_t upper_bounds[], size_t elem_len);25

2 Formal Parameters.26
dv shall be the address of a C descriptor specifying the rank and type of the object. The base_-27

addrmember of the C descriptor shall be a null pointer. If the type is not a character type, the28
elem_lenmember shall specify the element length. The attributemember shall have a value29
of CFI_attribute_allocatable or CFI_attribute_pointer.30

lower_bounds shall be the address of an array with at least dv->rank elements, if dv->rank>0.31
upper_bounds shall be the address of an array with at least dv->rank elements, if dv->rank>0.32
elem_len If the type speciϐied in the C descriptor type is a Fortran character type, the value of elem_len33

shall be the storage size in bytes of an element of the object; otherwise, elem_len is ignored.34

3 Description. Successful execution of CFI_allocate allocates memory for the object described by the C35
descriptorwith the address dv using the samemechanism as the FortranALLOCATE statement, and assigns36
the address of that memory to dv->base_addr. The ϐirst dv->rank elements of the lower_bounds and up-37
per_bounds arguments provide the lower and upper Fortran bounds, respectively, for each corresponding38
dimension of the object. The supplied lower and upper bounds override any current dimension informa‑39
tion in the C descriptor. If the rank is zero, the lower_bounds and upper_bounds arguments are ignored. If40

558 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

the type speciϐied in the C descriptor is a character type, the supplied element length overrides the current1
element‑length information in the descriptor.2

If an error is detected, the C descriptor is not modiϐied.3

4 Result Value. The result is an error indicator.4

5 Example. If dv is the address of a C descriptor for the Fortran array A declared as5

REAL, ALLOCATABLE :: A(:, :)6

and the array is not allocated, the following code allocates it to be of shape [100, 500]:7

CFI_index_t lower[2], upper[2];8
int ind;9
lower[0] = 1; lower[1] = 1;10
upper[0] = 100; upper[1] = 500;11
ind = CFI_allocate(dv, lower, upper, 0);12

18.5.5.4 The CFI_deallocate function13

1 Synopsis. Deallocate memory for an object described by a C descriptor.14

int CFI_deallocate(CFI_cdesc_t *dv);15

2 Formal Parameter. dv shall be the address of a C descriptor describing the object. It shall have been alloc‑16
ated using the same mechanism as the Fortran ALLOCATE statement. If the object is a pointer, it shall be17
associated with a target satisfying the conditions for successful deallocation by the Fortran DEALLOCATE18
statement (9.7.3).19

3 Description. Successful execution of CFI_deallocate deallocates memory for the object using the same20
mechanism as the Fortran DEALLOCATE statement, and the base_addr member of the C descriptor be‑21
comes a null pointer.22

If an error is detected, the C descriptor is not modiϐied.23

4 Result Value. The result is an error indicator.24

5 Example. If dv is the address of a C descriptor for the Fortran array A declared as25
REAL, ALLOCATABLE :: A(:, :)26

and the array is allocated, the following code deallocates it:27

int ind;28
ind = CFI_deallocate(dv);29

18.5.5.5 The CFI_establish function30

1 Synopsis. Establish a C descriptor.31

int CFI_establish(CFI_cdesc_t *dv, void *base_addr, CFI_attribute_t attribute,32
CFI_type_t type, size_t elem_len, CFI_rank_t rank,33
const CFI_index_t extents[]);34

J3/25‑007 559

J3/25‑007 WD 1539‑1 2024‑12‑29

2 Formal Parameters.1
dv shall be the address of a data object large enough to hold a C descriptor of the rank speciϐied2

by rank. It shall not have the same value as either a C formal parameter that corresponds3
to a Fortran actual argument or a C actual argument that corresponds to a Fortran dummy4
argument. It shall not be the address of a C descriptor that describes an allocated allocatable5
object.6

base_addr shall be a null pointer or the base address of the object to be described. If it is not a null pointer,7
it shall be the address of a storage sequence that is appropriately aligned (ISO/IEC 9899:2018,8
3.2) for an object of the type speciϐied by type.9

attribute shall be one of the attribute codes in Table 18.3. If it is CFI_attribute_allocatable, base_addr10
shall be a null pointer.11

type shall have the value of one of the type codes in Table 18.4, or have a positive value correspond‑12
ing to an interoperable C type.13

elem_len If type is equal to CFI_type_struct, CFI_type_other, or a Fortran character type code, elem_len14
shall be greater than zero and equal to the storage size in bytes of an element of the object.15
Otherwise, elem_lenwill be ignored.16

rank shall have a value in the range 0 ≤ rank ≤ CFI_MAX_RANK. It speciϐies the rank of the object.17
extents is ignored if rank is equal to zero or if base_addr is a null pointer. Otherwise, it shall be the18

address of an array with rank elements; the value of each element shall be nonnegative, and19
extents[i] speciϐies the extent of dimension i of the object.20

3 Description. Successful execution of CFI_establish updates the object with the address dv to be an estab‑21
lished C descriptor for a nonallocatable nonpointer data object of known shape, an unallocated allocatable22
object, or a data pointer. If base_addr is not a null pointer, it is for a nonallocatable entity that is a scalar or23
a contiguous array; if the attribute argument has the value CFI_attribute_pointer, the lower bounds of the24
object described by dv are set to zero. If base_addr is a null pointer, the established C descriptor is for an25
unallocated allocatable, a disassociated pointer, or is a C descriptor that has the attribute CFI_attribute_‑26
other but does not describe a data object. If base_addr is the C address of a Fortran data object, the type27
and elem_len arguments shall be consistent with the type and type parameters of the Fortran data object.28
The remaining properties of the object are given by the other arguments.29

If an error is detected, the object with the address dv is not modiϐied.30

4 Result Value. The result is an error indicator.31

NOTE 1
CFI_establish is used to initialize a C descriptor declared in C with CFI_CDESC_T before passing it to any other func‑
tions as an actual argument, in order to set the rank, attribute, type and element length.

NOTE 2
A C descriptor with attribute CFI_attribute_other and base_addr a null pointer can be used as the argument
result in calls to CFI_section or CFI_select_part, which will produce a C descriptor for a nonallocatable nonpointer
data object.

5 Examples.32

Case (i): The following code fragment establishes a Cdescriptor for anunallocated rank‑one allocatable33
array that can be passed to Fortran for allocation there.34

CFI_rank_t rank;35

560 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

CFI_CDESC_T(1) field;1
int ind;2
rank = 1;3
ind = CFI_establish((CFI_cdesc_t *)&field, NULL, CFI_attribute_allocatable,4

CFI_type_double, 0, rank, NULL);5
Case (ii): Given the Fortran type deϐinition6

TYPE, BIND(C) :: T7
REAL(C_DOUBLE) :: X8
COMPLEX(C_DOUBLE_COMPLEX) :: Y9

END TYPE10
and a Fortran subprogram that has an assumed‑shape dummy argument of type T, the follow‑11
ing code fragment creates a descriptor a_fortran for an array of size 100 that can be used as12
the actual argument in an invocation of the subprogram from C:13

typedef struct {double x; double _Complex y;} t;14
t a_c[100];15
CFI_CDESC_T(1) a_fortran;16
int ind;17
CFI_index_t extent[1];18

19
extent[0] = 100;20
ind = CFI_establish((CFI_cdesc_t *)&a_fortran, a_c, CFI_attribute_other,21

CFI_type_struct, sizeof(t), 1, extent);22

18.5.5.6 The CFI_is_contiguous function23

1 Synopsis. Test contiguity of an array.24

int CFI_is_contiguous(const CFI_cdesc_t * dv);25

2 Formal Parameter. dv shall be the address of a C descriptor describing an array. The base_addrmember26
of the C descriptor shall not be a null pointer.27

3 Result Value. The value of the result is 1 if the array described by dv is contiguous, and 0 otherwise.28

NOTE
Assumed‑size and allocatable arrays are always contiguous, and therefore the result of CFI_is_contiguous on a C
descriptor for such an array will be equal to 1.

18.5.5.7 The CFI_section function29

1 Synopsis. Update a C descriptor for an array section for which each element is an element of a given array.30

int CFI_section(CFI_cdesc_t *result, const CFI_cdesc_t *source,31
const CFI_index_t lower_bounds[], const CFI_index_t upper_bounds[],32
const CFI_index_t strides[]);33

2 Formal Parameters.34
result shall be the address of a C descriptor with rank equal to the rank of sourceminus the number35

of zero strides. The attributemember shall have the value CFI_attribute_other or CFI_attrib‑36
ute_pointer. If the value of result is the same as either a C formal parameter that corresponds37
to a Fortran actual argument or a C actual argument that corresponds to a Fortran dummy ar‑38
gument, the attributemember shall have the value CFI_attribute_pointer.39

J3/25‑007 561

J3/25‑007 WD 1539‑1 2024‑12‑29

source shall be the address of a C descriptor that describes a nonallocatable nonpointer array, an1
allocated allocatable array, or an associated array pointer. The elem_len and type members2
of source shall have the same values as the corresponding members of result.3

lower_bounds shall be a null pointer or the address of an arraywith at least source->rank elements. If it is4
not a null pointer, and stridei is zero or (upperi−lower_bounds[i]+stridei)/stridei > 0,5
the value of lower_bounds[i] shall be within the bounds of dimension i of SOURCE.6

upper_bounds shall be a null pointer or the address of an array with at least source->rank elements. If7
source describes an assumed‑size array, upper_bounds shall not be a null pointer. If it is not a8
null pointer and stridei is zero or (upper_bounds[i]− loweri + stridei)/stridei > 0, the9
value of upper_bounds[i] shall be within the bounds of dimension i of SOURCE.10

strides shall be a null pointer or the address of an array with at least source->rank elements.11

3 Description. Successful execution of CFI_section updates the base_addr and dimmembers of the C desc‑12
riptor with the address result to describe the array section determined by source, lower_bounds, upper_-13
bounds, and strides, as follows.14

The array section is equivalent to the Fortran array section SOURCE(sectsub1, sectsub2, ... sectsubn), where15
SOURCE is the array described by source, n is the rank of that array, and sectsubi is the subscript loweri16
if stridei is zero, and the section subscript loweri : upperi : stridei otherwise. The value of loweri is the17
lower bound of dimension i of SOURCE if lower_bounds is a null pointer and lower_bounds[i] otherwise.18
The value of upperi is the upper bound of dimension i of SOURCE if upper_bounds is a null pointer and19
upper_bounds[i] otherwise. The value of stridei is 1 if strides is a null pointer and strides[i] otherwise.20
If stridei has the value zero, loweri shall have the same value as upperi.21

If an error is detected, the C descriptor with the address result is not modiϐied.22

4 Result Value. The result is an error indicator.23

5 Examples.24

Case (i): If source is already the address of a C descriptor for the rank‑one Fortran array A, the lower25
bounds of A are equal to 1, and the lower bounds in the C descriptor are equal to 0, the follow‑26
ing code fragment establishes a new C descriptor section and updates it to describe the array27
section A(3::5):28

CFI_index_t lower[1], strides[1];29
CFI_CDESC_T(1) section;30
int ind;31
lower[0] = 2;32
strides[0] = 5;33
ind = CFI_establish((CFI_cdesc_t *)§ion, NULL, CFI_attribute_other,34

CFI_type_float, 0, 1, NULL);35
ind = CFI_section((CFI_cdesc_t *)§ion, source, lower, NULL, strides);36

Case (ii): If source is already the address of a C descriptor for a rank‑two Fortran assumed‑shape array37
A with lower bounds equal to 1, the following code fragment establishes a C descriptor and38
updates it to describe the rank‑one array section A(:, 42).39

CFI_index_t lower[2], upper[2], strides[2];40
CFI_CDESC_T(1) section;41
int ind;42
lower[0] = source->dim[0].lower_bound;43
upper[0] = source->dim[0].lower_bound + source->dim[0].extent - 1;44
strides[0] = 1;45
lower[1] = upper[1] = source->dim[1].lower_bound + 41;46
strides[1] = 0;47
ind = CFI_establish((CFI_cdesc_t *)§ion, NULL, CFI_attribute_other,48

562 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

CFI_type_float, 0, 1, NULL);1
ind = CFI_section((CFI_cdesc_t *)§ion, source, lower, upper, strides);2

18.5.5.8 The CFI_select_part function3

1 Synopsis. Update a C descriptor for an array section for which each element is a part of the corresponding4
element of an array.5

int CFI_select_part(CFI_cdesc_t *result, const CFI_cdesc_t *source, size_t displacement,6
size_t elem_len);7

2 Formal Parameters.8
result shall be the address of a Cdescriptor; result->rank shall have the samevalue as source->rank9

and result->attribute shall have the value CFI_attribute_other or CFI_attribute_pointer. If10
the address speciϐied by result is the value of a C formal parameter that corresponds to a11
Fortran actual argument or of a C actual argument that corresponds to a Fortran dummy ar‑12
gument, result->attribute shall have the value CFI_attribute_pointer. The value of result-13
>type speciϐies the type of the array section.14

source shall be the address of a C descriptor for an allocated allocatable array, an associated array15
pointer, or a nonallocatable nonpointer array that is not assumed‑size.16

displacement shall have a value 0 ≤ displacement ≤ source->elem_len −1, and the sum of the dis‑17
placement and the size in bytes of an element of the array section shall be less than or equal to18
source->elem_len. The address displacementbytes greater than the value of source->base_-19
addr is the base of the array section and shall be appropriately aligned (ISO/IEC 9899:2018,20
3.2) for an object of the type of the array section.21

elem_len shall have a value equal to the storage size in bytes of an element of the array section if result-22
>type speciϐies a Fortran character type; otherwise, elem_len is ignored.23

3 Description. Successful execution of CFI_select_part updates the base_addr, dim, and elem_lenmembers24
of the C descriptor with the address result for an array section for which each element is a part of the25
corresponding element of the array described by the C descriptor with the address source. The part shall26
be a component of a structure, a substring, or the real or imaginary part of a complex value.27

If an error is detected, the C descriptor with the address result is not modiϐied.28

4 Result Value. The result is an error indicator.29

5 Example. If source is already the address of a C descriptor for the Fortran array A declared with30

TYPE, BIND(C) :: T31
REAL(C_DOUBLE) :: X32
COMPLEX(C_DOUBLE_COMPLEX) :: Y33

END TYPE34
TYPE(T) A(100)35

the following code fragment establishes a C descriptor for the array A%Y:36

typedef struct {37
double x; double _Complex y;38

} t;39
CFI_CDESC_T(1) component;40
CFI_cdesc_t * comp_cdesc = (CFI_cdesc_t *)&component;41
CFI_index_t extent[] = { 100 };42

J3/25‑007 563

J3/25‑007 WD 1539‑1 2024‑12‑29

(void)CFI_establish(comp_cdesc, NULL, CFI_attribute_other, CFI_type_double_Complex,1
sizeof(double _Complex), 1, extent);2

(void)CFI_select_part(comp_cdesc, source, offsetof(t,y), 0);3

18.5.5.9 The CFI_setpointer function4

1 Synopsis. Update a C descriptor for a Fortran pointer to be associated with the whole of a given object or5
to be disassociated.6

int CFI_setpointer(CFI_cdesc_t *result, CFI_cdesc_t *source,7
const CFI_index_t lower_bounds[]);8

2 Formal Parameters.9
result shall be the address of a C descriptor for a Fortran pointer. It is updated using information10

from the source and lower_bounds arguments.11
source shall be a null pointer or the address of a C descriptor for an allocated allocatable object, a12

data pointer object, or a nonallocatable nonpointer data object that is not an assumed‑size13
array. If source is not a null pointer, the corresponding values of the rank and typemembers14
shall be the same in the C descriptors with the addresses source and result. If source is not a15
null pointer and the C descriptor with the address result does not describe a deferred length16
character pointer, the corresponding values of the elem_lenmember shall be the same in the17
C descriptors with the addresses source and result.18

lower_bounds If source is not a null pointer and source->rank is nonzero, lower_bounds shall be a null19
pointer or the address of an array with at least source->rank elements.20

3 Description. Successful execution of CFI_setpointer updates the base_addr, dim, and possibly elem_len21
members of the C descriptor with the address result as follows:22

• if source is a null pointer or the address of a C descriptor for a disassociated pointer, the updated C23
descriptor describes a disassociated pointer;24

• otherwise, the C descriptor with the address result becomes a C descriptor for the object described25
by the C descriptor with the address source, except that if source->rank is nonzero and lower_-26
bounds is not a null pointer, the lower bounds are replaced by the values of the ϐirst source->rank27
elements of the lower_bounds array. If the C descriptorwith the address result describes a character28
pointer with deferred length, the value of its elem_lenmember is set to source->elem_len.29

If an error is detected, the C descriptor with the address result is not modiϐied.30

4 Result Value. The result is an error indicator.31

5 Example. If ptr is already the address of a C descriptor for an array pointer of rank 1, the following code32
updates it to be a C descriptor for a pointer to the same array with lower bound 0.33

CFI_index_t lower_bounds[1];34
int ind;35
lower_bounds[0] = 0;36
ind = CFI_setpointer(ptr, ptr, lower_bounds);37

564 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

18.6 Restrictions on C descriptors1

1 A C descriptor shall not be initialized, updated, or copied other than by calling the functions speciϐied in2
18.5.5.3

2 If the address of a C descriptor is a formal parameter that corresponds to a Fortran actual argument or a C4
actual argument that corresponds to a Fortran dummy argument,5

• the C descriptor shall not be modiϐied if either the corresponding dummy argument in the Fortran6
interface has the INTENT (IN) attribute or the C descriptor is for a nonallocatable nonpointer object,7
and8

• the base_addrmember of the C descriptor shall not be accessed before it is given a value if the corres‑9
ponding dummy argument in the Fortran interface has the POINTER and INTENT (OUT) attributes.10

NOTE
In this context, modiϐication refers to any change to the location or contents of the C descriptor, including establish‑
ment and update. The intent of these restrictions is that C descriptors remain intact at all times they are accessible
to an active Fortran procedure, so that the Fortran code is not required to copy them.

3 If the address of a C descriptor is a C actual argument that corresponds to an assumed‑shape Fortran11
dummy argument, that descriptor shall not be for an assumed‑size array.12

18.7 Restrictions on formal parameters13

1 Within a C function, an allocatable object shall be allocated or deallocated only by execution of the CFI_‑14
allocate and CFI_deallocate functions. A Fortran pointer can become associated with a target by execution15
of the CFI_allocate function.16

2 Calling CFI_allocate or CFI_deallocate for a C descriptor changes the allocation status of the Fortran variable17
it describes.18

3 If the address of an object is the value of a formal parameter that corresponds to a nonpointer dummy19
argument in an interface with the BIND attribute, then20

• if the dummy argument has the INTENT (IN) attribute, the object shall not be deϐined or become21
undeϐined, and22

• if the dummy argument has the INTENT (OUT) attribute, the object shall not be referenced before it23
is deϐined.24

4 If a formal parameter that is a pointer to CFI_cdesc_t corresponds to a dummy argument in an interoper‑25
able procedure interface, a pointer based on the base_addr in that C descriptor shall not be used to access26
memory that is not part of the object described by the C descriptor.27

18.8 Restrictions on lifetimes28

1 ACdescriptor of, or C pointer to, any part of a Fortran object becomes undeϐined under the same conditions29
that the association status of a Fortran pointer associated with that object would become undeϐined, and30
any further use of it is undeϐined behavior (ISO/IEC 9899:2018, 3.4.3).31

J3/25‑007 565

J3/25‑007 WD 1539‑1 2024‑12‑29

2 A C descriptor whose address is a formal parameter that corresponds to a Fortran dummy argument be‑1
comes undeϐined on return from a call to the function from Fortran. If the dummy argument does not have2
either the TARGET or ASYNCHRONOUS attribute, all C pointers to any part of the object described by the C3
descriptor become undeϐined on return from the call, and any further use of them is undeϐined behavior.4

3 If the address of a C descriptor is passed as an actual argument to a Fortran procedure, the lifetime (ISO/IEC5
9899:2018, 6.2.4) of the C descriptor shall not end before the return from the procedure call. If an object is6
passed to a Fortran procedure as a nonallocatable, nonpointer dummy argument, its lifetime shall not end7
before the return from the procedure call.8

4 If the lifetime of a C descriptor for an allocatable object that was established by C ends before the program9
exits, the object shall be unallocated at that time.10

5 If a Fortran pointer becomes associated with a data object deϐined by the companion processor, the asso‑11
ciation status of the Fortran pointer becomes undeϐined when the lifetime of that data object ends.12

NOTE
The following example illustrates how a C descriptor becomes undeϐined upon returning from a call to a C function.

REAL, TARGET :: X(1000), B
INTERFACE

REAL FUNCTION CFUN(ARRAY) BIND(C, NAME="Cfun")
REAL ARRAY(:)

END FUNCTION
END INTERFACE
B = CFUN(X)

Cfun is a C function. Before or during the invocation of Cfun, the processorwill create a C descriptor for the array x.
On return from Cfun, that C descriptor will become undeϐined. In addition, because the dummy argument ARRAY
does not have the TARGET or ASYNCHRONOUS attribute, a C pointer whose value was set during execution of Cfun
to be the address of any part of X will become undeϐined.

18.9 Interoperation with C global variables13

18.9.1 General14

1 A C variable whose name has external linkage may interoperate with a common block1 or with a variable15
declared in the scope of a module. The common block or variable shall be speciϐied to have the BIND at‑16
tribute.17

2 At most one variable that is associated with a particular C variable whose name has external linkage is18
permitted to be declared within all the Fortran program units of a program. A variable shall not be initially19
deϐined by more than one processor.20

3 If a common block is speciϐied in a BIND statement, it shall be speciϐied in a BIND statement with the same21
binding label in each scoping unit in which it is declared. A C variable whose name has external linkage22
interoperates with a common block that has been speciϐied in a BIND statement if23

• the C variable is of a structure type and the variables that are members of the common block are24
interoperable with corresponding components of the structure type, or25

• the common block contains a single variable, and the variable is interoperable with the C variable.26
1Common blocks are obsolescent.

566 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 There does not have to be an associated C entity for a Fortran entity with the BIND attribute.1

NOTE
The following are examples of the usage of the BIND attribute for variables and for a common block. The Fortran
variables, C_EXTERN and C2, interoperate with the C variables, c_extern and myVariable, respectively. The Fortran
common blocks, COM and SINGLE, interoperate with the C variables, com and single, respectively.

MODULE LINK_TO_C_VARS
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT), BIND(C) :: C_EXTERN
INTEGER(C_LONG) :: C2
BIND(C, NAME='myVariable') :: C2

COMMON /COM/ R, S
REAL(C_FLOAT) :: R, S, T
BIND(C) :: /COM/, /SINGLE/
COMMON /SINGLE/ T

END MODULE LINK_TO_C_VARS

/* Global variables. */
int c_extern;
long myVariable;
struct { float r, s; } com;
float single;

18.9.2 Binding labels for common blocks and variables2

1 The binding label of a variable or common block2 is a default character value that speciϐies the name by3
which the variable or common block is known to the companion processor.4

2 If a variable or common block has the BIND attribute with the NAME= speciϐier and the value of its expres‑5
sion, after discarding leading and trailing blanks, has nonzero length, the variable or common block has6
this as its binding label. The case of letters in the binding label is signiϐicant. If a variable or common block7
has the BIND attribute speciϐied without a NAME= speciϐier, the binding label is the same as the name of8
the entity using lower case letters. Otherwise, the variable or common block has no binding label.9

3 The binding label of a C variable whose name has external linkage is the same as the name of the C variable.10
A Fortran variable or common block with the BIND attribute that has the same binding label as a C variable11
whose name has external linkage is linkage associated (19.5.1.5) with that variable.12

18.10 Interoperation with C functions13

18.10.1 Deϐinition and reference of interoperable procedures14

1 A procedure that is interoperable may be deϐined either by means other than Fortran or by means of a15
Fortran subprogram, but not both. A C function that has an inline deϐinition and no external deϐinition is16
not considered to be deϐined in this sense.17

2 If the procedure is deϐined by means other than Fortran,18

• it shall be describable by a C prototype that is interoperable with the interface, and19
• if it is accessed using its binding label, it shall20

– have a name that has external linkage as deϐined by ISO/IEC 9899:2018, 6.2.2, and21
2Common blocks are obsolescent.

J3/25‑007 567

J3/25‑007 WD 1539‑1 2024‑12‑29

– have the same binding label as the interface.1

3 A reference to such a procedure causes the function described by the C prototype to be called as speciϐied2
in ISO/IEC 9899:2018.3

4 A reference in C to a procedure that has the BIND attribute, has the same binding label, and is deϐined by4
means of Fortran, causes the Fortran procedure to be invoked. A C function shall not invoke a function5
pointer whose value is the result of a reference to C_FUNLOC with a noninteroperable argument.6

5 A procedure deϐined by means of Fortran shall not invoke setjmp or longjmp (ISO/IEC 9899:2018, 7.13).7
If a procedure deϐined by means other than Fortran invokes setjmp or longjmp, that procedure shall not8
cause any procedure deϐined by means of Fortran to be invoked. A procedure deϐined by means of Fortran9
shall not be invoked as a signal handler (ISO/IEC 9899:2018, 7.14.1).10

6 If a procedure deϐined by means of Fortran and a procedure deϐined by means other than Fortran perform11
input/output operations on the same external ϐile, the results are processor dependent (12.5.4).12

7 If the value of a C function pointer will be the result of a reference to C_FUNLOC with a noninteroperable13
argument, it is recommended that the C function pointer be declared to have the type void (*)().14

18.10.2 Binding labels for procedures15

1 The binding label of a procedure is a default character value that speciϐies the name by which a procedure16
with the BIND attribute is known to the companion processor.17

2 If a procedure has the BIND attribute with the NAME= speciϐier and the value of its expression, after dis‑18
carding leading and trailing blanks, has nonzero length, the procedure has this as its binding label. The case19
of letters in the binding label is signiϐicant. If a procedure has the BIND attribute with no NAME= speciϐier,20
and the procedure is not a dummy procedure, internal procedure, or procedure pointer, then the binding21
label of the procedure is the same as the name of the procedure using lower case letters. Otherwise, the22
procedure has no binding label.23

C1807 A procedure deϐined in a submodule shall not have a binding label unless its interface is declared24
in the ancestor module.25

3 The binding label for a C function whose name has external linkage is the same as the C function name.26

NOTE
In the following sample, the binding label of C_SUB is c_sub, and the binding label of C_FUNC is C_funC.

SUBROUTINE C_SUB() BIND(C)
…

END SUBROUTINE C_SUB

INTEGER(C_INT) FUNCTION C_FUNC() BIND(C, NAME="C_funC")
USE, INTRINSIC :: ISO_C_BINDING
…

END FUNCTION C_FUNC

ISO/IEC 9899:2018 permits functions to have names that are not permitted as Fortran names; it also distinguishes
between names that would be considered as the same name in Fortran. For example, a C name can begin with an
underscore, and C names that differ in case are distinct names.

The speciϐication of a binding label allows a program to use a Fortran name to refer to a procedure deϐined by a
companion processor.

568 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

18.10.3 Exceptions and IEEE arithmetic procedures1

1 A procedure deϐined by means other than Fortran shall not use signal (ISO/IEC 9899:2018, 7.14.1) to2
change the handling of any exception that is being handled by the Fortran processor.3

2 A procedure deϐined bymeans other than Fortran shall not alter the ϐloating‑point status (17.7) other than4
by setting an exception ϐlag to signaling.5

3 Thevalues of the ϐloating‑point exception ϐlags on entry to aproceduredeϐinedbymeans other thanFortran6
are processor dependent.7

18.10.4 Asynchronous communication8

1 Asynchronous communication for a Fortran variable with the ASYNCHRONOUS attribute occurs through9
the action of procedures deϐined by means other than Fortran. It is initiated by execution of an asynchron‑10
ous communication initiation procedure and completed by execution of an asynchronous communication11
completion procedure. Between the execution of the initiation and completion procedures, any variable of12
which any part is associated with any part of the asynchronous communication variable is a pending com‑13
munication affector. Whether a procedure is an asynchronous communication initiation or completion14
procedure is processor dependent.15

2 Asynchronous communication is either input communication or output communication. For input commu‑16
nication, a pending communication affector shall not be referenced, become deϐined, become undeϐined,17
become associated with a dummy argument that has the VALUE attribute, or have its pointer association18
status changed. For output communication, a pending communication affector shall not be redeϐined, be‑19
come undeϐined, or have its pointer association status changed. The restrictions for asynchronous input20
communication are the same as for asynchronous input data transfer. The restrictions for asynchronous21
output communication are the same as for asynchronous output data transfer.22

NOTE
Asynchronous communication can be used for nonblocking MPI calls such as MPI_IRECV and MPI_ISEND. For ex‑
ample,

REAL :: BUF(100, 100)
… Code that involves BUF.
BLOCK

ASYNCHRONOUS :: BUF
CALL MPI_IRECV(BUF,… REQ, …)
… Code that does not involve BUF.
CALL MPI_WAIT(REQ, …)

END BLOCK
… Code that involves BUF.

In this example, there is asynchronous input communication andBUF is a pending communication affector between
the two calls. MPI_IRECV can return while the communication (reading values into BUF) is still underway. The
intent is that the code between MPI_IRECV and MPI_WAIT can execute without waiting for this communication to
complete.

Similar code with the call of MPI_IRECV replaced by a call of MPI_ISEND is asynchronous output communication.

J3/25‑007 569

J3/25‑007 WD 1539‑1 2024‑12‑29

19 Scope, association, and deϐinition1

19.1 Scopes, identiϐiers, and entities2

1 An entity is identiϐied by an identiϐier.3

2 The scope of4
• a global identiϐier is a program (5.2.2),5
• a local identiϐier is an inclusive scope,6
• an identiϐier of a construct entity is that construct (10.2.4, 11.1), and7
• an identiϐier of a statement entity is that statement or part of that statement (6.3),8

excluding any nested scope where the identiϐier is treated as the identiϐier of a different entity (19.3, 19.4),9
or where an IMPORT statement (8.8) makes the identiϐier inaccessible.10

3 An entity may be identiϐied by11

• an image index (3.81),12
• a name (3.100),13
• a statement label (3.132),14
• an external input/output unit number (12.5),15
• an identiϐier of a pending data transfer operation (12.6.2.9, 12.7),16
• a submodule identiϐier (14.2.3),17
• a generic identiϐier (3.75), or18
• a binding label (3.15).19

4 By means of association, an entity may be referred to by the same identiϐier or a different identiϐier in a20
different scope, or by a different identiϐier in the same scope.21

19.2 Global identiϐiers22

1 Program units, common blocks1, external procedures, entities with binding labels, external input/output23
units, pending data transfer operations, and images are global entities of a program. The name of a com‑24
mon block with no binding label, external procedure with no binding label, or program unit that is not a25
submodule is a global identiϐier. The submodule identiϐier of a submodule is a global identiϐier. A binding26
label of an entity of the program is a global identiϐier. An entity of the program shall not be identiϐied by27
more than one binding label.28

2 The global identiϐier of an entity shall not be the same as the global identiϐier of any other entity. Fur‑29
thermore, a binding label shall not be the same as the global identiϐier of any other global entity, ignoring30
differences in case. A processormay assign a global identiϐier to an entity that is not speciϐied by this docu‑31
ment to have a global identiϐier (such as an intrinsic procedure); in such a case, the processor shall ensure32
that this assigned global identiϐier differs from all other global identiϐiers in the program.33

1Common blocks are obsolescent.

570 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

NOTE 1
An intrinsic module is not a program unit, so a global identiϐier can be the same as the name of an intrinsic module.

NOTE 2
Submodule identiϐiers are global identiϐiers, but because they consist of a module name and a descendant submod‑
ule name, the name of a submodule can be the same as the name of another submodule so long as they do not have
the same ancestor module.

19.3 Local identiϐiers1

19.3.1 Classes of local identiϐiers2

1 Identiϐiers of entities, other than statement or construct entities (19.4), in the classes3

(1) named variables, named constants, named procedure pointers, named constructs, statement4
functions2, internal procedures, module procedures, dummy procedures, intrinsic procedures,5
external procedures that have binding labels, intrinsic modules, abstract interfaces, generic in‑6
terfaces, nonintrinsic types, namelist groups, external procedures accessed via USE, and state‑7
ment labels,8

(2) type parameters, components, and type‑bound procedure bindings, in a separate class for each9
type,10

(3) argument keywords, in a separate class for each procedure with an explicit interface, and11
(4) common blocks3 that have binding labels12

are local identiϐiers.13

2 Within its scope, a local identiϐier of an entity of class (1) or class (4) shall not be the same as a global14
identiϐier used in that scope unless the global identiϐier15

• is used only as the use‑name of a rename in a USE statement,16
• is a common block name (19.3.2),17
• is an external procedure name that is also a generic name, or18
• is an external function name and the inclusive scope is its deϐining subprogram (19.3.3).19

3 Within its scope, a local identiϐier of one class shall not be the same as another local identiϐier of the same20
class, except that a generic name may be the same as the name of a procedure as explained in 15.4.3.4 or21
the same as the name of a derived type (7.5.10). A local identiϐier of one class may be the same as a local22
identiϐier of another class.23

NOTE
An intrinsic procedure is inaccessible by its own name in a scoping unit that uses the same name as a local identiϐier
of class (1) for a different entity. For example, in the program fragment

SUBROUTINE SUB
…
A = SIN (K)
…

CONTAINS

2Statement functions are obsolescent.
3Common blocks are obsolescent.

J3/25‑007 571

J3/25‑007 WD 1539‑1 2024‑12‑29

NOTE (cont.)
FUNCTION SIN (X)

…
END FUNCTION SIN

END SUBROUTINE SUB

any reference to function SIN in subroutine SUB refers to the internal function SIN, not to the intrinsic function of
the same name.

4 A local identiϐier identiϐies an entity in a scope andmay be used to identify an entity in another scope except1
in the following cases.2

• The name that appears as a subroutine‑name in a subroutine‑stmt has limited use within the scope3
established by the subroutine‑stmt. It can be used to identify recursive references of the subroutine4
or to identify a common block4 (the latter is possible only for internal and module subroutines).5

• The name that appears as a function‑name in a function‑stmt has limited use within the scope es‑6
tablished by that function‑stmt. It can be used to identify the function result, to identify recursive7
references of the function, or to identify a common block (the latter is possible only for internal and8
module functions).9

• The name that appears as an entry‑name in an entry‑stmt5 has limited use within the scope of the10
subprogram in which the entry‑stmt appears. It can be used to identify the function result if the11
subprogram is a function, to identify recursive references, or to identify a common block (the latter12
is possible only if the entry‑stmt is in a module subprogram).13

19.3.2 Local identiϐiers that are the same as common block names14

1 A name that identiϐies a common block in a scoping unit shall not be used to identify a constant or an15
intrinsic procedure in that scoping unit. If a local identiϐier of class (1) is also the name of a common block,16
the appearance of that name in any context other than as a common block name in a BIND, COMMON, or17
SAVE statement is an appearance of the local identiϐier.18

19.3.3 Function results19

1 For each FUNCTION statement or ENTRY statement in a function subprogram, there is a function result. A20
function result is either a variable or a procedure pointer, and thus the name of a function result is a local21
identiϐier of class (1).22

19.3.4 Components, type parameters, and bindings23

1 A component name has the scope of its derived‑type deϐinition. Outside the type deϐinition, it can also24
appear within a designator of a component of a structure of that type or as a component keyword in a25
structure constructor for that type.26

2 A type parameter name has the scope of its derived‑type deϐinition. Outside the derived‑type deϐinition, it27
can also appear as a type parameter keyword in a derived‑type‑spec for the type or as the type‑param‑name28
of a type‑param‑inquiry.29

3 The binding name (7.5.5) of a type‑bound procedure has the scope of its derived‑type deϐinition. Outside30
of the derived‑type deϐinition, it can also appear as the binding‑name in a procedure reference.31

4Common blocks are obsolescent.
5The ENTRY statement is obsolescent.

572 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 A generic binding for which the generic‑spec is not a generic‑name has a scope that consists of all scoping1
units in which an entity of the type is accessible.2

5 A component name or binding name can appear only in a scope in which it is accessible.3

6 The accessibility of components and bindings is speciϐied in 7.5.4.8 and 7.5.5.4

19.3.5 Argument keywords5

1 As an argument keyword, a dummy argument name in an internal procedure, module procedure, or an6
interface bodyhas a scope of the scoping unit of the host of the procedure or interface body. As an argument7
keyword, the name of a dummy argument of a procedure declared by a procedure declaration statement8
that speciϐies an explicit interface has a scope of the scoping unit containing the procedure declaration9
statement. It may appear only in a procedure reference for the procedure of which it is a dummy argument.10
If the procedure is accessible in another scoping unit by use or host association (19.5.1.3, 19.5.1.4), the11
argument keyword is accessible for procedure references for that procedure in that scoping unit.12

2 Adummy argument name in an intrinsic procedure has a scope as an argument keyword of the scoping unit13
inwhich the reference to the procedure occurs. As an argument keyword, itmay appear only in a procedure14
reference for the procedure of which it is a dummy argument.15

19.4 Statement and construct entities16

1 A variable that appears as a data‑i‑do‑variable in a DATA statement or an ac‑do‑variable in an array con‑17
structor, as a dummy argument in a statement function statement6, or as an index‑name in a FORALL state‑18
ment7 is a statement entity. Even if the name of a statement entity is the same as another identiϐier and the19
statement is in the scope of that identiϐier, within the scope of the statement entity the name is interpreted20
as that of the statement entity.21

2 The name of a statement entity shall not be the same as an accessible global identiϐier or local identiϐier22
of class (1) (19.3.1), except for a common block8 name or a scalar variable name. Within the scope of a23
statement entity, another statement entity shall not have the same name.24

3 A variable that appears as an index‑name in a FORALL9 or DO CONCURRENT construct, as an associate‑25
name in an ASSOCIATE, SELECT RANK, SELECT TYPE construct, or as a coarray‑name in a codimension‑26
decl in a CHANGE TEAM construct is a construct entity. A variable that has LOCAL or LOCAL_INIT locality27
in a DO CONCURRENT construct is a construct entity. An entity that is declared in a speciϐication in a28
BLOCK construct, other than only in ASYNCHRONOUS, IMPORT, and VOLATILE statements, is a construct29
entity. A USE statement in a BLOCK construct speciϐies that all the entities it accesses by use association30
are construct entities. If an entity is a construct entity instead of a host entity only because it is wholly or31
partially initialized in a DATA statement, the construct entity shall not be used prior to the DATA statement.32

4 Two construct entities of the same construct shall not have the same identiϐier.33

5 The name of a data‑i‑do‑variable in a DATA statement or an ac‑do‑variable in an array constructor has a34
scope of its data‑implied‑do or ac‑implied‑do. It is a scalar variable. If integer‑type‑spec appears in data‑35
implied‑do or ac‑implied‑do‑control it has the speciϐied type and type parameters; otherwise it has the type36

6Statement functions are obsolescent.
7The FORALL statement is obsolescent.
8Common blocks are obsolescent.
9The FORALL construct is obsolescent.

J3/25‑007 573

J3/25‑007 WD 1539‑1 2024‑12‑29

and type parameters that it would have if it were the name of a variable in the innermost executable con‑1
struct or scoping unit that includes the DATA statement or array constructor, and this type shall be integer2
type. It has no other attributes. The appearance of a name as a data‑i‑do‑variable of an implied DO in a3
DATA statement or an ac‑do‑variable in an array constructor is not an implicit declaration of a variable4
whose scope is the scoping unit that contains the statement.5

6 The name of a variable that appears as an index‑name in a DO CONCURRENT construct, FORALL statement,6
or FORALL construct has a scope of the statement or construct. It is a scalar variable. If integer‑type‑spec7
appears in concurrent‑header it has the speciϐied type and type parameters; otherwise it has the type and8
type parameters that it would have if it were the name of a variable in the innermost executable construct9
or scoping unit that includes the DO CONCURRENT or FORALL, and this type shall be integer type. It has10
no other attributes. The appearance of a name as an index‑name in a DO CONCURRENT construct, FORALL11
statement, or FORALL construct is not an implicit declaration of a variable whose scope is the scoping unit12
that contains the statement or construct.13

7 A variable that has LOCAL or LOCAL_INIT locality in a DO CONCURRENT construct has the scope of that14
construct. Its attributes are speciϐied in 11.1.7.5.15

8 If integer‑type‑spec does not appear in a concurrent‑header, an index‑name shall not be the same as an ac‑16
cessible global identiϐier, local identiϐier, or identiϐier of an outer construct entity, except for a common17
block name or a scalar variable name. An index‑name of a contained DO CONCURRENT construct, FOR‑18
ALL statement, or FORALL construct shall not be the same as an index‑name of any of its containing DO19
CONCURRENT or FORALL constructs.20

9 The associate names of an ASSOCIATE construct have the scope of the block. They have the declared type,21
dynamic type, type parameters, rank, and bounds speciϐied in 11.1.3.2.22

10 The associate names of a CHANGE TEAM construct have the scope of the block. They have the declared23
type, dynamic type, type parameters, rank, corank, bounds, and cobounds speciϐied in 11.1.5.24

11 The associate name of a SELECT RANK construct has a separate scope for each block of the construct. It25
has the attributes speciϐied in 11.1.10.3.26

12 The associate nameof a SELECTTYPE construct has a separate scope for eachblock of the construct. Within27
each block, it has the declared type, dynamic type, type parameters, rank, andbounds speciϐied in 11.1.11.2.28

13 The name of a variable that appears as a dummy argument in a statement function statement10 has a scope29
of the statement in which it appears. It is a scalar that has the type and type parameters that it would have30
if it were the name of a variable in the scoping unit that includes the statement function; it has no other31
attributes.32

19.5 Association33

19.5.1 Name association34

19.5.1.1 Forms of name association35

1 There are ϐive forms of name association: argument association, use association, host association, linkage36
association, and construct association. Argument, use, and host association provide mechanisms by which37
entities known in one scope may be accessed in another scope.38

10Statement functions are obsolescent.

574 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

19.5.1.2 Argument association1

1 The rules governing argument association are given in Clause 15. As explained in 15.5, execution of a pro‑2
cedure reference establishes a correspondence between each actual argument and a dummy argument and3
thus an association between each present dummy argument and its effective argument. Argument associ‑4
ation can be sequence association (15.5.2.12).5

2 The name of the dummy argument may be different from the name, if any, of its effective argument. The6
dummy argument name is the name by which the effective argument is known, and by which it may be7
accessed, in the referenced procedure.8

NOTE
An effective argument can be a nameless data entity, such as the result of evaluating an expression that is not simply
a variable or constant.

3 Upon termination of execution of a procedure reference, all argument associations established by that ref‑9
erence are terminated. A dummy argument of that procedure can be associated with an entirely different10
effective argument in a subsequent invocation of the procedure.11

19.5.1.3 Use association12

1 Use association is the association of names in different scopes speciϐied by a USE statement. The rules13
governing use association are given in 14.2.2. They allow for renaming of entities being accessed. Use14
association allows access in one scope to entities deϐined or declared in another scope; it remains in effect15
throughout the execution of the program.16

19.5.1.4 Host association17

1 A derived‑type deϐinition, interface body, internal subprogram, module subprogram, or submodule has18
access to entities from its host as speciϐied in 8.8. A host‑associated variable is considered to have been19
previously declared; any other host‑associated entity is considered to have been previously deϐined. In20
the case of an internal subprogram, the access is to the entities in its host instance. The accessed entities21
are identiϐied by the same identiϐier and have the same attributes as in the host, except that a local entity22
may have the ASYNCHRONOUS attribute even if the host entity does not, and a noncoarray local entity may23
have the VOLATILE attribute even if the host entity does not. The accessed entities are named data objects,24
nonintrinsic types, abstract interfaces, procedures, generic identiϐiers, and namelist groups.25

2 If an entity that is accessed by use association has the samenongeneric name as a host entity, the host entity26
is inaccessible by that name. The name of an external procedure that is given the EXTERNAL attribute27
(8.5.9) within the scoping unit, or a name that appears within the scoping unit as amodule‑name in a use‑28
stmt is a global identiϐier; any entity of the host that has this as its nongeneric name is inaccessible by that29
name. A name that appears in the scoping unit as30

(1) a function‑name in a stmt‑function‑stmt11 or in an entity‑decl in a type‑declaration‑stmt, unless31
it is a global identiϐier,32

(2) an object‑name in an entity‑decl in a type‑declaration‑stmt, in a pointer‑stmt, in a save‑stmt, in33
an allocatable‑stmt, or in a target‑stmt,34

(3) a type‑param‑name in a derived‑type‑stmt,35
(4) a named‑constant in a named‑constant‑def in a parameter‑stmt,36

11Statement functions are obsolescent.

J3/25‑007 575

J3/25‑007 WD 1539‑1 2024‑12‑29

(5) a coarray‑name in a codimension‑stmt,1
(6) an array‑name in a dimension‑stmt,2
(7) a variable‑name in a common‑block‑object in a common‑stmt12,3
(8) a procedure pointer given the EXTERNAL attribute in the scoping unit,4
(9) the name of a variable that is wholly or partially initialized in a data‑stmt,5
(10) the name of an object that is wholly or partially equivalenced in an equivalence‑stmt13,6
(11) a dummy‑arg‑name in a function‑stmt, in a subroutine‑stmt, in an entry‑stmt14, or in a stmt‑7

function‑stmt15,8
(12) a result‑name in a function‑stmt or in an entry‑stmt,9
(13) the name of an entity declared by an interface body, unless it is a global identiϐier,10
(14) an intrinsic‑procedure‑name in an intrinsic‑stmt,11
(15) a namelist‑group‑name in a namelist‑stmt,12
(16) an enum‑type‑name in an enum‑def ,13
(17) an enumeration‑type‑name in an enumeration‑type‑stmt,14
(18) a generic‑name in a generic‑spec in an interface‑stmt, or15
(19) the name of a named construct16

is a local identiϐier in the scoping unit and any entity of the host that has this as its nongeneric name is17
inaccessible by that name by host association. If a scoping unit is the host of a derived‑type deϐinition or18
a subprogram that does not deϐine a separate module procedure, the name of the derived type or of any19
procedure deϐined by the subprogram is a local identiϐier in the scoping unit; any entity of the host that20
has this as its nongeneric name is inaccessible by that name. Local identiϐiers of a subprogram are not21
accessible to its host.22

NOTE 1
A name that appears in an ASYNCHRONOUS or VOLATILE statement is not necessarily the name of a local variable.
In an internal or module procedure, if a variable that is accessible via host association is speciϐied in an ASYN‑
CHRONOUS or VOLATILE statement, that host variable is given the ASYNCHRONOUS or VOLATILE attribute in the
local scope.

3 If a host entity is inaccessible only because a local variablewith the same name iswholly or partially initial‑23
ized in aDATAstatement, the local variable shall not be referencedordeϐined16 prior to theDATAstatement.24

4 If a derived‑type name of a host is inaccessible, data entities of that type or subobjects of such data entities25
still can be accessible.26

NOTE 2
An interface body that is not a module procedure interface body accesses by host association only those entities
made accessible by IMPORT statements.

5 If an external or dummy procedure with an implicit interface is accessed via host association, then it shall27
have the EXTERNAL attribute in the host scoping unit; if it is invoked as a function in the inner scoping unit,28
its type and type parameters shall be established in the host scoping unit. The type and type parameters29
of a function with the EXTERNAL attribute are established in a scoping unit if that scoping unit explicitly30

12Common blocks are obsolescent.
13The EQUIVALENCE statement is obsolescent.
14The ENTRY statement is obsolescent.
15Statement functions are obsolescent.
16Appearence of a DATA statement in the execution‑part is obsolescent.

576 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

declares them, invokes the function, accesses the function from amodule, or accesses the function from its1
host where its type and type parameters are established.2

6 If an intrinsic procedure is accessed via host association, then it shall be established to be intrinsic in the3
host scoping unit. An intrinsic procedure is established to be intrinsic in a scoping unit if that scoping unit4
explicitly gives it the INTRINSIC attribute, invokes it as an intrinsic procedure, accesses it from a module,5
or accesses it from its host where it is established to be intrinsic.6

NOTE 3
A host subprogram and an internal subprogram can contain the same and differing use‑associated entities, as illus‑
trated in the following example.

MODULE B; REAL BX, Q; INTEGER IX, JX; END MODULE B
MODULE C; REAL CX; END MODULE C
MODULE D; REAL DX, DY, DZ; END MODULE D
MODULE E; REAL EX, EY, EZ; END MODULE E
MODULE F; REAL FX; END MODULE F
MODULE G; USE F; REAL GX; END MODULE G
PROGRAM A

USE B; USE C; USE D
…

CONTAINS
SUBROUTINE INNER_PROC (Q)

USE C ! Not needed, but prevents CX from being declared locally.
USE B, ONLY: BX ! Entities accessible are BX, and also IX and JX if

! no other IX or JX is accessible to INNER_PROC.
! Q is local to INNER_PROC, because it is a dummy argument.

USE D, X => DX ! Entities accessible are DX, DY, and DZ
! X is local name for DX in INNER_PROC; if no other DX is
! accessible in INNER_PROC, X and DX denote the same entity

USE E, ONLY: EX ! EX is accessible in INNER_PROC, not in program A.
! EY and EZ are not accessible in INNER_PROC or program A.

USE G ! FX and GX are accessible in INNER_PROC.
…

END SUBROUTINE INNER_PROC
END PROGRAM A

Because program A contains the statement
USE B

all of the entities in module B, except for Q, are accessible in INNER_PROC, even though INNER_PROC contains the
statement

USE B, ONLY: BX

The USE statement with the ONLY option means that this particular statement brings in only the entity named, not
that this is the only variable from the module accessible in this scoping unit.

NOTE 4
For more examples of host association, see C.14.2.

19.5.1.5 Linkage association7

1 Linkage association occurs between a module variable that has the BIND attribute and the C variable with8
which it interoperates, or between a Fortran commonblock17 and theC variablewithwhich it interoperates9
(18.9). Such association remains in effect throughout the execution of the program.10

17Common blocks are obsolescent.

J3/25‑007 577

J3/25‑007 WD 1539‑1 2024‑12‑29

19.5.1.6 Construct association1

1 Execution of a SELECT RANK or SELECT TYPE statement establishes an association between the selector2
and the associate name of the construct. Execution of an ASSOCIATE or CHANGE TEAM statement estab‑3
lishes an association between each selector and the corresponding associate name of the construct.4

2 In an ASSOCIATE or SELECT TYPE construct, the following rules apply.5

• If a selector is allocatable, it shall be allocated; the associate name is associated with the data object6
and does not have the ALLOCATABLE attribute.7

• If a selector has the POINTER attribute, it shall be associated; the associate name is associated with8
the target of the pointer and does not have the POINTER attribute.9

3 If the selector is a variable other than an array section having a vector subscript, the association is with the10
data object speciϐied by the selector; otherwise, the association is with the value of the selector expression,11
which is evaluated prior to execution of the block.12

4 Each associate name remains associated with the corresponding selector throughout the execution of the13
executed block. Within the block, each selector is known by and may be accessed by the corresponding14
associate name. On completion of execution of the construct, the association is terminated.15

NOTE
The association between the associate name and a data object is established prior to execution of the block and is
not affected by subsequent changes to variables that were used in subscripts or substring ranges in the selector.

19.5.2 Pointer association16

19.5.2.1 General17

1 Pointer association between a pointer and a target allows the target to be referenced by a reference to the18
pointer. At different times during the execution of a program, a pointer may be undeϐined, associated with19
different targets on its own image, or be disassociated. The deϐinition status of an associated data pointer20
is that of its target. If the pointer has deferred type parameters or shape, their values are assumed from21
the target. If the pointer is polymorphic, its dynamic type is assumed from the dynamic type of the target.22

19.5.2.2 Pointer association status23

1 A pointer has a pointer association status of associated, disassociated, or undeϐined. Its association status24
may change during execution of a program. Unless a pointer is initialized (explicitly or by default), it has25
an initial association status of undeϐined. A pointer may be initialized to have an association status of26
disassociated or associated.27

NOTE
A pointer from amodule program unit might be accessible in a subprogram via use association. Such pointers have
a lifetime that is greater than targets that are declared in the subprogram, unless such targets are saved. Therefore,
if such a pointer is associated with a local target, there is the possibility that when a procedure deϐined by the sub‑
program completes execution, the targetwill cease to exist, leaving the pointer “dangling”. This document considers
such pointers to have an undeϐined association status. They are neither associated nor disassociated. They cannot
be used again in the program until their status has been reestablished. A processor is not required to detect when
a pointer target ceases to exist.

