X3J3 / §8.102
November 1986

American National Standard
for Information Systems
Programming Language

Fortran

S8 (X3.9-198x)
Revision of X3.9-1978

Secretariat: Computer and Business Equipment Manutfacturers Association

Draft S8, Version 102
Submitted to X3 by X3J3, Americal National Standards Institute, Inc.

FOREWORD

Overview. Among the additions to Fortran 77 in this standard, five stand out as the major
ones:

(1) Array operations

(2) Improved facilities for numerical computation

(3) Programmer defined data types

(4) Facilities for modular data and procedure definitions
(5) The concept of language evolution

A number of other additions are also included in this standard, such as improved source
form facilities, more control constructs, recursion, and dynamically allocatable arrays of any
size. No Fortran 77 features have been removed.

Array Operations. Computation involving large arrays is an important part of engineering
and scientific uses of computing. Arrays may be used as entities in Fortran 8x, and opera-
tions for processing whole arrays and subarrays (array sections) are included in the language
for two principal reasons: (1) these features provide a more concise and higher level lan-
guage that will allow programmers more quickly and reliably to develop and maintain
scientific/engineering applications; (2) these features can significantly facilitate optimization
of array operations on many computer architectures.

The Fortran 77 arithmetic, logical, and character operations and intrinsic functions are
extended to operate on array-valued operands. These include whole, partial, and masked
array assignment, array-valued constants and expressions, and facilities to define user-
supplied array-valued functions. New intrinsic functions are provided to manipulate and con-
struct arrays, to perform gather/scatter operations, and to support extended computational
capabilities involving arrays (for example, an intrinsic function is provided to sum the
elements of an array).

Numerical Computation. Scientific computation is one of the principal application
domains of Fortran, and the guiding objective for all of the technical work is to strengthen
Fortran as a vehicle for implementing scientific software. Though nonnumeric computations
are increasing dramatically in scientific applications, numeric computation remains dominant.
Accordingly, the additions include portable control over numeric precision specification,
inquiry as to the characteristics of numeric information representation, and improved control
of the performance of numerical programs (for example, improved argument range reduction
and scaling).

Derived Data Types. *“Derived data type” is the term given to that set of features in this
standard that allows the programmer to define arbitrary data structures and operations on
them. Data structures are user-defined aggregations of intrinsic and derived data types.
Intrinsic operations on structured objects include comparison, assignment, input/output, and
use as procedure arguments. With no additional derived type operations defined by the
user, the derived data type facility is a simple data structuring mechanism. With additional
operation definitions, derived data types provide an effective implementation mechanism for
data abstractions.

Procedure definitions in this standard may appear within a program unit, and may be used to
define operations on intrinsic or derived data types. These procedures are essentially the

Version 102 1986 November Page i

FOREWORD X3J3/58

same as external procedures, except that they also can be used to define infix operators.

Modular definitions. In Fortran 77 there is no way to define a global data area in only
one place and have all the program units in an application use that definition. In addition,
the ENTRY statement is awkward and restrictive for implementing a related set of proce-
dures, possibly involving common data objects. Finally there is no means in Fortran by
which procedure defeinitions, especially interface information, may be made known locally to
a program unit. All of these deficiencies, and more, are remedied by a new type of program
unit that may contain any combination of data element declarations, derived data type
definitions, procedure definitions, and procedure interface information. This program unit,
called a MODULE, may be considered to be a generalization and replacement for the
BLOCK DATA program unit. A module may be accessed by any program unit, thereby mak-
ing the module contents available to that program unit. Thus, modules provide improved
facilities for defining global data are;E, procedure packages, and encapsulated data abstrac-
tions.

Language Evolution. With the addition of new facilities, certain old features become
redundant and may eventually be phased out of the language as use declines. For exam-
ple, the numeric facilities alluded to above provide the functionality of DOUBLE PRECISION;
with the new array facilities, non-conformable argument association (such as associating an
array element with a dummy array) is unnecessary (and in fact is not useful as an array
operation); BLOCK DATA units are redundant and inferior to modules.

As part of the evolution of the language, categories of language features (obsolete, obsoles-
cent and deprecated) are provided which allow unused features of the language to be
removed.

Document Organization. This document is organized in 14 sections, dealing with 7
conceptual areas. These 7 areas, and the sections in which they are treated are:

High/Low Level Concepts Sections 2,3
Data Concepts Sections 4,5,6
Computations Sections 7,13
Execution Control Section 8
Input/Output Sections 9,10
Program Units Sections 11,12

Scoping and Association Rules ~ Section 14

High/Low Level Concepts. Section 2 (Fortran Terms and Concepts) contains many of
the high level concepts of Fortran. This includeﬂ‘the concept of an executable program and
the relationships of its major parts. Also included are the syntax of program units, the rules
on statement ordering, and definition of many of the fundamental terms used throughout the
document.

Section 3 (Characters, Lexical Tokens, and Source Form) describes the low level elements
of Fortran, such as the character set and the allowable forms for source programs. It also
contains the rules for constructing symbolic names and constants, and lists all of the Fortran
operators.

Data Concepts. The array operations (arrays as data objects) and data structures pro-
vide a rich set of data concepts in Fortran. The main concepts are those of data type, data
object, and object control, which are respectively described in Sections 4, 5, and 6.

Version 102 1986 November Page ii

FOREWO: D

Section 4 (Intrinsic and Derived Data Types) describes the distinction between a data type
and a data object, and then focuses upon data type. Htdefines a data type as a set of data
values, with corresponding forms (constants) for representing these values, and operations
on these values. The concept of an intrinsic (predefined) data type is introduced, and the
properties of Fortran’s intrinsic types (INTEGER, REAL, including specified precision REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL CHARACTER) are described. Note that only
type concepts are described here, and not the declaration and properties of data objects.

Section 4 also introduces the concept of derived (user defined) data types, which are com-
pound types whose components resolve into intrinsic types. The details for defining a
derived type are given (note that this has no counterpart with intrinsic types as intrinsic types
are predefined and therfore need not—indeed cannot—be redefined by the programmer).
As with intrinsic types, this sec;tion deals only with type properties, and not with the declara-
tion of data objects of derived type.

Section 5 (Data Object Declarations and Specifications) describes in detail how data objects
are declared and given the desired properties (attributes). An important attribute (the only
one required for each data object) is the object’s data type, so that the type declaration
statement is the main feature of this section. The different attributes are described in detail,
as well as the two ways that attributes may be specified (type declaration statements and
attribute specification statements). Implicit typing and storage association (COMMON,
EQUIVALENCE) are also described in this section, as well as data object value initialization.

Section 6 (Use of Data Objects) deals mainly with the concept of a variable, and describes
the various forms that variables may take. Scalar variables include character strings and
substrings, structured (derived type) objects, structure components, and array elements.
Arrays are considered to be variables, as are array sections. Among the array facilities
described here are array sections (subarrays), array allocation and deallocataion (user con-
trolled dynamic arrays), effective array ranges, and range control (SET RANGE).

Computations. Section 7 (Expressions and Assignment) describes how computations are
expressed in Fortran. This includes the forms that expression operands (primaries) may take
and the role of operators in these expressions. Operator precedence is rigorously defined in
syntax rules, and summarized in tabular form. This description includes the, relationship of
defined operators (user-defined operators) to the intrinsic operators (+ :}f-,-p"&*, .AND., .OR,,
etc.). The rules of both expression evaluation and the interpretation (semantics) of intrinsic
and defined operators are described in detail.

Section 7 also describes assignment of computational results to data objects, which has two
principal forms: the conventional assignment statement and the WHERE
statement/construct. The WHERE statement and construct allow masked array assignment.

Section 13 (Intrinsic Procedures) describes the approximately one hundred intrinsic functions
and two intrinsic subroutines of Fortran, that provide a rich set of computational capabilities.
In addition to the Fortran 77 intrinsics, this includes many array processing functions and a
comprehenseve set of numerical environmental intrinsic functions.

Execution Control. Section 8 (Execution Control) describes all of the control constructs
(IF, SELECT CASE, DO), branching statements (various forms of GOTO), and other control
statements (for example, logical IF, arithmetic IF, CONTINUE, STOP, PAUSE). These are as
in Fortran 77 except for the addition of the S ECT CASE construct and extension of the
DO loop to include an END DO termination option, additional control clauses, and addition of
EXIT and CYCLE statements.

Version 102 1986 November Page iii

FOREWORD X3J3/S8

Input/Qutput. Section 9 (Input/Output Statements) contains definitions for records, files,
file connections (OPEN,CLOSE, preconnected files), data transfer statements (READ,
WRITE, PRINT), file positioning, and file inquiry (INQUIRE).

Section 10 (Input/Output Editing) describes input/output formatting. This includes the FOR-
MAT statement and FMT = specifier, edit descriptors, list-directed |/O, and name-directed
170 (NAMELIST). It does not include unformatted 1/0, which is discussed in Section 9.

Program Units. Section 11 (Program Units) describes main programs, module subpro-
grams, and block data subprograms. Module subprograms, along with the USE statement,
are described as a mechanism for encapsulating data and procedure definitions that are to
be used by (accessible to) other program units. Modules are described as vehicles for
defining global derived type definitions, global data object declarations, procedure libraries,
and combinations thereof.

Section 12 (Procedures) contains a comprehensive treatment of procedure definition and
invocation, including that for user-defined functions and subroutines. The concepts of
implicit and explicit procedure interfaces are explained, and situations requiring explicit pro-
cedure interfaces are identified. The rules governing actual and dummy arguments, and
their association, are described.

Section 12 also describes the use of the OPERATOR option on function definitions to allow
function invocation in the form of infix operators as well as the traditional functional form.
Similarly the use of the ASSIGNMENT option on subroutine defintions is described as allow-
ing an alternate syntax for certain subroutine calls. This section also contains descriptions of
or pertaining to recursive procedures, the RETURN statement, the ENTRY statement, inter-
nal procedures and the CONTAINS statement, statement functions, overloaded procedure
f‘ﬁ&nes, and non-Fortran procedures.

Scoping and Association Rules. Section 14 (Entity Scope, Association, and Defintion)
explains the use of the term “scope” (especially important now because of the addition of
internal procedures, module subprograms, and other new features), and describes the scope
properties of various entities, including symbolic names, operators, and others. Also
described are the general rules governing procedure argument association, use association
(accessing entities in modules), and storage association. Finally, Section 14 describes the
events that cause variables to become defined (have valid values) and events that cause
variables to become undefined.

Q_';;; American National Standard Language Fortran, X3.9-198x, specifies the form and

stiDlishes the interpretation of programs expressed in the Fortran Language. It consists of
the specification of the language Fortran. No subsets are specified in this standard. The
previous standard, commonly known as “Fortran 77", is entirely contained within this stan-
dard, known as “Fortran 8x”. Any standard-conforming Fortran 77 program is intended to be
a standard-conforming Fortran 8x program. New Fortran 8x features can be compatibly
incorporated into such programs, with any exceptions clearly indicated in the text of this
standard.

This document is released to SPARC, a subcommittee of X3, the American National Stan-
dards Committee for Information Processing Systems, operating under the procedures of the
American National Standards Institute. The Computer and Business Equipment Manufactur-
ers Association holds the secretariat. The purpose of this release is to submit the document
for compliance review to SPARC and for preliminary information to X3 in anticipation of an
X3 favorable vote to process the draft as an American National Standard.

Version 102 1986 November Page iv

FOREWORL

Appendix A describes a “Fortran Family of Standards” as well as the philosophy used in par-
titioning the Fortran Language into new or incremental features, primary features, and obso-
lete or decremental features.

Since the publication of Fortran 77 (April 1978), the technical committee, X3J3, has been
developing the draft revision. The central philosophy has been to modernize Fortran so that
it may continue its long history as a scientific and engineering programming language.

The membership of the committee since that time is listed in the following section. Adminis-
tration of X3J3 has been undertaken by a “Steering Committee” and the technical develop-
ment has been carried out by subgroups, whose work is reviewed by the full committee.
During the period of development of the draft Fortran standard, many persons assumed
important roles of leadership. Their contributions are mentioned in the following section. At
the present time, the membership consists of 40 members.

STEERING COMMITTEE

Jeanne Adams, Chair

Jerrold Wagener, Vice-Chair

Walter S. Brainerd, Director, Technical Work
Lloyd Campbell, Editor

Jeanne Martin, Secretary

Neldon Marshall, Librarian

Andrew Johnson, Interpretations

James H. Matheny, Vocabulary Representative

SUBGROUP HEADS (Assistant Heads)
Dick Hendrickson (Alan Wilson)

Kurt Hirchert (John Reid)

James H. Matheny (Murray Freemean)
Rich Ragan (Lawrie Schonfelder)
Andrew Johnson (Jerry Wagener)

The international community of Fortran experts has been very helpful in reviewing the devel-
opment of this draft standard. At the most recent meeting of Working Group 5, Subcommit-
tee 22 of Technical Committee 97 on Information Processing Systems, a resolution was
passed that the work is “in general representative of the needs of the Fortran community
worldwide....” ° '

Version 102 1986 November Page v

FOREWORD

X3J3/58

Subcommittee X3J3 on Fortran developed this standard. Those who contributed to the work

of the subcommittee were:

Jeanne C. Adams, Chair

Jerrold L. Wagener, Vice-Chair

Martin N. Greenfield, Vice-Chair (1972-1985)
Walter S. Brainerd, Director, Technical Work*
Lloyd W. Campbell, Editor*

Jeanne T. Martin, Secretary*

Loren P. Meissner, Secretary (1978-1982)
Jeanne T. Martin, Acting International Representative

Frances E. Holberton, International Representative (1978-1982)
Neldon H. Marshall, Librarian*

James H. Matheny, Vocabulary Representative*

Cornelis G. F. Ampt
Stuart L. Anderson
Charles Arnold
Graham Barber

Gloria M. Bauer*
Valerie G. Bowe
Joanne Brixius

Neil Brutman

Larry Bumgarner

Carl D. Burch
Winfried A. Burke*
John H. Carman

T. C. Chao

Nancy Cheng

Joel Clinkenbeard

Joe Cointment
Theodore R. Crowley
Chela Diaz de Villegas
David C. Dilion

Joe L. Dowdell

John T. Engle

Stuart |. Feldman
Murray F. Freeman
Daniel A. Gallagher
Gary L. Graunke
Stephen R. Greenwood
Richard B. Grove*
Kevin W. Harris
Richard A. Hendrickson™
Dean A. Herington*
Kurt W. Hirchert*
Steve K. Hue

E. Andrew Johnson*
Gregory Johnson
Peter N. Karculias
Leslie M. Klein
Wilfried Kneis

Werner Koblitz
George T. Komorowski

Version 102

Jog A. Koity
Dorothy E. Lang
John E. Lauer*
Kay Leonard
Donald L. Loe
Warren E. Loper
Bruce A. Martin*
Alex L. Marusak
John Mayer
Edward H. McCall
Michael Metcalf
Geoff Millard
Robert M. Miller
Leonard J. Moss
David T. Muxworthy
Linda J. O’'Gara
Rod R. Oldehoeft
John P. Olson*
Rex L. Page*
George Paul

Daniel Pearl

Odd Pettersen

Ivor R. Philips
Bruce W. Puerling®
Richard R. Ragan*
John K. Reid
Steven M. Rowan
Werner Schenk*
Lawrie J. Schonfelder
Rick N. Schubert
John C. Schwebel
Richard Shepardson
Richard W. Signor*
Brian T. Smith*
Jan A. M. Snoek
Hieronymus Sobiesiak
Ken Sperka

Bruce Stowell
Sylvia Sund

1986 November

Maric Surdi
Richard C. Swift
Brian L. Thompson
Robert B. Upshaw*
Richard W. Weaver
George E. Weekly
Bruce Weinman
Everett H. Whitley
Gunter Wiesner
Edward J. Wilkens
Alan Wilson

*Subgroup Head

Page vi

TABLE OF CONTENTS

FOREWORDoocveivecteeessessessessssssessssesesessssesenssessessnssssssansssons i
1 INTRODUCTION ..., e e dBan s aan % o 5 e an e a2 o SRRV s o 1-1
1.1 0T oo - U PR P 1-1
1.2 e Yo = 1110 | SOUT U O U UPSURUPRPPPP 11

1.3 ST - OO OO SO P TP PP 1-1
1.3.1 INCIUSIONS cevrvierrisiiiiieeeeerireeccerce s srmmas s ns s s srsa s s e rrmnnaanes 1-1

1.8.2 EXCIUSIONS....eevvrrvieiniireriircmeseeeeasearesensnseasssissassiessesirnnasssssssivnnssns 11

1.4 CONTOIIIANCE .. e vveeeeeeeeeeesesessbeseseessseesseessesneeessnensssesassssasassaereemnansanass . 11

15 Notation Used in This Standard............cccvviminiimnienniniss i, 1-2
1.56.1 Syntax RUIEScooeiriiiierincin 1-2

1.5.2 Assumed Syntax RUIES.......ccccoemrimmniiiinnss s seasansenns 1-3

1.5.3 Syntax Conventions and Characteristics..............cccoininninnennnn 1-4

1.5.4 Text ConventioNS....cccccciiciiiermimreirereniie e rree e 1-4

1.6 Obsolete, Obsolescent, and Deprecated Features.............cceceeveevrunec, 1-4
1.6.1 Nature of Obsolete Featuresccooeeeeeimeiiiiiniinnecnnnnn, eeeenies 1-4

1.6.2 Nature of Obsolescent Features.........cccccceviienininiinnincccnecneeninnn, 1-4

1.7 MOodUIEScereieerer s eeeeeeeeeerterieerr e araaeetraearaaeetearaaiens 1-5
Z— 2l 18 High Level SYNtaX........ccocueirreeimnrnnnisn i 2-1
« 19 Program Unit CONCEPLS.......ovveiiimeieniiniieniiinrecir s 2-3
T 1.9 SCOPING UNIt courveeeeriiireeeseeteseiemsesessessesssssssssssssssssesssanssnsssses 23
1.9.2 Executable Programccoeeeiiimmiieiini e 2-4

i 1.9.3 Main Programccecinieiinieiimrseninims st s s 2-4
1.9.4 Procedure SUDProgram......ccecciniviunneessamerminenicssnnnnsassennersnnenes 2-4

1.9.5 MOQUIE ... e e vrsrre e e e es e et r e ase e s e naans 2-4

1.10 Execution Conceptsceveeeiiicnenn e mea e aaaneae 2-4
1.10.1 Executable/Nonexecutable Statements...............c.cccceiein, 2-5

1.10.2 StalemMeENt OFUEToovveveeeceeeieereereeieeeseesseesaesseseseeseesressnssneesnes 2-5

1.10.3 The END Statementccoooveiiicinninnnns e e 2-6

1.10.4 Execution SeqUeNCe.........coccccumurncrrnnnienens eetremnreeerr e raans 2-6

1.11 Data ConceptS.....cccererrrimmmmenncasinnnnns U S SRR 2-6
1.11.1 Data TYPE ...civeeiieircrre i s 2-6

1.11.2 Data VAIUEcoiveeeerrririieeeeeeerrrnsaise s stesssaesearasassasanssenennessnaansass 2-7

1.11.3 Data Entitycoccriiimiiniiciiiieesnc i s 2-7

1.11.4 VAriable ..oueeeeevei et vernrsee et e e e e s 2-7

1.11.5 SEOTAQE oeoveiviiireereerrete st e s 2-8

1.12 Fundamental TOMMScoeriimiiiisimes s 2-8
1.12.1 Name and Designator...........ccuvemiiniernesssesnsinnnissaesesess e 2-8

1.12.2 KEYWOId......eceiiiiiiinie ettt et s e 2-8

1.12.3 DeClaration.....ccocvveeerieeemmirerimiiiirr e st e 29

1.12.4 DeflNitioN.....cviiieiieiir e 29

1.12.5 REIBIBNCE ... o ceeeeeeirirrrrreeer et e e 29

1.12.68 ASSOCIAtION.cvuiiverieieirar s ieriiar e s rr s s e e s e naaa s s e rmna e 29

1.12.7 Intrinsic....... e eeeeeeeeietthsetitEreresessssesereressssieterEEEENaISaEtrEerernantrrenrann 29

1.12.8 OPEIatOrceeeiriiciii i et s 29

3 CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM 3-1
3.1 Fortran CRAracter Stccccccieeriiiciiiinrraceerersies it saeasaas 3-1

Version 102 1986 November Page v

TABLE OF CONTENTS X3J3/S8

Version 102

311 LeHers .o 3-1
B B o 1 £~ U RURRRRRTR 3-1
3.1.3 Special Charactersc.ccccoorevrieriiiiecce e 3-1
3.1.4 Character GraphiCS......cccccvreiieiiiee it 3-1
3.1.5 Collating SeqUeNCe.........cccuiieeeiiiii e, 3-2
3.2 Low-Level Syntax..........cccooeiriiiiien et 3-2
.21 KOYWOTAS ...ttt e et sar e s e e e, 3-2
3.22 Symbolic NamMES.......coovieoiiiviicciii e, 32
3.2.3 CONSIANES.....iiciieeiieii e e e e e reeens 3-2
3.2.4 OPEratOrS.....c.ociteiiiiriiereret e srier e rte et e e s erae s ebb e e s ste s e e en e 3-3
3.2.5 Statement Labels..........cccciviieeiiiiiii e 3-3
3.2.8 DeliMiters......oouieieriiie e e 3-4
3.3 SOUICE FOIM i e s b e e e eee e e e 3-4
3.3.1 Free Source FOrMcccouiiiiiiiiiic e ereen e e 34
3.3.2 Fixed Source FOrmccoccoviiriiiiiin e ceece e 3-4
INTRINSIC AND DERIVED DATA TYPESovvvveieeiiieeeeee e 4-1
4.1 The Concept of TYPE ..cccccovr et 4-1
4.1.1 Set of Values........ccoovieiiiiercie et 41
4.1.2 CONSIANES.....oiiiieee et 41
4.1.3 OPErations ..cococcviiir ettt 4-1
414 ASSIGNMENT ..ot et r e e 4-1
4.2 INtriNSIiC Data TYPOS ...ceiiiii ittt aea s 4-2
4.2.7 NUMEIIC TYPES ...ouitiiiiiiiiiicciiiirreeee e crereee e s e s s se e ree e e e e 4-2
4.2.2 NONNUMETIC TYPES...ovttiiiiiiiiierrieirierteaiee et eeeeeesesreaeeeea e 4-4
4.3 DerivEd TYPES...oi i 4-5
4.3.1 Derived-Type Definitionc...ccovvvveeeiiiiiiiiee e, 4-5
4.3.2 Derived-Type Valuescccccvrvimmvieniriie e, 4-6
4.3.3 Operations on Derived TYPeSceeeiiiiiiiieeieee e eeeeeeeeeieeeeee, 4-7
4.4 Array Constructorsc...cccccveveceeeeneeeecseennns e (il e ST 4-7
DATA OBJECT DECLARATIONS AND SPECIFICATIONS 5-1
51 Type Declaration Statements.........c..cccoceevvieivcieccceiecnne e, 5-1
5.1.1 Type-Specifier Attributes.............c.cceccei i, 5-2
5.1.2 AMMDUIES ...overieie e e 5-4
5.2 Attribute Specification Statementscccccc.corveiiicciin e 5-8
5.2.1 INTENT Statement........c.ccoooiiiiiiiieecin et 5-8
5.2.2 OPTIONAL Statement.........ccccoevuvierciieiiiieecceece e 5-8
5.2.3 Accessibility Statements...........cc.coveer i ivnncc 5-8
5.2.4 SAVE Statement.........cccoeiiiiiiiiii e 5-8
5.2.5 DIMENSION Statement.........ccccvieervciniesiciiee e 5-9
5.2.6 DATA Statement.......c.ccceeeriieiiiiiccce e 5-9
5.2.7 PARAMETER Statement.............cccoeceviiiiiiiccn v 5-12
5.2.8 RANGE Statement.......cccccivieriiiiii et 5-12
5.3 IMPLICIT Statement........cccooooiireiiei e 5-12
54 NAMELIST Statemento.cceveiiiivciieicceecee e 5-13
5.5 Storage Association of Data Objects........c.cccccoovvveveerivciiiieceeee e, 5-14
5.5.1 EQUIVALENCE Statement...........cccccecmmnvvniiiiiiee e 5-14
5.5.2 COMMON Statement...........cccceevuereeiiieeiieecee e 5-15

1986 November Page vi

Version 102

TABLE OF CONTENTS

USE OF DATA OBUJECTS ... ciiiiiiie s virran e es e s eemes s 6-1
6.1 SCAIAIS ..o e et eeeee e ee s e s arer et a e r e e e e r e e e e e e e et e a e e e e te e e areata e ana s 6-1
6.1.1 SUDSHINGS ..cevveereieieiiiiiii i 6-1
6.1.2 Structure COMPONENTSccceerriiiriieienitier e 6-2
6.2 AATTRYSeiveeuti et eere s ties b s e g e e 6-2
6.2.1 WHOI® AITAYS ...coiiiiiiiiiininics s 6-2
6.2.2 The ALLOCATE Statement.........ccccciiviininimnnneiinnnnninecnieencne 6-3
6.2.3 The DEALLOCATE Statementcccccovimviiiurnienmmnminnnninaee 6-3
6.2.4 Array Elements and Array SECHONS..........cccoviiciniinninniiinnnnnen, 6-4
6.2.5 The SET RANGE Statement.......ccccccceviiininmmmmniinninnnaneemsannenn. 6-5
6.2.6 The IDENTIFY Statementcoovmmiiimmimmmmmnnnncn s, 6-6
6.2.7 Summary of Array Name Appearancesccoorniinninininnias 6-8
EXPRESSIONS AND ASSIGNMENT ..o, 7-1
74 EXPrOSSIONS. .. evvereeeerrriiesiresieres e s et st aa s e s 7-1
7.1.1 Form of an EXPressionc.cecieivmmimmeienniicnniccn e 7-1
7.1.2 IntrinsSic OPerations.........cccceeeiivieciennnn s e 7-4
7.1.3 Defined Operations........ccovvieeiiincrimin s 7-5
7.1.4 Data Type, Type ‘Parameters, and Shape of an Expression...... 7-6
7.1.5 Conformability Rules for Intrinsic Operations..............cccccceeiies 7-6
7.1.6 Kinds of EXPressionsccceiveermennecinsinnnen e 7-7
7.1.7 Evaluation of Operations..........cccoeeciimmmmmrinn s 7-8
7.2 Interpretation of Intrinsic OPerations.........covveiiiicinini 7-12
7.2.1 Numeric Intrinsic Operationsccocoiiviimiremenreineenmsene 7-12
7.2.2 Character Intrinsic Operation.........ccicrvmreevimecniininceneninne 7-13
7.2.3 Relational Intrinsic Operationscccceveeinrininieiiimnncnee 7-13
7.2.4 Logical Intrinsic Operations..........c..ccooeriimninini e 7-14
7.3 Interpretation of Defined Operations.............ccccoviiiiininen 7-15
7.3.1 Unary Defined Operation ..o 7-15
7.3.2 Binary Defined Operationc.ccoceiiniciiis 7-15
7.4 Precedence Of Operators.........ccocuuiiriiineerininessssssi s 7-16
7.5 ASSIGNMENToieceeiiiie i s 7-17
7.5.1 Assignment Statement.........ccocinniiiiin 7-17
7.5.2 Masked Array AssignmentWHEREc.ccocnninnnniiiiinnnns 7-19
EXECUTION CONTROL........... et teeereeeneeraeeeeaeieaa it erea e enaas 8-1
8.1 Executable Constructs Containing BIOCKS..........cocciimiiiiiinicn 8-1
8.1.1 Rules Governing BIOCKScccceieimmmiii s 8-1
8.1.2 IF CONSIIUCE .eciiiiiiieeeeeeeercier s ccrreem e er ey s asean s 8-1
8.1.3 CASE CONSIUGL...cceceeeeiriiiriiereee i ereennces s e 8-3
8.1.4 eration Control............cceeerveveemmreeeremmimmmiirnrrir s 8-5
8.2 BranChiNg.....cccoeecreeiunecieiir i e e 8-9
8.2.1 Statement LabelS....cccreererreriiemiiimiiactri e s 89
B.2.2 GO TO Statement..........ccooiimiririmriieiiiieirmne e 8-9
8.2.3 Computed GO TO Statement ORI 8-10
8.2.4 ASSIGN and Assigned GO TO Statement............ccoccciniiinnns 8-10
8.2.5 Arithmetic IF Statementveviiiiiiiniiniirreririrr s 8-10
8.3 CONTINUE Statementccocceeeiiirreceisiinrsr s nssnnns i sisnnae s sesasaseeee s 8-11

