
To: J3 J3/25-159r2

From: Brian Cornille & Dan Bonachea & Reuben Budiardja & Soren Rasmussen

Subject: Informal requirements for asynchronous tasks

Date: 2025-June-25

References: 22-169 (https://j3-fortran.org/doc/year/22/22-169.pdf), 23-232 (https://j3-

fortran.org/doc/year/23/23-232.pdf), 23-245 (https://j3-fortran.org/doc/year/23/23-245.txt), 23-246 (https://j3-

fortran.org/doc/year/23/23-246.txt)

Additional Authors

Jon Steidel & Michael Klemm & Jeff Larkin & Damian Rouson

Introduction

Meeting 230 (https://j3-fortran.org/doc/meeting/230) passed paper 23-174 (https://j3-

fortran.org/doc/year/23/23-174.pdf), which provides use cases for asynchronous tasks. Three

related Info papers were presented at Meeting 231 (https://j3-fortran.org/doc/meeting/231). Note,

paper 23-232 (https://j3-fortran.org/doc/year/23/23-232.pdf) is an updated version of paper 23-174

(https://j3-fortran.org/doc/year/23/23-174.pdf).

Paper 23-232 (https://j3-fortran.org/doc/year/23/23-232.pdf): “Asynchronous Tasks in Fortran”

Paper 23-245 (https://j3-fortran.org/doc/year/23/23-245.txt): “Asynchronous collective

operations”

Paper 23-246 (https://j3-fortran.org/doc/year/23/23-246.txt): “Concurrent tasks”

The current paper proposes requirements for the features described in the above papers.

REQUIREMENTS (IN PROGRESS)

R0. An asynchronous region is the dynamic scope executed by one thread of control. It

will be outlined by the appropriate code block delineater. An asynchronous region may be

executed independently from the surrounding execution context. Language defining these

terms and concepts (e.g. thread, child, parent), will need to be added.

Example for illustrative purposes:

https://j3-fortran.org/doc/year/22/22-169.pdf
https://j3-fortran.org/doc/year/23/23-232.pdf
https://j3-fortran.org/doc/year/23/23-245.txt
https://j3-fortran.org/doc/year/23/23-246.txt
https://j3-fortran.org/doc/meeting/230
https://j3-fortran.org/doc/year/23/23-174.pdf
https://j3-fortran.org/doc/meeting/231
https://j3-fortran.org/doc/year/23/23-232.pdf
https://j3-fortran.org/doc/year/23/23-174.pdf
https://j3-fortran.org/doc/year/23/23-232.pdf
https://j3-fortran.org/doc/year/23/23-245.txt
https://j3-fortran.org/doc/year/23/23-246.txt

R1. It should be valid for an implementation to wait for any asynchronous region to

complete before continuing execution of its surrounding thread of control. We do not

want programs to be able to deadlock if an implementation does not provide sufficient

concurrency.

R2. It must be possible to express dependencies between multiple asynchronous regions.

R2.5 The dependencies should be structured such that each asynchronous region can have

many upstream dependencies and a single shared identifier for its downstream

dependencies.

In this example below, the async_region A1 will not start until all async_region currently

registered on D1, D2, D3, D4 completes. Other async_region created after A1 that has D1

as a dependency will not start until A1 completes.

R3. A construct should be provided to enforce synchronization of one or more

dependency chains.

...
a = 10
async_region
 ! The following statements are executed by a single thread of control
 b = a
 b = b * c
end async_region
d = a
...

! `in` and `inout` mutually exclusive (example 2a the survey paper)
A1 : async_region(dependinout=D1, dependin=[D2, D3, D4])
 ...
end async_region

A1 : async_region
 ...
end async_region
...
A2 : async_region
 ...
end async_region
...
wait_on_async !-- current thread of control will wait for all children

R4. Wording will be created such that race conditions can be avoided.

R5. Asynchronous regions shall not contain image control statements or calls to collective

subroutines (at least in the initial version, we might add this later)

Rationale: A given image initiates collective subroutines in a specific total order. Due

to practical concerns, a strong requirement for correctness is that all images (at least

within a particular team) initiate corresponding collective subroutines over that team

in the same total order. This requirement is shared by collectives in other distributed

models (e.g. MPI). It's unclear how best to ensure this property if collective

subroutines can be initiated from two or more asynchronous regions that are not

totally ordered in the same way by all images in the team. A similar concern arises for

image control statements that include collective image synchronization (SYNC

ALL/SYNC TEAM/FORM TEAM/CHANGE TEAM/END TEAM and coarray

ALLOCATE/DEALLOCATE), all of which must also be initiated in the same collective

total order across the images in a particular team. In addition, Fortran's hierarchically

scoped team model does not compose well with multiple independent threads of

execution, because the team stack is effectively an image-wide global state property

(e.g. what would it mean to CHANGE TEAM within two concurrent asynchronous

regionss?).

R6. Dependency chains must be able to span different lexical scopes. E.g. one should be

able to pass a dependency as an argument to a procedure.

R7. A mechanism to describe locality of data. In particular, capturing a copy of a variable

from the enclosing scope is necessary for avoiding race condition. Explicitly marking data

that is shared but read-only may also be helpful.

R8. Asynchronous tasks are not allowed to be "in-flight" when crossing segment

boundaries.

! `in` and `inout` mutually exclusive (example 2a in survey)
A1 : async_region(dependinout=D1, dependin=[D2, D3, D4])
 ...
end async_region
...
A2 : async_region(dependinout=D2)
 ...
end async_region
...
wait_on_async(D1) !-- only waits for async_region registered to D1

Rationale: See Questions section in the survey document

(https://hackmd.io/s1404_e3Qty6_qZWXzHZyA).

NON-REQUIREMENTS

NR1. We do not provide a fine-grained mechanism to guard against access to shared data

across asynchronous regions. E.g. no in-image ATOMIC or CRITICAL. A separate paper

would be needed to provide this.

JUSTIFICATION

Tasking is a well-researched and widely implemented feature of asynchronous

programming. Due to the increasing degree of parallelism available on modern machines,

tasking is frequently required to saturate available compute resources. Additionally,

because an increasing number of machines employ accelerators that require offloading,

tasking is needed to express the potential for overlapping of tasks to hide offload

latencies and use all parts of the system.

A survey document of current solutions (https://hackmd.io/s1404_e3Qty6_qZWXzHZyA) has been

compiled of existing approaches to inform the development of this proposal.

https://hackmd.io/s1404_e3Qty6_qZWXzHZyA
https://hackmd.io/s1404_e3Qty6_qZWXzHZyA