578 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

19.5.2.3 Events that cause pointers to become associated1

1 A pointer becomes associated when any of the following events occur.2

(1) The pointer is allocated (9.7.1) as the result of the successful execution of an ALLOCATE state‑3
ment referencing the pointer.4

(2) The pointer is pointer‑assigned to a target (10.2.2) that is associated or is speciϐied with the5
TARGET attribute and, if allocatable, is allocated.6

(3) The pointer is a subobject of an object that is allocated by an ALLOCATE statement in which7
SOURCE= appears and the corresponding subobject of source‑expr is associated.8

(4) The pointer is a dummy argument and its corresponding actual argument is not a pointer.9
(5) The pointer is a default‑initialized subcomponent of an object, the corresponding initializer is10

not a reference to the intrinsic function NULL, and11

(a) a procedure is invoked with this object as an actual argument corresponding to a non‑12
pointer nonallocatable dummy argument with INTENT (OUT),13

(b) a procedure with this object as an unsaved nonpointer nonallocatable local variable is14
invoked,15

(c) a BLOCK construct is entered and this object is an unsaved local nonpointer nonallocat‑16
able local variable of the BLOCK construct, or17

(d) this object is allocated other than by anALLOCATE statement inwhich SOURCE= appears.18

19.5.2.4 Events that cause pointers to become disassociated19

1 A pointer becomes disassociated when20

(1) the pointer is nulliϐied (9.7.2),21
(2) the pointer is deallocated (9.7.3),22
(3) the pointer is pointer‑assigned (10.2.2) to a disassociated pointer,23
(4) the pointer is a subobject of an object that is allocated by an ALLOCATE statement in which24

SOURCE= appears and the corresponding subobject of source‑expr is disassociated, or25
(5) the pointer is a default‑initialized subcomponent of an object, the corresponding initializer is a26

reference to the intrinsic function NULL, and27

(a) a procedure is invoked with this object as an actual argument corresponding to a non‑28
pointer nonallocatable dummy argument with INTENT (OUT),29

(b) a procedure with this object as an unsaved nonpointer nonallocatable local variable is30
invoked,31

(c) a BLOCK construct is entered and this object is an unsaved local nonpointer nonallocat‑32
able local variable of the BLOCK construct, or33

(d) this object is allocated other than by anALLOCATE statement inwhich SOURCE= appears.34

19.5.2.5 Events that cause the association status of pointers to become undeϐined35

1 The association status of a pointer becomes undeϐined when36

(1) the pointer is pointer‑assigned to a target that has an undeϐined association status,37
(2) the pointer is pointer‑assigned to a target on a different image,38
(3) the target of the pointer is deallocated other than through the pointer,39

J3/25‑007 579

J3/25‑007 WD 1539‑1 2024‑12‑29

(4) the target of the pointer is a data object deϐined by the companion processor and the lifetime1
of that data object ends,2

(5) the allocation transfer procedure (16.9.147) is executed, the pointer is associated with the ar‑3
gument FROM, and the argument TO does not have the TARGET attribute,4

(6) completion of execution of an instance of a subprogram causes the pointer’s target to become5
undeϐined (item (3) of 19.6.6),6

(7) completion of execution of a BLOCK construct causes the pointer’s target to become undeϐined7
(item (23) of 19.6.6),8

(8) execution of the host instance of a procedure pointer is completed,9
(9) execution of an instance of a subprogram completes and the pointer is declared or accessed in10

the subprogram that deϐines the procedure if the pointer11

(a) does not have the SAVE attribute,12
(b) is not in blank common18,13
(c) is not in a named common block that is declared in any other scoping unit that is in exe‑14

cution,15
(d) is not accessed by host association, and16
(e) is not the result of a function declared to have the POINTER attribute,17

(10) execution of an instance of a subprogram completes, the pointer is associated with a dummy18
argument of the procedure, and19

(a) the effective argument does not have the TARGET attribute or is an array section with a20
vector subscript, or21

(b) the dummy argument has the VALUE attribute,22

(11) a BLOCK construct completes execution and the pointer is an unsaved construct entity of that23
BLOCK construct,24

(12) a DO CONCURRENT construct is terminated and the pointer’s association status was changed25
in more than one iteration of the construct,26

(13) an iteration of a DO CONCURRENT construct completes and the pointer is associated with a27
variable of that construct that has LOCAL or LOCAL_INIT locality,28

(14) the pointer is a subcomponent of an object that is allocated and either29

(a) the pointer is not default‑initialized and SOURCE= does not appear, or30
(b) SOURCE= appears and the association status of the corresponding subcomponent of the31

source‑expr is undeϐined,32

(15) the pointer is a subcomponent of an object, the pointer is not default‑initialized, and a proced‑33
ure is invokedwith this object as an actual argument corresponding to a dummy argumentwith34
INTENT (OUT),35

(16) a procedure is invoked with the pointer as an actual argument corresponding to a pointer36
dummy argument with INTENT (OUT), or37

(17) evaluation of an expression containing a function reference that need not be evaluated com‑38
pletes, if execution of that function would change the association status of the pointer.39

18Common blocks are obsolescent.

580 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

19.5.2.6 Other events that change the association status of pointers1

1 When a pointer becomes associated with another pointer by argument association, construct association,2
or host association, the effects on its association status are speciϐied in 19.5.5.3

2 While two pointers are name associated, storage associated, or inheritance associated, if the association4
status of one pointer changes, the association status of the other changes accordingly.5

3 The association status of a pointer objectwith the VOLATILE attributemight change bymeans not speciϐied6
by the program.7

19.5.2.7 Pointer deϐinition status8

1 The deϐinition status of an associated data pointer is that of its target. If a pointer is associated with a9
deϐinable target, it becomes deϐined or undeϐined according to the rules for a variable (19.6). The deϐinition10
status of a pointer that is not associated is undeϐined.11

19.5.3 Storage association (obsolescent)12

19.5.3.1 General13

1 Storage sequences are used to describe relationships that exist among variables and common blocks. Stor‑14
age association is the association of two or more data objects that occurs when two or more storage se‑15
quences share or are aligned with one or more storage units.16

2 Storage association is established only by COMMON, ENTRY, and EQUIVALENCE statements. All of those17
statements are obsolescent, and thus the entire concept of storage association is obsolescent.18

19.5.3.2 Storage sequence19

1 A storage sequence is a sequence of storage units. The size of a storage sequence is the number of stor‑20
age units in the storage sequence. A storage unit is a character storage unit, a numeric storage unit, a ϐile21
storage unit (12.3.5), or an unspeciϐied storage unit. The sizes of the numeric storage unit, the character22
storage unit and the ϐile storage unit are the values of constants in the ISO_FORTRAN_ENV intrinsicmodule23
(16.10.2).24

2 In a storage association context25

(1) a nonpointer scalar object that is default integer, default real, or default logical occupies a single26
numeric storage unit,27

(2) a nonpointer scalar object that is double precision real or default complex occupies two con‑28
tiguous numeric storage units,29

(3) a default character nonpointer scalar object of character length len occupies len contiguous30
character storage units,31

(4) if C character kind is not the same as default character kind a nonpointer scalar object of type32
character with the C character kind (18.2.2) and character length len occupies len contiguous33
unspeciϐied storage units,34

(5) a nonpointer scalar object of sequence type occupies a sequence of storage sequences corres‑35
ponding to the sequence of its ultimate components,36

(6) a nonpointer scalar object of any type not speciϐied in items (1)‑(5) occupies a single unspe‑37
ciϐied storage unit that is different for each case and each set of type parameter values, and that38

J3/25‑007 581

J3/25‑007 WD 1539‑1 2024‑12‑29

is different from the unspeciϐied storage units of item (4),1
(7) a nonpointer array occupies a sequence of contiguous storage sequences, one for each array2

element, in array element order (9.5.3.3), and3
(8) a data pointer occupies a single unspeciϐied storage unit that is different from that of any non‑4

pointer object and is different for each combination of type, type parameters, and rank. A data5
pointer that has the CONTIGUOUS attribute occupies a storage unit that is different from that6
of a data pointer that does not have the CONTIGUOUS attribute.7

3 A sequence of storage sequences forms a storage sequence. The order of the storage units in such a com‑8
posite storage sequence is that of the individual storage units in each of the constituent storage sequences9
taken in succession, ignoring any zero‑sized constituent sequences.10

4 Each common block has a storage sequence (8.10.3.2).11

19.5.3.3 Association of storage sequences12

1 Two nonzero‑sized storage sequences s1 and s2 are storage associated if the ith storage unit of s1 is the13
same as the jth storage unit of s2. This causes the (i+k)th storage unit of s1 to be the same as the (j+k)th14
storage unit of s2, for each integer k such that 1 ≤ i+k ≤ size of s1 and 1 ≤ j+k ≤ size of s2 where size of15
measures the number of storage units.16

2 Storage association also is deϐined between two zero‑sized storage sequences, and between a zero‑sized17
storage sequence and a storage unit. A zero‑sized storage sequence in a sequence of storage sequences is18
storage associated with its successor, if any. If the successor is another zero‑sized storage sequence, the19
two sequences are storage associated. If the successor is a nonzero‑sized storage sequence, the zero‑sized20
sequence is storage associated with the ϐirst storage unit of the successor. Two storage units that are each21
storage associated with the same zero‑sized storage sequence are the same storage unit.22

19.5.3.4 Association of scalar data objects23

1 Two scalar data objects are storage associated if their storage sequences are storage associated. Two scalar24
entities are totally associated if they have the same storage sequence. Two scalar entities are partially25
associated if they are associated without being totally associated.26

2 The deϐinition status and value of a data object affects the deϐinition status and value of any storage associ‑27
ated entity. An EQUIVALENCE statement, a COMMON statement, or an ENTRY statement can cause storage28
association of storage sequences.29

3 AnEQUIVALENCE statement causes storage association of data objects onlywithin one scoping unit, unless30
one of the equivalenced entities is also in a common block (8.10.2.2, 8.10.3.2).31

4 COMMONstatements cause data objects in one scoping unit to become storage associatedwith data objects32
in another scoping unit.33

5 A common block is permitted to contain a sequence of differing storage units. All scoping units that access34
named common blocks with the same name shall specify an identical sequence of storage units. Blank35
common blocks may be declared with differing sizes in different scoping units. For any two blank common36
blocks, the initial sequence of storage units of the longer blank common block shall be identical to the37
sequence of storage units of the shorter common block. If two blank common blocks are the same length,38
they shall have the same sequence of storage units.39

6 An ENTRY statement in a function subprogram causes storage association of the function results that are40

582 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

variables.1

7 Partial association shall exist only between2

• an object that is default character or of character sequence type and an object that is default character3
or of character sequence type, or4

• an object that is default complex, double precision real, or of numeric sequence type and an object5
that is default integer, default real, default logical, double precision real, default complex, or of nu‑6
meric sequence type.7

8 For noncharacter entities, partial association shall occur only through the use of COMMON, EQUIVALENCE,8
or ENTRY statements. For character entities, partial association shall occur only through argument associ‑9
ation or the use of COMMON or EQUIVALENCE statements.10

9 Partial association of character entities occurs when some, but not all, of the storage units of the entities11
are the same.12

10 Astorageunit shall not be explicitly initializedmore thanonce in aprogram. Explicit initialization overrides13
default initialization, and default initialization for an object of derived type overrides default initialization14
for a component of the object (7.5.4.6). Default initialization may be speciϐied for a storage unit that is15
storage associated provided the objects supplying the default initialization are of the same type and type16
parameters, and supply the same value for the storage unit.17

19.5.4 Inheritance association18

1 Inheritance association occurs between components of the parent component and components inherited19
by type extension into an extended type (7.5.7.2). This association is persistent; it is not affected by the20
accessibility of the inherited components.21

19.5.5 Establishing associations22

1 When an association is established between two entities by argument association, host association, or con‑23
struct association, certain properties of the associating entity become those of the pre‑existing entity.24

2 For argument association, the pre‑existing entity is the effective argument and the associating entity is the25
dummy argument.26

3 For host association, the associating entity is the entity in the contained scoping unit. When a proced‑27
ure is invoked, the pre‑existing entity that participates in the association is the one from its host instance28
(15.6.2.4). Otherwise the pre‑existing entity that participates in the association is the entity in the host29
scoping unit.30

4 For construct association, the associating entity is identiϐied by the associate name and the pre‑existing31
entity is the selector.32

5 When an association is established by argument association, host association, or construct association, the33
following applies.34

• If the entities have the POINTER attribute, the pointer association status of the associating entity35
becomes the same as that of the pre‑existing entity. If the pre‑existing entity has a pointer association36
status of associated, the associating entity becomes pointer associated with the same target and, if37
they are arrays, the bounds of the associating entity become the same as those of the pre‑existing38
entity.39

J3/25‑007 583

J3/25‑007 WD 1539‑1 2024‑12‑29

• If the associating entity has the ALLOCATABLE attribute, its allocation status becomes the same as1
that of the pre‑existing entity. If the pre‑existing entity is allocated, the bounds (if it is an array),2
values of deferred type parameters, deϐinition status, and value (if it is deϐined) become the same as3
those of the pre‑existing entity. If the associating entity is polymorphic and the pre‑existing entity4
is allocated, the dynamic type of the associating entity becomes the same as that of the pre‑existing5
entity.6

• If the associating entity is neither a pointer nor allocatable, its deϐinition status, value (if it is deϐined),7
and dynamic type (if it is polymorphic) become the same as those of the pre‑existing entity. If the8
entities are arrays and the association is not argument association, the bounds of the associating9
entity become the same as those of the pre‑existing entity.10

• If the associating entity is a pointer dummy argument and the pre‑existing entity is a nonpointer11
actual argument the associating entity becomes pointer associated with the pre‑existing entity and,12
if the entities are arrays, the bounds of the associating entity become the same as those of the pre‑13
existing entity.14

19.6 Deϐinition and undeϐinition of variables15

19.6.1 Deϐinition of objects and subobjects16

1 A variable may be deϐined or may be undeϐined and its deϐinition status may change during execution of17
a program. An action that causes a variable to become undeϐined does not imply that the variable was18
previously deϐined. An action that causes a variable to become deϐined does not imply that the variable19
was previously undeϐined.20

2 Arrays, including sections, and variables of derived, character, or complex type are objects that consist of21
zero or more subobjects. Associations may be established between variables and subobjects and between22
subobjects of different variables. These subobjects may become deϐined or undeϐined.23

3 An array is deϐined if and only if all of its elements are deϐined.24

4 A derived‑type scalar object is deϐined if and only if all of its nonpointer components are deϐined.25

5 A complex or character scalar object is deϐined if and only if all of its subobjects are deϐined.26

6 If an object is undeϐined, at least one (but not necessarily all) of its subobjects are undeϐined.27

19.6.2 Variables that are always deϐined28

1 Zero‑sized arrays and zero‑length strings are always deϐined.29

19.6.3 Variables that are initially deϐined30

1 The following variables are initially deϐined:31

(1) variables speciϐied to have initial values by DATA statements;32
(2) variables speciϐied to have initial values by type declaration statements;33
(3) nonpointer default‑initialized subcomponents of saved variables that do not have the ALLOC‑34

ATABLE or POINTER attribute;35
(4) pointers speciϐied to be initially associated with a variable that is initially deϐined;36
(5) variables that are always deϐined;37

584 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

(6) variables with the BIND attribute that are initialized by means other than Fortran.1

NOTE
Fortran code:

module mod
integer, bind(c,name="blivet") :: foo

end module mod

C code:
int blivet = 123;

In the above example, the Fortran variable foo is initially deϐined to have the value 123bymeans other than Fortran.

19.6.4 Variables that are initially undeϐined2

1 Variables that are not initially deϐined are initially undeϐined.3

19.6.5 Events that cause variables to become deϐined4

1 Variables become deϐined by the following events.5

(1) Execution of an intrinsic assignment statement other than a masked array assignment or FOR‑6
ALL19 assignment statement causes the variable that precedes the equals to become deϐined.7

(2) Execution of a masked array assignment or FORALL assignment statement might cause some8
or all of the array elements in the assignment statement to become deϐined (10.2.3).9

(3) As execution of an input statement proceeds, each variable that is assigned a value from the10
input ϐile becomes deϐined at the time that data are transferred to it. (See (4) in 19.6.6.) Exe‑11
cution of a WRITE statement whose unit speciϐier identiϐies an internal ϐile causes each record12
that is written to become deϐined.13

(4) Execution of a DO statement causes the DO variable, if any, to become deϐined.14
(5) Beginning of execution of the action speciϐied by an io‑implied‑do in a synchronous data transfer15

statement causes the do‑variable to become deϐined.16
(6) A reference to a procedure causes an entire dummydata object to becomedeϐined if the dummy17

data object does not have INTENT (OUT) and the entire effective argument is deϐined.18
A reference to a procedure causes a subobject of a dummy argument to become deϐined if the19
dummy argument does not have INTENT (OUT) and the corresponding subobject of the effect‑20
ive argument is deϐined.21

(7) Execution of an input/output statement containing an IOSTAT= speciϐier causes the speciϐied22
integer variable to become deϐined.23

(8) Execution of a synchronous input statement containing a SIZE= speciϐier causes the speciϐied24
integer variable to become deϐined.25

(9) Execution of a wait operation (12.7.1) corresponding to an asynchronous input statement con‑26
taining a SIZE= speciϐier causes the speciϐied integer variable to become deϐined.27

(10) Execution of an INQUIRE statement causes any variable that is assigned a value during the ex‑28
ecution of the statement to become deϐined if no error condition exists.29

(11) If an error, end‑of‑ϐile, or end‑of‑record condition occurs during execution of an input/output30
statement that has an IOMSG= speciϐier, the iomsg‑variable becomes deϐined.31

19The FORALL construct and FORALL statement are obsolescent.

J3/25‑007 585

J3/25‑007 WD 1539‑1 2024‑12‑29

(12) When a character storage unit becomes deϐined, all associated character storage units become1
deϐined.2
When a numeric storage unit becomes deϐined, all associated numeric storage units of the same3
type become deϐined. When an entity of double precision real type becomes deϐined, all totally4
associated entities of double precision real type become deϐined.5
When an unspeciϐied storage unit becomes deϐined, all associated unspeciϐied storage units6
become deϐined.7

(13) When a default complex entity becomes deϐined, all partially associated default real entities8
become deϐined.9

(14) When both parts of a default complex entity become deϐined as a result of partially associated10
default real or default complex entities becoming deϐined, the default complex entity becomes11
deϐined.12

(15) When all components of a structure of a numeric sequence type or character sequence type13
become deϐined as a result of partially associated objects becoming deϐined, the structure be‑14
comes deϐined.15

(16) Execution of a statement with a STAT= speciϐier causes the variable speciϐied by the STAT=16
speciϐier to become deϐined.17

(17) If an error condition occurs during execution of a statement that has an ERRMSG= speciϐier, the18
variable speciϐied by the ERRMSG= speciϐier becomes deϐined.19

(18) Allocation of a zero‑sized array or zero‑length character variable causes the array or variable20
to become deϐined.21

(19) Allocation of an object that has a nonpointer default‑initialized subcomponent, except by an22
ALLOCATE statementwith a SOURCE= speciϐier, causes that subcomponent to become deϐined.23

(20) Successful execution of an ALLOCATE statement with a SOURCE= speciϐier causes a subobject24
of the allocated object to become deϐined if the corresponding subobject of the SOURCE= ex‑25
pression is deϐined.26

(21) Invocation of a procedure causes any automatic data object of zero size or zero character length27
in that procedure to become deϐined.28

(22) When a pointer becomes associated with a target that is deϐined, the pointer becomes deϐined.29
(23) Invocation of a procedure that contains an unsaved nonpointer nonallocatable local variable30

causes all nonpointer default‑initialized subcomponents of the object to become deϐined.31
(24) Invocation of a procedure that has a nonpointer nonallocatable INTENT (OUT) dummy argu‑32

ment causes all nonpointer default‑initialized subcomponents of the dummy argument to be‑33
come deϐined.34

(25) In aDOCONCURRENTorFORALL20 construct, the index‑namebecomesdeϐinedwhen the index‑35
name value set is evaluated.36

(26) In a DO CONCURRENT construct, a variable with LOCAL_INIT locality becomes deϐined at the37
beginning of each iteration.38

(27) An object with the VOLATILE attribute that is changed by ameans not speciϐied by the program39
might become deϐined (see 8.5.20).40

(28) Execution of the BLOCK statement of a BLOCK construct that has an unsaved nonpointer nonal‑41
locatable local variable causes all nonpointer default‑initialized subcomponents of the variable42
to become deϐined.43

(29) Execution of an OPEN statement containing a NEWUNIT= speciϐier causes the speciϐied integer44
variable to become deϐined.45

20The FORALL construct is obsolescent.

586 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

(30) Execution of a LOCK statement containing an ACQUIRED_LOCK= speciϐier causes the speciϐied1
logical variable to become deϐined. If the logical variable becomes deϐined with the value true,2
the lock variable in the LOCK statement also becomes deϐined.3

(31) Successful execution of a LOCK statement that does not contain an ACQUIRED_LOCK= speciϐier4
causes the lock variable to become deϐined.5

(32) Successful execution of an UNLOCK statement causes the lock variable to become deϐined.6
(33) Failure of an image that locked a lock variable without unlocking it causes the lock variable to7

become deϐined.8
(34) Successful execution of an EVENT POST or EVENT WAIT statement causes the event variable9

to become deϐined.10
(35) Successful execution of a FORM TEAM statement causes the team variable to become deϐined.11
(36) Execution of a FORM TEAM statement with a STAT= speciϐier that assigns the value STAT_‑12

FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV to its stat‑variable causes the13
team variable to become deϐined.14

(37) Execution of a NOTIFY WAIT statement or an assignment statement with a NOTIFY= speciϐier15
causes the notify variable to become deϐined.16

19.6.6 Events that cause variables to become undeϐined17

1 Variables become undeϐined by the following events.18

(1) When a scalar variable of intrinsic type becomes deϐined, all totally associated21 variables of dif‑19
ferent type become undeϐined. When a double precision scalar variable becomes deϐined, all par‑20
tially associated scalar variables become undeϐined. When a scalar variable becomes undeϐined,21
all partially associated double precision scalar variables become undeϐined.22

(2) If the evaluation of a function would cause a variable to become deϐined and if a reference to the23
function appears in an expression in which the value of the function is not needed to determine24
the value of the expression, the variable becomes undeϐined when the expression is evaluated.25

(3) When execution of an instance of a subprogram completes,26

(a) its unsaved local variables become undeϐined,27
(b) unsaved variables in a named common block22 that appears in the subprogram become28

undeϐined if they have been deϐined or redeϐined, unless another active scoping unit is ref‑29
erencing the common block, and30

(c) a variable of type C_PTR from the intrinsic module ISO_C_BINDING whose value is the C31
address of an unsaved local variable of the subprogram becomes undeϐined.32

(4) When an error condition or end‑of‑ϐile condition occurs during execution of an input statement,33
all of the variables speciϐied by the input list or namelist group of the statement become un‑34
deϐined.35

(5) When an error condition occurs during execution of an output statement in which the unit is an36
internal ϐile, the internal ϐile becomes undeϐined.37

(6) When an error condition, end‑of‑ϐile condition, or end‑of‑record condition occurs during exe‑38
cution of an input/output statement and the statement contains any io‑implied‑dos, all of the39
do‑variables in the statement become undeϐined (12.11).40

(7) Execution of a direct access input statement that speciϐies a record that has not beenwritten pre‑41
viously causes all of the variables speciϐied by the input list of the statement to becomeundeϐined.42

21Storage association is obsolescent.
22Common blocks are obsolescent.

J3/25‑007 587

J3/25‑007 WD 1539‑1 2024‑12‑29

(8) Execution of an INQUIRE statement might cause the NAME=, RECL=, and NEXTREC= variables to1
become undeϐined (12.10).2

(9) When a character storage unit becomes undeϐined, all associated character storage units become3
undeϐined.4
When a numeric storage unit becomes undeϐined, all associated numeric storage units become5
undeϐined unless the undeϐinition is a result of deϐining an associated numeric storage unit of6
different type (see (1) above).7
When an entity of double precision real type becomes undeϐined, all totally associated entities of8
double precision real type become undeϐined.9
When an unspeciϐied storage unit becomes undeϐined, all associated unspeciϐied storage units10
become undeϐined.11

(10) When an allocatable entity is deallocated, it becomes undeϐined.12
(11) When the allocation transfer procedure (16.9.147) causes the allocation status of an allocatable13

entity to become unallocated, the entity becomes undeϐined.14
(12) Successful execution of an ALLOCATE statement with no SOURCE= speciϐier causes a subcom‑15

ponent of an allocated object to become undeϐined if default initialization has not been speciϐied16
for that subcomponent.17

(13) Successful execution of an ALLOCATE statement with a SOURCE= speciϐier causes a subobject of18
the allocated object to become undeϐined if the corresponding subobject of the SOURCE= expres‑19
sion is undeϐined.20

(14) Execution of an INQUIRE statement causes all inquiry speciϐier variables to become undeϐined if21
an error condition exists, except for any variable in an IOSTAT= or IOMSG= speciϐier.22

(15) When a procedure is invoked23
(a) an optional dummy argument that has no corresponding actual argument becomes un‑24

deϐined,25
(b) a dummy argument with INTENT (OUT) becomes undeϐined except for any nonpointer26

default‑initialized subcomponents of the argument,27
(c) an actual argument corresponding to a dummy argument with INTENT (OUT) becomes28

undeϐined except for any nonpointer default‑initialized subcomponents of the argument,29
(d) a subobject of a dummy argument that does not have INTENT (OUT) becomes undeϐined if30

the corresponding subobject of the effective argument is undeϐined, and31
(e) a variable that is the function result of that procedure becomes undeϐined except for any of32

its nonpointer default‑initialized subcomponents.33

(16) When the association status of a pointer becomes undeϐined or disassociated (19.5.2.4, 19.5.2.5),34
the pointer becomes undeϐined.35

(17) When a DO CONCURRENT construct terminates, a variable that is deϐined or becomes undeϐined36
during more than one iteration of the construct becomes undeϐined.37

(18) When execution of an iteration of a DO CONCURRENT construct completes, a construct entity of38
that construct which has LOCAL or LOCAL_INIT locality becomes undeϐined.39

(19) Execution of an asynchronous READ statement causes all of the variables speciϐied by the in‑40
put list or SIZE= speciϐier to become undeϐined. Execution of an asynchronous namelist READ41
statement causes any variable in the namelist group to become undeϐined if that variable will42
subsequently be deϐined during the execution of the READ statement or the corresponding wait43
operation (12.7.1).44

(20) When a variable with the TARGET attribute is deallocated, a variable of type C_PTR from the45
intrinsic module ISO_C_BINDING becomes undeϐined if its value is the C address of any part of46

588 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

the variable that is deallocated.1
(21) When a pointer is deallocated, a variable of type C_PTR from the intrinsicmodule ISO_C_BINDING2

becomes undeϐined if its value is the C address of any part of the target that is deallocated.3
(22) Execution of the allocation transfer procedure (16.9.147) where the argument TO does not have4

the TARGET attribute causes a variable of type C_PTR from the intrinsic module ISO_C_BINDING5
to become undeϐined if its value is the C address of any part of the argument FROM.6

(23) When a BLOCK construct completes execution,7

• its unsaved local variables become undeϐined, and8
• a variable of type C_PTR from the intrinsic module ISO_C_BINDING, whose value is the C9

address of an unsaved local variable of the BLOCK construct, becomes undeϐined.10

(24) Whenexecutionof thehost instanceof the target of a variable of typeC_FUNPTR fromthe intrinsic11
module ISO_C_BINDING is completed by execution of a RETURN or END statement, the variable12
becomes undeϐined.13

(25) Execution of an intrinsic assignment of the type C_PTR or C_FUNPTR from the intrinsic mod‑14
ule ISO_C_BINDING, or of the type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV, in15
which the variable and expr are not on the same image, causes the variable to become undeϐined.16

(26) An object with the VOLATILE attribute (8.5.20) might become undeϐined by means not speciϐied17
by the program.18

(27) When a pointer becomes associated with a target that is undeϐined, the pointer becomes un‑19
deϐined.20

(28) When an image fails during execution of a segment, a data object on a nonfailed image becomes21
undeϐined if it is not a lock variable and it might become undeϐined by execution of a statement22
of the segment other than an invocation of an atomic subroutine with the object as an actual23
argument corresponding to the ATOM dummy argument.24

(29) Execution of a FORM TEAM statement with a STAT= speciϐier that assigns a nonzero value other25
than that of STAT_FAILED_IMAGE from the intrinsicmodule ISO_FORTRAN_ENV to the stat‑varia‑26
ble causes the team variable to become undeϐined.27

(30) When the STAT argument in a reference to a collective subroutine is assigned a nonzero value,28
the A argument becomes undeϐined.29

(31) Whenan imagewhich references a collective subroutinewith apresentRESULT_IMAGEargument30
is not the image identiϐied by RESULT_IMAGE, the A argument on that image becomes undeϐined.31

(32) When an error condition occurs during execution of an atomic subroutine whose STAT argument32
is present, any other argument that is not INTENT (IN) becomes undeϐined.33

NOTE
Execution of a deϐined assignment statement could leave all or part of the variable undeϐined.

19.6.7 Variable deϐinition context34

1 Some variables are prohibited from appearing in a syntactic context that would imply deϐinition or un‑35
deϐinition of the variable (8.5.10, 8.5.15, 15.7). The following are the contexts in which the appearance of36
a variable implies such deϐinition or undeϐinition of the variable:37

(1) the variable of an assignment‑stmt;38
(2) a do‑variable in a do‑stmt or io‑implied‑do;39
(3) an input‑item in a read‑stmt;40

J3/25‑007 589

J3/25‑007 WD 1539‑1 2024‑12‑29

(4) a variable‑name in a namelist‑stmt if the namelist‑group‑name appears in a NML= speciϐier in a1
read‑stmt;2

(5) an internal‑ϔile‑variable in a write‑stmt;3
(6) a SIZE= or IOMSG= speciϐier in an input/output statement;4
(7) a speciϐier in an INQUIRE statement other than FILE=, ID=, and UNIT=;5
(8) a NEWUNIT= speciϐier in an OPEN statement;6
(9) an allocate‑object, errmsg‑variable, notify‑variable, or stat‑variable;7
(10) an actual argument in a reference to a procedure with an explicit interface if the corresponding8

dummy argument is not a pointer and has INTENT (OUT) or INTENT (INOUT);9
(11) a variable that is a selector in an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT TYPE10

construct if the corresponding associate name or any subobject thereof appears in a variable11
deϐinition context;12

(12) an event‑variable in an EVENT POST or EVENTWAIT statement;13
(13) a lock‑variable in a LOCK or UNLOCK statement;14
(14) a scalar‑logical‑variable in an ACQUIRED_LOCK= speciϐier;15
(15) a team‑variable in a FORM TEAM statement.16

2 If a reference to a function appears in a variable deϐinition context the result of the function reference shall17
be a pointer that is associated with a deϐinable target. That target is the variable that becomes deϐined or18
undeϐined.19

19.6.8 Pointer association context20

1 Some pointers are prohibited from appearing in a syntactic context that would imply alteration of the21
pointer association status (19.5.2.2, 8.5.10, 8.5.15, 15.7). The following are the contexts in which the ap‑22
pearance of a pointer implies such alteration of its pointer association status:23

• a pointer‑object in a nullify‑stmt;24
• a data‑pointer‑object or proc‑pointer‑object in a pointer‑assignment‑stmt;25
• an allocate‑object in an allocate‑stmt or deallocate‑stmt;26
• an actual argument in a reference to a procedure if the corresponding dummy argument is a pointer27
with the INTENT (OUT) or INTENT (INOUT) attribute.28

590 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Annex A1

(Informative)2

Processor dependencies3

A.1 Unspeciϐied items4

1 This document does not specify the following:5

• the properties excluded in 1;6
• a processor’s error detection capabilities beyond those listed in 4.2;7
• which additional intrinsic procedures or modules a processor provides (4.2);8
• the number and kind of companion processors (5.5.7);9
• the number of representation methods and associated kind type parameter values of the intrinsic10
types (7.4), except that there shall be at least two representation methods for type real, and a rep‑11
resentation method of type complex that corresponds to each representation method for type real.12

A.2 Processor dependencies13

1 According to this document, the following are processor dependent:14

• the order of evaluation of the speciϐication expressions within the speciϐication part of an invoked15
Fortran procedure (5.3.5);16

• how soon an image terminates if another image initiates error termination (5.3.5);17
• the value of a reference to a coindexed object on a failed image (5.3.6);18
• the conditions that cause an image to fail (5.3.6);19
• whether the processor has the ability to detect that an image has failed (5.3.6);20
• whether the processor supports a concept of process exit status, and if so, the process exit status on21
program termination (5.3.7);22

• the mechanism of a companion processor, and the means of selecting between multiple companion23
processors (5.5.7);24

• the processor character set (6.1);25
• the maximum number of unique statement labels in a program unit (6.2.5);26
• the means for specifying the source form of a program unit (6.3);27
• in ϐixed source form, the maximum number of characters allowed on a source line containing char‑28
acters not of default kind (6.3.3);29

• the maximum depth of nesting of include lines (6.4);30
• the interpretation of the char‑literal‑constant in the include line (6.4);31
• the set of values supported by an intrinsic type, other than logical (7.1.3);32
• the kind type parameter value of a complex literal constant, if both the real part and imaginary part33
are of type real with the same precision, but have different kind type parameter values (7.4.3.3);34

• the kind of a character length type parameter (7.4.4.1);35
• the blank padding character for nondefault character kind (7.4.4.2)36

J3/25‑007 591

J3/25‑007 WD 1539‑1 2024‑12‑29

• whether particular control characters can appear within a character literal constant in ϐixed source1
form (7.4.4.3);2

• the collating sequence for each character set (7.4.4.4);3
• the order of ϐinalization of components of objects of derived type (7.5.6.2);4
• the order of ϐinalization when several objects are ϐinalized as the consequence of a single event5
(7.5.6.2);6

• whether and when an object is ϐinalized if it is allocated by pointer allocation and it later becomes7
unreachable due to all pointers associated with the object having their pointer association status8
changed (7.5.6.3);9

• whether an object is ϐinalized by a deallocation in which an error condition occurs (7.5.6.3);10
• the kind type parameter of the enumerators of an interoperable enumeration (7.6.1);11
• whether an array is contiguous, except as speciϐied in 8.5.7;12
• the set of error conditions that can occur in ALLOCATE and DEALLOCATE statements (9.7.1, 9.7.3);13
• the allocation status of a variable after evaluation of an expression if the evaluation of a function14
would change the allocation status of the variable and if a reference to the function appears in the15
expression in which the value of the function is not needed to determine the value of the expression16
(9.7.1.3);17

• the order of deallocation when several objects are deallocated by a DEALLOCATE statement (9.7.3);18
• the order of deallocation when several objects are deallocated due to the occurence of an event de‑19
scribed in 9.7.3.2;20

• whether an allocated allocatable subobject is deallocatedwhen an error condition occurs in the deal‑21
location of an object (9.7.3.2);22

• the positive integer values assigned to the stat‑variable in a STAT= speciϐier as the result of an error23
condition (9.7.4, 11.7.11);24

• the allocation status or pointer association status of an allocate‑object if an error condition occurs25
during execution of an ALLOCATE or DEALLOCATE statement (9.7.4);26

• the value assigned to the errmsg‑variable in an ERRMSG= speciϐier as the result of an error condition27
(9.7.5, 11.7.11);28

• the kind type parameter value of the result of a numeric intrinsic binary operation where29

– both operands are of type integer but with different kind type parameters, and the decimal ex‑30
ponent ranges are the same,31

– one operand is of type real or complex and the other is of type real or complex with a different32
kind type parameter, and the decimal precisions are the same,33

and for a logical intrinsic binary operation where the operands have different kind type parameters34
(10.1.9.3);35

• the character assigned to the variable in an intrinsic assignment statement if the kind of the expres‑36
sion is different and the character is not representable in the kind of the variable (10.2.1.3);37

• the order of evaluation of the speciϐication expressions within the speciϐication part of a BLOCK con‑38
struct when the construct is executed (11.1.4);39

• the ordering between records written by different iterations of a DO CONCURRENT construct if the40
records are written to a ϐile connected for sequential access by more than one iteration (11.1.7);41

• the order in which values are combined in a DO CONCURRENT reduction (11.1.7.5);42
• the manner in which the stop code of a STOP or ERROR STOP statement is made available (11.4);43
• the value of the count of the notify variable in a NOTIFYWAIT statement if an error condition occurs44
(11.6);45

592 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• the mechanisms available for creating dependencies for cooperative synchronization (11.7.5);1
• the value of the count of the event variable in an EVENT POST or EVENTWAIT statement if an error2
condition occurs (11.7.7, 11.7.8);3

• the image index value established for each image in a team by a FORM TEAM statement without a4
NEW_INDEX= speciϐier (11.7.9);5

• the set of error conditions that can occur in image control statements (11.7.11);6
• the relationship between the ϐile storage units when viewing a ϐile as a stream ϐile, and the records7
when viewing that ϐile as a record ϐile (12);8

• whether particular control characters can appear in a formatted record or a formatted stream ϐile9
(12.2.2);10

• the form of values in an unformatted record (12.2.3);11
• at any time, the set of allowed access methods, set of allowed forms, set of allowed actions, and set of12
allowed record lengths for a ϐile (12.3);13

• the set of allowable names for a ϐile (12.3);14
• whether anamed ϐile onone image is the sameas a ϐilewith the samenameonanother image (12.3.1);15
• the set of external ϐiles that exist for a program (12.3.2);16
• the relationship between positions of successive ϐile storage units in an external ϐile that is connected17
for formatted stream access (12.3.3.4);18

• the external unit preconnected for sequential formatted input and identiϐied by an asterisk or the19
named constant INPUT_UNIT of the ISO_FORTRAN_ENV intrinsic module (12.5);20

• the external unit preconnected for sequential formatted output and identiϐied by an asterisk or the21
named constant OUTPUT_UNIT of the ISO_FORTRAN_ENV intrinsic module (12.5);22

• the external unit preconnected for sequential formatted output and identiϐied by the named constant23
ERROR_UNIT of the ISO_FORTRAN_ENV intrinsic module, and whether this unit is the same as OUT‑24
PUT_UNIT (12.5);25

• at any time, the set of external units that exist for an image (12.5.3);26
• whether a unit can be connected to a ϐile that is also connected to a C stream (12.5.4);27
• whether a ϐile can be connected to more than one unit at the same time (12.5.4);28
• the effect of performing input/output operations on multiple units while they are connected to the29
same external ϐile (12.5.4);30

• the result of performing input/output operations on a unit connected to a ϐile that is also connected31
to a C stream (12.5.4);32

• whether the ϐiles connected to the units INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT correspond33
to the predeϐined C text streams standard input, standard output, and standard error, respectively34
(12.5.4);35

• the results of performing input/output operations on an external ϐile both from Fortran and from a36
procedure deϐined by means other than Fortran (12.5.4);37

• the default value for the ACTION= speciϐier in an OPEN statement (12.5.6.4);38
• the encoding of a ϐile opened with ENCODING=’DEFAULT’ (12.5.6.9);39
• the ϐile connected by an OPEN statement with STATUS=’SCRATCH’ (12.5.6.10);40
• the interpretation of case in a ϐile name (12.5.6.10, 12.10.2.2);41
• the position of a ϐile after executing an OPEN statement with a POSITION= speciϐier of ASIS, when the42
ϐile previously existed but was not connected (12.5.6.15);43

• the default value for the RECL= speciϐier in an OPEN statement (12.5.6.16);44
• the effect of RECL= on a record containing any nondefault characters (12.5.6.16);45

J3/25‑007 593

J3/25‑007 WD 1539‑1 2024‑12‑29

• the default input/output rounding mode (12.5.6.17);1
• the default sign mode (12.5.6.18);2
• the ϐile status when STATUS=’UNKNOWN’ is speciϐied in an OPEN statement (12.5.6.19);3
• the value assigned to the variable in the ID= speciϐier in an asynchronous data transfer statement4
when execution of the statement is successfully completed (12.6.2.9);5

• whether POS= is permitted with particular ϐiles, and whether POS= can position a particular ϐile to a6
position prior to its current position (12.6.2.12);7

• the form in which a single value of derived type is treated in an unformatted input/output statement8
if the effective item is not processed by a deϐined input/output procedure (12.6.3);9

• the result of unformatted input when the type or type parameters of the value stored in the ϐile differ10
from those of the corresponding effective item (12.6.4.5.2);11

• thenegative value of theunit argument to a deϐined input/output procedure if the parent data trans‑12
fer statement accesses an internal ϐile (12.6.4.8.2);13

• themanner inwhich the processormakes the value of theiomsg argument of a deϐined input/output14
procedure available if the procedure assigns a nonzero value to the iostat argument and the pro‑15
cessor therefore terminates execution of the program (12.6.4.8.2);16

• the action caused by the ϐlush operation, whether the processor supports the ϐlush operation for17
the speciϐied unit, and the negative value assigned to the IOSTAT= variable if the processor does not18
support the ϐlush operation for the speciϐied unit (12.9);19

• the case of characters assigned to the variable in a NAME= speciϐier in an INQUIRE statement20
(12.10.2.16);21

• which of the connected external unit numbers is assigned to the scalar‑int‑variable in the NUMBER=22
speciϐier in an INQUIRE by ϐile statement, if more than one unit on an image is connected to the ϐile23
(12.10.2.19);24

• the value of the variable in a POSITION= speciϐier in an INQUIRE statement if the ϐile has been reposi‑25
tioned since connection (12.10.2.24);26

• the relationship between ϐile size and the data stored in records in a sequential or direct access ϐile27
(12.10.2.31);28

• the number of ϐile storage units needed to store data in an unformatted ϐile (12.10.3);29
• the set of error conditions that can occur in input/output statements (12.11.1);30
• when an input/output error condition occurs or is detected (12.11.1);31
• the positive integer value assigned to the variable in an IOSTAT= speciϐier as the result of an error32
condition (12.11.5);33

• the value assigned to the variable in an IOMSG= speciϐier as the result of an error condition (12.11.6);34
• the result of output of non‑representable characters to a Unicode ϐile (13.7.1);35
• the interpretation of the optional non‑blank characters within the parentheses of a real NaN input36
ϐield (13.7.2.3.2);37

• the interpretation of a sign in a NaN input ϐield (13.7.2.3.2);38
• for output of an IEEE NaN, whether after the letters ’NaN’, the processor produces additional alpha‑39
numeric characters enclosed in parentheses (13.7.2.3.2);40

• the choice of binary exponent in EX output editing (13.7.2.3.6);41
• the effect of the input/output rounding mode PROCESSOR_DEFINED (13.7.2.3.8);42
• which value is chosen if the input/output rounding mode is NEAREST and the value to be converted43
is exactly halfway between the two nearest representable values in the result format (13.7.2.3.8);44

• the ϐield width, decimal part width, and exponent width used for the G0 edit descriptor (13.7.5);45

594 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

• the ϐile positionwhenposition editing skips a character of nondefault kind in an internal ϐile of default1
character kind or an external unit that is not connected to a Unicode ϐile (13.8.1.1);2

• when the sign mode is PROCESSOR_DEFINED, whether a plus sign appears in a numeric output ϐield3
for a nonnegative value (13.8.4);4

• whether a leading zero is produced when the leading zero mode is PROCESSOR_DEFINED (13.8.5);5
• the results of list‑directed output (13.10.4);6
• the results of namelist output (13.11.4);7
• the interaction between argument association and pointer association (15.5.2.5);8
• the values returned by some intrinsic functions (16);9
• how the sequences of atomic actions in unordered segments interleave (16.5);10
• the value assigned to a STATargument in a reference to an atomic subroutinewhen an error condition11
occurs (16.5);12

• the effect of calling EXECUTE_COMMAND_LINE on any image other than image 1 in the initial team13
(16.7);14

• whether the results returned from CPU_TIME, DATE_AND_TIME and SYSTEM_CLOCK are dependent15
on which image calls them (16.7);16

• the set of error conditions that can occur in some intrinsic subroutines (16.9);17
• the value assigned to a CMDSTAT, ERRMSG, EXITSTAT, STAT, or STATUS argument to indicate a proces‑18
sor‑dependent error condition (16.9);19

• the computed value of the intrinsic subroutine CO_REDUCE (16.9.57) and the intrinsic subroutine20
CO_SUM (16.9.58);21

• whether command arguments are available (16.9.59, 16.9.93);22
• the value assigned to the TIME argument by the intrinsic subroutine CPU_TIME (16.9.67);23
• whether date, clock, and time zone information is available (16.9.69);24
• whether date, clock, and time zone information on one image is the same as that on another image25
(16.9.69);26

• whether asynchronous command line execution is available (16.9.83);27
• whether the program invocation command is available (16.9.92);28
• the value of command argument zero, if the processor does not support the concept of a command29
name (16.9.93);30

• the order of command arguments (16.9.93);31
• whether the signiϐicant length of a command argument includes trailing blanks (16.9.93);32
• the interpretation of case for the NAME argument of the intrinsic subroutine GET_ENVIRONMENT_‑33
VARIABLE (16.9.94);34

• whether an environment variable that exists on an image also exists on another image, and if it does35
exist on both images, whether the values are the same or different (16.9.94);36

• the value assigned to the pseudorandom number seed by the intrinsic subroutine RANDOM_INIT37
(16.9.167);38

• the computation of the seed value used by the pseudorandom number generator (16.9.169);39
• the value assigned to the seed by the intrinsic subroutine RANDOM_SEED when no argument is40
present (16.9.169);41

• the values assigned to its arguments by the intrinsic subroutine SYSTEM_CLOCK (16.9.202);42
• the values of the named constants in the intrinsic module ISO_FORTRAN_ENV (16.10.2);43
• the values returned by the functions COMPILER_OPTIONS and COMPILER_VERSION in the intrinsic44

J3/25‑007 595

J3/25‑007 WD 1539‑1 2024‑12‑29

module ISO_FORTRAN_ENV (16.10.2);1
• the extent to which a processor supports IEEE arithmetic (17);2
• whether a ϐlag that is quiet on entry to a scoping unit that does not access IEEE_FEATURES, IEEE_‑3
EXCEPTIONS, or IEEE_ARITHMETIC is signaling on exit (17.1);4

• the conditions under which IEEE_OVERFLOW is raised in a calculation involving non‑ISO/IEC/IEEE5
60559:2020 ϐloating‑point data (17.3);6

• the conditions under which IEEE_OVERFLOW and IEEE_DIVIDE_BY_ZERO are raised in a ϐloating‑7
point exponentiation operation (17.3);8

• the conditions under which IEEE_DIVIDE_BY_ZERO is raised in a calculation involving ϐloating‑point9
data that do not conform to ISO/IEC/IEEE 60559:2020 (17.3);10

• whether an exception signals at the end of a sequence of statements that has no invocations of IEEE_‑11
GET_FLAG, IEEE_SET_FLAG, IEEE_GET_STATUS, IEEE_SET_STATUS, or IEEE_SET_HALTING_MODE, in12
which execution of an operation would cause it to signal, if no value of a variable depends upon the13
result of the operation (17.3);14

• the initial rounding modes (17.4);15
• whether the processor supports a particular rounding mode (17.4);16
• the effect of the rounding mode IEEE_OTHER, if supported (17.4);17
• the initial underϐlow mode (17.5);18
• the initial halting mode (17.6);19
• whether IEEE_INT implements the convertToInteger{round} or convertToIntegerExact{round} op‑20
eration speciϐied by ISO/IEC 60559:2020 (17.11.11);21

• which argument is the result value of IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_NUM, or22
IEEE_MIN_NUM_MAG when both of the arguments are quiet NaNs or are zeros (17.11.19, 17.11.20,23
17.11.23, 17.11.24);24

• the requirements on the storage sequence to become associated with the pointer FPTR by the C_F_‑25
POINTER subroutine (18.2.3.4);26

• the order of the members of the CFI_dim_t structure deϐined in the source ϐile CFI_Fortran_binding.h27
(18.5.2);28

• members of the CFI_cdesc_t structure deϐined in the source ϐile CFI_Fortran_binding.h beyond the29
requirements of 18.5.3;30

• the value of CFI_MAX_RANK in the source ϐile CFI_Fortran_binding.h (18.5.4);31
• the value of CFI_VERSION in the source ϐile CFI_Fortran_binding.h (18.5.4);32
• which error condition is detected ifmore than one error condition could be detected for an invocation33
of one of the functions declared in the source ϐile CFI_Fortran_binding.h (18.5.5.1);34

• the values of the attribute speciϐier macros deϐined in the source ϐile CFI_Fortran_binding.h (18.5.4);35
• the values of the type speciϐier macros deϐined in the source ϐile CFI_Fortran_binding.h;36
• which additional type speciϐier values are deϐined in the source ϐile CFI_Fortran_binding.h (18.5.4);37
• the values of the error code macros other than CFI_SUCCESS that are deϐined in the source ϐile CFI_‑38
Fortran_binding.h (18.5.4);39

• the base address of a zero‑sized array (18.5.3);40
• the values of the ϐloating‑point exception ϐlags on entry to a procedure deϐined by means other than41
Fortran (18.10.3);42

• whether a procedure deϐined by means other than Fortran is an asynchronous communication initi‑43
ation or completion procedure (18.10.4).44

596 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Annex B1

(Informative)2

Deleted and obsolescent features3

B.1 Deleted features from Fortran 904

1 These deleted features are those features of Fortran90 thatwere redundant and considered largely unused.5

2 The following Fortran 90 features are not required.6

(1) Real and double precision DO variables.7
In FORTRAN 77 and Fortran 90, a DO variable was allowed to be of type real or double precision8
in addition to type integer; this has been deleted. A similar result can be achieved by using a9
DO construct with no loop control and the appropriate exit test.10

(2) Branching to an END IF statement from outside its block.11
In FORTRAN 77 and Fortran 90, it was possible to branch to an END IF statement from outside12
the IF construct; this has been deleted. A similar result can be achieved by branching to a CON‑13
TINUE statement that is immediately after the END IF statement.14

(3) PAUSE statement.15
The PAUSE statement, provided in FORTRAN 66, FORTRAN 77, and Fortran 90, has been deleted.16
A similar result can be achieved bywriting amessage to the appropriate unit, followed by read‑17
ing from the appropriate unit.18

(4) ASSIGN and assigned GO TO statements, and assigned format speciϐiers.19
The ASSIGN statement and the related assigned GO TO statement, provided in FORTRAN 66,20
FORTRAN 77, and Fortran 90, have been deleted. Further, the ability to use an assigned integer21
as a format, provided in FORTRAN 77 and Fortran 90, has been deleted. A similar result can22
be achieved by using other control constructs instead of the assigned GO TO statement and by23
using a default character variable to hold a format speciϐication instead of using an assigned24
integer.25

(5) H edit descriptor.26
In FORTRAN 77 and Fortran 90, therewas an alternative form of character string edit descriptor,27
which had been the only such form in FORTRAN 66; this has been deleted. A similar result can28
be achieved by using a character string edit descriptor.29

(6) Vertical format control.30
In FORTRAN 66, FORTRAN 77, Fortran 90, and Fortran 95 formatted output to certain units resul‑31
ted in the ϐirst character of each record being interpreted as controlling vertical spacing. There32
was no standard way to detect whether output to a unit resulted in this vertical format con‑33
trol, and no way to specify that it needs to be applied; this has been deleted. The effect can be34
achieved by post‑processing a formatted ϐile.35

3 See ISO/IEC 1539:1991 for detailed rules of how these deleted features worked.36

J3/25‑007 597

J3/25‑007 WD 1539‑1 2024‑12‑29

B.2 Deleted features from Fortran 20081

1 These deleted features are those features of Fortran 2008 that were redundant and considered largely2
unused.3

2 The following Fortran 2008 features are not required.4

(1) Arithmetic IF statement.5
The arithmetic IF statement is incompatiblewith ISO/IEC 60559:2020 and necessarily involves6
the use of statement labels; statement labels can hinder optimization, and make code hard to7
read and maintain. Similar logic can be more clearly encoded using other conditional state‑8
ments.9

(2) Nonblock DO construct10
The nonblock forms of the DO loop were confusing and hard to maintain. Shared termination11
and dual use of labeled action statements as do termination and branch targets were especially12
error‑prone.13

B.3 Obsolescent features14

B.3.1 General15

1 The obsolescent features are those features of Fortran that were redundant in a previous standard, and for16
which better methods were available in that standard. The nature of the obsolescent features is described17
in 4.4.3. The obsolescent features in this document are the following.18

(1) Alternate return— see B.3.2.19
(2) Computed GO TO— see B.3.3.20
(3) Statement functions — see B.3.4.21
(4) DATA statements amongst executable statements — see B.3.5.22
(5) Assumed length character functions — see B.3.6.23
(6) Fixed form source— see B.3.7.24
(7) CHARACTER* form of CHARACTER declaration— see B.3.8.25
(8) ENTRY statements — see B.3.9.26
(9) Label form of DO statement – see B.3.10.27
(10) COMMON and EQUIVALENCE statements, and the block data program unit – see B.3.11.28
(11) Speciϐic names for intrinsic functions – see B.3.12.29
(12) FORALL construct and statement – see B.3.1330

B.3.2 Alternate return31

1 An alternate return introduces labels into an argument list to allow the called procedure to direct the exe‑32
cution of the caller upon return. The same effect can be achievedwith a return code that is used in a SELECT33
CASE construct on return. This avoids an irregularity in the syntax and semantics of argument association.34
For example,35

CALL SUBR_NAME (X, Y, Z, *100, *200, *300)36

can be replaced by37

598 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

CALL SUBR_NAME (X, Y, Z, RETURN_CODE)1
SELECT CASE (RETURN_CODE)2

CASE (1)3
...4

CASE (2)5
...6

CASE (3)7
...8

CASE DEFAULT9
...10

END SELECT11

B.3.3 Computed GO TO statement12

1 The computedGOTOstatement hasbeen supersededby the SELECTCASEconstruct, which is a generalized,13
easier to use, and clearer means of expressing the same computation.14

B.3.4 Statement functions15

1 Statement functions are subject to a number of nonintuitive restrictions and are a potential source of error16
because their syntax is easily confused with that of an assignment statement.17

2 The internal function is a more generalized form of the statement function and completely supersedes it.18

B.3.5 DATA statements among executables19

1 The statement ordering rules allow DATA statements to appear anywhere in a program unit after the spe‑20
ciϐication statements. The ability to positionDATA statements amongst executable statements is very rarely21
used, unnecessary, and a potential source of error.22

B.3.6 Assumed character length functions23

1 Assumed character length for functions is an irregularity in the language in that elsewhere in Fortran the24
philosophy is that the attributes of a function result depend only on the actual arguments of the invocation25
and on any data accessible by the function through host or use association. Some uses of this facility can be26
replaced with an automatic character length function, where the length of the function result is declared27
in a speciϐication expression. Other uses can be replaced by the use of a subroutine whose arguments28
correspond to the function result and the function arguments.29

2 Note that dummy arguments of a function can have assumed character length.30

B.3.7 Fixed form source31

1 Fixed form source was designed when the principal machine‑readable input medium for new programs32
was punched cards. Now that new and amended programs are generally entered via keyboardswith screen33
displays, it is an unnecessary overhead, and is potentially error‑prone, to have to locate positions 6, 7, or34
72 on a line. Free form source was designed expressly for this more modern technology.35

2 It is a simple matter for a software tool to convert from ϐixed to free form source.36

J3/25‑007 599

J3/25‑007 WD 1539‑1 2024‑12‑29

B.3.8 CHARACTER* form of CHARACTER declaration1

1 In addition to the CHARACTER*char‑length form introduced in FORTRAN77, Fortran 90provided the CHAR‑2
ACTER([LEN =] type‑param‑value) form. The older form (CHARACTER*char‑length) is redundant.3

B.3.9 ENTRY statements4

1 ENTRY statements allowmore than one entry point to a subprogram, facilitating sharing of data items and5
executable statements local to that subprogram.6

2 This can be replaced by a module containing the (private) data items, with a module procedure for each7
entry point and the shared code in a private module procedure.8

B.3.10 Label DO statement9

1 The label in the DO statement is redundant with the construct name. Furthermore, the label allows unres‑10
tricted branches and, for its main purpose (the target of a conditional branch to skip the rest of the current11
iteration), is redundant with the CYCLE statement, which is clearer.12

B.3.11 COMMON and EQUIVALENCE statements and the block data program unit13

1 Common blocks are error‑prone and have largely been superseded by modules. EQUIVALENCE similarly14
is error‑prone. Whilst use of these statements was invaluable prior to Fortran 90 they are now redundant15
and can inhibit performance. The block data program unit exists only to serve common blocks and hence16
is also redundant.17

B.3.12 Speciϐic names for intrinsic functions18

1 The speciϐic names of the intrinsic functions are often obscure and hinder portability. They have been19
redundant since Fortran 90. Use generic names for references to intrinsic procedures.20