1986 November Page vii

TABLE OF CONTENTS X3J3/58

10

Version 102

8.4 STOP Statement...........oooveiiir i rrer e e e e eee e 8-11
8.5 PAUSE Statement..........ooooriiiiri et e rern 8-11
INPUT/OUTPUT STATEMENTS........coiiiiiiccer e, 9-1
9.1 RECOIAS. .. e e eaaraar e 9-1
9.1.1 Formatted Record...............cccoeiniiiiniiin, [8-1
9.1.2 Unformatted RECOIdcoooveimiiiiiii e e eeee 9-1
9.1.3 Endfile RECOId.........oiveerriirerirrerrircnn v erree et 9-1
9.2 1= O SRS 9-2
9.2.1 External FileS.....c.oo i 9-2
9.2.2 Internal FileS.......uimmeine e 9-4
9.3 [T=0 7] T T=Tox {0 o (PPN 9-5
9.3.1 UNit EXISIENCE . .oeeeieecie e 9-5
9.3.2 Connection of a File to a Unitccooeeerririn e 9-5
9.3.3 PreconneCtion......cccc..cvvireerrerriemmmemrerrrrrerirrrrerenneesscecnnnesnresaaeaeans 9-6
9.3.4 The OPEN Statement.......cccccoivvmmevereciriecniireenenieeiene e sernse e e 9-6
9.3.5 The CLOSE Statementc.ovvviiiiiiiiciiiciireeniccisien e eeeeeeeenen, 9-8
94 Data Transfer Statements.........cc.cccooiviiree e 9-9
9.4.1 Control Information List...........ccoeriiiiiiiiiiirceee e, 9-10
9.4.2 Data Transfer Input/Output List..........c.ooeeeiiiieiiiie e, 9-13
9.4.3 Execution of a Data Transfer Input/Output Statement 9-15
9.4.4 Printing of Formatted Records..............cccoeciiniiicenni e, 9-17
9.5 File Positioning Statementscccciiiiiiiciimenrec s e 9-17
9.6 L1 LT oo [T o SRR 9-18
9.6.1 Inquiry SPeCifiersc...ciiviviiiiiin st 9-18
9.7 Restrictions on Function References and List ltems............c.o.ooooee . 9-22
9.8 Restriction on Input/Output Statements.........cc.cooiiiciiiiiiis 9-22
INPUT/OUTPUT EDITING.........cceveereeene. e 10-1
10.1 Explicit Format Specification Methodscccceeiiriiiiiinrvereee, 10-1
10.1.1 FORMAT Statement...........covveeeeireiieciiierecree e 10-1
10.1.2 Character Format Specification.............cccveeciviiiiviinirenieeeieeeeeeeis 10-1
10.2 Form of a Format Item List..........iooiiieiiiiiiervrer e 10-1
10.2.1 Edit DESCHPIOISvieeiieiiiieeeeecieeri e ereeeee e eee s 10-2
10.2.2 FIBldS.comiiiiiiii e 10-3
10.3 Interaction Between Input/Output List and Format.............ccccovvvmnnenninn 10-3
10.4 Positioning by Format Control.................oo oo 10-4
10.5 Data Edit DesCriptors...........ccocoeeeveeee e e e, 10-4
10.5.1 Numeric Editingc.covvvmeeiiiiiiiici e e 10-4
10.5.2 L Editing ..cceemmririirimieccricnnieiiiiiniiiiiiieeserescnesrcanana e PR 10-8
10.5.3 A EdItiNG .cccceeiei e irenee s s e e 10-8
10.6 Control Edit DeSCrPtOrsccoiiiiie e cer e e, 10-8
10.6.1 Position Editing.....cccvvveuiimeiniiiiriniccnrirrreeerccinnee e ereeneeen e 10-8
10.6.2 Slash Editing........ccccociiiiiii e e, 10-9
10.6.3 Colon EdItiNGccooeiiiiiiiieinr v s cerect s rrreeers s e 10-9
10.6.4 S, SP, and SS Editingc..cocerivvimiriiimiieciiniiiiriren e, 10-10
10.6.5 P EditiNg ...ccvvriiiiiiecies e s e e e e e e e 10-10
10.6.6 BN and BZ Editing...........cviveiiiniiiniiiieiiicces e 10-10
10.7 Character String Edit Descriptors......ccccccoeiiiiieieeee vt 10-11

1986 November Page viii

11

12

13

Version 102

TABLE OF CONTENTS

10.7.1 Character Constant Edit Descriptorccccvereeriiciiiiiieeeieeeee, 10-11

10.7.2 H EditiNg..ccocoiieciiie e rcrin s ssrcs s st e s 10-11

10.8 List-Directed FOrmattingccveriimieeninieeniirerrscc s errrenc s s s er e e e s e 10-11
10.8.1 List-Directed INpuUt..........oooviieiiiiir e e 10-11

10.8.2 List-Directed Output...........ccccooiiiviririereiiececenen T - T e 10-13

10.9 Namelist FOrmatting......cccocmiiimmmcsrecrci et 10-14
10.9.1 Namelist INPUL.....c...cooriiieeiir s e e e enneens 10-14

10.9.2 Namelist QULPUL.........coveeiiiiiiir e e 10-16
PROGRAM UNITS... et reve s recesncnn s s e s s e 11-1
11.1 Main Programcccoonimeennnnnieinnne e ettt e et e te e e e nne e 11-1
11.1.1 Main Program Specificationscccccooccoirmiiiiiiccicieiee e, 11-1

11.1.2 Main Program Executable Part....... b reeerenneiese e s 11-1

11.1.3 Main Program Internal Procedures..............cccccnniiniiininnne e 1141

1.2 Procedure SUDPrOGIramsccocruremmmmarrerraniirrreesrnesstennrneeesessesssmmemsenmeenes 11-1
1.3 Module SUbPrOgrams.........ccccrriririminteenrieniiin e, [11-1
11.3.1 The USE StatemMent.........ccevrimiiiiiiiiereiirciiriiinensceneennaeenseeeesenseaens 11-2

11.3.2 Examples of Modulescccovcvvieniiiiiniicce e 11-3

11.4 Block Data SUDProgramscccccrrmiirciiiienininesisincs et e e 11-5
PROCEDURES.......cc oo rcrrcveri v resna e T 12-1
12.1 Procedure ClassifiCations...........ccovveuviiciioriminicciini e 121
12.1.1 Procedure Classification by Reference.........ccccccenvviiciineninns 12-1

12.1.2 Procedure Classification by Means of Definition....................... 12-1

12.2 Characteristics of Procedures.........covmeeciieiiiiiiiimiiiiinnii i cce e 12-1
12.2.1 Characteristics of Dummy Arguments........ccccooeiiciicnin i, 12-1

12.2.2 Characteristics of Function ReSURSicceiviiiiieiiieiiieeeee. 12-2

12.3 Procedure INterfacecc.covceeerieirirecire e et e 12-2
12.3.1 Implicit and Explicit Interfacesc...c..ccoeniiiiinniisininniicene, 12-2

12.3.2 Specification of the Procedure Interface.........c.....ooviueveceeennnnee. 12-3

12.4 Procedure ReferenCe.........c.ccovvviveeriireeciriiinisiinn s e 12-4
12.4,1 Actual Argument Listcccccovrciiiiiii 12-5

12.4.2 Function Referenceccoeeceeeerivineninenes deeerereeerereeeie e eaaeran 12-7

12.4.3 Elemental Function Referencecccccvemivimmmiiincinnnicnncnnn. 12-7

12.4.4 Subroutine Reference......ccccccceceiiiiineeerisiiiiie e 12-8

12.4.5 Elemental Assignment.............ccceee. P S-SR ORROPRON 12-8

12.5 Procedure Definitionccccccvvuiemiiiiim i 12-8
12.5.1 Intrinsic Procedure Definition.............ooeiiiimnimenininninncvecnereeees 12-8

12.5.2 Procedures Defined by Procedure Subprograms............... N 12-8

12.5.3 Definition of Procedures by Means Other Than Fortran............. 12-13

12.5.4 Overloading Namescccccveiiriiiieen e 12-14
INTRINSIC PROCEDURES ..o e 131
13.1 INtrinSiC FUNCHONS . .ovvvviivieec et e 13-1
13.2 Elemental Intrinsic Function Arguments and Results............ccccocceeennenne. 13-1
13.3 Argument Presence Inquiry FUNCHONSccccviiiiennieniniiinnceeniine 13-1
13.4 Numeric, Mathematical, Character, and Derived-Type Functions 13-1
13.4.1 NUMErC FUNCHONS......ccviiicer it er e e 13-1

1986 November Page ix

TABLE OF CONTENTS X3J3/58

14

Version 102

13.4.2 Mathematical FUNCHIONSccoccovveieiiiiiiiieee e 13-1
13.4.3 Character FUNCHONS.......cc.cccviveiriie e 13-1
13.4.4 CHARACTER Inquiry FUNCHONScooviieriiiiiieeeec e 13-1
13.4.5 Derived Data Type Inquiry Functions...........cccceeeerviiiicirniree e, 13-2
13,6 Transfer FUNCHON.........couii ettt 13-2
13.6 Numeric Manipulation and’Inquiry Functionsc.ccceeceuvieeeeirrenennn.n. 13-2
13.6.1 Models for Integer and Real Datacccceeeeecvnnnninnnen, 13-2
13.6.2 Numeric Inquiry FUNCHONSccocvceeiiniiicieerreer e, 13-3
13.6.3 Floating Point Manipulation Functionsccccccceeevnvivivinnconeee. 13-3
13.7 Array Intrinsic FUNCHONS.........oovcvciirieieieec e 13-3
13.7.1 The Shape of Array Argumentscccceevvevvvcirieece e, 13-3
13.7.2 Mask Arguments.........ccccoeiiviiii e 13-3
13.7.3 Vector and Matrix Multiplication Functionscccevvveeeeereee.n.. 13-3
13.7.4 Array Reduction Functions...........cccccccomvvrevmniciesiiee s, 13-3
13.7.5 Array Inquiry FUNCHIONScoviiieiiiiiiiiiieiicceircc e 13-4
13.7.6 Array Construction FUNCHONS...........cvvevvivciiincinien e 13-4
13.7.7 Array Manipulation FUNCHONS............ceveveirir e, 13-4
13.8 INtrinSic SUDIOULINGSc.eeieiiiiiiee et e bbb 13-4
13.8.1 Date and Time Subroutines..........cccoccvvveeciine i e 13-4
13.9 Tables of Generic INtrinSiC FUNGHONS.......iivirieiiieeeeeer e eeree v eeeeerseennass 13-4
13.9.1 Argument Presence Inquiry FUnction..........ccccceveeenee e, 13-5
13.9.2 NUmertic FUNCHIONSc.viiieeiiir e 13-5
13.9.3 Mathematical FUNCLIONScccoiveriiieeeeece e 13-5
13.9.4 Character FUNCLONS...........covvviieii i 13-5
13.9.5 Character Inquiry FUNCONS.........cocccevvivecniciieecicc i 13-6
13.9.6 Numeric Inquiry FUNCHIONSveeiiiiere e, 13-6
13.9.7 Transfer FUNCtion............ccocoin e 13-6
13.9.8 Floating-point Manipulation Functions...........ccccceeee v, 13-6
13.9.9 Vector and Matrix Multiply Functions..........c.c.ccccovviiienivivvinnnnn. 13-6
13.9.10 Array Reduction FUNCLioNS...........cccccocviiinei it 13-6
13.9.171 Array Inquiry FUNCLIONSc.cvvvviiiirrcccren e erinee e 13-7
13.9.12 Array Construction FUNCLIONScc.occvevviciiiiireein e 13-7
13.9.13 Array Manipulation Functions........cccccccceicviinnccnn v, 13-7
13.9.14 Array Geometric Location Functions...........ccccceceeevvinnnnrnnneennnn.n. 13-8
13.10 Table of Intrinsic SUBrOULINESooiviieeeiieic e 13-8
13.11 Table of Specific Intrinsic FUNCHONSccceiiiiiiiiiieiie e, 13-8
13.12 Specifications of the Intrinsic Procedures............ccoceevivivviisieecccveeee e, 13-10
SCOPE, ASSOCIATION, AND DEFINITIONccoovmvmmmrreriinreeeennn, 14-1
14.1 Scope Of NAMBESooiiiieiii e e e e 14-1
14.1.1 Global Entitiesoccocomriiire e e 14-1
14.1.2 Local ENtItIescove i e 14-1
14.1.3 Statement ENttiescccce i 14-2
14.2 Scope Of LabeIS..........oocoeiiiircie e 14-3
14.3 Scope of Exponent Leterscccccueiicmeeiei e e, 14-3
14.4 Scope of External Input/Output Units............cccovvevereiiieiiies e 14-3
14.5 Scope Of OPEIAtOrS.....ccccviiiicreeriee e eceeectee et enee et rees e s eseae e 14-3
14.6 Scope of the Assignment Symbol.........cccoceeiiiiieriiniceniecccee e, 14-3
147 ASSOCIALONeiieiiiiieeee et et 14-3
14.7.1 Name AsSOCIatioNc..c.ceiiiiiiecirie et 14-3

1986 November Page x

Version 102

14.8

TABLE OF CONTENTS

14.7.2 Storage AsSOCIAONcovveieiiv i
Definition and Undefinition of Variables.....c.cccooiiiiiiiiiciiiciie,
14.8.1 Variables That Are Always Definedcccocereiriiviiininniinne
14.8.2 Variables That Are Initially Definedcoovveviviiiiniinninn
14.8.3 Variables That Are Initially Undefinedcccccoooiiiiiiiiiiniininns
14.8.4 Events That Cause Variables to Become Defined.....................
14.8.5 Events That Cause Variables to Become Undefined.................

FORTRAN FAMILY OF STANDARDS ...,

Al

A2

A3

A4

A5

A6

The Fortran Language Standard............cccooeeniienimniinnen e,
A1l Primary FRAtUMeScoeeeviiiiiiniieine e ier e
A.1.2 Incremental Features............oceevcireiinniimnninenes e
A.1.3 Decremental FEatUresoocciiieimmiemimmminiiineiineirecrnce e
A.1.4 Compatibilityccococvviiiiniiiii s S
F N I T 0o (- T U U PR S
Supplementary Standards Based on Procedure Libraries
A.2.1 Interface MechaniSms...........occeececnnminmmmeemrir e s
Supplementary Standards Based on Module Librariesccceeeeee.
A.3.1 Interface Mechanisms.........ccccooimmiiicinierin e
A3.2 RUES oot errerrrarerereare e eneaen e
Secondary StaNdards.............oceiiniiiiniiire s
Standard CONfOTMANCEcoevvirieeirrerieereeessas s insnsinr e s s s ssssanrasssnresrresnens
A5.1 Name Registrationciceeiiiiiimiiessiinn et e
Fortran Family of Standards..........cccoooriimmnninn s

OBSOLETE, OBSOLESCENT, AND DEPRECATED FEATURES ..

B.1 Obsolete Featurescicooeeevvviiiniinnnann. B Y S
B.2 Obsolescent Features.............cooeeeirnivnn e, e e s ere

B.2.1 Alternate RETURN........ccccoovriiiiiiiicrin e

B.2.2 PAUSE Statementcccoomeeimmiariiimmimeriineeiniineeesasssesescessanannn

B.2.3 ASSIGN and Assigned GO TO..........coccineiinnnnanne reerrreeencrsi————
B.3 Nature of Deprecated Featurescoccvmmeicinneii e,

B.3.1 Storage ASSOCIAtIoONccceviiiieiimreei e e

B.3.2 Redundant Functionality S T TN
SECTION NOTES......cocoviiriniiiieennn, EeEEnk e R
C.1 SECHON 1 NOES ..cuvueriercsiterie et '
C.2 SECHON 2 NOEES ..oeeviieieeiir it e ittt rearesaeanieseressmassaas e rsssnsa s rassrrnsnseenss
C.3 Section 3 Notesc.us e eeer— e s PP SN
C4 SECHON 4 NOES ..uvvvriiiiieeieiiieeeeere st easess s s mn s ana s b raaaarans
C5 SECHON 5 NOEScoiecirnrierer s recsiereer s rrer s e e raesases et b ranees
C.8 SECHON B NOLES ...veveeeveieeeeereciereseseeeasessssesesesesssestseesasesessmreessnsesessin
C.7 Section 7 NOteSccecivmemerireemrcmri e bertee e te e e e et e aree e e s
C.8 Section 8 NOES ...cccuveeiiciiiiririicir e e
C9 SECHON G NOIES ...t e
C.10 Section 10 NOEScvvceiirireeree e SO
C.11 Section 11 NOES . ..eveeiirurriiiiiirieier e rsssmssrsr st erer e e a e e srraneee s eseesaenes
C.12 Section 12 NOES . ccccvereeeriirrieeer s it e s e s esesb et nesa s bbsrnaaea s

B-1

C-1
C-1

Cc-2

1986 November Page xi

TABLE OF CONTENTS X3J3/S8

Version 102

C.18 SeCtion 13 NOES ..cccueiiiiriac e e C-16
C.13.1 Summary of FEAtUreSccoceeceevvireiieeeeeeee sttt C-16
C13.2 EXAMPIOS ..ouiiiiiiii i cccceieiiiiie e scite s e e e s er e e e te s et en e e e s e eeeen C-18
C.13.3 FORmula TRANslation and Array Processing..........c.....ccc......... Cc-22
C.13.4 Variance from the Meancocvvevevivinieesciieee e c-22
C.13.5 Matrix Norms: Euclidean NOrm............ccccoovirieenciicenccininniiennn, C-23
C.13.6 Matrix Norms: Maximum Norm. e C-23
C.13.7 Logical QUEries........cc.ccorverrererierncn. SRS C-23
C.13.8 Paralle! Computations.......cc.ccoceiiviiiiviciiir e C-24
C.13.9 Examples of Element-by-Element Computation C-24
C.14 Section 14 NOEScovii i ree e C-25
SYNTAX RULES ... et D-1
PERMUTED INDEX FOR HEADINGScccvvmmiiiicieeeeeeeie, E-1
SUGGESTED EXTENSIONS ..o, F-1
F.A TYPE EXIENSIONSooeeeiiiei e et e v e e s estee st bee e e s e e sa s s s ebbaaeean e e F-1
FAAl Bit Data TYPE . ci i F-1
F.1.2 Variant Structures.........cocceeoieieecciecci e F-12
F.2 Array EXtENSIONScoeeiiiii e e F-14
F.2.1 Structure Arrays of Arrays Treated as Higher-Order Arrays F-14
F.2.2 Vector-Valued SUDSCHPS......ccccvvieirii e F-14
F.2.3 Element Array AssignmentFORALL............cccooeeiiiiiiiiiiieee e F-15
F.2.4 IntrinSic FUNCHONSccooviitieieeeecee et F-16
F.3 Procedure EXtENSIONScooriiiiiiiieii e F-20
F.3.1 Nesting of Internal Procedures..........ccccevvvveecieiiiiiniiiin e, F-20
F.3.2 Internal Procedure Name as an Actual Argument F-20
F.4 Condition HaNAING.....c....covereeiiiiieeteeceicecte et F-21
F.4.1 DefinNitionScciiiiiieieiiiierercee e e F-21
F.4.2 Specification Statementsc...cccceeevieiei i F-22
F.4.3 Executable Constructs.......cc.ccceereivrimresieeiiiiee i F-23
F.4.4 Condition ENabling............ccceeceviiiiiiierccie et F-25
F.4.5 Condition Signaling........cccceecvieiiiciineviiin e F-25
F.4.6 Execution of an ENABLE Construct.............ccccoceviviiiiiviin i F-26
F.4.7 Effects of Signalling on Definitionccccccoeeviviiiiici i F-26
F.4.8 Condition Status Inquiry FUNCiONSccoceveeiineeiiiicnre s F-28
F.4.9 Notes on Exception Handlingc.ccccouereuveerrnnnnn, PP F-29
INDEX ...cicimieiiiiiiiiiarnifisioeees i 55 e eseeaceeerensensassboeesadinnnansnisressessssenns G-1

1986 November Page xii

10

15

20

25

30

1 INTRODUCTION

1.1 Purpose. This standard specifies the form and establishes the interpretation of pro-
grams expressed in the Fortran language. The purpose of this standard is to promote porta-
bility, reliability, maintainability, and efficient execution of Fortran programs for use on a vari-
ety of computing systems. This standard is an upward compatible extension to the preced-
ing Fortran standard, X3.9-1978, informally referred to as Fortran 77. Any standard-
conforming Fortran 77 program is standard conforming under this standard, with the same
interpretation; however, see 1.4 regarding intrinsic procedures.

1.2 Processor. The combination of a computing system and the mechanism by which
programs are transformed for use on that computing system is called a processor in this
standard.

1.3 Scope. This standard specifies the bounds of the Fortran language by identifying both
those items included and those items excluded.

1.3.1 Inclusions. This standard specifies:
(1) The forms that a program written in the Fortran language may take
(2) The rules for interpreting the meaning of a program and its data
(3) The form of the input data to be processed by such a program
(4) The form of the output data resulting from the use of such a program

1.3.2 Exclusions. This standard does not specify:
(1) The mechanism by which programs are transformed for use on computers

(2) The operations required for setup and control of the use of programs on compu-
ters

(3) The method of transcription of programs or their input or output data to or from a
storage medium

(4) The program and processor behavior when the rules of this standard fail to estab-
lish an interpretation

(5) The size or complexity of a program and its data that will exceed the capacity of
any specific computing system or the capability of a particular processor

(6) The physical properties of the representation of quantities and the method of
rounding of numeric values on a particular processor

(7) The physical properties of input/output records, files, and units

(8) The physical properties and implementation of storage

1.4 Conformance. The requirements, prohibitions, and options specified in this standard
refer to permissible forms and relationships for standard-conforming programs rather than
for processors. The optional output forms produced by a processor, which are not under the
control of a program, are an example of an exception. The requirements, prohibitions, and
options for a standard-conforming processor must be inferred from those given for programs.

Version 102 1986 November Page 1-1

INTRODUCTION X3J3/S8

10

15

20

25

30

35

40

45

An executable program (2.2.1) conforms to this standard if it uses only those forms and rela-
tionships described herein and if the executable program has an interpretation according to
this standard. A program unit (2.2) conforms to this standard if it can be included in an exe-
cutable program in a manner that allows the executable program to be standard conforming.

A processor conforms to this standard if it executes standard-conforming programs in a man-
ner that fulfills the interpretations prescribed herein. A standard-conforming processor may
allow additional forms and relationships provided that such additions do not conflict with the
standard forms and relationships. However, a standard-conforming processor may allow
additional intrinsic procedures even though this could cause a conflict with the name of an
external or internal procedure in a standard-conforming program. W such a conflict occurs
and involves the name of an external procedure, the processor is permitted to use the intrin-
sic procedure unless the name appears in an EXTERNAL statement within the scoping unit
(2.2.1). A standard-conforming program must not use nonstandard intrinsic procedures that
have been added by the processor.

This standard has more intrinsic procedures than did Fortran 77. Therefore, a standard-
conforming Fortran 77 program may have a different interpretation under this standard if it
invokes a procedure having the same name as one of the new standard intrinsic procedures,
unless that procedure is specified in an EXTERNAL statement as recommended for
nonintrinsic functions in the appendix to the Fortran 77 standard.

Note that a standard-conforming program must not use any forms or relationships that are
prohibited by this standard, but a standard-conforming processor may allow such forms and
relationships if they do not change the proper interpretation of a standard-conforming pro-
gram. For example, a standard-conforming processor may allow a nonstandard data type
such as INTEGER*2.

Because a standard-conforming program may place demands on a processor that are not
within the scope of this standard or may include standard items that are not portable, such
as external procedures defined by means other than Fortran, conformance to this standard
does not ensure that a standard-conforming program will execute consistently on all or any
standard-conforming processors.

1.5 Notation Used in This Standard. In this standard, “must” is to be interpreted as a
requirement; conversely, “must not” is to be interpreted as a prohibition.

1.5.1 Syntax Rules. Syntax rules are used to help describe the form that Fortran state-
ments and constructs may take. These syntax rules are expressed in a variation of Backus-
Naur form (BNF) in which:

(1) Characters from the Fortran character set are to be written as shown, except
where otherwise noted.

(2) Lower case italicized letters and words (often hyphenated and abbreviated) repre-
sent general syntactic classes for which specific syntactic entities must be substi-
tuted in actual statements.

Some common abbreviations used in syntactic terms are:

stmt for statement attr for attribute
expr for expression dec/ for declaration
spec for specifier def for definition
int for integer desc for descriptor
arg for argument op for operator

lit for literal

Version 102 1986 November Page 1-2

INTRODUCTION X3J3/S8

10

15

20

25

30

35

40

(3) The syntactic metasymbols used are:

is introduces a syntactic class definition

r introduces a syntactic class alternative

] encloses an optional item

] encloses an optionally repeated item
which may occur zero or more times

[continues a syntax rule

(4) Each syntax rule is given a unique identifying number of the form Rsnn, where s
is a one or two digit section number and nn is a sequence number within that sec-
tion. The syntax rules are distributed as appropriate throughout the text, and may
be referenced by number as needed. -

(5) The syntax rules are not a complete and accurate syntax description of Fortran,
and cannot be used to generate automatically a Fortran parser; where a syntax
rule is incomplete, it is accompanied by an informal description of the correspond-
ing constraint.

(6) Obsolescent features are shown in a distinguishing type font. This is an example of the
font used for obsolescent features.

An example of the use of syntax rules is:

int-fit-constant is digit [digit]...
The following forms are examples of forms for an integer constant allowed by the above rule:
digit
digit digit
digit digit digit digit

digit digit digit digit digit digit digit digit
When specific entities are substituted for digit, actual integer constants might be:

A

67

1 999

10 243 852

1.5.2 Assumed Syntax Rules. To minimize the number of additional syntax rules and con-
vey appropriate constraint information, the following rules are assumed unless explicitly over-
ridden. The letters “xyz” stand for any legal syntactic class phrase:

xyz-list is xyz [, xyz]...
Xyz-name is symbolic-name
xyz-symbolic-constant is symbolic-name
Xyz-expr is expr
xyz-variable is variable
int-xyz is xyz

char-xyz is xyz
derived-type-xyz is xyz

scalar-xyz is xyz

array-xyz is xyz

Version 102 1986 November Page 1-3

INTRODUCTION X3J43/S8

10

15

20

25

30

35

40

1.5.3 Syntax Conventions and Characteristics.

(1) Any syntactic class name ending in “-stmt” follows the source form statement
rules: it must be delimited by end-of-line or semicolon, and may be labeled unless
it forms part of another statement (such as an IF or WHERE statement). Con-
versely, everything considered to be a source form statement is given a “-stmt”
ending in the syntax rules.

(2) The rules on statement ordering are described rigorously in the definition of
external-program-unit (R202-R218). Expression hierarchy is described rigorously in
the definition of expr (R712).

(3) The term “type parameter” applies to a data type parameter, with “type-param-
name” used for the dummy parameter and “type-param-spec” (R503) used for the
actual parameter, including the optional keyword. The part without the keyword is
called “type-param-value” (R504). These terms parallel the use of “dummy-arg-
name”, “actual-arg-spec” (R1212) and “actual-arg” (R1214), respectively, for proce-

dure arguments.

(4) The suffix “-spec” is used consistently for specifiers, such as keyword type param-
eters, keyword actual arguments, and input/output statement specifiers. it also is
used for type declaration attribute specifications (e.g., “array-spec”), and in a few
other ad hoc cases.

(5 When reference is made to a parameter, including the surrounding parentheses,
the term “selector” is used. See, for example, “length-selector” (R508),
“precision-selector” (R409, R507), “array-selector” (R607), and “case-selector”
(R813).

(6) The term “subscript” (e.g., R611 and R614) is used consistently in array
definitions.

1.5.4 Text Conventions. In the descriptive text, the normal English word equivalent of a
BNF syntactic term is usually used. Specific statements are identified in the text by the
upper-case keyword, e.g., “END statement”. Boldface words are also used in the text
where they are first defined with a specialized meaning.

1.6 Obsolete, Obsolescent, and Deprecated Features. This standard protects the
users’ investment in existing software by including all of the language elements of ANSI
X3.9-1978. This document identifies three categories of outmoded features. Those in the
first category, obsolete features, are considered to have been redundant and largely
unused in ANSI X3.9-1978. Those in the second category, obsolescent features, are con-
sidered to have been redundant in ANSI X3.9-1978, but are still used frequently. Those in
the third category, deprecated features, are considered to have become redundant by the
inclusion of certain new features in this standard. Sections 1.6.1 and 1.6.2 describe the first
two categories; Appendix B describes the third and lists the features in each.

1.6.1 Nature of Obsolete Features.
(1) Better methods existed in ANSI X3.9-1978.

(2) These features are not included in this revision of Fortran.

1.6.2 Nature of Obsolescent Features.
(1) Better methods existed in ANS! X3.9-1978.

Yersion 102 1986 November Page 1-4

INTRODUCTION

(2

(3)
(4)

(6)

10 (6)

X3.3/58

It is recommended that programmers use these better methods in new programs
and convert existing code to these methods.

These features are identified in the text of this dqcument.

If the use of these features has become insignificant in Fortran programs, it is
recommended that future Fortran standards committees consider removing them
from the next revision.

It is recommended that future Fortran standards committees do not consider
removing language features defined in this revision from the succeeding Fortran
revision that do not appear on the list of obsolescent features.

It is recommended that processors supporting the Fortran language continue to
support these features as long as they continue to be used widely in Fortran pro-
grams.

1.7 Modules. This standard provides facilities that encourage the design and use of mod-
ular and reusable software. Data and procedure definitions may be organized into nonexe-

15 cutable program units, called modules, and made available to any other program unit. In
addition to global data and procedure library facilities, modules provide a mechanism for
defining data abstractions and certain language extensions.

An intrinsic module is a module definition included with this standard. In addition, a module
may be standardized as a separate collateral standard. A standard module must be core

20 conforming. Operators defined in the module must not have the potential to alter the mean-
ing of any core-conforming intrinsic operation.

Version 102

1986 November Page 1-5

10

15

20

25

30

35

40

2 FORTRAN TERMS AND CONCEPTS

2.1 High Level Syntax. This section introduces the terms associated with program units
and other Fortran concepts above the construct, statement, and expression levels and illus-
trates their relationships. The syntax rule notation is described in 1.5.

R201 executable-program is external-program-unit
[external-program-unit]...

Constraint: An executable-program must contain exactly one main-program program-unit.

R202 external-program-unit is main-program
or procedure-subprogram
or module-subprogram
or block-data-subprogram

R203 main-program is [program-stmt |
specification-part
[execution-part]
[internal-procedure-part |
end-program-stmt

R204 procedure-subprogram ° is function-subprogram
or subroutine-subprogram

R205 function-subprogram is function-stmt
' specification-part
[execution-part |
[internal-procedure-part |
end-function-stmt

R206 subroutine-subprogram is subroutine-stmt
specification-part
[execution-part |
[internal-procedure-part |
end-subroutine-stmt

R207 module-subprogram - is module-stmt
specification-part
[procedure-subprogram ...
end-module-stmt

R208 block-data-subprogram is block-data-stmt
specification-part
end-block-data-stmt

Constraint: A block-data-subprogram specification-part may contain only IMPLICIT, PARAME-
TER, type declaration, COMMON, DIMENSION, EQUIVALENCE, DATA, and
SAVE statements.

