

1

To: J3
From: Hidetoshi Iwashita
Subject: Use cases of generic coarray dummy arguments
Date: 2024-December-23
References: 24-139r2, 24-168, 24-187, 24-188r1

1. Introduction
In 24-168 (3), we proposed the following constraint and specification in 24-139r2 to be removed:
 C8nn A generic dummy argument shall not be a coarray.
 sNN A generic dummy argument cannot be a coarray.
In response to this, a straw vote was taken at the October 2024 meeting on whether to keep or remove these, but
the result was very close (24-188r1).

We believe that generic dummy arguments for coarrays are necessary. In this paper, we will introduce two use
cases for generic coarray dummy arguments and show that they are indispensable.

2. Use cases

2.1 Example of application: stencil communication
Himeno benchmark solves the Poisson equation by Jacobi's iterative method [1], whose communication pattern
is as follows.

DO loop=1,nn

computation
z+ and z- direction communication (sendp3)
y+ and y- direction communication (sendp2)
x+ and x- direction communication (sendp1)
all reduce

ENDDO

In this section, the sendp2 above is introduced (1), expanded to type-generic (2), and changed from a MPI
program to a coarray program (3). An example of the generic dummy argument for coarray is shown in (3).

(1) Original subroutine sendp2
List 1 is the original code of the sendp2 above, added inline comments for explanation. Its communication
pattern is demonstrated in Figure 1.

2

List 1: Subroutine sendp2 in the Himeno benchmark

module pres
 real(4),dimension(:,:,:),allocatable :: p ! Main data
end module pres

module others ! (Irrelevant names were deleted.)
 integer :: mimax,mjmax,mkmax !! the allocated size of p
 integer :: imax,jmax,kmax !! the size actually used in p
end module others

module comm ! (Irrelevant names were deleted.)
 integer :: ndx,ndy,ndz !! 3-D node (image) size
 integer :: npx(2),npy(2),npz(2) !! node numbers of adjacent nodes
 integer :: ijvec,jkvec,ikvec !! representing the shape of communication data
 integer :: mpi_comm_cart !! communicator defined by MPI_Cart_create
end module comm

subroutine sendp2()

 use pres
 use others
 use comm

 implicit none

 include 'mpif.h'

 integer :: ist(mpi_status_size,0:3),ireq(0:3)=(/-1,-1,-1,-1/)
 integer :: ierr
!
 call mpi_irecv(p(1,1,1), & ! initial address of receive buffer
 1, & ! number of elements
 ikvec, & ! representing shape [mimax, 1, mkmax]
 npy(1), & ! source node (neighboring in y- direction)
 2, & ! tag
 mpi_comm_cart, & ! communicator
 ireq(3), & ! communication request (intent(out))
 ierr)

 call mpi_irecv(p(1,jmax,1), &
 1, &
 ikvec, &
 npy(2), & ! source node (neighboring in y+ direction)
 1, &
 mpi_comm_cart, &
 ireq(2), &
 ierr)

 call mpi_isend(p(1,2,1), & ! initial address of send buffer
 1, &
 ikvec, &
 npy(1), & ! destination node (neighboring in y- direction)
 1, &
 mpi_comm_cart, &
 ireq(0), &

3

 ierr)

 call mpi_isend(p(1,jmax-1,1), &
 1, &
 ikvec, &
 npy(2), & ! destination node (neighboring in y+ direction)
 2, &
 mpi_comm_cart, &
 ireq(1), &
 ierr)

 call mpi_waitall(4, &
 ireq, &
 ist, &
 ierr)

 return
end subroutine sendp2

Figure 1. MPI message passing in List 1.

(2) An example of making sendp2 generic

The original data type of Himeno benchmark is REAL(4). List 2 shows a generic version of sendp2, which
expanded the data type to all kinds of REAL type supported by the processor.

mpi_irecv
from npy(1)

mpi_irecv
from npy(2)

mpi_isend
to npy(1)

mpi_isend
to npy(2)

x

y

z

imax

kmax

jmax1 2
jmax-1

4

List 2: Generic subprogram version of sendp2

module others
 integer :: mimax,mjmax,mkmax
 integer :: imax,jmax,kmax
end module others

module comm
 integer :: ndx,ndy,ndz
 integer :: npx(2),npy(2),npz(2)
 integer :: ijvec,jkvec,ikvec
 integer :: mpi_comm_cart
end module comm

module himeno_sendp2_mpi
 use comm
 implicit none

contains
 generic subroutine sendp2(p)

 real(*),dimension(mimax,mjmax,mkmax) :: p

 include 'mpif.h'