B.3.13 FORALL construct and statement21

1 The FORALL construct and statementwere added to the language in the expectation that theywould enable22
highly efϐicient execution, especially onparallel processors. However, experience indicates that they are too23
complex and have toomany restrictions for compilers to take advantage of them. They are redundant with24
the DO CONCURRENT construct, and many of the manipulations for which they might be used can be done25
more effectively using pointers, especially using pointer rank remapping.26

600 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Annex C1

(Informative)2

Extended notes3

C.1 Feature history4

C.1.1 Features that were new in Fortran 20235
• Source form:6
The maximum length of a line in free form source has been increased. The maximum length of a7
statement has been increased. The limit on the number of continuation lines has been removed.8

• Data declaration:9
A data object with a coarray component can be an array or allocatable. BIND(C) ENUM are now10
referred to as interoperable enumerations, and noninteroperable enumeration types are available.11
An interoperable enumeration can be given a type name. TYPEOF and CLASSOF type speciϐiers can12
be used to declare one or more entities to have the same type and type parameters as another entity.13
A PUBLIC namelist group can have a PRIVATE namelist group object. The DIMENSION attribute can14
be declared with a syntax that does not depend on the rank (8.5.8, 8.5.17).15

• Data usage and computation:16
Binary, octal, and hexadecimal literal constants can be used in additional contexts. A deferred‑length17
allocatable errmsg‑variable is allocated by the processor to the length of the explanatorymessage. An18
ALLOCATE statement can specify the bounds of an array allocation with array expressions. A pointer19
assignment statement can specify lower bounds or rank remapping with array expressions. Arrays20
can be used to specify multiple subscripts or subscript triplets (9.5.3.2). Conditional expressions21
provide selective evaluation of subexpressions.22

• Input/output:23
The AT edit descriptor provides output of character values with trailing blanks trimmed. The LEAD‑24
ING_ZERO= speciϐier in the OPEN andWRITE statements, and the LZP, LZS and LZ control edit desc‑25
riptors, provide control of optional leading zeros during formatted output. A deferred‑length allocat‑26
able iomsg‑variable is allocatedby theprocessor to the lengthof the explanatorymessage. Adeferred‑27
length allocatable scalar io‑unit in a WRITE statement is allocated by the processor to the length of28
the record to be written.29

• Execution control:30
The REDUCE locality speciϐier for the DO CONCURRENT construct speciϐies reduction variables for31
the loop. The NOTIFY WAIT statement, NOTIFY= speciϐier on an image selector, and the NOTIFY_‑32
TYPE from the intrinsic module ISO_FORTRAN_ENV provide one‑sided data‑oriented synchroniza‑33
tion between images.34

• Intrinsic procedures:35
The intrinsic functions ACOSD, ASIND, ATAND, ATAN2D, COSD, SIND, and TAND are trigonometric36
functions in which angles are speciϐied in degrees. The intrinsic functions ACOSPI, ASINPI, ATANPI,37
ATAN2PI, COSPI, SINPI, and TANPI are trigonometric functions in which angles are speciϐied in half‑38
revolutions (that is, asmultiples of π). The intrinsic function SELECTED_LOGICAL_KIND returns kind39
type parameter values for type logical. The intrinsic subroutine SPLIT parses a string into tokens, one40
at a time. The intrinsic subroutine SYSTEM_CLOCKsupportsmore thanone systemclock for an image.41

J3/25‑007 601

J3/25‑007 WD 1539‑1 2024‑12‑29

The intrinsic subroutine TOKENIZE parses a string into tokens. When a deferred‑length allocatable1
actual argument of an intrinsic procedure is assigned character data, it is allocated by the processor2
to the length of the data. Execution of a collective subroutine can be successful on an image even3
when an error condition occurs for the corresponding execution on another image.4

• Intrinsic modules:5
Additional named constants LOGICAL8, LOGICAL16, LOGICAL32, LOGICAL64, andREAL16have been6
added to the intrinsic module ISO_FORTRAN_ENV. The subroutines IEEE_GET_ROUNDING_MODE,7
IEEE_GET_UNDERFLOW_MODE, IEEE_SET_ROUNDING_MODE, and IEEE_SET_UNDERFLOW_MODE,8
from the intrinsic module IEEE_ARITHMETIC, are now considered to be pure and simple. The sub‑9
routines IEEE_GET_MODES, IEEE_GET_STATUS, IEEE_SET_MODES, and IEEE_SET_STATUS, from the10
intrinsic module IEEE_EXCEPTIONS, are now considered to be pure and simple. The procedures C_‑11
F_STRPOINTER and F_C_STRING have been added to the intrinsic module ISO_C_BINDING to assist12
in the use of null‑terminated strings. The subroutine C_F_POINTER in the intrinsic module ISO_C_‑13
BINDING has an extra optional dummy argument, LOWER, that speciϐies the lower bounds for FPTR.14

• Changes to the intrinsic module IEEE_ARITHMETIC for conformance with ISO/IEC 60559:2020:15
The new functions IEEE_MAX, IEEE_MAX_MAG, IEEE_MIN, and IEEE_MIN_MAG perform the opera‑16
tions maximum, maximumMagnitude, minimum, and miminumMagnitude in ISO/IEC 60559:2020.17
The functions IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_NUM, and IEEE_MIN_NUM_MAG18
now conform to the operations maximumNumber, maximumMagnitudeNumber, minimumNumber19
and minimumMagnitudeNumber in ISO/IEC 60559:2020; the changes affect the treatment of zeros20
and NaNs.21

• Program units and procedures:22
A procedure can be speciϐied to be a simple procedure; a simple procedure references or deϐines23
nonlocal variables only via its dummy arguments. Conditional arguments provide actual argument24
selection in a procedure reference.25

C.1.2 Features that were new in Fortran 201826
• Data declaration:27
Constant properties of an object declared in its entity‑decl can be used in its initialization. The EQUI‑28
VALENCE and COMMON statements and the block data program unit have been redundant since For‑29
tran 90 and are now speciϐied to be obsolescent. Diagnosis of the appearance of a PROTECTED TAR‑30
GET variable accessed by use association as a data‑target in a structure constructor is required.31

• Data usage and computation:32
The declared type of the value supplied for a polymorphic allocatable component in a structure con‑33
structor is no longer required to be the same as the declared type of the component. FORALL is now34
speciϐied to be obsolescent. The type and kind of an implied DO variable in an array constructor or35
DATA statement can be speciϐied within the constructor or statement. The SELECT RANK construct36
provides structured access to the elements of an assumed‑rank array. Completing execution of a37
BLOCK construct can cause the association status of a pointer with the PROTECTED attribute to be‑38
come undeϐined. The standard intrinsic operations <, <=, >, and >= (also known as .LT., .LE., .GT.,39
and .GE.) on IEEE numbers provide compareSignaling{relation} operations; the = and /= operations40
(also known as .EQ. and .NE.) provide compareQuiet{relation} operations. Finalization of an alloc‑41
atable subobject during intrinsic assignment has been clariϐied. The char‑length in an executable42
statement is no longer required to be a speciϐication expression.43

• Input/output:44
The SIZE= speciϐier can be used with advancing input. It is no longer prohibited to open a ϐile on45
more than one unit. The value assigned by the RECL= speciϐier in an INQUIRE statement has been46
standardized. The values assigned by the POS= and SIZE= speciϐiers in an INQUIRE statement for47

602 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

a unit that has pending asynchronous operations have been standardized. The G0.d edit descriptor1
can be used for effective items of type Integer, Logical, and Character. The D, E, EN, and ES edit2
descriptors can have a ϐield width of zero, analogous to the F edit descriptor. The exponent width3
e in a data edit descriptor can be zero, analogous to a ϐield width of zero. Floating‑point formatted4
input accepts hexadecimal‑signiϐicand numbers that conform to ISO/IEC 60559:2020. The EX edit5
descriptor provides hexadecimal‑signiϐicand formatted output conforming to ISO/IEC 60559:2020.6
An error condition occurs if unacceptable characters are presented for logical or numeric editing7
during execution of a formatted input statement.8

• Execution control:9
The arithmetic IF statement has been deleted. Labeled DO loops have been redundant since Fortran10
90 and are nowspeciϐied to be obsolescent. The nonblockDO construct has beendeleted. The locality11
of a variable used in aDOCONCURRENT construct can be explicitly speciϐied. The stop code in a STOP12
or ERROR STOP statement can be nonconstant. Output of the stop code and exception summary from13
the STOP and ERROR STOP statements can be controlled.14

• Intrinsic procedures and modules:15
In a reference to the intrinsic function CMPLX with an actual argument of type complex, no keyword16
is needed for a KIND argument. In references to the intrinsic functions ALL, ANY, FINDLOC, IALL,17
IANY, IPARITY, MAXLOC, MAXVAL, MINLOC, MINVAL, NORM2, PARITY, PRODUCT, SUM, and THIS_‑18
IMAGE, the actual argument for DIM can be a present optional dummy argument. The new intrinsic19
function COSHAPE returns the coshape of a coarray. The new intrinsic functionOUT_OF_RANGE tests20
whether a numeric value can be safely converted to a different type or kind. The new intrinsic sub‑21
routine RANDOM_INIT establishes the initial state of the pseudorandom number generator used by22
RANDOM_NUMBER. The new intrinsic function REDUCE performs user‑speciϐied array reductions.23
A processor is required to report use of a nonstandard intrinsic procedure, use of a nonstandard in‑24
trinsic module, and use of a nonstandard procedure from a standard intrinsic module. Integer and25
logical arguments to intrinsic procedures and intrinsic module procedures that were previously re‑26
quired to be of default kind no longer have that requirement, except for RANDOM_SEED. Speciϐic27
names for intrinsic functions are now deemed obsolescent. All standard procedures in the intrinsic28
module ISO_C_BINDING, other than C_F_POINTER and C_F_PROCPOINTER, are now pure. The argu‑29
ments to the intrinsic function SIGN can be of different kind. Nonpolymorphic pointer arguments to30
the intrinsic functions EXTENDS_TYPE_OF and SAME_TYPE_AS need not have deϐined pointer associ‑31
ation status. The effects of invoking the intrinsic procedures COMMAND_ARGUMENT_COUNT, GET_‑32
COMMAND, and GET_COMMAND_ARGUMENT, on images other than image one, are no longer pro‑33
cessor dependent. Access to error messages from the intrinsic subroutines GET_COMMAND, GET_‑34
COMMAND_ARGUMENT, and GET_ENVIRONMENT_VARIABLE is provided by an optional ERRMSG35
argument. The result of NORM2 for a zero‑sized array argument has been clariϐied.36

• Program units and procedures:37
The IMPORT statement can appear in a contained subprogram or BLOCK construct, and can restrict38
access via host association; diagnosis of violation of the IMPORT restrictions is required. The GEN‑39
ERIC statement can be used to declare generic interfaces. The number of procedure arguments is40
used in generic resolution. In a module, the default accessibility of entities accessed from another41
module can be controlled separately from the default accessibility of entities declared in the using42
module. An IMPLICIT NONE statement can require explicit declaration of the EXTERNAL attribute43
throughout a scoping unit and its contained scoping units. A deϐined operation need not specify IN‑44
TENT (IN) for a dummy argument with the VALUE. A deϐined assignment need not specify INTENT45
(IN) for the second dummy argument if it has the VALUE. Procedures that are not declared with an46
asterisk type‑param‑value, including elemental procedures, can be invoked recursively by default;47
the RECURSIVE keyword is advisory only. The NON_RECURSIVE keyword speciϐies that a procedure48

J3/25‑007 603

J3/25‑007 WD 1539‑1 2024‑12‑29

is not recursive. The ERROR STOP statement can appear in a pure subprogram. A dummy argument1
of a pure function is permitted in a variable deϐinition context, if it has the VALUE attribute. A coar‑2
ray dummy argument, or a coarray ultimate component of a dummy argument, can be referenced or3
deϐined by another image.4

• Features previously described by ISO/IEC TS 29113:2012:5
A dummy data object can assume its rank from its effective argument. A dummy data object can as‑6
sume the type from its effective argument, without having the ability to perform type selection. An7
interoperable procedure can have dummy arguments that are assumed‑type and/or assumed‑rank.8
An interoperable procedure can have dummy data objects that are allocatable, assumed‑shape, op‑9
tional, or pointers. The character length of a dummy data object of an interoperable procedure can10
be assumed. The argument to C_LOC can be a noninteroperable array. The FPTR argument to C_F_‑11
POINTER can be a noninteroperable array pointer. The argument to C_FUNLOC can be a noninterop‑12
erable procedure. The FPTR argument to C_F_PROCPOINTER can be a noninteroperable procedure13
pointer. There is a new named constant C_PTRDIFF_T to provide interoperability with the C type14
ptrdiff_t.15
Additionally to ISO/IEC TS 29113:2012, a scalar actual argument can be associatedwith an assumed‑16
type assumed‑sizedummyargument, an assumed‑rankdummydata object that is not associatedwith17
an assumed‑size array can be used as the argument to the function C_SIZEOF from the intrinsic mod‑18
ule ISO_C_BINDING, and the type argument to CFI_establish can have a positive value corresponding19
to an interoperable C type.20

• Changes to the intrinsic modules IEEE_ARITHMETIC, IEEE_EXCEPTIONS, and IEEE_FEATURES for21
conformance with ISO/IEC 60559:2020:22
There is a new, optional, rounding mode IEEE_AWAY. The new type IEEE_MODES_TYPE encapsu‑23
lates all ϐloating‑point modes. Features associated with subnormal numbers can be accessed with24
functions and types named …SUBNORMAL…(the old …DENORMAL…names remain). The new func‑25
tion IEEE_FMA performs fused multiply‑add operations. The function IEEE_INT performs rounded26
conversions to integer type. The new functions IEEE_MAX_NUM, IEEE_MAX_NUM_MAG, IEEE_MIN_‑27
NUM, and IEEE_MIN_NUM_MAG calculate maximum and minimum numeric values. The new func‑28
tions IEEE_NEXT_DOWN and IEEE_NEXT_UP return the adjacent machine numbers. The new func‑29
tions IEEE_QUIET_EQ, IEEE_QUIET_GE, IEEE_QUIET_GT, IEEE_QUIET_LE, IEEE_QUIET_LT, and IEEE_‑30
QUIET_NE perform quiet comparisons. The new functions IEEE_SIGNALING_EQ, IEEE_SIGNALING_‑31
GE, IEEE_SIGNALING_GT, IEEE_SIGNALING_GE, IEEE_SIGNALING_LE, IEEE_SIGNALING_LT, and32
IEEE_SIGNALING_NE perform signaling comparisons. The decimal rounding mode can be inquired33
and set independently of the binary roundingmode, using theRADIX argument to IEEE_GET_ROUND‑34
ING_MODE and IEEE_SET_ROUNDING_MODE. The new function IEEE_REAL performs rounded con‑35
versions to real type. The function IEEE_REM now requires its arguments to have the same radix.36
The function IEEE_RINT now has a ROUND argument to perform speciϐic rounding. The new func‑37
tion IEEE_SIGNBIT tests the sign bit of an IEEE number.38

• Features previously described by ISO/IEC TS 18508:2015:39
The CRITICAL statement has optional ERRMSG= and STAT= speciϐiers. The intrinsic subroutines40
ATOMIC_DEFINE and ATOMIC_REF have an optional STAT argument. The new intrinsic subroutines41
ATOMIC_ADD, ATOMIC_AND, ATOMIC_CAS, ATOMIC_FETCH_ADD, ATOMIC_FETCH_AND, ATOMIC_‑42
FETCH_OR, ATOMIC_FETCH_XOR, ATOMIC_OR, and ATOMIC_XOR perform atomic operations. The43
new intrinsic functions FAILED_IMAGES and STOPPED_IMAGES return indices of images known to44
have failed or stopped respectively. The new intrinsic function IMAGE_STATUS returns the image ex‑45
ecution status of an image. The intrinsic subroutine MOVE_ALLOC has optional ERRMSG and STAT46
arguments. The intrinsic functions IMAGE_INDEX and NUM_IMAGES have additional forms with a47
TEAM or TEAM_NUMBER argument. The intrinsic function THIS_IMAGE has an optional TEAM argu‑48

604 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

ment. The EVENT POST and EVENT WAIT statements, the intrinsic subroutine EVENT_QUERY, and1
the type EVENT_TYPE provide an event facility for one‑sided segment ordering. The CHANGE TEAM2
construct, derived type TEAM_TYPE, FORM TEAM and SYNC TEAM statements, intrinsic functions3
GET_TEAM and TEAM_NUMBER, and the TEAM= and TEAM_NUMBER= speciϐiers on image select‑4
ors, provide a team facility for a subset of the program’s images to act in concert as if it were the set5
of all images. This team facility allows an allocatable coarray to be allocated or deallocated on a sub‑6
set of images. The new intrinsic subroutines CO_BROADCAST, CO_MAX, CO_MIN, CO_REDUCE, and7
CO_SUM perform collective reduction operations on the images of the current team. The concept of8
failed images, the FAIL IMAGE statement, the STAT= speciϐier on image selectors, and the named con‑9
stant STAT_FAILED_IMAGE from the intrinsic module ISO_FORTRAN_ENV provide support for fault‑10
tolerant parallel execution.11

• Changes to features previously described by ISO/IEC TS 18508:2015:12
The CHANGETEAMand SYNC TEAM statements, and the TEAM= speciϐier on image selectors, permit13
the team to be speciϐied by an expression. The intrinsic functions FAILED_IMAGES and STOPPED_‑14
IMAGES have no restriction on the kind of their result. The name of the function argument to the15
intrinsic function CO_REDUCE is OPERATION instead of OPERATOR; this argument is not required16
to be commutative. The named constant STAT_UNLOCKED_FAILED_IMAGE from the intrinsic mod‑17
ule ISO_FORTRAN_ENV indicates that a lock variable was locked by an image that failed. The team18
number for the initial team can be used in image selectors, and in the intrinsic functions NUM_IM‑19
AGES and IMAGE_INDEX. A team variable that appears in a CHANGE TEAM statement can no longer20
be deϐined or become undeϐined during execution of the CHANGE TEAM construct. All images of the21
current team are no longer required to execute the same CHANGE TEAM statement. A variable of22
type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV is not permitted to be a coarray. A23
variable of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV can have a pointer com‑24
ponent, and a team variable becomes undeϐined if assigned a value from another image. The intrinsic25
function UCOBOUND produces a value for the ϐinal upper cobound that is always relative to the cur‑26
rent team. An EXIT statement can be used to complete execution of a CHANGE TEAM or CRITICAL27
construct.28

C.2 Features that were new in Fortran 200829
• Module enhancements:30
Submodules provide additional structuring facilities for modules. Data objects and procedure point‑31
erss declared in a module implicitly have the SAVE attribute.32

• Parallel execution:33
Coarrays and synchronization constructs support parallel programming using a single programmul‑34
tiple data (SPMD) model.35

• Performance enhancements:36
The DO CONCURRENT construct provides a means for the program to specify that individual loop37
iterations have no interdependencies. The CONTIGUOUS attribute provides ameans for the program38
to specify restrictions on the storage layout of pointer targets and assumed‑shapedummyarguments.39

• Data declaration:40
The maximum rank has been increased to 15. A processor is required to support at least one kind41
of integer with a range of at least 18 decimal digits. An allocatable component can be of recursive42
type. A named constant array’s shape can be implied by its value. A pointer can be initially asso‑43
ciated with a target. Subscripts and nested implied‑do limits inside a data‑implied‑do can be any44
constant expression instead of being limited to combinations of constants, implied‑do variables, and45
intrinsic operations. A FORALL index variable can have its type and kind explicitly declared within46

J3/25‑007 605

J3/25‑007 WD 1539‑1 2024‑12‑29

the construct. The TYPE keyword can be used to declare entities of intrinsic type. Multiple type‑1
bound procedures can be declared in a single type‑bound procedure statement. An array or object2
with a nonconstant length type parameter can have the VALUE attribute. A PROCEDURE statement3
can have a double colon before the ϐirst procedure name. The PROTECTED attribute can be speciϐied4
by the procedure declaration statement.5

• Data usage and computation:6
A structure constructor can omit the value for an allocatable component. SOURCE= in an ALLOC‑7
ATE statement can give an array variable the bounds as well as the value of an expression. MOLD=8
in an ALLOCATE statement can give a polymorphic variable the shape, type, and type parameters of9
an expression without copying the value. The real and imaginary parts of a complex entity can be10
accessed independently with a component‑like syntax. intrinsic assignmentIntrinsic assignment to11
an allocatable polymorphic variable is allowed. A pointer function reference can denote a variable12
in any variable deϐinition context. Some restrictions on the use of dummy arguments in elemental13
subprograms have been removed. Multiple allocations are permitted in a single ALLOCATE state‑14
ment with the SOURCE= speciϐier. A deϔined‑operator can be used in a speciϐication expression. Any15
transformational function from the intrinsic module ISO_C_BINDING can be used in a speciϐication16
expression.17

• Input/output:18
NEWUNIT= in an OPEN statement automatically selects a unit number that does not interfere with19
other unit numbers selected by the program. The G0 edit descriptor and unlimited format control20
ease writing output in comma‑separated‑value (CSV) format. Input/output of the internal repres‑21
entation of real and complex entities as bit strings can be done using the B, O, and Z edit descriptors22
(13.7.2.4). Recursive data transfers are allowed on distinct units.23

• Execution control:24
The BLOCK construct can contain declarations of objects with construct scope. The EXIT statement25
can transfer control from within more named executable constructs. The STOP statement has been26
changed to accept a constant expression instead of merely a literal constant, and to encourage the27
processor to provide the integer stop code (if it appears) as a termination status (where that makes28
sense). The ERROR STOP statement initiates error termination.29

• Intrinsic procedures:30
– The intrinsic functions ACOS, ASIN, ATAN, COSH, SINH, TAN, and TANH can have arguments of31
type complex.32

– The new intrinsic functions ACOSH, ASINH, and ATANH calculate the inverse hyperbolic cosine,33
sine, and tangent respectively.34

– The intrinsic function ATAN2 can be referenced by the name ATAN.35
– The new intrinsic subroutines ATOMIC_DEFINE and ATOMIC_REF deϐine and reference a vari‑36
able atomically.37

– The new intrinsic functions BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_Y0, BESSEL_Y1, and38
BESSEL_YN calculate Bessel functions.39

– The new intrinsic functions BGE, BGT, BLE, and BLT perform bitwise comparisons.40
– The new intrinsic functions DSHIFTL and DSHIFTR calculate combined left and right shifts.41
– The new intrinsic functions ERF, ERFC, and ERFC_SCALED calculate the error function and its42
complement.43

– Thenew intrinsic subroutineEXECUTE_COMMAND_LINEallows aprogram to start anotherpro‑44
gram.45

– The new intrinsic function FINDLOC searches an array for a value.46
– The intrinsic functions LGE, LGT, LLE, and LLT can have arguments of ASCII kind.47

606 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

– The new intrinsic functions GAMMA and LOG_GAMMA calculate the gamma function and its log.1
– The new intrinsic function HYPOT calculates the Euclidean distance.2
– The new intrinsic functions IALL, IANY, and IPARITY reduce an array with the bitwise AND,3
bitwise OR, and bitwise exclusive OR functions respectively.4

– The new intrinsic function IMAGE_INDEX converts cosubscripts to an image index.5
– The new intrinsic functions LCOBOUND and UCOBOUND return the cobounds of a coarray.6
– The new intrinsic functions LEADZ and TRAILZ return the number of leading and trailing zero7
bits in an integer.8

– The new intrinsic functions MASKL and MASKR return simple left and right justiϐied masks.9
– A BACK= argument has been added to the intrinsic functions MAXLOC and MINLOC.10
– The new intrinsic function MERGE_BITS performs a bitwise merge using a mask.11
– The new intrinsic function NORM2 calculates the L2 norm of an array.12
– The new intrinsic function NUM_IMAGES returns the number of images.13
– The new intrinsic function PARITY reduces an array with the .NEQV. operation.14
– The new intrinsic functions POPCNT and POPPAR return the number of 1 bits of an integer and15
its parity.16

– A RADIX= argument has been added to the intrinsic function SELECTED_REAL_KIND.17
– The new intrinsic functions SHIFTA, SHIFTL and SHIFTR perform shift operations.18
– The new intrinsic function STORAGE_SIZE returns the size of an array element in bits.19
– The new intrinsic function THIS_IMAGE returns the index of this image or cosubscripts for it.20

• Intrinsic modules:21
The functions COMPILER_VERSION and COMPILER_OPTIONS in the intrinsic module ISO_FORTRAN‑22
_ENV return information about the program translation phase. Named constants for selecting kind23
values have been added to the intrinsic module ISO_FORTRAN_ENV. A RADIX= argument has been24
added to the function IEEE_SELECTED_REAL_KIND in the intrinsic module IEEE_ARITHMETIC. The25
function C_SIZEOF in the intrinsic module ISO_C_BINDING returns the size of an array element in26
bytes. A contiguous array variable that is not interoperable but which has interoperable type and27
kind type parameter (if any), and a scalar character variable with length greater than one and kind28
C_CHAR in the intrinsic module ISO_C_BINDING, can be used as the argument of the function C_LOC29
in the intrinsic module ISO_C_BINDING, provided the variable has the POINTER or TARGET attribute.30

• Programs and procedures:31
An empty CONTAINS section is allowed. An internal procedure can be used as an actual argument32
or procedure pointer target. ALLOCATABLE and POINTER attributes are used in generic resolution.33
Procedureness of a dummy argument is used in generic resolution. An actual argument with the34
TARGET attribute can correspond to a dummy pointer. A null pointer or unallocated allocatable can35
be used to denote an absent nonallocatable nonpointer optional argument. An impure elemental36
procedure processes array arguments in array element order. The FUNCTION and SUBROUTINE37
keywords can be omitted from the END statement for a module or internal subprogram. A line in38
the program is permitted to begin with a semicolon. An argument to a pure procedure can have de‑39
fault INTENT if it has the VALUE attribute. The name of an external procedure that has a binding label40
is a local identiϐier and not a global identiϐier. A procedure that is not a procedure pointer can be an41
actual argument that corresponds to a procedure pointer dummy argument with the INTENT (IN)42
attribute. An interface body for an external procedure that does not exist in a program can be used43
to specify an explicit speciϐic interface. An internal procedure name can appear in a procedure‑stmt44
in a generic interface block.45

J3/25‑007 607

J3/25‑007 WD 1539‑1 2024‑12‑29

C.3 Clause 7 notes1

C.3.1 Selection of the approximation methods (7.4.3.2)2

1 One can select the real approximation method for an entire program through the use of a module and the3
parameterized real type. This is accomplished by deϐining a named integer constant to have a particular4
kind type parameter value and using that named constant in all real, complex, and derived‑type declara‑5
tions. For example, the speciϐication statements6

INTEGER, PARAMETER :: LONG_FLOAT = 87
REAL (LONG_FLOAT) X, Y8
COMPLEX (LONG_FLOAT) Z9

specify that the approximation method corresponding to a kind type parameter value of 8 is supplied for10
the data objects X, Y, and Z in the program unit. The kind type parameter value LONG_FLOAT can be made11
available to an entire program by placing the INTEGER speciϐication statement in a module and accessing12
the named constant LONG_FLOAT with a USE statement. Note that by changing 8 to 4 once in the module,13
a different approximation method is selected.14

2 To avoid the use of the processor‑dependent values 4 or 8, replace 8 by KIND (0.0) or KIND (0.0D0). An‑15
other way to avoid these processor‑dependent values is to select the kind value using the intrinsic function16
SELECTED_REAL_KIND (16.9.183). In the above speciϐication statement, the 8 might be replaced by, for17
instance, SELECTED_REAL_KIND (10, 50), which requires an approximation method to be selected with at18
least 10 decimal digits of precision and a range from 10−50 to 1050. There are no magnitude or ordering19
constraints placed on kind values, in order that implementers have ϐlexibility in assigning such values and20
can add new kinds without changing previously assigned kind values.21

3 As kind values have no portable meaning, a good practice is to use them in programs only through named22
constants as described above (for example, SINGLE, IEEE_SINGLE, DOUBLE, and QUAD), rather than using23
the kind values directly.24

C.3.2 Type extension and component accessibility (7.5.2.2, 7.5.4)25

1 The default accessibility of the components of an extended type can be speciϐied in the type deϐinition. The26
accessibility of its components can be speciϐied individually. For example:27

module types28
type base_type29

private !-- Sets default accessibility30
integer :: i !-- a private component31
integer, private :: j !-- another private component32
integer, public :: k !-- a public component33

end type base_type34
35

type, extends(base_type) :: my_type36
private !-- Sets default for components declared in my_type37
integer :: l !-- A private component.38
integer, public :: m !-- A public component.39

end type my_type40
end module types41

42
subroutine sub43
use types44
type (my_type) :: x45
…46
call another_sub(&47

608 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

x%base_type, & !-- ok because base_type is a public subobject of x1
x%base_type%k, & !-- ok because x%base_type is ok and has k as a2

!-- public component.3
x%k, & !-- ok because it is shorthand for x%base_type%k4
x%base_type%i, & !-- Invalid because i is private.5
x%i) !-- Invalid because it is shorthand for x%base_type%i6

end subroutine sub7

C.3.3 Generic type‑bound procedures (7.5.5)8

Example of a derived type with generic type‑bound procedures:9

1 The only difference between this example and the same thing rewritten to use generic interface blocks is10
that with type‑bound procedures,11

USE rational_numbers, ONLY: rational12

doesnot block the type‑boundprocedures; theuser still gets access to thedeϐined assignment andextended13
operations.14

MODULE rational_numbers15
IMPLICIT NONE16
PRIVATE17
TYPE,PUBLIC :: rational18

PRIVATE19
INTEGER n,d20

CONTAINS21
! ordinary type-bound procedure22
PROCEDURE :: real => rat_to_real23
! specific type-bound procedures for generic support24
PROCEDURE,PRIVATE :: rat_asgn_i, rat_plus_i, rat_plus_rat => rat_plus25
PROCEDURE,PRIVATE,PASS(b) :: i_plus_rat26
! generic type-bound procedures27
GENERIC :: ASSIGNMENT(=) => rat_asgn_i28
GENERIC :: OPERATOR(+) => rat_plus_rat, rat_plus_i, i_plus_rat29

END TYPE30
CONTAINS31
ELEMENTAL REAL FUNCTION rat_to_real(this) RESULT(r)32

CLASS(rational),INTENT(IN) :: this33
r = REAL(this%n)/this%d34

END FUNCTION35
ELEMENTAL SUBROUTINE rat_asgn_i(a,b)36

CLASS(rational),INTENT(INOUT) :: a37
INTEGER,INTENT(IN) :: b38
a%n = b39
a%d = 140

END SUBROUTINE41
ELEMENTAL TYPE(rational) FUNCTION rat_plus_i(a,b) RESULT(r)42

CLASS(rational),INTENT(IN) :: a43
INTEGER,INTENT(IN) :: b44
r%n = a%n + b*a%d45
r%d = a%d46

END FUNCTION47
ELEMENTAL TYPE(rational) FUNCTION i_plus_rat(a,b) RESULT(r)48

INTEGER,INTENT(IN) :: a49
CLASS(rational),INTENT(IN) :: b50
r%n = b%n + a*b%d51
r%d = b%d52

END FUNCTION53
ELEMENTAL TYPE(rational) FUNCTION rat_plus(a,b) RESULT(r)54

J3/25‑007 609

J3/25‑007 WD 1539‑1 2024‑12‑29

CLASS(rational),INTENT(IN) :: a,b1
r%n = a%n*b%d + b%n*a%d2
r%d = a%d*b%d3

END FUNCTION4
END5

C.3.4 Abstract types (7.5.7.1)6

1 The following illustrates how an abstract type can be used as the basis for a collection of related types, and7
how a non‑abstract member of that collection can be created by type extension.8

TYPE, ABSTRACT :: DRAWABLE_OBJECT9
REAL, DIMENSION(3) :: RGB_COLOR = (/1.0,1.0,1.0/) ! White10
REAL, DIMENSION(2) :: POSITION = (/0.0,0.0/) ! Centroid11

CONTAINS12
PROCEDURE(RENDER_X), PASS(OBJECT), DEFERRED :: RENDER13

END TYPE DRAWABLE_OBJECT14
15

ABSTRACT INTERFACE16
SUBROUTINE RENDER_X(OBJECT, WINDOW)17

IMPORT DRAWABLE_OBJECT, X_WINDOW18
CLASS(DRAWABLE_OBJECT), INTENT(IN) :: OBJECT19
CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW20

END SUBROUTINE RENDER_X21
END INTERFACE22

23
…24

25
TYPE, EXTENDS(DRAWABLE_OBJECT) :: DRAWABLE_TRIANGLE ! Not ABSTRACT26

REAL, DIMENSION(2,3) :: VERTICES ! In relation to centroid27
CONTAINS28

PROCEDURE, PASS(OBJECT) :: RENDER=>RENDER_TRIANGLE_X29
END TYPE DRAWABLE_TRIANGLE30

2 The actual drawing procedure will draw a triangle in WINDOWwith vertices at x and y coordinates at31
OBJECT%POSITION(1)+OBJECT%VERTICES(1,1:3) and OBJECT%POSITION(2)+OBJECT%VERTICES(2,1:3):32

SUBROUTINE RENDER_TRIANGLE_X(OBJECT, WINDOW)33
CLASS(DRAWABLE_TRIANGLE), INTENT(IN) :: OBJECT34
CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW35
…36

END SUBROUTINE RENDER_TRIANGLE_X37

C.3.5 Structure constructors and generic names (7.5.10)38

1 A generic name can be the same as a type name. This can be used to emulate user‑deϐined structure con‑39
structors for that type, even if the type has private components. For example:40

MODULE mytype_module41
TYPE mytype42

PRIVATE43
COMPLEX value44
LOGICAL exact45

END TYPE46
INTERFACE mytype47

MODULE PROCEDURE int_to_mytype48
END INTERFACE49

610 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

! Operator definitions etc.1
…2

CONTAINS3
TYPE(mytype) FUNCTION int_to_mytype(i)4

INTEGER,INTENT(IN) :: i5
int_to_mytype%value = i6
int_to_mytype%exact = .TRUE.7

END FUNCTION8
! Procedures to support operators etc.9
…10

END11
12

PROGRAM example13
USE mytype_module14
TYPE(mytype) x15
x = mytype(17)16

END17

2 The type name can still be used as a generic name if the type has type parameters. For example:18

MODULE m19
TYPE t(kind)20

INTEGER, KIND :: kind21
COMPLEX(kind) value22

END TYPE23
INTEGER,PARAMETER :: single = KIND(0.0), double = KIND(0d0)24
INTERFACE t25

MODULE PROCEDURE real_to_t1, dble_to_t2, int_to_t1, int_to_t226
END INTERFACE27
…28

CONTAINS29
TYPE(t(single)) FUNCTION real_to_t1(x)30

REAL(single) x31
real_to_t1%value = x32

END FUNCTION33
TYPE(t(double)) FUNCTION dble_to_t2(x)34

REAL(double) x35
dble_to_t2%value = x36

END FUNCTION37
TYPE(t(single)) FUNCTION int_to_t1(x,mold)38

INTEGER x39
TYPE(t(single)) mold40
int_to_t1%value = x41

END FUNCTION42
TYPE(t(double)) FUNCTION int_to_t2(x,mold)43

INTEGER x44
TYPE(t(double)) mold45
int_to_t2%value = x46

END FUNCTION47
…48

END49
50

PROGRAM example51
USE m52
TYPE(t(single)) x53
TYPE(t(double)) y54
x = t(1.5) ! References real_to_t155
x = t(17,mold=x) ! References int_to_t156
y = t(1.5d0) ! References dble_to_t257
y = t(42,mold=y) ! References int_to_t258
y = t(kind(0d0)) ((0,1)) ! Uses the structure constructor for type t59

J3/25‑007 611

J3/25‑007 WD 1539‑1 2024‑12‑29

END1

C.3.6 Final subroutines (7.5.6, 7.5.6.2, 7.5.6.3, 7.5.6.4)2

Example of a parameterized derived type with ϐinal subroutines:3

MODULE m4
TYPE t(k)5

INTEGER, KIND :: k6
REAL(k),POINTER :: vector(:) => NULL()7

CONTAINS8
FINAL :: finalize_t1s, finalize_t1v, finalize_t2e9

END TYPE10
CONTAINS11
SUBROUTINE finalize_t1s(x)12

TYPE(t(KIND(0.0))) x13
IF (ASSOCIATED(x%vector)) DEALLOCATE(x%vector)14

END SUBROUTINE15
SUBROUTINE finalize_t1v(x)16

TYPE(t(KIND(0.0))) x(:)17
DO i=LBOUND(x,1),UBOUND(x,1)18

IF (ASSOCIATED(x(i)%vector)) DEALLOCATE(x(i)%vector)19
END DO20

END SUBROUTINE21
ELEMENTAL SUBROUTINE finalize_t2e(x)22

TYPE(t(KIND(0.0d0))),INTENT(INOUT) :: x23
IF (ASSOCIATED(x%vector)) DEALLOCATE(x%vector)24

END SUBROUTINE25
END MODULE26

27
SUBROUTINE example(n)28
USE m29
TYPE(t(KIND(0.0))) a,b(10),c(n,2)30
TYPE(t(KIND(0.0d0))) d(n,n)31
…32
! Returning from this subroutine will effectively do33
! CALL finalize_t1s(a)34
! CALL finalize_t1v(b)35
! CALL finalize_t2e(d)36
! No final subroutine will be called for variable C because the user37
! omitted to define a suitable specific procedure for it.38

END SUBROUTINE39

Example of extended types with ϐinal subroutines:40

MODULE m41
TYPE t142

REAL a,b43
END TYPE44
TYPE,EXTENDS(t1) :: t245

REAL,POINTER :: c(:),d(:)46
CONTAINS47

FINAL :: t2f48
END TYPE49
TYPE,EXTENDS(t2) :: t350

REAL,POINTER :: e51
CONTAINS52

FINAL :: t3f53
END TYPE54

612 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

…1
CONTAINS2
SUBROUTINE t2f(x) ! Finalizer for TYPE(t2)'s extra components3

TYPE(t2) :: x4
IF (ASSOCIATED(x%c)) DEALLOCATE(x%c)5
IF (ASSOCIATED(x%d)) DEALLOCATE(x%d)6

END SUBROUTINE7
SUBROUTINE t3f(y) ! Finalizer for TYPE(t3)'s extra components8

TYPE(t3) :: y9
IF (ASSOCIATED(y%e)) DEALLOCATE(y%e)10

END SUBROUTINE11
END MODULE12

13
SUBROUTINE example14
USE m15
TYPE(t1) x116
TYPE(t2) x217
TYPE(t3) x318
…19
! Returning from this subroutine will effectively do20
! ! Nothing to x1; it is not finalizable21
! CALL t2f(x2)22
! CALL t3f(x3)23
! CALL t2f(x3%t2)24

END SUBROUTINE25

C.4 Clause 8 notes: The VOLATILE attribute (8.5.20)26

1 The following example shows the use of a variable with the VOLATILE attribute to communicate with an27
asynchronous process, in this case the operating system. The program detects a user keystroke on the28
terminal and reacts at a convenient point in its processing.29

2 The VOLATILE attribute is necessary to prevent an optimizing compiler from storing the communication30
variable in a register or from doing ϐlow analysis and deciding that the EXIT statement can never be ex‑31
ecuted.32

SUBROUTINE TERMINATE_ITERATIONS33
LOGICAL, VOLATILE :: USER_HIT_ANY_KEY34

35
! Have the OS start to look for a user keystroke and set the variable36
! "USER_HIT_ANY_KEY" to TRUE as soon as it detects a keystroke.37
! This call is operating system dependent.38

39
CALL OS_BEGIN_DETECT_USER_KEYSTROKE(USER_HIT_ANY_KEY)40
USER_HIT_ANY_KEY = .FALSE. ! This will ignore any recent keystrokes.41
PRINT *, " Hit any key to terminate iterations!"42

43
DO I = 1,10044

… Compute a value for R.45
PRINT *, I, R46
IF (USER_HIT_ANY_KEY) EXIT47

ENDDO48
49

! Have the OS stop looking for user keystrokes.50
CALL OS_STOP_DETECT_USER_KEYSTROKE51

END SUBROUTINE TERMINATE_ITERATIONS52

J3/25‑007 613

J3/25‑007 WD 1539‑1 2024‑12‑29

C.5 Clause 9 notes1

C.5.1 Structure components (9.4.2)2

1 Components of a structure are referenced by writing the components of successive levels of the structure3
hierarchy until the desired component is described. For example,4

TYPE ID_NUMBERS5
INTEGER SSN6
INTEGER EMPLOYEE_NUMBER7

END TYPE ID_NUMBERS8
9

TYPE PERSON_ID10
CHARACTER (LEN=30) LAST_NAME11
CHARACTER (LEN=1) MIDDLE_INITIAL12
CHARACTER (LEN=30) FIRST_NAME13
TYPE (ID_NUMBERS) NUMBER14

END TYPE PERSON_ID15
16

TYPE PERSON17
INTEGER AGE18
TYPE (PERSON_ID) ID19

END TYPE PERSON20
21

TYPE (PERSON) GEORGE, MARY22
23

PRINT *, GEORGE % AGE ! Print the AGE component24
PRINT *, MARY % ID % LAST_NAME ! Print LAST_NAME of MARY25
PRINT *, MARY % ID % NUMBER % SSN ! Print SSN of MARY26
PRINT *, GEORGE % ID % NUMBER ! Print SSN and EMPLOYEE_NUMBER of GEORGE27

2 A structure component can be a data object of intrinsic type as in the case of GEORGE % AGE or it can be28
of derived type as in the case of GEORGE% ID% NUMBER. The resultant component can be a scalar or an29
array of intrinsic or derived type.30

TYPE LARGE31
INTEGER ELT (10)32
INTEGER VAL33

END TYPE LARGE34
35

TYPE (LARGE) A (5) ! 5 element array, each of whose elements36
! includes a 10 element array ELT and37
! a scalar VAL.38

PRINT *, A (1) ! Prints 10 element array ELT and scalar VAL.39
PRINT *, A (1) % ELT (3) ! Prints scalar element 340

! of array element 1 of A.41
PRINT *, A (2:4) % VAL ! Prints scalar VAL for array elements42

! 2 to 4 of A.43

3 Components of an object of extensible type that are inherited from the parent type can be accessed as a44
whole by using the parent component name, or individually, either with or without qualifying them by the45
parent component name. For example:46

TYPE POINT ! A base type47
REAL :: X, Y48

END TYPE POINT49
TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)50

614 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

! Components X and Y, and component name POINT, inherited from parent1
INTEGER :: COLOR2

END TYPE COLOR_POINT3
4

TYPE(POINT), PARAMETER :: PV = POINT(1.0, 2.0)5
TYPE(COLOR_POINT) :: CPV = COLOR_POINT(POINT=PV, COLOR=3)6

7
PRINT *, CPV%POINT ! Prints 1.0 and 2.08
PRINT *, CPV%POINT%X, CPV%POINT%Y ! And this does, too9
PRINT *, CPV%X, CPV%Y ! And this does, too10

C.5.2 Allocation with dynamic type (9.7.1)11

1 The following example illustrates the use of allocation with the value and dynamic type of the allocated12
object given by another object. The example copies a list of objects of any type. It copies the list starting at13
IN_LIST. After copying, each element of the list starting at LIST_COPY has a polymorphic component, ITEM,14
for which both the value and type are taken from the ITEM component of the corresponding element of the15
list starting at IN_LIST.16

TYPE :: LIST ! A list of anything17
TYPE(LIST), POINTER :: NEXT => NULL()18
CLASS(*), ALLOCATABLE :: ITEM19

END TYPE LIST20
…21
TYPE(LIST), POINTER :: IN_LIST, LIST_COPY => NULL()22
TYPE(LIST), POINTER :: IN_WALK, NEW_TAIL23
! Copy IN_LIST to LIST_COPY24
IF (ASSOCIATED(IN_LIST)) THEN25
IN_WALK => IN_LIST26
ALLOCATE(LIST_COPY)27
NEW_TAIL => LIST_COPY28
DO29

ALLOCATE(NEW_TAIL%ITEM, SOURCE=IN_WALK%ITEM)30
IN_WALK => IN_WALK%NEXT31
IF (.NOT. ASSOCIATED(IN_WALK)) EXIT32
ALLOCATE(NEW_TAIL%NEXT)33
NEW_TAIL => NEW_TAIL%NEXT34

END DO35
END IF36

C.6 Clause 10 notes37

C.6.1 Evaluation of function references (10.1.7)38

1 If more than one function reference appears in a statement, they can be executed in any order (subject to39
a function result being evaluated after the evaluation of its arguments) and their values cannot depend on40
the order of execution. This lack of dependence on order of evaluation enables parallel execution of the41
function references.42

C.6.2 Pointers in expressions (10.1.9.2)43

1 A data pointer is considered to be like any other variable when it is used as a primary in an expression. If44
a pointer is used as an operand to an operator that expects a value, the pointer will automatically deliver45

J3/25‑007 615

J3/25‑007 WD 1539‑1 2024‑12‑29

the value stored in the space described by the pointer, that is, the value of the target object associated with1
the pointer.2

C.6.3 Pointers in variable deϐinition contexts (10.2.1.3, 19.6.7)3

1 The appearance of a data pointer in a context that requires its value is a reference to its target. Similarly,4
where a pointer appears in a variable deϐinition context the variable that is deϐined is the target of the5
pointer.6

2 Executing the program fragment7

REAL, POINTER :: A8
REAL, TARGET :: B = 10.09
A => B10
A = 42.011
PRINT '(F4.1)', B12

produces “42.0” as output.13

C.7 Clause 11 notes14

C.7.1 The SELECT CASE construct (11.1.9)15

1 At most one case block is selected for execution within a SELECT CASE construct, and there is no fall‑16
through from one block into another block within a SELECT CASE construct. Thus there is no requirement17
for the user to exit explicitly from a block.18

C.7.2 Loop control (11.1.7)19

1 Fortran provides several forms of loop control:20

(1) With an iteration count and a DO variable. This is the classic Fortran DO loop.21
(2) Test a logical condition before each execution of the loop (DOWHILE).22
(3) DO “forever”.23

C.7.3 Examples of DO constructs (11.1.7)24

1 The following are all valid examples of DO constructs.25

Example 1:26

SUM = 0.027
READ (IUN) N28
OUTER: DO L = 1, N ! A DO with a construct name29

READ (IUN) IQUAL, M, ARRAY (1:M)30
IF (IQUAL < IQUAL_MIN) CYCLE OUTER ! Skip inner loop31
INNER: DO 40 I = 1, M ! A DO with a label and a name32

CALL CALCULATE (ARRAY (I), RESULT)33
IF (RESULT < 0.0) CYCLE34
SUM = SUM + RESULT35
IF (SUM > SUM_MAX) EXIT OUTER36

40 END DO INNER37
END DO OUTER38

616 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 The outer loop has an iteration count of MAX (N, 0), and will execute that number of times or until SUM1
exceeds SUM_MAX, in which case the EXIT OUTER statement terminates both loops. The inner loop is2
skipped by the ϐirst CYCLE statement if the quality ϐlag, IQUAL, is too low. If CALCULATE returns a negative3
RESULT, the secondCYCLE statement prevents it frombeing summed. Both loops have construct names and4
the inner loop also has a label. A construct name is required in the EXIT statement in order to terminate5
both loops, but is optional in the CYCLE statements because each belongs to its innermost loop.6

Example 2:7

N = 08
DO 50, I = 1, 109

J = I10
DO K = 1, 511

L = K12
N = N + 1 ! This statement executes 50 times13

END DO ! Nonlabeled DO inside a labeled DO14
50 CONTINUE15

3 After execution of the above program fragment, I = 11, J = 10, K = 6, L = 5, and N = 50.16

Example 3:17

N = 018
DO I = 1, 1019

J = I20
DO 60, K = 5, 1 ! This inner loop is never executed21

L = K22
N = N + 123

60 CONTINUE ! Labeled DO inside a nonlabeled DO24
END DO25

4 After execution of the above program fragment, I = 11, J = 10, K = 5, N = 0, and L is not deϐined by these26
statements.27

C.7.4 Examples of invalid DO constructs (11.1.7)28

1 The following are all examples of invalid skeleton DO constructs:29

Example 1:30

DO I = 1, 1031
…32

END DO LOOP ! No matching construct name33

Example 2:34

LOOP: DO 1000 I = 1, 10 ! No matching construct name35
…36

1000 CONTINUE37

Example 3:38

LOOP1: DO39
…40

END DO LOOP2 ! Construct names don't match41

J3/25‑007 617

J3/25‑007 WD 1539‑1 2024‑12‑29

Example 4:1

DO I = 1, 10 ! Label required or …2
…3

1010 CONTINUE ! … END DO required4

Example 5:5

DO 1020 I = 1, 106
…7

1021 END DO ! Labels don't match8

Example 6:9

FIRST: DO I = 1, 1010
SECOND: DO J = 1, 511

…12
END DO FIRST ! Improperly nested DOs13

END DO SECOND14

C.7.5 Simple example using events15

1 A tree is a graph in which every node except one has a single “parent” node to which it is connected by an16
edge. The node without a parent is the “root” of the tree. The nodes that have a particular node as their17
parent are the “children” of that node. The root is at level 1, its children are at level 2, and so on.18

2 A multifrontal code to solve a sparse set of linear equations involves a tree. Work at a node can start after19
all of its children’s work is complete and their data have been passed to it.20

3 Here we assume that each node has been assigned to an image. Each image has a list of its nodes and these21
are ordered in decreasing tree level (all those at level L preceding those at level L − 1). For each node,22
array elements hold the number of children, details about the parent, and an event variable. This allows23
the processing to proceed asynchronously subject to the rule that a parent has to wait for all its children.24

Outline of example code:25

PROGRAM TREE26
USE, INTRINSIC :: ISO_FORTRAN_ENV27
INTEGER, ALLOCATABLE :: NODE (:) ! Tree nodes that this image handles.28
INTEGER, ALLOCATABLE :: NC (:) ! NODE(I) has NC(I) children.29
INTEGER, ALLOCATABLE :: PARENT (:), SUB (:)30

! The parent of NODE (I) is NODE (SUB (I)) [PARENT (I)].31
TYPE (EVENT_TYPE), ALLOCATABLE :: DONE (:) [:]32
INTEGER :: I, J, STATUS33
! Set up the tree, including allocation of all arrays.34
DO I = 1, SIZE (NODE)35

! Wait for children to complete36
IF (NC (I) > 0) THEN37

EVENT WAIT (DONE (I), UNTIL_COUNT=NC (I), STAT=STATUS)38
IF (STATUS/=0) EXIT39

END IF40
41

! Process node, using data from children.42
IF (PARENT (I)>0) THEN43

! Node is not the root.44
! Place result on image PARENT (I) for node NODE (SUB) [PARENT (I)]45

618 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

! Tell PARENT (I) that this has been done.1
EVENT POST (DONE (SUB (I)) [PARENT (I)], STAT=STATUS)2
IF (STATUS/=0) EXIT3

END IF4
END DO5

END PROGRAM TREE6

C.7.6 Example using three teams7

1 The following example illustrates the structure of a routine that will compute ϐluxes based on surface prop‑8
erties over land, sea, and ice, each in a different team. Each image will deal with areas containing exactly9
one of the three surface types.10

SUBROUTINE COMPUTE_FLUXES (FLUX_MOM, FLUX_SENS, FLUX_LAT)11
USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY: TEAM_TYPE12
REAL, INTENT (OUT) :: FLUX_MOM (:,:), FLUX_SENS (:,:), FLUX_LAT (:,:)13
INTEGER, PARAMETER :: LAND = 1, SEA = 2, ICE = 314
CHARACTER (LEN=10) :: SURFACE_TYPE15
INTEGER :: MY_SURFACE_TYPE, N_IMAGE16
TYPE (TEAM_TYPE) :: TEAM_SURFACE_TYPE17

18
CALL GET_SURFACE_TYPE(THIS_IMAGE (), SURFACE_TYPE)19
SELECT CASE (SURFACE_TYPE)20
CASE ("LAND")21

MY_SURFACE_TYPE = LAND22
CASE ("SEA")23

MY_SURFACE_TYPE = SEA24
CASE ("ICE")25

MY_SURFACE_TYPE = ICE26
CASE DEFAULT27

ERROR STOP28
END SELECT29
FORM TEAM (MY_SURFACE_TYPE, TEAM_SURFACE_TYPE)30

31
CHANGE TEAM (TEAM_SURFACE_TYPE)32

SELECT CASE (TEAM_NUMBER ())33
CASE (LAND) ! Compute fluxes over land surface34

CALL COMPUTE_FLUXES_LAND (FLUX_MOM, FLUX_SENS, FLUX_LAT)35
CASE (SEA) ! Compute fluxes over sea surface36

CALL COMPUTE_FLUXES_SEA (FLUX_MOM, FLUX_SENS, FLUX_LAT)37
CASE (ICE) ! Compute fluxes over ice surface38

CALL COMPUTE_FLUXES_ICE (FLUX_MOM, FLUX_SENS, FLUX_LAT)39
CASE DEFAULT40

ERROR STOP41
END SELECT42

END TEAM43
END SUBROUTINE COMPUTE_FLUXES44

C.7.7 Accessing coarrays in sibling teams45

1 The following program illustrates subdividing a 4 × 4 grid into 2 × 2 teams, and the denotation of sibling46
teams.47

PROGRAM DEMO48
! Initial team : 16 images. Algorithm design is a 4 by 4 grid.49
! Desire 4 teams, for the upper left (UL), upper right (UR),50
! lower left (LL), lower right (LR)51
USE,INTRINSIC :: ISO_FORTRAN_ENV, ONLY: TEAM_TYPE52

J3/25‑007 619

J3/25‑007 WD 1539‑1 2024‑12‑29

TYPE (TEAM_TYPE) :: T1
INTEGER, PARAMETER :: UL=11, UR=22, LL=33, LR=442
REAL :: A(10,10)[4,*]3
INTEGER :: MYPE, TEAMNUM, NEWPE4
TYPE TRANS_T5

INTEGER :: NEW_TEAM (16), NEW_INDEX (16)6
END TYPE7
TYPE (TRANS_T) :: TRANS8
TRANS = TRANS_T ([UL, UL, LL, LL, UL, UL, LL, LL, UR, UR, LR, LR, UR, UR, LR, LR], &9

[1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4])10
11

MYPE = THIS_IMAGE ()12
FORM TEAM (TRANS%NEW_TEAM(MYPE), T, NEW_INDEX=TRANS%NEW_INDEX(MYPE))13

14
A = 3.1415

16
CHANGE TEAM (T, B[2,*] => A)17

! Inside change team, image pattern for B is a 2 by 2 grid.18
B (5, 5) = B (1, 1)[2, 1]19

20
! Outside the team addressing:21

22
NEWPE = THIS_IMAGE ()23
SELECT CASE (TEAM_NUMBER ())24
CASE (UL)25

IF (NEWPE==3) THEN26
! Right column of UL gets left column of UR.27
B (:, 10) = B (:, 1)[1, 1, TEAM_NUMBER=UR]28