R209 specification-part is [use-stmt |...
[implicit-part |
| declaration-construct 1...
| stmt-function-part |

R210 implicit-part is [implicit-part-stmt]...
implicit-stmt

Version 102 1986 November Page 2-1

FORTRAN TERMS AND CONCEPTS

10

15

20

25

30

35

40

45

R211

R212

R213

R214

R215

R216

R217

R218

R219

Yersion 102

stmt-function-part

implicit-part-stmt

declaration-construct

stmt-function-part-stmt

execution-part

execution-part-construct

internal-procedure-part

internal-procedure

specification-stmt

is stmt-function-stmt

[stmi-function-part-stmt |...

or data-stmt

[stmi-function-part-stmt 1...

is implicit-stmt
or parameter-stmt
or format-stmt

or entry-stmt

is derived-type-def

or interface-block

or type-declaration-stmt
or specification-stmt

or parameter-stmt

or format-simt

or entry-stmt

is format-stmt

or data-stmt

or entry-stmt

or stmt-function-stmt

is executable-construct

[executable-part-construct ...

is executable-construct
or format-stmt

or data-stmt

or entry-stmt

is contains-stmt
[internal-procedure ...

is function-stmt
specification-part
[execution-part |
end-function-stmt
or subroutine-stmt
specification-part
[execution-part |
end-subroutine-stmt

is access-stmt

or exponent-letter-stmt
or external-stmt

or data-stmt

or intent-stmt

or intrinsic-stmt

or namelist-stmt

or optlional-stmt

or range-stmt

or save-simt

or common-stmt
or dimension-stmt
or equivalence-stmt

1986 November

X3J3/58

Page 2-2

FORTRAN TERMS AND CONCEPTS X3J3/s8

10

15

20

25

30

35

40

45

Constraint: An intent-stmt or optional-stmt may appear only in the scoping unit of a proce-
dure subprogram because they apply only to dummy arguments.

Constraint: An access-stmt may appear only in the scoping unit of a module subprogram.

R220 executable-construct is action-stmt
or case-construct
or do-construct
or if-construct
or where-construct

R221 action-stmt is allocate-stmt

' or assignment-stmt
or backspace-stmt
or call-stmt

“or close-stmt

or continue-stmt
or cycle-stmt

or deallocate-stmt
or endfile-stmt

or exit-stmt

or goto-stmt of ldln'-;ﬁ 'SJ'MI'
or if-stmt

or inquire-stmt

or open-stmt

or print-stmt

or read-stmt

or return-stmt

or rewind-stmt

or set-range-stmt
or stop-stmt

or where-stmt

or write-stmt

or arithmetic-if-stmt

or assign-stmt
or assigned-goto-stmt
@r computed-goto-stmt M+ OLG-

or pause-stmt

Constraint: An entry-stmt or return-stmt may appear only in the scoping unit of a procedure
subprogram; an entry-stmt must not appear in a construct.

2.2 Program Unit Concepts. Program units are the fundamental components of a For-
tran program. A program unit may be a main program, procedure subprogram, module sub-
program, or block data subprogram. A procedure subprogram may be a function subprogram
or a subroutine subprogram. A module contains definitions that are to be made accessible
to other program units. A block data subprogram is used only to specify initial values for
named common block data objects. Each type of program unit is described in Section 11 or
12. An external program unit is a program unit that is not contained within another program
unit. An internal program unit is a program unit that is contained within another program
unit.

Version 102 1986 November Page 2-3

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

2.2.1 Scoping Unit. A program unit consists of a set of nonoverlapping scoping units. A
scoping unit is

(1) A derived-type definition,

(2) A procedure interface block, excluding any procedure interface blocks contained
within it, or

(3) A program unit, excluding derived-type definitions, procedure interface blocks, and
program units contained within it.

A scoping unit that immediately surrounds another scoping unit is called the host scoping
unit.

2.2.2 Executable Program. An executable program consists of exactly one main program
and any number (including zero) of external subprograms. The set of external subprograms
in the executable program may include any combination of the different kinds of subpro-
grams in any order.

2.2.3 Main Program. Execution of an executable program begins with the first executable
construct of the main program. The main program is described in 11.1.

2.2.4 Procedure Subprogram. Procedures encapsulate arbitrary computations that may
be invoked directly during program execution. A principal difference between the two kinds
of procedures is the way in which each is invoked. A function is a procedure that is
invoked in an expression; its invocation causes a value to be computed which is then used
in evaluating the expression. A subroutine is a procedure that is invoked in a CALL state-
ment or by an assignment operation (12.4.4, 12.5.2.3). A subroutine may be used to change
the program state by changing the values of any of the data objects accessible to the sub-
routine; a function subprogram may do this in addition to computing the function value.

Procedures are described further in Section 12.

2.2.4.1 External Procedure. An eixternal procedure is a nonintrinsic procedure that is
defined by an external program unit. An external procedure may be invoked by the main
program or any procedure of an executable program; a public procedure contained in a mod-
ule may be invoked by any program unit using that module.

2.2.4.2 Internal Procedura. An internal procedure is a procedure whose definition is con-
tained within an executable program unit. The containing program unit is called the host of
the internal procedure. An internal procedure is local to its host in the sense that the inter-
nal procedure is accessible within the scoping unit of the host but is not accessible else-
where. Any kind of program unit, except a block data subprogram, a module, or an internal
procedure, may host internal procedures.

2.2.4.3 Procedure Interface Block. The purpose of a procedure interface block is to
describe the interface (12.3) to a procedure. It determines the forms of reference through
which it may be invoked.

2.2.5 Module. A module contains (or accesses from other moduies) definitions that are to
be made accessible to other external program units. These definitions include data object
declarations, type definitions, internal procedure definitions, and procedure interface blocks.
The purpose of a module is to make the definitions it contains accessible to all other exter-
nal program units in an executable program that requests such accessibility. A scoping unit
in another external program unit may request access to the definitions contained in a mod-
ule. Modules are further described in Section 11.

Version 102 1986 November Page 2-4

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

45

50

2.3 Execution Concepts. A program unit is a sequence of statements. Statements are
classified as executable statements and nonexecutable statements. There are restrictions
on the order in which statements may appear in a program unit, and certain executable
statements may appear only in certain executable constructs.

2.3.1 Executable/Nonexecutable Statements. Program execution is a sequence, in time,
of computational actions. An executable statement is an instruction to perform or control
one or more of these actions. Thus, the executable statements of a program unit determine
the computational behavior of the program unit. The executable statements are all of those
that make up the syntactic class of executable-construct.

Nonexecutable statements do not specify actions; they are used to configure the program
environment in which computational actions take place. The nonexecutable statements are
all those not classified as executable. All statements in a block data subprogram must be
nonexecutable. A module may contain executable statements only within a procedure
definition in the module.

2.3.2 Statement Order. The syntax rules of Section 2.1 specify the statement order within
program units and subprograms. Figure 2.1 illustrates statement ordering. Vertical lines
delineate varieties of statements that may be interspersed and horizontal lines delineate
varieties of statements that must not be interspersed. USE statements, if any, must appear
immediately after the program unit heading and internal procedure definitions must follow a
CONTAINS statement. Between USE statements and internal procedure definitions, nonexe-
cutable statements generally precede executable statements, though the FORMAT state-
ment, DATA statement, and ENTRY statement may appear among the executable state-
ments.

Figure 2.1. Constraints on Statement Ordering.

PROGRAM, FUNCTION, SUBROUTINE,
MODULE, or BLOCK DATA Statement

USE Statements

PARAMETER IMPLICIT
Statements Statements
PARAMETER Derived Type Definitions
FORMAT and DATA interface blocks
and Statements Type Declaration Statementq
ENTRY Specification Statements
Statements :
Statement
Function -
DATA Statements
Statements
Executable
Statements

CONTAINS Statement

, "~ Internal Procedure Definitions

Program Unit END Statement

Version 102 1986 November Page 2-5

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

2.3.3 The END Statement. The program unit END statement must appear only as the ter-
minal statement of a program unit definition. The terminal statement of each program unit
must be an END statement. In all cases, the keyword END is a complete and valid END
statement. Variations allowed by each kind of program unit are included with the descrip-
tions of the program units (Sections 11 and 12). In main programs and procedure subpro-
grams, the END statement may be executed, and its execution terminates execution of the
program unit (equivalent to a STOP statement in a main program and a RETURN statement
in a procedure). An END statement may be labeled and may be the target of a program
branch.

2.3.4 Execution Sequence. The execution of a main program or procedure involves exe-
cution of the executable constructs of its scoping unit. Upon invocation of a procedure, exe-
cution begins with the first executable construct appearing after the invoked entry point.
With the following exceptions, the executable constructs are executed in the order in which
they appear in the main program or procedure until a STOP, RETURN, or program unit END
statement is executed. The exceptions are:

(1) Execution of a branching statement (8.2) changes the execution sequence. These
statements explicitly specify a new starting place for the execution sequence, and
are called explicit branches.

(2) IF constructs, CASE constructs, and DO constructs contain an internal statement
structure and execution of these constructs involves implicit (i.e., automatic) inter-
nal branching. See Section 8 for the detailed semantics of each of these con-
structs.

(3) Alernate return and END = and ERR = specifiers may result in a branch.

(4) Internal procedure definitions may precede the END statement of an executable
program unit. The execution sequence skips all such definitions.

2.4 Data Concepts. Nonexecutable statements are used to define the characteristics of
the data environment. This includes typing variables, declaring arrays, and defining new
data types.

2.4.1 Data Type. A data type consists of a set of values, together with a way to denote
these values and a collection of operations that interpret and manipulate the values. This
central concept is described in 4.1. A type may be parameterized, in which case the set of
data values depends on the values of the parameters.

There are two categories of data types: intrinsic types and derived types.

2.4.1.1 Intrinsic Type. An intrinsic type is one that is implicitly defined, along with opera-
tions, and is always accessible. The intrinsic types are INTEGER, REAL, COMPLEX, DOU-
BLE PRECISION, CHARACTER (of any length), and LOGICAL. The properties of intrinsic
types are described in 4.3.

2.4.1.2 Derived Type. A derived type is a type definition containing components, which
are of intrinsic types or other derived types. Derived types have associated with them a
small set of intrinsic operations: assignment with type agreement, comparison for equality,
use as procedure arguments and function results, inquiry functions for parameter values,
and input/output. If additional operations are needed for a derived type, they must be sup-
plied as procedure definitions.

Version 102 1986 November Page 2-6

FORTRAN TERMS AND CONCEPTS X3J3/S8

10

15

20

25

30

35

40

Intrinsic types are accessible to every scoping unit. A derived-type definition is local to the
scoping unit in which it appears, but may be accessed from other scoping units by use asso-
ciation (11.3.1).

Derived types are described further in 4.4.

2.4.2 Data Value. Each intrinsic type has associated with it a set of intrinsic values that a
datum of that type may take. The values for each intrinsic type are described in 4.3.
Because derived types are ultimately specified in terms of components of intrinsic types, the
values that objects of a derived type may assume are determined by the type definition and
the sets of intrinsic values.

2.4.3 Data Entity. A data entity is an entity that has, or may have, a data value. A data
entity is a constant, a variable, an expression value, or a function result. In addition, it is
either a scalar or an array.

2.4.3.1 Data Object. A data object (often abbreviated to object) is a named datum or set
of data of the same type and type parameters that has a symbolic name and may be refer-
enced as a whole. |t may be a named variable or symbolic constant.

2.4.3.2 Subobjects. Portions of certain data objects may be referenced and defined inde-
pendeitly of the other portions. These include portions of arrays (array elements and array
sections), portions of character strings (substrings), and portions of structured objects (com-
ponents). These subobjects are described in Section 6.

2.4.3.3 Constant. A constant is a data entity whose value must not change during execu-
tion of an executable program.

A constant with a symbolic name is called a symbolic constant. Symbolic constants and
the means by which they are defined are described in Section 5. A constant without a sym-
bolic name is called a literal constant.

2.4.4 Variable. A variable is a data object or subobject whose value can be defined and
redefined during execution of an executable program. A data object explicitly declared as
an array is a variable. A nonarray data object, declared explicitly or implicitly and not having
the PARAMETER attribute is a variable. In some cases, a portion of a variable may itself be
a variable and may be assigned a value independently of the other portions. The following
are variables:

a named scalar variable (a scalar object)
a named array variable (an array object)

an array element (a scalar subobject)
an array section (an array subobject)
a structure component (a scalar or an array subobject)
a substring (a scalar subobject)

2.4.4.1 Scalar. A scalar is a datum that is not an array. Scalars may be of any intrinsic
type or derived type.

2.4.4.2 Array. An array is a set of data, all of the same type and type parameters, whose
individual elements are arranged in a rectangular pattern. An array element is one of the
individual elements in the array and is a scalar. An array section is a subset of the
elements of an array and is itself an array.

An array with a symbolic name has one subscript for each dimension of the pattern. The
pattern may have dimensions up to seven, and any extent (size) in any dimension. The

Version 102 1986 November Page 2-7

FORTRAN TERMS AND CONCEPTS X3J3/58

10

15

20

25

30

35

40

45

rank of the array is the number of dimensions, and its size is the total number of elements,
which is equal to the product of the extents. Arrays may have zero size. The shape of an
array is determined by its rank and its extent in each dimension; shape is a rank one array
whose elements are the extents. The rank of a scalar is zero. All named arrays must be
declared, and the rank of a named array is specified in its declaration. The rank of a named
array, once declared, is constant and the extents may be constant also. However, the
extents may vary during execution for dummy argument arrays, automatic arrays, alias
arrays, ranged arrays, and allocatable arrays.

Two arrays are said to be conformable if they have the same shape. A scalar is conform-
able with any array. Any operation defined for scalar objects may be applied to conformable
objects. Such operations are periormed element-by-element to produce a resultant array
conformable with the array operands. Element-by-element operation means corresponding
elements of the operand arrays are involved in a “scalar-like” operation to produce the cor-
responding element in the result array, and all such element operations may be performed
simultaneously.

A rank-one array may be constructed from scalars and other rank-one arrays and may be
reshaped into any allowable array shape.

Array objects may be of any intrinsic type or derived type and are described further in 6.2.

2.4.5 Storage. Many of the facilities of this standard make no assumptions about the physi-
cal storage characteristics of data objects. However, program units that include storage
association dependent features (Section 14) must observe certain storage constraints.

There are two kinds of physical storage units: numeric and character. When used in a stor-
age association context, scalar objects of type integer, default real, and logical each use a
single numeric storage unit. When used in a storage association context, scalar objects of
type double precision and default complex each use two contiguous numeric storage units.
When used in a storage association context, each character in an object of type character
uses one character storage unit and scalar character objects employ a contiguous set of
such units. When used in a storage association context, array objects are assigned contigu-
ous storage units of the appropriate type, in subscript order value (Section 6). For example,
the storage order for a two-dimensional array is the first column followed by the second col-
umn, etc.

Objects having different kinds of storage units must not be storage associated. Nondefault
precision objects and derived-type objects must not appear in a storage association context.

2.5 Fundamental Terms. The following terms are defined here and used throughout
this standard.

2.5.1 Name and Designator. A name is used to identify a program constituent, such as a
program unit, named variable, named constant, dummy argument, or_a derived type. The

rules governing the construction of names are given in 3.2. A@_ubobjet@ designator is a
name followed by one or more component selectors, array section se€lectors, array element

selectors, and substring selectors.

2.5.2 Keyword. The term keyword is used in two ways in this standard. A word that is
part of the syntax of a statement and that may be used to identify the statement is a state-
ment keyword. Examples of this kind of keyword are: IF, READ, WHERE, and INTEGER.
These keywords are not “reserved words”; that is, symbolic names with the same spellings
are allowed.

Version 102 1986 November Page 2-8

'ﬁn&

FORTRAN TERMS AND CONCEPTS X3J3/588

($)]

10

15

20

25

30

Argument keywords are dummy argument names. Section 13 defines argument keywords
for all of the intrinsic procedures. Argument keywords for external procedures may be
specified in a procedure interface block (Section 12).

2.5.3 Declaration. The term declaration refers to the specification of attributes for various
program entities. Often this involves specifying the data type of a data object or specifying
the shape of an array object.

2.5.4 Definition. The term definition is used in two ways. First, when a data object is
given a valid value during program execution, it is said to become defined. This is often
accomplished by execution of an assignment statement or input statement. Under certain
circumstances, a variable ceases to have a predictable value and is said to become unde-
fined. Section 14 describes the ways in which variables may become defined and
undefined. The second use of the term definition is for the definition of derived types and
procedures.

2.5.5 Reference. A data object or subobject reference is the appearance of the data
object or subobject in a context requiring its value at that point during execution.

A procedure reference is the appearance of the procedure name or its operator symbol in a
context requiring execution of the procedure at that point.

The appearance of a data object, data subobject, or procedure name in an actual argument
list does not constitute a reference to that data object, data subobject, or procedure unless
such a reference is needed to complete the specification of the actual argument.

2.5.6 Association. An association exists if an entity may be identified by different names
in the same scoping unit or by the same name or different names in different scoping units.
It may be name association (14.7.1) or storage association (14.7.2). Name association may
be argument association, use association, or alias association.

2.5.7 Intrinsic. The term intrinsic applies to intrinsic data types, intrinsic procedures, and
intrinsic operators that are defined in this standard. These may be used in any scoping unit
without further definition or specification.

2.5.8 Operator. An operator specifies a particular computation involving one (unary opera-
tor) or two (binary operator) data values (operands). Fortran contains a number of intrinsic
operators (e.g., the arithmetic operators +, —, *, /, and *#* with numeric operands and the
logical operators .AND., .OR., etc. with logical operands). Additional operators also may be
defined.

Version 102 1986 November Page 2-9

10

15

25

30

35

40

3 CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM

This section describes the Fortran character set and the various lexical tokens such as sym-
bolic names and operators. This section also describes the rules for the forms that Fortran
programs may take.

3.1 Fortran Character Set. The Fortran character set consists of twenty-six letters, ten
digits, underscore, and twenty-three special characters.

R301 character is alphanumeric-character
or special-character

R302 alphanumeric-character is letter
or digit

or underscore

3.1.1 Letters. The twenty-six letters are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

If a processor also permits lower-case letters, the lower-case letters are equivalent to upper-
case letters in program units except in character constants, delimited character edit descrip-
tors, and H edit descriptors.

3.1.2 Digits. The ten digits are:
0123456789
When used in numeric constants, the digits are interpreted according to the decimal base

numbeér system.

3.1.3 Special Characters. The twenty-three special characters plus underscore, which is
considered to be an alphanumeric character, are:

Character Name of Character Character Name of Character
Biank : Colon
= Equals ! Exclamation Point
+ Plus ” Quotation Mark or Quote
— Minus % Percent
* Asterisk & Ampersand
/ Slash ; Semicolon
(Left Parenthesis Less Than
) Right Parenthesis Greater Than

Question Mark

Left Bracket

Right Bracket

s Underline or Underscore

Comma

Decimal Point or Period
Currency Symbol
Apostrophe

——— VA -

- €H -

The special characters are used for operator symbols, bracketing, and various forms of sepa-
rating and delimiting of other lexical tokens. The special characters $ and ? have no
specified use. The underscore (_) may be used as a significant character in symbolic
names.

Version 102 1986 November Page 3-1

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM X3J3/s8

10

15

20

25

30

35

40

3.1.4 Character Graphics. Except for the currency symbol, the graphics used for the char-
acters must be as given in 3.1.1, 3.1.2, and 3.1.3. However, the style of any graphic is not
specified.

3.1.5 Collating Sequence. Each implementation defines a coliating sequence for the char-
acter set. A collating sequence is a one-to-one mapping of the characters into the nonneg-
ative integers such that each character corresponds to a different nonnegative integer. The
intrinsic functions CHAR and ICHAR (see Section 13) provide conversions between the char-
acters and the integers according to this mapping. Thus,

ICHAR (character)

returns the integer value of the specified character according to the collating sequence of
the processor.

The only constraints on the collating sequence are:
(1) ICHAR('A’) < ICHAR('B’) < - - < ICHAR('Z’) for the twenty-six letters.
(20 ICHAR(0) < ICHAR('1’) < -+ < ICHAR ('9’) for the ten digits.
(8) ICHAR(') < ICHAR('0’) < ICHAR('9’) < ICHAR('A’) or
ICHAR(’' ') < ICHAR('A’) < ICHAR('Z') < ICHAR('0")

(4) ICHAR('a’) < ICHAR('b’) < --- < ICHAR('Z), if a processor supports lower
case letters.

(6) ICHAR('’) < ICHAR('0") < ICHAR('9’) < ICHAR(a’) or
ICHAR(' ') < ICHAR('a’) < ICHAR('z') < ICHAR('0"), if a processor supports lower
case letters.

Except for blank, there are no constraints on the location of the special characters and
underscore in the collating sequence, nor is there any specified collating sequence relation-
ship between the upper-case and lower-case letters.

Note that the intrinsic functions ACHAR and IACHAR provide conversions between the char-
acters and the integers according to the mapping specified in ANS X3.4-1977 (ASCI).

3.2 Low-Level Syntax. The low-level syntax describes the fundamental lexical tokens
of a program unit. These are sequences of characters and include keywords, symbolic
names, constants, operators, labels, and delimiters.

3.2.1 Keywords. Keywords appear as upper-case words in the syntax rules in Sections 4
through 12.

3.2.2 Symbolic Names. Symbolic names are names for various entities such as varia-
bles, program units, dummy arguments, symbolic constants, and derived types.

R303 symbolic-name is Jletter | alphanumerié:#character]--.

Constraint: The maximum length of a symbolic-name is 31 characters.

3.2.3 Constants.

R304 constant is literal-constant
or symbolic-constant

R305 literal-constant is int-constant
or real-constant
or complex-constant

Yersion 102 1986 November Page 3-2

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM

R306 symbolic-constant

3.2.4 Operators.

or logical-constant

or

char-constant

symbolic-name

is power-op

or
or
or
or
or
or
or
or

is
is
or
is
or
is
is
or
or
or
or
or
or
or
or
or
or
or

is

is
or

is defined-unary-op
or defined-binary-op
or overloaded-intrinsic-op

is . letter [letter]... .
is . letter [lotter |... .

mult-op
add-op
concat-op

rel-op

not-op
and-op
or-op
equiv-op

ok
*
/
+

//

EQ.
.NE.
LT.
.LE.
.GT.
.GE.

<>
<

>
> =

.NOT.
.AND.
.OR.

.EQV.
.NEQV.

X3.J3/S8

A defined-unary-op and a defined-binary-op must not contain more than 31 char-

acters and must not be the same as any intrinsic-operator or logical-constant.

5 R307 intrinsic-operator
10
R308 power-op
15 R309 mult-op
R310 add-op
R311 concat-op
20 R312 rel-op
25
30
R313 not-op
R314 and-op
R315 or-op
35 R316 equiv-op
R317 defined-operator
40 R318 defined-unary-op
R319 defined-binary-op
Constraint:
Version 102

1986 November

Page 3-3

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM X3J3/58

10

15

20

25

30

35

40

3.2.5 Statement Labels. Any statement not forming part of another statement may be
labeled.

R320 /abel is digit [digit [digit [digit [digit]]]]

In free source form (3.3.1), a label is considered a lexical token that must immediately pre-
cede the statement. In fixed source form (3.3.2), a label may appear only in character posi-
tions 1-5; blanks may appear within a label. The same statement label must not be given to
more than one statement in a scoping unit. Leading zeros are not significant in distinguish-
ing between statement labels and blanks are not significant in distinguishing between state-
ment labels.

3.2.6 Delimiters. The special characters blank, comma, equals, colon, left parenthesis,
right parenthesis, left bracket, right bracket, percent, slash, and asterisk are used in various
delimiting ways, as described in the syntax rules.

3.3 Source Form. A Fortran program is a sequence of source records, called lines.
These records contain the characters that make up the statements of a program unit. Lines
following a program unit END statement are not part of that program unit.

Any syntax rule term that ends with “-stmt” is a Fortran statement.

A character context means characters within (between the delimiters for) character con-
stants, format-item lists in FORMAT statements, and comments.

Blank characters outside of a character context are insignificant and may be used freely
throughout the program.

There are two source forms:, free and fixed. Free form has no character position restric-
tions and statements may appear in any character positions on the lines. Fixed form
reserves character positions 1-6 of each source line for special purposes. Free form and
fixed form must not be mixed in the same program unit. The means for specifying the
source form of a program unit is processor dependent.

3.3.1 Free Source Form. In free form, each source record may contain from zero to a
maximum of 132 characters.

3.3.1.1 Commentary. The character “!” initiates a comment except when it appears within
a character context. The comment extends to the end of the source line. A comment,
including its “!I” delimiter, is processed as though it were a blank character. Lines contain-
ing only blanks or blank equivalents are ignored and may appear anywhere in a program
unit.

3.3.1.2 Statement Separation. The character “;” separates statements on a single source
line except when it appears within a character context. Statements containing no characters
or only blanks are ignored.

3.3.1.3 Statement Continuation. Outside of a comment, the character “&” as the last
nonblank character on a line signifies that the statement is continued on the next line. If the
first nonblank character on the next line is also “&”, the statement continues at the next
character position following the “&”; otherwise, it continues at character position 1. When
used for continuation, the “&” is not part of the statement. If a character context other than
a comment is being continued, the “&” signifying continuation cannot be followed by com-
mentary and the continued portion must begin with an “&”. [f the continuation is not within a
character context, the “&” signifying continuation may be followed by commentary. A state-
ment must not contain more than 1320 characters.

Version 102 1986 November Page 3-4

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM X3J3/58

3.3.2 Fixed Source Form. Fixed form is the same as free form, with the following excep-

tions:
(1)
)
5
(3
10
4
(5)
15
(6)
Version 102

Source lines are exactly 72 character positions long.

Lines with a “C” or “*” in character position 1 are additional forms of commen-
tary.

The “&" continuation is not used in fixed form; rather, character position 6 is used.
if character position 6 contains a blank or zero, a new statement begins in charac-
ter position 7 of this line and character positions 1-5 may contain a label. [f char-
acter position 6 contains some character other than a blank or zero, character
positions 7-72 of this line constitute a continuation of the preceding (noncomment)
line. Columns 1-5 of such continuation lines must be blank. A statement must not
have more than 19 continuation lines.

An “!” in character position 6 indicates a continuation line.

Statement labels may appear only in character positions 1-5 and the continuation
indicator may appear only in character position 6.

The program unit END statement must not be continued and no other statement in
the program unit may have an initial line that appears to be a program unit END
statement.

1986 November Page 3-5

10

15

20

25

30

35

40

4 INTRINSIC AND DERIVED DATA TYPES

A data entity is an entity that has or may have a data value (e.g., a simple scalar variable).
In either case, a data entity is associated with a specific instance of a data value. A data
object is a data entity that has a name. Data objects may be collections of subobjects, as is
the case with arrays and structured objects.

A data type defines the properties of a specific class of data values and the allowed opera-
tions on them. For example, the data type integer defines the class of integer numeric
values and the operations of integer arithmetic. Each data entity has a data type. Data
objects may have other attributes in addition to their types. Data object declarations and
attribute specifications are described in Section 5.

There are two categories of data types: intrinsic types and derived types. An intrinsic type
(e.g., integer) is one that is defined implicitly, along with operations, and is always available.
A derived type is a data structure definition whose components are intrinsic types or other
derived types. A derived type must be defined, whereas an intrinsic type is predefined.
The term “defined intrinsically” will be used later in this section to mean “predefined” in this
sense. The distinction between data type and data object is especially important in the case
of derived types and is reflected in the separate steps of type definition and object declara-
tion.

4.1 The Concept of Type. The properties of a data type are:
(1) The set of valid values and their representation (constants), and
(2) The set of operations provided on and between these values.

A type may be parameterized, in which case the set of data values depends on the values
of the parameters.

4.1.1 Set of Values. For each data type, there is a set of valid values. The set of valid
values may be completely specified, as is the case for logical, or may be specified by a
processor-dependent method, as is the case for integer and real. For complex or derived
types, the set of valid values consists of the set of all the combinations of the values of the
individual components. For parameterized types, the set of valid values depends on the
values of the parameters.

4.1.2 Constants. For each of the intrinsic data types, the form for literal constants of that
type is specified in this standard. These literal constants are described in 4.3 for each intrin-
sic type.

A constant value may be given a symbolic nhame.

Constants for derived types cannot be represented directly. Rather, a name may be given
to a constant expression (7.1.6.1) formed from derived type values using constructors (4.4.2).

4.1.3 Operations. For each of the intrinsic data types, a set of operations and correspond-
ing operators is defined intrinsically (such as +, —, *, /, and .EQ.). These are described in
Section 7. In addition, operations and operators may be defined, augmenting the intrinsic
set. Operator definitions are described in Sections 7 and 12.

The only intrinsic operations for derived types are equality comparisons (.EQ. and .NE.). All
other operations on derived type entities must be defined.

2

Version 102 . 1986 November Page 4-1

INTRINSIC AND DERIVED DATA TYPES X3J3/s8

10

15

20

25

30

35

40

4.1.4 Assignment. Assignment provides a means of defining or redefining the value of a
variable of any type.

Assignment (7.5) is defined intrinsically for all types when the type, type parameters, and
shape of both the variable and the value to be assigned to it are identical. Assignment is
defined intrinsically with possible conversions, as described in Section 7, when the type,
type parameters, and shape are not identical. For example, an integer value may be
assigned to a real variable and the necessary conversion is applied. For nonintrinsic assign-
ment, conversions may be defined by assignment subroutines (Section 7 and 12.5.2.3).

4.2 Intrinsic Data Types. The intrinsic data types are:

numeric types: Integer, Real, Complex, and Double Precision
nonnumeric types: Character and Logical

4.2.1 Numeric Types. The numeric types are provided for numerical computation. The
normal operations of arithmetic, addition (+), subtraction (—), multiplication (*), division (/),
exponentiation (¥*), negation (unary —), and identity (unary +), are defined intrinsically for
this set of types.