 integer :: ist(mpi_status_size,0:3),ireq(0:3)=(/-1,-1,-1,-1/)
 integer :: ierr

 call mpi_irecv(p(1,1,1), 1, ikvec, npy(1), &
 2, mpi_comm_cart, ireq(3), ierr)
 call mpi_irecv(p(1,jmax,1), 1, ikvec, npy(2), &
 1, mpi_comm_cart, ireq(2), ierr)
 call mpi_isend(p(1,2,1), 1, ikvec, npy(1), &
 1, mpi_comm_cart, ireq(0), ierr)
 call mpi_isend(p(1,jmax-1,1), 1, ikvec, npy(2), &
 2, mpi_comm_cart, ireq(1), ierr)

 call mpi_waitall(4, ireq, ist, ierr)

 return
 end subroutine sendp2

end module himeno_sendp2_mpi

Comparing to List 1, sendp2 was modified as follows.

1. Change sendp2 from an external subprogram to a module subprogram with the GENERIC prefix,
2. Change p from a module variable to a generic dummy argument with REAL(*) type specifier.
3. Change dummy argument p from an allocatable array to an explicit-shape array (optional).

The important point here is that in order to make the subroutine generic, at least one dummy argument that is
declared in a generic type declaration statement is necessary (item 2). Item 3 doesn't have much significance in
sendp2, but since there is a high-load computational loop in the jacobi subroutine which calls sendp2, higher

5

performance can be expected by making the argument p of jacobi and of all the procedures it calls explicit-
shape.

(3) An example of changing sendp2 to use coarray
List 3 shows a coarray version of sendp2 modified from the code in List 2. In this example, the generic dummy
argument p must be a coarray because it is referenced as coindexed objects.

List3: A coarray version of sendp2 with a generic coarray dummy argument

module others
 integer :: mimax,mjmax,mkmax
 integer :: imax,jmax,kmax
end module others

module comm
 integer :: ndx,ndy,ndz
 integer :: ihalo,jhalo,khalo ! new variables
end module comm

module himeno_sendp2_coarray
 use comm
 implicit none

contains
 generic subroutine sendp2(p)

 real(*),dimension(mimax,mjmax,mkmax), codimension[ndx,ndy,*] :: p
 integer :: me(3)

 me = this_image(p)

 sync all

 if (me(2)>1) then
 p(:, jhalo, :)[me(1), me(2)-1, me(3)] = p(:, 2 , :)
 end if
 if (me(2)<ndy) then
 p(:, 1 , :)[me(1), me(2)+1, me(3)] = p(:, jmax-1, :)
 endif

 sync all

 return
 end subroutine sendp2

end module himeno_sendp2_coarray

6

Figure 2. Coarray assignment in List 3.

Figure 2. shows the communication caused by the two coarray assignment statements in List 3. Instead of the

message passing used in Lists 1 and 2, one-sided communication is used in List 3. The newly-appeared variable

jhalo is the index of the halo in the y+ direction on the image [me(1), me(2)-1, me(3)]. This is a pre-calculated

value, and if the data is equally allocated to all images, it will be the same value as jmax.

2.2 Example of creating a library procedure: CO_BROADCAST

Generic subprograms are suitable to write Fortran intrinsic procedures and intrinsic module procedures with
generic names, at least for the entry layers of those procedures. The same can be said for highly generic user-
defined procedures. This is because generic subprograms can achieve both high performance and high
productivity for developing highly generic procedures. And then, coarray dummy arguments are necessary to
use coarray one-to-one communication.

List 4 shows an example of writing the CO_BROADCAST intrinsic subroutine assuming the argument is
coarray. Using generic type declaration, dummy argument A can be any intrinsic type with any kind supported
by the processor and any rank. For the sake of simplicity, A cannot be a derived type and arguments STAT and
ERRMSG are omitted. Figure 3 displays the communication and synchronization in this program. We assume
that the function MAX_RANK proposed in 24-187 is included in the module ISO_FORTRAN_ENV.

this image

p(:, jhalo, :)[me(1), me(2)-1, me(3)]
= p(:, 2, :)

p(:, 1, :)[me(1), me(2)+1, me(3)]
= p(:, jmax-1, :)