ELSE IF (NEWPE==4) THEN29
B (:, 10) = B (:, 1)[2, 1, TEAM_NUMBER=UR]30

END IF31
CASE (LL)32

! Similar to complete column exchange across middle of the original grid.33
…34

END SELECT35
END TEAM36

END PROGRAM DEMO37

C.7.8 Example involving failed images38

1 Parallel algorithmsoftenusework sharing schemesbasedona speciϐicmappingbetween image indices and39
global data addressing. To allow such programs to continue when one or more images fail, spare images40
can be used to re‑establish execution of the algorithm with the failed images replaced by spare images,41
while retaining the previous image mapping for nonfailed images.42

2 The following example illustrates how this might be done. In this example, failure cannot be tolerated for43
image one in the initial team.44

PROGRAM possibly_recoverable_simulation45
USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY:TEAM_TYPE, STAT_FAILED_IMAGE46
IMPLICIT NONE47
INTEGER :: images_spare ! Number of spare images.48
INTEGER :: images_used ! Number of images used.49
INTEGER :: j, k ! Temporaries50
INTEGER :: status ! STAT= value51
INTEGER :: team_number [*] ! 1 if in working team; 2 otherwise.52
INTEGER :: local_index [*] ! Index of the image in the team.53
TYPE (TEAM_TYPE) :: simulation_team54
LOGICAL :: done [*] ! True if computation finished on the image.55

620 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

1
! Keep 1% spare images if we have a lot, just 1 if 10-199 images,2
! 0 if <10.3
images_spare = MAX(NUM_IMAGES()/100,0,MIN(NUM_IMAGES()-9,1))4
images_used = NUM_IMAGES () - images_spare5
SYNC ALL (STAT=status)6

7
outer : DO8

IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer9
IF (IMAGE_STATUS (1) == STAT_FAILED_IMAGE) ERROR STOP "cannot recover"10
IF (THIS_IMAGE () == 1) THEN11

j = 012
DO k = 1, NUM_IMAGES ()13

IF (IMAGE_STATUS (k) == 0) THEN14
j = j+115
IF (j<=images_used) THEN16
local_index[k] = j17
team_number [k] = 118

ELSE19
local_index[k] = j - images_used20
team_number [k] = 221

END IF22
END IF23

END DO24
IF (j<images_used) ERROR STOP "cannot recover"25

END IF26
SYNC ALL (STAT = status)27
IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer28
! Set up a simulation team of constant size.29
! Team 2 is the set of spares, so does not participate.30
FORM TEAM (team_number, simulation_team, NEW_INDEX=local_index, STAT=status)31
IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer32

33
simulation : CHANGE TEAM (simulation_team, STAT=status)34

IF (status == STAT_FAILED_IMAGE) EXIT simulation35
IF (team_number == 1) THEN36

! Each working image reads checkpoint data for itself if available.37
iter : DO38

CALL simulation_procedure (status, done)39
! The simulation_procedure:40
! - sets up and performs some part of the simulation;41
! - stores checkpoint data for all images from time to time;42
! - sets status from its internal synchronizations so it has43
! the value STAT_FAILED_IMAGE on all active images of the44
! team if any image of the team has failed;45
! - sets done to .TRUE. when the simulation has completed.46
IF (status == STAT_FAILED_IMAGE) THEN47
EXIT simulation48

ELSE IF (done) THEN49
EXIT iter50

END IF51
END DO iter52

END IF53
END TEAM (STAT=status) simulation54
IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer55

56
SYNC ALL (STAT=status)57
IF (team_number == 2) done = done[1]58
IF (done) EXIT outer59

END DO outer60
IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) PRINT *,'Unexpected failure',status61

J3/25‑007 621

J3/25‑007 WD 1539‑1 2024‑12‑29

END PROGRAM possibly_recoverable_simulation1

3 Supporting fault‑tolerant execution imposes obligations on library writers who use the parallel language2
facilities. Every synchronization statement, allocation or deallocation of coarrays, or invocation of a col‑3
lective procedurewill need to be prepared to handle error conditions, and implicit deallocation of coarrays4
will need to be avoided. Also, coarraymodule variables that are allocated inside the team execution context5
are not persistent.6

C.7.9 EVENT_QUERY example that tolerates image failure7

1 This example is an adaptation of the later EVENT_QUERY example of C.12.2 tomake it able to execute in the8
presence of the failure of one or more of the worker images. The function create_work_item now accepts9
an integer argument to indicatewhichwork item is required. It is assumed that thework items are indexed10
1, 2, and so on. It is also assumed that if an image fails while processing a work item, that work item can11
subsequently be processed by another image.12

PROGRAM work_share13
USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY: EVENT_TYPE14
USE :: mod_work, ONLY: & ! Module that creates work items15

work, & ! Type for holding a work item16
create_work_item, & ! Function that creates work item17
process_item, & ! Function that processes an item18
work_done ! Logical function that returns true19

! if all work done20
21

TYPE :: worker_type22
TYPE (EVENT_TYPE), ALLOCATABLE :: free (:)23

END TYPE24
TYPE (EVENT_TYPE) :: submit [*] ! Whether work ready for a worker25
TYPE (worker_type) :: worker [*] ! Whether worker is free26
TYPE (work) :: work_item [*] ! Holds the data for a work item27
INTEGER :: count, i, k, kk, nbusy [*], np, status28
INTEGER, ALLOCATABLE :: working (:) ! Items being worked on29
INTEGER, ALLOCATABLE :: pending (:) ! Items pending after image failure30

31
IF (THIS_IMAGE () == 1) THEN32

! Get started33
ALLOCATE (worker%free (2:NUM_IMAGES ()))34
ALLOCATE (working (2: NUM_IMAGES ()), pending(NUM_IMAGES ()-1))35
nbusy = 0 ! This holds the number of workers working36
k = 1 ! Index of next work item37
np = 0 ! Number of work items in array pending38
DO i = 2, NUM_IMAGES () ! Start the workers working39

IF (work_done ()) EXIT40
working (i) = 041
IF (IMAGE_STATUS (i) == STAT_FAILED_IMAGE) CYCLE42
work_item [i] = create_work_item (k)43
working (i) = k44
k = k + 145
nbusy = nbusy + 146
EVENT POST (submit [i], STAT=status)47

END DO48
! Main work distribution loop49
main : DO50

image : DO i = 2, NUM_IMAGES ()51
IF (IMAGE_STATUS (i) == STAT_FAILED_IMAGE) THEN52

IF (working (i)>0) THEN ! It failed while working53
np = np + 154

622 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

pending (np) = working (i)1
working (i) = 02

END IF3
CYCLE image4

END IF5
CALL EVENT_QUERY (worker%free (i), count)6
IF (count == 0) CYCLE image ! Worker is not free7
EVENT WAIT (worker%free (i))8
nbusy = nbusy - 19
IF (np>0) THEN10

kk = pending (np)11
np = np - 112

ELSE13
IF (work_done ()) CYCLE image14
kk = k15
k = k + 116

END IF17
nbusy = nbusy + 118
working (i) = kk19
work_item [i] = create_work_item (kk)20
EVENT POST (submit [i], STAT=status)21
! If image i has failed, the failure will be handled on22
! the next iteration of the main loop.23

END DO image24
IF (nbusy==0) THEN ! All done. Exit on all images.25

DO i = 2, NUM_IMAGES ()26
EVENT POST (submit [i], STAT=status)27
IF (status == STAT_FAILED_IMAGE) CYCLE28

END DO29
EXIT main30

END IF31
END DO main32

ELSE33
! Work processing loop34
worker : DO35

EVENT WAIT (submit)36
IF (nbusy [1] == 0) EXIT worker37
CALL process_item(work_item)38
EVENT POST (worker[1]%free (THIS_IMAGE ()))39

END DO worker40
END IF41

END PROGRAM work_share42

C.8 Clause 12 notes43

C.8.1 External ϐiles (12.3)44

C.8.1.1 File cataloging45

1 This document accommodates, but does not require, ϐile cataloging. To do this, several concepts are intro‑46
duced.47

C.8.1.2 File existence (12.3.2)48

1 Totally independent of the connection state is the property of existence, this being a ϐile property. The49
processor “knows” of a set of ϐiles that exist at a given time for a given program. This set would include50
tapes ready to read, ϐiles in a catalog, a keyboard, a printer, etc. The set might exclude ϐiles inaccessible to51

J3/25‑007 623

J3/25‑007 WD 1539‑1 2024‑12‑29

the program because of security, because they are already in use by another program, etc. This document1
does not specify which ϐiles exist, hence wide latitude is available to a processor to implement security,2
locks, privilege techniques, etc. Existence is a convenient concept to designate all of the ϐiles that a program3
can potentially process.4

2 All four combinations of connection and existence can occur:5

Connect Exist Examples
Yes Yes A card reader loaded and ready to be read
Yes No A printer before the ϐirst line is written
No Yes A ϐile named ’JOAN’ in the catalog
No No A ϐile on a reel of tape, not known to the processor

3 Means are provided to create, delete, connect, and disconnect ϐiles.6

C.8.1.3 File access (12.3.3)7

1 This document does not address problems of security, protection, locking, and many other concepts that8
might be part of the concept of “right of access”. Such concepts are considered to be in the province of an9
operating system.10

2 The OPEN and INQUIRE statements can be extended naturally to consider these things.11

3 Possible accessmethods for a ϐile are: sequential, stream and direct. The processormight implement three12
different types of ϐiles, each with its own access method. It might instead implement one type of ϐile with13
three different access methods.14

4 Direct access to ϐiles is of a simple and commonly available type, that is, ϐixed‑length records. The key is a15
positive integer.16

C.8.1.4 File connection (12.5)17

1 Before any input/output can be performed on a ϐile, it needs to be connected to a unit. The unit then serves18
as a designator for that ϐile as long as it is connected. To be connected does not imply that “buffers” have19
or have not been allocated, that “ϐile‑control tables” have or have not been ϐilled, or that any other method20
of implementation has been used. Connection means that (barring some other fault) a READ or WRITE21
statement can be executed on the unit, hence on the ϐile. Without a connection, a READorWRITE statement22
cannot be executed.23

C.8.1.5 File names (12.5.6.10)24

1 A ϐile can have a name. The form of a ϐile name is not speciϐied. If a system does not have some form25
of cataloging or tape labeling for at least some of its ϐiles, all ϐile names disappear at the termination of26
execution. This is a valid implementation. Nowhere does this document require names to survive for any27
period of time longer than the execution time span of a program. Therefore, this document does not impose28
cataloging as a prerequisite. The naming feature is intended to enable use of a cataloging systemwhere one29
exists.30

624 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C.8.2 Nonadvancing input/output (12.3.4.2)1

1 Data transfer statements affect the positioning of an external ϐile. In FORTRAN 77, if no error or end‑of‑ϐile2
condition exists, the ϐile is positioned after the record just read orwritten and that record becomes the pre‑3
ceding record. This document contains the ADVANCE= speciϐier in a data transfer statement that provides4
the capability of maintaining a position within the current record from one formatted data transfer state‑5
ment to the next data transfer statement. The value NO provides this capability. The value YES positions6
the ϐile after the record just read or written. The default is YES.7

2 The tab edit descriptor and the slash are still appropriate for use with this type of record access but the tab8
cannot reposition before the left tab limit.9

3 A BACKSPACE of a ϐile that is positioned within a record causes the speciϐied unit to be positioned before10
the current record.11

4 If the next input/output operation on a ϐile after a nonadvancing write is a rewind, backspace, end ϐile12
or close operation, the ϐile is positioned implicitly after the current record before an ENDFILE record is13
written to the ϐile, that is, a REWIND, BACKSPACE, or ENDFILE statement following a nonadvancingWRITE14
statement causes the ϐile to be positioned at the end of the current output record before the endϐile record15
is written to the ϐile.16

5 This document provides a SIZE= speciϐier to be usedwith formatted data transfer statements. The variable17
in the SIZE= speciϐier is assigned the count of the number of characters thatmake up the sequence of values18
read by the data edit descriptors in the input statement. The count is especially helpful if there is only one19
effective item in the input list because it is the number of characters that appeared for the item.20

6 The EOR= speciϐier is provided to indicate when an EOR condition is encountered during nonadvancing21
input. The EOR condition is not an error condition. If this speciϐier appears, an effective item that requires22
more characters than the record contained is paddedwith blanks if PAD= ’YES’ is in effect. This means that23
input of the effective item completed successfully. The ϐile is positioned after the current record. If the IO‑24
STAT= speciϐier appears, the speciϐied variable is deϐinedwith the value of the named constant IOSTAT_EOR25
from the intrinsic module ISO_FORTRAN_ENV and the data transfer statement is terminated. Program exe‑26
cution continueswith the statement speciϐied in the EOR= speciϐier. The EOR= speciϐier gives the capability27
of taking control of execution when the EOR condition is encountered. The do‑variables in io‑implied‑dos28
retain their last deϐined value and any remaining items in the input‑item‑list retain their deϐinition status29
when an EOR condition occurs. If the SIZE= speciϐier appears, the speciϐied variable is assigned the number30
of characters read with the data edit descriptors during the READ statement.31

7 For nonadvancing input, the processor is not required to read partial records. The processor could read32
the entire record into an internal buffer andmake successive portions of the record available to successive33
input statements.34

8 In an implementation of nonadvancing input/output in which a nonadvancing write to a terminal device35
causes immediate display of the output, such a write can be used as a mechanism to output a prompt. In36
this case, the statement37

WRITE (*, FMT='(A)', ADVANCE='NO') 'CONTINUE?(Y/N): '38

would result in the prompt39

CONTINUE?(Y/N):40

being displayed with no subsequent line feed.41

J3/25‑007 625

J3/25‑007 WD 1539‑1 2024‑12‑29

9 The response, which might be read by a statement of the form1
READ (*, FMT='(A)') ANSWER2

can then be entered on the same line as the prompt as in3
CONTINUE?(Y/N): Y4

10 This document doesnot require that an implementationof nonadvancing input/output operate in thisman‑5
ner. For example, an implementation of nonadvancing output in which the display of the output is deferred6
until the current record is complete is also standard‑conforming. Such an implementation will not, how‑7
ever, allow a prompting mechanism of this kind to operate.8

C.8.3 OPEN statement (12.5.6)9

1 A ϐile can become connected to a unit either by preconnection or by execution of an OPEN statement. Pre‑10
connection is performed prior to the beginning of execution of a program by means external to Fortran.11
For example, it could be done by job control action or by processor‑established defaults. Execution of an12
OPEN statement is not required in order to access preconnected ϐiles (12.5.5).13

2 The OPEN statement provides a means to access existing ϐiles that are not preconnected. An OPEN state‑14
ment can be used in either of two ways: with a ϐile name (open‑by‑name) and without a ϐile name (open‑15
by‑unit). A unit is given in either case. Open‑by‑name connects the speciϐied ϐile to the speciϐied unit.16
Open‑by‑unit connects a processor‑dependent default ϐile to the speciϐied unit. (The default ϐile might or17
might not have a name.)18

3 Therefore, there are three ways a ϐile can become connected and hence processed: preconnection, open‑19
by‑name, and open‑by‑unit. Once a ϐile is connected, there is no means in standard Fortran to determine20
how it became connected.21

4 An OPEN statement can also be used to create a new ϐile. In fact, any of the foregoing three connection22
methods can be performed on a ϐile that does not exist. When a unit is preconnected, writing the ϐirst23
record creates the ϐile. With the other two methods, execution of the OPEN statement creates the ϐile.24

5 When an OPEN statement is executed, the unit speciϐied in the OPEN statement might or might not already25
be connected to a ϐile. If it is already connected to a ϐile (either through preconnection or by prior execution26
of an OPEN statement), then omitting the FILE= speciϐier in the OPEN statement implies that the ϐile is27
to remain connected to the unit. Such an OPEN statement can be used to change the values of the blank28
interpretationmode, decimal editmode, padmode, input/output roundingmode, delimitermode, and sign29
mode.30

6 If the value of the ACTION= speciϐier is WRITE, then a READ statement cannot refer to the connection.31
ACTION = ’WRITE’ does not restrict positioning by a BACKSPACE statement or positioning speciϐied by32
the POSITION= speciϐier with the value APPEND. However, a BACKSPACE statement or an OPEN statement33
containing POSITION = ’APPEND’might fail if the processor needs to read the ϐile to achieve the positioning.34

7 The following examples illustrate these rules. In the ϐirst example, unit 10 is preconnected to a SCRATCH35
ϐile; the OPEN statement changes the value of PAD= to YES.36

CHARACTER (LEN = 20) CH137
WRITE (10, '(A)') 'THIS IS RECORD 1'38
OPEN (UNIT = 10, STATUS = 'OLD', PAD = 'YES')39
REWIND 1040
READ (10, '(A20)') CH1 ! CH1 now has the value41

! 'THIS IS RECORD 1 '42

626 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

8 In the next example, unit 12 is ϐirst connected to a ϐile named FRED, with a status of OLD. The second OPEN1
statement then opens unit 12 again, retaining the connection to the ϐile FRED, but changing the value of the2
DELIM= speciϐier to QUOTE.3

CHARACTER (LEN = 25) CH2, CH34
OPEN (12, FILE = 'FRED', STATUS = 'OLD', DELIM = 'NONE')5
CH2 = '"THIS STRING HAS QUOTES."'6

! Quotes in string CH27
WRITE (12, *) CH2 ! Written with no delimiters8
OPEN (12, DELIM = 'QUOTE') ! Now quote is the delimiter9
REWIND 1210
READ (12, *) CH3 ! CH3 now has the value11

! 'THIS STRING HAS QUOTES. '12

9 The next example is invalid because it attempts to change the value of the STATUS= speciϐier.13

OPEN (10, FILE = 'FRED', STATUS = 'OLD')14
WRITE (10, *) A, B, C15
OPEN (10, STATUS = 'SCRATCH') ! Attempts to make FRED a SCRATCH file16

10 The previous example could be made valid by closing the unit ϐirst, as in the next example.17

OPEN (10, FILE = 'FRED', STATUS = 'OLD')18
WRITE (10, *) A, B, C19
CLOSE (10)20
OPEN (10, STATUS = 'SCRATCH') ! Opens a different SCRATCH file21

C.8.4 Connection properties (12.5.4)22

1 When a unit becomes connected to a ϐile, either by execution of an OPEN statement or by preconnection,23
the following connection properties, among others, are established.24

(1) An access method, which is sequential, direct, or stream, is established for the connection25
(12.5.6.3).26

(2) A form, which is formatted or unformatted, is established for a connection to a ϐile that ex‑27
ists or is created by the connection. For a connection that results from execution of an OPEN28
statement, a default form (which depends on the access method, as described in 12.3.3) is es‑29
tablished if no form is speciϐied. For a preconnected ϐile that exists, a form is established by30
preconnection. For a preconnected ϐile that does not exist, a form might be established, or the31
establishment of a form might be delayed until the ϐile is created (for example, by execution of32
a formatted or unformatted WRITE statement) (12.5.6.11).33

(3) A record lengthmight be established. If the access method is direct, the connection establishes34
a record length that speciϐies the length of each record of the ϐile. A direct access ϐile can only35
contain records that are all of equal length.36

(4) A sequential ϐile can contain records of varying lengths. In this case, the record length estab‑37
lished speciϐies the maximum length of a record in the ϐile (12.5.6.16).38

2 A processor has wide latitude in adapting these concepts and actions to its own cataloging and job control39
conventions. Some processors might need job control action to specify the set of ϐiles that exist or that will40
be created by a program. Some processors might not need any job control action prior to execution. This41
document enables processors to perform dynamic open, close, or ϐile creation operations, but it does not42
require such capabilities of the processor.43

J3/25‑007 627

J3/25‑007 WD 1539‑1 2024‑12‑29

3 Themeaning of “open” in contexts other than Fortranmight include such things asmounting a tape, console1
messages, spooling, label checking, security checking, etc. These actions might occur upon job control2
action external to Fortran, upon execution of an OPEN statement, or upon execution of the ϐirst read or3
write of the ϐile. The OPEN statement describes properties of the connection to the ϐile and might or might4
not cause physical activities to take place.5

C.8.5 Asynchronous input/output (12.6.2.5)6

1 Rather than limit support for asynchronous input/output to what has been traditionally provided by fa‑7
cilities such as BUFFERIN/BUFFEROUT, this document builds upon existing Fortran syntax. This permits8
alternative approaches for implementing asynchronous input/output, and simpliϐies the task of adapting9
existing standard‑conforming programs to use asynchronous input/output.10

2 Not all processors actually perform input/output asynchronously, nor will every processor that does be11
able to handle data transfer statements with complicated input/output item lists in an asynchronousman‑12
ner. Such processors can still be standard‑conforming.13

3 This document allows for at least two different conceptual models for asynchronous input/output.14

4 Model 1: the processor performs asynchronous input/output when the item list is simple (perhaps one15
contiguous named array) and the input/output is unformatted. The implementation cost is reduced, and16
this is the scenario most likely to be beneϐicial on traditional “big‑iron” machines.17

5 Model 2: The processor is free to do any of the following:18

(1) on output, create a buffer inside the input/output library, completely formatted, and then start19
an asynchronous write of the buffer, and immediately return to the next statement in the pro‑20
gram. The processor is free to wait for previously issued WRITEs, or not, or21

(2) pass the input/output list addresses to another processor/process, which processes the list22
items independently of the processor that executes the user’s code. The addresses of the list23
items will need to be computed before the asynchronous READ/WRITE statement completes.24
There is still an ordering requirement on list item processing to handle things like READ (…)25
N,(a(i),i=1,N).26

6 A program can issue a large number of asynchronous input/output requests, without waiting for any of27
them to complete, and then wait for any or all of them. That does not constitute a requirement for the28
processor to keep track of each individual request separately.29

7 It is not necessary for all requests to be tracked by the runtime library. If an ID= speciϐier does not appear30
in on a READ or WRITE statement, the runtime library can forget about this particular request once it31
has successfully completed. If an error or end‑of‑ϐile condition occurs for a request, the processor can32
report this during any input/output operation to that unit. If an ID= speciϐier appears, the processor’s33
runtime input/output librarywill need tokeep trackof anyend‑of‑ϐile or error conditions for that particular34
input/output request. However, if the input/output request succeeds without any exceptional conditions35
occurring, then the runtime can forget that ID= value. A runtime library might only keep track of the last36
request made, or perhaps a very few. Then, when a user WAITs for a particular request, either the library37
will know about it (and does the right thing with respect to error handling, etc.), or can assume it is a38
request that successfully completed and was forgotten about (and will just return without signaling any39
end‑of‑ϐile or error condition). A standard‑conforming program can only pass valid ID= values, but there40
is no requirement on the processor to detect invalid ID= values. There might be a processor dependent41
limit on how many outstanding input/output requests that generate an end‑of‑ϐile or error condition can42
be handled before the processor runs out of memory to keep track of such conditions. The restrictions43

628 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

on the SIZE= variables are designed to enable the processor to update such variables at any time (after1
the request has been processed, but before the wait operation), and then forget about them. Only error2
and end‑of‑ϐile conditions are expected to be tracked by individual request by the runtime, and then only3
if an ID= speciϐier appears. The END= and EOR= speciϐiers have not been added to all statements that can4
perform wait operations. Instead, the IOSTAT variable can be queried after a wait operation to handle this5
situation. This choice wasmade because theWAIT statement is expected to be the usual method of waiting6
for input/output to complete (and WAIT does support the END= and EOR= speciϐiers). This particular7
choice is philosophical, and was not based on signiϐicant technical difϐiculties.8

8 The requirement to set the IOSTAT variable correctly means that a processor will need to remember which9
input/output requests encountered an end‑of‑record condition, so that a subsequentwait operation can re‑10
turn the correct IOSTATvalue. Therefor theremight be aprocessordeϐined limit on thenumberof outstand‑11
ing nonadvancing input/output requests that have encountered an end‑of‑record condition (constrained12
by available memory to keep track of this information, similar to end‑of‑ϐile and error conditions).13

C.9 Clause 13 notes14

C.9.1 Number of records (13.4, 13.5, 13.8.2)15

1 The number of records read by an explicitly formatted advancing input statement can be determined from16
the following rule: a record is read at the beginning of the format scan (even if the input list is empty unless17
themost recently previous operation on the unitwas not a nonadvancing read operation), at each slash edit18
descriptor encountered in the format, and when a format rescan occurs at the end of the format.19

2 The number of records written by an explicitly formatted advancing output statement can be determined20
from the following rule: a record is written when a slash edit descriptor is encountered in the format,21
when a format rescan occurs at the end of the format, and at completion of execution of an advancing22
output statement (even if the output list is empty). Thus, the occurrence of n successive slashes between23
two other edit descriptors causes n− 1 blank lines if the records are printed. The occurrence of n slashes24
at the beginning or end of a complete format speciϐication causes n blank lines if the records are printed.25
However, a complete format speciϐication containingn slashes (n > 0) and no other edit descriptors causes26
n+ 1 blank lines if the records are printed. For example, the statements27

PRINT 328
3 FORMAT (/)29

will write two records that cause two blank lines if the records are printed.30

C.9.2 List‑directed input (13.10.3)31

1 The following examples illustrate list‑directed input. A blank character is represented by b.32

2 Example 1:33

Program:34

J = 335
READ *, I36
READ *, J37

Sequential input ϐile:38

J3/25‑007 629

J3/25‑007 WD 1539‑1 2024‑12‑29

record 1: b1b,4bbbbb1
record 2: ,2bbbbbbbb2

3 Result: I = 1, J = 3.3

4 Explanation: The second READ statement reads the second record. The initial comma in the record desig‑4
nates a null value; therefore, J is not redeϐined.5

5 Example 2:6

Program:7

CHARACTER A *8, B *18
READ *, A, B9

Sequential input ϐile:10

record 1: 'bbbbbbbb'11
record 2: 'QXY'b'Z'12

6 Result: A = ’bbbbbbbb’, B = ’Q’13

7 Explanation: In the ϐirst record, the rightmost apostrophe is interpreted as delimiting the constant (it can‑14
not be the ϐirst of a pair of embedded apostrophes representing a single apostrophe because this would15
involve the prohibited “splitting” of the pair by the end of a record); therefore, A is assigned the character16
constant ’bbbbbbbb’. The end of a record acts as a blank, which in this case is a value separator because it17
occurs between two constants.18

C.10 Clause 14 notes19

C.10.1 Main program and block data program unit (14.1, 14.3)20

1 The name of the main program or of a block data program unit has no explicit use within the Fortran lan‑21
guage. It is available for documentation and for possible use by a processor.22

2 A processor might implement an unnamed program unit by assigning it a global identiϐier that is not used23
elsewhere in the program. This could be done by using a default name that does not satisfy the rules for24
Fortran names.25

C.10.2 Dependent compilation (14.2)26

C.10.2.1 Separate translation27

1 This document, like its predecessors, is intended to enable the implementation of conforming processors28
in which a program can be broken intomultiple units, each of which can be separately translated in prepar‑29
ation for execution. Such processors are commonly described as supporting separate compilation. There is30
an important difference between the way separate compilation can be implemented under this document31
and the way it could be implemented under the FORTRAN 77 International Standard. Under the FORTRAN32
77 standard, any information required to translate a program unit was speciϐied in that program unit. Each33

630 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

translation was thus totally independent of all others. Under this document, a program unit can use in‑1
formation that was speciϐied in a separate module and thus can be dependent on that module. The im‑2
plementation of this dependency in a processor might be that the translation of a program unit depends3
on the results of translating one or more modules. Processors implementing the dependency this way are4
commonly described as supporting dependent compilation.5

2 The dependencies involved here are new only in the sense that the Fortran processor is now aware of them.6
The same information dependencies existed under the FORTRAN 77 International Standard, but it was the7
programmer’s responsibility to transport the information necessary to resolve them bymaking redundant8
speciϐications of the information in multiple program units. The availability of separate but dependent9
compilation offers several potential advantages over the redundant textual speciϐication of information.10

(1) Specifying information at a single place in the program ensures that different programunits us‑11
ing that information are translated consistently. Redundant speciϐication leaves the possibility12
that different information can be erroneously be speciϐied. Even if an INCLUDE line is used to13
ensure that the text of the speciϐications is identical in all involved program units, the presence14
of other speciϐications (for example, an IMPLICIT statement) could change the interpretation15
of that text.16

(2) During the revision of a program, it is possible for a processor to assist in determining whether17
different program units have been translated using different (incompatible) versions of a mod‑18
ule, although there is no requirement that a processor provide such assistance. Inconsistencies19
in redundant textual speciϐication of information, on the other hand, tend to be much more20
difϐicult to detect.21

(3) Putting information in a module provides a way of packaging it. Without modules, redundant22
speciϐications frequently are interleaved with other speciϐications in a program unit, making23
convenient packaging of such information difϐicult.24

(4) Because a processor can be implemented such that the speciϐications in amodule are translated25
once and then repeatedly referenced, there is the potential for greater efϐiciency thanwhen the26
processor translates redundant speciϐications of information in multiple program units.27

3 The exact meaning of the requirement that the public portions of a module be available at the time of ref‑28
erence is processor dependent. For example, a processor could consider a module to be available only29
after it has been compiled and require that if the module has been compiled separately, the result of that30
compilation be identiϐied to the compiler when compiling program units that use it.31

C.10.2.2 USE statement and dependent compilation (14.2.2)32

1 Another beneϐit of the USE statement is its enhanced facilities for name management. If one needs to use33
only selected entities in a module, one can do so without having to worry about the names of all the other34
entities in that module. If one needs to use two different modules that happen to contain entities with the35
same name, there are several ways to deal with the conϐlict. If none of the entities with the same name are36
to be used, they can simply be ignored. If the name happens to refer to the same entity in both modules37
(for example, if both modules obtained it from a third module), then there is no confusion about what the38
name denotes and the name can be freely used. If the entities are different and one or both is to be used,39
the local renaming facility in the USE statement makes it possible to give those entities different names in40
the program unit containing the USE statements.41

2 A beneϐit of using the ONLY option consistently, as compared to USE without it, is that the module from42
which each accessed entity is accessed is explicitly speciϐied in each program unit. This means that one43
need not search other program units to ϐind where each one is deϐined. This reduces maintenance costs.44

J3/25‑007 631

J3/25‑007 WD 1539‑1 2024‑12‑29

3 A typical implementation of dependent but separate compilation might involve storing the result of trans‑1
lating amodule in a ϐile whose name is derived from the name of themodule. Note, however, that the name2
of a module is limited only by the Fortran rules and not by the names allowed in the ϐile system. Thus the3
processor might have to provide a mapping between Fortran names and ϐile system names.4

4 The result of translating a module could reasonably either contain only the information textually speciϐied5
in the module (with “pointers” to information originally textually speciϐied in other modules) or contain6
all information speciϐied in the module (including copies of information originally speciϐied in other mod‑7
ules). Although the former approachwould appear to save on storage space, the latter approach can greatly8
simplify the logic necessary to process a USE statement and can avoid the necessity of imposing a limit on9
the logical “nesting” of modules via the USE statement.10

5 There is an increased potential for undetected errors in a scoping unit that uses both implicit typing and11
the USE statement. For example, in the program fragment12

SUBROUTINE SUB13
USE MY_MODULE14
IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)15
X = F (B)16
A = G (X) + H (X + 1)17

END SUBROUTINE SUB18

X could be either an implicitly typed real variable or a variable obtained from themoduleMY_MODULE and19
might change from one to the other because of changes in MY_MODULE unrelated to the action performed20
by SUB. Logic errors resulting from this kind of situation can be extremely difϐicult to locate. Thus, the use21
of these features together is discouraged.22

C.10.2.3 Accessibility attributes (8.5.2)23

1 The PUBLIC and PRIVATE attributes, which can be declared only inmodules, divide the entities in amodule24
into those that are actually relevant to a scoping unit referencing the module and those that are not. This25
information might be used to improve the performance of a Fortran processor. For example, it might be26
possible to discard much of the information about the private entities once a module has been translated,27
thus saving on both storage and the time to search it. Similarly, it might be possible to recognize that two28
versions of a module differ only in the private entities they contain and avoid retranslating program units29
that use that module when switching from one version of the module to the other.30

C.10.3 Examples of the use of modules (14.2.1)31

C.10.3.1 Global data (14.2.1)32

1 A module could contain only data objects, for example:33

MODULE DATA_MODULE34
SAVE35
REAL A (10), B, C (20,20)36
INTEGER :: I=037
INTEGER, PARAMETER :: J=1038
COMPLEX D (J,J)39

END MODULE DATA_MODULE40

2 Data objects made global in this manner can have any combination of data types.41

3 Access to some of these can be made by a USE statement with the ONLY option, such as:42

632 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

USE DATA_MODULE, ONLY: A, B, D1
and access to all of them can be made by the following USE statement:2

USE DATA_MODULE3

4 Access to all of them with some renaming to avoid name conϐlicts can be made by, for example:4

USE DATA_MODULE, AMODULE => A, DMODULE => D5

C.10.3.2 Derived types (14.2.1)6

1 A derived type can be deϐined in a module and accessed in a number of program units. For example,7

MODULE SPARSE8
TYPE NONZERO9

REAL A10
INTEGER I, J11

END TYPE NONZERO12
END MODULE SPARSE13

deϐines a type consisting of a real component and two integer components for holding the numerical value14
of a nonzero matrix element and its row and column indices.15

C.10.3.3 Global allocatable arrays (14.2.1)16

1 Many programs need large global allocatable arrays whose sizes are not known before program execution.17
A simple form for such a program is:18

PROGRAM GLOBAL_WORK19
CALL CONFIGURE_ARRAYS ! Perform the appropriate allocations20
CALL COMPUTE ! Use the arrays in computations21

END PROGRAM GLOBAL_WORK22
MODULE WORK_ARRAYS ! An example set of work arrays23

INTEGER N24
REAL, ALLOCATABLE :: A (:), B (:, :), C (:, :, :)25

END MODULE WORK_ARRAYS26
SUBROUTINE CONFIGURE_ARRAYS ! Process to set up work arrays27

USE WORK_ARRAYS28
READ (*, *) N29
ALLOCATE (A (N), B (N, N), C (N, N, 2 * N))30

END SUBROUTINE CONFIGURE_ARRAYS31
SUBROUTINE COMPUTE32

USE WORK_ARRAYS33
… Computations involving arrays A, B, and C.34

END SUBROUTINE COMPUTE35

2 Typically, many subprograms need access to the work arrays, and all such subprograms would contain the36
statement37

USE WORK_ARRAYS38

C.10.3.4 Procedure libraries (14.2.2)39

1 Interface bodies for external procedures in a library can be gathered into a module. An interface body40
speciϐies an explicit interface (15.4.2.2).41

2 An example is the following library module:42

J3/25‑007 633

J3/25‑007 WD 1539‑1 2024‑12‑29

MODULE LIBRARY_LLS1
INTERFACE2

SUBROUTINE LLS (X, A, F, FLAG)3
REAL X (:, :)4
! The SIZE in the next statement is an intrinsic function5
REAL, DIMENSION (SIZE (X, 2)) :: A, F6
INTEGER FLAG7

END SUBROUTINE LLS8
…9

END INTERFACE10
…11

END MODULE LIBRARY_LLS12

3 This module provides an explicit interface that is necessary for the subroutine LLS to be invoked. for ex‑13
ample:14

USE LIBRARY_LLS15
…16
CALL LLS (X = ABC, A = D, F = XX, FLAG = IFLAG)17
…18

4 Because dummy argument names in an interface body for an external procedure are not required to be the19
same as in the procedure deϐinition, different versions can be constructed for different applications using20
argument keywords appropriate to each application.21

C.10.3.5 Operator extensions (14.2.2)22

1 In order to extend an intrinsic operator symbol to have an additionalmeaning, an interface block specifying23
that operator symbol in the OPERATOR option of the INTERFACE statement could be placed in a module.24

2 For example, // can be extended to perform concatenation of two derived‑type objects serving as vary‑25
ing length character strings and + can be extended to specify matrix addition for type MATRIX or interval26
arithmetic addition for type INTERVAL.27

3 A module might contain several such interface blocks. An operator can be deϐined by an external function28
(either in Fortran or some other language) and its procedure interface placed in the module.29

C.10.3.6 Data abstraction (14.2.2)30

1 In addition to providing aportablemeans of avoiding the redundant speciϐication of information inmultiple31
program units, a module provides a convenient means of “packaging” related entities, such as the deϐini‑32
tions of the representation and operations of an abstract data type. The following example of a module33
deϐines a data abstraction for a SET type where the elements of each set are of type integer. The usual set34
operations of UNION, INTERSECTION, and DIFFERENCE are provided. The CARDINALITY function returns35
the cardinality of (number of elements in) its set argument. Two functions returning logical values are in‑36
cluded, ELEMENT and SUBSET. ELEMENT deϐines the operator .IN. and SUBSET extends the operator <=.37
ELEMENT determines if a given scalar integer value is an element of a given set, and SUBSET determines if38
a given set is a subset of another given set. (Two sets can be checked for equality by comparing cardinality39
and checking that one is a subset of the other, or checking to see if each is a subset of the other.)40

2 The transfer function SETF converts a vector of integer values to the corresponding set, with duplicate41
values removed. Thus, a vector of constant values can be used as set constants. An inverse transfer function42

634 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

VECTOR returns the elements of a set as a vector of values in ascending order. In this SET implementation,1
set data objects have a maximum cardinality of 200.2

3 Here is the example module:3
MODULE INTEGER_SETS4
! This module is intended to illustrate use of the module facility5
! to define a new type, along with suitable operators.6

7
INTEGER, PARAMETER :: MAX_SET_CARD = 2008

9
TYPE SET ! Define SET type10

PRIVATE11
INTEGER CARD12
INTEGER ELEMENT (MAX_SET_CARD)13

END TYPE SET14
15

INTERFACE OPERATOR (.IN.)16
MODULE PROCEDURE ELEMENT17

END INTERFACE OPERATOR (.IN.)18
19

INTERFACE OPERATOR (<=)20
MODULE PROCEDURE SUBSET21

END INTERFACE OPERATOR (<=)22
23

INTERFACE OPERATOR (+)24
MODULE PROCEDURE UNION25

END INTERFACE OPERATOR (+)26
27

INTERFACE OPERATOR (-)28
MODULE PROCEDURE DIFFERENCE29

END INTERFACE OPERATOR (-)30
31

INTERFACE OPERATOR (*)32
MODULE PROCEDURE INTERSECTION33

END INTERFACE OPERATOR (*)34
35

CONTAINS36
37

INTEGER FUNCTION CARDINALITY (A) ! Returns cardinality of set A38
TYPE (SET), INTENT (IN) :: A39
CARDINALITY = A % CARD40

END FUNCTION CARDINALITY41
42

LOGICAL FUNCTION ELEMENT (X, A) ! Determines if43
INTEGER, INTENT(IN) :: X ! element X is in set A44
TYPE (SET), INTENT(IN) :: A45
ELEMENT = ANY (A % ELEMENT (1 : A % CARD) == X)46

END FUNCTION ELEMENT47
48

FUNCTION UNION (A, B) ! Union of sets A and B49
TYPE (SET) UNION50
TYPE (SET), INTENT(IN) :: A, B51
INTEGER J52
UNION = A53
DO J = 1, B % CARD54

IF (.NOT. (B % ELEMENT (J) .IN. A)) THEN55
IF (UNION % CARD < MAX_SET_CARD) THEN56

UNION % CARD = UNION % CARD + 157
UNION % ELEMENT (UNION % CARD) = B % ELEMENT (J)58

ELSE59
! Maximum set size exceeded . . .60

J3/25‑007 635

J3/25‑007 WD 1539‑1 2024‑12‑29

END IF1
END IF2

END DO3
END FUNCTION UNION4

5
FUNCTION DIFFERENCE (A, B) ! Difference of sets A and B6

TYPE (SET) DIFFERENCE7
TYPE (SET), INTENT(IN) :: A, B8
INTEGER J, X9
DIFFERENCE % CARD = 0 ! The empty set10
DO J = 1, A % CARD11

X = A % ELEMENT (J)12
IF (.NOT. (X .IN. B)) DIFFERENCE = DIFFERENCE + SET (1, X)13

END DO14
END FUNCTION DIFFERENCE15

16
FUNCTION INTERSECTION (A, B) ! Intersection of sets A and B17

TYPE (SET) INTERSECTION18
TYPE (SET), INTENT(IN) :: A, B19
INTERSECTION = A - (A - B)20

END FUNCTION INTERSECTION21
22

LOGICAL FUNCTION SUBSET (A, B) ! Determines if set A is23
TYPE (SET), INTENT(IN) :: A, B ! a subset of set B24
INTEGER I25
SUBSET = A % CARD <= B % CARD26
IF (.NOT. SUBSET) RETURN ! For efficiency27
DO I = 1, A % CARD28

SUBSET = SUBSET .AND. (A % ELEMENT (I) .IN. B)29
END DO30

END FUNCTION SUBSET31
32

TYPE (SET) FUNCTION SETF (V) ! Transfer function between a vector33
INTEGER V (:) ! of elements and a set of elements34
INTEGER J ! removing duplicate elements35
SETF % CARD = 036
DO J = 1, SIZE (V)37

IF (.NOT. (V (J) .IN. SETF)) THEN38
IF (SETF % CARD < MAX_SET_CARD) THEN39

SETF % CARD = SETF % CARD + 140
SETF % ELEMENT (SETF % CARD) = V (J)41

ELSE42
! Maximum set size exceeded . . .43

END IF44
END IF45

END DO46
END FUNCTION SETF47

48
FUNCTION VECTOR (A) ! Transfer the values of set A49

TYPE (SET), INTENT (IN) :: A ! into a vector in ascending order50
INTEGER, POINTER :: VECTOR (:)51
INTEGER I, J, K52
ALLOCATE (VECTOR (A % CARD))53
VECTOR = A % ELEMENT (1 : A % CARD)54
DO I = 1, A % CARD - 1 ! Use a better sort if55

DO J = I + 1, A % CARD ! A % CARD is large56
IF (VECTOR (I) > VECTOR (J)) THEN57

K = VECTOR (J); VECTOR (J) = VECTOR (I); VECTOR (I) = K58
END IF59

END DO60
END DO61

636 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

END FUNCTION VECTOR1
END MODULE INTEGER_SETS2

4 Examples of using INTEGER_SETS (A, B, and C are variables of type SET; X is an integer variable):3

! Check to see if A has more than 10 elements4
IF (CARDINALITY (A) > 10) …5

6
! Check for X an element of A but not of B7
IF (X .IN. (A - B)) …8

9
! C is the union of A and the result of B intersected10
! with the integers 1 to 10011
C = A + B * SETF ([(I, I = 1, 100)])12

13
! Does A have any even numbers in the range 1:100?14
IF (CARDINALITY (A * SETF ([(I, I = 2, 100, 2)])) > 0) …15

16
PRINT *, VECTOR (B) ! Print out the elements of set B, in ascending order17

C.10.3.7 Public entities renamed (14.2.2)18

1 At times it might be necessary to rename entities that are accessed with USE statements.19

2 The following example illustrates renaming features of the USE statement.20

MODULE J; REAL JX, JY, JZ; END MODULE J21
MODULE K22

USE J, ONLY : KX => JX, KY => JY23
! KX and KY are local names to module K24
REAL KZ ! KZ is local name to module K25
REAL JZ ! JZ is local name to module K26

END MODULE K27
PROGRAM RENAME28

USE J; USE K29
! Module J's entity JX is accessible under names JX and KX30
! Module J's entity JY is accessible under names JY and KY31
! Module K's entity KZ is accessible under name KZ32
! Module J's entity JZ and K's entity JZ are different entities33
! and cannot be referenced34
…35

END PROGRAM RENAME36

C.10.4 Modules with submodules (14.2.3)37

1 Each submodule speciϐies that it is the child of exactly one parent module or submodule. Therefore, a38
module and all of its descendant submodules stand in a tree‑like relationship one to another.39

2 A separate module procedure that is declared in a module to have public accessibility can be accessed by40
use association even if it is deϐined in a submodule. No other entity in a submodule can be accessed by41
use association. Each program unit that references a module by use association depends on it, and each42
submodule depends on its ancestor module. Therefore, if one changes a separate module procedure body43
in a submodule but does not change its corresponding module procedure interface, a tool for automatic44
program translation would not need to reprocess program units that reference the module by use associ‑45
ation. This is so even if the tool exploits the relative modiϐication times of ϐiles as opposed to comparing46
the result of translating the module to the result of a previous translation.47

J3/25‑007 637

J3/25‑007 WD 1539‑1 2024‑12‑29

3 By constructing taller trees, one can put entities at intermediate levels that are shared by submodules at1
lower levels; changing these entities cannot change the interpretation of anything that is accessible from2
themodule by use association. Developers of modules that embody large complicated concepts can exploit3
this possibility to organize components of the concept into submodules, while preserving the privacy of4
entities that are shared by the submodules and that ought not to be exposed to users of themodule. Putting5
these shared entities at an intermediate level also prevents cascades of reprocessing and testing if some of6
them are changed.7

4 The following example illustrates amodule, color_points, with a submodule, color_points_a, that in turn8
has a submodule, color_points_b. Public entities declared within color_points can be accessed by use9
association. The submodules color_points_a and color_points_b can be changed without causing re‑10
translation of program units that reference the module color_points.11

5 The module color_points does not have amodule‑subprogram‑part, but amodule‑subprogram‑part is not12
prohibited. The module could be published as deϐinitive speciϐication of the interface, without revealing13
trade secrets contained within color_points_a or color_points_b. Of course, a similar module without14
the module preϐix in the interface bodies would serve equally well as documentation – but the procedures15
would be external procedures. It would make little difference to the consumer, but the developer would16
forfeit all of the advantages of modules.17

module color_points18
19

type color_point20
private21
real :: x, y22
integer :: color23

end type color_point24
25

interface ! Interfaces for procedures with separate26
! bodies in the submodule color_points_a27

module subroutine color_point_del (p) ! Destroy a color_point object28
type(color_point), allocatable :: p29

end subroutine color_point_del30
! Distance between two color_point objects31
real module function color_point_dist (a, b)32

type(color_point), intent(in) :: a, b33
end function color_point_dist34
module subroutine color_point_draw (p) ! Draw a color_point object35

type(color_point), intent(in) :: p36
end subroutine color_point_draw37
module subroutine color_point_new (p) ! Create a color_point object38

type(color_point), allocatable :: p39
end subroutine color_point_new40

end interface41
42

end module color_points43

6 The only entities within color_points_a that can be accessed by use association are the separate module44
procedures that were declared in color_points. If the procedures are changed but their interfaces are45
not, the interface from program units that access them by use association is unchanged. If the module and46
submodule are in separate ϐiles, utilities that examine the time of modiϐication of a ϐile would notice that47
changes in themodule could affect the translation of its submodules or of program units that reference the48
module by use association, but that changes in submodules could not affect the translation of the parent49
module or program units that reference it by use association.50

7 The variable instance_count in the following example is not accessible by use association of color_points,51

638 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

but is accessible within color_points_a, and its submodules.1

submodule (color_points) color_points_a ! Submodule of color_points2
3

integer :: instance_count = 04
5

interface ! Interface for a procedure with a separate6
! body in submodule color_points_b7

module subroutine inquire_palette (pt, pal)8
use palette_stuff ! palette_stuff, especially submodules thereof,9

! can reference color_points by use association10
! without causing a circular dependence during11
! translation because this use is not in the module.12
! Furthermore, changes in the module palette_stuff13
! do not affect the translation of color_points.14

type(color_point), intent(in) :: pt15
type(palette), intent(out) :: pal16

end subroutine inquire_palette17
end interface18

19
contains ! Invisible bodies for public separate module procedures20

! declared in the module21
module subroutine color_point_del (p)22

type(color_point), allocatable :: p23
instance_count = instance_count - 124
deallocate (p)25

end subroutine color_point_del26
real module function color_point_dist (a, b) result (dist)27

type(color_point), intent(in) :: a, b28
dist = SQRT ((b%x - a%x)**2 + (b%y - a%y)**2)29

end function color_point_dist30
module subroutine color_point_new (p)31

type(color_point), allocatable :: p32
instance_count = instance_count + 133
allocate (p)34

end subroutine color_point_new35
36

end submodule color_points_a37

8 The subroutine inquire_palette is accessible within color_points_a because its interface is declared38
therein. It is not, however, accessible by use association, because its interface is not declared in themodule,39
color_points. Since the interface is not declared in the module, changes in the interface cannot affect the40
translation of program units that reference the module by use association.41

module palette_stuff42
type :: palette ; … ; end type palette43

contains44
subroutine test_palette (p)45
! Draw a color wheel using procedures from the color_points module46

use color_points ! This does not cause a circular dependency because47
! the "use palette_stuff" that is logically within48
! color_points is in the color_points_a submodule.49

type(palette), intent(in) :: p50
…51

end subroutine test_palette52
end module palette_stuff53

54
submodule (color_points:color_points_a) color_points_b ! Subsidiary**2 submodule55

56
contains57

J3/25‑007 639

J3/25‑007 WD 1539‑1 2024‑12‑29

! Invisible body for interface declared in the ancestor module1
module subroutine color_point_draw (p)2

use palette_stuff, only: palette3
type(color_point), intent(in) :: p4
type(palette) :: MyPalette5
…; call inquire_palette (p, MyPalette); …6

end subroutine color_point_draw7
8

! Invisible body for interface declared in the parent submodule9
module procedure inquire_palette10

… Implementation of inquire_palette.11
end procedure inquire_palette12

13
subroutine private_stuff ! not accessible from color_points_a14

…15
end subroutine private_stuff16

17
end submodule color_points_b18

9 There is a use palette_stuff in color_points_a, and a use color_points in palette_stuff. The use19
palette_stuff would cause a circular reference if it appeared in color_points. In this case, it does not20
cause a circular dependence because it is in a submodule. Submodules cannot be referenced by use asso‑21
ciation, and therefore what would be a circular appearance of use palette_stuff is not accessed.22

program main23
use color_points24
! "instance_count" and "inquire_palette" are not accessible here25
! because they are not declared in the "color_points" module.26
! "color_points_a" and "color_points_b" cannot be referenced by27
! use association.28
interface draw ! just to demonstrate it's possible29

module procedure color_point_draw30
end interface31
type(color_point) :: C_1, C_232
real :: RC33
…34
call color_point_new (c_1) ! body in color_points_a, interface in color_points35
…36
call draw (c_1) ! body in color_points_b, specific interface37

! in color_points, generic interface here.38
…39
rc = color_point_dist (c_1, c_2) ! body in color_points_a, interface in color_points40
…41
call color_point_del (c_1) ! body in color_points_a, interface in color_points42
…43

end program main44

10 A multilevel submodule system can be used to package and organize a large and interconnected concept45
without exposing entities of one subsystem to other subsystems.46

11 Consider a Plasma module from a Tokomak simulator. A plasma simulation requires attention at least to47
ϐluid ϐlow, thermodynamics, and electromagnetism. Fluid ϐlow simulation requires simulation of subsonic,48
supersonic, and hypersonic ϐlow. This problem decomposition can be reϐlected in the submodule structure49
of the Plasmamodule:50

640 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Plasma module
Flow submodule Thermal submodule Electromagnetics submodule

Subsonic Supersonic Hypersonic
submodule submodule submodule

1

12 Entities can be shared among the Subsonic, Supersonic, and Hypersonic submodules by putting them2
within the Flow submodule. One then need not worry about accidental use of these entities by use associ‑3
ation or by the Thermal or Electromagnetics submodules, or the development of a dependency of correct4
operation of those subsystems upon the representation of entities of the Flow subsystem as a consequence5
of maintenance. Since these entities are not accessible by use association, if any of them are changed, the6
new values cannot be accessed in program units that reference the Plasmamodule by use association; the7
answer to the question “where are these entities used” is therefore conϐined to the set of descendant sub‑8
modules of the Flow submodule.9

C.11 Clause 15 notes10

C.11.1 Portability problems with external procedures (15.4.3.5)11

1 There is a potential portability problem in a scoping unit that references an external procedure without12
explicitly declaring it to have the EXTERNAL attribute (8.5.9). On a different processor, the name of that13
procedure might be the name of a nonstandard intrinsic procedure and in such a case the processor would14
interpret those procedure references as references to that intrinsic procedure. (On that processor, the15
program would also be viewed as not conforming to this document because of the references to the non‑16
standard intrinsic procedure.) Declaration of the EXTERNAL attribute causes the references to be to the17
external procedure regardless of the availability of an intrinsic procedure with the same name. Note that18
declaration of the type of a procedure is not enough tomake it external, even if the type is inconsistent with19
the type of the result of an intrinsic procedure of the same name.20

C.11.2 Procedures deϐined by means other than Fortran (15.6.3)21

1 A processor is not required to provide any means other than Fortran for deϐining external procedures.22
Among themeans that might be supported are themachine assembly language, other high level languages,23
the Fortran language extended with nonstandard features, and the Fortran language as supported by an‑24
other Fortran processor (for example, a previously existing FORTRAN 77 processor). The means other than25
Fortran for deϐining external procedures, including any restrictions on the structure or organization of26
those procedures, are not speciϐied by this document.27

2 A Fortran processor might limit its support of procedures deϐined by means other than Fortran such that28
these procedures can affect entities in the Fortran environment only on the same basis as procedures writ‑29
ten in Fortran. For example, it might not support the value of a local variable from being changed by a30
procedure reference unless that variable were one of the arguments to the procedure.31

C.11.3 Abstract interfaces and procedure pointer components (15.4, 7.5)32

1 This is an example of a library module providing lists of callbacks that the user can register and invoke.33

MODULE callback_list_module34
!35
! Type for users to extend with their own data, if they so desire36

J3/25‑007 641

J3/25‑007 WD 1539‑1 2024‑12‑29

!1
TYPE callback_data2
END TYPE3
!4
! Abstract interface for the callback procedures5
!6
ABSTRACT INTERFACE7

SUBROUTINE callback_procedure(data)8
IMPORT callback_data9
CLASS(callback_data),OPTIONAL :: data10

END SUBROUTINE11
END INTERFACE12
!13
! The callback list type.14
!15
TYPE callback_list16

PRIVATE17
TYPE(callback_record),POINTER :: first => NULL()18

END TYPE19
!20
! Internal: each callback registration creates one of these21
!22
TYPE,PRIVATE :: callback_record23

PROCEDURE(callback_procedure),POINTER,NOPASS :: proc24
TYPE(callback_record),POINTER :: next25
CLASS(callback_data),POINTER :: data => NULL();26

END TYPE27
PRIVATE invoke,forward_invoke28

CONTAINS29
!30
! Register a callback procedure with optional data31
!32
SUBROUTINE register_callback(list, entry, data)33