Each numeric type includes a zero value, which is considered to be neither negative nor
positive. In this standard, the unqualified term “literal constant” means “unsigned literal con-
stant” when applied to numeric types.

4.2.1.1 Integer Type. The set of values for the integer type is a subset of the mathemati-
cal integers. This subset includes all of the integer values from some processor-dependent
minimum negative value to some processor-dependent maximum positive value.

The type specifier (R502) for the integer type is the keyword INTEGER.

Any integer value may be represented as a signed-int-lit-constant.

R401 signed-int-lit-constant is [sign] int-lit-constant
R402 int-lit-constant is digit [digit ... '
R403 sign is +

or —

Examples of unsigned and signed integer literal constants are:

473

5 000 000
+56

-101

An integer constant is interpreted as a decimal value.

4.2.1.2 Real and Double Precision Type. The real type approximates the mathematical
real numbers. A processor must provide two or more approximation methods that define
sets of values for data of type real. Each such method is characterized by an effective deci-
mal precision and an effective decimal exponent range. The effective decimal precision of
an approximation method is returned by the inquiry intrinsic function
EFFECTIVE_PRECISION (13.11.34) and the effective decimal range is returned by the
inquiry intrinsic function EFFECTIVE_EXPONENT__RANGE (13.11.33).

A data entity of type real may have precision and exponent range parameters specified for
precision and exponent range. The values specified for these type parameters indicate mini-
mum requirements for the approximation method selected for the data object. A processor
must select an approximation method with an effective decimal precision that is greater than

Version 102 1986 November Page 4-2

INTRINSIC AND DERIVED DATA TYPES X3J3/88

10

20

25

35

40

45

or equal to the specified precision, and with an effective decimal exponent range that is
greater than or equal to the specified exponent range. If more than one such method
exists, the processor must select the method with effective decimal precision that exceeds
the specified precision required by the least margin. |f more than one method still exists,
the processor must select the method with effective decimal exponent range that exceeds
the specified exponent range by the least margin. If more than one method still exists, the
method selected is processor dependent. If no method exists that satisfies the specified
precision and exponent range, the processor must indicate an error condition, but other
processor action is undefined.

If one of the type parameters is omitted in the specification of a data object of type real, a
processor-dependent default is used. The type parameters of such an object are regarded
as different from those of any object for which both parameters are specified.

If neither type parameter is specified, a processor-defined default real method is selected
and the data object is of type default real. The.type parameters of such an object are
regarded as different from those of any object for which one or both parameters are
specified.

If double precision is specified for a data object, a processor-defined double precision
method is selected and the object is of type double precision. The effective decimal preci-
sion of the double precision method must be greater than that of the default real method.

The type specifier for the real type is the keyword REAL and the type specifier for the dou-
ble precision type is the keyword DOUBLE PRECISION.

R404 signed-real-lit-constant is [sign] real-lit-constant
R405 realit-constant ' is significand [exponent-letter exponent]
or int-lit-constant exponent-letter exponent
R406 significand is intlit-constant . [int-lit-constant]
or . int-lit-constant
R407 exponent is signed-int-lit-constant
R408 exponent-letter is E
orD
or defined-exponent-letter
R409 exponent-letter-stmt is EXPONENT LETTER [precision-selector]| W

B defined-exponenti-letter
R410 defined-exponent-letter is letter
Constraint: A defined-exponent-letter must be a letter other than E, D, or H.

A given letter may be specified as the defined exponent letter in one and only one EXPO-
NENT LETTER statement in a given declaration part sequence.

Real literal constants written without an exponent part, or with exponent letter E, are default
real objects; exponent letter D specifies a double precision constant. A specified precision
real constant must use the exponent character specified for that precision in an EXPONENT
LETTER statement. A defined exponent letter and its association with a particular precision
selector (5.1.1.2) may be made accessible to a scoping unit by a USE statement (11.3.1).

Examples of signed real literal constants are:

-12.78
+1.6E3
2.1

Version 102 1986 November Page 4-3

INTRINSIC AND DERIVED DATA TYPES X3J3/58

10

15

20

25

30

35

40

Examples of unsigned real literal constants are:

0.45E-4
10.93L7
.123
3E4

In the second example (10.93L7), the letter L must have been defined as an exponent letter
in an EXPONENT LETTER statement.

The exponent represents the power of ten scaling to be applied to the significand. The
meaning of these constants is as in decimal scientific notation.

4.2.1.3 Complex Type. The complex type approximates the mathematical complex num-
bers. The values of a complex type are ordered pairs of real values. The first real value in
a complex pair value is called the real part, and the second real value is called the imagi-
nary part.

Any approximation method used to represent data entities of type real may be used for both
the real and imaginary parts of a data entity of type complex. The precision' and exponent
range type parameters may be specified for complex data objects. They express the
required minimum precision and exponent range requirements for the real approximation
methcd used for both the real and imaginary parts of the complex data object. The
specified precision and exponent range select one real approximation method for both parts
following the same rules as for the real type.

If neither the precision nor the exponent range is specified, the default real method is
selected for both parts and the complex data object is default complex.

The type specifier for the complex type is the keyword COMPLEX.
R411 complex-lit-constant is (real-part , imag-part)

R412 real-part is signed-int-lit-constant
or signed-real-lit-constant

R413 imag-part is signed-int-lit-constant
or signed-real-lit-constant

If the real part and imaginary part of a complex literal constant do not have the same preci-
sion and exponent range type parameters, both are converted to an approximation method
consistent with the maximum of the two precisions and the maximum of the two exponent
ranges.

If both the real and imaginary parts are signed integer constants, they are converted to the
default real approximation method and the constant is of type default complex. If only one
of the parts is a signed integer constant, the signed integer constant is converted to the
approximation method selected for the signed real constant.

4.2.2 Nonnumeric Types. The nonnumeric types are provided for nonnumeric processing.
The intrinsic operations defined for each of these types are indicated below.

4.2.2.1 Character Type. The character type is a set of values composed of character
strings. A character string is a sequence of characters, numbered from left to right 1, 2, 3,
.. up to the number of characters in the string. The number of characters in the string is
called the length of the string. The length is a type parameter and its value must be
greater than or equal to zero. Any character representable in the processor may occur in a
character string. Strings of different lengths are all of type character.

Yersion 102 1986 November Page 4-4

INTRINSIC AND DERIVED DATA TYPES X3J3/58

The type specifier for the character type is the keyword CHARACTER.

Literal character constants are written as a sequence of characters, delimited by either
apostrophes or quotation marks.

R414 char-constant is ' [character ...’
or " [character]... "

(4]

An apostrophe character within a character constant delimited by apostrophes is represented

as two consecutive apostrophes (without intervening blanks); in this case, the two apostro-

phes are counted as one character. Similarly, a quotation mark character within a character

constant delimited by quotation marks is represented as two consecutive quotation marks
10 and the two quotation marks are counted as one character.

The intrinsic operation concatenation (//) is defined between two data entities of type char-
acter (7.2.3).

4.2.2.2 Logical Type. The logical type has two values which represent true and false.

R415 logical-constant is .TRUE.
15 or .FALSE.

The intrinsic operations defined for data entities of logical type are: negation (.NOT.), con-

junction ((AAND.), inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical non-

equivalence ((NEQV.) as described in 7.2.5. There is also a set of intrinsically defined rela-

tional operators that compare the values of data entities of other types and yield a logical
20 value. These operations are described in 7.2.4.

The type specifier for the logical type is the keyword LOGICAL.

4.3 Derived Types. Additional data types may be derived from the intrinsic data types.
Each such derived type is defined as a set of components, where each component is an
intrinsic type or another previously defined derived type. Ultimately, the structure -of a

25 derived type is resolved into a sequence of components of intrinsic type. Objects of derived
type are called structures. The derived type name is analogous to the intrinsic type names
(e.g., INTEGER, CHARACTER) and specifies the derived type being defined.

4.3.1 Derived-Type Definition.

R416 derived-type-def is derived-type-stmt
30 component-def-stmt
[component-def-stmt ...
end-type-stmt
R417 derived-type-stmt is [access-spec | TYPE type-name [(type-param-name-list) |
R418 end-type-stmt is END TYPE [type-name]

35 Constraint: A derived type type-name must not be the same as any intrinsic type-name nor
the same as any accessible derived type-name.

Constraint: If END TYPE is followed by a type-name, the type-name must be the same as
that in the derived-type-stmt.

R419 component-def-stmt is type-spec [[, component-attr-spec ... ::] component-decl-list
40 Constraint: A type-spec in a _component-def-stmt must not contain a type-param-value that is
an asterisk.
R420 component-attr-spec is PRIVATE

or ARRAY (explicit-shape-spec-list)

Version 102 1986 November Page 4-5

INTRINSIC AND DERIVED DATA TYPES X3J3/58

10

15

20

25

30

35

40

R421 component-decl is component-name [(explicit-shape-spec-list) |

If a derived-type definition in a module has a component with the attribute PRIVATE, the
component is accessible only within the same module.

An example of a derived-type definition is:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

4.3.1.1 Type Parameters of Derived Type. Derived-type definitions may have type param-
eters that are symbolic names for integer values. These symbolic names may be used as
parameters in the specification of expressions in the derived-type definition. In a declaration
of a data object of a type whose definition contains type parameters and that is not a dummy
argument, actual values for these parameters must be specified. This establishes the actual
type parameter values for these objects.

Type parameters of derived type are analogous to precision and exponent range type
parameters for the real and complex types and character length for the character type.

An example of a derived-type definition with type parameters is:

TYPE STRING (MAX_SIZE)
INTEGER LENGTH
CHARACTER (LEN = MAX_SIZE) VALUE
END TYPE STRING

A type parameter p is called a precision parameter if
(1) A component is declared with a precision parameter expression p,

(2) No component is declared with a precision parameter expression involving p
uniess the expression is p, and

(3) No component is declared with an exponent range parameter expression involving
p.
A type parameter r is called an exponent range parameter if:
(1) A component is declared with an exponent range parameter expression r,

(2) No component is declared with an exponent range parameter expression involving
r unless the expression is r, and

(3) No component is declared with a precision parameter expression involving r.

4.3.1.2 Equivalence of Derived Types. A particular type name may be defined at most
once in a scoping unit. Derived-type definitions with the same type name may appear in
different scoping units, in which case they are independent and define different derived
types.

Two data objects have the same type if they are declared with reference to the same
derived-type definition; conversely, two objects are of different type if they reference
different derived-type definitions, even if the two derived types have identical components
defined in the same order.

Yersion 102 1986 November Page 4-6

INTRINSIC AND DERIVED DATA TYPES X3J3/S8

10

15

20

25

30

35

4.3.2 Derived-Type Values. The set of values of a specific derived type consists of all
possible sequences of component values consistent with the definition of that derived type.
A derived-type definition defines a corresponding derived-type constructor that allows a value
to be constructed from a sequence of values, one value for each component of the derived

type.
R422 derived-type-constructor is type-name [(type-param-spec-list) | (expr-list)

Constraint: The type-param-spec option must be supplied if and only if the referenced type
definition includes type parameters.

The sequence of expressions in a derived-type constructor specifies component values,
which must agree in number, order, type, and shape with the components of the derived
type. If necessary, each value is also converted according to the rules of assignment so
that its value has the same actual type parameters as those specified by type-param-value.
A constructor whose values are all constant expressions is a derived-type constant expres-
sion. Using the derived type illustrated in 4.4.1.1, an example of a derived-type constructor
IS:

STRING (20) (19, 'NOW IS THE TIME FOR")

4.3.3 Operations on Derived Types. Any operations on derived-type data entities, other
than the intrinsically defined equality comparisons (.EQ. and .NE.), must be defined explicitly
by operator functions. Such definitions are made as described in Section 12. Function
values and arguments may be of any derived or intrinsic type.

4.4 Array Constructors. An array constructor is defined as a sequence of specified
scalar values and interpreted as a rank-one array whose element values are those specified
in the sequence. The sequence of values may be specified by any combination of individual
scalar values, ranges of values, rank-one arrays, and other array constructors.

R423 array-constructor is [array-constructor-value-list]
or (/ array-constructor-value-list /)

In the preceding syntax rule, the brackets are part of the syntax.

R424 array-constructor-value is scalar-expr
or rank-1-array-expr
or scalar-int-expr : scalar-int-expr | : scalar-int-expr |
or [int-constant-expr | array-constructor

The int-constant-expr in the fourth form of array-constructor-value specifies the number of
consecutive copies of the associated array-constructor. The type and type parameters of an
array constructor are those of the scalar value interpreted as the first array element. Each
subsequent scalar value in the sequence must have intrinsic assignment conformance as
described in 7.5.1.4, and the value is so converted.

If every expression in an array constructor is a constant expression, the array constructor is
a constant expression.

Version 102 1986 November Page 4-7

10

15

20

25

30

35

40

5 DATA OBJECT DECLARATIONS AND SPECIFICATIONS

Every data object has a type, a rank, and a shape and may also have a number of additional
properties. These properties determine the characteristics of the data and the uses of the
objects. Collectively these properties, including the type, are termed the attributes of the
data object. A data object must not be explicitly specified to have a particular attribute more
than once in a scoping unit. Every data object is denoted by a symbolic name. The type of
a data object is either determined implicitly by the first letter of its name (5.3) or is specified
explicitly in a type declaration statement. Additional attributes also may be specified by
separate specification statements; all of them may be included in a type declaration state-
ment.

For example:

INTEGER INCOME, EXPEND

declares the two data objects named INCOME and EXPEND to have the type integer.
REAL, ARRAY(-5:+45) :: X, Y, Z

declares three data objects with names X, Y, and Z. These all have default real type and
are explicit-shape rank-one arrays with a lower bound of —5, an upper bound of +5, and a
size of 11.

5.1 Type Declaration Statements.
R501 type-declaration-stmt is type-spec [[, attr-spec]... ::] object-decHist

R502 type-spec is INTEGER
or REAL [precision-selector]
or DOUBLE PRECISION
or COMPLEX [precision-selector |
or CHARACTER [length-selector]
or LOGICAL
or TYPE (type-name [(type-param-spec-list)])

R503 type-param-spec is [type-param-name = | type-param-value
R504 type-param-value is specification-expr

or #
R505 attr-spec is value-spec

or access-spec

or ALIAS

or ALLOCATABLE
or ARRAY (array-spec)
or INTENT (intent-spec)

or OPTIONAL
or RANGE [/ range-fist-name /]
or SAVE

R506 object-decl is object-name [(array-spec)] B

‘ B [* charlength | [= constant-expr]
Constraint: No attr-spec may appear more than once in a given type-declaration-stmt.

Constraint: The object-name may be the name of a data object, an external function, an
intrinsic function, or a statement function.

Version 102 1986 November Page 5-1

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

40

45

Constraint: The = constant-expr must appear if and only if the statement contains a value-
spec attribute (5.1.2.1, 7.1.6.1).

Constraint: The * char-length option is permitted only if the type-spec is CHARACTER.

Constraint: The ALLOCATABLE and RANGE attributes may bé used only when declaring
array objects.

Constraint: An array must not have both the ALLOCATABLE and the ALIAS attribute.
Constraint: The ALIAS attribute may be specified with type and array attributes only.

Constraint: An array specified with an ALIAS attribute must be declared with an allocatable-
spec.

Constraint: The value, accessibility, ALIAS, and SAVE attributes must not be specified for
dummy arguments.

A name that identifies a specific intrinsic function in a program unit has a type as specified
in 13.11. An explicit type declaration statement is not required; however, it is permitted. If
a generic function name appears in a type declaration statement, such an appearance is not
sufficient by itself to remove the generic properties from that function.

5.1.1 Type-Specifier Attributes. A type specifier specifies the type of all objects declared
in an object declaration list. This type may override or confirm the implicit type indicated by
the first letter of the object name as declared by the implicit typing rules in effect (5.3).

5.1.1.1 INTEGER. The INTEGER type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type integer (4.3.1.1).

5.1.1.2 REAL. The REAL type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type real (4.3.1.2). If a precision-selector is pre-
sent, it has the form:

R507 precision-selector is (type-param-value %
B [, [EXPONENT__RANGE =] type-param-value |)
or (PRECISION = type-param-value W
B [, EXPONENT_RANGE = type-param-value |)
or (EXPONENT_RANGE = type-param-value B
B [, PRECISION = type-param-value])

Constraint: The type-param-value must be an integer type parameter expression (7.1.6.2) or
an asterisk.

Let p be the value of the precision type-param-value and let r be the value of the exponent
range lype-param-value. Then the value of p is the minimum decimal precision and r is the
minimum decimal exponent range required of the real approximation method used by the
processor to implement the objects.

If either p or r is an asterisk, the asterisk specifies that the corresponding type-param-value
for the objects being declared is to be assumed from an actual argument that becomes
associated with a dummy argument that has a precision or exponent range parameter
specified as an asterisk. In a procedure reference, all such actual arguments must have the
same precision value and the same exponent range value. If all dummy arguments having
precision or exponent range parameters specified as asterisks are optional, at least one
must be present in each reference to the procedure.

If either part of the precision selector is omitted, a processor-dependent default value is
used for the omitted type parameter, which is regarded as different from any explicitly
specified value.

Version 102 1986 November Page 5-2

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

40

If the precision selector is omitted entirely, a processor-dependent default approximation
method is selected and the objects declared are of the default real type. Their type param-
eter values are regarded as different from any that are explicitly specified.

5.1.1.3 DOUBLE PRECISION. The DOUBLE PRECISION type specifier specifies that
objects whose names are declared in this statement are of intrinsic type double precision
(4.3.1.2).

5.1.1.4 COMPLEX. The COMPLEX type specifier specifies that all objects whose names
are declared in this statement are of intrinsic type complex (4.3.1.3).

The precision-selector, if present, is as for the real type (R507). The precision-selector
specifies the minimum decimal precision and exponent range requirements for the real
approximation method used by the processor to implement the two real values making up
the real and imaginary parts of the complex value.

If the precision selector is omitted, the processor-dependent default real approximation
method is used for both parts and objects declared are of default complex type.

5.1.1.5 CHARACTER. The CHARACTER type specifier specifies that all objects whose
names are declared in this statement are of intrinsic type character (4.3.2.1). The length
selector specifies the length of the character objects. The *char-length may be part of an
object-decl, in which case the length is specified for this single object and overrides the
length specified in the length selector. If neither a length selector nor a *char-length is
specified, the length of the data object is 1.

R508 [length-selector is ([LEN =] type-param-value)
or * char-length [,]

R509 char-fength is (type-param-value)
or scalar-int-constant

If the type parameter value evaluates to a negative value, the length of character entities
declared is zero. A type parameter value of * may be used only in the following ways:

(1) A type parameter value of * may be used to declare a dummy argument of a pro-
cedure, in which case such a dummy argument assumes the length of the associ-
ated actual argument when the procedure is invoked.

(2) A type parameter value of * may be used to declare symbolic constants, in which
case the length is that of the constant vaiues defined for the names.

(3) In an external function, the name of the function itself may be specified with a
type parameter value of *; in this case, any scoping unit invoking the function
must declare this function name with a type parameter value other than * or
access such a definition. When the function is invoked, the length of the result
variable in the function is assumed from the value of this type parameter value.

The length specified for a character-valued statement function or statement function dummy
argument of type character must be an integer constant expression.

5.1.1.6 LOGICAL. The LOGICAL type specifier specifies that all objects whose names are
declared in this statement are of intrinsic type logical (4.3.2.2).

5.1.1.7 Derived Type. A TYPE type specifier specifies that all objects whose names are
specified in this statement are of the derived type specified by the type name in the type-
spec. The declared objects have a component structure as defined by the derived-type-def
(4.4.1).

Version 102 1986 November Page 5-3

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/88

10

15

20

25

30

35

40

45

Each type parameter value is associated with the corresponding type parameter name in a
manner similar to the association of arguments in a procedure reference (12.4.1). The asso-
ciation may be positional or the type parameter names may be used as keywords, as with
procedure arguments (Section 12).

A type parameter value of * may be used only with dummy arguments. The asterisk
specifies that the relevant type parameter value is assumed from the associated actual argu-
ment. If the declaration of the type uses the parameter value to determine the precision or
exponent range of a component, the parameter must be a precision or exponent range
parameter (4.4.1.1) and the dummy argument must be nonoptional. At most one dummy
argument of a procedure may have a precision or exponent range parameter specified as an
asterisk unless it has one for a precision parameter and one for an exponent range parame-
ter and the type is such that whenever either parameter is used to declare the precision or
exponent range of a component, the other is also.

A declaration for a dummy argument object must specify a derived type that is defined in a
host procedure or module because the same definition must be used to declare both the
actual and dummy arguments to ensure that both are of the same derived type.

5.1.2 Attributes. The additional attributes that may appear in the attribute specification of a
type declaration statement further specify the riature of the objects being declared or specify
restrictions on their use in the program.

5.1.2.1 Value Attribute. The value-spec specifies that the objects whose names are
declared in the statement have a defined initial value. Those objects declared with the
PARAMETER attribute are symbolic constants whose values must not be changed and those
objects declared with the DATA attribute are variables whose values may be changed. The
appearance of a value-spec in a specification requires that the =constant-expr option appear
for all objects in the object-decHlist.

R510 value-spec is PARAMETER
or DATA

5.1.2.1.1 PARAMETER Attribute. The FARAMETER attribute specifies that objects
whose names are declared in this statement are symbolic constants. The object-name
becomes defined with the value determined from the constant-expr that appears on the right
of the equals, in accordance with the rules of intrinsic assignment (7.5.1.4).

Any symbolic constant that appears in the constant expression must have been defined pre-
viously in the same type declaration statement, defined in a prior PARAMETER statement or
type declaration statement using the PARAMETER attribute, or made accessible by an
explicit or implicit USE statement.

A symbolic constant must not appear as part of a format specification.

5.1.2.1.2 DATA Attribute. The DATA attribute specifies that objects whose names are
declared in this statement are variables whose values are initially defined. The object-name
becomes defined with the value determined from the constant-expr that appears on the right
of the equals, in accordance with the rules of intrinsic assignment (7.5.1.4).

The presence of a DATA attribute implies that all the variables declared in this statement
are saved. That is, DATA is equivalent to the combination DATA, SAVE. The implied SAVE
attribute may be reaffirmed by explicit use of the SAVE attribute in the type declaration
statement, or by the inclusion of the object names in a SAVE statement (5.2.4). The DATA
attribute must not be specified for a dummy argument, a function result, an object in a
named common block unless the type declaration is in a block data subprogram, an object in
blank common, an allocatable array, or an automatic array.

Version 102 1986 November Page 5-4

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

35

40

45

5.1.2.2 Accessibility Attribute. The accessibility attribute specifies the accessibility of
the objects in the object-decilist to other external program units by a USE statement. The
accessibility attribute may appear only in the declaration-part of the scoping unit of a module.

R511 access-spec is PUBLIC
or PRIVATE

Objects that are declared with a PRIVATE attribute may be accessed only by procedures
defined in that module. Objects that are declared with a PUBLIC attribute may be made
accessible in other external program units by the USE statement. The default for objects
without an explicitly specified access-spec is PUBLIC, but this may be changed by a PRI-
VATE statement (see 5.2.3).

5.1.2.3 INTENT Attribute. The INTENT attributes may appear only within a procedure
and may be specified only for dummy arguments. An INTENT attribute specifies the
intended use of the dummy argument within the procedure.

R512 intent-spec is IN
or OUT
or INOUT

The INTENT (IN) attribute specifies that the dummy argument must not be redefined within
the procedure.

The INTENT (OUT) attribute specifies that the dummy argument must be defined within the
procedure before a reference to it is made and any actual argument that becomes associ-
ated with such a dummy argument must be definable. On invocation of the procedure, such
a dummy argument becomes undefined.

The INTENT (INOUT) attribute specifies that the dummy arguments declared are intended
for use both to receive data from and to return data to the invoking program unit. Any actual
argument that becomes associated with such a dummy argument must be definable. .

Objects declared with an INTENT attribute must not be also declared with a value-spec,
access-spec, or SAVE attribute. Dummy procedures, dummy conditions, and allocatable
dummy arguments must not be declared with an INTENT attribute.

5.1.2.4 ARRAY Attribute. The ARRAY attribute specifies that objects whose names are
declared in this statement are arrays. The rank and shape are specified by the array-spec in
the object-decl if there is one, or by the array-spec in the ARRAY attribute, otherwise. An
array-spec in an object-decl specifies rank and shape for a single object and overrides the
array-spec in the ARRAY attribute. If the ARRAY attribute is omitted, an array-spec must be
specified in the object-dec/ to declare an array object.

R513 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec

5.1.2.4.1 Explicit Shape Array. An explicit shape array is declared with an explicit-
shape-spec. This specifies explicit values for the dimension bounds of the array.

R514 explicit-shape-spec is [lower-bound : | upper-bound
R515 lower-bound is scalar-int-expr
R516 upper-bound is scalar-int-expr

Constraint: An explicit shape array whose bounds depend on the values of nonconstant
expressions must be either a dummy argument or a local array of a procedure.

Version 102 1986 November Page 5-5

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

Constraint: The bounds in an explicit-shape array declaration must be specification expres-
sions (7.1.6.3).

If any bound of a local array depends on the value of a nonconstant expression, such an
array is termed automatic. An automatic array must not appear in a SAVE statement, be
initially defined, nor be declared with a SAVE attribute.

If an explicit shape array is a dummy argument that has bounds that are nonconstant
specification expressions, the bounds, and hence shape, are declared at entry to the proce-
dure. The bounds of such an array are unaffected by any redefinition or undefinition of the
specification expression variables during execution of the procedure.

The values of the lower-bound and upper-bound determine the bounds of the array along a
particular dimension and hence the extent of the array in that dimension. The declared sub-
script range of the array in that dimension is the set of integer values between and including
the lower and upper bounds, provided the upper bound is not less than the lower bound. If
the upper bound is less than the fower bound, the range is empty, the extent in that dimen-
sion is zero, and the array is of zero size. If the fower-bound is omitted, the default value is
1. The number of sets of bounds specified is the rank. The maximum rank is seven.

The declared bounds of an explicit shape array are the lower and upper bound. The
declared shape is the shape determined by the declared bounds. The declared extents are
the sizes determined by the declared bounds.

5.1.2.4.2 Assumed-Shape Array. An assumed-shape array is a dummy argument array
that takes its shape from the associated actual argument array.

R517 assumed-shape-spec is [fower-bound] :

The size of a dimension of an assumed-shape array is the size of the corresponding dimen-
sion of the associated actual argument array. If the lower bound value is represented by d
and the size of the corresponding dimension of the associated actual argument array is s,
then the value of the upper bound is s + d — 1. |f the lower bound is omitted, the default
value is 1.

5.1.2.4.3 Allocatable Array. An allocatable array is an array whose type, type parame-
ters, name, and rank are specified in a type declaration statement containing an
ALLOCATABLE attribute, but whose bounds, and hence shape, are declared when space is
allocated for the array by execution of an ALLOCATE statement (6.2.2).

R518 deferred-shape-spec is :
The rank is equal to the number of colons in the deferred-shape-spec-list.

The size, bounds, and shape of an unallocated allocatable array are undefined, and no refer-
ence may be made to any part of it, nor may any part of it be defined. The declared lower
and upper bounds of each dimension are those specified in the ALLOCATE statement when
the array is allocated.

An allocatable dummy array argument may be associated only with an allocatable actual
argument. An actual argument that is an allocated array may be associated with a
nonallocatable array dummy argument. An array-valued function may declare its resuit to be
an allocatable array. A component of a derived type must not have the ALLOCATABLE attri-
bute.

5.1.2.4.4 Assumed-Size Array. An assumed-size array is a dummy array where the size
is assumed from that of an associated actual argument. The rank and extents may differ for
the actual and dummy arrays; only the size of the actual array is assumed by the dummy
array.

Version 102 1986 November Page 5-6

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

10

15

20

25

30

35

40

R519 assumed-size-spec is [explicit-shape-spec-list , | [lower-bound :] *
Constraint: assumed-size-spec must not be included in an ARRAY attribute.

Constraint: The value to be returned by an array-valued function must not be declared as
an assumed-size array.

The size of an assumed-size array is determined as follows:

(1) If the actual argument associated with the assumed-size dummy array is an array
name of any type other than character, the size is that of the actual array.

(2) If the actual argument associated with the assumed-size dummy array is an array
element of any type other than character with a subscript order value of r (6.2.4.2)
in an array of size x, the size of the dummy array is MAX (x — r + 1, 0).

(3) If the actual argument is a character array name, character array element name,
or a character array element substring name (6.1.1), and if it begins at character
storage unit ¢t of an array with ¢ character storage units, the size of the dummy
array is MAX (INT ((c — t + 1)/ e), 0), where e is the length of an element in the
dummy character array.

If an assumed-size array has rank n, the product of the extents of the first n — 1 dimensions
must be less than or equal to the size of the associated actual array.

An assumed-size array has no bounds in its last dimension and therefore has no shape or
size.

If an assumed-size array has bounds that are nonconstant specification expressions, the
bounds are declared at entry to the procedure. The bounds of such an array are unaffected
by any redefinition or undefinition of the specification expression variables during execution
of the procedure.

5.1.2.5 SAVE Attribute. The SAVE attribute specifies that the objects declared in a dec-
laration containing this attribute retain their allocation status, definition status, effective
range, and value after execution of a RETURN or END statement in the scoping unit con-
taining the declaration. Such an object is called a saved object.

The SAVE attribute or SAVE statement may appear in declarations in a main program and
has no effect.

Objects in the scoping unit of a module may be declared with a SAVE attribute. Such
objects retain their definition status, effective range, and value when any procedure that
accesses the module in a USE statement executes a RETURN or END statement. The
SAVE attribute must not be specified for an object name that is in a common block.