x

y

z

imax
jmax1 2

jmax-1

kmax

1jhalo

7

List 4: CO_BROADCAST specialized for coarrays as dummy arguments

01 GENERIC SUBROUTINE co_broadcast_coarray(a, source_image)
02 USE iso_fortran_env
03 IMPLICIT NONE
04 TYPE(INTEGER(*),REAL(*),COMPLEX(*),LOGICAL(*),CHARACTER(kind=*)), &
05 RANK(0:MAX_RANK(1)), INTENT(INOUT):: a[*]
06 INTEGER, INTENT(IN):: source_image
07 INTEGER:: n_images, dist, i
08 INTEGER:: this_img, that_img, this_id, that_id
09
10 n_images = num_images()
11 this_img = this_image()
12 this_id = modulo(this_img - source_image, n_images)
13
14 SYNC ALL
15 dist = 1
16 DO
17 IF (this_id < dist) THEN ! This image is a sender.
18
19 !-- find receiver or exit the loop
20 that_id = this_id + dist
21 IF (that_id >= n_images) EXIT ! This image exits the loop.
22 that_img = modulo(this_img + dist - 1, n_images) + 1
23
24 !-- send the data
25 a[that_img] = a
26
27 !-- 1-by-1 synchronization
28 SYNC IMAGES (that_img)
29
30 ELSE IF (this_id < 2 * dist) THEN ! This image is a receiver.
31
32 !-- find sender
33 that_id = this_id - dist
34 that_img = modulo(this_img - dist - 1, n_images) + 1
35
36 !-- 1-by-1 synchronization
37 SYNC IMAGES (that_img)
38
39 END IF
40 dist = 2 * dist
41 END DO
42 SYNC ALL
43
44 END SUBROUTINE co_broadcast_coarray

8

Assumed that the number of images is 7, and the value of source_image is 3.
Figure 3. Broadcast communication and synchronization pattern

Subroutine co_broadcast_coarray in List 4 assumes that the actual argument corresponding to a is a coarray. If
not, a coarray communication buffer, for example as shown in List 5. In this case, dynamic coarray allocation
and round-trip full data copying may cause a significant overhead cost. So, the processor should select
co_broadcast_coarray if the actual argument is coarray, and co_broadcast_noncoarray otherwise.

List 5: CO_BROADCAST for non-coarrays using the subroutine in List 4.

01 GENERIC SUBROUTINE co_broadcast_noncoarray(a, source_image)
02 IMPLICIT NONE
03 TYPE(INTEGER(*),REAL(*),COMPLEX(*),LOGICAL(*),CHARACTER(kind=*)), &
04 RANK(0:MAX_RANK), INTENT(INOUT):: a
05 INTEGER, INTENT(IN):: source_image
06 TYPE(REAL), ALLOCATABLE, DIMENSION(:):: tmp[:]
07
08 ALLOCATE (tmp(SIZE(a))[*])
09 tmp(:) = RESHAPE(a, [SIZE(a)])
10 CALL co_broadcast_coarray(tmp, source_image)
11 a = RESHAPE(tmp, SHAPE(a))
12 RETURN
13 END SUBROUTINE co_broadcast_noncoarray

phase 1
(dist=1)

phase 2
(dist=2)

phase 3
(dist=4)

phase 4
(dist=8)

image 3
(this_id=0)

a[4] = a

sync
images(4)

a[5] = a

sync
images(5)

a[7] = a

sync
images(7)

exit

image 4
(this_id=1)

sync
images(3)

a[6] = a

sync
images(6)

a[1] = a

sync
images(1)

exit

image 5
(this_id=2)

sync
images(3)

a[2] = a

sync
images(2)

exit

image 6
(this_id=3)

sync
images(4)

exit

image 7
(this_id=4)

sync
images(3)

exit

image 1
(this_id=5)

sync
images(4)

exit

image 2
(this_id=6)

sync
images(5)

exit

9

3. Discussions
In this section, the need for a generic coarray dummy argument is discussed.

3.1 Execution performance
Coarray one-to-one communication has the potential to achieve high performance through zero-copy
communication by implementing it as one-sided communication using DMA (Direct Memory Access) and
RDMA (Remote DMA) provided by communication layers such as GASNet [2]. In order to apply such high
performance to dummy arguments, it must be declared as a coarray to receive the global address and other
information (if any) from the corresponding coarray actual argument. This is true regardless of whether the
subprogram is generic or not.

3.2 Programming and maintenance
It is doubtful whether adding such a constraint that only apply to generic subprograms, and not to non-generic
subprograms, will lead to simplification. We think a typical programmer would first design an algorithm for a
specific type/kind/rank and then expend it to a generic type/kind/rank. If the programmer encounters the
constraint when expanding it to generic, they must either give up to make it generic, or go back to reconsider
the algorithm.

We don't think the idea of "setting it to constraint for now and then releasing it later" is appropriate in this case.
Programs that get around the constraint in strange ways will become established as assets.

Acknowledgments
We would like to thank to John Reid for his detailed review of the program codes.

References
[1] Himeno benchmark. https://i.riken.jp/en/supercom/documents/himenobmt/
[2] Iwashita, H., Nakao, M. (2021). Coarrays in the Context of XcalableMP. In: Sato, M. (eds) XcalableMP

PGAS Programming Language. Springer, Singapore. https://doi.org/10.1007/978-981-15-7683-6_3