TYPE(callback_list),INTENT(INOUT) :: list34
PROCEDURE(callback_procedure) :: entry35
CLASS(callback_data),OPTIONAL :: data36
TYPE(callback_record),POINTER :: new37
ALLOCATE(new)38
new%proc => entry39
IF (PRESENT(data)) ALLOCATE(new%data,SOURCE=data)40
new%next => list%first41
list%first => new42

END SUBROUTINE43
!44
! Internal: Invoke a single callback and destroy its record45
!46
SUBROUTINE invoke(callback)47

TYPE(callback_record),POINTER :: callback48
IF (ASSOCIATED(callback%data)) THEN49

CALL callback%proc(callback%data)50
DEALLOCATE(callback%data)51

ELSE52
CALL callback%proc53

END IF54
DEALLOCATE(callback)55

END SUBROUTINE56
!57
! Call the procedures in reverse order of registration58
!59
SUBROUTINE invoke_callback_reverse(list)60

TYPE(callback_list),INTENT(INOUT) :: list61

642 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

TYPE(callback_record),POINTER :: next,current1
current => list%first2
NULLIFY(list%first)3
DO WHILE (ASSOCIATED(current))4

next => current%next5
CALL invoke(current)6
current => next7

END DO8
END SUBROUTINE9
!10
! Internal: Forward mode invocation11
!12
SUBROUTINE forward_invoke(callback)13

TYPE(callback_record),POINTER :: callback14
IF (ASSOCIATED(callback%next)) CALL forward_invoke(callback%next)15
CALL invoke(callback)16

END SUBROUTINE17
!18
! Call the procedures in forward order of registration19
!20
SUBROUTINE invoke_callback_forward(list)21

TYPE(callback_list),INTENT(INOUT) :: list22
IF (ASSOCIATED(list%first)) CALL forward_invoke(list%first)23

END SUBROUTINE24
END25

C.11.4 Pointers and targets as arguments (15.5.2.5, 15.5.2.7, 15.5.2.8)26

1 If a dummy argument is declared to be a pointer, the corresponding actual argument could be a pointer or27
could be a nonpointer variable or procedure. Consider the two cases separately.28

Case (i): The actual argument is a pointer. When procedure execution commences the pointer associ‑29
ation status of the dummy argument becomes the same as that of the actual argument. If the30
pointer association status of the dummy argument is changed, the pointer association status31
of the actual argument changes in the same way.32

Case (ii): The actual argument is not a pointer. This only occurs when the actual argument has the TAR‑33
GET attribute or is a procedure, and the dummy argument has the INTENT (IN) attribute. The34
dummy argument becomes pointer associated with the actual argument.35

2 Whenexecutionof a procedure completes, anydata pointer that remains deϐined and that is associatedwith36
adummyargument that has theTARGETattribute and is either a scalar or an assumed‑shape array, remains37
associated with the corresponding actual argument if the actual argument has the TARGET attribute and is38
not an array section with a vector subscript.39

3 For example, consider:40
REAL, POINTER :: PBEST41
REAL, TARGET :: B (10000)42
CALL BEST (PBEST, B) ! On return PBEST is associated with the `best' element of B.43
…44
CONTAINS45
SUBROUTINE BEST (P, A)46

REAL, POINTER, INTENT (OUT) :: P47
REAL, TARGET, INTENT (IN) :: A (:)48
… Find the ‘‘best’’ element A(I).49
P => A (I)50

END SUBROUTINE BEST51
END52

J3/25‑007 643

J3/25‑007 WD 1539‑1 2024‑12‑29

When procedure BEST completes, the pointer PBEST is associated with an element of B.1

4 An actual argumentwithout the TARGET attribute can become associatedwith a dummyargumentwith the2
TARGETattribute. This enables apointer tobecomeassociatedwith thedummyargumentduring execution3
of the procedure that contains the dummy argument. For example:4

INTEGER LARGE(100,100)5
CALL SUB (LARGE)6
…7
CALL SUB ()8
CONTAINS9
SUBROUTINE SUB(ARG)10

INTEGER, TARGET, OPTIONAL :: ARG(100,100)11
INTEGER, POINTER, DIMENSION(:,:) :: PARG12
IF (PRESENT(ARG)) THEN13

PARG => ARG14
ELSE15

ALLOCATE (PARG(100,100))16
PARG = 017

ENDIF18
… Code with lots of references to PARG.19
IF (.NOT. PRESENT(ARG)) DEALLOCATE(PARG)20

END SUBROUTINE SUB21
END22

Within subroutine SUB the pointer PARG is either associatedwith the dummy argument ARG or it is associ‑23
ated with an allocated target. The bulk of the code can reference PARGwithout further calls to the intrinsic24
function PRESENT.25

5 If a nonpointer dummy argument has the TARGET attribute and the corresponding actual argument does26
not, any pointers that become associated with the dummy argument, and therefore with the actual argu‑27
ment, during execution of the procedure, become undeϐined when execution of the procedure completes.28

C.11.5 Polymorphic Argument Association (15.5.2.10)29

1 The following example illustrates the polymorphic argument association rules using the derived types30
deϐined in 7.5.7.2, NOTE 4.31

TYPE(POINT) :: T232
TYPE(COLOR_POINT) :: T333
CLASS(POINT) :: P234
CLASS(COLOR_POINT) :: P335
! Dummy argument is polymorphic and actual argument is of fixed type36
SUBROUTINE SUB2 (X2); CLASS(POINT) :: X2; …37
SUBROUTINE SUB3 (X3); CLASS(COLOR_POINT) :: X3; …38

39
CALL SUB2 (T2) ! Valid -- The declared type of T2 is the same as the40

! declared type of X2.41
CALL SUB2 (T3) ! Valid -- The declared type of T3 is extended from42

! the declared type of X2.43
CALL SUB3 (T2) ! Invalid -- The declared type of T2 is neither the44

! same as nor extended from the declared type45
! type of X3.46

CALL SUB3 (T3) ! Valid -- The declared type of T3 is the same as the47
! declared type of X3.48

! Actual argument is polymorphic and dummy argument is of fixed type49
SUBROUTINE TUB2 (D2); TYPE(POINT) :: D2; …50
SUBROUTINE TUB3 (D3); TYPE(COLOR_POINT) :: D3; …51

644 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

1
CALL TUB2 (P2) ! Valid -- The declared type of P2 is the same as the2

! declared type of D2.3
CALL TUB2 (P3) ! Invalid -- The declared type of P3 differs from the4

! declared type of D2.5
CALL TUB2 (P3%POINT) ! Valid alternative to the above6
CALL TUB3 (P2) ! Invalid -- The declared type of P2 differs from the7

! declared type of D3.8
SELECT TYPE (P2) ! Valid conditional alternative to the above9
CLASS IS (COLOR_POINT) ! Works if the dynamic type of P2 is the same10
CALL TUB3 (P2) ! as the declared type of D3, or a type11

! extended therefrom.12
CLASS DEFAULT13

! Cannot work if not.14
END SELECT15
CALL TUB3 (P3) ! Valid -- The declared type of P3 is the same as the16

! declared type of D3.17
! Both the actual and dummy arguments are of polymorphic type.18
CALL SUB2 (P2) ! Valid -- The declared type of P2 is the same as the19

! declared type of X2.20
CALL SUB2 (P3) ! Valid -- The declared type of P3 is extended from21

! the declared type of X2.22
CALL SUB3 (P2) ! Invalid -- The declared type of P2 is neither the23

! same as nor extended from the declared24
! type of X3.25

SELECT TYPE (P2) ! Valid conditional alternative to the above26
CLASS IS (COLOR_POINT) ! Works if the dynamic type of P2 is the27
CALL SUB3 (P2) ! same as the declared type of X3, or a28

! type extended therefrom.29
CLASS DEFAULT30

! Cannot work if not.31
END SELECT32
CALL SUB3 (P3) ! Valid -- The declared type of P3 is the same as the33

! declared type of X3.34

C.11.6 Rules ensuring unambiguous generics (15.4.3.4.5)35

1 The rules in 15.4.3.4.5 are intended to ensure36

• that it is possible to reference each speciϐic procedure or binding in the generic collection,37
• that for any valid generic procedure reference, the determinationof the speciϐic procedure referenced38
is unambiguous, and39

• that the determination of the speciϐic procedure or binding referenced can bemade before execution40
of the program begins (during compilation).41

2 Interfaces of speciϐic procedures or bindings are distinguished by ϐixed properties of their arguments, spe‑42
ciϐically type, kind type parameters, rank, and whether the dummy argument has the POINTER or ALLOC‑43
ATABLE attribute. A valid reference to one procedure in a generic collection will differ from another be‑44
cause it has an argument that the other cannot accept, because it is missing an argument that the other45
requires, or because one of these ϐixed properties is different.46

3 Although the declared type of a data entity is a ϐixed property, polymorphic variables allow for a limited47
degree of type mismatch between dummy arguments and actual arguments, so the requirement for distin‑48
guishing two dummy arguments is type incompatibility, not merely different types. (This is illustrated in49
the BAD6 example later in this subclause.)50

J3/25‑007 645

J3/25‑007 WD 1539‑1 2024‑12‑29

4 That same limited typemismatchmeans that two dummy arguments that are not type incompatible can be1
distinguished on the basis of the values of the kind type parameters they have in common; if one of them2
has a kind type parameter that the other does not, that is irrelevant in distinguishing them.3

5 Rank is a ϐixed property, but some formsof array dummyarguments allow rankmismatcheswhen aproced‑4
ure is referenced by its speciϐic name. In order to allow rank to always be usable in distinguishing generics,5
such rank mismatches are disallowed for those arguments when the procedure is referenced as part of a6
generic. Additionally, the fact that elemental procedures can accept array arguments is not taken into ac‑7
count when applying these rules, so apparent ambiguity between elemental and nonelemental procedures8
is possible; in such cases, the reference is interpreted as being to the nonelemental procedure.9

6 For procedures referenced as operators or deϐined‑assignment, syntactically distinguished arguments are10
mapped to speciϐic positions in the argument list, so the rule for distinguishing such procedures is that it11
be possible to distinguish the arguments at one of the argument positions.12

7 For deϐined input/output procedures, only the dtv argument corresponds to something explicitly written13
in the program, so it is the dtv that is required to be distinguished. Because dtv arguments are required to14
be scalar, they cannot differ in rank. Thus this rule effectively involves only type and kind type parameters.15

8 For generic procedure names, the rules are more complicated because optional arguments can be omitted16
and because arguments can be speciϐied either positionally or by name.17

9 In the special case of type‑bound procedures with passed‑object dummy arguments, the passed‑object18
argument is syntactically distinguished in the reference, so rule (3) in 15.4.3.4.5 can be applied. The type of19
passed‑object arguments is constrained inways that prevent passed‑object arguments in the same scoping20
unit from being type incompatible. Thus this rule effectively involves only kind type parameters and rank.21

10 The primarymeans of distinguishing named generics is rule (4). Themost common application of that rule22
is a single argument satisfying both (4a) and (4b):23

INTERFACE GOOD124
FUNCTION F1A(X)25

REAL :: F1A,X26
END FUNCTION F1A27
FUNCTION F1B(X)28

INTEGER :: F1B,X29
END FUNCTION F1B30

END INTERFACE GOOD131

11 Whether one writes GOOD1(1.0) or GOOD1(X=1.0), the reference is to F1A because F1B would require an32
integer argument whereas these references provide the real constant 1.0.33

12 This example and those that follow are expressed using interface bodies, with type as the distinguishing34
property. This was done to make it easier to write and describe the examples. The principles being illus‑35
trated are equally applicable when the procedures get their explicit interfaces in some other way or when36
kind type parameters or rank are the distinguishing property.37

13 Another common variant is the argument that satisϐies (4a) and (4b) by being required in one speciϐic and38
completely missing in the other:39

INTERFACE GOOD240
FUNCTION F2A(X)41

REAL :: F2A,X42
END FUNCTION F2A43
FUNCTION F2B(X,Y)44

646 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

COMPLEX :: F2B1
REAL :: X,Y2

END FUNCTION F2B3
END INTERFACE GOOD24

14 Whether one writes GOOD2(0.0,1.0), GOOD2(0.0,Y=1.0), or GOOD2(Y=1.0,X=0.0), the reference is to F2B,5
because F2A has no argument in the second position or with the name Y. This approach is used as an altern‑6
ative to optional arguments when one wants a function to have different result type, kind type parameters,7
or rank, depending on whether the argument is present. In many of the intrinsic functions, the DIM argu‑8
ment works this way.9

15 It is possible to construct caseswheredifferent arguments are used todistinguish positionally andbyname:10

INTERFACE GOOD311
SUBROUTINE S3A(W,X,Y,Z)12

REAL :: W,Y13
INTEGER :: X,Z14

END SUBROUTINE S3A15
SUBROUTINE S3B(X,W,Z,Y)16

REAL :: W,Z17
INTEGER :: X,Y18

END SUBROUTINE S3B19
END INTERFACE GOOD320

16 If onewrites GOOD3(1.0,2,3.0,4) to reference S3A, then the third and fourth arguments are consistentwith21
a reference to S3B, but the ϐirst and second are not. If one switches to writing the ϐirst two arguments as22
keyword arguments in order for them to be consistentwith a reference to S3B, the latter two argumentswill23
also need to be written as keyword arguments, GOOD3(X=2,W=1.0,Z=4,Y=3.0), and the named arguments24
Y and Z are distinguished.25

17 The ordering requirement in rule (4) is critical:26

INTERFACE BAD4 ! this interface is invalid !27
SUBROUTINE S4A(W,X,Y,Z)28

REAL :: W,Y29
INTEGER :: X,Z30

END SUBROUTINE S4A31
SUBROUTINE S4B(X,W,Z,Y)32

REAL :: X,Y33
INTEGER :: W,Z34

END SUBROUTINE S4B35
END INTERFACE BAD436

18 In this example, the positionally distinguished arguments are Y and Z, and it is W and X that are distinguished37
by name. In this order it is possible to write BAD4(1.0,2,Y=3.0,Z=4), which is a valid reference for both38
S4A and S4B.39

19 Rule (1) can be used to distinguish some cases that are not covered by rule (4):40

INTERFACE GOOD541
SUBROUTINE S5A(X)42

REAL :: X43
END SUBROUTINE S5A44
SUBROUTINE S5B(Y,X)45

REAL :: Y,X46
END SUBROUTINE S5B47

END INTERFACE GOOD548

J3/25‑007 647

J3/25‑007 WD 1539‑1 2024‑12‑29

20 In attempting to apply rule (4), position 2 and name Y are distinguished, but they are in the wrong order,1
just like the BAD4 example. However, when we try to construct a similarly ambiguous reference, we get2
GOOD5(1.0,X=2.0), which can’t be a reference to S5A because it would be attempting to associate two dif‑3
ferent actual arguments with the dummy argument X. Rule (1) catches this case by recognizing that S5B4
requires two real arguments, and S5A cannot possibly accept more than one.5

21 The application of rule (1) becomes more complicated when extensible types are involved. If FRUIT is an6
extensible type, PEAR and APPLE are extensions of FRUIT, and BOSC is an extension of PEAR, then7

INTERFACE BAD6 ! this interface is invalid !8
SUBROUTINE S6A(X,Y)9

CLASS(PEAR) :: X,Y10
END SUBROUTINE S6A11
SUBROUTINE S6B(X,Y)12

CLASS(FRUIT) :: X13
CLASS(BOSC) :: Y14

END SUBROUTINE S6B15
END INTERFACE BAD616

might, at ϐirst glance, seem distinguishable this way, but because of the limited type mismatching allowed,17
BAD6(A_PEAR,A_BOSC) is a valid reference to both S6A and S6B.18

22 It is important to try rule (1) for each type that appears:19

INTERFACE GOOD720
SUBROUTINE S7A(X,Y,Z)21

CLASS(PEAR) :: X,Y,Z22
END SUBROUTINE S7A23
SUBROUTINE S7B(X,Z,W)24

CLASS(FRUIT) :: X25
CLASS(BOSC) :: Z26
CLASS(APPLE),OPTIONAL :: W27

END SUBROUTINE S7B28
END INTERFACE GOOD729

23 Looking at the most general type, S7A has a minimum and maximum of 3 FRUIT arguments, while S7B has30
a minimum of 2 and a maximum of three. Looking at the most speciϐic, S7A has a minimum of 0 and a31
maximum of 3 BOSC arguments, while S7B has a minimum of 1 and a maximum of 2. However, when we32
look at the intermediate, S7A has aminimum andmaximum of 3 PEAR arguments, while S7B has aminimum33
of 1 and a maximum of 2. Because S7A’s minimum exceeds S7B’s maximum, they can be distinguished.34

24 In identifying the minimum number of arguments with a particular set of properties, we exclude optional35
arguments and test TKR compatibility, so the corresponding actual arguments are required to have those36
properties. In identifying the maximum number of arguments with those properties, we include the op‑37
tional arguments and test not distinguishable, so we include actual arguments which could have those38
properties but are not required to have them.39

25 These rules are sufϐicient to ensure that references to procedures that meet them are unambiguous, but40
there remain examples that fail to meet these rules but which can be shown to be unambiguous:41

INTERFACE BAD8 ! this interface is invalid !42
! despite the fact that it is unambiguous !43
SUBROUTINE S8A(X,Y,Z)44

REAL,OPTIONAL :: X45
INTEGER :: Y46
REAL :: Z47

END SUBROUTINE S8A48

648 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

SUBROUTINE S8B(X,Z,Y)1
INTEGER,OPTIONAL :: X2
INTEGER :: Z3
REAL :: Y4

END SUBROUTINE S8B5
END INTERFACE BAD86

26 This interface fails rule (4) because there are no required arguments that can be distinguished from the7
positionally corresponding argument, but in order for the mismatch of the optional arguments not to be8
relevant, the later arguments need to be speciϐied as keyword arguments, so distinguishing by name does9
the trick. This interface is nevertheless invalid so a standard‑conforming Fortran processor is not required10
to do such reasoning. The rules to cover all cases are too complicated to be useful.11

27 If one dummy argument has the POINTER attribute and a corresponding argument in the other interface12
body has the ALLOCATABLE attribute the generic interface is not ambiguous. If one dummy argument has13
either the POINTER or ALLOCATABLE attribute and a corresponding argument in the other interface body14
has neither attribute, the generic interface might be ambiguous.15

C.12 Clause 16 notes16

C.12.1 Atomic memory consistency17

C.12.1.1 Relaxed memory model18

1 Parallel programs sometimes have apparently impossible behavior because data transfers and other mes‑19
sages can be delayed, reordered and even repeated, by hardware, communication software, and caching20
and other forms of optimization. Requiring processors to deliver globally consistent behavior is incompat‑21
iblewith performance onmany systems. This document speciϐies that all ordered actionswill be consistent22
(5.3.5 and 11.7), but all consistency between unordered segments is deliberately left processor dependent.23
Depending on the hardware, this can be observed even when only two images and one mechanism are in‑24
volved.25

C.12.1.2 Examples with atomic operations26

1 When variables are being referenced (atomically) from segments that are unordered with respect to the27
segment that is atomically deϐining or redeϐining the variables, the results are processor dependent. This28
supports use of so‑called “relaxedmemorymodel” architectures, which can enablemore efϐicient execution29
on some hardware implementations.30

2 The following examples assume these declarations:31

MODULE EXAMPLE32
USE,INTRINSIC :: ISO_FORTRAN_ENV33
INTEGER(ATOMIC_INT_KIND) :: X [*] = 0, Y [*] = 0, TMP34

3 Example 135
With X [j] and Y [j] still in their initial state (both zero), image j executes the following sequence of state‑36
ments:37

CALL ATOMIC_DEFINE (X, 1)38
CALL ATOMIC_DEFINE (Y, 1)39

J3/25‑007 649

J3/25‑007 WD 1539‑1 2024‑12‑29

and a different image, k, executes the following sequence of statements:1

DO2
CALL ATOMIC_REF (TMP, Y [j])3
IF (TMP==1) EXIT4

END DO5
CALL ATOMIC_REF (TMP, X [j])6
PRINT *, TMP7

4 The ϐinal value of TMP on image k could be either 0 or 1. That is, even though image j thinks that it deϐined8
X [j] before it deϐined Y [j], this ordering is not guaranteed to be observed on image k. There are many9
aspects of hardware and software implementation that can cause this effect, but conceptually this example10
can be thought of as the change in the value of Y propagating faster through the inter‑image connections11
than the change in the value of X.12

5 Even if image j executed the sequence13

CALL ATOMIC_DEFINE (X, 1)14
SYNC MEMORY15
CALL ATOMIC_DEFINE (Y, 1)16

the same effect could be seen. That is because even though X and Y are deϐined in ordered segments, the17
references from image k are both from a segment that is unordered with respect to image j.18

6 Only if the reference on image k to Y [j] is in a segment that is ordered after the segment on image j that19
deϐined Y, will TMP be guaranteed to have the value 1.20

7 Example 2:21
With the initial state of X and Y on image j (i.e. X [j] and Y [j]) still being zero, execution of22

CALL ATOMIC_REF (TMP, X [j])23
CALL ATOMIC_DEFINE (Y [j], 1)24
PRINT *, TMP25

on image k1, and execution of26

CALL ATOMIC_REF (TMP, Y [j])27
CALL ATOMIC_DEFINE (X [j], 1)28
PRINT *, TMP29

on image k2, in unordered segments, might print the value 1 both times.30

8 This can happen by such mechanisms as “load buffering”; one might imagine that what is happening is31
that the deϐinitions (ATOMIC_DEFINE) are overtaking the references (ATOMIC_REF). On some processors32
it is possible that insertion of SYNC MEMORY statements between the calls to ATOMIC_REF and ATOMIC_‑33
DEFINEmight be sufϐicient tomake the output print the value 1 atmost one time (or even exactly one time),34
but this is still processor dependent unless the SYNC MEMORY statement executions cause the relevant35
segments on images k1 and k2 to be ordered.36

9 Example 3:37
Because there are no segment boundaries implied by collective subroutines, with the initial state as before,38
execution of39

IF (THIS_IMAGE ()==1) THEN40
CALL ATOMIC_DEFINE (X [3], 23)41

650 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

Y = 421
END IF2
CALL CO_BROADCAST (Y, 1)3
IF (THIS_IMAGE ()==2) THEN4
CALL ATOMIC_REF (TMP, X [3])5
PRINT *, Y, TMP6

END IF7

could print the values 42 and 0.8

10 Example 4:9
Assuming the declarations10

INTEGER (ATOMIC_INT_KIND) :: X [*] = 0, Z = 011

the statements12

CALL ATOMIC_ADD (X [1], 1) ! (A)13
IF (THIS_IMAGE() == 2) THEN14
wait: DO15

CALL ATOMIC_REF (Z, X [1]) ! (B)16
IF (Z == NUM_IMAGES ()) EXIT wait17

END DO wait ! (C)18
END IF19

will execute the “wait” loop on image 2 until all images have completed statement (A). The updates of X20
[1] are performed by each image in the same manner, but in an arbitrary order. Because the result from21
the complete set of updates will eventually become visible by execution of statement (B) for some loop22
iteration on image 2, the termination condition is guaranteed to be eventually fulϐilled, provided that no23
image failure occurs, every image executes the above code, and no other code is executed in an unordered24
segment that performs an update to X [1]. Furthermore, if two SYNC MEMORY statements are inserted25
in the above code before statement (A) and after statement (C), respectively, the segment started by the26
second SYNCMEMORY on image 2 is ordered after the segments on all images that end with the ϐirst SYNC27
MEMORY.28

C.12.2 EVENT_QUERY example29

1 The following example illustrates the use of events via a program inwhich image one acts as the controlling30
image, distributing work items to the other images. Only one work item at a time can be active on a worker31
image, and each deals with the result (e.g. via input/output) without directly feeding data back to the32
controlling image.33

2 Because the work items are not expected to be balanced, the controlling image keeps cycling through the34
other images to ϐind one that is waiting for work.35

3 An event is posted by each worker to indicate that it has completed its work item. Since the corresponding36
variables are needed only on the controlling image, we place them in an allocatable array component of a37
coarray. An event on each worker is needed for the controlling image to post the fact that it has made a38
work item available for it.39

Example code:40

PROGRAM work_share41
USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY: EVENT_TYPE42
USE :: mod_work, ONLY: & ! Module that creates work items43

J3/25‑007 651

J3/25‑007 WD 1539‑1 2024‑12‑29

work, & ! Type for holding a work item1
create_work_item, & ! Function that creates work item2
process_item, & ! Function that processes an item3
work_done ! Logical function that returns true4

! if all work has been done.5
6

TYPE :: worker_type7
TYPE (EVENT_TYPE), ALLOCATABLE :: free (:)8

END TYPE9
TYPE (EVENT_TYPE) :: submit [*] ! Post when work ready for a worker10
TYPE (worker_type) :: worker [*] ! Post when worker is free11
TYPE (work) :: work_item [*] ! Holds the data for a work item12
INTEGER :: count, i, nbusy [*]13

14
IF (THIS_IMAGE ()==1) THEN15

! Get started16
ALLOCATE (worker%free (2:NUM_IMAGES ()))17
nbusy = 0 ! This holds the number of workers working18
DO i = 2, NUM_IMAGES () ! Start the workers working19

IF (work_done ()) EXIT20
nbusy = nbusy + 121
work_item [i] = create_work_item ()22
EVENT POST (submit [i])23

END DO24
! Main work distribution loop25

main: DO26
image: DO i = 2, NUM_IMAGES ()27

CALL EVENT_QUERY (worker%free (i), count)28
IF (count==0) CYCLE image ! Worker is not free29
EVENT WAIT (worker%free (i))30
nbusy = nbusy - 131
IF (work_done ()) CYCLE32
nbusy = nbusy + 133
work_item [i] = create_work_item ()34
EVENT POST (submit [i])35

END DO image36
IF (nbusy==0) THEN37

! All done. Exit on all images.38
DO i = 2, NUM_IMAGES ()39

EVENT POST (submit [i])40
END DO41
EXIT main42

END IF43
END DO main44

ELSE45
! Work processing loop46

worker: DO47
EVENT WAIT (submit)48
IF (nbusy[1] == 0) EXIT49
CALL process_item (work_item)50
EVENT POST (worker [1]%free (THIS_IMAGE ()))51

END DO worker52
END IF53

END PROGRAM work_share54

C.12.3 Collective subroutine examples55

1 The following example computes a dot product of two scalar coarrays using CO_SUM to store the result in56
a noncoarray scalar variable.57

SUBROUTINE codot (x, y, x_dot_y)58

652 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

REAL :: x [*], y [*], x_dot_y1
x_dot_y = x*y2
CALL CO_SUM (x_dot_y)3

END SUBROUTINE codot4

2 The function below demonstrates passing a noncoarray dummy argument to CO_MAX. The function uses5
CO_MAX to ϐind the maximum value of the dummy argument across all images. Then the function ϐlags all6
images that hold values matching the maximum. The function then returns the maximum image index for7
an image that holds the maximum value.8

FUNCTION find_max (j) RESULT (j_max_location)9
INTEGER, INTENT (IN) :: j10
INTEGER j_max, j_max_location11
j_max = j12
CALL CO_MAX (j_max)13
! Flag images that hold the maximum j.14
IF (j==j_max) THEN15

j_max_location = THIS_IMAGE ()16
ELSE17

j_max_location = 018
END IF19
! Return highest image index associated with a maximal j.20
CALL CO_MAX(j_max_location)21

END FUNCTION find_max22

C.13 Clause 18 notes23

C.13.1 Runtime environments (18.1)24

1 This document allows programs to contain procedures deϐined by means other than Fortran. That raises25
the issues of initialization of and interaction between the runtime environments involved.26

2 Implementations are free to solve these issues as they see ϐit, provided that27

• heap allocation/deallocation (e.g., (DE)ALLOCATE in a Fortran subprogram and malloc/free in a C28
function) can be performed without interference,29

• input/output to and from external ϐiles can be performedwithout interference, as long as procedures30
deϐined by different means do not do input/output with the same external ϐile,31

• input/output preconnections exist as required by the respective standards, and32
• initialized data are initialized according to the respective standards.33

C.13.2 Example of Fortran calling C (18.3)34

C Function Prototype:35

int C_Library_Function(void* sendbuf, int sendcount, int *recvcounts);36

Fortran Module:37

MODULE CLIBFUN_INTERFACE38
INTERFACE39

INTEGER (C_INT) FUNCTION C_LIBRARY_FUNCTION (SENDBUF, SENDCOUNT, RECVCOUNTS) &40
BIND(C, NAME='C_Library_Function')41

J3/25‑007 653

J3/25‑007 WD 1539‑1 2024‑12‑29

USE, INTRINSIC :: ISO_C_BINDING1
IMPLICIT NONE2
TYPE (C_PTR), VALUE :: SENDBUF3
INTEGER (C_INT), VALUE :: SENDCOUNT4
INTEGER (C_INT) :: RECVCOUNTS(*)5

END FUNCTION C_LIBRARY_FUNCTION6
END INTERFACE7

END MODULE CLIBFUN_INTERFACE8

1 The module CLIBFUN_INTERFACE contains the declaration of the Fortran dummy arguments, which cor‑9
respond to the C formal parameters. The NAME= is used in the BIND attribute in order to handle the case‑10
sensitive name change between Fortran and C from “c_library_function” to “C_Library_Function”.11

2 The ϐirst C formal parameter is the pointer to void sendbuf, which corresponds to the Fortran dummy ar‑12
gument SENDBUF, which has the type C_PTR and the VALUE attribute.13

3 The second C formal parameter is the int sendcount, which corresponds to the Fortran dummy argument14
SENDCOUNT, which has the type INTEGER (C_INT) and the VALUE attribute.15

4 The third C formal parameter is the pointer to int recvcounts, which corresponds to the Fortran dummy16
argument RECVCOUNTS, which is an assumed‑size array of type INTEGER (C_INT).17

5 This example shows how C_Library_Functionmight be referenced in a Fortran program unit:18

USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_INT, C_FLOAT, C_LOC19
USE CLIBFUN_INTERFACE20
…21
REAL (C_FLOAT), TARGET :: SEND(100)22
INTEGER (C_INT) :: SENDCOUNT, RET23
INTEGER (C_INT), ALLOCATABLE :: RECVCOUNTS(:)24
…25
ALLOCATE(RECVCOUNTS(100))26
…27
RET = C_LIBRARY_FUNCTION(C_LOC(SEND), SENDCOUNT, RECVCOUNTS)28
…29

6 The ϐirst Fortran actual argument is a reference to the function C_LOC which returns the value of the C30
address of its argument, SEND. This value becomes the value of the ϐirst formal parameter, the pointer31
sendbuf, in C_Library_Function.32

7 The second Fortran actual argument is SENDCOUNT of type INTEGER (C_INT). Its value becomes the initial33
value of the second formal parameter, the int sendcount, in C_Library_Function.34

8 The third Fortran actual argument is the allocatable array RECVCOUNTS of type INTEGER (C_INT). The35
base C address of this array becomes the value of the third formal parameter, the pointer recvcounts, in36
C_Library_Function. Note that interoperability is based on the characteristics of the dummy arguments in37
the speciϐied interface and not on those of the actual arguments. Thus, the fact that the actual argument is38
allocatable is not relevant here.39

C.13.3 Example of C calling Fortran (18.3)40

Fortran Code:41

SUBROUTINE SIMULATION(ALPHA, BETA, GAMMA, DELTA, ARRAYS) BIND(C)42
USE, INTRINSIC :: ISO_C_BINDING43

654 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

IMPLICIT NONE1
INTEGER (C_LONG), VALUE :: ALPHA2
REAL (C_DOUBLE), INTENT(INOUT) :: BETA3
INTEGER (C_LONG), INTENT(OUT) :: GAMMA4
REAL (C_DOUBLE),DIMENSION(*),INTENT(IN) :: DELTA5
TYPE, BIND(C) :: PASS6

INTEGER (C_INT) :: LENC, LENF7
TYPE (C_PTR) :: C, F8

END TYPE PASS9
TYPE (PASS), INTENT(INOUT) :: ARRAYS10
REAL (C_FLOAT), ALLOCATABLE, TARGET, SAVE :: ETA(:)11
REAL (C_FLOAT), POINTER :: C_ARRAY(:)12
…13
! Associate C_ARRAY with an array allocated in C14
CALL C_F_POINTER (ARRAYS%C, C_ARRAY, [ARRAYS%LENC])15
…16
! Allocate an array and make it available in C17
ARRAYS%LENF = 10018
ALLOCATE (ETA(ARRAYS%LENF))19
ARRAYS%F = C_LOC(ETA)20
…21

END SUBROUTINE SIMULATION22

C Structure Declaration:23

struct pass {24
int lenc, lenf;25
float *c, *f;26

};27

C Function Prototype:28

void simulation(long alpha, double *beta, long *gamma, double delta[],29
struct pass *arrays);30

C Calling Sequence:31

simulation(alpha, beta, gamma, delta, arrays);32

1 The above‑listed Fortran code speciϐies a subroutine SIMULATION. This subroutine corresponds to the C33
void function simulation.34

2 The Fortran subroutine references the intrinsic module ISO_C_BINDING.35

3 The ϐirst Fortran dummy argument of the subroutine is ALPHA, which has the type INTEGER(C_LONG) and36
the VALUE attribute. This dummy argument corresponds to the C formal parameter alpha, which is a long.37
The C actual argument is also a long.38

4 The second Fortran dummy argument of the subroutine is BETA, which has the type REAL(C_DOUBLE) and39
the INTENT (INOUT) attribute. This dummy argument corresponds to the C formal parameter beta, which40
is a pointer to double. An address is passed as the C actual argument.41

5 The third Fortran dummy argument of the subroutine is GAMMA, which has the type INTEGER(C_LONG)42
and the INTENT (OUT) attribute. This dummy argument corresponds to the C formal parameter gamma,43
which is a pointer to long. An address is passed as the C actual argument.44

J3/25‑007 655

J3/25‑007 WD 1539‑1 2024‑12‑29

6 The fourth Fortran dummy argument is the assumed‑size array DELTA of type REAL (C_DOUBLE), which1
has the INTENT (IN) attribute. This dummy argument corresponds to the C formal parameter delta, which2
is a double array. The C actual argument is also a double array.3

7 The ϐifth Fortran dummy argument is ARRAYS, which is a structure for accessing an array allocated in C4
and an array allocated in Fortran. The lengths of these arrays are held in the components LENC and LENF;5
their C addresses are held in components C and F.6

C.13.4 Example of calling C functions with noninteroperable data (18.10)7

1 Many Fortran processors support 16‑byte real numbers, which might not be supported by the C processor.8
Assume a Fortran programmer wants to use a C procedure from a message passing library for an array of9
these reals. The C prototype of this procedure is10

void ProcessBuffer(void *buffer, int n_bytes);11

with the corresponding Fortran interface12

USE, INTRINSIC :: ISO_C_BINDING13
INTERFACE14

SUBROUTINE PROCESS_BUFFER(BUFFER,N_BYTES) BIND(C,NAME="ProcessBuffer")15
IMPORT :: C_PTR, C_INT16
TYPE(C_PTR), VALUE :: BUFFER ! The ``C address'' of the array buffer17
INTEGER (C_INT), VALUE :: N_BYTES ! Number of bytes in buffer18

END SUBROUTINE PROCESS_BUFFER19
END INTERFACE20

2 This can be done using C_LOC if the particular Fortran processor speciϐies that C_LOC returns an appropri‑21
ate address:22

REAL(R_QUAD), DIMENSION(:), ALLOCATABLE, TARGET :: QUAD_ARRAY23
…24
CALL PROCESS_BUFFER(C_LOC(QUAD_ARRAY), INT(16*SIZE(QUAD_ARRAY),C_INT))25
! One quad real takes 16 bytes on this processor26

C.13.5 Example of opaque communication between C and Fortran (18.3)27

1 The following example demonstrates how a Fortran processor canmake amodern object‑oriented random28
number generator written in Fortran available to a C program.29

USE, INTRINSIC :: ISO_C_BINDING30
! Assume this code is inside a module31

32
TYPE RANDOM_STREAM33

! A (uniform) random number generator (URNG)34
CONTAINS35

PROCEDURE(RANDOM_UNIFORM), DEFERRED, PASS(STREAM) :: NEXT36
! Generates the next number from the stream37

END TYPE RANDOM_STREAM38
39

ABSTRACT INTERFACE40
! Abstract interface of Fortran URNG41
SUBROUTINE RANDOM_UNIFORM(STREAM, NUMBER)42

IMPORT :: RANDOM_STREAM, C_DOUBLE43
CLASS(RANDOM_STREAM), INTENT(INOUT) :: STREAM44
REAL(C_DOUBLE), INTENT(OUT) :: NUMBER45

END SUBROUTINE RANDOM_UNIFORM46
END INTERFACE47

656 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

2 A polymorphic object with declared type RANDOM_STREAM is not interoperable with C. However, we can1
make such a randomnumber generator available to C by packaging it inside another nonpolymorphic, non‑2
parameterized derived type:3

TYPE :: URNG_STATE ! No BIND(C), as this type is not interoperable4
CLASS(RANDOM_STREAM), ALLOCATABLE :: STREAM5

END TYPE URNG_STATE6

3 The following two procedures will enable a C program to use our Fortran uniform random number gener‑7
ator:8

! Initialize a uniform random number generator:9
SUBROUTINE INITIALIZE_URNG(STATE_HANDLE, METHOD) &10

BIND(C, NAME="InitializeURNG")11
TYPE(C_PTR), INTENT(OUT) :: STATE_HANDLE12

! An opaque handle for the URNG13
CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: METHOD14

! The algorithm to be used15
16

TYPE(URNG_STATE), POINTER :: STATE17
! An actual URNG object18

19
ALLOCATE(STATE)20

! There needs to be a corresponding finalization21
! procedure to avoid memory leaks, not shown in this example22

! Allocate STATE%STREAM with a dynamic type depending on METHOD23
…24
STATE_HANDLE=C_LOC(STATE)25

! Obtain an opaque handle to return to C26
END SUBROUTINE INITIALIZE_URNG27

28
! Generate a random number:29
SUBROUTINE GENERATE_UNIFORM(STATE_HANDLE, NUMBER) &30

BIND(C, NAME="GenerateUniform")31
TYPE(C_PTR), INTENT(IN), VALUE :: STATE_HANDLE32

! An opaque handle: Obtained via a call to INITIALIZE_URNG33
REAL(C_DOUBLE), INTENT(OUT) :: NUMBER34

35
TYPE(URNG_STATE), POINTER :: STATE36

! A pointer to the actual URNG37
38

CALL C_F_POINTER(CPTR=STATE_HANDLE, FPTR=STATE)39
! Convert the opaque handle into a usable pointer40

CALL STATE%STREAM%NEXT(NUMBER)41
! Use the type-bound procedure NEXT to generate NUMBER42

END SUBROUTINE GENERATE_UNIFORM43

C.13.6 Using assumed type to interoperate with C44

C.13.6.1 Overview45

1 The mechanism for handling unlimited polymorphic entities whose dynamic type is interoperable with C46
is designed to handle the following two situations:47

(1) A formal parameter that is a C pointer to void. This is an address, and no further information48
about the entity is provided. The formal parameter corresponds to a dummy argument that is49
a nonallocatable nonpointer scalar or is an assumed‑size array.50

J3/25‑007 657

J3/25‑007 WD 1539‑1 2024‑12‑29

(2) A formal parameter that is the address of a C descriptor. Additional information on the status,1
type, size, and shape is implicitly provided. The formal parameter corresponds to a dummy2
argument that is assumed‑shape or assumed‑rank.3

2 In the ϐirst situation, it is the programmer’s responsibility to explicitly provide any information needed on4
the status, type, size, and shape of the entity.5

C.13.6.2 Mapping of interfaces with void * C parameters to Fortran6

1 A C interface for message passing or input/output functionality could be provided in the form7

int EXAMPLE_send(const void *buffer, size_t buffer_size, const HANDLE_t *handle);8

where the buffer_size argument is given in units of bytes, and the handle argument (which is of a type9
aliased to int) provides information about the target the buffer is to be transferred to. In this example, type10
resolution is not required.11

2 The ϐirst method provides a thin binding; a call to EXAMPLE_send from Fortran directly invokes the C func‑12
tion.13

INTERFACE14
INTEGER (C_INT) FUNCTION example_send(buffer, buffer_size, handle) &15
BIND(C, NAME='EXAMPLE_send')16

USE, INTRINSIC :: ISO_C_BINDING17
TYPE(*), INTENT (IN) :: buffer(*)18
INTEGER (C_SIZE_T), VALUE :: buffer_size19
INTEGER (C_INT), INTENT (IN) :: handle20

END FUNCTION21
END INTERFACE22

3 It is assumed that this interface is declared in the speciϐication part of themoduleMOD_EXAMPLE_OLD. An23
example of its use follows:24

USE, INTRINSIC :: ISO_C_BINDING25
USE MOD_EXAMPLE_OLD26

27
REAL(C_FLOAT) :: x(100)28
INTEGER(C_INT) :: y(10,10)29
REAL(C_DOUBLE) :: z30
INTEGER(C_INT) :: status, handle31
…32
! Assign values to x, y, z and initialize handle.33
…34
! Send values in x, y, and z using EXAMPLE_send.35
status = example_send(x, C_SIZEOF(x), handle)36
status = example_send(y, C_SIZEOF(y), handle)37
status = example_send([z], C_SIZEOF(z), handle)38

4 In those invocations, x and y are passed directly with sequence association, but it is necessary to make an39
array expression containing the value of z to pass it.40

5 The second method provides a Fortran interface which is easier to use, but requires writing a separate C41
wrapper routine. With this method, a C descriptor is created because the buffer is assumed‑rank in the42
Fortran interface; the use of an optional argument is also demonstrated.43

658 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

INTERFACE1
SUBROUTINE example_send(buffer, handle, status) BIND(C, NAME="EG_send_fortran")2

USE, INTRINSIC :: ISO_C_BINDING3
TYPE(*), CONTIGUOUS, INTENT (IN) :: buffer(..)4
INTEGER (C_INT), INTENT (IN) :: handle5
INTEGER (C_INT), INTENT(OUT), OPTIONAL :: status6

END SUBROUTINE7
END INTERFACE8

6 It is assumed that this interface is declared in the speciϐication part of a module MOD_EXAMPLE_NEW.9
Example invocations from Fortran are then10

USE, INTRINSIC :: iso_c_binding11
USE mod_example_new12

13
TYPE, BIND(C) :: my_derived14

INTEGER(C_INT) :: len_used15
REAL(C_FLOAT) :: stuff(100)16

END TYPE17
TYPE(my_derived) :: w(3)18
REAL(C_FLOAT) :: x(100)19
INTEGER(C_INT) :: y(10,10)20
REAL(C_DOUBLE) :: z21
INTEGER(C_INT) :: status, handle22
…23
! Assign values to w, x, y, z and initialize handle.24
…25
! Send values in w, x, y, and z using example_send.26
CALL example_send(w, handle, status)27
CALL example_send(x, handle)28
CALL example_send(y, handle)29
CALL example_send(z, handle)30
CALL example_send(y(:,5), handle) ! Fifth column of y.31
CALL example_send(y(1,5), handle) ! Scalar y(1,5) passed by descriptor.32

7 The wrapper routine can be written in C as follows.33

#include "ISO_Fortran_binding.h"34
35

void EG_send_fortran(const CFI_cdesc_t *buffer, const HANDLE_t *handle,int *status)36
{37
int status_local;38
size_t buffer_size;39
int i;40

41
buffer_size = buffer->elem_len;42
for (i=0; i<buffer->rank; i++) {43

buffer_size *= buffer->dim[i].extent;44
}45
status_local = EXAMPLE_send(buffer->base_addr,buffer_size, handle);46
if (status != NULL) *status = status_local;47

}48

C.13.7 Using assumed‑type variables in Fortran49

1 An assumed‑type dummy argument in a Fortran procedure can be used as an actual argument correspond‑50
ing to an assumed‑type dummy in a call to another procedure. In the following example, the Fortran sub‑51
routine SIMPLE_SEND serves as a wrapper to hide the complications associated with calls to a C function52

J3/25‑007 659

J3/25‑007 WD 1539‑1 2024‑12‑29

named ACTUAL_Send. Module COMM_INFO contains node and address information for the current data1
transfer operations.2

SUBROUTINE SIMPLE_SEND(buffer, nbytes)3
USE comm_info, ONLY: my_node, r_node, r_addr4
USE, INTRINSIC :: ISO_C_BINDING5
IMPLICIT NONE6

7
TYPE(*), INTENT (IN) :: buffer(*)8
INTEGER :: nbytes, ierr9

10
INTERFACE11

SUBROUTINE actual_Send(buffer, nbytes, node, addr, ierr) &12
BIND(C, NAME="ACTUAL_Send")13

IMPORT :: C_SIZE_T, C_INT, C_INTPTR_T14
TYPE(*), INTENT (IN) :: buffer(*)15
INTEGER(C_SIZE_T), VALUE :: nbytes16
INTEGER(C_INT), VALUE :: node17
INTEGER(C_INTPTR_T), VALUE :: addr18
INTEGER(C_INT), INTENT(OUT) :: ierr19

END SUBROUTINE actual_Send20
END INTERFACE21

22
CALL actual_Send(buffer, INT(nbytes, C_SIZE_T), r_node, r_addr, ierr)23

24
IF (ierr /= 0) THEN25

PRINT *, "Error sending from node", my_node, "to node", r_node26
PRINT *, "Program Aborting" ! Or call a recovery procedure27
ERROR STOP ! Omit in the recovery case28

END IF29
END SUBROUTINE simple_Send30

C.13.8 Simplifying interfaces for arbitrary rank procedures31

1 There are situationswhere an assumed‑rank dummy argument can be useful in Fortran, although a Fortran32
procedure cannot itself access its value. For example, the IEEE inquiry functions in Clause 14 could be33
written using an assumed‑rank dummy argument instead of writing 16 separate speciϐic routines, one for34
each possible rank.35

2 In particular, the speciϐic procedures for the IEEE_SUPPORT_DIVIDE function could possibly be implemen‑36
ted in Fortran as follows:37

INTERFACE ieee_support_divide38
MODULE PROCEDURE ieee_support_divide_noarg, ieee_support_divide_onearg_r, &39

ieee_support_divide_onearg_d40
END INTERFACE ieee_support_divide41

42
…43

44
LOGICAL FUNCTION ieee_support_divide_noarg ()45

ieee_support_divide_noarg = .TRUE.46
END FUNCTION ieee_support_divide_noarg47

48
LOGICAL FUNCTION ieee_support_divide_onearg_r (x)49

REAL, INTENT (IN) :: x(..)50
ieee_support_divide_onearg_r4 = .TRUE.51

END FUNCTION ieee_support_divide_onearg_r52
53

LOGICAL FUNCTION ieee_support_divide_onearg_d (x)54

660 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

DOUBLE PRECISION, INTENT (IN) :: x(..)1
ieee_support_divide_onearg_r8 = .TRUE.2

END FUNCTION ieee_support_divide_onearg_d3

C.13.9 Processing assumed‑rank in C4

1 The example shown below calculates the product of individual elements of arrays B and C and returns the5
result in array A. The Fortran interface of elemental_mult will accept arguments of any type and rank.6
However, the C function will return an error code if any argument is not a two‑dimensional int array. Note7
that the arguments are permitted to be array sections, so the C function does not assume that any argument8
is contiguous.9

2 This demonstrates runtime error detection even though these speciϐic errors could have been detected at10
compile‑time, if the interface declared the arrays as “INTEGER (C_INT), DIMENSION (:, :)”.11

3 The Fortran interface is:12
INTERFACE13

FUNCTION elemental_mult(a, b, c) BIND(C, NAME="elemental_mult_c") RESULT(err)14
USE, INTRINSIC :: ISO_C_BINDING15
INTEGER(C_INT) :: err16
TYPE(*), DIMENSION(..) :: a, b, c17

END FUNCTION elemental_mult18
END INTERFACE19

4 The deϐinition of the C function is:20
#include "ISO_Fortran_binding.h"21

22
int elemental_mult_c(CFI_cdesc_t * a_desc, CFI_cdesc_t * b_desc, CFI_cdesc_t * c_desc)23
{24
size_t i, j, ni, nj;25
int err = 1; /* this error code represents all errors */26
char * a_col = (char*) a_desc->base_addr;27
char * b_col = (char*) b_desc->base_addr;28
char * c_col = (char*) c_desc->base_addr;29
char *a_elt, *b_elt, *c_elt;30

31
/* Only support int. */32
if (a_desc->type != CFI_type_int || b_desc->type != CFI_type_int ||33

c_desc->type != CFI_type_int) {34
return err;35

}36
/* Only support two dimensions. */37
if (a_desc->rank != 2 || b_desc->rank != 2 || c_desc->rank != 2) {38

return err;39
}40

41
ni = a_desc->dim[0].extent;42
nj = a_desc->dim[1].extent;43

44
/* Ensure the shapes conform. */45
if (ni != b_desc->dim[0].extent || ni != c_desc->dim[0].extent) return err;46
if (nj != b_desc->dim[1].extent || nj != c_desc->dim[1].extent) return err;47

48
/* Multiply the elements of the two arrays. */49
for (j = 0; j < nj; j++) {50

a_elt = a_col;51
b_elt = b_col;52

J3/25‑007 661

J3/25‑007 WD 1539‑1 2024‑12‑29

c_elt = c_col;1
for (i = 0; i < ni; i++) {2

(int)a_elt = *(int*)b_elt * *(int*)c_elt;3
a_elt += a_desc->dim[0].sm;4
b_elt += b_desc->dim[0].sm;5
c_elt += c_desc->dim[0].sm;6

}7
a_col += a_desc->dim[1].sm;8
b_col += b_desc->dim[1].sm;9
c_col += c_desc->dim[1].sm;10

}11
return 0;12

}13

C.13.10 Creating a contiguous copy of an array14

1 A C function might need to create a contiguous copy of an array section, for example, to pass the array sec‑15
tion as an actual argument corresponding to a dummy argument with the CONTIGUOUS attribute. The fol‑16
lowing example provides functions that can be used to copy an array described by a CFI_cdesc_t descriptor17
to a contiguous buffer. The input array need not be contiguous.18

2 The C functions are:19

#include "ISO_Fortran_binding.h"20
/* Other necessary includes omitted. */21

22
/*23
* Returns the number of elements in the object described by desc.24
* If it is an array, it need not be contiguous.25
* (The number of elements could be zero).26
*/27
size_t numElements(const CFI_cdesc_t * desc)28
{29

CFI_rank_t r;30
size_t num = 1;31

32
for (r = 0; r < desc->rank; r++) {33

num *= desc->dim[r].extent;34
}35
return num;36

}37
38

/*39
* Auxiliary recursive function to copy an array of a given rank.40
* Recursion is useful because an array of rank n is composed of an41
* ordered set of arrays of rank n-1.42
*/43
static void *_copyToContiguous (const CFI_cdesc_t *vald, void *output,44

const void *input, CFI_rank_t rank)45
{46

CFI_index_t e;47
48

if (rank == 0) {49
/* Copy scalar element. */50
memcpy (output, input, vald->elem_len);51
output = (void *)((char *)output + vald->elem_len);52

}53
else {54

for (e = 0; e < vald->dim[rank-1].extent; e++) {55
/* Recurse on subarrays of lesser rank. */56

662 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

output = _copyToContiguous (vald, output, input, rank-1);1
input = (void *) ((char *)input + vald->dim[rank].sm);2

}3
}4
return output;5

}6
7

/*8
* General routine to copy the elements in the array described by vald9
* to buffer, as done by sequence association. The array itself can10
* be non-contiguous. This is not the most efficient approach.11
*/12
void copyToContiguous (void * buffer, const CFI_cdesc_t * vald) {13

_copyToContiguous (vald, buffer, vald->base_addr, vald->rank);14
}15

C.13.11 Changing the attributes of an array16

1 ACprogrammermightwant to callmore than one Fortran procedure and the attributes of an array involved17
might differ between the procedures. In this case, it is necessary to set up more than one C descriptor for18
the array. For example, this code fragment initializes the ϐirst C descriptor for an allocatable entity of rank19
2, calls a procedure that allocates the array described by the ϐirst C descriptor, constructs the second C20
descriptor by invoking CFI_establish with the value CFI_attribute_other for the attribute parameter, then21
calls a procedure that expects an assumed‑shape array.22

CFI_CDESC_T(2) loc_alloc, loc_assum;23
CFI_cdesc_t * desc_alloc = (CFI_cdesc_t *)&loc_alloc,24

* desc_assum = (CFI_cdesc_t *)&loc_assum;25
CFI_index_t extents[2];26
CFI_rank_t rank = 2;27
int flag;28

29
flag = CFI_establish(desc_alloc,30

NULL,31
CFI_attribute_allocatable,32
CFI_type_double,33
sizeof(double),34
rank,35
NULL);36

37
Fortran_factor (desc_alloc, …); /* Allocates array described by desc_alloc. */38

39
/* Extract extents from descriptor. */40
extents[0] = desc_alloc->dim[0].extent;41
extents[1] = desc_alloc->dim[1].extent;42

43
flag = CFI_establish(desc_assum,44

desc_alloc->base_addr,45
CFI_attribute_other,46
CFI_type_double,47
sizeof(double),48
rank,49
extents);50

51
Fortran_solve (desc_assum, …); /* Uses array allocated in Fortran_factor. */52

2 After invocation of the second CFI_establish, the lower bounds stored in the dim member of desc_assum53
will have the value zero even if the corresponding entries in desc_alloc have different values.54

J3/25‑007 663

J3/25‑007 WD 1539‑1 2024‑12‑29

C.13.12 Creating an array section in C using CFI_section1

1 The C function set_odd sets every second element of an array to a speciϐic value, beginning with the ϐirst2
element. It does this bymaking an array section descriptor for the elements to be set, and calling a Fortran3
subroutine SET_ALL that sets every element of an assumed‑shape array to a speciϐic value. An interface4
block for set_odd permits it to be also called from Fortran.5

SUBROUTINE set_all(int_array, val) BIND(C)6
INTEGER(C_INT) :: int_array(:)7
INTEGER(C_INT), VALUE :: val8
int_array = val9

END SUBROUTINE10
11

INTERFACE12
SUBROUTINE set_odd(int_array, val) BIND(C)13

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_INT14
INTEGER(C_INT) :: int_array(:)15
INTEGER(C_INT), VALUE :: val16

END SUBROUTINE17
END INTERFACE18

19
#include "ISO_Fortran_binding.h"20

21
void set_odd(CFI_cdesc_t *int_array, int val)22
{23

CFI_index_t lower_bound[1], upper_bound[1], stride[1];24
CFI_CDESC_T(1) array;25
int status;26
/* Create a new descriptor which will contain the section. */27
status = CFI_establish((CFI_cdesc_t *)&array,28

NULL,29
CFI_attribute_other,30
int_array->type,31
int_array->elem_len,32
/* rank */ 1,33
/* extents is ignored */NULL);34