5.1.2.6 OPTIONAL Attribute. The OPTIONAL attribute may be specified only for dummy
arguments within a procedure subprogram. The OPTIONAL attribute specifies that such
dummy arguments need not be associated with an actual argument in a reference to the
procedure.

5.1.2.7 ALIAS Attribute. The ALIAS attribute specifies that only the type, rank, and
name of the objects declared in the statement are specified. The object must not be refer-
enced unless, as a result of executing an IDENTIFY statement (6.2.6), it is alias associated
with an object that may be referenced or defined. If it is an array, it does not have a shape
unless it is alias associated.

Version 102 1986 November Page 5-7

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

5.1.2.8 RANGE Attribute. The RANGE attribute may be specified only for nonassumed-
size array objects and specifies that those arrays may have their effective shapes changed
by execution of SET RANGE statements. The initial effective shape of each explicit-shape
array is its declared shape. For an allocatable array, the effective shape following the exe-
cution of an ALLOCATE statement is the declared shape.

If the range list name is omitted, the arrays declared in that type declaration may have
different shapes, and the individual array names may appear explicitly in SET RANGE state-
ments. If the range list name is specified, the arrays must all have explicit shapes, must be
declared with the same rank, lower bounds, and upper bounds, and may be reshaped only
by execution of a SET RANGE statement containing that range list name.

5.2 Attribute Specification Statements. Most of the attributes (other than type) may
be specified for objects, independently of type, by single attribute specification statements.
A data object must not be explicitly given any of the following attributes more than once. in a
scoping unit: type, value, accessibility, intent, array, save, optional, and range.

5.2.1 INTENT Statement.

R520 intent-stmt is INTENT (intent-spec) [:: | dummy-arg-name-list

This statement specifies the intended use of the specified dummy arguments (5.1.2.3). Each
specified dummy argument has the INTENT attribute.

5.2.2 OPTIONAL Statement.

R521 optional-stmt is OPTIONAL [:: | dummy-arg-name-list

This statement specifies that any of the specified dummy arguments need not be associated
with actual arguments on an invocation of the procedure (5.1.2.6). Each specified argument
has the OPTIONAL attribute.

5.2.3 Accessibility Statements.

R522 access-stmt is access-spec [[::] object-name-list]

Constraint: An access-stmt may appear only in the scoping unit of a module and only one
accessibility statement with omitted object name list is permitted in a scoping
unit.

This statement declares the accessibility, PUBLIC or PRIVATE, of the object names (5.1.2.2).
Each specified object name has the accessibility attribute.

If the object name list is omitted, the statement sets the default accessibility that applies to
all potentially accessible objects in the module subprogram. For example, the statement

PUBLIC

confirms the standard default of public accessibility. The statement

PRIVATE |

switches this default to objects being private unless individual objects are specified explicitly
to be public.

5.2.4 SAVE Statement.

R523 save-stmt is SAVE [[::]| saved-object-list]

R524 saved-object is object-name

Version 102 1986 November Page 5-8

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

or / common-block-name /

Constraint: An object name must not be a dummy argument name, a procedure name, a
function result name, an automatic array name, an alias name, or the name of
an object in a common block. lts type parameters must be constant.

5§ Constraint: If a SAVE statement with an omitted saved object list occurs in a scoping unit,
no other occurrence of the SAVE attribute or SAVE statement is permitted in
the same scoping unit.

All objects named explicitly or included within a common block named explicitly have the
SAVE attribute (5.1.2.5). If a particular common block name is specified in a SAVE state-
10 ment in any subprogram of an executable program, it must be specified in a SAVE state-
ment in every subprogram in which that common block appears. For a common block
declared in a SAVE statement, the current values of the objects in a common block storage
sequence (14.2.2) at the time a RETURN or END statement is executed are made available
to the next scoping unit in the execution sequence of the executable program that specifies
15 the common block name. If a named common block is specified in the scoping unit of the
main program unit, the current values of the common block storage sequence are made
available to each subprogram that specifies the named common block; a SAVE statement in
the subprogram has no effect. The definition status of each object in the named common
block storage sequence depends on the association that has been established for the com-
20 mon block storage sequence.

A SAVE statement with an empty saved object list is treated as though it contained the
names of all objects in a scoping unit that may be saved.

5.2.5 DIMENSION Statement. g /
R525 dimension-stmt is DIMENSION array-name (array-spec \|, array-name (array-spec) |...

25 Constraint: In a DIMENSION statement, only explicit shape and assuméd-size array-specs
are permitted.

This statement specifies a list of object names to have the ARRAY attribute and specifies
the array properties that apply for each object named.

Each specified array name has the ARRAY attribute. The array properties for an array must
30 not be specified in more than one of these statements in a scoping unit.

5.2.6 DATA Statement. A DATA statement is used to provide initial values for variables.

R526 data-stmt is DATA daia-stmt-init [[, | data-stmt-init 1...
or DATA (data-value-def-list)
R527 data-stmt-init is data-stmt-object-list / data-stmt-value-list /
35 R528 data-stmt-object is object-name

or array-element
or data-implied-do

R529 data-stmi-value is [data-stmt-repeat *] data-stmt-constant
R530 data-stmt-constant is constant
40 or signed-int-constant
or signed-real-constant
R531 data-stmt-repeat is int-constan't‘
or scalar-int-oywoconstant
R532 data-implied-do is (data-i-do-object-list, do-i-do-variable = B

Version 102 1986 November Page 5-9

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/58

B scalar-int-expr, scalar-int-expr [, scalar-int-expr])

R533 data-i-do-object is array-element
or data-implied-do
R534 data-value-def is variable = constant-expreee;@rﬁ'
5 or data-init-implied-do = data-init-implied-do-value
R535 data-init-implied-do is (data-init-implied-do-object , data-init-implied-do-control)

R536 data-init-implied-do-object is array-element
or data-init-implied-do

R537 data-init-implied-do-control is do-variable =
10 B scalar-int-expr , scalar-int-expr [, scalar-int-expr |

R538 data-init-implied-do-value is array-constructor
Constraint: data-i-do-variable must be of type integer.

Constraint: The data statement repeat factor must be a positive integer constant. If the
data statement repeat factor is a named constant, it must have been declared
15 previously in the scoping unit or made accessible by a USE statement.

Constraint: A variable whose name is included in a dafa-stmt-object-list or a data-i-do-
object-list must not be of a derived type, a structure component, a dummy argu-
ment, made accessible by a USE statement, in a named common block unless
the DATA statement is in a BLOCK DATA subprogram, in a blank COMMON

20 block, or a function name. An array whose name is included in either of the
above object lists must not be an automatic array, an allocatable array, or a
zero-sized array.

Constraint: Neither the name of variable in data-value-def (R534) nor the name of array-

element in data-init-implied-do-object (R536) can ve accessible names of the

25 whole or part of dummy arguments, procedures, function results, automatic or
allocatable arrays, alias, or objects in a common block.

Constraint: The only variables that may appear in subscripts of the array-element in a data-
init-implied-do-object (R536) are DO variables from some level of the data-init-
implied-do. Each such DO variable must appear in some subscript of the array-

30 element.

Constraint: Each data-init-implied-do-control must conform to the rules of the DO construct
(8.1.4.1). The DO variable must be an integer. The only variables that may
appear in scalar-int-expr are DO variables from an outer data-init-implied-do-
control.

35 Constraint: A variable, or part of a variable, must not be initialized more than once.

Constraint: The size of the array-constructor must be equal to the number of elements ref-
erenced by the data-init-implied-do-controls.

Constraint: Each element of the array constructor must be a scalar constant expression.

The data-stmt-object-list is expanded to form a sequence of scalar variables. An array whose
40 unqualified name appears in a data-stmt-object-list is equivalent to a complete sequence of
its elements, ordered by subscript order value (6.2.4.2). A data-implied-do is expanded to
form a sequence of array elements, under the control of the implied-do DO variable, as in
the DO loop (8.1.4.1, 9.4.2). A subscript in an array element data-i-do-object must be an
expression whose primaries are either constants or DO variables containing data-implied-dos.
45 Each array-element data-i-do-object must include at least one subscript whose value depends
on that of the DO variable, for each data-implied-do in which it is contained. A scalar-int-

Version 102 1986 November Page 5-10

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

expr of a data-implied-do must involve as primaries only constants or DO variables of the
containing data-implied-dos.

The data-stmt-value-list is expanded to form a sequence of constant values. Each value
must be either a literal constant that is either previously defined or made accessible by a
USE statement. A data statement repeat factor indicates the number of times the following
constant is to be included in the sequence; omission of a data statement repeat factor has
the effect of a repeat factor of one. =

The expanded sequences of scalar variables and constant values are in one to one corre-
spondence. Each constant defines the initial value for the corresponding variable. The
lengths of the two expanded sequences must be the same:

The value of the constant must be assignment compatible with its corresponding variable,
according to the rules of intrinsic assignment (7.5.1.2), and the constant defines the initial
value of the variable according to those rules.

The data-init-implied-do assignment is performed as if:

(1) The set of data-init-implied-do-controls are converted to nested DO constructs with
the outermost control being the outermost construct, and the innermost control
being the innermost construct and with the array element assignment appearing
inside the innermost construct.

(&) The assignments are made from the array-constructor in array element order in
accordance with the rules of intrinsic assignment (7.5.1.2).

The variable in data-value-def (R534) becomes defined with the value determined from the
constant-expression that appears on the right of the equal sign in accordance with the rules
of intrinsic assignment.

A variable that appears in a DATA statement and is typed implicitly may appear in a subse-
quent declaration only if that subsequent declaration confirms the implicit typing.

A variable that is initialized in a DATA statement has the SAVE attribute, but this may be
reaffirmed by a SAVE statement or a type declarataion statement containing the SAVE attri-
bute.

Examples of DATA statements are:

CHARACTER (LEN = 10) NAME

INTEGER, ARRAY (0:9) :: MILES

REAL, ARRAY (100, 100) :: SKEW

DATA NAME / "JOHN DOE' /, MILES / 10%0 /

DATA ((SKEW (I, J), J =K, 1000, K =1, 100> / 5050 = 0.0 /
DATA ((SKEW (I, J), K=1+J, 1000, Jd =1, 99 / 4950 + 1.0 /

REAL S

REAL, ARRAY (1, 10) :: A

REAL, ARRAY (10, 10) :: B

INTEGER I, J, K, L, M, N

DATA (I =1,J =1, § =0.00

DATA ((A (K), K=1,9, 2 =[5 [1.01D

DATA ((B (M, N), M=1,), N =1,100 = [55 [0.01], L =10

The character variable NAME is initialized with the value 'JOHN DOE’, padding on the right
because the length of the constant is less than the length of the variable. All ten elements
of the integer array MILES are initialized to zero, and the two dimensional array SKEW is ini-
tialized so that the lower triangle of SKEW is zero and upper triangle is one.

Version 102 1986 November Page 5-11

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

There must be the same number of items specified by each data-stmt-object-list and its cor-
responding data-stmt-value-list. There is a one-to-one correspondence between the items
specified by a data-stmt-object-list and the constants specified by a data-stmt-value-list such
that the first item of a data-stmi-object-list corresponds to the first constant of a list, etc. By
this correspondence, the initial value is established and the data object is initially defined. |f
an array name without a subscript is in the list, there must be one constant for each element
of that array. The ordering of array elements is determined by the array element subscript
order value (6.2.4.2).

The type of the object item and the type of the corresponding constant must agree when
either is of type character or logical. When the item is of type integer, real, double preci-
sion, or complex, the corresponding constant must also be of type integer, real, double pre-
cision, or complex; if necessary, the constant is converted to the type of the object accord-
ing to the rules for numeric conversion and assignment (7.5.1.2). Note that if an object is of
type double precision and the constant is of type real, the processor may supply more preci-
sion derived from the constant than can be contained in a real datum. A constant of type
character is assigned to the object according to the rules for intrinsic assignment (7.5.1.2).

5.2.7 PARAMETER Statement. The PARAMETER statement provides a means of
defining a named constant. Named constants defined by a PARAMETER statement have
exactly the same properties and restrictions as those declared in a type statement specifying
a PARAMETER attribute (5.1.2.1.1).

R539 parameter-stmt is PARAMETER (named-constant-def-list)
R540 named-constant-def is named-constani-name = constant-expr

The named constant name must have its type, shape, and any type parameters specified
either by a previous occurrence in a type declaration statement in the same scoping unit, or
must be determined by the implicit typing rules currently in effect for the scoping unit. If the
named constant is typed by the implicit typing rules, its appearance in any subsequent type
declaration statement must confirm this implied type and the values of any implied type
parameters.

Each named constant becomes defined with the value determined from the constant expres-
sion that appears on the right of the equals, in accordance with the rules of assignment
(7.5.1.4).

A named constant that appears in the constant expression must have been defined pre-
viously in the same PARAMETER statement, defined in a prior PARAMETER statement or
type declaration statement using the PARAMETER attribute, or made accessible by an
explicit or implicit USE statement.

Each named constant has the PARAMETER attribute.

5.2.8 RANGE Statement. A RANGE statement specifies the RANGE attribute for each
array name in the array name list.

R541 range-stmt is RANGE [/ range-list-name / | array-name-list

If the range list name is present, the arrays in the array name list must all be declared with
the same rank, lower bounds, and upper bounds, but they may be of any type. The
effective shape of all arrays in the array name list may be changed by the execution of a
SET RANGE statement containing only the range list name.

If the range list name is omitted, the arrays in the array name list may have different ranks,
lower bounds, and upper bounds and each array name may appear in SET RANGE state-
ments. An array must not be given the RANGE attribute more than once in a program unit.

Version 102 1986 November Page 5-12

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/s8

10

15

20

25

30

35

40

5.3 IMPLICIT Statement. An IMPLICIT statement specifies a type, and possibly type
parameters, for &% implicitty typed data objectswhose names begins with the letters
specified in the statement. Alternatively, it may indicate that no implicit typing rules are to
apply in a particular scoping unit.

R542 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE

R543 implicit-spec is type-spec (letter-spec-list)

R544 letter-spec is letter | — letter]

A letter-spec consisting of two letters separated by a minus is equivalent to writing all of the
letters in alphabetical order in the alphabetic sequence from the first letter through the sec-
ond letter. For example, A—C is equivalent to A, B, C.

If IMPLICIT NONE is specified, all objects local to the scoping unit must be explicitly
declared and there must be no other IMPLICIT statemenisin the scoping unit. The scoping
unit of an internal program unit that does not contain an IMPLICIT statement is interpreted
as if it contained an IMPLICIT NONE statement when it contains no USE statement or con-
tains a USE statement with the ONLY option omitted.

Any data object not explicitly declared by a type declaration statement, or made accessible
by a USE statement, that has a name starting with one of the letters in letter-spec-fist is
declared implicitly to be of type (and type parameters) of iype-spec..

An IMPLICIT statement applies only to the scoping unit containing it. An IMPLICIT state-
ment does not change the type of any intrinsic function. The same letter must not appear
as a single letter, or be included in a range of letters, more than once in all of the IMPLICIT
statements in a program unit.

If no IMPLICIT statement is present, the default is equivalent to:
IMPLICIT INTEGER (I-N), REAL (A-H, 0-2)

5.4 NAMELIST Statement. A NAMELIST statement specifies a group of data objects
which can then be referred to by a single name for the purpose of data transfer (9.4, 10.9).

V44

R545 namelist-stmt is NAMELIST / namelist-group-name / namelist-group-object-list &
W [[,] 7 name-list-group-name / namelist-group-object-list]... 3>

R546 name-list-group-object is variable

Constraint: namelist-group-name must not be the same name as any variable or array
known within the current scoping unit.

Constraint: A namelist-group-object must not be an array dummy argument with nonconstant

bounds, an array element or section, a structure component, a structured-ebjset®~

with assumed parameters, an allocatable array, or a substring.

Any namelist-group-name may occur in more than one NAMELIST statement in a program
unit. The namelist-group-object-list following each successive appearance of the same
namelist group name is treated as a continuation of the list for that namelist group name.

A namelist-group-object may be a member of more than one namelist group.

A namelist group object must have its type and shape specified either by previous occur-
rence in a type declaration statement in the same program unit, or must be determined by
the implied ty 1ng rules currently in effect for the program unit. If a namelist group object
is typed by the implied type rules, its appearance in any subsequent type declaration state-
ment must confirm this implied type.

Version 102 1986 November Page 5-13

/

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/s8

10

15

20

25

30

35

40

The order in which the data objects (variables) are specified in the namelist-stmt controls the
order in which the values appear on output.

5.5 Storage Association of Data Objects. In general, the physical storage units or
storage order for data objects is not specifiable. However, the EQUIVALENCE statement
and the COMMON statement provide for control of the “order” and “layout” of storage units.
Section 14.2.2 describes the general mechanism of storage association.

5.5.1 EQUIVALENCE Statement. An EQUIVALENCE statement is used to specify the
sharing of storage units by two or more objects in a program unit. This causes association
of the objects that share the storage units. -

If the equivalenced objects are of different data types, the EQUIVALENCE statement does
not cause type conversion or imply mathematical equivalence. For example, if a scalar and
an array are equivalenced, the scalar does not have array properties and the array does not
have the properties of a scalar.

R547 equivalence-stmt is EQUIVALENCE equivalence-set-list
R548 equivalence-set is (equivalence-object , equivalence-object-list)
R549 equivalence-object is object-name

or array-element
or substring

Constraint: object-name must be a scalar variable name or an array variable name.

Constraint: An equivalence-object must not be the name of a dummy argument, an object of
derived type, a structure component, an allocatable array, an automatic array,
an object of real type unless of default real type, an object of complex type
unltess of default complex type, an array of zero size, or a function name.

Constraint: Within an equiviance-set, if one equivalence-object is of type character, all must
be of type character.

Constraint: Each subscript or substring range expression in an equivalence-object must be
an integer constant expression.

5.5.1.1 Equivalence Association. An EQUIVALENCE statement specifies that the storage
sequences of the data objects whose names appear in an equivalence-set have the same
first storage unit. This causes the association of the data objects in the equivalence-set and
may cause association of other data objects.

5.5.1.2 Equivalence of Character Objects. A data object of type character may be
equivalenced only with other objects of type character. The ‘lengths of the equivalenced
objects are not required to be the same.

An EQUIVALENCE statement specifies that the storage sequences of the character data
objects whose names appear in an equivalence-set have the 'same first character storage
unit. This causes the association of the data objects in the equivalence-set and may cause
association of other data objects. Any adjacent characters in the associated data objects
may also have the same character storage unit and thus may also be associated. In the
example:

CHARACTER (LEN=4) :: A, B
CHARACTER (LEN=3) :: C(2)
EQUIVALENCE (A, C(1)), (B, C(2))

the association of A, B, and C can be illustrated graphically as:

Version 102 1986 November Page 5-14

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7

— —a = —

|— ¢ —| |— @ -

5.5.1.3 Array Names and Array Element Names. If an array element name appears in an
EQUIVALENCE statement, the number of subscripts must be the same as the rank of the
array.

The use of an array name unqualified by a subscript in an EQUIVALENCE statement has the
same effect as using an array element name that identifies the first element of the array.

5.5.1.4 Restrictions on EQUIVALENCE Statements. An EQUIVALENCE statement must
not specify that the same storage unit is to occur more than once in a storage sequence.
For example,

REAL ARRAY(2) :: A
REAL :: B
EQUIVALENCE (A(1), B), (A(2), B)

is prohibited, because it would specify the same storage unit for A(1) and A(2). An EQUIVA-
LENCE statement must not specify that consecutive storage units are to be nonconsecutive.
For example, the following is prohibited:

REAL A(2)
DOUBLE PRECISION D(2)
EQUIVALENCE (A(1), D(1)), (A(2), D(2))

5.5.2 COMMON Statement. The CONMON statement specifies blocks of physical storage,
called common blocks, that may be accessed by any of the scoping units in an executable
program. Thus, the COMMON statement provides a global data facility based on storage
association (14.2.2). The common blocks specified by the COMMON statement may be
named and are called named common blocks or may be unnamed and are called blank
common.

R550 common-stmt is COMMON [/ [common-block-name] /] R
@ common-block-object-list B
W [{[,]/[common-block-name] / B
M common-block-object-list]...

R551 common-block-object is object-name [(explicit-shape-spec-list) |

Constraint: object-name must be a scalar-variable-name or an array-variable-name. Only
one appearance of a given object-name is permitted in all common-
block-object-lists within a scoping unit.

Constraint: A common-block-object must not be the name of a dummy argument, an object
of derived type, a structure component, an alias object, an allocatable array, an
automatic array, an object of real type unless of default real type, an object of
complex type unless of default complex type, an array of zero size, or a func-
tion name.

Constraint: Each bound in the explicit-shape-spec must be an integer constant expression.
Each omitted common block name specifies the blank common block.

In each COMMON statement, the data objects whose names appear in a common block
object list following a common block name are declared to be in that common block. If the
first common block name is omitted, all data objects whose names appear in the first com-
mon block list are specified to be in blank common. Alternatively, the appearance of two

Version 102 1986 November Page 5-15

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/s8

10

16

20

25

30

35

40

45

slashes with no common block name between them declares the data objects whose names
appear in the common block list that follows to be in blank common.

Any common block name or an omitted common block name for blank common may occur
more than once in one or more COMMON statements in a scoping unit. The common block
list following each successive appearance of the same common block name is treated as a
continuation of the list for that common block name.

If a character variable or character array is in a common block, all of the entities in that com-
mon block must be of type character. An array in a common block may have the RANGE
attribute.

5.5.2.1 Common Block Storage Sequence. For each common block, a common block
storage secuence is formed as follows:

(1) A storage sequence is formed consisting of the storage sequences of all data
objects in the common block object lists for the common block. The order of the
storage sequence is the same as the order of the appearance of the common
block object lists in the scoping unit.

(2) The storage sequence formed in (1) is extended to inciude all storage units of any
storage sequence associated with it by equivalence association. The sequence
may be extended only by adding storage units beyond the last storage unit. Data
objects associated with an entity in a common block are considered to be in that
common block.

5.5.2.2 Size of a Common Block. The size of a common block is the size of its common
block storage sequence, including any extensions of the sequence resulting from equiva-
lence association.

5.5.2.3 Common Association. Within an executable program, the common block storage
sequences of all common blocks with the same name have the same first storage unit.
Within an executable program, the common block storage sequences of all blank common
blocks have the same first storage unit. This results in the association of objects in different
scoping units.

5.5.2.4 Differences between Named Common and Blank Common. A blank common
block has the same properties as a named common block, except for the following:

(1) Execution of a RETURN or END statement may cause data objects in named com-
mon blocks to become undefined unless the common block name has been
declared in a SAVE statement, but never causes data objects in blank common to
become undefined (14.3.2).

(2) Named common blocks of the same name must be of the same size in all scoping
units of an executable program in which they appear, but blank common blocks
may be of different sizes.

(3) A data object in a named common block may be initially defined by means of a
DATA statement in a BLOCK DATA subprogram, but objects in blank common
must not be initially defined (11.5).

5.5.2.5 Restrictions on Common and Equivalence. An EQUIVALENCE statement must
not cause the storage sequences of two different common blocks in the same scoping unit
to be associated. Equivalence association must not cause a common block storage
sequence to be extended by adding storage units preceding the first storage unit of the first
object specified in a COMMON statement for the common block. For example, the following
is not permitted:

Version 102 1986 November Page 5-16

DATA OBJECT DECLARATIONS AND SPECIFICATIONS X3J3/S8

COMMON /X/ A
REAL B(2)
EQUIVALENCE (A, B(2))

Version 102 1986 November Page 5-17

10

15

20

25

30

35

40

6 USE OF DATA OBJECTS

The appearance of a data object name or subobject designator in a context that requires its
value is termed a reference. A reference is permitted only if the data object or subobject is
defined (5.2.6, 5.2.7). A data object or subobject becomes defined with a value when the
data object name or subobject designator appears in certain contexts and when certain
events occur (14.7).

A data object or. subobject that is not a constant is a variable.

R601 variable is scalar-variable-name
or array-variable-name
or array-element
or array-section
or structure-component
or substring

Under some circumstances, dlias variables (6.2.6), allocatable arrays (6.2.2), dummy argu-
ments, and variables associated with dummy arguments (7.5.1.1, 7.5.3.2, 12.4.1.1, 12.5.2.1,
12.5.2.7) must not be defined.

A literal constant is a scalar denoted by a syntactic form which indicates its type, type
parameters, and value. A symbolic constant is a symbolic name that has been associated
with a constant value with the PARAMETER attribute (5.1.2.1.1, 5.2.7). A reference to a con-
stant is always permitted; redefinition of a constant is never permitted.

6.1 Scalars. A scalar (2.4.4.1) is a data entity that is not array-valued. Its value, if
defined, is a single element from the set of values comprising its data type.

A scalar has rank zero.

6.1.1 Substrings. A substring is a contiguous portion of a character string (4.3.2.1). The
following rules define the forms of a substring:

R602 substring is parent-string (substring-range-)

R603 parent-string is char-scalar-variable-name
or char-array-element
or scalar-char-structure-component
or scalar-char-symbolic-constant
or scalar-char-constant

R604 substring-range - is [scalar-int-expr | : [scalar-int-expr]

The first scalar-int-expr in substring-range is calied the starting point and the second one is
called the ending point. The length of a substring is the number of characters in the
substring and is max (ending-point — starting-point + 1, 0).

Let the characters in the parent string be numbered 1,2, 3,...,n, where n is the length of
the parent string. Then the characters in the substring are those from the parent string from
the starting point and proceeding in sequence up to and including the ending point. Both
the starting point and the ending point must be within the range 1,2, ..., n unless the starting
point exceeds the ending point, in which case the substring has length zero.

If the parent is a variable, the substring is also a variable. If the parent is an array section
(6.2.4.3), the substring is an array of the same shape as the array section and each element
is the designated substring of the corresponding element of the array section.

Version 102 1986 November Page 6-1

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

Examples:

ID (4:9 scalar variable name as parent string
'0123456789"' (N:N) character constant as parent string

6.1.2 Structure Components. A derived-type definition contains one or more component
definitions (4.4). A siructure-component is one of the components of a structure.

R605 structure-component is parent-structure % component-name | array-selector |

R606 parent-structure is derived-type-scalar-variable-name
or derived-type-array-variable-name
or derived-type-array-element
or derived-type-array-section
or derived-type-structure-component
or derived-type-symbolic-constant

Constraint: An array-selector may appear only if the component specified by component-
name is an array.

R607 array-selector is (subscript-list)
or (section-subscript-fist)

The type of the structure component is the same as the type declared for the component in
the derived-type definition. Each type parameter, if any, of the type of a structure compo-
nent is declared for the component in the derived-type definition (4..41) and is either a con-
stant or is a type parameter of derived type (4.4.1.1) whose actual value is established in the
declaration of a parent object or component (5.1.1.8, 4.4.1).

The resulting data subobject is an array if either the parent structure is an array or the com-
ponent is an array without an array selector that is a subscript list, but not both.

Examples:

SCALAR_PARENT % SCALAR_FIELD scalar component of scalar parent

ARRAY_PARENT (J) % SCALAR_FIELD component of array element parent
ARRAY_PARENT (1:N) % SCALAR FIELD component of array section parent
SCALAR_PARENT % ARRAY_FIELD (K) array element component of scalar parent
ARRAY_PARENT (K) % ARRAY_FIELD (J) array element component of array element parent

6.2 Arrays. An array is a set of scalar data objects, all of the same type and type param-
eters, whose individual elements are arranged in a rectangular pattern. The scalar data
objects that make up an array are known as the array elements.

6.2.1 Whole Arrays. A whole array is an array name appearing without an appended
parenthesized list.

6.2.1.1 Array Constants and Variables. A whole array is either a constant or variable. A
whole array constant is the symbolic name of a constant expression (5.1.2.1.1 and 5.2.7)
and comprises those elements determined by the declared shape of the symbolic constant.

The appearance of a whole array variable in an executable construct specifies those
elements determined by the effective shape (6.2.1.2). A whole array variable that is an
assumed-size array is permitted only as an actual argument in a procedure reference.

The appearance of a whole array name in a nonexecutable statement specifies the entire
array as determined by the declared shape.

Version 102 1986 November Page 6-2

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

No ordering of the elements of an array is indicated by the appearance of the array name,
except when the name occurs in an input list (9.4.2), an output list (9.4.2), an initial value
definition (5.2.6), an internal file unit (9.2.2), a format specifier (9.4.1.1), or a DATA statement
object (5.5), where the order of reference is determined by the subscript order value
(6.2.4.2).

6.2.1.2 Declared and Effective Array Range. The declared range for an array is the set
of elements determined by the declared bounds for each dimension of the array. The effec-
tive range for an array is the subset of elements determined by the effective bounds of the
array as specified in the most recently executed SET RANGE statement for the array. The
declared shape for an array is the shape determined by the bounds of the array. The
effective shape for an array is the shape determined by the effective range bounds of the
array. If no SET RANGE statement has been executed for the array, the effective range is
the declared range. The effective range of an array that is local to a scoping unit reverts to
the declared range after execution of a RETURN or END statement in that scoping unit,
unless the array has the SAVE attribute.

6.2.2 The ALLOCATE Statement. The ALLOCATE statement dynamically creates
allocatable arrays.

R608 allocate-stmt is ALLOCATE (array-allocation-list)
R609 array-allocation is array-name (explicit-shape-spec-list)
Constraint: array-name must be the name of an allocatable array.

Constraint: A bound in an array-allocation explicit-shape-spec must not depend on any other
bound in the same allocate-stmt.

Constraint: The number of explicit-shape-specs in an array-allocation explicit-shape-spec-list
must be the same as the declared rank of the array.

Example:
ALLOCATE (X (N>, B (MAX (K, 0) : M, 0:9))

The values of the lower bound and upper bound expressions in an explicit shape
specification determine the declared bounds of an allocatable array.

An allocatable array that has been allocated by an ALLOCATE statement and has not been
subsequently deallocated (6.2.3) is currently allocated and is definable. Allocating a cur-
rently allocated array is prohibited. At the beginning of execution of an executable program,
allocatable arrays have not been allocated and are not definable. At the beginning of the
execution of a function whose result is an allocatable array, the result is not allocated.