35
lower_bound[0] = int_array->dim[0].lower_bound;36
upper_bound[0] = lower_bound[0] + (int_array->dim[0].extent - 1);37
stride[0] = 2;38

39
status = CFI_section((CFI_cdesc_t *)&array,40

int_array,41
lower_bound,42
upper_bound,43
stride);44

45
set_all((CFI_cdesc_t *) &array, val);46

47
/* Here one could make use of int_array and access all its data. */48

}49

2 The set_odd procedure can be called from Fortran as follows:50
INTEGER(C_INT) :: d(5)51
d = (/ 1, 2, 3, 4, 5 /)52
CALL set_odd(d, -1)53
PRINT *, d54

3 This program will print something like:55

664 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

-1 2 -1 4 -11

4 During execution of the subroutine SET_ALL, its dummy argument INT_ARRAYwould have size (and upper2
bound) 3.3

5 It is also possible to invoke set_odd() from C. However, it would be the C programmer’s responsibility to4
make sure that all members of the C descriptor have the correct value on entry to the function. Inserting5
additional checking into the function could alleviate this problem.6

6 Following is an example C function that dynamically generates a C descriptor for an assumed‑shape array7
and calls set_odd.8

#include <stdio.h>9
#include <stdlib.h>10
#include "ISO_Fortran_binding.h"11

12
#define ARRAY_SIZE 513

14
void example_of_calling_set_odd(void)15
{16
CFI_CDESC_T(1) d;17
CFI_index_t extent[1];18
CFI_index_t subscripts[1];19
void *base;20
int i, status;21
base = malloc(ARRAY_SIZE*sizeof(int));22
extent[0] = ARRAY_SIZE;23
status = CFI_establish((CFI_cdesc_t *)&d,24

base,25
CFI_attribute_other,26
CFI_type_int,27
/* element length is ignored */ 0,28
/* rank */ 1,29
extent);30

set_odd((CFI_cdesc_t *)&d, -1);31
for (i=0; i<ARRAY_SIZE; i++) {32

subscripts[0] = i;33
printf(" %d",*((int *)CFI_address((CFI_cdesc_t *)&d, subscripts)));34

}35
putc('\n', stdout);36
free(base);37

}38

The above C function will print similar output to that of the preceding Fortran program.39

C.13.13 Use of CFI_setpointer40

1 The C function change_targetmodiϐies a pointer to an integer variable to become associated with a global41
variable deϐined inside C:42

#include "ISO_Fortran_binding.h"43
44

int y = 2;45
46

void change_target(CFI_cdesc_t *ip) {47
CFI_CDESC_T(0) yp;48
int status;49
/* Make local yp point at y. */50
status = CFI_establish((CFI_cdesc_t *)&yp,51

J3/25‑007 665

J3/25‑007 WD 1539‑1 2024‑12‑29

&y,1
CFI_attribute_pointer,2
CFI_type_int,3
/* elem_len is ignored */ sizeof(int),4
/* rank */ 0,5
/* extents are ignored */ NULL);6

/* Pointer-associate ip with (the target of) yp. */7
status = CFI_setpointer(ip, (CFI_cdesc_t *)&yp, NULL);8
if (status != CFI_SUCCESS) {9

… Report run time error.10
}11

}12

2 The restrictions on the use of CFI_establish prohibit direct modiϐication of the incoming pointer entity ip13
by invoking that function on it.14

3 The following program illustrates the usage of change_target from Fortran.15

PROGRAM change_target_example16
USE, INTRINSIC :: ISO_C_BINDING17
INTERFACE18

SUBROUTINE change_target(ip) BIND(C)19
IMPORT :: C_INT20
INTEGER(C_INT), POINTER :: ip21

END SUBROUTINE22
END INTERFACE23
INTEGER(C_INT), TARGET :: it = 124
INTEGER(C_INT), POINTER :: it_ptr25
it_ptr => it26
WRITE (*,*) it_ptr27
CALL change_target(it_ptr)28
WRITE (*,*) it_ptr29

4 This will print something similar to30

131
232

C.13.14 Mapping of MPI interfaces to Fortran33

1 The Message Passing Interface (MPI) speciϐies procedures for exchanging data between MPI processes.34
This example shows the usage of MPI_Send and is similar to the second variant of EXAMPLE_Send in C.13.6.2.35
It also shows the usage of assumed‑length character dummy arguments and optional dummy arguments.36

2 MPI_Send has the C prototype:37

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag,38
MPI_Comm comm);39

where MPI_Datatype and MPI_Comm are opaque handles. Most MPI C functions return an error code, which40
in Fortran is the last dummy argument to the corresponding subroutine and can be made optional. Thus,41
the use of a Fortran subroutine requires a wrapper function, declared as42

void MPI_Send_f(CFI_cdesc_t *buf, int count, MPI_Datatype_f datatype, int dest,43
int tag, MPI_Datatype_f comm, int *ierror);44

3 This wrapper function will convert MPI_Datatype_f and MPI_Comm_f to MPI_Datatype and MPI_Comm, and45
produce a contiguous void * buffer from CFI_cdesc_t *buf (if necessary).46

666 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

4 Similarly, the wrapper function for MPI_Comm_set_name could have the C prototype:1

void MPI_Comm_set_name_f(MPI_Comm comm, CFI_cdesc_t *comm_name, int *ierror);2

5 The Fortran handle types and interfaces are deϐined in the module MPI_F08. For example,3

MODULE mpi_f084
…5
TYPE, BIND(C) :: mpi_comm6

PRIVATE7
INTEGER(C_INT) :: mpi_val8

END TYPE mpi_comm9
10

INTERFACE11
SUBROUTINE MPI_SEND(buf,count,datatype,dest,tag,comm,ierror) &12
BIND(C, NAME='MPI_Send_f')13

USE, INTRINSIC :: ISO_C_BINDING14
IMPORT :: MPI_Datatype, MPI_Comm15
TYPE(*), DIMENSION(..), INTENT (IN) :: buf16
INTEGER(C_INT), VALUE, INTENT (IN) :: count, dest, tag17
TYPE(mpi_datatype), INTENT (IN) :: datatype18
TYPE(mpi_comm), INTENT (IN) :: comm19
INTEGER(C_INT), OPTIONAL, INTENT (OUT) :: ierror20

END SUBROUTINE mpi_send21
22

SUBROUTINE mpi_comm_set_name(comm,comm_name,ierror) &23
BIND(C, NAME='MPI_Comm_set_name_f')24

USE, INTRINSIC :: ISO_C_BINDING25
IMPORT :: mpi_comm26
TYPE(mpi_comm), INTENT (IN) :: comm27
CHARACTER(KIND=C_CHAR, LEN=*), INTENT (IN) :: comm_name28
INTEGER(C_INT), OPTIONAL, INTENT (OUT) :: ierror29

END SUBROUTINE mpi_comm_set_name30
END INTERFACE31
…32

END MODULE mpi_f0833

6 Some examples of invocation from Fortran are:34

USE, INTRINSIC :: ISO_C_BINDING35
USE :: MPI_f0836

37
TYPE(mpi_comm) :: comm38
REAL :: x(100)39
INTEGER :: y(10,10)40
REAL(KIND(1.0d0)) :: z41
INTEGER :: dest, tag, ierror42
…43
! Assign values to x, y, z and initialize MPI variables.44
…45

46
! Set the name of the communicator.47
CALL mpi_comm_set_name(comm, "Communicator Name", ierror)48

49
! Send values in x, y, and z.50
CALL mpi_send(x, 100, MPI_REAL, dest, tag, comm, ierror)51
IF (ierror/=0) PRINT *, 'WARNING: X send error', ierror52
CALL mpi_send(y(3,:), 10, MPI_INTEGER, dest, tag, comm)53
CALL mpi_send(z, 1, MPI_DOUBLE_PRECISION, dest, tag, comm)54

J3/25‑007 667

J3/25‑007 WD 1539‑1 2024‑12‑29

7 The ϐirst example sends the entire array X and includes the optional error argument return value. The1
second example sends a noncontiguous subarray (the third row of Y) and the third example sends a scalar2
Z. Note the differences between the calls in this example and those in C.13.6.2.3

C.14 Clause 19 notes4

C.14.1 Examples of global identiϐiers and binding labels (19.2)5

Example 1:6

MODULE M17
INTERFACE8

SUBROUTINE S() BIND(C,NAME='X')9
END10

END INTERFACE11
END MODULE12
MODULE M213

INTERFACE14
SUBROUTINE S() BIND(C,NAME='Y')15
END16

END INTERFACE17
END MODULE18

1 The name S in each module is a local identiϐier. The two interfaces declare two different external proced‑19
ures, one with the global identiϐier “X”, the other with the global identiϐier “Y”.20

Example 2:21

MODULE M122
INTERFACE23

SUBROUTINE S1() BIND(C,NAME='X')24
END25

END INTERFACE26
END MODULE27
MODULE M228

INTERFACE29
SUBROUTINE S2() BIND(C,NAME='X')30
END31

END INTERFACE32
END MODULE33

2 The names S1 and S2 are local identiϐiers. The interfaces declare the same external procedure, which has34
the global identiϐier “X”.35

C.14.2 Examples of host association (19.5.1.4)36

1 The ϐirst two examples are examples of valid host association. The third example is an example of invalid37
host association.38

Example 1:39

PROGRAM A40
INTEGER I, J41
…42

668 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

CONTAINS1
SUBROUTINE B2

INTEGER I ! Declaration of I hides3
! program A's declaration of I4

…5
I = J ! Use of variable J from program A6

! through host association7
END SUBROUTINE B8

END PROGRAM A9

Example 2:10

PROGRAM A11
TYPE T12

…13
END TYPE T14
…15

CONTAINS16
SUBROUTINE B17

IMPLICIT TYPE (T) (C) ! Refers to type T declared below18
! in subroutine B, not type T19
! declared above in program A20

…21
TYPE T22

…23
END TYPE T24
…25

END SUBROUTINE B26
END PROGRAM A27

Example 3:28

PROGRAM Q29
REAL (KIND = 1) :: C30
…31

CONTAINS32
SUBROUTINE R33

REAL (KIND = KIND (C)) :: D ! Invalid declaration34
! See below35

REAL (KIND = 2) :: C36
…37

END SUBROUTINE R38
END PROGRAM Q39

2 In the declaration of D in subroutine R, the use of C would refer to the declaration of C in subroutine R, not40
program Q. However, it is invalid because the declaration of C is required to occur before it is used in the41
declaration of D (10.1.12).42

J3/25‑007 669

J3/25‑007 WD 1539‑1 2024‑12‑29

Index

In the index, entries in italics denote BNF terms, and page numbers in bold face denote primary text or
deϐinitions.

Symbols
−, 173
<, 177, 501
<=, 177
>, 177
>=, 177
*, 63, 66, 68, 69, 75, 115, 119, 130, 156, 173, 268,

299, 314, 320, 344, 365
**, 173
+, 173
.. assumed‑rank speciϐier, 120
.AND., 168, 169, 172, 176, 176, 390
.EQ., 167, 169, 172, 177, 177–179, 334, 501
.EQV., 168, 169, 172, 176, 176
.FALSE., 78, 537
.GE., 167, 169, 172, 177, 177, 179, 334, 501
.GT., 167, 169, 172, 177, 177, 179, 334, 501
.LE., 167, 169, 172, 177, 177, 179, 334, 501
.LT., 167, 169, 172, 177, 177, 179, 334, 501
.NE., 167, 169, 172, 177, 177–179, 334, 501
.NEQV., 168, 169, 172, 176, 176, 461
.NIL., 58, 344, 344, 346, 347
.NOT., 168, 169, 172, 176, 176
.OR., 168, 169, 172, 176, 176, 391
.TRUE., 78, 537
/, 173
/ edit descriptor, 311
//, 175
/=, 177, 501
: edit descriptor, 311
;, 62
<=, 501
==, 177, 501
>, 501
>=, 501
&, 62, 319

A
A edit descriptor, 308
ABS, 387, 504
ABSTRACT, 79, 79, 80, 95, 333, 334
ABSTRACT attribute, 79, 95
abstract interface, 17, 326, 332, 335, 341, 363, 571,

575
abstract interface block, 18, 334, 335
abstract type, 29, 67, 68, 92, 95, 95, 98, 147, 156
ac‑do‑variable (R785), 106, 106, 107, 183, 186, 573,

574
ac‑implied‑do (R783), 106, 106, 107, 171, 573
ac‑implied‑do‑control (R784), 106, 106, 171, 183,

185, 186, 573
ac‑spec (R779), 106, 106
ac‑value (R782), 106, 106, 107
access‑id (R832), 127, 127, 128
access‑name, 127, 128
access‑spec (R807), 79, 84, 85, 90–93, 103, 109, 112,

112, 127, 128, 336, 340
access‑stmt (R831), 44, 103, 112, 127, 127, 128
ACCESS= speciϐier, 252, 253, 282, 283
accessibility attribute, 112, 128, 326
accessibility statement, 127
ACHAR, 78, 190, 388
ACOS, 388
ACOSD, 388
ACOSH, 38, 389
ACOSPI, 389
ACQUIRED_LOCK= speciϐier, 238, 587, 590
action, 243
action‑stmt (R515), 44, 44, 171, 219, 227
ACTION= speciϐier, 253, 254, 282, 283, 626
active image, 16, 49, 158, 162, 163, 207, 208, 237,

240, 379, 380, 454
actual argument, 3, 37, 39, 49, 53–55, 69, 72, 82,

94, 95, 117, 119–123, 147, 149, 159, 162,
171, 181, 216, 274, 337, 338, 343–356, 358,

670 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

359, 368, 369, 371, 373–376, 380, 385, 387,
413, 440, 458, 469, 486, 488, 489, 493, 505,
542–545, 547, 550–552, 575, 579, 580,
584, 588–590, 599, 643–645, 648

actual‑arg (R1524), 343, 343, 344, 346
actual‑arg‑spec (R1523), 99, 343, 343, 344
add‑op (R1010), 59, 166, 167, 167
add‑operand (R1006), 166, 166, 167, 170
ADJUSTL, 389
ADJUSTR, 389
ADVANCE= speciϐier, 259, 260, 261, 273, 625
advancing input/output statement, 246
AIMAG, 148, 390
AINT, 390
ALL, 137, 390
alloc‑opt (R930), 155, 155, 157, 163
allocatable, 3, 38, 53, 54, 66, 69, 70, 81, 86, 87, 89,

94, 97, 99, 100, 110, 114, 115, 119, 121,
122, 127, 130, 140, 142, 147, 149, 155, 156,
159–163, 182, 185, 187–190, 193, 216,
231, 265, 266, 271, 316, 331–333, 343, 344,
348, 351, 355, 364, 371, 375, 391, 412, 423,
440, 441, 453–455, 458, 470, 474, 477, 480,
484, 488, 489, 499, 505, 537, 544, 547–549,
554, 561, 563–565, 578, 579, 588

ALLOCATABLE attribute, 66, 68, 69, 78, 84, 85, 112,
112, 114, 115, 119, 120, 124, 126, 128, 147,
151, 204, 211, 215, 222, 223, 329, 333, 338,
339, 345, 347, 351, 355, 363, 373, 549, 578,
584, 645, 649

ALLOCATABLE statement, 128
allocatable‑decl (R834), 128, 128
allocatable‑stmt (R833), 44, 128, 575
ALLOCATE statement, 66, 68, 75, 76, 116, 119, 155,

159, 163, 164, 193, 230, 493, 496, 558, 559,
579, 586, 588, 592

allocate‑coarray‑spec (R940), 156, 156
allocate‑coshape‑spec (R941), 156, 156
allocate‑object (R934), 75, 76, 156, 156–159, 161–

164, 230, 493, 495, 496, 590, 592
allocate‑shape‑spec (R935), 156, 156, 158, 159
allocate‑stmt (R929), 44, 155, 590
ALLOCATED, 159, 164, 184, 391
allocation (R933), 155, 156, 156–159
allocation status,54, 97, 99, 100, 122, 125, 127,159,

160–163, 216, 231, 234, 351, 356, 391, 454,
458, 565, 584, 588

alphanumeric‑character (R601), 57, 57, 58
alt‑return‑spec (R1525), 227, 343, 344, 344

alternate return indicator, 368
ancestor component, 96
ancestor‑module‑name, 328
and‑op (R1020), 59, 168, 168
and‑operand (R1015), 168, 168
ANINT, 391
ANY, 391
arg‑name, 85, 87, 92
argument

dummy, 349
argument association, 4, 66, 76, 86, 87, 115, 119,

126, 127, 161, 163, 330, 346–348, 358, 366,
554, 574, 575, 581, 583, 584, 598, 644

argument keyword, 19, 55, 332, 336, 346, 375, 380,
381, 505, 571, 573, 634

arithmetic IF statement, 598
array, 3, 54, 117–120, 149–153

assumed‑shape, 4, 69, 115–118, 126, 139, 154,
333, 348–352, 356, 363, 537, 550, 565, 643,
658, 663, 665

assumed‑size, 4, 117, 119–121, 126, 139, 149,
150, 165, 183, 186, 211, 223, 264, 348, 349,
351, 354, 355, 440, 474, 477, 488, 542, 545,
549, 551, 552, 554, 558, 561–565, 654, 656,
657

deferred‑shape, 4, 119, 126
explicit‑shape, 4, 69, 86, 114, 117, 118, 186,

349, 351, 354, 549, 551, 552
array bound, 7, 85, 88, 111, 184
array constructor, 65, 106, 106
array element, 3, 53, 150
array element order, 151–152
array pointer, 3, 115, 116, 119, 182, 394, 549
array section, 3, 116, 129, 131, 148, 150–154, 204,

248, 249, 349, 350, 356, 578, 580
array‑constructor (R778), 106, 106, 107, 165, 166
array‑element (R917), 130, 140, 145, 146, 149, 215
array‑name, 132, 576
array‑section (R918), 145, 150, 150, 152, 215
array‑spec (R814), 34, 109, 110, 112, 117, 117, 119,

120, 128, 132, 134, 142, 143
ASCII character, 4, 74, 78, 187, 248, 249, 266, 299,

314, 315, 388, 407, 430, 434, 442, 443, 456,
471

ASCII collating sequence, 78, 388, 407, 430, 434,
442, 443, 456

ASIN, 392
ASIND, 392
ASINH, 393

J3/25‑007 671

J3/25‑007 WD 1539‑1 2024‑12‑29

ASINPI, 393
ASSIGN statement, 597
assigned format, 597
assigned GO TO statement, 597
ASSIGNMENT, 91, 191, 334, 338, 339
assignment, 186–201

deϐined, 91, 191, 338
elemental, 14, 191
elemental array (FORALL), 198
masked array (WHERE), 196
pointer, 191

assignment statement, 38, 52, 66, 94, 186, 200, 230,
231, 495, 535, 585, 587

assignment‑stmt (R1033), 44, 186, 187, 196, 199,
589

ASSOCIATE construct, 54, 203, 206, 356, 573, 574,
578, 590

associate name, 4, 66, 69, 98, 114, 120, 161, 203,
204, 207, 225, 574, 578, 583, 590

ASSOCIATE statement, 54, 203, 578
associate‑construct (R1102), 44, 203, 203
associate‑construct‑name, 203
associate‑name, 203, 222, 224–226, 573
associate‑stmt (R1103), 203, 203, 227
ASSOCIATED, 37–39, 160, 164, 184, 376, 393
associating entity, 4, 54, 76, 155, 203, 204, 207, 208,

226, 366, 583, 583, 584
association, 4

argument, 4, 66, 76, 86, 87, 115, 119, 126, 127,
161, 163, 330, 346–348, 358, 366, 554, 574,
575, 581, 583, 584, 598, 644

common, 143
construct, 5, 161, 163, 574, 578, 581, 583
equivalence, 141
host, 5, 46, 68, 69, 76, 113, 127, 130, 135, 143,

183, 184, 193, 328, 330, 355, 369, 371–373,
573, 574, 576, 577, 580, 581, 583, 668

inheritance, 5, 55, 96, 98, 581, 583
linkage, 5, 567, 574, 577, 577
name, 5, 55, 574, 581
pointer, 5, 52, 55, 95, 97, 99, 116, 122, 124, 126,

127, 147, 161, 163, 191, 193, 194, 215, 216,
231, 234, 267, 331, 347, 349, 352, 354, 355,
364, 366, 381, 393, 394, 454, 458, 540–542,
554, 565, 569, 578–643

sequence, 354
storage,5, 55, 140–142, 367, 371, 480, 581–583
use, 5, 37, 46, 56, 69, 76, 96, 112, 113, 124,

127, 135, 139, 141, 142, 183, 184, 193,325,

324–328, 335, 366, 371, 373, 573–575, 578
association (R1104), 203, 203
association status, see pointer association status
assumed character length function, 76
assumed type parameter, 30, 66, 68, 348, 351
assumed‑implied‑spec (R823), 119, 119, 120
assumed‑rank dummy data object, 6, 53, 69, 93, 94,

115–117, 154, 222, 223, 331, 333, 339, 344,
348–351, 356, 363, 393, 439, 440, 458, 466,
474, 477, 488, 537, 545, 550, 658, 660

assumed‑rank‑spec (R828), 117, 120
assumed‑shape array,4, 69, 115–118, 126, 139, 154,

333, 348–352, 356, 363, 537, 550, 565, 643,
658, 663, 665

assumed‑shape‑bounds‑spec (R821), 117, 118, 118
assumed‑shape‑spec (R820), 117, 118, 118
assumed‑size array, 4, 117, 119–121, 126, 139, 149,

150, 165, 183, 186, 211, 223, 264, 348, 349,
351, 354, 355, 440, 474, 477, 488, 542, 545,
549, 551, 552, 554, 558, 561–565, 654, 656,
657

assumed‑size‑spec (R824), 117, 119, 119
assumed‑type, 6, 68, 69, 348, 349, 363, 544, 550,

659
ASYNCHRONOUS attribute, 113, 113, 129, 204, 211,

215, 262, 326, 327, 331, 333, 350, 409, 467,
566, 569, 575, 576

asynchronous communication, 113, 569
asynchronous input/output, 113, 252, 254, 257,

261, 262, 264, 267, 268, 275, 277–279, 281,
284, 286, 287

ASYNCHRONOUS statement, 129, 205, 329, 573,
576

asynchronous‑stmt (R835), 44, 129
ASYNCHRONOUS= speciϐier, 253, 254, 259, 260,

261, 282, 284
AT edit descriptor, 308
ATAN, 394
ATAN2, 40, 395
ATAN2D, 395
ATAN2PI, 396
ATAND, 396
ATANH, 396
ATANPI, 397
atomic subroutine, 27, 49, 231, 232, 375, 379, 381,

397–401, 421, 491, 496, 589
ATOMIC_ADD, 397, 492, 495
ATOMIC_AND, 397
ATOMIC_CAS, 398

672 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

ATOMIC_DEFINE, 398, 649, 650
ATOMIC_FETCH_ADD, 399
ATOMIC_FETCH_AND, 399
ATOMIC_FETCH_OR, 400
ATOMIC_FETCH_XOR, 400
ATOMIC_INT_KIND, 397–402, 491
ATOMIC_LOGICAL_KIND, 398, 401, 491
ATOMIC_OR, 401
ATOMIC_REF, 401, 650
ATOMIC_XOR, 401
attr‑spec (R802), 109, 109, 110, 112, 134
attribute, 6, 67, 78, 82, 109, 110, 112–127, 327

ABSTRACT, 79, 95
accessibility, 112, 128, 326
ALLOCATABLE, 66, 68, 69, 78, 84, 85, 112, 112,

114, 115, 119, 120, 124, 126, 128, 147, 151,
204, 211, 215, 222, 223, 329, 333, 338, 339,
345, 347, 351, 355, 363, 373, 549, 578, 584,
645, 649

ASYNCHRONOUS, 113, 113, 129, 204, 211, 215,
262, 326, 327, 331, 333, 350, 409, 467, 566,
569, 575, 576

BIND, 5, 6, 51, 79–81, 95, 101, 113, 113, 127,
129, 140, 142, 192, 194, 215, 225, 329, 331,
333, 362, 364, 547, 548, 550, 565–568, 577,
585, 654

CODIMENSION, 69, 85, 110, 114, 114, 120, 129
CONTIGUOUS, 85, 87, 115, 115–117, 129, 153,

154, 194, 215, 331, 332, 349–352, 356,
550–552, 582

DEFERRED, 91, 92, 95
DIMENSION, 85, 110, 117, 117, 125, 132, 143
EXTENDS, 95, 95, 548
EXTERNAL, 35, 36, 121, 121, 124, 133, 135,

137, 193, 325, 329, 335, 340, 354, 359, 360,
575, 576, 641

INTENT, 121, 121–123, 132, 215
INTENT (IN), 121, 121–123, 127, 211, 337–

339, 348, 351, 352, 354, 356, 370–372, 376,
397–402, 408–410, 421, 422, 427, 428,
455, 464, 465, 507, 539–542, 565, 589, 643,
656

INTENT (INOUT), 37, 121, 122, 123, 126, 216,
338, 344, 350, 352, 359, 372–374, 387,
397–401, 407–410, 422, 427, 428, 453–
455, 493, 495, 496, 590, 655

INTENT (OUT), 37–39, 69, 93, 95, 119, 121,
121–123, 126, 162, 183, 338, 344, 350, 352,
359, 370, 372–374, 387, 397–402, 408–

410, 414, 415, 421, 422, 426–428, 454–
456, 462, 465, 481, 482, 509–511, 539, 541,
542, 565, 579, 580, 585, 586, 588, 590, 655

INTRINSIC, 121, 123, 123, 124, 325, 342, 359,
360, 577

NON_OVERRIDABLE, 91, 92
NON_RECURSIVE, 332, 362, 362, 366, 368
OPTIONAL, 68, 123, 123, 127, 133, 183, 204,

211, 333
PARAMETER, 52, 102, 111, 123, 123, 124, 133,

146
PASS, 85, 87, 92, 343
POINTER, 66, 68, 69, 78, 84, 85, 110, 119, 120,

124, 124, 126, 131, 133, 147, 148, 151, 160,
192, 193, 204, 215, 222, 223, 331, 333–335,
338, 339, 341, 345, 347, 351, 353, 355–357,
363, 371, 373, 544, 549, 565, 578, 580, 583,
584, 607, 645, 649

PRIVATE, 81, 97, 112, 112, 128, 371, 632
PROTECTED, 37, 124, 124, 125, 134, 141, 215,

326
PUBLIC, 97, 112, 112, 128, 632
SAVE, 41, 54, 88, 95, 111–114, 125, 125, 129,

134, 141, 144, 162, 215, 342, 370, 580
SEQUENCE, 79, 80, 81, 82, 95, 142, 192, 194,

225, 547
TARGET, 5, 37, 88, 124, 126, 126, 134, 140, 144,

160, 161, 192, 204, 215, 223, 331, 333, 338,
348, 349, 351, 352, 356, 357, 409, 454, 467,
539, 542, 544, 566, 579, 580, 588, 589, 607,
643, 644

VALUE, 69, 87, 93, 120, 126, 126, 127, 134, 215,
267, 331, 333, 334, 337, 338, 347–350, 352,
363, 370, 373, 409, 467, 550, 551, 569, 580,
654, 655

VOLATILE, 37, 39, 126, 127, 127, 134, 192, 194,
204, 211, 215, 326, 327, 331, 333, 350, 352,
370, 575, 576, 581, 586, 589, 613

attribute speciϐication statements, 127–144
automatic data object,6, 40, 110, 111, 114, 125, 130,

140, 142, 586, 599

B
B edit descriptor, 306
BACKSPACE statement, 243, 247, 275, 278, 279,

280, 625, 626
backspace‑stmt (R1224), 44, 279, 371
base object, 6, 113, 116, 140, 147, 148, 154, 183,

262, 355, 371, 373

J3/25‑007 673

J3/25‑007 WD 1539‑1 2024‑12‑29

BESSEL_J0, 402
BESSEL_J1, 402
BESSEL_JN, 402
BESSEL_Y0, 403
BESSEL_Y1, 403
BESSEL_YN, 403
BGE, 404
BGT, 404
binary‑constant (R774), 105, 105
binary‑reduce‑op (R1132), 210, 210, 216
BIND (C), see BIND attribute
BIND attribute, 5, 6, 51, 79–81, 95, 101, 113, 113,

127, 129, 140, 142, 192, 194, 215, 225, 329,
331, 333, 362, 364, 547, 548, 550, 565–568,
577, 585, 654

BIND statement, 129, 329, 566, 572
bind‑entity (R837), 129, 129
bind‑stmt (R836), 44, 129
binding, 6, 91, 92, 92, 96, 97, 179, 191, 271, 277,

339, 361, 571–573
binding label, 6, 113, 332, 341, 362, 365, 566–568,

570, 571
binding name, 6, 91, 92, 96, 343, 572, 573
binding‑attr (R752), 91, 92, 92
binding‑name, 91, 92, 343, 361, 572
binding‑private‑stmt (R747), 91, 91, 93
bit model, 377
BIT_SIZE, 377, 405, 455
blank common, 8, 110, 130, 142–144, 580, 582
blank interpretation mode, 254
blank‑interp‑edit‑desc (R1317), 295, 296
BLANK= speciϐier, 253, 254, 259, 260, 262, 275,

282, 284, 313
BLE, 405
block, 7

interface, 326
block (R1101), 202, 203, 205–208, 210, 212, 213,

215, 217–219, 222, 224
BLOCK construct, 37, 38, 49, 51, 94, 111, 113, 115,

118, 125, 127, 135–139, 161, 183, 205,
370, 573, 579, 580, 586, 589, 592

block data program unit, 329
BLOCK DATA statement, 61, 324, 329
block scoping unit, 24
BLOCK statement, 111, 115, 118, 205, 586
block‑construct (R1107), 44, 205, 205
block‑construct‑name, 205
block‑data (R1420), 42, 137, 329, 329
block‑data‑name, 329

block‑data‑stmt (R1421), 43, 329, 329
block‑speciϔication‑part (R1109), 205, 205
block‑stmt (R1108), 205, 205, 227
BLT, 405
BN edit descriptor, 313
bound, 7, 53, 54, 84, 85, 97, 100, 118, 156, 157, 163,

164, 194, 231, 454, 574
bounds, 117–120, 149–153
bounds‑remapping (R1037), 192, 192, 194
bounds‑spec (R1036), 192, 192, 194
boz‑literal‑constant (R773), 59, 102, 105, 105–107,

132, 187, 189, 266, 307, 377, 378, 404–407,
416, 418, 431, 434, 436, 437, 450, 466, 467

branch, 227, 368, 597
branch target statement, 7, 48, 60, 196, 214, 227,

227, 228, 253, 258, 259, 278, 279, 281, 283,
344, 368

BTEST, 406
BZ edit descriptor, 313

C
C address,7, 539–545, 547, 548, 553, 558, 560, 587–

589, 656
C descriptor, 7, 162, 551–555, 557–566
C_ALERT, 538
C_ASSOCIATED, 539
C_BACKSPACE, 538
C_BOOL, 537, 538
C_CARRIAGE_RETURN, 538
C_CHAR, 538, 542, 545, 607
C_DOUBLE, 538
C_DOUBLE_COMPLEX, 538
C_F_POINTER, 539, 539, 544
C_F_PROCPOINTER, 539, 541, 543
C_F_STRPOINTER, 539, 542
C_FLOAT, 538
C_FLOAT_COMPLEX, 538
C_FORM_FEED, 538
C_FUNLOC, 371, 541, 543, 568
C_FUNPTR, 84, 95, 114, 147, 156, 157, 190, 537–

539, 541, 543, 547, 548, 589
C_HORIZONTAL_TAB, 538
C_INT, 537
C_INT16_T, 538
C_INT32_T, 538
C_INT64_T, 538
C_INT8_T, 538
C_INT_FAST16_T, 538
C_INT_FAST32_T, 538

674 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

C_INT_FAST64_T, 538
C_INT_FAST8_T, 538
C_INT_LEAST16_T, 538
C_INT_LEAST32_T, 538
C_INT_LEAST64_T, 538
C_INT_LEAST8_T, 538
C_INTMAX_T, 538
C_INTPTR_T, 538
C_LOC, 69, 121, 371, 539, 544, 607
C_LONG, 538
C_LONG_DOUBLE, 538
C_LONG_DOUBLE_COMPLEX, 538
C_LONG_LONG, 538
C_NEW_LINE, 538
C_NULL_CHAR, 538, 545
C_NULL_FUNPTR, 537, 538
C_NULL_PTR, 537, 538, 539
C_PTR, 84, 95, 114, 147, 156, 157, 190, 537–539,

542, 544, 547, 548, 551, 587–589, 654
C_PTRDIFF_T, 538
C_SHORT, 538
C_SIGNED_CHAR, 538
C_SIZE_T, 538
C_SIZEOF, 121, 184, 545
C_VERTICAL_TAB, 538
CALL statement, 227, 231, 330, 343, 358, 359, 368,

454
call‑stmt (R1521), 44, 343, 344, 346
CASE statement, 219
case‑construct (R1142), 44, 219, 220
case‑construct‑name, 219, 220
case‑expr (R1146), 219, 220, 220
case‑selector (R1147), 219, 220
case‑stmt (R1144), 219, 219, 220
case‑value (R1149), 220, 220
case‑value‑range (R1148), 220, 220
CEILING, 406
CFI_address, 557
CFI_allocate, 558, 565
CFI_cdesc_t, 550–552, 553, 553–555, 557–559,

561–565
CFI_deallocate, 555, 559, 565
CFI_establish, 559, 604, 663–666
CFI_is_contiguous, 561
CFI_section, 561, 664
CFI_select_part, 563
CFI_setpointer, 564, 666
CHANGE TEAM construct, 54, 155, 204, 206, 213,

227, 356, 573, 574, 590

CHANGE TEAM statement, 48, 54, 206, 230, 240,
379, 578

change‑team‑construct (R1111), 44, 206, 206
change‑team‑stmt (R1112), 206, 206, 207
changeable mode, 250
CHAR, 77, 406
char‑length (R723), 75, 75, 76, 84, 85, 109–111, 600
char‑length, 602
char‑literal‑constant (R724), 59, 64, 76, 274, 295,

296, 591
char‑selector (R721), 70, 75, 76
char‑string‑edit‑desc (R1322), 294, 296
char‑variable (R905), 145, 145, 249
character context, 7, 57, 61–63, 77
character literal constant, 76
character sequence type, 24, 81, 141, 143, 144, 583,

586
character set, 57
character storage unit, 26, 120, 141, 144, 491, 581,

586, 588
character string edit descriptor, 294, 313
character type, 74–78
CHARACTER_KINDS, 491
CHARACTER_STORAGE_SIZE, 491
characteristics, 8, 97, 194, 195, 271, 272, 331, 332,

335, 342, 343, 353, 358, 362, 364, 367, 387,
393, 458

dummy argument, 331
procedure, 331

child data transfer statement, 247, 249, 261, 263,
266, 267, 273, 271–275, 292, 317

CLASS, 67, 67–69, 271
CLASS DEFAULT statement, 224
CLASS IS statement, 224, 423
CLASSOF, 67, 68
CLOSE statement, 243, 244, 249, 251, 252, 257, 257,

275, 278, 625
close‑spec (R1209), 257, 257
close‑stmt (R1208), 44, 257, 371
CMPLX, 189, 378, 407, 500
CO_BROADCAST, 407
CO_MAX, 408
CO_MIN, 408
CO_REDUCE, 409, 595
CO_SUM, 410, 595
coarray, 8, 38, 48, 53, 54, 80, 84, 86, 94, 114, 115,

121, 123, 124, 126, 127, 140, 142, 148,
155–159, 162, 163, 187, 188, 190, 193, 194,
204, 206–208, 211, 230–232, 326, 333,

J3/25‑007 675

J3/25‑007 WD 1539‑1 2024‑12‑29

343, 344, 350, 352, 353, 356, 358, 363, 380,
381, 383, 385, 397–401, 412, 434, 440, 453,
454, 484, 485, 488, 489, 494, 549

established, 8, 54, 207, 435
coarray‑association (R1113), 54, 206, 206, 207
coarray‑name, 129, 206, 207, 573, 576
coarray‑spec (R809), 84–86, 109, 110, 114, 114,

115, 128, 129, 134
cobound, 8, 53, 54, 114, 115, 154, 158, 184, 204,

208, 353, 383, 385, 440, 441, 454, 488, 489,
574

codimension, 8, 53, 115, 154, 204, 331, 412, 441,
489

CODIMENSION attribute, 69, 85, 110, 114, 114, 120,
129

codimension‑decl (R839), 129, 129, 204, 206, 207,
573

codimension‑stmt (R838), 44, 129, 576
coindexed object, 8, 38, 49, 53, 54, 88, 130, 147, 154,

157, 187, 188, 190, 192–194, 203, 229, 232,
236, 343, 344, 348–352, 356, 371, 397–
401, 407–410, 421, 453, 454, 485, 496, 539,
541, 543, 544

coindexed‑named‑object (R914), 145, 146, 148, 148
collating sequence, 8, 77, 78, 178, 299, 388, 407,

430, 434, 442, 443, 447–452, 456
collective subroutine, 27, 375, 379–381, 407–410,

424, 480, 496, 497, 589
COMMAND_ARGUMENT_COUNT, 184, 185, 411,

427
comment, 62, 63, 321
common association, 143
commonblock,8, 41, 45, 51, 110, 112, 113, 124, 125,

129, 130, 140, 142–144, 183, 329, 566, 567,
570–574, 577, 580–582, 587, 600

common block storage sequence, 143
COMMON statement, 140, 142, 142–144, 205, 327,

329, 572, 581–583, 598
common‑block‑name, 129, 134, 142, 205, 327
common‑block‑object (R878), 142, 142, 327, 576
common‑stmt (R877), 44, 142, 576
companion processor, 9, 49, 56, 79, 101, 102, 113,

538, 545, 567, 568
compatibility

FORTRAN 77, 40
Fortran 2003, 38
Fortran 2008, 37
Fortran 2018, 36
Fortran 2023, 36

Fortran 90, 40
Fortran 95, 39

COMPILER_OPTIONS, 184, 491, 607
COMPILER_VERSION, 184, 492, 607
completion step, 49, 257
complex part designator, 13, 51, 148
complex type, 73–74
complex‑literal‑constant (R718), 59, 73
complex‑part‑designator (R915), 145,148, 148, 150,

154
component, 9, 53, 79–81, 84, 99, 135, 572

direct, 9, 78, 79, 88, 350, 499, 547
parent, 9, 89, 90, 94, 96, 99, 583, 614
potential subobject, 9, 38, 78–80, 84, 114, 126,

127, 156, 157, 162, 163, 187, 350, 356, 358,
371, 408, 493–495

ultimate, 9, 37, 39, 78, 79, 116, 119, 121, 140,
142, 158, 160, 185, 187, 211, 271, 344, 348,
370, 409, 581

component deϐinition statement, 68, 84
component keyword, 19, 55, 89, 99, 572
component order, 9, 89, 90, 99, 265
component speciϐication expression, 25, 84, 85,

184, 185
component‑array‑spec (R740), 84, 84, 85
component‑attr‑spec (R738), 84, 84–86, 88
component‑data‑source (R758), 98, 98, 99
component‑decl (R739), 76, 84, 84–88
component‑def‑stmt (R736), 84, 84, 85
component‑initialization (R743), 84, 87, 87, 88
component‑name, 84, 88
component‑part (R735), 79, 84, 90, 93
component‑spec (R757), 98, 98, 99, 185
computed GO TO statement, 227, 228, 598, 599
computed‑goto‑stmt (R1160), 45, 228, 228
concat‑op (R1012), 59, 167, 167
CONCURRENT, 210
concurrent‑control (R1126), 198, 200, 210, 210–

212
concurrent‑header (R1125), 198–201, 209, 210,

210, 211, 574
concurrent‑limit (R1127), 171, 200, 210, 210–212
concurrent‑locality (R1129), 210, 210, 211
concurrent‑step (R1128), 171, 200, 210, 210–213
conditional‑arg (R1526), 344, 344–347
conditional‑expr (R1002), 165, 166, 166, 171
conformable, 9, 53, 159, 172, 179, 187, 191, 359,

373, 424, 431, 432, 437, 447, 448, 451, 452,
460, 463, 481, 489, 524

676 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

CONJG, 411
connect‑spec (R1205), 252, 252, 253
connected, 10, 243–246, 248, 251, 252, 255–258,

263, 268–271
connection mode, 250
consequent (R1527), 344, 344, 346
consequent‑arg (R1528), 344, 344–347
constant, 10, 52, 59, 65

integer, 71
named, 133

constant (R604), 59, 59, 130, 146, 165
constant expression, 10, 30, 40, 65, 66, 75, 83, 86,

88, 107, 111, 115, 118, 120, 130, 131, 133,
140, 183, 185, 185, 186, 186, 262, 331–
333, 355, 376, 388, 390, 391, 406, 407, 412,
413, 424, 425, 430, 434, 436, 440–442, 445,
447, 451, 457, 466, 469, 471, 474, 477, 480,
488–490, 549

constant‑expr (R1030), 66, 87, 88, 110, 111, 120,
123, 133, 186, 186, 220

constant‑subobject (R851), 130, 131, 131
construct

ASSOCIATE, 54, 203, 206, 356, 573, 574, 578,
590

BLOCK, 37, 38, 49, 51, 94, 111, 113, 115, 118,
125, 127, 135–139, 161, 183, 205, 370,
573, 579, 580, 586, 589, 592

CHANGE TEAM, 54, 155, 204, 206, 213, 227,
356, 573, 574, 590

CRITICAL, 208, 213, 227
DO, 49, 61, 107, 131, 209, 227, 266, 597, 616,

617
DO CONCURRENT, 37, 38, 209, 213, 217, 227,

371, 372, 573, 574, 580, 586, 588, 592, 600
FORALL, 198, 371, 372, 573, 574, 586, 598, 600
IF, 49, 218, 597
nonblock DO, 598
SELECT CASE, 49, 219, 599, 616
SELECT RANK, 49, 54, 119, 120, 204, 222, 356,

573, 574, 590
SELECTTYPE, 49, 54, 66, 68, 204,224, 356, 573,

574, 578, 590
WHERE, 196

construct association, 5, 161, 163, 574, 578, 581,
583

construct entity, 10, 127, 138, 203, 205, 206, 211,
215, 224, 570, 571, 573, 580

construct‑name, 227
constructor

array, 106
derived‑type, 98
structure, 98

CONTAINS statement, 47, 91, 368
contains‑stmt (R1546), 43, 91, 325, 368
contiguous, 10, 37, 81, 87, 116, 146, 154, 194, 195,

204, 216, 262, 269, 439, 544, 581, 582, 607
CONTIGUOUS attribute, 85, 87, 115, 115–117, 129,

153, 154, 194, 215, 331, 332, 349–352, 356,
550–552, 582

CONTIGUOUS statement, 129
contiguous‑stmt (R840), 44, 129
continuation, 62, 63
CONTINUE statement, 228, 597
continue‑stmt (R1161), 44, 211, 228
control character, 57, 76, 242, 246
control edit descriptor, 294, 310–313
control information list, 259
control mask, 197
control‑edit‑desc (R1313), 294, 295
conversion

numeric, 189
corank, 10, 53, 54, 86, 114, 115, 117, 147, 154, 156,

165, 204, 208, 331, 345, 347, 351, 412, 434,
435, 440, 441, 453, 454, 484, 489, 574

COS, 411
COSD, 411
COSH, 412
COSHAPE, 412
COSPI, 413
cosubscript,11, 53, 54, 115, 154, 385, 434, 435, 484,

489
cosubscript (R927), 147, 154, 154
COUNT, 377, 413
CPU_TIME, 413
CRITICAL construct, 208, 213, 227
CRITICAL statement, 180, 208, 230, 231, 241
critical‑construct (R1116), 44, 208, 208
critical‑construct‑name, 208
critical‑stmt (R1117), 208, 208, 227
CSHIFT, 414
current record, 246
current team, 28, 94, 155, 158, 159, 162, 163, 206–

208, 232, 233, 235, 237, 240, 379, 380, 407,
423, 424, 429, 434, 435, 454, 459, 480, 483,
484, 489, 492, 497

CURRENT_TEAM, 429, 492
CYCLE statement, 203, 209, 213, 214, 600
cycle‑stmt (R1135), 45, 213, 213

J3/25‑007 677

J3/25‑007 WD 1539‑1 2024‑12‑29

D
d (R1310), 295, 295, 300–305, 308–310, 317
D edit descriptor, 302
data edit descriptor, 294, 298–310
data entity, 11, 51, 52, 545
data object, 11, 45, 46, 48, 51–53, 55
data object designator, 13, 53, 145
data object reference, 23, 52, 54
data pointer, 20, 54, 86, 88, 99, 100, 124, 144, 145,

156, 193, 352, 364, 539, 540, 554, 560, 564,
578, 581, 582, 615, 616, 643

DATA statement, 37, 38, 40, 41, 47, 106, 111, 129,
144, 205, 329, 458, 573, 574, 576, 584, 598,
599

data transfer, 269
data transfer input statement, 258
data transfer output statement, 258
data transfer statement, 41, 60, 242–245, 247–251,

258, 264, 267–269, 274, 277, 278, 280,
289–294, 306, 312, 314, 316, 317, 319, 321,
494, 585, 587, 594, 625, 628, 629

data type, 28, see type
data‑component‑def‑stmt (R737), 84, 84–87
data‑edit‑desc (R1307), 294, 295
data‑i‑do‑object (R845), 130, 130, 131
data‑i‑do‑variable (R846), 130, 130, 131, 186, 573,

574
data‑implied‑do (R844), 130, 130, 131, 186, 573
data‑pointer‑component‑name, 192
data‑pointer‑initialization compatible, 87
data‑pointer‑object (R1035), 192, 192, 193, 199,

590
data‑ref (R911), 67, 68, 147, 147–150, 192, 193,

262, 343, 346, 356, 361
data‑stmt (R841), 43, 129, 334, 370, 576
data‑stmt‑constant (R849), 106, 130, 130–132
data‑stmt‑object (R843), 129, 130, 130, 131
data‑stmt‑repeat (R848), 130, 130, 131
data‑stmt‑set (R842), 129, 130
data‑stmt‑value (R847), 130, 130, 131
data‑target (R1038), 98, 99, 124, 192, 192, 193,

199, 355, 371
DATE_AND_TIME, 415
DBLE, 378, 416
DC edit descriptor, 313
dealloc‑opt (R945), 161, 161–163
DEALLOCATE statement, 161, 163, 164, 230, 493,

496, 559, 592
deallocate‑stmt (R944), 45, 161, 590

decimal edit descriptor, 313
decimal edit mode, 254
decimal symbol, 11, 254, 262, 284, 298, 299, 301–

305, 313, 315
decimal‑edit‑desc (R1318), 295, 296
DECIMAL= speciϐier, 253, 254, 259, 260, 262, 275,

282, 284, 313
declaration, 11, 46, 109–144
declaration‑construct (R507), 43, 43, 205
declaration‑type‑spec (R703), 67, 67, 68, 75, 84, 85,

109, 111, 135, 183, 340, 341, 362, 365
declared type, 29, 68, 69, 87, 99, 100, 106, 107, 109,

147, 149, 157, 160, 166, 179, 181, 187, 190,
191, 193, 194, 204, 223, 225, 226, 277, 338,
343, 344, 346, 347, 351, 361, 369, 423, 449,
454, 470, 493, 494, 574

DEFAULT, 210, 220, 224
default character, 74
default complex, 73
default initialization, 11, 86–89, 98–100, 111, 119,

121, 129, 141, 142, 144, 350, 458, 578, 583,
588

default real, 72
default‑char‑constant‑expr (R1031), 113, 186, 186,

259, 260
default‑char‑expr (R1026), 181, 181, 186, 228, 252–

259, 261–264
default‑char‑variable (R906), 145, 145, 155, 253,

282–289
default‑initialized, 11, 88, 122, 363, 579, 580, 584,

586, 588
DEFERRED attribute, 91, 92, 95
deferred type parameter, 30, 38, 66, 68, 76, 100,

124, 144, 149, 156, 157, 160, 163, 164, 187,
188, 194, 216, 231, 316, 331, 332, 351, 363,
387, 441, 458, 480, 539, 541, 550, 578, 584,
601, 602

deferred‑coshape‑spec (R810), 84, 114, 115, 115
deferred‑shape array, 4, 119, 126
deferred‑shape‑spec (R822), 84, 117, 119, 119, 133
deϐinable, 11, 122–125, 153, 188, 204, 264, 347,

350, 352, 357, 358, 581, 590
deϐined, 11, 12, 52, 54
deϐined assignment, 12, 187, 190, 191, 196, 200,

330, 338, 343, 349, 371, 372
deϐined assignment statement, 39, 191, 358, 589
deϐined input/output, 12, 249, 255, 265, 266, 271,

273, 273, 273, 273, 274, 274, 274, 275,
271–277, 289, 310, 317, 318, 322, 323, 330,

678 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

336, 338, 343, 358, 371, 494, 646
deϐined operation,12, 169,178, 179, 179–182, 210,

330, 337, 343, 358, 371
deϔined‑binary‑op (R1024), 60, 169, 169, 179, 327
deϔined‑io‑generic‑spec (R1509), 92, 271, 272, 277,

334, 334, 336, 339
deϔined‑operator (R609), 60, 91, 327, 334, 606
deϔined‑unary‑op (R1004), 60, 166, 166, 169, 178,

327
deϐinition, 12
deϐinition of variables, 584
deleted features, 35, 36, 40, 41, 597, 598
DELIM= speciϐier, 253, 254, 259, 260, 262, 275, 282,

284, 321, 322, 627
delimiter mode, 254
derived type, 29, 50, 51, 65, 78–100, 106, 547, 548
derived type deϐinition statement, see TYPE state‑

ment
derived type determination, 81
derived‑type type speciϐier, 68
derived‑type‑def (R726), 43, 69, 79, 80, 82, 83, 548
derived‑type‑spec (R754), 67–69, 75, 97, 98, 99, 224,

225, 271, 272, 572
derived‑type‑stmt (R727), 79, 79, 80, 82, 83, 112,

575
descendant, 12, 46, 80, 90, 93, 125, 328, 571
designator, 12, 55, 120, 121, 126, 130, 140, 142,

149, 149, 181, 183, 185, 319, 354, 355, 371,
373

data object, 145
designator (R901), 87, 88, 130, 131, 145, 145, 147–

149, 165, 166, 192, 203, 215, 318, 370, 371,
412, 434, 440, 484, 489

designator, 165
digit, 33, 57, 57, 60, 71, 105, 315
digit‑string (R711), 33, 71, 71, 72, 300, 301, 307
digit‑string, 71
DIGITS, 416
DIM, 416
DIMENSION attribute, 85, 110, 117, 117, 125, 132,

143
DIMENSION statement, 132, 329
dimension‑stmt (R852), 44, 132, 576
direct access, 244
direct access data transfer statement, 263
direct component, 9, 78, 79, 88, 350, 499, 547
DIRECT= speciϐier, 282, 284
disassociated, 13, 54, 69, 87–89, 112, 119, 131, 132,

160, 161, 163, 182, 191, 194, 342, 355, 375,

423, 458, 459, 470, 480, 505, 578, 579, 588
distinguishable, 339
DO CONCURRENT construct, 37, 38, 209, 213, 217,

227, 371, 372, 573, 574, 580, 586, 588, 592,
600

DO CONCURRENT statement, 68, 199, 209
DO construct, 49, 61, 107, 131, 209, 227, 266, 597,

616, 617
DO statement, 209, 585, 598, 600
DOWHILE statement, 209
do‑construct (R1119), 44, 209, 211, 213, 227
do‑construct‑name, 210, 211, 213
do‑stmt (R1120), 209, 210, 211, 227, 589
do‑variable (R1124), 106, 130, 210, 210, 212, 264,

265, 290–292, 316, 585, 587, 589, 625
DOT_PRODUCT, 417
DOUBLE PRECISION, 61, 70, 72, 79
DP edit descriptor, 313
DPROD, 417
DSHIFTL, 418
DSHIFTR, 418
DT edit descriptor, 310
dtv‑type‑spec (R1221), 271
dummy argument, 13, 37, 49, 54, 55, 58, 66, 68–

70, 75, 76, 82, 85, 87, 92–95, 97, 98,
110, 113, 114, 117–119, 121–123, 125–
127, 130, 132–134, 139, 140, 142, 156, 158,
159, 162, 178, 179, 181, 183, 191, 194, 211,
216, 231, 267, 272, 274, 275, 330–340, 343,
344, 346–355, 363, 367, 368, 370, 371, 373,
374, 458, 493, 550–552, 573, 575, 580, 589,
590, 634, 643

characteristics of, 331
restrictions, 356

dummy data object, 13, 69, 87, 111, 119–121, 126,
331, 337–339

assumed‑rank, 6, 53, 69, 93, 94, 115–117, 154,
222, 223, 331, 333, 339, 344, 348–351, 356,
363, 393, 439, 440, 458, 466, 474, 477, 488,
537, 545, 550, 658, 660

dummy function, 13, 75, 110
dummy procedure, 21, 121, 135, 139, 184, 193, 331,

333–335, 339–341, 344, 353, 354, 360,
361, 363, 366, 370, 372, 373, 568, 571, 576

dummy‑arg (R1539), 365, 365–367
dummy‑arg‑name (R1534), 132, 134, 330, 363, 364,

364, 365, 369, 576
dynamic type, 29, 69, 94, 95, 97, 100, 107, 127, 157,

158, 160, 163, 179, 181, 188, 190, 191, 193,

J3/25‑007 679

J3/25‑007 WD 1539‑1 2024‑12‑29

194, 204, 224, 225, 231, 234, 277, 343, 351,
361, 423, 449, 454, 469, 470, 480, 551, 574,
578, 584, 615, 657

E
e (R1311), 295, 295, 302–305, 308–310, 317
E edit descriptor, 302
edit descriptor, 294

/, 311
:, 311
A, 308
AT, 308
B, 306
BN, 313
BZ, 313
character string, 294, 313
control, 294, 310–313
D, 302
data, 294, 298–310
DC, 313
decimal, 313
DP, 313
DT, 310
E, 302
EN, 303
ES, 304
EX, 305
F, 300
G, 308
H, 597
I, 300
L, 307
LZ, 312
LZP, 312
LZS, 312
O, 306
P, 312
position, 310
RC, 313
RD, 313
RN, 313
round, 313
RP, 313
RU, 313
RZ, 313
S, 312
SP, 312
SS, 312
T, 311

TL, 311
TR, 311
X, 311
Z, 306

effective argument, 13, 66, 69, 76, 116–120, 122,
123, 231, 347–351, 353, 357, 360, 361, 466,
540, 551, 575, 580, 583, 585, 588

effective item, 14, 265, 266, 269, 270, 274, 275, 277,
290, 291, 297, 311, 314–316, 320, 321, 358

effective position, 340
element sequence, 354
ELEMENTAL, 14, 362, 363, 368, 370, 373
elemental, 14, 53, 75, 94, 97, 179, 185, 191, 195–