6.2.3 The DEALLOCATE Statement. The DEALLOCATE statement causes an allocatable
array that has been allocated to become deallocated; hence, it becomes not definable.

R610 deallocate-stmt . is DEALLOCATE (array-name-list)

The effect of deallocating an array that is not currently allocated is undefined. When the
execution of a procedure is terminated by execution of a RETURN or END statement, any
array allocated within the procedure is deallocated unless it is one of the following, which
retain their definition status:

(1) An allocatable dummy argument or function result,
(2) An allocatable array with the SAVE attribute,

(3) An allocatable array in a module if the module also is accessed by another scop-
ing unit that is currently in execution.

Version 102 1986 November Page 6-3

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

45

6.2.4 Array Elements and Array Sections.

R611 array-element is parent-array (subscript-list)

Constraint: The number of subscripts must equal the declared rank of the array.

R612 array-section is parent-array (section-subscript-list) | (substring-range) |

R613 parent-array is array-variable-name
or array-symbolic-constant-name

Constraint: At least one section-subscript must be a subscript-triplet.

Constraint: The number of section-subscripts must equal the declared rank of the array.

R614 subscript is scalar-int-expr

R615 section-subscript is subscript

i or subscript-iriplet

R616 subscript-triplet is [subscript] : [subscript | | : stride]
R617 stride is scalar-int-expr

An array element is a scalar. An array section is an array.

6.2.4.1 Array Elements. The values of a subscript expression in an array element must
be within the declared subscript range for that dimension.

6.2.4.2. Subscript Order Value. The elements of an array form a sequence known as the
array element ordering. The position of an array element in this sequence is determined
by the subscript order value of the subscript list designating the element. The subscript
order value is computed from the formulas in Table 6.1.

Table 6.1. Subscript Order Value

Explicit Subscript
Rank Shape Subscript Order
n Specifier List Value
17 jyky 5 1+(s1—/41)
2 Ji:K1,jaiK2 51,52 1+(s1—/4)
+(s2~—j2) x d;

3 Jrki,jzkajaks $1,52,83 1+(S1—fj)
+(32—[2)Xd1
+(s3—fa)xdaxd;

Version 102 1986 November Page 6-4

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

45

n J1KqysiniKn §4y-5n
1+(s1—J1)
+(s2—f2)x d4
+(S —ia)Xd2Xd1
EERI
+(S —jn)an—1
an_zx A Xd1

Notes for Table 6.1:
(1) d; = max (k; — j + 1, 0) is the size of the ith dimension.

(2) I the size of the array is nonzero, j; < §; < kiforalli =1,2,...,n.

6.2.4.3 Array Sections. An array section is an array subobject designated by an array
name with a section subscript list, optionally followed by a substring range.

Each subscript triplet in the section subscript list indicates a sequence of subscripts (6.2.4.4,
6.2.4.5). The array section is the set of elements from the named array determined by all
possible subscript lists obtainable from the single subscripts or sequences of subscripts
specified by each section subscript.

The rank of the array section is the number of subscript triplets in the section subscript list.
The shape is the rank one array whose ith element is the number of integer values in the
sequence indicated by the ith subscript triplet. If any of these sequences is empty, the
array section has size zero. The subscript order of the elements of an array section is that
of the array data object that the array section represents.

6.2.4.4 Triplet Notation. The subscripts and strides of subscript triplet are optional. An
omitted first subscript in a subscript triplet is equivalent to a subscript whose value is the
effective lower bound for the named array and an omitted second subscript is equivalent to
the effective upper bound (5.1.2.4, 5.1.4.2, 6.2.6). An omitted stride is equivalent to a stride
of one.

The second subscript must not be omitted in the last dimension of an assumed-size array.

When the stride is positive, the subscripts specified by a triplet form a regularly spaced
sequence of integers beginning with the first subscript and proceeding in increments of the
stride to the largest such integer not exceeding the second subscript; the sequence is empty
if the first subscript exceeds the second. '

The stride must not be zero.

When the stride is negative, the sequence begins:with the first subscript and proceeds in
increments of the stride down to the smallest such integer equal to or exceeding the second
subscript; the sequence is empty if the second subscript exceeds the first.

For example, if an array is declared as B (10), the array section B (3: 11, 7) is the array of
shape [2] consisting of the elements B (3) and B (10), in that order. The section
B(9:1: —2) is the array of shape [5] whose elements are B (9), B (7), B (5), B (3), and
B (1), in that order.

For another example, suppose an array is declared as A (5, 4,3). The section
A (3:5,2, 1:2)is the array of shape [3, 2] shown below:

A@B,2,1) A@B 22

A@4,2,1) A@422)
AG.2,1) A(22)

Version 102 - 1986 November Page 6-5

USE OF DATA OBJECTS X3J3/S8

6.2.5 The SET RANGE Statement. Execution of a SET RANGE statement establishes the
effective ranges for the arrays in the array name list or for the members of the range list
specified by the range list name.

R618 set-range-stmt is SET RANGE ([effective-range-list |) array-name-list
5 or SET RANGE ([effective-range-list 1) / range-list-name /
R619 effective-range is explicit-shape-spec

or [lower-bound | : [upper-bound |

Constraint: The number of effective ranges in an effective-range-list must equal the rank of
the arrays being ranged.

10 Constraint: All arrays being ranged must have the same rank and declared lower bounds in
corresponding dimensions.

Constraint: An array that is a member of a range list must not appear in an array-name-list
of a SET RANGE statement.

Each effective range specifies the effective lower and upper bounds for a dimension of each
15 ‘array in array-name-list or range-list.

An array name must not appear in the array name list of a SET RANGE statement unless it
has the RANGE attribute. A SET RANGE statement must not be used to establish the
effective ranges for an allocatable array that is not allocated. The values of each effective
lower bound and each effective upper bound must be within the declared bounds for the cor-

20 responding dimension of every array in the array list or every member of the range list
specified by the range list name. The effect of a SET RANGE is global to all scoping units
accessing those arrays by use association. If a lower bound or an upper bound of an
effective range is omitted, the default value is the current effective lower bound or effective
upper bound, respectively, for each array being ranged. If the effective range list is omitted,

25 the effective lower bounds and the effective upper bounds revert to the declared lower and
upper bounds, respectively, for each array being ranged.

6.2.6 The IDENTIFY Statement. An IDENT!FY statement provides a dynamic aliasing
facility involving an alias object and a parent object. An alias may be an array whose
elements are a subset of the elements of a given parent. Such an alias has properties sim-

30 ilar to those of an array section, but can specify a greater variety of subsets of the array
elements of the parent. For example, an alias may be the diagonal of an array of rank two,
or may have one subscript selecting an array of derived type and another indexing a compo-
nent of the array elements (Examples 2 and 3 below).

R620 identify-stmt is IDENTIFY (alias-name = parent)
35 or IDENTIFY (alias-element = parent-element , @
B alias-range-spec-list)
R621 alias-element is alias-name (subscript-range-list)
R622 parent-element is parent-name (subscript-mapping) B

B [% component-name [(subscript-list)] |...
40 R623 subscript-mapping is subscript-list

"Constraint: Each subscript must be in a canonical form in which each of the alias-element
subscript-names appears in at most one term, and each subscript must be lin-
C ear in each, of the alias-element subscript-names.

R624 alias-range-spec is subscript-range = subscript : subscript

45 | Constraint: The alias and parent objects must conform in type, rank, and type parameters.

Version 102 1986 November Page 6-6

USE OF DATA OBJECTS X3J3/S8

10

15

20

25

30

35

40

45

Constraint: The alias object must have the alias attribute.

Constraint: The number of subscript-names in an alias element must equal the number of
alias-range-specs.

Constraint: The subscript ranges in a subscript-name-list must be identical to the subscript
ranges in the corresponding alias range specification list, and must appear in
the same order. A name must not appear more than once in such a list.

Constraint: The bounds in an alias-range-spec may be arbitrary integer -expressions, but
must not depend on any other bound in the same identify-stmt. '

An alias is definable following a valid execution of an IDENTIFY statement. An alias must
not be defined unless it is definable. Execution of an IDENTIFY statement for an alias array
that has the RANGE attribute sets the actual ranges and the effective ranges of the alias
array to bounds specified by the ranges in the IDENTIFY statement.

The scope of the subscript names is the IDENTIFY statement itself, and the subscripts are
implicitly of type integer.

The elements of the alias are specified by the subscript names varying over the correspond-
ing ranges. The IDENTIFY statement specifies the mapping between the elements of the
alias and the elements of the parent.

The linear mappings in the subscript lists of the parent element must be mathematically

equivalent to expressions of the form ko + ki X iy + ka2 X is + - -+ + kp X I, where each
k; is a scalar integer expression not involving any i and each i; is named in the subscript
name list. The mapping is established by evaluating ko, k1, ..., k,. Note that the values of

the k4, ..., k, all may be zero, making the subscript invariant with regard to the values of the
named subscripts.

An alias may be alias-associated with at most one parent object. If the parent is an alias, it
must be definable and the new alias is regarded as belonging to the nonalias object to
which the parent belongs. If the parent is an allocatable array, it must be definable. When-
ever an allocatable array is deallocated, all aliases belonging to it become not definable. On
return from a procedure, an alias ceases to be alias associated if it is alias associated with
an unsaved local object or to an unsaved object in a module that is also accessed by
another scoping unit that is currently in execution.

An alias array is said to be many-to-one if two or more of its elements are alias associated
with the same datum. If an alias is definable, it may be used according to the rules that
govern the use of data objects, except that if it is many-to-one, the elements sharing a com-
mon parent element must not be defined or redefined.

When an alias array or a section of an alias array is associated with a dummy argument of a
procedure, only elements within the alias array or alias array section are associated with the
dummy argument.

The inquiry and transformational array intrinsic functions operate on each array argument as
a whole. The declared shape or effective shape of the corresponding actual argument
therefore must be defined: that is, if the actual argument is an alias array, it must exist.

The following are examples of aliasing:
(1) Simple alias
IDENTIFY (PART = STRUCTURE % COMPONENT)
(2) Skew section
IDENTIFY (DIAG (I) = ARRAY (I, I), I = 1:N)

Version 102 1986 November Page 6-7

USE OF DATA OBJECTS X3J3/58

10

15

20

25

30

35

40

(3) Array of structure components

IDENTIFY (PART (I) = STRUCTURE % ARRAY (I), I = 1:N)
IDENTIFY (PATTERN (I, J) = STRUCTURE (I) % ARRAY (J), I = 1:M, J = 1:N)

The IDENTIFY statement permits the construction of subarrays that do not lie along the
axes. As a simple example:

IDENTIFY (DIAG (D =A (I, D, I=1:N)

constructs a vector that overlays the main diagonal of A. After execution of such an IDEN-
TIFY statement, the alias array DIAG so constructed can be used whenever an array of the
same shape might be used.

6.2.6.1 Alias Restrictions. There are some restrictions on the use of aliasing. A specified
precision or exponent range complex data object must not be associated with a default com-
plex object in an IDENTIFY statement.

An object name in a SAVE statement must not be an alias name.

The variables or arrays whose names are included in the data-stmt-object-list must not be
associated with an object in blank COMMON or an alias object.

A SET RANGE statement must not be used to establish the effective range for an
allocatable array that is not allocated or alias array that is not alias associated.

6.2.7 Summary of Array Name Appearances.

Table 6.2. Allowed Appearances of Array Names

Structure _

Explicit Alias Component Allocatable
Place of Appearance Array Array Array Array
dummy-arg Yes No No Yes
use-stmt Yes Yes No Yes
lype-declaration-stmt Yes Yes No Yes
namelist-stmt Yes No Yes No
equivalence-stmt Yes No No No
data-stmt Yes No No No
common-stmt Yes No No No
io-fist Yes Yes Yes - Yes
internal-file-id Yes Yes Yes Yes
fmt-spec Yes Yes Yes Yes
save-stmt Yes No No Yes
primary Yes Yes Yes Yes
assignment-stmt Yes Yes Yes Yes
identify-stmt Yes Yes Yes Yes
allocate-stmt No Yes No Yes
deallocate-stmt No Yes No Yes
actual-arg in a reference Yes Yes Yes Yes
to a procedure-subprogram u

Version 102 1986 November Page 6-8

10

15

20

25

30

35

40

7 EXPRESSIONS AND ASSIGNMENT

This section describes the formation, interpretation, and evaluation rules for expressions and
the assignment statement.

7.1 Expressions. An expression represents a computation, the result of which is either
a scalar or an array object. An expression is formed from operands, operators, and paren-
theses. Simple forms of an operand are constants and variables, such as:

3.0
.FALSE.
A

B(D
c(I:J)

An operand is either a scalar or an array. An operation is either intrinsic (7.2) or defined
(7.3). More complicated expressions can be formed using operands which are themselves
expressions.

7.1.1 Form of an Expression. Evaluation of an expression produces a value, which has a
type, type parameters (if appropriate), and a shape (7.1.4).

Examples of expressions are:

A+B
(A—B)*(
A**B
C.AND.D
F//G

An expression is defined in terms of several categories: primary, level-1 expression, level-2
expression, level-4 expression, level-5 expression, and level-6 expression.

These categories are related to the different operator precedence levels and, in general,
defined in terms of other categories. The simplest form of each expression category is a pri-
mary. The rules given below specify the syntax of an expression. For convenience, the
low-level operator construction rules, but not the constraints, have been duplicated below
from Section 3 where appropriate. See Section 3.2.4 for the constraints on defined-unary-op
(7.1.1.1) and defined-binary-op (7.1.1.7). The semantics are specified in 7.2 and 7.3.

7.1.1.1 Primary.

R701 primary is constant
or variable
or array-constructor
or derived-type-constructor
or function-reference

or (expr)
Examples of a primary are:
Example Syntactic Class
1.0 constant
A variable
[1.0,2.01 array-constructor

PERSON('Jones', 12) derived-type-constructor

Version 102 1986 November Page 7-1

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

F(X,Y) function-reference
(S+T) (expr)

7.1.1.2 Level-1 Expressions. Defined unary operators have the highest operator preced-
ence (Table 7.1). Level-1 expressions are primaries optionally operated on by defined unary
operators:

R702 level-1-expr is [defined-unary-op | primary
R322 defined-unary-op is . letter [letter
Simple examples of a Jevel-7-expr are:

Example Syntactic Class

A primary

-INVERSE. B level-1-expr
A more complicated example of a level-1 expression is:
.INVERSE. (A + B)

7.1.1.3 Level-2 Expressions. Level-2 expressions are level-1 expressions optionally involv-
ing the numeric operators power-op, mulft-op, and add-op.

R703 mult-operand is level-1-expr [power-op mult-operand]
R704 add-operand is [add-operand mult-op | mult-operand
R705 level-2-expr is [add-op | add-operand

or level-2-expr add-op add-operand
R308 power-op is **
R309 muit-op is *

or /
R310 add-op is +

or —

Simple examples of a level-2 expression are:

Example Syntactic Class

A fevel-1-expr
B ** C mult-operand
D*E add-operand
F-1I level-2-expr
+1 level-2-expr

A more complicated example of a level-2 expression is:

— A+ D=* E+Bx*x C

7.1.1.4 Level-4 Expressions. Level-4 expressions are level-3 expressions optionally involv-
ing the character operator concat-op.

R706 level-4-expr is [level-4-expr concat-op | level-3-expr

R314 concat-op is //

Simple examples of a level-4 expression are:

Example Syntactic Class

Version 102 1986 November Page 7-2

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

20

25

30

35

40

A level-3-expr
B//C level-4-expr

A more complicated example of a level-4 expression is:
X // Y // 'ABCD'

7.1.1.5 Level-5 Expressions. Level-5 expressions are level-4 expressions optionally involv-
ing the relational operators rel-op.

R707 level-5-expr is [level-4-expr rel-op | level-4-expr

R315 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or <>
or <
or <=
or >
or > =

Simple examples of a level-5 expression are:

Example Syntactic Class

A level-4-expr
B .EQ. C level-5-expr
D<E level-5-expr

A more complicated example of a level-5 expression is:
(A +B) .NE. C

7.1.1.6 Level-6 Expressions. Level-6 expressions are level-5 expressions optionally involv-
ing the logical operators not-op, and-op, or-op, and equiv-op.

R708 and-operand is [not-op] level-5-expr
R709 or-operand is [or-operand and-op | and-operand
R710 equiv-operand is [equiv-operand or-op] or-operand
R711 level-6-expr is [level-6-expr equiv-op | equiv-operand
R316 not-op is .NOT.
R317 and-op is .AND.
R318 or-op is .OR.
R319 equiv-op is .EQV.
or .NEQV.

Simple examples of a level-6 expression are:

Example Syntactic Class

A level-5-expr

.NOT. B and-operand

Version 102 1986 November Page 7-3

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

.AND. D or-operand
.OR. F equiv-operand
.EQV. H level-6-expr
S .NEQV. T level-6-expr

A more complicated example of a level-6 expression is:
A .AND. B .EQV. .NOT. C

oOMmo

7.1.1.7 General Form of an Expression. The general form of an expression is a level-6
expression.

R712 expr is [expr defined-binary-op | level-6-expr
R323 defined-binary-op is . letter [letter]... .
Simple examples of an expression are:

Example Syntactic Class

A level-6-expr

B .UNION. C expr
NMiore complicated examples of an expression are:

(B .INTERSECT. C) .UNION. (X-Y)
A+B .EQ. C*D

.INVERSE. (A + B)

A+B .AND. C * D

E// G .EQ. H(1:10)

7.1.2 Intrinsic Operations. An intrinsic operation is either an intrinsic unary operation or
an intrinsic binary operation. An intrinsic unary operation is an operation of the form
intrinsic-operator x, where x, is of an intrinsic type (4.3) listed in Table 7.1 for the unary
intrinsic operator.

An intrinsic binary operation is an operation of the form x, intrinsic-operator x, where
either x, and x, are of the intrinsic types (4.3) listed in Table 7.1 for the binary intrinsic oper-
ator and are in shape conformance (7.1.5), or x4 and x, are of the same derived-type (4.4),
are in shape conformance (7.1.5), and the intrinsic-operator is one of the relational operators
.EQ., .NE,, ==, 0r <>.

An intrinsic operator is the operator in an intrinsic operation.

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a
numeric-operator (+, —, *, /, or *¥). A numeric intrinsic operator is the operator in a
numeric intrinsic operation.

For numeric intrinsic binary operations, the two operands may be of different numeric types

‘or different type parameters. Except for a value raised to an integer power, if the operands

do not have the same types or type parameters, each operand that differs in type or type
parameters from those of the result is converted to the type and type parameters of the
result before the operation is performed. When a value of type real, double precision, or com-
plex is raised to an integer power, the integer operand need not be converted.

A character intrinsic operation, relational intrinsic operation, and logical intrinsic opera-
tion are similarly defined in terms of a character intrinsic operator (//), relational intrinsic
operator (.EQ., .NE., .GT., .GE., .LT,, .LE,, ==, <>, >, >=, <, and < =), and logical
intrinsic operator (.AND., .OR., .NOT., .EQV., and .NEQV.), respectively.

Version 102 1986 November Page 7-4

EXPRESSIONS AND ASSIGNMENT

X3J3/s8

A numeric relational intrinsic operation is a relational intrinsic operation where the oper-
ands are of numeric type. A character relational intrinsic operation is a relational intrinsic
operation where the operands are of type character. A derived-type relational intrinsic
operation is a relational intrinsic operation where the operands are of the same derived type

5 and the operator is .EQ., .NE., ==, or <>.
Table 7.1. Type of Operands and Result for the Intrinsic Operation [x,] op x,. (The symbols
I, R, D, Z, C, L, and Dt stand for the types integer, real, double precision, complex, charac-
ter, logical, and derived-type, respectively. Where more than one type for x5 is given, the
type of the result of the operation is given in the same relative position in the next column.)

10 Intrinsic Operator Type of Type of Type of

op Xy Xz [x1] op x2
unary +, — LR D, Z LR D, Z
15 binary +, —, %, /, *% | ,R, D, Z R D, Z
R LR,D,Z R/RDZ
D IR, D, Z D,D,D,Z
Z IR, D, 2 2,2,2, 2
20 // Cc C C
EQ., .NE.,, ==, <> 1 |,R,D,2Z L, L LL
R LR, D, Z LLLL
4 LR, D, Z L L LL
25 D ,R, D, Z L, L LL
Cc’ C L
Dt Same as x4 L
.GT., .GE,, .LT,, .LE. | LR D L, L L
30 >, >=,<, <= R I, R, D L L L
D LR D L, L L
C Cc L
35 .NOT. L L
.AND., .OR., .EQV., NEQV. L L L
7.1.3 Defined Operations. A defined operation is either a defined unary operation or a
defined binary operation. A defined unary operation is an operation of the form defined-
unary-op Xx» where there exists a function whose interface is explicit (12.3.1) in the scoping

40 unit containing defined-unary-op x, that specifies the operation (7.3) for the operator defined-
unary-op, or of the form intrinsic-operator x, where the type of x, does not match that for the
intrinsic-operator given in Table 7.1,.and there exists a funct® 'ﬁ‘m&@"ﬁ?erface is explicit
(12.3.1) in the scoping unit containing intrinsic-operator X, that specmes the operation (7.3)
for the operator intrinsic-operator.

45 A defined binary operation is an operation of the form x, defined-binary-op x; where there
exists a function whose interface is explicit (12.3.1) in the scoping unit containing x, defined-
binary-op x, that specifies the operation (7.3), or of the form x intrinsic-operator x where
the types and/or shapes of x, and x, are not those required for a binary intrinsic operation
(7.1.2), and there exists a function subprogram whose interface is explicit in the scoping unit

50 containing x4 intrinsic-operator x, that specifies the operation (7.3).

A defined operator is the operator in a defined operation.
Version 102 ' 1986 November Page 7-5

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

An extension operation is a defined operation in which the operator is of the form definea-
unary-op or defined-binary-op. Note that the operator used in an extension operation may be
overloaded in that more than one function whose interface. is explicit in the scoping unit
specifying the same operator may exist.

7.1.4 Data Type, Type Parameters, and Shape of an Expression. The data type and
shape of an expression depend on the operators and on the data types and shapes of the
primaries used in the expression, and are determined recursively from the syntactic form of
the expression. The data type of an expression is one of the intrinsic types (4.3) or a
derived type (4.4).

An expression whose type is real, double precision, complex, or character has type parame-
ters, and an expression of derived type may have type parameters. The type parameters
are determined recursively from the form of the expression. The type parameters for an
expression of type real, double precision, or complex are its precision and range parame-
ters. The type parameter for an expression of type character is the length parameter.

7.1.4.1 Data Type, Type Parameters, and Shape of a Primary. The data type, type
parameters, and shape of a primary are determined according to whether the primary is a
constant, variable, function reference, or parenthesized expression. If a primary is a con-
stant, its type and type parameters are determined by the constant (4.3). If it is a derived-
type constructor, its type, type parameters, and shape are determined by the constructor
name (4.4.2). If it is an array constructor, its type, type parameters, and shape are given in
4.5. If it is a variable or function reference, its type, type parameters, and shape are deter-
mined from corresponding attributes of the variable (5.2) or the function reference (12.5.2.2),
respectively. Note that in the case of a function reference, the function may be generic
(13.8) or overloaded (12.5.4), in which case its type, type parameters, and shape are deter-
mined by the types, type parameters, and shapes of its actual arguments. If a primary is a
parenthesized expression, its type, type parameters, and shape are those of the expression.

7.1.4.2 Data Type, Tvpe Pararteters, and Shape of the Result of an Operation. The
type of an expression [x4] op x, where op is an intrinsic operator is specified by Table 7.1.
The data type of an expression [x;] op x, where op is a defined operator is specified by the
function subprogram defining the operation (7.3).

An expression whose type is real, double precision, complex, or character has type parame-
ters. For an expression op x, where op is a numeric intrinsic unary operator and x, is of
type real, double precision, or complex, the type parameters of the expression are those of
the operand. For an expression x, op x, where op is a numeric intrinsic binary operator
with one operand of type integer and the other of type real, double precision, or complex,
the type parameters of the expression are those of the real, double precision, or complex
operand. In the case where both operands are any of type real, double precision, or com-
plex with type parameters py, r{ and p,, r, where the p's are precision parameter values
and the r's are range parameter values, the type parameters of the expression are
max(p,pz) and max(rq,rs), respectively. For an expression x, // x, where // is the intrinsic
operator for character concatenation, the type parameter is the sum of the lengths of the
operands.

The shape of an expression [x4] op x,, where op is an intrinsic operator, is the shape of x,
if op is unary or x, is scalar, and the shape of x, otherwise.

7.1.5 Conformability Rules for Intrinsic Operations. Two entities are in shape confor-
mance if both are arrays of the same shape, or both are scalars, or one is an array and the
other is a scalar.

Verslon 102 1986 November Page 7-6

EXPRESSIONS AND ASSIGNMENT X3J3/s8

10

15

20

25

30

35

40

For all intrinsic binary operations, the two operands must be in shape conformance. In case
one is a scalar and the other an array, the scalar is treated as if it were an array of the
same shape as the array operand with every element of the array equal to the value of the
scalar.

7.1.6 Kinds of Expressions. An expression is either a scalar expression or an array
expression.

7.1.6.1 Constant Expression. A constant expression is an expression in which each
operator is an intrinsic operator, and each primary is one of the following:

(1) A constant,

(2) An array constructor where each element is a constant expression,

(3) A derived-type constructor where each component is a constant expression,
(4) An intrinsic function reference where each argument is a constant expression,

(5) An inquiry function reference where each argument is either a constant expres-
sion or a variable whose type parameters or bounds inquired about are not
assumed or allocated, or

(6) A constant expression enclosed in parentheses.

A numeric constant expression is a constant expression whose type is integer, real, double
orecision, or complex. An integer constant expression is a numeric constant expression
whose type is integer. A character constant expression is a constant expression whose
type is character. A logical constant expression is a constant expression whose type is
logical.

The following are examples of constant expressions:

3

-3+4

SQRT (9.0)

IABI

'AB' // 'CD'

('AB' // ‘CD') // 'EF'
SIZE (A)

DIGITS (X) + 4

where A is an explicit-shaped array and X is of type default real.
7.1.6.2 Type-Parameter Expression. A type-parameter restricted expression is an
expression in which each primary is one of the following:

(1) A constant,

(2) A variable that is a dummy type parameter,

(3) An array constructor where each element is a type-parameter restricted expres-
sion,

(4) An intrinsic function reference where each argument is a type-parameter restricted
expression,

(5) An inquiry function reference where each argument is either a type-parameter
restricted expression or a variable whose type parameters or bounds inquired
about are not assumed or allocated,

Version 102 1986 November Page 7-7

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

(6) An EFFECTIVE_PRECISION or EFFECTIVE_EXPONENT__RANGE inquiry refer-
ence for a dummy argument of type real or complex that has an asterisk (passed-
on) precision or exponent range parameter,

(7) An EFFECTIVE__PRECISION or EFFECTIVE_EXPONENT_RANGE inquiry refer-
ence for a real or complex component of a dummy argument of derived-type that
has an asterisk (passed-on) precision or exponent range parameter, or

(8) A type-parameter restricted expression enclosed in parentheses.
A type parameter expression is a type parameter restricted expression that is scalar and of
type integer.
7.1.6.3 Specification Expression. A restricted expression is an expression in which each
primary is:
(1) A constant,
(2) A variable that is a dummy argument,
(3) A variable that is in a common block,
(4) A variable that is made accessible by a USE statement,
(5) An array constructor-where each element is a restricted expression,
(6) A derived-type constructor where each component is a restricted expression,
(7) An intrinsic function reference where each argument is a restricted expression, or
(8) A restricted expression enclosed in parentheses.
R713 specification-expr is scalar-int-expr
A specification expression is a restricted expression that is scalar and of type integer.
The following are examples of specification expressions:

DLBOUND (B, 1) + 5
M+ LEN (C)

where B, M, and C are dummy arguments and B is an assumed-shape array.

7.1.7 Evaluation of Operations. This section applies to both intrinsic and defined opera-
tions.

Any variable or function reference used as an operand in an expression must be defined at
the time the reference is executed. An integer operand must be defined with an integer
value rather than a statement label value. All of the characters in a character data object
reference must be defined.

When a reference to a whole array or an array section is made, all of the selected elements
must be defined. When a data object of a derived type is referenced, all of the components
must be defined.

Any numeric operation whose result is not mathematically defined is prohibited in the execu-
tion of an executable program. Examples are dividing by zero and raising a zero-valued pri-
mary to a zero-valued or negative-valued power. Raising a negative-valued primary of type
real or double precision to a real or double precision power is also prohibited.

The execution of a function reference must not alter the value of any other variable within
the statement in which the function reference appears. The execution of a function refer-
ence in a statement must not define or redefine (14.3) the value of any variable in common
(5.4.2) or any variable made accessible by a USE statement (11.3.1) if the definition or

Version 102 1986 November Page 7-8

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

redefinition affects the value of any other reference in the statement. However, execution of
a function reference in the logical expression of an IF statement (8.1.2.4) or WHERE state-
ment (7.5.2.1) is permitted to define variables in the statement that is executed when the
value of the expression is true. For example, in the statements:

IF (F (X)) A=X
WHERE (G (X)) B = X

F or G may define X. If a function reference causes definition or undefinition of an actual
argument of the function, that argument or any associated entities must not appear else-
where in the same statement. For example, the statements

A =F D
Y=6 X +X

are prohibited if the reference to F defines or undefines | or the reference to G defines or
undefines X.

The type of an expression in which a function reference appears does not affect the evalua-
tion of the actual arguments of the function. The type of an expression in which a function
reference appears does not affect and is not affected by the evaluation of the actual argu-
ments of the function, except that the result of a function may assume a type that depends
on the type of its arguments as specified in Sections 12 and 13.

Execution of an array element reference requires the evaluation of its subscripts. The type
of an expression in which a subscript appears does not affect, and is not affected by, the
evaluation of the subscript.

Execution of a substring reference requires the evaluation of its substring range. The type
of an expression in which a substring name appears does not affect, and is not affected by,
the evaluation of the substring expressions.

Execution of an array section reference requires the evaluation of its section subscripts. It is
not necessary for a processor to evaluate any subscripts of a zero-sized array. The type of
an expression in which an array section appears does not affect, and is not affected by, the
evaluation of the array section subscripts.

When an intrinsic binary operator operates on a pair of operands and at least one of the
operands is an array operand, the operation is performed element-by-element on corre-
sponding array elements of the operands. For example, the array expression

A+B

produces an array the same shape as A and B. The individual array elements of the result
have the values of the first element of A added to the first element of B, the second ele-
ment of A added to the second element of B, etc. The processor may perform the element-
by-element operations in any order.

When an intrinsic unary operator operates on a single array operand, the operation is per-
formed element-by-element, in any order, and the resuit is the same shape as the operand.

7.1.7.1 Evaluation of Operands. It is not necessary for a processor to evaluate all of the
operands of an expression if the value of the expression can be determined otherwise. This
principle is most often applicable to logical expressions and zero-sized arrays, but it applies
to all expressions. For example, in evaluating the expression ‘

X .GT. Y .OR. L(D)

where X, Y, and Z are real and L is a function of type logical, the function reference L(Z)
need not be evaluated if X is greater than Y. Similarly, in the array expression

X+ W (2

Version 102 1986 November Page 7-9

EXPRESSIONS AND ASSIGNMENT X3J3/s8

10

15

20

25

30

35

40

45

where X is of size zero and W is a function, the function reference W(Z) need not be evalu-
ated. If a statement contains a function reference in a part of an expression that need not
be evaluated, all entities that would have become defined in the execution of that reference
become undefined at the completion of evaluation of the expression containing the function
reference. In the preceding examples, evaluation of these expressions causes Z to become
undefined if L or W defines its argument.

7.1.7.2 Integrity of Parentheses. The sections that follow state certain conditions under
which a processor may evaluate an expression different from the one specified by applying
the rules given in 7.1.1, 7.2, and 7.3. However, any expression contained in parentheses
must be treated as a data entity. For example, in evaluating the expression A + (B — C)
where A, B and C are of numeric types, the difference of B and C must be evaluated before
the addition operation is performed; the processor must not evaluate the mathematically
equivalent expression (A + B) — C.

7.1.7.3 Eveluation of Numeric Intrinsic Operations. The rules given in 7.2.1 specify the
interpretation of a numeric intrinsic operation. Once the interpretation has been established
in accordance with those rules, the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.

Two expressions of a nhumeric type are mathematically equivalent if, for all possible values of
their primaries, their mathematical values are equal. However, mathematically equivalent
expressions of type numeric may produce different computational results. For example, any
difference between the values of the expressions (1./3.)*3. and 1. is a computational
difference, not a mathematical difference.

The mathematical definition of integer division is given in 7.2.1.1. The difference between
the values of the expressions 5/2 and 5./2. is a mathematical difference, not a computa-
tional difference.

The following are examples of expressions with allowable alternative forms that may be used
by the processor in the evaluation of those expressions. A, B, and C represent arbitrary
real, double precision, or complex operands; | and J represent arbitrary integer operands; and
X, Y, and Z represent arbitrary operands of numeric type.

Expression Allowable Alternative Form

X+Y Y+X
X*Y Y*X
=X+Y Y-X
X+Y+2 X+(Y+2)
X=Y+Z X=(Y-2)
X*A/Z X*(A/2)
X*Y-X*Z X*(Y-2)
A/B/C A/ (B*C)
A/5.0 0.2+A

The following are examples of expressions with forbidden alternative forms that must not be
used by a processor in the evaluation of those expressions.

Expression Nonallowable Alternative Form

1/2 0.5*1

X*1/J X*(I1/J)
1/J/A I/ (J*A)
(X*Y)—(X*2) X*(Y-2)
X*(Y-2) X*Y=X*2Z

Vetsion 102 1986 November Page 7-10

EXPRESSIONS AND ASSIGNMENT X3J3/S88

10

15

20

25

30

35

40

In addition to the parentheses required to establish the desired interpretation, parentheses
may be included to restrict the alternative forms that may be used by the processor in the
actual evaluation of the expression. This is useful for controlling the magnitude and accu-
racy of intermediate values developed during the evaluation of an expression. For example,
in the expression

A+ (B - 0
the parenthesized expression (B—C) must be evaluated and then added to A.

Note that the inclusion of parentheses may change the mathematical value of an expression.
For example, the two expressions:

AxT1/1J
Ax (1 /7 D)

may have different mathematical values if | and J are of type integer.

Each operand in a numeric intrinsic operation has a data type that may depend on the order
of evaluation used by the processor. For example, in the evaluation of the expression

Z+R+1

where Z, R, and | represent terms of complex, real, and integer data type, respectively, the
data type of the operand that is added to | may be either complex or real, dependlng on
which pair of operands (Z and R, R and |, or Z and |) is added first.

7.1.7.4 Evaluation of the Character Intrinsic Operation. The rules given in 7.2.3 specify
the interpretation of a character intrinsic operation. A processor needs to evaluate only as
much of the character intrinsic operation as is required by the context in which the expres—
sion appears. For example, the statements

CHARACTER (LEN = 2) €1, C2, C3, CF
€1 =C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to
determine the value of C1.

7.1.7.5 Evaluation of Relational Intrinsic Operations. The rules given in 7.2.4 specify the
interpretation of relational intrinsic operations. Once the interpretation of an expression has
been established in accordance with. those rules, the processor may evaluate any other
expression that is relationally equivalent. For example, the processor may choose to evalu-
ate the expression '

I .GT. J
where | and J are integer variables, as
J—-1.LT.0

Two relational intrinsic operations are relationally equivalent if their logical values are equal
for all possible values of their primaries.

7.1.7.6 Evaluation of Logical Intrinsic Operations. The rules given in 7.2.5 specify the
interpretation of logical intrinsic operations. Once the interpretation of an expression has
been established in accordance with those rules, the processor may evaluate any other
expression that is logically equivalent, provided that the integrity of parentheses is not vio-
lated. For example, for the variables L1, L2, and L3 of type logical, the processor may
choose to evaluate the expression

L1 .AND. L2 .AND. L3

Version 102 1986 November Page 7-11

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

as
L1 .AND. (L2 .AND. L3)

Two expressions of type logical are logically equivalent if their values are equal for all possi-
ble values of their primaries.

7.1.7.7 Evaluation of a Defined Operation. The rules given in 7.3 specify the interpreta-
tion of a defined operation. Once the interpretation of an expression has been established
in accordance with those rules, the processor may evaluate any other expression that is
equivalent, provided that the integrity of parentheses is not violated.

Two expressions of derived-type are equivalent if their values are equal for all possible
values of their primaries.

7.2 Interpreiation of Intrinsic Operations. The intrinsic operations are those defined
in 7.1.2. These operations are divided into the following categories: numeric, character, rela-
tional, and logical. The interpretations defined in the following sections apply to both scalars
and arrays; for arrays, the interpretation for scalars is applied element-by-element.

The type, type parameters, shape, and interpretation of an expression that consists of an
operator operating on a single operand or a pair of operands are independent of the context
in which the expression appears. In particular, the type, type parameters, shape, and inter-
pretation of such an expression are independent of the type, type parameters, and shape of
any other larger expression in which it appears. For example, if X is of type real, J is of
type integer, and INT is the real-to-integer intrinsic conversion function, the expression INT
(X + J) is an integer expression and X + J is a real expression.

7.2.1 Numeric Intrinsic Operations. A numeric operation is used to express a numeric
computation. Evaluation of a numeric operation produces a numeric value. The permitted
data types and shapes for operands of the numeric intrinsic operations are specified in 7.1.2.
The permitted type parameters for operands of the numeric intrinsic operations are those
that yield type parameters (7.1.4) of an approximation method supported by the processor.

The numeric operators and their interpretation in an expression are given in Table 7.2,
where x; denotes the operand to the left of the operator and x, denotes the operand to the
right of the operator.

Table 7.2. Interpretation of the Numeric Intrinsic Operators.

_ Use of
Operator Representing Operator Interpretation

*% Exponentiation x; ** .x, Raise x, to the power x5
/ Division X/ Xs Divide x4 by x5

* Multiplication Xy ¥ Xo Multiply x4 by x»

- Subtraction Xy — X, Subtract x, from x,

— Negation — Xo Negate x,

+ Addition Xy + Xo Add x4 and x5

+ ldentity + Xs Same as X,

The interpretation of a division may depend on the data types of the operands (7.2.1.1).

If My and M, are of type integer and M, has a negative value, the interpretation of M, *#*
M, is the same as the interpretation of 1/(M, ** ABS(M,)), which is subject to the rules of
integer division (7.2.1.1). For example, 2**(—3) has the value of 1/(2*%3), which is zero.

Yersion 102 1986 November Page 7-12

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

45

7.2.1.1 Integer Division. One operand of type integer may be divided by another operand
of type integer. Although the mathematical quotient of two integers is not necessarily an
integer, Table 7.1 specifies that an expression involving the division operator with two oper-
ands of type integer is interpreted as an expression of type integer. The result of such an
operation is the integer closest to the mathematical quotient and between zero and the
mathematical quotient inclusively. For example, the expression (—8)/3 has the value (—2).

7.2.1.2 Complex Exponentiation. In the case of a complex value raised to a complex
power, the value of the operation is the “principal value” determined by x; ** x = EXP(x,
* LOG(x4)), where EXP and LOG are functions described in 13.9. S

7.2.2 Character Intrinsic Operation. The character intrinsic operator // is used to concat-
enate two operands of type character. Evaluation of the character intrinsic operation pro-
duces a result of type character. The permitted shapes for operands of the character intrin-
sic operation are specified in 7.1.2.

The interpretation of the character intrinsic operator // when used to form an expression is
given in Table 7.5, where x4 denotes the operand to the left of the operator and x, denotes
the operand to the right of the operator. '

Table 7.5. Interpretation of the Character Intrinsic Operator //.

Use of
Operator Representing Operator Interpretation

// Concatenation x4 // X Concatenate x, with x,

The result of a character intrinsic operation is a character string whose value is the value of
x4 concatenated on the right with the value of x, and whose length is the sum of the lengths
of x; and x,. Parentheses used to specify the order of evaluation have no effect on the
value of a character expression. For example, the value of (AB’ // 'CDE’) // 'F' is the
string "ABCDEF’. Also, the value of 'AB’ // ('CDE’ // 'F’) is the string 'ABCDEF".

7.2.3 Relational Intrinsic Operations. A relational intrinsic operator is used to compare
values of two operands using the relational intrinsic operators .LT., .LE., .GT., .GE., .EQ.,,
NE., <, <=, >, >=, ==, and <>. The permitted data types and shapes for operands
of the relational intrinsic operators are specified in 7.1.2. Note, as shown in Table 7.1, that a
relational intrinsic operator must not be used to compare the value of an expression of a
numeric type with one of type character or logical. Also, two operands of type logical must
not be compared, and a complex operand can only be compared with another numeric oper-
and when the operator is .EQ. .NE., = =, or <>.

Evaluation of a relational intrinsic operation produces a result of type logical, with a value of
true or false.

The interpretation of the relational intrinsic operators is given in Table 7.6, where x4 denotes
the operand to the left of the operator and x, denotes the operand to the right of the opera-
tor. The operators <, <=, >, >=, ==, and <> have the same interpretations as the
operators .LT., .LE., .GT., .GE., .EQ., and .NE., respectively.

Table 7.6. Interpretation of the Relational Intrinsic Operators.

Use of
Operator Representing Operator Interpretation
.LT. Less Than x4y .LT. xo x4 less than x,
< Less Than Xy < Xp x4 less than x;
LE. Less Than Or Equal To xy .LE. x5 x4 less than or equal to x,

Version 102 1986 November Page 7-13

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

<= Less Than Or Equal To X; <= Xp X less than or equal to x»
.GT. Greater Than x4y .GT. x, x4 greater than x,

> Greater Than Xy > Xp x4 greater than x,
.GE. Greater Than Or Equal To x; .GE. x; x4 greater than or equal to x,
> = Greater Than Or Equal To x4 >= x, x4 greater than or equal to x»
.EQ. Equal To x4y .EQ. xo x4 equal to x5
== Equal To Xy == Xp Xxqequal to x»
.NE. Not Equal To Xy .NE. x5 x4 not equal to x5
<> Not Equal To Xy <> X X4 hnotequal to x,

A numeric relational intrinsic operation is interpreted as having the logical value true if the
values of the operands satisfy the relation specified by the operator. A numeric relational
intrinsic operation is interpreted as having the logical value false if the values of the oper-
ands do not satisfy the relation specified by the operator.

If the two numeric operands are in shape conformance, the \}alue of the relational operation
X4 rel-op x5

is the value of the expression
((x1)—(x2)) rel-op O

where 0 (zero) is of the same type, type parameters, -and shape as the expression
((x1)—(x2)), and rel-op is the same relational operator in both expressions.

A character relational intrinsic operation is interpreted as having the logical value true if the
values of the operands satisfy the relation specified by the operator. A character relational
intrinsic operation is interpreted as having the logical value false if the values of the oper-
ands do not satisfy the relation specified by the operator.

For a character relational intrinsic operation, the operands are compared one character at a
time in order, beginning with the first character of each character operand. If the operands
are of unequal length, the shorter operand is treated as if it were extended on the right with
blanks to the length of the longer operand. If every character of x, is the same as the char-
acter in the corresponding position in x,, x4 is equal to x,. Otherwise, at the first position
where the character operands differ, the character operand x, is considered to be less than
xp if the character value of x, at this position precedes the value of x, in the collating
sequence (3.1.4); x4 is greater than x; if the character value of x, at this position follows the
value of x;, in the collating sequence. Note that the collating sequence depends partially on
the processor; however, the result of the use of the operators .EQ., .NE., ==, and <>.
does not depend on the collating sequence.

A derived-type relational intrinsic operation is interpreted as having the logical value true if
the values of the operands satisfy the relation specified by the operator. A derived-type
relational intrinsic operation is interpreted as having the logical value false if the values of
the operands do not satisfy the relation specified by the operator. -

A derived-type operand x, is considered to be equal to x if the values of all corresponding
components of x, and x, are equal when of numeric, character, or derived-type or are equiv-
alent ((EQV.) when of logical type. Otherwise, x, is considered to be not equal to x,.

7.2.4 Logical Intrinsic Operations. A logical operation is used to express a logical compu-
tation. Evaluation of a logical operation produces a result of type logical, with a value of true
or false. The permitted data types and shapes for operands of the logical intrinsic opera-
tions are specified in 7.1.2.

The logical operators and their interpretation when used to form an expression are given in
Table 7.7, where x, denotes the operand to the left of the operator and x, denotes the oper-
and to the right of the operator.

Version 102 1986 November Page 7-14

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

Table 7.7. Interpretation of the Logical Intrinsic Operators.

Use of
Operator Representing Operator Interpretation
.NOT. Logical Negation NOT. x, Logical negation of x .
.AND. Logical Conjunction - x4 .AND. x, Logical conjunction of x; and x»
.OR. Logical Inclusive Disjunction x, .OR. x, . Logical inclusive disjunction of x, and x,
.NEQV. Logical Non-equivalence x; .NEQV. x, Logical non-equivalence of x4 and x,
.EQV. Logical Equivalence x4 .EQV. x, Logical equivalence of x4 and x»

The values of the logical intrihsic operations are shown in Table 7.8.

Table 7.8. The Values of Operations Involving Logical Intrinsic Operator_s
X4 Xo .NOT. X . Xy AND. Xo . X4 OH. Xo - X-i EQV X2 X1 NEQV X2

true - true false true: true true false
true false true false true’ false - true
false true false false true false .. true’

false false true false false true false’

7.3 Interpretation of Defined Operations. The interpretation of a deﬂned operahon is
provided by the function subprogram that defines the operatlon

7.3.1 Unary Defined Operation. A function subprogram .defines the unary operation op X5
if: ' '
(1) The function subprogram is specified with a FUNCTION statement (12.5.2.2) that
specifies one dummy argument d, and has a suffix that includées OPERATOR,
(2) The interface to the function subprogram is explicit, :
(3) The type of x; is the same as the type of dummy argument ds,

(4) The type parameters, if any, of x, must match those of d, for those type parame-
ters of dy not specified with an asterisk (¥), and

(5) d. is a scalar and x, is a scalar or array, or d; and x; are arrays of the same
2 2 ITE
shape.

7.3.2 Binary Defined Operation. A function subprogram defines the blnary operation x,
op x, if: .

(1) The function subprogram is specified with a FUNCTION statement (12.5.2.2) that
specifies two dummy arguments, d and d», and has a suffix that includes OPERA-
TOR,

(2) The interface to the function subprogram is explicit,

(3) The types of x; and x, are the same as those of the dummy arguments d, and
d,, respectively,

(4) The type parameters, if any, of x; and x, must match those of d, and d,, respec-
tively, for those type parameters of d; and d, not specified with an asterisk (¥),
and

(5) d, and d, are scalar and x, and x, have the same shape, or d, or d» (or both) is
an array and the shapes of x4 and x, match those of d, and d5, respectively.

Version 102 1986 November Page 7-15

EXPRESSIONS AND ASSIGNMEMT X3J3/S8

10

15

20

25

30

35

40

45

7.4 Precedence of Operators. There is a precedence among the intrinsic and exten-
sion operations implied by the general form in 7.1.1, which determines the order in which
the operands are combined, unless the order is changed by the use of parentheses. This
precedence order is summarized in Table 7.9.

Table 7.9. Categories of Operations and Relative Precedences.

Category
of Operation Operators Precedence
Extension defined-unary-op Highest
Numeric * .
Numeric * or /
Numeric unary + or —
Numeric binary + or —
Character //

Relational .EQ., .NE., .LT., .LE., .GT., .GE.
==!<>7 <l <=, >, > =

Logical .NOT.

Logical .AND.

Logical .OR.

Logical .EQV. or .NEQV. .
Extension defined-binary-op Lowest

The precedence of a defined operation is that of its operator, whether it is an overloaded

"intrinsic operator or an extension operator.

For example, in the expression
—A %% 2

the exponentiation operator (**) has precedence over the negation operator (—); therefore,
the operands of the exponentiation operator are combined to form an expression that is
used as the operand of the negation operator. The interpretation of the above expression is
the same as the interpretation of the expression

~ (A **x 2)

The general form of an expression (7.1.1) also establishes a precedence among operators in
the same syntactic class. This precedence determines the order in which the operands are
to be combined unless the order is changed by the use of parentheses. For example, in
interpreting a level-2-expr containing two or more binary operators + or —, each operation
(add-operand) is combined from left to right. Similarly, the same left to right interpretation for
a mult-operand in add-operand, as well as for other kinds of expressions, is a consequence
of the general form (7.1.1). However, for interpreting a mult-operand expression when two or
more exponential operators ** combine level-1-expr operands, each level-1-expr is combined
from right to left. For example, the expressions

2.1 +3.4+4.9

2.1 % 3.4 % 4.9
2.17 3.4/ 4.9

2 %% 3 k% &4

'AB' // 'CD' // ‘EF'

have the same interpretations as the expressions

(2.1 + 3.4) + 4.9
(2.1 % 3.4) * 4.9
@.173.8 /4.9

Yarsion 102 1986 November Page 7-16

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

2 xx (3 *% 4)
("AB' // 'CD') // 'EF'

Note that as a consequence of the general form (7.1.1), only the first add-operand of a level-
2-expr may be preceded by the identity (+) or negation (—) operator. Note also that these
formation rules do not permit expressions containing two consecutive numeric operators,
such as A ** —B or A + —B. However, expressions such as A ** (—B) and A + (—B)
are permitted. '

As another example, in the expression
A .OR. B .AND. C

the general form (7.1.1) implies a higher precedence for the .AND. operator than the .OR.
operator; therefors, the interpretation of the above expression is the same as the interpreta-
tion of the expression

A .OR. (B .AND. O)

An expression may contain more than one kind of operator. For example, the logical
expression

L .OR. A+B .GE. C

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a
relational operator, and a logical operator. This expression would be interpreted the same
as the expression

L .OR. ((A + B) .GE. C)

7.5 Assignment. Execution of an assignment causes a variable to become defined or
redefined.

An assignment is either an assignment statement, or a masked array assignment,

7.5.1 Assignment Statement. Any variable may be defined or redefined by execution of
an assignment statement.

7.5.1.1 General Form.
R714 assignment-stmt is variable = expr
where variable is defined in 2.4.4 and expr is defined in 7.1.1.8.

Examples of an assignment statement are:

A=35+X=x*Y
I INT (A)

An assignment statement is either intrinsic or defined.

7.5.1.2 Intrinsic Assignment Statement. An intrinsic assignment statement is an
assignment statement where the shapes of variable and expr conform and where:

(1) The types of variable and expr are intrinsic, as specified in Table 7.10 for assign-
ment, or

(2) The types of variable and expr are of the same derived type.

A numeric intrinsic assignment statement is an intrinsic assignment statement for which
variable and expr are of numeric type. A character Intrinsic assignment statement is an

Version 102 : 1986 November Page 7-17

EXPRESSIONS AND ASSIGNMENT X3J3/58

10

15

20

25

30

35

40

45

intrinsic assignment statement for which variable and expr are of type character. An array
intrinsic assignment statement is an intrinsic assignment statement for which variable is an
array. A logical intrinsic assignment statement is an intrinsic assignment statement for
which variable and expr are of type logical. A derived-type intrinsic assignment statement
is an intrinsic assignment statement for which variable and expr are of the same derived
type.

Table 7.10. Type Conformance for the Assignment Statement variable = expr

Type of variable Type of expr
integer integer, real, double precision, compiex
real integer, real, double precision, complex
double precision integer, real, double precision, complex
complex integer, real, double precision, complex
character character
logical logical
derived type same derived type as variable

7.5.1.3 Defined Assignment Statement. A defined assignment statement is an assign-
ment statement which is not an intrinsic assignment statement, and for which there exists a
subroutine whose interface is explicit that defines the assignment.

7.5.1.4 Intrinsic Assignment Conformance Rules. For an intrinsic assignment statement,
variable and expr must be in shape conformance, and if expr is an array, variable must also
be an array. The types of variable and expr must conform with the rules of Table 7.10.

For a numeric intrinsic assignment statement, variable and expr may have different numeric
types or different type parameters, in which case the value of expr is converted to the type
and type parameters of variable according to the rules of Table 7.11.

Table 7.11. Numeric Conversion and Assignment Statement variable = expr

Type of variable Value Assigned

integer INT(expr)

real REAL(expr, MOLD = variable)

double precision DBLE(expr)

complex CMPLX(expr, MOLD = variable)
(The functions INT, REAL, DBLE and CMPLX are the generic functions defined in 13.9.)

For a character intrinsic assignment statement, variable and expr may have different type
parameters (lengths) in which case the conversion of expr to the length of variable is:

(1) If the length of variable is less than that of expr, the value of expr is truncated
from the right until it is the same length as variable;

(2) If the length of variable is greater than that of expr, the value of expr is extended
to the right with blanks until it is the same length as variable.

7.5.1.5 Interpretation of Intrinsic Assignments. Execution of an intrinsic assignment
causes, in effect, the evaluation of the expression expr and all expressions within variable
(7.1.7), the possible conversion of expr to the type and type parameters of variable (Table
7.11), and the definition of variable with the resulting value. The execution of the assign-
ment must appear as if the evaluation of all operations in expr and, if present, all operations

Version 102 1986 November Page 7-18

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

35

40

in the subscripts or section subscripts of variable occurred before any portion of variable is
defined by the assignment. The evaluation of expressions within variable must neither affect
nor be affected by the evaluation of expr.

Both variable and expr may contain references to any portion of variable.

If expr in an assignment is a scalar and variable is an array, the expr is treated as if it were
an array of the same shape as variable with every element of the array equal to the scalar
value of expr.

When a variable in an intrinsic assignment is an array, the assignment is performed
element-by-element on corresponding array elements of variable and expr. For example,
where A and B are arrays of the same shape, the array intrinsic assignment

A=B

assigns the corresponding elements of B to those of A; that is, the first element of B is
assigned to the first element of A, the second element of B is assigned to the second ele-
ment of A, etc. The processor may perform the element-by-element assignment in any
order.

When variable is a subobject, the assignment does not affect the definition status or value of
other parts of the object. For example, if variable is an array section, the assignment does
not affect the definition status or value of the elements of the parent array not specified by
the array section.

7.5.1.6 Interpretation of Defined Assignment Statements. The interpretation of a defined
assignment is provided by the subroutine subprogram that defines the operation.

A subroutine subprogram defines the defined assignment x4 = x; if:

(1) The subroutine subprogram is specified with a SUBROUTINE statement of the
form (12.5.2.3):

SUBROUTINE subroutine-name (dy, dg) ASSIGNMENT
(2) The interface to the subroutine subprogram is explicit,

(3) The types of xy and x, are the same as those of the dummy arguments d; and
d,, respectively,

(4) The type parameters, if any, of x; and x, must match those of dy and d, respec-
tively, for those type parameters of dy and d, not specified with an asterisk (*),
and

(5) d, and d, are scalar and x, and x, have the same shape, or d; or d (or both) is
an array and the shapes of x, and x, match those of d and d, respectively.

7.5.2 Masked Array Assignment—WHERE. The masked array assignment is used to
mask the evaluation of expressions and assignment of values in array assignment state-
ments, according to the value of a logical or bit array expression.

7.5.2.1 General Form of the Masked Arrgy Assignment. A masked array assignment is
either @ WHERE statement or WHERE construct.

R715 where-stmt is WHERE (array-mask-expr) array-assignment-stmt

R716 where-construct is where-construct-stmt
| array-assignment-stmt 1...
[elsewhere-stmt
[array-assignment-stmt |...]
end-where-stmt

Version 102 1986 November Page 7-19

EXPRESSIONS AND ASSIGNMENT X3J3/S8

10

15

20

25

30

R717 where-construct-stmt is WHERE (array-mask-expr)
R718 mask-expr is logical-expr

R719 elsewhere-stmt is ELSEWHERE

R720 end-where-stmt is END WHERE

Constraint: The shape of the mask-expr and the variable being defined in each array-
assignment-stmt must be the same.

Examples of a masked array assignment are:
WHERE (TEMP > 100.0) TEMP = TEMP — REDUCE_TEMP

WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP — 5.0

END WHERE

7.5.2.2 Interpretation of Masked Array Assignments. The execution of a masked array
assignment causes the expression array-mask-expr to be evaluated. The array assignment
statements following the WHERE and ELSEWHERE keywords are executed in normal execu-
tion sequence. An array may be defined in more than one array assignment statement in a
WHERE construct. A reference to an array may appear subsequent to its definition in the
same WHERE construct.

When an array-assignment-stmt is executed in a masked-array-assignment, the expr in the
where-stmt or each expr in the array assignment statements, immediately following the
WHERE keyword, is evaluated for all elements where array-mask-expr is true (or for all
elements where array-mask-expr is false in the array assignment statements following ELSE-
WHERE), and the result is assigned to the corresponding elements of variable. For each
false value of array-mask-expr (or true value for the array assignment statements after ELSE-
WHERE) the value of the corresponding element of variable in each array assignment state-
ment immediately following the WHERE keyword is not affected, and it is as if the expres-
sion expr were not evaluated.

If a transformational function reference occurs in expr, it is evaluated without any masked
control by the array-mask-expr; that is, all of its argument expressions are fully evaluated and
the function is fully evaluated. Elements corresponding to true values in array-mask-expr
(false in the expr after ELSEWHERE) are selected for use in evaluating each expr.

In a masked array assignment, only a WHERE statement may be a branch target. Changes
to entities in array-mask-expr do not affect the execution of statements in the masked-array-
assignment. Execution of an END WHERE has no effect.

Version 102 1986 November Page 7-20

10

15

20

25

30

35

40

8 EXECUTION CONTROL

Control constructs are used to control the execution sequence. These constructs include
executable constructs containing blocks and executable statements that may be used to
alter the execution sequence.

8.1 Executable Constructs Containing Blocks. The following are executable con-
structs that contain blocks and may be used to control the execution sequence:

(1) IF Construct

(2) CASE Construct

(3) DO Construct
A block is a sequence of executable constructs that is treated as an integral unit.
R801 block - is [execution-part-construct |...

Executable constructs may be used to control which blocks of a program are executed or
how many times a block is executed. Blocks are always bounded by statements that are
particular to the construct in which they are embedded. Note that a block may be empty.

Any of these four constructs may be named with a symbolic name. If a construct is named,
the name must be the first lexical element of the first statement of the construct and the last
lexical element of the construct. In fixed form, the preceding name must be placed after column 6.

There is a simplified form of the IF construct (the IF statement) that contains a single action
statement.

8.1.1 Rules Governing Blocks.

8.1.1.1 Executable Constructs in Blocks. If a block contains an executable construct, the
executable construct must be entirely contained within the block.

8.1.1.2 Control Flow in Blocks. ‘Transfer of control to the interior of a block from outside
the block is prohibited. Transfers within a block and transfers from the interior of a block to
outside the block may occur. For example, if a statement inside the block has a statement
label, a GO TO statement using that label may appear in the same block. Subroutine and
function references may appear in a block (12.4.2, 12.4.4).

8.1.1.3 Execution of a Block. Execution of a block begins with the execution of the first
executable construct in the block. Unless there is a transfer of control out of the block, the
execution of the block is completed when the last executable construct in the sequence is
executed. The action that takes place at the terminal boundary depends on the particular
construct and on the block within that construct. It is usually a transfer of control.

8.1.2 IF Construct. The IF construct selects for execution no more than one of its constit-
uent blocks. The IF statement controls the execution of a single statement.