198, 330, 331, 333, 341, 342, 349, 350, 353,
358–360, 368, 373, 375, 381, 402, 403, 455,
505, 507, 509

elemental array assignment (FORALL), 198
elemental assignment, 14, 191
elemental operation, 14, 171, 182, 183, 198
elemental operator, 14, 171, 499
elemental procedure, 14, 53, 182, 193, 341, 344,

355, 360, 362, 372, 373, 373, 375, 376
elemental reference, 14, 198, 350, 358–361, 374
elemental subprogram, 14, 362, 363, 373
ELSE IF statement, 62, 218
ELSE statement, 218
else‑if‑stmt (R1138), 218, 218
else‑stmt (R1139), 218, 218
ELSEWHERE statement, 62, 196
elsewhere‑stmt (R1049), 196, 196
EN edit descriptor, 303
ENCODING= speciϐier, 253, 254, 282, 284, 593
END ASSOCIATE statement, 62, 203
END BLOCK DATA statement, 62, 329
END BLOCK statement, 62, 162, 205
END CRITICAL statement, 62, 180, 208, 230, 231
END DO statement, 62, 211
END ENUM statement, 62, 101
END ENUMERATION TYPE statement, 103
END FORALL statement, 61, 199
END FUNCTION statement, 62, 364
END IF statement, 62, 218, 597
END INTERFACE statement, 62, 333
END MODULE statement, 62, 325
END PROCEDURE statement, 62, 366
END PROGRAM statement, 62, 324
END SELECT statement, 62, 219, 225
END statement, 14, 48, 48, 49, 61, 64, 94, 95, 125,

144, 161, 162, 231, 540, 589

680 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

END SUBMODULE statement, 62, 328
END SUBROUTINE statement, 61, 365
END TEAM statement, 48, 61, 206, 227, 230, 240,

380
END TYPE statement, 62, 80
ENDWHERE statement, 62, 196
end‑associate‑stmt (R1106), 203, 203, 204, 227
end‑block‑data‑stmt (R1422), 43, 48, 329, 329
end‑block‑stmt (R1110), 205, 205, 227
end‑change‑team‑stmt (R1114), 206, 206, 207
end‑critical‑stmt (R1118), 208, 208, 209, 227
end‑do (R1133), 210, 211, 211, 214
end‑do‑stmt (R1134), 211, 211, 227
end‑enum‑stmt (R763), 101, 101
end‑enumeration‑type‑stmt (R770), 103, 103
end‑forall‑stmt (R1055), 198, 199, 199
end‑function‑stmt (R1536), 42, 48, 227, 334, 363,

364, 364, 368
end‑if‑stmt (R1140), 218, 218, 227
end‑interface‑stmt (R1504), 333, 333, 334
end‑module‑stmt (R1406), 42, 48, 325, 325
end‑mp‑subprogram‑stmt (R1543), 44, 48, 227,366,

366, 368
end‑program‑stmt (R1403), 42, 48, 49, 95, 227, 228,

324, 324
end‑select‑rank‑stmt (R1153), 222, 222, 223, 227
end‑select‑stmt (R1145), 219, 219, 220, 227
end‑select‑type‑stmt (R1157), 224, 225, 225–227
end‑submodule‑stmt (R1419), 43, 48, 328, 328, 329
end‑subroutine‑stmt (R1540), 42, 48, 227, 334, 365,

365, 368
end‑type‑stmt (R730), 79, 80
end‑where‑stmt (R1050), 196, 196
END= speciϐier, 7, 259, 260, 278, 279, 290
endϐile record, 243
ENDFILE statement, 61, 243, 244, 247, 254, 275,

278, 280, 625
endϔile‑stmt (R1225), 45, 279, 371
entity‑decl (R803), 76, 85, 109, 110, 110, 111, 184,

186, 575
entity‑name, 129, 133
ENTRY statement, 47, 140, 178, 179, 191, 325, 330,

335, 362, 364, 366, 373, 572, 581–583,
598, 600

entry‑name, 364, 366, 367, 572
entry‑stmt (R1544), 43, 325, 328, 334, 366, 367,

572, 576
enum constructor, 65, 102, 106, 131, 181, 183, 185
ENUM statement, 101

enum type, 65, 66, 68, 69, 84, 101, 144, 173, 220,
299, 300, 307–309, 315, 320, 436, 547

enum‑constructor (R765), 102, 102, 131, 165
enum‑def (R759), 43, 101, 101, 102, 576
enum‑def‑stmt (R760), 101, 101
enum‑type‑name, 101, 190, 576
enum‑type‑spec (R764), 67, 68, 101, 101, 102
enumeration, 101
enumeration constructor, 65, 104, 131, 181, 183,

185
enumeration type, 65, 66, 68, 84,103, 112, 140, 142,

173, 178, 220, 265, 299, 300, 307, 430, 436,
456, 462

ENUMERATION TYPE statement, 103
enumeration‑constructor (R772), 104, 131, 165
enumeration‑enumerator‑stmt (R769), 103, 103
enumeration‑type‑def (R766), 43, 103
enumeration‑type‑name, 103, 104, 576
enumeration‑type‑spec (R771), 67, 68, 104, 104
enumeration‑type‑stmt (R767), 103, 103, 112, 576
enumerator, 101
enumerator (R762), 101, 101
ENUMERATOR statement, 101
enumerator‑def‑stmt (R761), 101, 101
EOR= speciϐier, 7, 259, 260, 278, 279, 290, 291, 625
EOSHIFT, 419
EPSILON, 420
equiv‑op (R1022), 59, 168, 168
equiv‑operand (R1017), 168, 168
equivalence association, 141
EQUIVALENCE statement, 140, 140–144, 205, 327,

329, 581–583, 598, 600
equivalence‑object (R876), 140, 140–142, 327
equivalence‑set (R875), 140, 140, 141
equivalence‑stmt (R874), 44, 140, 576
ERF, 420
ERFC, 420
ERFC_SCALED, 420
ERR= speciϐier, 7, 253, 257–259, 278, 279, 281–283,

290
errmsg‑variable (R931), 155, 155, 157, 161, 163,

164, 227, 229, 230, 232, 233, 236, 238, 239,
241, 590, 592

ERRMSG= speciϐier, 155, 159, 161, 164, 209, 230,
232, 239, 586, 592, 604

error indicator, 557
ERROR STOP statement, 49, 50, 228, 592
error termination, 49, 95, 159, 161, 228, 230, 274,

290, 379, 397–402, 421, 422, 454, 456, 463,

J3/25‑007 681

J3/25‑007 WD 1539‑1 2024‑12‑29

468, 591, 594
error‑stop‑stmt (R1163), 45, 95, 228
ERROR_UNIT, 249–251, 255, 492
ES edit descriptor, 304
established coarray, 8, 54, 155, 207, 435
evaluation

operations, 170
optional, 180
parentheses, 180

EVENT POST statement, 230, 236, 236, 237, 240,
421, 492, 493, 587, 590, 593

event variable, 31, 49, 231, 236, 237, 240, 421, 492,
493, 587

EVENT WAIT statement, 230, 236, 236, 240, 492,
493, 587, 590, 593

event‑post‑stmt (R1174), 45, 236
event‑variable (R1175), 236, 236, 239, 240, 493,

590
event‑wait‑spec (R1177), 229, 236, 236
event‑wait‑stmt (R1176), 45, 236, 236
EVENT_QUERY, 421, 605, 622, 652
EVENT_TYPE, 80, 122, 157, 236, 492
EX edit descriptor, 305
executable construct, 202
executable statement, 25, 46
executable‑construct (R514), 43, 44, 367
EXECUTE_COMMAND_LINE, 385, 421
execution control, 202
execution‑part (R509), 42, 43, 44, 324, 363–366
execution‑part‑construct (R510), 43, 43, 202
exist, 244, 251
EXIST= speciϐier, 282, 285
EXIT statement, 203, 214, 227
exit‑stmt (R1158), 45, 227, 227
EXP, 422
explicit formatting, 293–313
explicit initialization, 14, 88, 89, 110–112, 129, 578,

583, 584
explicit interface, 17, 39, 87, 91, 135, 139, 194, 195,

331–334, 336, 341, 342, 344, 346, 353, 354,
369, 370, 571, 573, 590, 633

explicit‑bounds‑expr (R819), 117, 117, 118
explicit‑coshape‑spec (R811), 114, 115, 115
explicit‑shape array, 4, 69, 86, 114, 117, 118, 186,

349, 351, 354, 549, 551, 552
explicit‑shape‑bounds‑spec (R818), 117, 117, 118
explicit‑shape‑spec (R815), 84, 85, 112, 117, 117–

120, 142
EXPONENT, 422, 513

exponent (R717), 72, 73
exponent‑letter (R716), 72, 73, 73
expr (R1023), 34, 94, 98, 99, 102, 106, 156, 165, 166,

169, 169, 171, 181, 183, 185–194, 197–
199, 203, 206, 216, 220, 264, 343, 344, 346,
369, 371, 535, 589

expression, 165, 165–186
component speciϐication, 25, 84, 85, 184, 185
constant, 10, 30, 40, 65, 66, 75, 83, 86, 88, 107,

111, 115, 118, 120, 130, 131, 133, 140, 183,
185, 185, 186, 186, 262, 331–333, 355,
376, 388, 390, 391, 406, 407, 412, 413, 424,
425, 430, 434, 436, 440–442, 445, 447, 451,
457, 466, 469, 471, 474, 477, 480, 488–490,
549

speciϐication, 25, 48, 49, 83, 95, 113, 149, 183,
184, 184, 185, 205, 367, 500, 599

extended real model, 378
extended type, 29, 83, 89, 90, 94–96, 583, 608, 612
extended‑intrinsic‑op (R610), 60, 60
EXTENDS attribute, 95, 95, 548
EXTENDS_TYPE_OF, 184, 423
extensible type, 29, 67, 79, 80, 87, 95, 271, 423, 470,

614, 648
extension operation, 169
extension type, 29, 69, 95, 97, 225, 351, 423, 648
extent, 15, 53, 349
EXTERNAL attribute, 35, 36, 121, 121, 124, 133,

135, 137, 193, 325, 329, 335, 340, 354, 359,
360, 575, 576, 641

external ϐile, 15, 40, 242–246, 248–252, 257, 261,
262, 281, 298, 310, 321, 372, 568, 625, 653

external input/output unit, 15, 570
external linkage, 113, 537, 566–568
external procedure,21, 35, 36, 46, 91, 121, 135, 193,

235, 330, 331, 333, 335, 336, 340, 341, 344,
353, 354, 361, 570, 571, 575, 576, 633, 634,
638, 641

EXTERNAL statement, 121, 340
external subprogram, 27, 45, 330
external unit, 15, 249–252, 268, 274, 275, 286, 292,

492, 493, 496
external‑name, 340
external‑stmt (R1511), 44, 340
external‑subprogram (R503), 42, 42, 137, 367

F
F edit descriptor, 300
F_C_STRING, 545

682 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

FAIL IMAGE statement, 229
fail‑image‑stmt (R1165), 45, 229
failed image, 16, 49, 155, 158, 162, 163, 207, 238,

380, 454
FAILED_IMAGES, 423
ϐield, 296
ϐile

connected, 251
external, 15, 40, 242–246, 248–252, 257, 261,

262, 281, 298, 310, 321, 372, 568, 625, 653
internal, 18, 242, 248–250, 252, 261, 266, 268,

269, 271, 273, 275, 289, 291, 310, 311, 585,
587

ϐile access method, 243–246
ϐile connection, 249–258
ϐile inquiry statement, 281
ϐile position, 243, 246
ϐile positioning statement, 243, 279
ϐile storage unit, 15, 242, 243, 245–248, 256, 262,

263, 269, 270, 280, 287–289, 493, 581
ϔile‑name‑expr (R1206), 253, 253, 255, 282, 283,

285
ϔile‑unit‑number (R1202), 249, 249, 252, 253, 257,

260, 273, 278, 279, 281–289, 371, 494
FILE= speciϐier, 252, 253, 255, 255, 257, 282, 283,

283, 590, 626
FILE_STORAGE_SIZE, 493
FINAL statement, 93
ϐinal subroutine, 15, 39, 92–95, 153, 348, 612
ϔinal‑procedure‑stmt (R753), 91, 93
ϔinal‑subroutine‑name, 93
ϐinalizable, 15, 38, 39, 93, 94, 119, 121, 162, 211
ϐinalization, 15, 94, 95, 153, 199, 330, 343, 358, 370,

371
FINDLOC, 424
ϐixed source form, 63, 63
FLOOR, 425
FLUSH statement, 244, 278, 281, 291
ϔlush‑spec (R1229), 281, 281
ϔlush‑stmt (R1228), 45, 281, 371
FMT= speciϐier, 259, 261
FORALL construct, 198, 371, 372, 573, 574, 586,

598, 600
FORALL statement, 68, 171, 200, 573, 574, 585
forall‑assignment‑stmt (R1054), 171, 198, 199, 199,

200, 372
forall‑body‑construct (R1053), 198, 198–200
forall‑construct (R1051), 44, 198, 198–200
forall‑construct‑name, 198, 199

forall‑construct‑stmt (R1052), 198, 198, 199, 227
forall‑stmt (R1056), 45, 198, 200, 200, 227
FORMTEAM statement, 48, 207, 230, 237, 240, 587,

589, 590, 593
form‑team‑spec (R1182), 237, 237
form‑team‑stmt (R1179), 45, 237
FORM= speciϐier, 253, 255, 282, 285
format (R1215), 258–260, 261, 261, 268, 293, 294
format control, 296
format descriptor, see edit descriptor
FORMAT statement, 35, 47, 60, 205, 261, 293, 293,

325
format‑item (R1304), 294, 294
format‑items (R1303), 293, 294, 294
format‑speciϔication (R1302), 293, 293
format‑stmt (R1301), 43, 293, 293, 325, 328, 334
FORMATTED, 271, 272, 334
formatted data transfer, 270
formatted input/output statement, 242, 260
formatted record, 242
FORMATTED= speciϐier, 282, 285
formatting

explicit, 293–313
list‑directed, 271, 314–318
namelist, 271, 318–323

forms, 243
Fortran 2003 compatibility, 38
Fortran 2008 compatibility, 37
Fortran 2018 compatibility, 36
Fortran 2023 compatibility, 36
FORTRAN 77 compatibility, 40
Fortran 90 compatibility, 40
Fortran 95 compatibility, 39
Fortran character set, 57, 74
FRACTION, 426
free source form, 61, 61
function, 15

intrinsic, 375
intrinsic elemental, 375
intrinsic inquiry, 375

function reference, 23, 51, 52, 358
function result, 15, 39, 76, 109, 135, 140, 142, 161,

331, 364, 367, 373, 550, 572, 582, 588
FUNCTION statement, 68, 69, 135, 178, 179, 183,

324, 362, 363, 366–368, 572
function‑name, 110, 334, 335, 363, 364, 367, 369,

572, 575
function‑reference (R1520), 99, 110, 145, 165, 166,

343, 346, 358

J3/25‑007 683

J3/25‑007 WD 1539‑1 2024‑12‑29

function‑stmt (R1533), 42, 333–335, 362, 363, 363,
364, 572, 576

function‑subprogram (R1532), 27, 42–44, 325, 363,
366

G
G edit descriptor, 308
GAMMA, 426
generic identiϐier, 16, 326, 334, 336, 337, 339, 360,

375, 570, 575
generic interface,17, 92, 96, 100, 123, 178, 179, 191,

277, 326, 327, 336, 336–338, 359, 360,
571, 649

generic interface block, 18, 335, 336, 339
generic procedure reference, 339
GENERIC statement, 91, 92, 336, 336, 339, 359
generic‑name, 91, 92, 334, 573, 576
generic‑spec (R1508), 91, 92, 96, 127, 179, 191, 326,

327, 333, 334, 334, 336, 359, 573, 576
generic‑stmt (R1510), 43, 336
GET_COMMAND, 426
GET_COMMAND_ARGUMENT, 427
GET_ENVIRONMENT_VARIABLE, 428, 595
GET_TEAM, 184, 185, 429, 492, 493, 496
global entity, 570
global identiϐier, 570
GO TO statement, 62, 227, 227
goto‑stmt (R1159), 45, 227, 227
graphic character, 57, 76, 321

H
halting mode, 498, 503, 503, 507, 509, 524, 530,

531, 569, 596
hex‑constant (R776), 105, 105
hex‑digit (R777), 105, 105, 106, 307
hex‑digit‑string (R1323), 307, 307
host, 16, 46, 328, 369, 573, 575–577
host association, 5, 21, 46, 68, 69, 76, 113, 127, 130,

135, 143, 183, 184, 193, 328, 330, 355, 369,
371–373, 573, 574, 576, 577, 580, 581, 583,
668

host instance, 16, 194, 345, 354, 366, 394, 575, 580,
583, 589

host scoping unit, 16, 46, 135, 137, 138, 359, 360,
576, 577, 583

HUGE, 430
HYPOT, 430

I
I edit descriptor, 300

IACHAR, 78, 190, 430
IALL, 431
IAND, 210, 215, 398, 431
IANY, 432
IBCLR, 432
IBITS, 433
IBSET, 433
ICHAR, 77, 433
id‑variable (R1214), 259, 259
ID= speciϐier, 259, 260, 262, 278, 282, 283, 285,

590, 628, 629
IEEE inϐinity, 16
IEEE NaN, 16, 178, 501, 526
IEEE_ALL, 499
IEEE_ARITHMETIC, 183–185, 214, 387, 498–535
IEEE_AWAY, 502, 510
IEEE_CLASS, 505, 507, 507
IEEE_CLASS_TYPE, 499, 508, 535
IEEE_COPY_SIGN, 504, 505, 508
IEEE_DATATYPE, 499
IEEE_DENORMAL, 499
IEEE_DIVIDE, 499
IEEE_DIVIDE_BY_ZERO, 499
IEEE_DOWN, 499, 502
IEEE_EXCEPTIONS, 183–185, 214, 498–535
IEEE_FEATURES, 498–499
IEEE_FEATURES_TYPE, 499
IEEE_FLAG_TYPE, 499, 509, 524, 530
IEEE_FMA, 505, 508
IEEE_GET_FLAG, 214, 501, 507, 509, 535, 536, 596
IEEE_GET_HALTING_MODE, 214, 507, 509, 509
IEEE_GET_MODES, 503, 507, 509, 510, 524
IEEE_GET_ROUNDING_MODE, 502, 505, 510, 510,

525
IEEE_GET_STATUS, 214, 501, 507, 510, 511, 525,

536, 596
IEEE_GET_UNDERFLOW_MODE, 505, 511, 526
IEEE_HALTING, 499
IEEE_INEXACT, 499
IEEE_INEXACT_FLAG, 499
IEEE_INF, 499
IEEE_INT, 505, 511
IEEE_INVALID, 499
IEEE_INVALID_FLAG, 499
IEEE_IS_FINITE, 506, 512
IEEE_IS_NAN, 506, 512
IEEE_IS_NEGATIVE, 506, 512
IEEE_IS_NORMAL, 506, 513
IEEE_LOGB, 504, 506, 513

684 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

IEEE_MAX, 506, 513
IEEE_MAX_MAG, 506, 514
IEEE_MAX_NUM, 37, 506, 514
IEEE_MAX_NUM_MAG, 37, 506, 515
IEEE_MIN, 506, 515
IEEE_MIN_MAG, 506, 516
IEEE_MIN_NUM, 37, 506, 516
IEEE_MIN_NUM_MAG, 37, 506, 517
IEEE_MODES_TYPE, 499, 503, 510, 524
IEEE_NAN, 499
IEEE_NEAREST, 499, 502
IEEE_NEGATIVE_DENORMAL, 499
IEEE_NEGATIVE_INF, 499
IEEE_NEGATIVE_NORMAL, 499
IEEE_NEGATIVE_SUBNORMAL, 499, 499, 508, 512
IEEE_NEGATIVE_ZERO, 499
IEEE_NEXT_AFTER, 506, 517
IEEE_NEXT_DOWN, 506, 518, 518
IEEE_NEXT_UP, 506, 518
IEEE_OTHER, 499, 502
IEEE_OTHER_VALUE, 499
IEEE_OVERFLOW, 499
IEEE_POSITIVE_DENORMAL, 499
IEEE_POSITIVE_INF, 499
IEEE_POSITIVE_NORMAL, 499
IEEE_POSITIVE_SUBNORMAL, 499, 499, 508, 512
IEEE_POSITIVE_ZERO, 499
IEEE_QUIET_EQ, 506, 519
IEEE_QUIET_GE, 506, 519
IEEE_QUIET_GT, 506, 519
IEEE_QUIET_LE, 506, 520
IEEE_QUIET_LT, 506, 520
IEEE_QUIET_NAN, 499
IEEE_QUIET_NE, 506, 521
IEEE_REAL, 506, 521
IEEE_REM, 504, 506, 521
IEEE_RINT, 504, 506, 522
IEEE_ROUND_TYPE, 499, 510, 511, 522, 525, 532
IEEE_ROUNDING, 499
IEEE_SCALB, 506, 522
IEEE_SELECTED_REAL_KIND, 506, 523
IEEE_SET_FLAG, 501, 507, 511, 524, 525, 536, 596
IEEE_SET_HALTING_MODE, 214, 501, 507, 509,524,

531, 536, 596
IEEE_SET_MODES, 214, 503, 507, 510, 524, 525
IEEE_SET_ROUNDING_MODE, 214, 502, 506, 510,

525, 525
IEEE_SET_STATUS, 214, 501, 502, 507, 511, 525,

525, 536, 596

IEEE_SET_UNDERFLOW_MODE, 214, 506, 510, 511,
525, 526

IEEE_SIGNALING_EQ, 506, 526
IEEE_SIGNALING_GE, 506, 526
IEEE_SIGNALING_GT, 506, 527
IEEE_SIGNALING_LE, 506, 527
IEEE_SIGNALING_LT, 506, 528
IEEE_SIGNALING_NAN, 499
IEEE_SIGNALING_NE, 506, 528
IEEE_SIGNBIT, 506, 528
IEEE_SQRT, 499
IEEE_STATUS_TYPE, 499, 503, 510, 525, 536
IEEE_SUBNORMAL, 499
IEEE_SUPPORT_DATATYPE, 498, 500, 506–508,

511, 513–522, 525–528,529, 529, 533, 535
IEEE_SUPPORT_DENORMAL, 506, 529
IEEE_SUPPORT_DIVIDE, 506, 530, 533
IEEE_SUPPORT_FLAG, 507, 530, 533
IEEE_SUPPORT_HALTING, 507, 530, 533
IEEE_SUPPORT_INF, 504, 506, 518, 531, 533, 535
IEEE_SUPPORT_IO, 506, 531
IEEE_SUPPORT_NAN, 501, 504, 506, 531, 533, 535
IEEE_SUPPORT_ROUNDING, 506, 525, 532, 533
IEEE_SUPPORT_SQRT, 506, 532, 533
IEEE_SUPPORT_STANDARD, 505, 506, 533
IEEE_SUPPORT_SUBNORMAL, 504–506, 508, 518,

529, 533, 533, 535
IEEE_SUPPORT_UNDERFLOW_CONTROL, 506, 534
IEEE_TO_ZERO, 499, 502
IEEE_UNDERFLOW, 499
IEEE_UNDERFLOW_FLAG, 499
IEEE_UNORDERED, 504, 506, 534
IEEE_UP, 499, 502
IEEE_USUAL, 499
IEEE_VALUE, 506, 534
IEOR, 210, 215, 402, 434
IF construct, 49, 218, 597
IF statement, 170, 219
if‑construct (R1136), 44, 218, 218
if‑construct‑name, 218
if‑stmt (R1141), 45, 219, 219
if‑then‑stmt (R1137), 218, 218, 227
imag‑part (R720), 73, 73
image, 1, 16, 38, 48–50, 53, 54, 94, 114, 155, 157–

159, 162, 190, 193, 194, 207–209, 228–
235, 237–241, 243, 244, 249–251, 286,
343, 348, 353, 356, 358, 375, 379, 380, 384,
385, 397–402, 414–416, 428, 435, 454,
459, 464, 465, 481, 482, 484, 489, 493, 497,

J3/25‑007 685

J3/25‑007 WD 1539‑1 2024‑12‑29

503, 570, 578, 579, 587, 589
active, 16, 163
failed, 16, 158, 162, 163, 238, 454
stopped, 16, 158, 162, 163, 454

image control statement, 17, 48, 180, 208, 214, 229,
230, 231, 232, 235, 239–241, 358, 371,
379, 380, 424, 480, 496

image index, 16, 48, 53, 54, 154, 155, 233, 237, 243,
353, 385, 434, 435, 464, 484, 489, 570

image‑selector (R926), 48, 147, 148, 154, 154, 155,
318

image‑selector‑spec (R928), 154, 154
image‑set (R1171), 233, 233
IMAGE_INDEX, 434
IMAGE_STATUS, 435
imaginary part, 73
implicit interface, 17, 85, 195, 325, 341–344, 353,

543, 576
IMPLICIT NONE statement, 135
IMPLICIT statement, 135, 140, 329
implicit‑none‑spec (R870), 135, 135
implicit‑part (R505), 43, 43
implicit‑part‑stmt (R506), 43, 43
implicit‑spec (R868), 135, 135
implicit‑stmt (R867), 43, 135, 135
implied‑shape array, 120
implied‑shape‑or‑assumed‑size‑spec (R826), 117,

119, 119, 120
implied‑shape‑spec (R827), 117, 120, 120
IMPORT statement, 47, 137, 205, 570, 573, 576
import‑name, 137, 138
import‑stmt (R871), 43, 137, 205
IMPURE, 362, 363, 368, 370, 373
IN, 121
INCLUDE line, 61, 64
inclusive scope, 17, 206, 227, 228, 253, 258, 259,

261, 278, 279, 281, 283, 344, 368, 570, 571
INDEX, 435
index‑name, 199–201, 209–213, 573, 574, 586
inherit, 17, 79, 91, 92, 94, 96, 97, 583, 614
inheritance association, 5, 55, 96, 98, 581, 583
initial team, 28, 54, 155, 250, 385, 429, 435, 459,

464, 483, 493
initial‑data‑target (R744), 37, 87, 87, 88, 110, 112,

124, 130–132
initial‑proc‑target (R1518), 88, 341, 341, 342
INITIAL_TEAM, 429, 493
initialization, 111

default, 11, 86–89, 98–100, 111, 119, 121, 129,

141, 142, 144, 350, 578, 583, 588
explicit, 14, 88, 89, 110–112, 129, 578, 583, 584

initialization (R805), 106, 110, 110, 111, 186
INOUT, 62, 121
input statement, 258, 259, 625
input‑item (R1216), 258, 259, 264, 264, 265, 277,

292, 589
input/output editing, 293–323
input/output list, 264
input/output statement, 585
input/output statements, 242–292
input/output unit, 31, 48
INPUT_UNIT, 249–251, 255, 273, 493
INQUIRE statement, 40, 244, 246, 248, 249, 251,

263, 274, 275, 278,281, 291, 292, 494, 585,
588, 590, 594, 624

inquire‑spec (R1231), 282, 282, 283, 292
inquire‑stmt (R1230), 45, 282, 371
inquiry function, 17, 115, 119, 121, 147, 159, 184,

347, 348, 375–378, 381, 391, 393, 405, 412,
416, 420, 423, 430, 438–441, 447, 450, 456,
462, 463, 466, 469, 474, 477, 480, 485, 488,
503–505, 529–534, 545

inquiry, type parameter, 149
instance, 365
INT, 132, 189, 377, 418, 431, 434, 436, 437, 450
int‑constant (R607), 59, 59, 130
int‑constant‑expr (R1032), 70, 75, 82, 83, 101, 102,

125, 126, 130, 186, 186, 222, 223
int‑constant‑name, 71
int‑constant‑subobject (R850), 130, 131, 131
int‑expr (R1027), 48, 66, 104, 106, 117, 146, 150,

151, 154–156, 171, 181, 181, 183, 185,
186, 210, 212, 228, 229, 233, 236, 237, 249,
253, 259, 264, 267, 278, 282, 368

int‑literal‑constant (R708), 59, 71, 71, 75, 294–296
int‑variable (R907), 145, 145, 163, 253, 259, 260,

282, 283, 286–291, 594
int‑variable‑name, 210
INT16, 493
INT32, 493
INT64, 493
INT8, 493
integer constant, 71
integer editing, 300
integer model, 378
integer type, 70–71
integer‑type‑spec (R705), 68, 70, 70, 82, 106, 130,

210, 573, 574

686 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

INTEGER_KINDS, 494
INTENT (IN) attribute, 121, 121–123, 127, 211,

337–339, 348, 351, 352, 354, 356, 370–
372, 376, 397–402, 408–410, 421, 422,
427, 428, 455, 464, 465, 507, 539–542, 565,
589, 643, 656

INTENT (INOUT) attribute, 37, 121, 122, 123, 126,
216, 338, 344, 350, 352, 359, 372–374, 387,
397–401, 407–410, 422, 427, 428, 453–
455, 493, 495, 496, 590, 655

INTENT (OUT) attribute, 37–39, 69, 93, 95, 119,
121, 121–123, 126, 162, 183, 338, 344,
350, 352, 359, 370, 372–374, 387, 397–
402, 408–410, 414, 415, 421, 422, 426–
428, 454–456, 462, 465, 481, 482, 509–
511, 539, 541, 542, 565, 579, 580, 585, 586,
588, 590, 655

INTENT attribute, 121, 121–123, 132, 215
INTENT statement, 132, 205
intent‑spec (R829), 109, 121, 132, 341
intent‑stmt (R853), 44, 132
interface, 17, 46, 52, 55, 85, 91, 92, 123, 271–273,

310, 331,332, 343, 344, 353, 354, 358, 360,
366, 368–370, 550–552, 567, 568, 634

abstract, 17, 326, 332, 335, 341, 363, 571, 575
explicit, 17, 39, 87, 91, 135, 139, 194, 195, 331–

334, 336, 341, 342, 344, 346, 353, 354, 369,
370, 571, 573, 590, 633

generic,17, 92, 96, 100, 123, 178, 179, 191, 277,
326, 327, 336, 336–338, 359, 360, 571

implicit, 17, 85, 195, 325, 341–344, 353, 543,
576

procedure, 332
speciϐic, 18, 277, 334, 335, 336, 341, 359, 360

interface block, 18, 46, 271, 277, 326, 333–336, 359,
360, 634

interface body, 18, 24, 47, 115, 118, 121, 135, 183,
333, 333, 362, 363, 366, 368, 552, 573, 575,
576, 634

INTERFACE statement, 333, 634
interface‑block (R1501), 43, 333, 334
interface‑body (R1505), 333, 333, 334
interface‑name (R1516), 91, 92, 340, 341, 341
interface‑speciϔication (R1502), 333, 333, 334
interface‑stmt (R1503), 333, 333, 334, 336, 576
internal ϐile, 18, 242, 248–250, 252, 261, 266, 268,

269, 271, 273, 275, 289, 291, 310, 311, 585,
587

internal procedure, 21, 46, 193, 330–333, 344, 345,

353, 361, 363, 366, 394, 568, 571, 573, 576
internal subprogram, 27, 46–48, 135, 138, 330, 359,

575
internal unit, 19, 249, 252, 268, 274, 283, 292, 494
internal‑ϔile‑variable (R1203), 249, 249, 260, 292,

590
internal‑subprogram (R512), 43, 43
internal‑subprogram‑part (R511), 42, 43, 44, 324,

363–366
interoperable, 18, 101, 102, 113, 363, 369, 537,

539–541, 544–552, 566, 567
interoperable enumeration, 101, 537
interoperate, 537
intrinsic, 18, 50, 51, 53, 54, 56, 66, 69, 94, 106, 121,

331, 332, 352, 360, 361, 373, 491, 571, 573
intrinsic assignment statement, 39, 99, 154, 162,

164, 181,187, 192, 193, 215, 241, 249, 281,
292, 321, 371, 376, 380, 387, 407, 485, 585,
592

INTRINSIC attribute, 121, 123, 123, 124, 325, 342,
359, 360, 577

intrinsic function, 375
INTRINSIC module nature, 326
intrinsic operation, 170, 172–178
intrinsic procedure, 375–490
INTRINSIC statement, 329, 342
intrinsic subroutines, 375
intrinsic type, 29, 50, 65, 70–78, 551, 555
intrinsic‑operator (R608), 59, 60, 166, 169, 172,

178, 179, 337
intrinsic‑procedure‑name, 342, 576
intrinsic‑stmt (R1519), 44, 342, 576
intrinsic‑type‑spec (R704), 67, 68, 70, 76
io‑control‑spec (R1213), 250, 258, 259, 259, 260,

263, 273, 292
io‑implied‑do (R1218),264, 264–266, 269, 292, 585,

587, 589, 625
io‑implied‑do‑control (R1220), 264, 264, 267
io‑implied‑do‑object (R1219), 264, 264, 269
io‑unit (R1201), 249, 249, 250, 259, 260, 371
IOLENGTH= speciϐier, 248, 281, 289
iomsg‑variable (R1207), 253, 253, 257, 259, 278,

279, 281, 282, 290–292, 585
IOMSG= speciϐier, 253, 257, 259, 278, 279, 281, 282,

290, 291, 292, 585
IOR, 210, 215, 401, 437
IOSTAT= speciϐier, 253, 257, 259, 274, 278, 279, 281,

282, 290, 291, 291, 439, 494, 585, 594, 625
IOSTAT_END, 274, 291, 494

J3/25‑007 687

J3/25‑007 WD 1539‑1 2024‑12‑29

IOSTAT_EOR, 274, 291, 494
IOSTAT_INQUIRE_INTERNAL_UNIT, 274, 291, 494,

497
IPARITY, 437
IS_CONTIGUOUS, 69, 438
IS_IOSTAT_END, 439
IS_IOSTAT_EOR, 439
ISHFT, 438
ISHFTC, 438
ISO 10646 character, 19, 74, 78, 187, 248, 249, 254,

266, 299, 314, 315, 456, 471
ISO_C_BINDING, 69, 84, 95, 114, 121, 147, 156, 157,

183, 184, 190, 371, 491, 537–547, 587–
589, 607

ISO_Fortran_binding.h, 552
ISO_FORTRAN_ENV, 37, 80, 84, 114, 122, 147, 155–

157, 163, 184, 190, 207, 228–230, 236–
238, 240, 248–250, 255, 268, 273, 274, 291,
379, 380, 397–401, 423, 424, 429, 435, 454,
459, 480, 481, 483, 484, 491–497, 587, 589,
595, 596, 625

K
k (R1314), 295, 295, 303, 309, 312
keyword, 19

argument, 19, 55, 332, 336, 346, 375, 380, 381,
505, 571, 573, 634

component, 19, 55, 89, 99, 572
statement, 19, 55
type parameter, 19, 55, 98

keyword (R516), 55, 55, 98, 343, 344
KIND, 71–74, 78, 83, 102, 149, 189, 190, 439
kind type parameter, 30, 35, 50, 66, 70–74, 76, 78,

83, 93, 94, 102, 106, 166, 185–189, 318,
338, 344, 346–348, 363, 417, 423, 470, 493,
495, 496, 537, 538, 546, 607

kind‑param (R709), 71, 71–73, 75, 76, 78
kind‑selector (R706), 34, 70, 70, 71, 78

L
L edit descriptor, 307
label, see statement label
label (R611), 60, 60, 210, 211, 227, 228, 253, 257–

259, 261, 278, 279, 281–283, 290, 291, 344
label‑do‑stmt (R1121), 210, 210, 211
language‑binding‑spec (R808), 109, 110, 113, 129,

363
LBOUND, 69, 188, 194, 204, 223, 439
lbracket (R780), 84, 106, 106, 109, 110, 128, 129,

134, 154, 156

LCOBOUND, 440
leading zero mode, 255, 263, 312
leading‑zero‑edit‑desc (R1319), 295, 296
LEADING_ZERO= speciϐier, 253, 255, 259, 260, 263,

282, 285, 312
LEADZ, 441
left tab limit, 311
LEN, 149, 441
LEN_TRIM, 441
length type parameter, 30, 50, 66, 78, 87, 107, 124,

159, 188, 348, 441, 544, 546
length‑selector (R722), 34, 75, 75, 76
letter, 57, 57, 58, 60, 135, 166, 169
letter‑spec (R869), 135, 135
level‑1‑expr (R1003), 166, 166, 167, 170
level‑2‑expr (R1007), 166, 166, 167, 170
level‑3‑expr (R1011), 167, 167, 168
level‑4‑expr (R1013), 167, 168
level‑5‑expr (R1018), 168, 168, 169
lexical token, 19, 33, 58, 61
LGE, 78, 442
LGT, 78, 442
line, 19, 61–64
linkage association, 5, 567, 574, 577, 577
list‑directed formatting, 271, 314–318
list‑directed input/output statement, 261
literal constant, 10, 52, 146, 181
literal‑constant (R605), 59, 59, 165
LLE, 78, 443
LLT, 78, 443
LOCAL, 210, 215, 217, 573, 574, 580, 588
local identiϐier, 570, 571
local procedure pointer, 21, 365
local variable, 32, 37, 39, 51, 53, 111, 113, 115, 118,

125, 127, 158, 160, 161, 345, 365, 370
local‑deϔined‑operator (R1414), 326, 327, 327
local‑name, 326, 327
LOCAL_INIT, 210, 215, 573, 574, 580, 586, 588
locality, 215, 216, 573, 574, 580, 586, 588
locality‑spec (R1130), 210, 210, 211
LOCK statement, 230, 238, 240, 241, 494, 495, 497,

587, 590
lock variable, 32, 49, 240, 494, 497, 587, 589
lock‑stat (R1184), 238, 238
lock‑stmt (R1183), 45, 238
lock‑variable (R1186), 238, 238–240, 495, 590
LOCK_TYPE, 38, 80, 122, 157, 238, 494
LOG, 40, 444
LOG10, 444

688 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

LOG_GAMMA, 444
LOGICAL, 444
logical intrinsic operation, 176
logical type, 78
logical‑expr (R1025), 166, 171, 181, 181, 196, 210,

212–214, 218, 219, 228, 344, 346
logical‑literal‑constant (R725), 59, 78, 166, 169
logical‑variable (R904), 145, 145, 238–240, 282,

285, 286, 590
LOGICAL16, 495
LOGICAL32, 495
LOGICAL64, 495
LOGICAL8, 495
LOGICAL_KINDS, 495
loop‑control (R1123), 210, 210, 212, 213, 217
lower‑bound (R816), 117, 117–120
lower‑bound‑expr (R936), 156, 156, 192
lower‑bounds‑expr (R937), 156, 156–158, 192, 194
lower‑cobound (R812), 115, 115
LZ edit descriptor, 312
LZP edit descriptor, 312
LZS edit descriptor, 312

M
m (R1309), 295, 295, 300, 306, 307
main program, 19, 45, 46, 48, 49, 51
main‑program (R1401), 42, 46, 137, 324, 324
mask‑expr (R1047), 196, 196–200, 210, 211, 213
masked array assignment, 20, 196, 585
masked array assignment (WHERE), 196
masked‑elsewhere‑stmt (R1048), 196, 196, 197, 200
MASKL, 445
MASKR, 445
MATMUL, 445
MAX, 210, 215, 374, 377, 446
MAXEXPONENT, 447
MAXLOC, 377, 447
MAXVAL, 448
MERGE, 449
MERGE_BITS, 450
MIN, 210, 215, 450
MINEXPONENT, 450
MINLOC, 451
MINVAL, 452
MOD, 40, 453
mode

blank interpretation, 254
changeable, 250
connection, 250

decimal edit, 254
delimiter, 254
halting, 498, 503, 503, 507, 509, 524, 530, 531,

569, 596
IEEE rounding, 498, 499, 502, 503, 504
input/output rounding, 250, 256, 263, 288,

306, 312, 313, 531
leading zero, 255, 263, 312
pad, 255
sign, 256, 312
underϐlow, 503, 503, 506, 511, 526, 534, 596

model
bit, 377
extended real, 378
integer, 378
real, 378

MODULE, 334, 334, 335, 362, 362, 366
module, 20, 45, 46, 51, 324
module (R1404), 42, 137, 325
module procedure, 22, 91, 139, 193, 330–335, 341,

344, 353, 361, 362, 366, 367, 370, 372, 373,
491, 571, 573

module procedure interface body, 138, 335
module reference, 23, 325
MODULE statement, 324, 325
module subprogram, 27, 46–48, 135, 138, 359, 575
module‑name, 325–327, 575
module‑nature (R1410), 326, 326, 327
module‑stmt (R1405), 42, 325, 325
module‑subprogram (R1408), 43, 325, 325, 367
module‑subprogram‑part (R1407), 42, 93, 97, 325,

325, 328, 638
MODULO, 40, 453
MOLD= speciϐier, 155, 606
MOVE_ALLOC, 159, 231, 375, 453
mp‑subprogram‑stmt (R1542), 44, 366, 366
mult‑op (R1009), 59, 166, 167, 167
mult‑operand (R1005), 166, 166, 167, 170
multiple‑subscript (R920), 150, 150, 151
multiple‑subscript‑triplet (R923), 150, 150, 151
MVBITS, 375, 376, 455

N
n (R1316), 296, 296, 311
name, 20, 55, 58, 570
name (R603), 34, 55, 58, 58, 59, 110, 134, 145, 210,

216, 225, 269, 341, 364
name association, 5, 55, 574, 581
name‑value subsequence, 318, 319

J3/25‑007 689

J3/25‑007 WD 1539‑1 2024‑12‑29

NAME= speciϐier, 110, 113, 129, 282, 283, 285, 341,
341, 363, 567

named constant, 10, 38, 52, 55, 58, 66, 71, 74–76,
102, 104, 120, 123, 124, 128, 130, 131, 133,
140, 146, 369

named‑constant (R606), 59, 59, 64, 73, 74, 101, 133,
575

named‑constant‑def (R856), 133, 133, 575
NAMED= speciϐier, 282, 285
namelist formatting, 271, 318–323
namelist input/output statement, 261
NAMELIST statement, 139, 205, 319, 327
namelist‑group‑name, 139, 140, 259–261, 268, 270,

293, 319, 323, 327, 576, 590
namelist‑group‑object (R873), 139, 139, 269, 271,

277, 292, 318, 319, 322, 323, 327
namelist‑stmt (R872), 44, 139, 576, 590
NaN, 16, 301–305, 309, 387, 422, 426, 469, 473,

477, 500, 504, 507, 508, 512, 531, 532
NEAREST, 455
NEW_INDEX= speciϐier, 237, 593
NEW_LINE, 308, 456
NEWUNIT= speciϐier, 249, 253, 255, 274, 586, 590,

606
NEXT, 456
NEXTREC= speciϐier, 282, 286
NINT, 457
NML= speciϐier, 259, 261, 590
NON_INTRINSIC module nature, 326
NON_OVERRIDABLE attribute, 91, 92
NON_RECURSIVE attribute, 332, 362, 362, 366, 368
nonadvancing input/output statement, 246
nonblock DO construct, 598
NONE, 135, 137, 210
nonexecutable statement, 25, 46
nonlabel‑do‑stmt (R1122), 210, 210, 211
NOPASS, 85, 87, 92
NOPASS attribute, see PASS attribute
NORM2, 457
normal number, 504
normal termination, 16, 48, 49, 49, 95, 228, 229,

243, 257, 435, 480, 497
NOT, 457
not‑op (R1019), 59, 168, 168
notify variable, 32, 49, 231, 495
NOTIFY WAIT statement, 155, 229, 231, 495, 587,

592
notify‑variable (R1167), 154, 229, 229, 495, 590
notify‑wait‑stmt (R1166), 45, 229

NOTIFY= speciϐier, 154, 230, 231, 495, 587
NOTIFY_TYPE, 80, 122, 157, 229, 495
NULL, 100, 110, 182, 185, 354, 376, 458, 579
null‑init (R806), 87, 88, 110, 110, 112, 130–132,

341, 342
NULLIFY statement, 160
nullify‑stmt (R942), 45, 160, 590
NUM_IMAGES, 184, 185, 459, 489
NUMBER= speciϐier, 282, 286
numeric conversion, 189
numeric editing, 299
numeric intrinsic operation, 173
numeric sequence type, 24, 81, 141, 143, 144, 583,

586
numeric storage unit, 26, 144, 496, 581, 586, 588
numeric type, 29, 70–74, 172–174, 177, 180, 189,

417, 446, 463, 481
numeric‑expr (R1028), 181, 181
NUMERIC_STORAGE_SIZE, 496

O
O edit descriptor, 306
object, 11, 50–53
object designator, 13, 51, 52, 126, 130, 147, 183,

318, 319
object‑name (R804), 110, 110, 128, 129, 133, 134,

145, 153, 154, 215, 575
obsolescent feature, 35, 36, 41, 598–600
octal‑constant (R775), 105, 105
ONLY, 137, 137, 138, 326, 327, 328, 577, 631, 632
only (R1412), 326, 326, 327
only‑use‑name (R1413), 326, 326, 327
OPEN statement, 41, 243, 244, 249–251, 252, 252,

257, 261, 270, 271, 275, 285, 289, 306, 321,
586, 590, 593, 594, 624, 626–628

open‑stmt (R1204), 45, 252, 371
OPENED= speciϐier, 282, 286
operand, 20
operation, 65

deϐined, 12, 91, 169, 178, 179, 179–182, 210,
330, 337, 343, 358, 371

elemental, 14, 171, 182, 183, 198
intrinsic, 170, 172–178
logical, 176
numeric , 173
relational, 177

OPERATOR, 66, 91, 179, 326, 334, 337, 634
operator, 20, 59

character, 167

690 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

deϐined binary, 168
deϐined unary, 166
elemental, 14, 171, 499
logical, 168
numeric, 166
relational, 167

operator precedence, 169
OPTIONAL attribute, 68, 123, 123, 127, 133, 183,

204, 211, 333
optional dummy argument, 355
OPTIONAL statement, 132, 205
optional‑stmt (R854), 44, 132
or‑op (R1021), 59, 168, 168
or‑operand (R1016), 168, 168
other‑speciϔication‑stmt (R513), 43, 44
OUT, 121
OUT_OF_RANGE, 459
output statement, 258, 308
output‑item (R1217), 258, 259, 264, 264, 277, 282
OUTPUT_UNIT, 249–251, 255, 273, 496
override, 88, 96, 109, 110, 135, 271, 299, 583

P
P edit descriptor, 312
PACK, 460
pad mode, 255
PAD= speciϐier, 40, 41, 253, 255, 259, 260, 263, 275,

282, 286
padding, 377, 377, 436, 467
PARAMETER attribute, 52, 102, 111, 123, 123, 124,

133, 146
PARAMETER statement, 133, 135, 329
parameter‑stmt (R855), 43, 133, 575
parent component, 9, 89, 90, 94, 96, 99, 583, 614
parent data transfer statement, 263, 273, 271–275,

292, 317
parent team, 28, 54, 155, 208, 235, 237, 423, 429,

435, 459, 480, 483, 484, 496
parent type, 30, 80, 83, 90, 94–96, 339, 614
parent‑identiϔier (R1418), 328, 328
parent‑string (R909), 116, 146, 146
parent‑submodule‑name, 328
parent‑type‑name, 79
PARENT_TEAM, 429, 496
parentheses, 180
PARITY, 461
part‑name, 147, 148, 154
part‑ref (R912), 116, 130, 140, 147, 147–150, 152,

154, 412, 434, 440, 484, 489

partially associated, 582
PASS attribute, 85, 87, 92, 343
passed‑object dummy argument, 20, 87, 91, 92, 97,

339, 340, 346, 646
PAUSE statement, 597
pending affector, 113, 262, 267, 569
PENDING= speciϐier, 282, 283, 286
POINTER, 84, 85, 86
pointer, 20, 54, 81, 86, 154, 160, 161, 163, 185, 331–

333, 349, 371, 480, 537, 563, 578, 643
procedure, 541

pointer assignment, 21, 119, 121, 160, 190, 191–
193, 355, 579

pointer assignment statement, 66, 87, 99, 181, 191,
194, 200, 385

pointer association, 5, 52, 55, 95, 97, 99, 116, 122,
124, 126, 127, 147, 161, 163, 191, 193, 194,
215, 216, 231, 234, 267, 331, 347, 349, 352,
354, 355, 364, 366, 381, 393, 394, 454, 458,
540–542, 554, 565, 569, 578–643

pointer association context, 121, 124, 371, 590
pointer association status, 578
POINTER attribute, 66, 68, 69, 78, 84, 85, 110, 119,

120, 124, 124, 126, 131, 133, 147, 148,
151, 160, 192, 193, 204, 215, 222, 223, 331,
333–335, 338, 339, 341, 345, 347, 351, 353,
355–357, 363, 371, 373, 544, 549, 565, 578,
580, 583, 584, 607, 645, 649

POINTER statement, 133, 329
pointer‑assignment‑stmt (R1034), 45,192, 192, 199,

371, 590
pointer‑decl (R858), 133, 133
pointer‑object (R943), 160, 160, 590
pointer‑stmt (R857), 44, 133, 575
polymorphic, 21, 37–39, 69, 70, 87, 100, 119, 121,

147, 160, 181, 187, 188, 193, 194, 204, 211,
214, 223, 224, 226, 265, 271, 331–333, 343,
347–349, 351, 370, 371, 407, 423, 449, 454,
470, 480, 578, 584

POPCNT, 461
POPPAR, 462
POS= speciϐier, 246, 247, 259, 260, 263, 263, 282,

287, 594
position edit descriptor, 310
position‑edit‑desc (R1315), 295, 296
position‑spec (R1227), 279, 279
POSITION= speciϐier, 252, 253, 256, 282, 287, 626
positional arguments, 375
potential subobject component, 9, 38, 78–80, 84,

J3/25‑007 691

J3/25‑007 WD 1539‑1 2024‑12‑29

114, 126, 127, 156, 157, 162, 163, 187, 350,
356, 358, 371, 408, 493–495

power‑op (R1008), 59, 166, 167, 167
pre‑existing, 583
precedence of operators, 169
PRECISION, 72, 462, 523
preconnected,21, 244, 250–252, 255, 261, 268, 492,

493, 496
preconnection, 252
preϔix (R1529), 362, 362, 363, 365
preϔix‑spec (R1530), 362, 362, 363, 370, 372, 373
PRESENT, 69, 123, 183, 184, 355, 376, 462, 644
present, 355
PREVIOUS, 462
primary, 165
primary (R1001), 165, 165–167, 369
PRINT statement, 244, 250, 254, 258, 268, 273, 275,

278
print‑stmt (R1212), 45, 258, 371
PRIVATE attribute, 81, 97, 112, 112, 128, 371, 632
PRIVATE statement, 90, 91, 93, 128, 327
private‑components‑stmt (R745), 80, 90, 90
private‑or‑sequence (R729), 79, 80, 80
proc‑attr‑spec (R1514), 340, 340, 341
proc‑component‑attr‑spec (R742), 85, 85, 86
proc‑component‑def‑stmt (R741), 84, 85, 85
proc‑component‑ref (R1040), 193, 193, 343, 344,

356
proc‑decl (R1515), 85, 88, 340, 341, 341, 342
proc‑interface (R1513), 85, 340, 340, 341
proc‑language‑binding‑spec (R1531), 340, 341, 363,

363–365, 369, 550
proc‑pointer‑init (R1517), 341, 341
proc‑pointer‑name (R862), 134, 134, 160, 193
proc‑pointer‑object (R1039), 192, 193, 193, 199,

590
proc‑target (R1041), 98–100, 192, 193, 193, 199,

355
PROCEDURE, 85, 91, 340, 366
procedure, 21, 56, 123, 333

characteristics of, 331
dummy, 21, 121, 135, 139, 184, 193, 331, 333–

335, 339–341, 344, 353, 354, 360, 361, 363,
370, 372, 373, 568, 571, 576

elemental, 14, 53, 182, 193, 341, 344, 355, 360,
362, 372, 373, 373, 375, 376

external, 21, 35, 36, 46, 91, 121, 135, 193, 235,
330, 331, 333, 335, 336, 340, 341, 344, 353,
354, 361, 570, 571, 575, 576, 633, 634, 638,

641
internal, 21, 46, 193, 330–333, 344, 345, 353,

361, 363, 366, 394, 568, 571, 573, 576
intrinsic, 375–490
module, 22, 91, 139, 193, 330–335, 341, 344,

353, 361, 362, 366, 367, 370, 372, 373, 491,
571, 573

non‑Fortran, 368
pure, 22, 37, 39, 97, 195, 199, 210, 331, 333–

335, 342, 353, 362, 363, 368, 370–372,
372, 375, 467

simple, 22, 97, 195, 331, 333, 335, 342, 353,
363, 370,372, 375, 381, 453, 455, 478, 485,
491, 499, 505, 507, 539

type‑bound, 22, 78–80, 87, 92, 92–97, 190, 277,
326, 337, 343, 346, 348, 361, 370, 372, 373,
571, 572

procedure declaration statement, 121, 332, 335,
340, 368, 385, 573

procedure designator, 13, 53
procedure interface, 332
procedure pointer, 20, 46, 48, 66, 85–88, 99, 100,

110, 121, 122, 124, 125, 134, 142, 165,
193, 194, 203, 264, 331, 335, 340, 344–346,
353–355, 360, 364, 366, 370, 372, 373, 393,
394, 458, 541, 543, 568, 572, 576, 580, 643

procedure reference, 23, 39, 52, 123, 149, 274, 331,
337, 343, 346

generic, 339
resolving, 359
type‑bound, 361

PROCEDURE statement, 333, 334, 336
procedure‑component‑name, 193
procedure‑declaration‑stmt (R1512), 43, 340, 341,

342
procedure‑designator (R1522), 343, 343, 356, 361
procedure‑entity‑name, 341, 342
procedure‑name, 91, 92, 193, 195, 334, 341, 343,

344, 366
procedure‑stmt (R1506), 333, 334, 334
processor, 22, 35, 36, 56
processor dependent, 22, 36, 56, 591–596
procptr‑entity‑name, 133
PRODUCT, 463
program, 22, 35, 36, 46
program (R501), 42
PROGRAM statement, 324
program unit, 22, 35, 42, 45–49, 55, 57, 58, 60–

64, 82, 125, 135, 249, 250, 257, 324, 328,

692 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

429, 566, 570, 571, 578, 599, 608, 630–634,
637–639, 641, 654

program‑name, 324
program‑stmt (R1402), 42, 324, 324
program‑unit (R502), 34, 42, 42, 46
PROTECTED attribute, 37, 124, 124, 125, 134, 141,

215, 326
PROTECTED statement, 133
protected‑stmt (R859), 44, 133
PUBLIC attribute, 97, 112, 112, 128, 632
PUBLIC statement, 128, 327
PURE, 362, 363, 368, 370
pure procedure, 22, 37, 39, 97, 195, 199, 210, 331,

333–335, 342, 353, 362, 363, 368, 370–
372, 372, 375, 467

Q
QUIET= speciϐier, 228

R
r (R1306), 294, 294, 295, 297
RADIX, 72, 463, 499, 523
RANDOM_INIT, 464, 465, 595
RANDOM_NUMBER, 465, 465
RANDOM_SEED, 376, 464, 465
RANGE, 71, 72, 466, 523
RANK, 69, 117, 119, 125, 126, 466
rank, 22, 51–54, 85, 87, 93, 94, 99, 100, 109, 114,

116–120, 133, 144, 147, 148, 150, 152,
154, 156, 157, 159, 179, 181, 182, 187–189,
191, 192, 194, 195, 204, 233, 332, 337–339,
347, 349, 351, 355, 360, 373, 385, 390–392,
412–415, 419, 424, 425, 431, 432, 437, 440,
446–449, 451–454, 457, 458, 460, 461,
463, 465, 467, 468, 474, 477, 479, 481, 484,
487–489, 536, 540, 549, 574, 582, 645–647

RANK (*), 119, 222
RANK DEFAULT, 120, 222
rank‑clause (R830), 109, 118, 119, 125, 126
rbracket (R781), 84, 106, 106, 109, 110, 128, 129,

134, 154, 156
RC edit descriptor, 313
RD edit descriptor, 313
READ (FORMATTED), 271, 272, 334
READ (UNFORMATTED), 271, 272, 334
READ statement, 41, 52, 245, 250, 254, 258, 268,

273, 274, 278, 281, 290, 588, 624–626, 628,
630

read‑stmt (R1210), 45, 258, 259, 371, 589, 590
READ= speciϐier, 282, 287

READWRITE= speciϐier, 283, 287
REAL, 148, 189, 377, 378, 466, 500
real and complex editing, 300
real model, 378
real part, 73
real type, 72–73, 73
real‑literal‑constant (R714), 59, 72, 72
real‑part (R719), 73, 73
REAL128, 496
REAL16, 496
REAL32, 496
REAL64, 496
REAL_KINDS, 496
REC= speciϐier, 247, 259, 260, 263
RECL= speciϐier, 253, 256, 270, 271, 283, 287, 289,

588, 593
record, 23, 242
record ϐile, 23, 242, 244, 246, 248
record number, 245
RECURSIVE, 75, 362, 362, 368
recursive input/output statement, 292
REDUCE, 210, 215, 216, 467
reduce‑operation (R1131), 210, 210, 211, 215, 216
reference, 23, 53

procedure, 39
rel‑op (R1014), 59, 167, 167, 177, 501
relational intrinsic operation, 177
rename (R1411), 326, 326, 327, 571
rep‑char, 76, 76, 296, 315, 320
REPEAT, 468
repeat speciϐication, 294
representation method, 70, 72, 74, 78
RESHAPE, 107, 108, 469
resolving procedure reference, 359
resolving procedure references

deϐined input/output, 277
restricted expression, 183
RESULT, 364, 364, 366, 367
result‑name, 364, 367, 576
RETURN statement, 49, 95, 125, 144, 161, 162, 206,

208, 214, 368, 540, 589
return‑stmt (R1545), 45, 48, 368, 368
REWIND statement, 243, 244, 247, 275, 278, 280,

280, 625
rewind‑stmt (R1226), 45, 279, 371
RN edit descriptor, 313
round edit descriptor, 313
round‑edit‑desc (R1320), 295, 296

J3/25‑007 693

J3/25‑007 WD 1539‑1 2024‑12‑29

ROUND= speciϐier, 253, 256, 259, 260, 263, 275,
283, 288, 313

rounding mode
IEEE, 498, 499, 502, 503, 504, 510, 522, 525,

532
input/output, 250, 256, 263, 288, 306, 312,

313, 531
RP edit descriptor, 313
RRSPACING, 469
RU edit descriptor, 313
RZ edit descriptor, 313

S
S edit descriptor, 312
SAME_TYPE_AS, 184, 469
SAVE attribute, 41, 54, 88, 95, 111–114, 125, 125,

129, 134, 141, 144, 162, 215, 342, 370, 580
SAVE statement, 134, 205, 206, 329, 572
save‑stmt (R860), 44, 134, 575
saved, 23, 578, 584
saved‑entity (R861), 134, 134, 205
scalar, 23, 373
scalar‑expr, 106
scalar‑xyz (R403), 34, 34
SCALE, 470
scale factor, 295, 312
SCAN, 471
scoping unit, 24, 45, 47, 48, 51, 55, 56, 76, 81,

82, 90, 95, 99, 111–113, 121, 123, 125,
128, 134, 135, 137–140, 142–144, 158,
161, 184, 193, 206, 211, 215, 216, 262,
265, 266, 325–327, 332, 335, 339, 359–
362, 364, 367, 369, 498, 500, 566, 571–577,
580, 582, 583, 587, 632, 641, 646

section subscript, 152
section‑subscript (R921), 147, 148, 150, 150, 152–

154
segment, 24, 158, 162, 207–209, 230, 231, 231–

235, 237–239, 379, 421, 454, 492, 493, 495
SELECT CASE construct, 49, 219, 599, 616
SELECT CASE statement, 62, 219
SELECT RANK construct, 49, 54, 119, 120, 204, 222,

356, 573, 574, 590
SELECT RANK statement, 54, 121, 222, 578
SELECT TYPE construct, 49, 54, 66, 68, 204, 224,

356, 573, 574, 578, 590
SELECT TYPE statement, 54, 62, 224, 578
select‑case‑stmt (R1143), 219, 219, 220, 227
select‑construct‑name, 222, 224, 225

select‑rank‑case‑stmt (R1152), 222, 222, 223
select‑rank‑construct (R1150), 44, 222, 222
select‑rank‑stmt (R1151), 222, 222, 227
select‑type‑construct (R1154), 44, 224, 225
select‑type‑stmt (R1155), 224, 224, 225, 227
SELECTED_CHAR_KIND, 74, 471
SELECTED_INT_KIND, 71, 83, 472
SELECTED_LOGICAL_KIND, 472
SELECTED_REAL_KIND, 72, 376, 473, 608
selector, 203
selector (R1105),203, 203, 204, 206, 207, 222, 224–

226, 356, 578, 590
separate module procedure, 366
separate module subprogram statement, 366
separate‑module‑subprogram (R1541), 44, 325,

366, 366
sequence, 24
sequence association, 354
SEQUENCE attribute, 79, 80, 81, 82, 95, 142, 192,

194, 225, 547
SEQUENCE statement, 80
sequence structure, 24
sequence type, 24, 38, 79, 81, 81, 140, 141, 548, 581

character, 24, 81, 141, 143, 144, 583, 586
numeric, 24, 81, 141, 143, 144, 583, 586

sequence‑stmt (R731), 80, 80
sequential access, 244
sequential access data transfer statement, 263
SEQUENTIAL= speciϐier, 283, 288
SET_EXPONENT, 473
SHAPE, 69, 474
shape, 24, 53, 231
SHARED, 210, 215, 216
SHIFTA, 474
SHIFTL, 474
SHIFTR, 475
sibling teams, 28, 237, 435, 459, 483
SIGN, 40, 41, 72, 475
sign (R712), 71, 71, 72, 301
sign mode, 256, 299, 312
sign‑edit‑desc (R1321), 295, 296
SIGN= speciϐier, 253, 256, 259, 260, 264, 283, 288,

312
signed‑digit‑string (R710), 71, 73, 300, 301
signed‑int‑literal‑constant (R707), 71, 71, 73, 130,

295
signed‑real‑literal‑constant (R713), 72, 73, 130
signiϔicand (R715), 72, 72
SIMPLE, 362, 363, 370

694 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

simple procedure, 22, 97, 195, 331, 333, 335, 342,
353, 363, 370,372, 375, 381, 453, 455, 478,
485, 491, 499, 505, 507, 539

simply contiguous,25,153, 154, 154, 194, 347, 349,
350, 352, 354, 542

SIN, 475
SIND, 476
SINH, 476
SINPI, 476
SIZE, 69, 477
size, 25, 53
size of a common block, 143
SIZE= speciϐier, 259, 264, 283, 288, 290, 291, 585,

588, 625
source‑expr (R932), 155, 156, 156, 157, 159, 160,

371, 579, 580
SOURCE= speciϐier, 155, 157, 160, 371, 493, 496,

586, 588, 606
SP edit descriptor, 312
SPACING, 477
special character, 58
speciϐic interface, 18, 277, 334, 335, 336, 341, 359,

360
speciϐic interface block, 18, 335
speciϐic name, 25
speciϔic‑procedure (R1507), 334, 334, 336
speciϐication, 109–144
speciϐication expression,25, 48, 49, 83, 95, 113, 149,

183, 184, 184, 185, 205, 367, 500, 599, 606
speciϐication function, 184
speciϐication inquiry, 184
speciϔication‑construct (R508), 43, 43
speciϔication‑expr (R1029), 111, 115, 117, 183, 183,

373
speciϔication‑part (R504), 42, 43, 43, 44, 48, 91, 112,

113, 127, 184, 186, 324, 325, 328, 329, 333,
334, 363, 365, 366, 370, 372, 373

SPLIT, 478
SPREAD, 479
SQRT, 40, 479, 505, 532, 533
SS edit descriptor, 312
standard intrinsic, 18, 35, 491, 603
standard‑conforming program, 35
stat‑variable (R946), 49, 154, 155, 157, 161, 163,

163, 164, 227, 229, 230, 232, 233, 236–241,
253, 257, 259, 278, 279, 281, 282, 290, 291,
439, 587, 589, 590, 592

STAT= speciϐier, 154, 155, 159, 161, 163, 209, 230,
232, 239, 496, 497, 586, 587, 589, 592, 604

STAT_FAILED_IMAGE, 49, 155, 163, 240, 241, 379,
380, 424, 454, 496, 497

STAT_LOCKED, 240, 241, 497, 497
STAT_LOCKED_OTHER_IMAGE, 240, 241, 497, 497
STAT_STOPPED_IMAGE, 163, 240, 380, 454, 480,

497, 497
STAT_UNLOCKED, 240, 241, 497, 497
STAT_UNLOCKED_FAILED_IMAGE, 240, 241, 497,

497
statement, 25, 61

accessibility, 127
ALLOCATABLE, 128
ALLOCATE, 66, 68, 75, 76, 116, 119, 155, 159,

163, 164, 193, 230, 493, 496, 558, 559, 579,
586, 588, 592

arithmetic IF, 598
ASSIGN, 597
assigned GO TO, 597
assignment, 38, 52, 66, 94, 186, 200, 230, 231,

495, 535, 585, 587
ASSOCIATE, 54, 203, 578
ASYNCHRONOUS, 129, 205, 329, 573, 576
attribute speciϐication, 127–144
BACKSPACE, 243, 247, 275, 278, 279, 280, 625,

626
BIND, 129, 329, 566, 572
BLOCK, 111, 115, 118, 205, 586
BLOCK DATA, 61, 324, 329
CALL, 227, 231, 330, 343, 358, 359, 368, 454
CASE, 219
CHANGE TEAM, 48, 54, 206, 230, 240, 379, 380,

578
CLASS DEFAULT, 224
CLASS IS, 224, 423
CLOSE, 243, 244, 249, 251, 252, 257, 257, 275,

278, 625
COMMON, 140, 142, 142–144, 205, 327, 329,

572, 581–583, 598
component deϐinition, 68, 84
computed GO TO, 227, 228, 598, 599
CONTAINS, 47, 91, 368
CONTIGUOUS, 129
CONTINUE, 228, 597
CRITICAL, 180, 208, 230, 231, 241
CYCLE, 203, 209, 213, 214, 600
DATA, 37, 38, 40, 41, 47, 106, 111, 129, 144,

205, 329, 458, 573, 574, 576, 584, 598, 599
data transfer, 41, 60, 242–245, 247–251, 258,

264, 267–269, 274, 277, 278, 280, 289–

J3/25‑007 695

J3/25‑007 WD 1539‑1 2024‑12‑29

294, 306, 312, 314, 316, 317, 319, 321, 494,
585, 587, 594, 625, 628, 629

DEALLOCATE, 161, 163, 164, 230, 493, 496,
559, 592

deϐined assignment, 39, 191, 191, 358, 589
derived type deϐinition, see statement, TYPE
DIMENSION, 132, 329
DO, 209, 585, 598, 600
DO CONCURRENT, 68, 199, 209
DOWHILE, 209
ELSE, 218
ELSE IF, 62, 218
ELSEWHERE, 62, 196
END, 14, 48, 125, 144, 161, 162, 231, 540, 589
END ASSOCIATE, 62, 203
END BLOCK, 62, 162, 205
END BLOCK DATA, 62, 329
END CRITICAL, 62, 180, 208, 230, 231
END DO, 62, 211
END ENUM, 62, 101
END ENUMERATION TYPE, 103
END FORALL, 61, 199
END FUNCTION, 62, 364
END IF, 62, 218, 597
END INTERFACE, 62, 333
END MODULE, 62, 325
END PROCEDURE, 62, 366
END PROGRAM, 62, 324
END SELECT, 62, 219, 225
END SUBMODULE, 62, 328
END SUBROUTINE, 61, 365
END TEAM, 48, 61, 206, 227, 230, 240, 380
END TYPE, 62, 80
ENDWHERE, 62, 196
ENDFILE, 61, 243, 244, 247, 254, 275, 278, 280,

625
ENTRY, 47, 140, 178, 179, 191, 325, 330, 335,

362, 364, 366, 373, 572, 581–583, 598, 600
ENUM, 101
ENUMERATION TYPE, 103
ENUMERATOR, 101
EQUIVALENCE, 140, 140–144, 205, 327, 329,

581–583, 598, 600
ERROR STOP, 49, 50, 228, 592
EVENT POST, 230, 236, 236, 237, 240, 421, 492,

493, 587, 590, 593
EVENTWAIT, 230, 236, 236, 240, 492, 493, 587,

590, 593
executable, 25, 46

EXIT, 203, 214, 227
EXTERNAL, 121, 340
FAIL IMAGE, 229
ϐile inquiry, 281
ϐile positioning, 243, 279
FINAL, 93
FLUSH, 244, 278, 281, 291
FORALL, 68, 171, 200, 573, 574, 585
FORM TEAM, 48, 207, 230, 237, 240, 587, 589,

590, 593
FORMAT, 35, 47, 60, 205, 261, 293, 293, 325
formatted input/output, 242, 260
FUNCTION, 68, 69, 135, 178, 179, 183, 324, 362,

363, 366–368, 572
GENERIC, 91, 92, 336, 336, 339, 359
GO TO, 62, 227, 227
IF, 170, 219
IMPLICIT, 135, 140, 329
IMPLICIT NONE, 135
IMPORT, 47, 137, 205, 570, 573, 576
input, 258, 259, 625
input/output, 242–292, 585
INQUIRE, 40, 244, 246, 248, 249, 251, 263, 274,

275, 278,281, 291, 292, 494, 585, 588, 590,
594, 624

INTENT, 132, 205
INTERFACE, 333, 634
INTRINSIC, 329, 342
intrinsic assignment, 39, 99, 154, 162, 164, 181,

187, 192, 193, 215, 241, 249, 281, 292, 321,
371, 376, 380, 387, 407, 485, 585, 592

list‑directed input/output, 261
LOCK, 230, 238, 240, 241, 494, 495, 497, 587,

590
MODULE, 324, 325
NAMELIST, 139, 205, 319, 327
namelist input/output, 261
nonexecutable, 25, 46
NOTIFY WAIT, 155, 229, 231, 495, 587, 592
NULLIFY, 160
OPEN, 41, 243, 244, 249–251, 252, 252, 257,

261, 270, 271, 275, 285, 289, 306, 321, 586,
590, 593, 594, 624, 626–628

OPTIONAL, 132, 205
output, 258, 308
PARAMETER, 133, 135, 329
PAUSE, 597
POINTER, 133, 329
pointer assignment, 66, 87, 99, 182, 191, 194,

696 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

200, 385
PRINT, 244, 250, 254, 258, 268, 273, 275, 278
PRIVATE, 90, 91, 93, 128, 327
PROCEDURE, 333, 334, 336
procedure declaration, 121, 332, 335, 340, 368,

385, 573
PROGRAM, 324
PROTECTED, 133
PUBLIC, 128, 327
READ, 41, 52, 245, 250, 254, 258, 268, 273, 274,

278, 281, 290, 588, 624–626, 628, 630
RETURN, 49, 95, 125, 144, 161, 162, 206, 208,

214, 368, 540, 589
REWIND, 243, 244, 247, 275, 278,280, 280, 625
SAVE, 134, 205, 206, 329, 572
SELECT CASE, 62, 219
SELECT RANK, 54, 121, 222, 578
SELECT TYPE, 54, 62, 224, 578
separate module subprogram, 366
SEQUENCE, 80
statement function, 47, 75, 205, 325, 359, 367,

369, 573, 574, 599
STOP, 49, 228, 231, 372, 592
SUBMODULE, 324, 328
SUBROUTINE, 191, 324, 362, 365, 367, 368
SYNC ALL, 208, 230, 232, 233, 234, 240
SYNC IMAGES, 230, 233, 240, 241
SYNC MEMORY, 230, 234, 240, 650
SYNC TEAM, 208, 230, 235, 240
TARGET, 134, 329
TYPE, 79, 82, 83, 112, 575
type declaration, 68, 69, 88, 109, 109–112, 121,

135, 140, 144, 184, 325, 329, 364, 367, 369,
584

type guard, 75, 76, 224
TYPE IS, 224, 470
type parameter deϐinition, 82
type‑bound procedure, 91, 92
unformatted input/output, 243, 260
UNLOCK, 230, 238, 240, 241, 494, 495, 497,

587, 590
USE, 47, 82, 128, 325, 329, 359–361, 571, 573,

575, 577, 631–633, 637
VALUE, 134, 205
VOLATILE, 134, 205, 329, 573, 576
WAIT, 251, 263, 278, 278, 628, 629
WHERE, 171, 196
WRITE, 37–39, 244, 250, 254, 258, 268, 273,

275, 278, 292, 585, 624, 625, 627, 628

statement entity, 25, 215, 570, 571, 573
statement function, 369, 599
statement function statement, 47, 75, 205, 325, 359,

367, 369, 573, 574, 599
statement keyword, 19, 55
statement label, 26, 60, 60, 61, 63, 64, 344, 570
statement order, 47
STATUS= speciϐier, 252, 253, 255, 256, 257, 258,

593, 594, 627
stmt‑function‑stmt (R1547), 43, 325, 328, 334, 369,

575, 576
STOP statement, 49, 228, 231, 372, 592
stop‑code (R1164), 228, 228, 229
stop‑stmt (R1162), 45, 95, 228
stopped image, 16, 49, 158, 162, 163, 380, 454
STOPPED_IMAGES, 479
storage association, 5, 55, 140–144, 367, 371, 480,

581–583
storage sequence, 26, 79, 81, 141–144, 329, 394,

539–541, 560, 581, 581, 582
storage unit, 26, 140–144, 262, 267, 275, 278, 329,

355, 394, 581–583
character, 26, 120, 141, 144, 491, 581, 586, 588
ϐile, 15, 242, 243, 245–248, 256, 262, 263, 269,

270, 280, 287–289, 493, 581
numeric, 26, 144, 496, 581, 586, 588
unspeciϐied, 26, 581, 582, 586, 588

STORAGE_SIZE, 106, 480
stream access, 245
stream access data transfer statement, 263
stream ϐile, 26, 242, 245, 246, 248, 289
STREAM= speciϐier, 283, 288
stride (R924), 150, 150, 151, 153, 267
structure, 26, 50, 51, 79
structure component, 26, 131, 147–149, 547, 614
structure constructor, 26, 50, 55, 65, 89, 98, 99, 131,

132, 181, 183, 185, 458, 494, 572, 610
structure‑component (R913), 130, 145, 146, 148,

154, 156, 160
structure‑constructor (R756), 98, 99, 130, 131, 165,

166, 371
subcomponent, 9, 88, 98, 193, 579, 580, 584, 586,

588
submodule, 27, 45, 46, 51, 138, 328, 575
submodule (R1416), 42, 328
submodule identiϐier, 328
SUBMODULE statement, 324, 328
submodule‑name, 328, 329
submodule‑stmt (R1417), 42, 328, 328, 329

J3/25‑007 697

J3/25‑007 WD 1539‑1 2024‑12‑29

subobject, 27, 51–53, 121, 147, 348, 579
subprogram, 27, 45–49, 51, 135

elemental, 14, 362, 363, 373
external, 27, 45, 330
internal, 27, 46–48, 138, 330, 575
module, 27, 46–48, 138, 575

subroutine, 27
atomic, 27, 49, 231, 232, 375, 379, 381, 397–

401, 421, 491, 496, 589
collective, 27, 375, 379–381, 407–410, 424,

480, 496, 497, 589
subroutine reference, 358
SUBROUTINE statement, 191, 324, 362, 365, 367,

368
subroutine‑name, 334, 335, 365, 572
subroutine‑stmt (R1538), 42, 334, 335, 362, 363,

365, 365, 572, 576
subroutine‑subprogram (R1537), 27, 42–44, 325,

365, 366
subroutines

intrinsic, 375
subscript, 149

section, 152
subscript (R919), 130, 147, 150, 150, 151, 153, 267
subscript triplet, 152
subscript‑triplet (R922), 150, 150, 153
substring, 146
substring (R908), 140, 141, 145, 146
substring ending point., 146
substring starting point, 146
substring‑range (R910), 116, 146, 146, 148, 150,

154, 267
sufϔix (R1535), 363, 364, 366
SUM, 481
SYNC ALL statement, 208, 230, 232, 233, 234, 240
SYNC IMAGES statement, 230, 233, 240, 241
SYNC MEMORY statement, 230, 234, 240, 650
SYNC TEAM statement, 208, 230, 235, 240
sync‑all‑stmt (R1168), 45, 232
sync‑images‑stmt (R1170), 45, 233
sync‑memory‑stmt (R1172), 45, 234
sync‑stat (R1169), 206, 208, 232, 232–241
sync‑team‑stmt (R1173), 45, 235
synchronous input/output, 254, 261, 264, 266
SYSTEM_CLOCK, 37–39, 481

T
T edit descriptor, 311
TAN, 482

TAND, 482
TANH, 483
TANPI, 483
target, 28, 52, 54, 69, 87–89, 94, 100, 112, 114, 116,

119, 121–125, 131, 145, 148, 155, 159–
161, 163, 181, 188, 191, 193, 194, 199, 200,
264, 265, 269, 271, 342, 345, 347, 350, 352,
354, 393, 539, 541, 544, 578–581, 583, 586,
589, 590

TARGET attribute, 5, 37, 88, 124, 126, 126, 134, 140,
144, 160, 161, 192, 204, 215, 223, 331, 333,
338, 348, 349, 351, 352, 356, 357, 409, 454,
467, 539, 542, 544, 566, 579, 580, 588, 589,
607, 643, 644

TARGET statement, 134, 329
target‑decl (R864), 134, 134
target‑stmt (R863), 44, 134, 575
team, 28, 48, 53, 54, 155, 162, 207, 208, 232, 233,

235, 237, 240, 375, 380, 435, 459, 480, 484
current, 379

team number, 28, 155, 237, 435
team variable, 32, 207, 497, 587, 589
team‑construct‑name, 206
team‑number (R1180), 237, 237
team‑value (R1115), 154, 155, 206, 206, 207, 235
team‑variable (R1181), 237, 237, 239, 240, 590
TEAM= speciϐier, 154, 155
TEAM_NUMBER, 184, 185, 483
TEAM_NUMBER= speciϐier, 154, 155
TEAM_TYPE, 84, 114, 147, 156, 157, 190, 207, 237,

423, 429, 435, 459, 480, 483, 484, 497, 589
THEN, 218
THIS_IMAGE, 184, 185, 484
TINY, 477, 485
TKR compatible, 339
TL edit descriptor, 311
TOKENIZE, 485
totally associated, 582
TR edit descriptor, 311
TRAILZ, 486
TRANSFER, 185, 486
transfer of control, 202, 227, 290, 291
transformational function, 28, 185, 369, 375, 375,

376, 381, 402, 403, 491, 492, 505
TRANSPOSE, 487
TRIM, 487
truncation, 378, 436, 467
TYPE, 67
type, 28, 50, 65–107

698 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

abstract, 29, 67, 68, 92, 95, 95, 98, 147, 156
character, 74–78
complex, 73–74
declared, 29, 68, 69, 87, 99, 100, 106, 107, 109,

147, 149, 157, 160, 179, 181, 187, 190, 191,
193, 194, 204, 223, 225, 226, 277, 338, 343,
344, 346, 347, 351, 361, 369, 423, 449, 454,
470, 493, 494, 574

derived, 29, 50, 51, 65, 78–100, 106, 547, 548
dynamic, 29, 69, 94, 95, 97, 100, 107, 127, 157,

158, 160, 163, 179, 181, 188, 190, 191, 193,
194, 204, 224, 225, 231, 234, 277, 343, 351,
361, 423, 449, 454, 469, 470, 480, 574, 578,
584, 615, 657

expression, 181
extended, 29, 83, 89, 90, 94–96, 583, 608, 612
extensible, 29, 67, 79, 80, 87, 95, 271, 423, 470,

614, 648
extension, 29, 69, 95, 97, 225, 351, 423, 648
integer, 70–71
intrinsic, 29, 50, 65, 70–78
logical, 78
numeric, 29, 70–74, 172–174, 177, 180, 189,

417, 446, 463, 481
operation, 182
parent, 30, 80, 83, 90, 94–96, 339, 614
primary, 181
real, 72–73, 73

type compatible, 30, 69, 70, 87, 156, 157, 187, 192,
339, 348, 393, 454

type conformance, 187
type declaration statement, 68, 69, 88, 109, 109–

112, 121, 135, 140, 144, 184, 325, 329, 364,
366, 369, 584

type equality, 81
type guard statement, 75, 76, 224
TYPE IS statement, 224, 470
type parameter, 30, 38, 50, 66, 68–70, 78, 81, 83, 87,

99, 107, 109, 111, 133, 144, 181, 184, 187,
204, 207, 223, 231, 331, 348, 373, 449, 454,
486, 540, 547, 572, 574

type parameter deϐinition statement, 82
type parameter inquiry, 30, 149, 181, 184
type parameter keyword, 19, 55, 98
type parameter order, 31, 83
type speciϐier, 67

CHARACTER, 74
CLASS, 69
COMPLEX, 73

derived type, 68
DOUBLE PRECISION, 72
INTEGER, 71
LOGICAL, 78
REAL, 72
TYPE, 68

TYPE statement, 79, 82, 83, 112, 575
type‑attr‑spec (R728), 79, 79, 95
type‑bound procedure, 22, 78–80, 87, 92, 92–97,

190, 277, 326, 337, 343, 346, 348, 361, 370,
372, 373, 571, 572

type‑bound procedure statement, 91, 92
type‑bound‑generic‑stmt (R751), 91, 91, 337
type‑bound‑proc‑binding (R748), 91, 91
type‑bound‑proc‑decl (R750), 91, 91
type‑bound‑procedure‑part (R746), 79, 81, 91, 93,

548
type‑bound‑procedure‑stmt (R749), 91, 91
type‑declaration‑stmt (R801), 43, 75, 109, 109, 370,

575
type‑guard‑stmt (R1156), 224, 224, 225
type‑name, 79, 80, 82, 92, 97, 98
type‑param‑attr‑spec (R734), 82, 83, 83
type‑param‑decl (R733), 82, 82, 83
type‑param‑def‑stmt (R732), 79, 82, 82, 83
type‑param‑inquiry (R916), 149, 149, 165, 166, 572
type‑param‑name, 79, 82, 83, 85, 149, 165, 166, 572,

575
type‑param‑name‑list, 83
type‑param‑spec (R755), 55, 97, 98, 98
type‑param‑value (R701), 66, 66, 67, 75, 76, 85, 98,

110, 156, 158, 362, 600
type‑spec (R702), 67, 67, 68, 75, 76, 106, 107, 155–

159, 224, 225
TYPEOF, 67

U
UBOUND, 69, 223, 488
UCOBOUND, 488
ultimate argument, 31, 158, 162, 194, 347, 348, 353,

354, 356, 380
ultimate component, 9, 37, 39, 78, 79, 116, 119, 121,

140, 142, 158, 160, 185, 187, 211, 271, 344,
348, 370, 409, 581

ultimate entity, 327
undeϐined, 31, 52, 161, 578, 579, 584, 585
undeϐinition of variables, 584
underϐlow mode, 503, 503, 506, 511, 526, 534, 596
underscore (R602), 57, 57

J3/25‑007 699

J3/25‑007 WD 1539‑1 2024‑12‑29

UNFORMATTED, 271, 272, 334
unformatted data transfer, 269
unformatted input/output statement, 243, 260
unformatted record, 243
UNFORMATTED= speciϐier, 283, 289
Unicode ϐile, 254
unit, 31, 243–245, 249, 249–252, 254, 255, 257,

258, 263, 266–269, 273, 278, 279, 281–
289, 291, 292, 310, 317, 492, 493, 496, 585,
587, 624, 626–629

UNIT= speciϐier, 252, 257, 259, 278, 279, 281, 282
unlimited polymorphic, 31, 68, 69, 107, 142, 156,

157, 192, 225, 351, 393, 423, 470, 480, 657
unlimited‑format‑item (R1305), 293, 294, 294, 298
UNLOCK statement, 230, 238, 240, 241, 494, 495,

497, 587, 590
unlock‑stmt (R1185), 45, 238
unordered segments, 231, 232, 379, 385, 421
UNPACK, 489
unsaved, 31, 160, 161, 365, 579, 580, 586, 587, 589
unspeciϐied storage unit, 26, 581, 582, 586, 588
until‑spec (R1178), 236, 236
UNTIL_COUNT= speciϐier, 236, 421
upper‑bound (R817), 117, 117, 118
upper‑bound‑expr (R938), 156, 156, 192
upper‑bounds‑expr (R939), 156, 156–159, 192, 194
upper‑cobound (R813), 115, 115
use association,5, 21, 37, 46, 56, 69, 76, 96, 112, 113,

124, 127, 128, 135, 139, 141, 142, 183, 184,
193, 325, 324–328, 335, 366, 371, 373,
573–575, 578

use path, 327
USE statement, 47, 82, 128, 325, 329, 359–361, 571,

573, 575, 577, 631–633, 637
use‑deϔined‑operator (R1415), 326, 327, 327
use‑name, 326, 327, 571
use‑stmt (R1409), 43, 205, 326, 327, 575

V
v (R1312), 274, 295, 295, 310
VALUE attribute, 69, 87, 93, 120, 126, 126, 127, 134,

215, 267, 331, 333, 334, 337, 338, 347–350,
352, 363, 370, 373, 409, 467, 550, 551, 569,
580, 654, 655

value separator, 314
VALUE statement, 134, 205
value‑stmt (R865), 44, 134
variable, 31, 51–53, 55, 58, 123

deϐinition & undeϐinition, 584

variable (R902), 99, 106, 130, 145, 145, 154, 186,
188–190, 192, 193, 197–200, 203, 215,
216, 224, 229, 236–238, 264, 344, 346, 356,
535, 589, 590

variable deϐinition, 12
variable‑name (R903), 139, 140, 142, 143, 145, 145,

146, 156, 160, 192, 210, 211, 576, 590
vector subscript, 32, 53, 88, 116, 147, 152, 153, 203,

224, 248, 249, 318, 349, 350, 356, 578, 580,
643

vector‑subscript (R925), 150, 150, 152
VERIFY, 490
VOLATILE attribute, 37, 39, 126, 127, 127, 134, 192,

194, 204, 211, 215, 326, 327, 331, 333, 350,
352, 370, 575, 576, 581, 586, 589, 613

VOLATILE statement, 134, 205, 329, 573, 576
volatile‑stmt (R866), 44, 134

W
w (R1308), 295, 295, 299, 300, 302–310, 315, 317,

320
wait operation, 252, 257, 264, 266–268, 278, 277–

279, 281, 286, 287, 290, 291
WAIT statement, 251, 263, 278, 278, 628, 629
wait‑spec (R1223), 278, 278
wait‑stmt (R1222), 45, 278, 371
WHERE construct, 196
WHERE statement, 171, 196
where‑assignment‑stmt (R1046), 171, 196, 196–

198, 200
where‑body‑construct (R1045), 196, 196, 197
where‑construct (R1043), 44, 196, 196, 198, 200
where‑construct‑name, 196
where‑construct‑stmt (R1044), 196, 196, 197, 200,

227
where‑stmt (R1042), 45, 196, 196, 198, 200
WHILE, 210, 212, 213
whole array, 32, 149, 149, 151, 440, 488
WRITE (FORMATTED), 271, 272, 334
WRITE (UNFORMATTED), 271, 272, 334
WRITE statement, 37–39, 244, 250, 254, 258, 268,

273, 275, 278, 292, 585, 624, 625, 627, 628
write‑stmt (R1211), 45, 258, 259, 371, 590
WRITE= speciϐier, 283, 289

X
X edit descriptor, 311
xyz, 34
xyz‑list (R401), 34

700 J3/25‑007

2024‑12‑29 WD 1539‑1 J3/25‑007

xyz‑name (R402), 34 Z
Z edit descriptor, 306
zero‑size array, 53, 118, 131

J3/25‑007 701

	Contents
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Notation, conformance, and compatibility
	4.1 Notation, symbols and abbreviated terms
	4.1.1 Syntax rules
	4.1.2 Constraints
	4.1.3 Assumed syntax rules
	4.1.4 Syntax conventions and characteristics
	4.1.5 Text conventions

	4.2 Conformance
	4.3 Compatibility
	4.3.1 Previous Fortran standards
	4.3.2 New intrinsic procedures
	4.3.3 Fortran 2023 compatibility
	4.3.4 Fortran 2018 compatibility
	4.3.5 Fortran 2008 compatibility
	4.3.6 Fortran 2003 compatibility
	4.3.7 Fortran 95 compatibility
	4.3.8 Fortran 90 compatibility
	4.3.9 FORTRAN 77 compatibility

	4.4 Deleted and obsolescent features
	4.4.1 General
	4.4.2 Nature of deleted features
	4.4.3 Nature of obsolescent features

	5 Fortran concepts
	5.1 High level syntax
	5.2 Program unit concepts
	5.2.1 Program units and scoping units
	5.2.2 Program
	5.2.3 Procedure
	5.2.4 Module
	5.2.5 Submodule

	5.3 Execution concepts
	5.3.1 Statement classification
	5.3.2 Statement order
	5.3.3 The END statement
	5.3.4 Program execution
	5.3.5 Execution sequence
	5.3.6 Image execution states
	5.3.7 Termination of execution

	5.4 Data concepts
	5.4.1 Type
	5.4.2 Data value
	5.4.3 Data entity
	5.4.4 Definition of objects and pointers
	5.4.5 Reference
	5.4.6 Array
	5.4.7 Coarray
	5.4.8 Established coarrays
	5.4.9 Pointer
	5.4.10 Allocatable variables
	5.4.11 Storage

	5.5 Fundamental concepts
	5.5.1 Names and designators
	5.5.2 Statement keyword
	5.5.3 Other keywords
	5.5.4 Association
	5.5.5 Intrinsic
	5.5.6 Operator
	5.5.7 Companion processors

	6 Lexical tokens and source form
	6.1 Processor character set
	6.1.1 Characters
	6.1.2 Letters
	6.1.3 Digits
	6.1.4 Underscore
	6.1.5 Special characters
	6.1.6 Other characters

	6.2 Low-level syntax
	6.2.1 Tokens
	6.2.2 Names
	6.2.3 Constants
	6.2.4 Operators
	6.2.5 Statement labels
	6.2.6 Delimiters

	6.3 Source form
	6.3.1 Program units, statements, and lines
	6.3.2 Free source form
	6.3.3 Fixed source form (obsolescent)

	6.4 Including source text

	7 Types
	7.1 Characteristics of types
	7.1.1 The concept of type
	7.1.2 Type classification
	7.1.3 Set of values
	7.1.4 Constants
	7.1.5 Operations

	7.2 Type parameters
	7.3 Types, type specifiers, and values
	7.3.1 Relationship of types and values to objects
	7.3.2 Type specifiers
	7.3.3 Type compatibility

	7.4 Intrinsic types
	7.4.1 Classification and specification
	7.4.2 Intrinsic operations on intrinsic types
	7.4.3 Numeric intrinsic types
	7.4.4 Character type
	7.4.5 Logical type

	7.5 Derived types
	7.5.1 Derived type concepts
	7.5.2 Derived-type definition
	7.5.3 Derived-type parameters
	7.5.4 Components
	7.5.5 Type-bound procedures
	7.5.6 Final subroutines
	7.5.7 Type extension
	7.5.8 Derived-type values
	7.5.9 Derived-type specifier
	7.5.10 Construction of derived-type values
	7.5.11 Derived-type operations and assignment

	7.6 Other nonintrinsic types
	7.6.1 Interoperable enumerations and enum types
	7.6.2 Enumeration types

	7.7 Binary, octal, and hexadecimal literal constants
	7.8 Construction of array values

	8 Attribute declarations and specifications
	8.1 Attributes of procedures and data objects
	8.2 Type declaration statement
	8.3 Automatic data objects
	8.4 Initialization
	8.5 Attributes
	8.5.1 Attribute specification
	8.5.2 Accessibility attribute
	8.5.3 ALLOCATABLE attribute
	8.5.4 ASYNCHRONOUS attribute
	8.5.5 BIND attribute for data entities
	8.5.6 CODIMENSION attribute
	8.5.7 CONTIGUOUS attribute
	8.5.8 DIMENSION attribute
	8.5.9 EXTERNAL attribute
	8.5.10 INTENT attribute
	8.5.11 INTRINSIC attribute
	8.5.12 OPTIONAL attribute
	8.5.13 PARAMETER attribute
	8.5.14 POINTER attribute
	8.5.15 PROTECTED attribute
	8.5.16 SAVE attribute
	8.5.17 RANK clause
	8.5.18 TARGET attribute
	8.5.19 VALUE attribute
	8.5.20 VOLATILE attribute

	8.6 Attribute specification statements
	8.6.1 Accessibility statement
	8.6.2 ALLOCATABLE statement
	8.6.3 ASYNCHRONOUS statement
	8.6.4 BIND statement
	8.6.5 CODIMENSION statement
	8.6.6 CONTIGUOUS statement
	8.6.7 DATA statement
	8.6.8 DIMENSION statement
	8.6.9 INTENT statement
	8.6.10 OPTIONAL statement
	8.6.11 PARAMETER statement
	8.6.12 POINTER statement
	8.6.13 PROTECTED statement
	8.6.14 SAVE statement
	8.6.15 TARGET statement
	8.6.16 VALUE statement
	8.6.17 VOLATILE statement

	8.7 IMPLICIT statement
	8.8 IMPORT statement
	8.9 NAMELIST statement
	8.10 Storage association of data objects (obsolescent)
	8.10.1 Obsolescence
	8.10.2 EQUIVALENCE statement
	8.10.3 COMMON statement
	8.10.4 Restrictions on common and equivalence

	9 Use of data objects
	9.1 Designator
	9.2 Variable
	9.3 Constants
	9.4 Scalars
	9.4.1 Substrings
	9.4.2 Structure components
	9.4.3 Coindexed named objects
	9.4.4 Complex parts
	9.4.5 Type parameter inquiry

	9.5 Arrays
	9.5.1 Order of reference
	9.5.2 Whole arrays
	9.5.3 Array elements and array sections
	9.5.4 Simply contiguous array designators

	9.6 Image selectors
	9.7 Dynamic association
	9.7.1 ALLOCATE statement
	9.7.2 NULLIFY statement
	9.7.3 DEALLOCATE statement
	9.7.4 STAT= specifier
	9.7.5 ERRMSG= specifier

	10 Expressions and assignment
	10.1 Expressions
	10.1.1 Expression semantics
	10.1.2 Form of an expression
	10.1.3 Precedence of operators
	10.1.4 Evaluation of operations
	10.1.5 Intrinsic operations
	10.1.6 Defined operations
	10.1.7 Evaluation of operands
	10.1.8 Integrity of parentheses
	10.1.9 Type, type parameters, and shape of an expression
	10.1.10 Conformability rules for elemental operations
	10.1.11 Specification expression
	10.1.12 Constant expression

	10.2 Assignment
	10.2.1 Assignment statement
	10.2.2 Pointer assignment
	10.2.3 Masked array assignment – WHERE
	10.2.4 FORALL

	11 Execution control
	11.1 Executable constructs containing blocks
	11.1.1 Blocks
	11.1.2 Rules governing blocks
	11.1.3 ASSOCIATE construct
	11.1.4 BLOCK construct
	11.1.5 CHANGE TEAM construct
	11.1.6 CRITICAL construct
	11.1.7 DO construct
	11.1.8 IF construct and statement
	11.1.9 SELECT CASE construct
	11.1.10 SELECT RANK construct
	11.1.11 SELECT TYPE construct
	11.1.12 EXIT statement

	11.2 Branching
	11.2.1 Branch concepts
	11.2.2 GO TO statement
	11.2.3 Computed GO TO statement

	11.3 CONTINUE statement
	11.4 STOP and ERROR STOP statements
	11.5 FAIL IMAGE statement
	11.6 NOTIFY WAIT statement
	11.7 Image execution control
	11.7.1 Image control statements
	11.7.2 Segments
	11.7.3 SYNC ALL statement
	11.7.4 SYNC IMAGES statement
	11.7.5 SYNC MEMORY statement
	11.7.6 SYNC TEAM statement
	11.7.7 EVENT POST statement
	11.7.8 EVENT WAIT statement
	11.7.9 FORM TEAM statement
	11.7.10 LOCK and UNLOCK statements
	11.7.11 STAT= and ERRMSG= specifiers in image control statements

	12 Input/output statements
	12.1 Input/output concepts
	12.2 Records
	12.2.1 Definition of a record
	12.2.2 Formatted record
	12.2.3 Unformatted record
	12.2.4 Endfile record

	12.3 External files
	12.3.1 External file concepts
	12.3.2 File existence
	12.3.3 File access
	12.3.4 File position
	12.3.5 File storage units

	12.4 Internal files
	12.5 File connection
	12.5.1 Referring to a file
	12.5.2 Connection modes
	12.5.3 Unit existence
	12.5.4 Connection of a file to a unit
	12.5.5 Preconnection
	12.5.6 OPEN statement
	12.5.7 CLOSE statement

	12.6 Data transfer statements
	12.6.1 Form of input and output statements
	12.6.2 Control information list
	12.6.3 Data transfer input/output list
	12.6.4 Execution of a data transfer input/output statement
	12.6.5 Termination of data transfer statements

	12.7 Waiting on pending data transfer
	12.7.1 Wait operation
	12.7.2 WAIT statement

	12.8 File positioning statements
	12.8.1 Syntax
	12.8.2 BACKSPACE statement
	12.8.3 ENDFILE statement
	12.8.4 REWIND statement

	12.9 FLUSH statement
	12.10 File inquiry statement
	12.10.1 Forms of the INQUIRE statement
	12.10.2 Inquiry specifiers
	12.10.3 Inquire by output list

	12.11 Error, end-of-record, and end-of-file conditions
	12.11.1 Occurrence of input/output conditions
	12.11.2 Error conditions and the ERR= specifier
	12.11.3 End-of-file condition and the END= specifier
	12.11.4 End-of-record condition and the EOR= specifier
	12.11.5 IOSTAT= specifier
	12.11.6 IOMSG= specifier

	12.12 Restrictions on input/output statements

	13 Input/output editing
	13.1 Format specifications
	13.2 Explicit format specification methods
	13.2.1 FORMAT statement
	13.2.2 Character format specification

	13.3 Form of a format item list
	13.3.1 Syntax
	13.3.2 Edit descriptors
	13.3.3 Fields

	13.4 Interaction between input/output list and format
	13.5 Positioning by format control
	13.6 Decimal symbol
	13.7 Data edit descriptors
	13.7.1 Purpose of data edit descriptors
	13.7.2 Numeric editing
	13.7.3 Logical editing
	13.7.4 Character editing
	13.7.5 Generalized editing
	13.7.6 User-defined derived-type editing

	13.8 Control edit descriptors
	13.8.1 Position edit descriptors
	13.8.2 Slash editing
	13.8.3 Colon editing
	13.8.4 SS, SP, and S editing
	13.8.5 LZS, LZP and LZ editing
	13.8.6 P editing
	13.8.7 BN and BZ editing
	13.8.8 RU, RD, RZ, RN, RC, and RP editing
	13.8.9 DC and DP editing

	13.9 Character string edit descriptors
	13.10 List-directed formatting
	13.10.1 Purpose of list-directed formatting
	13.10.2 Values and value separators
	13.10.3 List-directed input
	13.10.4 List-directed output

	13.11 Namelist formatting
	13.11.1 Purpose of namelist formatting
	13.11.2 Name-value subsequences
	13.11.3 Namelist input
	13.11.4 Namelist output

	14 Program units
	14.1 Main program
	14.2 Modules
	14.2.1 Module syntax and semantics
	14.2.2 The USE statement and use association
	14.2.3 Submodules

	14.3 Block data program units

	15 Procedures
	15.1 Concepts
	15.2 Procedure classifications
	15.2.1 Procedure classification by reference
	15.2.2 Procedure classification by means of definition

	15.3 Characteristics
	15.3.1 Characteristics of procedures
	15.3.2 Characteristics of dummy arguments
	15.3.3 Characteristics of function results

	15.4 Procedure interface
	15.4.1 Interface and abstract interface
	15.4.2 Implicit and explicit interfaces
	15.4.3 Specification of the procedure interface

	15.5 Procedure reference
	15.5.1 Syntax of a procedure reference
	15.5.2 Actual arguments, dummy arguments, and argument association
	15.5.3 Function reference
	15.5.4 Subroutine reference
	15.5.5 Resolving named procedure references
	15.5.6 Resolving type-bound procedure references

	15.6 Procedure definition
	15.6.1 Intrinsic procedure definition
	15.6.2 Procedures defined by subprograms
	15.6.3 Definition and invocation of procedures by means other than Fortran
	15.6.4 Statement function (obsolescent)

	15.7 Pure procedures
	15.8 Simple procedures
	15.9 Elemental procedures
	15.9.1 Elemental procedure declaration and interface
	15.9.2 Elemental function actual arguments and results
	15.9.3 Elemental subroutine actual arguments

	16 Intrinsic procedures and modules
	16.1 Classes of intrinsic procedures
	16.2 Arguments to intrinsic procedures
	16.2.1 General rules
	16.2.2 The shape of array arguments
	16.2.3 Mask arguments
	16.2.4 DIM arguments and reduction functions

	16.3 Bit model
	16.3.1 General
	16.3.2 Bit sequence comparisons
	16.3.3 Bit sequences as arguments to INT and REAL

	16.4 Numeric models
	16.5 Atomic subroutines
	16.6 Collective subroutines
	16.7 Standard generic intrinsic procedures
	16.8 Specific names for standard intrinsic functions (obsolescent)
	16.9 Specifications of the standard intrinsic procedures
	16.9.1 General

	16.10 Standard intrinsic modules
	16.10.1 General
	16.10.2 The ISO_FORTRAN_ENV intrinsic module

	17 Exceptions and IEEE arithmetic
	17.1 Overview of IEEE arithmetic support
	17.2 Derived types, constants, and operators defined in the modules
	17.3 The exceptions
	17.4 The rounding modes
	17.5 Underflow mode
	17.6 Halting
	17.7 The floating-point modes and status
	17.8 Exceptional values
	17.9 IEEE arithmetic
	17.10 Summary of the procedures
	17.11 Specifications of the procedures
	17.11.1 General

	17.12 Examples

	18 Interoperability with C
	18.1 General
	18.2 The ISO_C_BINDING intrinsic module
	18.2.1 Summary of contents
	18.2.2 Named constants and derived types in the module
	18.2.3 Procedures in the module

	18.3 Interoperability between Fortran and C entities
	18.3.1 Interoperability of intrinsic types
	18.3.2 Interoperability with C pointer types
	18.3.3 Interoperability of enum types
	18.3.4 Interoperability of derived types and C structure types
	18.3.5 Interoperability of scalar variables
	18.3.6 Interoperability of array variables
	18.3.7 Interoperability of procedures and procedure interfaces

	18.4 C descriptors
	18.5 The source file ISO_Fortran_binding.h
	18.5.1 Summary of contents
	18.5.2 The CFI_dim_t structure type
	18.5.3 The CFI_cdesc_t structure type
	18.5.4 Macros and typedefs in ISO_Fortran_binding.h
	18.5.5 Functions declared in ISO_Fortran_binding.h

	18.6 Restrictions on C descriptors
	18.7 Restrictions on formal parameters
	18.8 Restrictions on lifetimes
	18.9 Interoperation with C global variables
	18.9.1 General
	18.9.2 Binding labels for common blocks and variables

	18.10 Interoperation with C functions
	18.10.1 Definition and reference of interoperable procedures
	18.10.2 Binding labels for procedures
	18.10.3 Exceptions and IEEE arithmetic procedures
	18.10.4 Asynchronous communication

	19 Scope, association, and definition
	19.1 Scopes, identifiers, and entities
	19.2 Global identifiers
	19.3 Local identifiers
	19.3.1 Classes of local identifiers
	19.3.2 Local identifiers that are the same as common block names
	19.3.3 Function results
	19.3.4 Components, type parameters, and bindings
	19.3.5 Argument keywords

	19.4 Statement and construct entities
	19.5 Association
	19.5.1 Name association
	19.5.2 Pointer association
	19.5.3 Storage association (obsolescent)
	19.5.4 Inheritance association
	19.5.5 Establishing associations

	19.6 Definition and undefinition of variables
	19.6.1 Definition of objects and subobjects
	19.6.2 Variables that are always defined
	19.6.3 Variables that are initially defined
	19.6.4 Variables that are initially undefined
	19.6.5 Events that cause variables to become defined
	19.6.6 Events that cause variables to become undefined
	19.6.7 Variable definition context
	19.6.8 Pointer association context

	Annex A (informative) Processor dependencies
	A.1 Unspecified items
	A.2 Processor dependencies

	Annex B (informative) Deleted and obsolescent features
	B.1 Deleted features from Fortran 90
	B.2 Deleted features from Fortran 2008
	B.3 Obsolescent features
	B.3.1 General
	B.3.2 Alternate return
	B.3.3 Computed GO TO statement
	B.3.4 Statement functions
	B.3.5 DATA statements among executables
	B.3.6 Assumed character length functions
	B.3.7 Fixed form source
	B.3.8 CHARACTER* form of CHARACTER declaration
	B.3.9 ENTRY statements
	B.3.10 Label DO statement
	B.3.11 COMMON and EQUIVALENCE statements and the block data program unit
	B.3.12 Specific names for intrinsic functions
	B.3.13 FORALL construct and statement

	Annex C (informative) Extended notes
	C.1 Feature history
	C.1.1 Features that were new in Fortran 2023
	C.1.2 Features that were new in Fortran 2018

	C.2 Features that were new in Fortran 2008
	C.3 Clause 7 notes
	C.3.1 Selection of the approximation methods (7.4.3.2)
	C.3.2 Type extension and component accessibility (7.5.2.2, 7.5.4)
	C.3.3 Generic type-bound procedures (7.5.5)
	C.3.4 Abstract types (7.5.7.1)
	C.3.5 Structure constructors and generic names (7.5.10)
	C.3.6 Final subroutines (7.5.6, 7.5.6.2, 7.5.6.3, 7.5.6.4)

	C.4 Clause 8 notes: The VOLATILE attribute (8.5.20)
	C.5 Clause 9 notes
	C.5.1 Structure components (9.4.2)
	C.5.2 Allocation with dynamic type (9.7.1)

	C.6 Clause 10 notes
	C.6.1 Evaluation of function references (10.1.7)
	C.6.2 Pointers in expressions (10.1.9.2)
	C.6.3 Pointers in variable definition contexts (10.2.1.3, 19.6.7)

	C.7 Clause 11 notes
	C.7.1 The SELECT CASE construct (11.1.9)
	C.7.2 Loop control (11.1.7)
	C.7.3 Examples of DO constructs (11.1.7)
	C.7.4 Examples of invalid DO constructs (11.1.7)
	C.7.5 Simple example using events
	C.7.6 Example using three teams
	C.7.7 Accessing coarrays in sibling teams
	C.7.8 Example involving failed images
	C.7.9 EVENT_QUERY example that tolerates image failure

	C.8 Clause 12 notes
	C.8.1 External files (12.3)
	C.8.2 Nonadvancing input/output (12.3.4.2)
	C.8.3 OPEN statement (12.5.6)
	C.8.4 Connection properties (12.5.4)
	C.8.5 Asynchronous input/output (12.6.2.5)

	C.9 Clause 13 notes
	C.9.1 Number of records (13.4, 13.5, 13.8.2)
	C.9.2 List-directed input (13.10.3)

	C.10 Clause 14 notes
	C.10.1 Main program and block data program unit (14.1, 14.3)
	C.10.2 Dependent compilation (14.2)
	C.10.3 Examples of the use of modules (14.2.1)
	C.10.4 Modules with submodules (14.2.3)

	C.11 Clause 15 notes
	C.11.1 Portability problems with external procedures (15.4.3.5)
	C.11.2 Procedures defined by means other than Fortran (15.6.3)
	C.11.3 Abstract interfaces and procedure pointer components (15.4, 7.5)
	C.11.4 Pointers and targets as arguments (15.5.2.5, 15.5.2.7, 15.5.2.8)
	C.11.5 Polymorphic Argument Association (15.5.2.10)
	C.11.6 Rules ensuring unambiguous generics (15.4.3.4.5)

	C.12 Clause 16 notes
	C.12.1 Atomic memory consistency
	C.12.2 EVENT_QUERY example
	C.12.3 Collective subroutine examples

	C.13 Clause 18 notes
	C.13.1 Runtime environments (18.1)
	C.13.2 Example of Fortran calling C (18.3)
	C.13.3 Example of C calling Fortran (18.3)
	C.13.4 Example of calling C functions with noninteroperable data (18.10)
	C.13.5 Example of opaque communication between C and Fortran (18.3)
	C.13.6 Using assumed type to interoperate with C
	C.13.7 Using assumed-type variables in Fortran
	C.13.8 Simplifying interfaces for arbitrary rank procedures
	C.13.9 Processing assumed-rank in C
	C.13.10 Creating a contiguous copy of an array
	C.13.11 Changing the attributes of an array
	C.13.12 Creating an array section in C using CFI_section
	C.13.13 Use of CFI_setpointer
	C.13.14 Mapping of MPI interfaces to Fortran

	C.14 Clause 19 notes
	C.14.1 Examples of global identifiers and binding labels (19.2)
	C.14.2 Examples of host association (19.5.1.4)

	Index