8.1.2.1 Form of the IF Construct.

R802 ifconstruct is if-then-stmt
block
[else-if-stmt
block ...
[else-stmt

Version 102 1986 November Page 8-1

EXECUTION CONTROL X3J3/S8

10

15

20

25

30

35

40

block]
end-if-stmt
R803 if-then-stmt is [if-construct-name :] \F (scalar-mask-expr) THEN
R804 else-if-stmt is ELSE IF (scalar—maskiexpr) THEN
R805 else-simt is ELSE
R806 end-if-stmt is END IF [if-construct-name |

Constraint: I an if-construct-name is present, the same name must be specified on both
the if-then-stmt and the corresponding end-if-stmt.

R717 mask-expr is logical-expr

8.1.2.2 Execution of an IF Construct. At most one of the blocks contained within the IF
construct is executed. If there is an ELSE statement in the construct, exactly one of the
blocks contained within the construct will be executed. The scalar mask expressions are
evaluated in the order of their appearance in the construct until a true value is found or an
ELSE statement or END IF statement is encountered. If a true value or an ELSE statement
is found, the block immediately following is executed and this completes the execution of the
construct. The expressions in any remaining ELSE IF statements of the IF construct are not
evaluated. If none of the evaluated expressions are true and there is no ELSE statement,
the execution of the construct is completed without the execution of any blocks within the
construct.

An ELSE IF statement or an ELSE statement must not be a branch target. It is permissible
to branch to an END IF statement from within the IF construct, and also from outside the construct.

8.1.2.3 Examples of IF Constructs.

IF (CVAR .EQ. "RESET') THEN
1=0;J=0;K=0
END IF

IF (PROP) THEN
WRITE (3, "('"QED')")

STOP
ELSE
PROP = NEXTPROP
END IF
IF (A .GT. 0) THEN
B =C/A
IF (B .GT. 0) THEN
D=1.0
END IF
ELSE IF (C .GT. 0) THEN
B = A/C
D=-1.0
ELSE
B = ABS (MAX (A, C))
D=0
END IF

Veision 102 1986 November Page 8-2

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

8.1.2.4 IF Statement. The IF statement controls a single action statement (R218).
R807 if-stmt is IF (scalar-mask-expr) action-stmt
Constraint: The action-stmt in the if-stmt must not be an if-stmt.

Exscution of an IF statement causes evaluation of the scalar mask expression. If the vaiue
of the expression is true, the action statement is executed. If the value is false, the action
statement is not executed and execution continues as though a CONTINUE statement (8.3)
were executed.

The execution of a function reference in the scalar mask expression is permitted to affect
entities in the action statement.

8.1.3 CASE Construct. The CASE construct selects for execution exactly one of its con-
stituent blocks.

8.1.3.1 Form of the CASE Construct.

R808 case-construct is select-case-stmt
[case-stmt
block ...
end-select-stmt
R803 select-case-stmt is [select-construct-name :'] SELECT CASE (case-expr)
R810 case-stmt is CASE case-selector
R811 end-select-stmt is END SELECT [sslect-construct-name |

Constraint: If a select-construct-name is present, the same name must be specified on both
the select-case-stmt and the corresponding end-select-stmt.

R812 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr

R813 case-selector is (case-value-range-list)
or DEFAULT

Constraint: Only one DEFAULT case-selector may appear in any given case-construct.

R814 case-value-range is case-value
or [case-value | : [case-value |

R815 case-value is scalar-int-constant-expr-
or scalar-char-constant-expr
or scalar-logical-constant-expr

Constraint: For a given CASE construct, each case-value must be of the same type as
case-expr. For character type, length differences are allowed.

Constraint: A case-value-range using a colon {i.e., the second form) must not be used if
case-expr is of type logical.

8.1.3.2 Execution of a CASE Construct. The execution of the SELECT CASE statement
causes the case expression to be evaluated. The resulting value is called the case index
and must match exactly one of the selectors of one of the CASE statements of the con-
struct. For a case value range list, a match occurs if the case index matches any of the
case value ranges in the list. For a case index with a value of ¢, a match is determined as
follows:

Version 102 1986 November Page 8-3

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

45

1)

)

(3)

(4}

(5)

(6)

The block
completes

If the case value range contains a single value v without a colon, a match occurs
for data type logical if the expression ¢ .EQV. v is true. A match occurs for data
type integer, character, or bit if the expression ¢ .EQ. v is true.

If the case value range is of the form low : high, a match occurs if the expression
low .LE. ¢ .AND. ¢ .LE. high is true.

If the case value range is of the form low :, a match occurs if the expression fow
.LE. ¢ is true.

If the case value range is of the form : high, a match occurs if the expression ¢
.LE. high is true.

If the case value range is of the form :, a match always occurs. A case construct
containing such a case selector must not contain any other case selector except
possibly a DEFAULT selector.

If no other selector matches, a DEFAULT sglector must be present, and it
matches the case index.

following the CASE statement containing the matching selector is executed. This
execution of the construct.

One and only one of the blocks of a CASE construct is executed.

The case value ranges in different selectors must not overlap; that is, there must be no pos-
sible value of the case index that matches more than one selector. Case value ranges
within a single case selector may overlap.

A CASE statement must not be a branch target. It is permissible to branch to an END
SELECT statement only from within the CASE construct.

8.1.3.3 Examples of CASE Constructs. An integer sighum function;

INTEGER FUNCTION SIGNUM (N)
SELECT CASE (N)

CASE (:-1

SIGNUM

CASE (O)

SIGNUM

CASE (13)

)

-1

0

SIGNUM = 1
END SELECT

END

A code fra

gment to check for balanced parentheses:

CHARACTER LINE (80>

LEVEL=0
oI =1,

80

SELECT CASE (LINE(I:ID)

CASE (

"

LEVEL = LEVEL + 1

CASE (

N

LEVEL = LEVEL - 1

IF

END

Version 102

(LEVEL .LT. O) THEN

PRINT *, 'UNEXPECTED RIGHT PARENTHESIS'
EXIT
IF

1986 November Page 8-4

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

45

CASE DEFAULT
{IGNORE ALL OTHER CHARACTERS
END SELECT
END DO
IF (LEVEL .GT. 0) THEN
PRINT *, 'MISSING RIGHT PARENTHESIS'
END IF

The following three fragments are equivalent:

IF (SILLY .EQ. 1) THEN
CALL THIS

ELSE
CALL THAT

END IF

SELECT CASE (SILLY .EQ. 1)
CASE (.TRUE.)
CALL THIS
CASE (.FALSE.)
CALL THAT
END SELECT

SELECT CASE (SILLY)
CASE DEFAULT
CALL THAT
CASE (1)
CALL THIS
END SELECT

8.1.4 Iteration Control. The DO construct is used to provide iteration control by specifying
the repeated execution of a sequence of executable constructs.

8.1.4.1 Form of the DO Construct.

R816 do-construct is do-stmt

do-body

do-termination
R817 do-simt is [do-construct-name : | DO [label] [[, | foop-controf |
RB18 foop-control is do-variable = scalar-numeric-expr,

B scalar-numeric-expr [, scalar-numeric-expr |
or (scalar-int-expr TIMES)

Constraint: The do-variable must be a scalar integer, real, or doublé preécision variable.

Constraint: Each scalar-numeric-expr in loop-control must be of type integer, real, or double

precision.
R819 do-body is [execution-part-construct ... ’
R820 do-termination is end-do-stmt

or continue-stmt
or do-term-stmt
or do-corstruct

Constraint: An exit-simt or a cycle-stmt must be within the range of one or more do-
constructs.

Version 102 1986 November Page 8-5

EXECUTION CONTROL X3J43/58

10

156

20

25

30

35

40

Constraint: An exit-stmi or cycle-stmt using a do-construct-name must be within the range
of the do-construct that has that name.

R821 do-term-stmt is action-stmt

Constraint; If the fabel is omitted in a do-stmt, the corresponding do-termination must be an
end-do-stmt.

Constraint: If a fabel appears in the do-stmt and the corresponding do-termination is not a
do-construct, the do-termination must be identified with that label.

Constraint: If the do-termination is a continue-stmt or do-termstmt, the corresponding do-stmt
must contain a label.

Congtraint: A do-term-stmf must not be a continue-stmt, goto-stmt, return-stmt. stop-stmt, exit-stmt cycle-stmt,
arithmetic-if-stmt, assigned-goto-simt, computed-goto-strmt, nor an if-stmt that causes a transfer of con=-
trol.

Constraint: If the do-termination is a do-construct, both of the corresponding do-stmts must specify the same label.
Constraint: If a do-termination is a do-construct. the do-termination of that do-construct must not be an end-do-simt.
R822 end-do-stmt is END DO [do-construct-name |

Constraint: If a do-construct-name is used on the do-stmt, the corresponding do-termination
must be an end-do-stmt that uses the same do-construct-name. If a do-
construct-name does not appear on the do-stmt, a do-construct-name must not
appear on the cofresponding do-termination.

823 exil-stmt is EXIT [do-construct-name]
R824 cycle-stmt is CYCLE [do-construct-name]

An EXIT statement or CYCLE statement is said to belong to a specific DO construct. If the
EXIT statement or CYCLE statement contains a construct name, it belongs to the DO con-
struct using that name. Otherwise, it belongs to the innermost DO construct in which it
appears.

8.1.4.2 Range of a DO Construct. The range of a DO construct consists of the do-body
and the continue-stmt, do-term-stmt, or terminating do-construct, if any. The range must satisfy the
rules for blocks (8.1.1). Note that if the do-termination is an END DO statement, the range is
a block (8.1). If the do-termination is a continue-stmt, do-term-stmt, or do-construct. @ terminal
boundary delimiting the range is assumed (8.1.1.3).

Within a scoping unit, all DO censtructs whose DO statements use the same label are said to share the statement identi—
fied with that label. Note that the statement so identified must be a CONTINUE staiement or do-term-stmt that serves as
the do termination of the innermost of these DO constructs.

It is permissible to branch to an END DO statement only from within the range of the DO
construct that it terminates. Note that transfers of control to statements within the range of a
DO construct from outside the range are prohibited.

8.1.4.3 Active and Inactive DO Constructs. A DO construct is either active or inactive.
Initially inactive, a DO construct becomes active only when its DO statement is executed.

Once active, the DO construct becomes inactive only when the construct it specifies is termi-
nated (8.1.4.4.4).

When a DO construct becomes inactive, the do-variable, if any, retains its last defined value.

Version 102 1986 November Page 8-6

EXECUTION CONTROL X3J3/58

10

15

20

25

30

35

40

8.1.4.4 Execution of a DO Construct. A DO construct specifies a loop. A loop is a
sequence of executable constructs that is executed repeatedly. There are three phases in
the execution of a DO construct: initiation of the loop, execution of the loop body, and termi-
nation of the loop.

8.1.4.4.1 Loop Initiation. When the DO statement is executed, the DO construct becomes
active. If there is loop-control of the form do-variable = scalar-numeric-expr,, scalar-
numeric-expr, [, scalar-numeric-expr,], the following steps are performed in sequence:

(1) The initial parameter m,, the terminal parameter m,, and the incrementation param-
eter m, are established by evaluating scalar-numeric-expr,, scalar-numeric-expr,,
and scalar-numeric-expr,, respectively, including, if necessary, conversion to the
type of the do-variable according to the rules for numeric conversion (Table 7.11).
tf scalar-numeric-expr, does not appear, m, has a value of one. m, must not have
a value of zero.

(2) The DO variable becomes defined with the value of the initial-paramster m,.
(3) The iteration count is established and is the value of the expression
MAX (INT ((m, — m, + mj) / m,), 0)
Note that the iteration count is zero whenever:

m, > m, and m, > 0, or
m, < m, and m, < 0.

It loop-control takes the form (scalar-int-expr TIMES), the scalar-int-expr is evaluated. If the
resulting value is nonnegative, it becomes the iteration count; otherwise, the iteration count
is Zero.

If loop-controf is omitted, no iteration count is calculated. The effect is as if a large positive
iteration count, impossible to decrement to zero, were established,.

At the completion of the execution of the DO statement, the execution cycle begins.

8.1.4.4.2 The Execution Cycle. The execution cycle of a DO construct consists of the
following steps performed in sequence:

(1) The iteration count, if any, is tested. If the iteration count is zero, the do-construct
becomes inactive. i, as a result, all of the do-constructs sharing the do-term-stmt or continue-stmt are
inactive, normal execution continues with execution of the next executable construct follewing the do-term-
stmt or continue-stmi. However, if some of the DO constructs sharing the do-term-stmt ot continue-stmt are
active. execution continues with step (3) of the execution cycle of the active DO construct whaose DO state—
ment was most recently executed.

(2) If the iteration count is nonzero, the range of the DO construct is executed.

(3) The iteration count, if any, is decremented by one. The do-variable, if any, is
incremented by the value of the incrementation parameter mj.

(4) This cycle is executed repeatedly from step (1) until the loop is terminated.

Except for the incrementation of the DO variable that occurs in step (3), the DO variable
must neither be redefined nor become undefined while the DO construct is active. If the
do-termination is included within the range of the DO (8.1.4.2), execution of the do-
termination occurs as a result of the normal execution sequence or as a result of a transfer
of control from within the range of the DO construct. Unless execution of the do-term-stmi, if any, results
in a transfer of control, execution continues with step {3) of the execution cycle.

Version 102 1986 November Page 8-7

EXECUTION CONTROL X3J3/58

8.1.4.4.3 Cycle Interruption. Execution of a CYCLE statement that belongs to a DO con-
struct causes immediate execution of step (3) of the current execution cycle of that DO con-
struct. A transfer of control to an END DO statement has the same effect as a CYCLE state-
ment that belongs to the DO construct it terminates.

5 8.1.4.4.4 Loop Termination. The execution of the loop is complete when one of the fol-
lowing conditions occurs:

(1) The iteration count, tested during step (1} of the execution cycle, is determined to
be zero.

(2) An EXIT statement that belongs to this DO construct is executed.

10 (3) An EXIT statement or a CYCLE statement that is contained in the DO construct
but belongs to another DO construct containing this one is executed.

(4} A RETURN statement within the range is executed.

(5) Control is transferred to a statement which is neither the do-termination nor within
the range of the DO construct.

15 (6) A STOP statement anywhere in the program is executed, or execution is termi-
nated for any other reason.

8.1.4.5 Examples of DO Constructs.
Example 1:

DO
20 IF (X .GT. Y} THEN
Z=X
EXIT
END IF
CALL NEWX (X)
25 END DO

Example 2:

SUM =0

READ *, N

DO (N TIMES)

30 READ *, P, Q

CALL CALCULATE (P, Q, R}
SUM = SUM + R
IF (SUM .GT. SMAX) EXIT

END DO

'35 Example 3:
K=1
40 L=K
N=N
After execution of the above program fragment, | = 11, J = 10, K = 6, L = 5, and N =
45 50.

Version 102 1986 November Page 8-8

EXECUTION CONTROL X3J3/s8

10

15

20

25

30

35

40

Example 4
N=0
oI =1, 10
J =1
DO K =5, 1
L=K
N=N+1
END DO
END DO
After execution of the above program fragment, |=11, J=10, K=5, N=0. L is not defined.
Example 5:
N=0
01001 =1, 10
J = I
0100 K=1, 5
L=K
100 N=N=+1
After execution of the above statements, | = 11,J = 10, K = 6, L = 5, and N = 50.
Example 6:
=0
2001 =1, 10
J=1
DO200 K =5, 1
L=K
200 N=N+1

After execution of the above statements | = 11, J = 10, K = 5, N = 0. L is not defined.

8.2 Branching. Branching is used to alter the normal execution sequence. A branch
causes a transfer of control from one statement in a scoping unit to a labeled branch target
statement in the same scoping unit. A branch target statement is an action-simt, an end-
program-stmt, an end-function-stmt, an end-subroutine-stmt, an if-then-stmt, an end-if-stmt, a
select-stmt, an end-select-stmt, a do-stmt, a do-termination, or a where-construct-stmt.

It is permissible to branch to an END SELECT statement only from within its CASE con-
struct.

It is permissible to branch to a DO termination only from within its DO construct.

8.2.1 Statement Labels. Statement labels provide a means of referring to individual
statements. Any statement may be identified with a label, but only branch target statemenis,
FORMAT statements, and DO terminations may be referred to by the use of statement
labels (3.2.5).

8.2.2 GO TO Statement.

R825 goto-stmt is GO TO Jabel

Constraint: /abel must be the statement label of a branch-target that appears in the same
scoping unit as the go-to-stmt.

Execution of a GO TO statement causes a transfer of control so that the branch target
identified by the label is executed next.

Version 102 1986 November Page 8-9

EXECUTION CONTROL X3.J3/58

10

15

20

25

30

35

40

8.2.3 Computed GO TO Statement.
R826 computed-goto-stmt is GO TO (labellist) | , | scalar-int-expr

Constraint: Each fabef in fabellist must be the statement label of a branch target that
appears in the same scoping unit as the computed-goio-simt,

The same statement label may appear more than once in a label list.

Execution of a computed GO TO statement causes evaluation of the scalar integer expres-
sion. If this value is i such that 1 = / = n where n is the number of labels in /abel-list, a
transfer of control occurs so that the next statement executed is the one identified by the ith
label in the list of labels. 1f [is less than 1 or greater than n, the execution sequence con-
tinues as though a CONTINUE statement were executed.

8.2.4 ASSIGN and Assigned GO TO Statement.

A827 assign-stmt is ASSIGN fabel TO =calar-int-vaniable
Conslraint: fabel must be the statement label of a branch target or a format-stmf.

R828 aséigned—gofo—stmt is GO TO scalar-int-variable [[.] (fabelfist) |

Constraint: Each jabel in fabelist must be the statement label of a branch target that appears in the same scoping
unit as the assigned-goto-stmt.

Execution of an ASSIGN statement causes a slatement label to be assigned to ar integer variable. The statement labsi
must be the label of a statement that appears in the same scoping unit as the ASSIGN statement. A label may appear
more than once in the label list.

Execution of an ASSIGN statement is the only way that a variable may be defined with a statement label value.

When an assigned GO TO statement is executed, its integer variable must be defined with the label of a branch target.
When an input/output statement containing the integer variable as a format specifier (3.4.1.1) is executed, the integer
variable must be defined with the labef of a FORMAT statement. While defined with a statement label value. the integer
variable must not be referenced in any other context.

An integer variable defined with a statement label value may be redefined with a statement label value or an Integer
value.

At the time of execution of an assigned GO TO statement, the intéger variable must be defined with the value of a state—
ment label of a branch target that appears in' the same scoping unit. Note that the variable may be defined with a state—
ment label value only by an ASSIGN staternent in the same scoping unit as the assigned GO TO statement.

The execution of the assigned GO TO statement causes a transfer of cortrol so that the branch target identified by the
statement. label currently assigned to the integer variable is executed next,

It the parenthesized list is preseht, the statement label assigned to the integer variable must be one of the statement
labels in the list.

8.2.5 Arithmetic IF Statement.

R&29 arithmetic-if-strmt is |F (scafer-numeric-expr } label, label, label

Constraint: Each fabel must be the label of a branch target_that appears in the same scoping unit as the
arithmetic-if-stmt.

Constraint: The scalar-numeric-expr must nat be of type complex.
The same label may appear more than once in one arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of the numeric expression followed by a transfer of control,
The branch target identified by the first tabel, the second label, or the third label is executed next as the value of the
numeric expression is less than zero, equal to zero, or greater than zero, respectively,

Yersion 102 1986 November Page 8-10

EXECUTION CONTROL X3J3/58

13

15

8.3 CONTINUE Statement.
Execution of a CONTINUE statement has no effect.
R830 continue-stmt is CONTINUE

CONTINUE statements are usually identified by iabels that also appear in control statements,
such as the DO statement,

8.4 STOP Statement.
R831 stop-stmt is STOP { access-code |

R832 access-code is scalar-char-constant
or digit [digit [digit [digit | digit 111]
Execution of a STOP statement causes termination of execution of the executable program.

At the time of termination, the access code if any, is accessible. Leading zero digits are
significant.

8.5 PAUSE Statement.
R833 pause-stmt is PAUSE [access-code |

Exacution of a PAUSE statement causes a suspension of execution of the executable program. Execution must be
resumable. At the time of suspension of execution, the access code is accessible. Hesumption of execution is not under
contral of the program. If execution is resumed, the execution sequence continues as though a CONTINUE statement
were executed. Leading zero digiis in the access code are significant,

Version 102 1986 November Page B8-11

10

15

20

25

30

35

40

9 INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from external media to internal
storage or from an internal file to internal storage. This process is called reading.' Qutput
statements provide the means of transferring data from internal storage to external media or
from internal storage to an internal file. This process is called writing. Some input/output
statements specify that editing of the data is to be performed.

In addition to the statements that transfer data, there are auxiliary input/output statements to
manipulate the external medium, or to describe or inquire about the properties of the con-
nection to the external medium.

The input/output statements are the OPEN, CLOSE, READ, WRITE, PRINT, BACKSPACE,
ENDFILE, REWIND, and INQUIRE statements.

The READ statement is a data transfer input statement. The WRITE statement and the
PRINT statement are data transfer output statements. The OPEN statement and the
CLOSE statement are file connection statements. The INQUIRE statement is a file inguiry
statement. The BACKSPACE, ENDFILE, and REWIND statements are file positioning
statements.

9.1 Records. A record is a sequence of values or a sequence of characters. For exam-
ple, a line on a terminal is usually considered to be a record. However, a record does not
necessarily correspond to a physical entity. There are three kinds of records:

(1) Formatted
(2) Unformatted
(3) Endfile

9.1.1 Formatted Record. A formatted record consists of a sequence of characters that
are capable of representation in the processor. The length of a formatted record is mea-
sured in characters and depends primarily on the number of characters put into the record
when it is written. However, it may depend on the processor and the external medium. The
length may be zero. Formatted records may be read or written only by formatted
input/output statements.

Formatted records may be prepared by means other than Fortran; for example, by some
manual input device.

9.1.2 Unformatted Record. An unformatted record consists of a sequence of values in a
processor-dependent form and may contain data of any type or may contain no data. The
length of an unformatted record is measured in processor-dependent units and depends on
the input/output list (3.4.2) used when it is written, as well as on the processor and the
external medium. The length may be zero. Unformatted records may be read or written
only by unformatted input/output statements.

9.1.3 Endfile Record. An endfile record is written explicitly by the ENDFILE statement.
The file must be connected for sequential access. An endfile record is written implicitly to a
file connected for sequential access when the last operation on the file is an output state-
ment other than the ENDFILE statement, and:

(1) A REWIND or BACKSPACE statement references the unit, or

(2) The unit (file) is closed, either explicitly by a CLOSE statement or implicitly by a
program terminatior not caused by an error condition.

Version 102 1986 November Page 9-1

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

An endfile record may occur only as the last record of a file. An endfile record does not
have a length property.

9.2 Files. A file is a sequence of records.
There are two kinds of files:
(1) External

(2) Internal

9.2.1 External Files. An external file is any file that exists in a medium external to the
executable program.

There are two methods of accessing the records of an external file, sequential and direct.
The records of a file are either all formatted or all unformatted, except that the last record of
a file may be an endfile record. At any given time, there is a processor-determined set of
allowed access methods, a processor-determined set of allowed forms, and a processor-
determined set of allowed record lengths for a file.

A file may have a name; a file that has a name is called a named file. The name of a
named file is a character string. The set of allowable names for a file is processor depend-
ent and may be empty.

An external file that is connected to a unit has a position property (9.2.1.3).

9.2.1.1 Flle Existence. At any given time, there is a processor-determined set of external
files that are said to exist for an executable program. A file may be known to the processor,
yet not exist for an executable program at a particular time. For example, there may be
security reasons that prevent a file from existing for an executable program. A file may exist
and contain no records; an example is a newly created file not yet written.

To create a file means to cause a file to exist that did not previously exist. To delete a file
means to terminate the existence of the file.

All input/output statements may refer to files that exist. An INQUIRE, OPEN, CLOSE,
WRITE, PRINT, REWIND, or ENDFILE statement may also refer to a file that does not exist.

9.2.1.2 File Access. There are two methods of accessing the records of an external file,
sequential and direct. Some files may have more than one allowed access method; other
files may be restricted to one access method. For example, a processor may allow onty
sequential access to a file on magnetic tape. Thus, the set of allowed access methods
depends on the file and the processor.

The method of accessing the file is determined when the file is connected to a unit (9.3.2}.

9.2.1.2.1 Sequential Access. When connected for sequential access, an external file has
the following properties:

(1) The order of the records is the order in which they were written if the direct
access method is not a member of the set of allowed access methods for the file.
If the direct access method is also a member of the set of allowed access meth-
ods for the file, the order of the records is the same as that specified for direct
access. In this case, the first record accessed by sequential access is the record
whose record number is 1 for direct access. The second record accessed by
sequential access is the record whose record number is 2 for direct access, efc.
A record that has not been written since the file was created must not be read.

Veysion 102 1986 November Page 9-2

INPUT/OUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

(2) The records of the file are either all formatted or all unformatted, except that the
Jast record of the file may be an endfile record. Unless the previous operation on
the file was an output statement, the last record, if any, of the file must be an
endfile record.

(3} The records of the file must not be read or written by direct access input/output
statements.

9.2.1.2.2 Direct Access. When connected for direct access, an external file has the fol-
lowing properties:

(1) Each record of the file is uniquely identified by a positive integer called the record
number. The record number of a record is specified when the record is written.
Once established, the record number of a record can never be changed. Note
that a record may not be deleted; however, a record may be rewritten. The order
of the records is the order of their record numbers.

(2) The records of the file are either ail formatted or all unformatted. If the sequential
access method is also a member of the set of allowed access methods for the file,
its endfile record, if any, is not considered to be part of the file while it is con-
nected for direct access. |If the sequential access method is not a member of the
set of allowed access methods for the file, the file must not contain an endfile
record.

(3) Reading and writing records is accomplished only by direct access input/output
statements.

(4) Al records of the file have the same length.

(5) Records need not be read or written in the order of their record numbers. Any
record may be written into the file while it is connected to a unit. For example, it
is permissible to write record 3, even though records 1 and 2 have not been writ-
ten. Any record may be read from the file while it is connected to a unit, provided
that the record has been written since the file was created.

(6) The records of the file must not be read or written using list-directed (10.8) or
namelist formatting (10.9).

9.2.1.3 File Positlon. Execution of certain input/output statements affects the position of a
file. Certain circumstances can cause the position of a file to become indeterminate.

The initial point of a file is the position just before the first record. The terminal point is
the position just after the last record.

If a file is positioned within a record, that record is the current record; otherwise, there is no
current record.

Let n be the number of records in the file. 1f 1 < i = n and a file is positioned within the
ith record or between the (i — 1)th record and the jth record, the (i — 1)th record is the pre-
ceding record. If n = 1 and the file is positioned at its terminal point, the preceding record
is the nth and last record. If n = 0 or if a file is positioned at its initial point or within the
first record, there is no preceding record.

11 < i/ < n and a file is positioned within the ith record or between the ith and (i + 1)th
record, the (i + 1)th record is the next record. Ifn = 1 and the file is positigned at its ini-
tial point, the first record is the next record. If n = 0 or if a file is positioned at its terminal
point or within the nth (last) record, there is no next record.

Version 102 1986 Movember Page 9-3

INPUT/OUTPUT STATEMENTS X3J3/88

i0

15

20

25

30

35

40

9.2.1.3.1 File Position Prior to Data Transfer. The positioning of the file prior to data
transfer depends on the method of access: sequential or direct.

For sequential access on input, the file is positioned at the beginning of the next record.
This record becomes the current record. On cutput, a new record is created and becomes
the last record of the file.

For direct access, the file is positioned at the beginning of the record specified by the record
specifier. This record becomes the current record.

If the file contains an endfile record, the file must not be positioned after the endfile record
prior to data transfer.

9.2.1.3.2 File Position After Data Transfer. If an end-of-file condition exists as a result of
reading an endfile record, the file is positioned after the endfile record.

If no error condition or end-of-file condition exists, the file is positioned after the last record
read or written and that record becomes the preceding record. A record written on a file
connected for sequential access becomes the last record of the file.

If the file is positioned after the endfile record, execution of a data transfer input/output
statement is prohibited. However, a REWIND or BACKSPACE statement may be used to
reposition the file.

If an error condition exists, the position of the file is indeterminate.

9.2.2 Internal Files. Internal files provide a means of transferring and converting data from
internal storage to internal storage.

9.2.2.1 Internal File Properties. An internal file has the following properties:
{1) The file is a character variable.
(2) A record of an internal file is a scalar character variable.

(3) If the file is a scalar character variable, it consists of a single record whose length
is the same as the length of the scalar character variable. If the file is a character
array or array section, it is treated as a sequence of character array elements.
Each array element, if any, is a record of the file. The ordering of the records of
the file is the same as the ordering of the array elements in the array (6.2.4.2) or
the array section (6.2.4.3). Every record of the file has the same length, which is
the length of an array element in the array.

(4) A record of the internal file becomes defined by writing the record. If the number
of characters written in a record is less than the length of the record, the remain-
ing portion of the record is filled with blanks. If the number of characters to be
written is greater than the length of the record, the effect is as though characters
equal to the length are written and remaining characters truncated.

(5) A record may be read only if the record is defined.

{6) A record of an internal file may become defined {(or undefined) by means other
than an output statement. For example, the character variable may become
defined by a character assignment statement.

(7) An internal file is a}wéys positioned at the beginning of the first record prior to
data transfer.

Version 102 1986 November Page 9-4

INPUT/OUTPUT STATEMENTS X3J3/58

10

156

20

25

30

35

40

9.2.2.2 Internal File Restrictions. An internal file has the following restrictions:

(1) Reading and writing records must be accomplished only by sequential access for-
matted input/output statements that do not specify name-directed formatting.

(2) An internal file must not be specified in a file connection statement, a file position-
ing statement, or a file inquiry statement.

9.3 File Connection. A unit, specified by an jo-unit, provides a means for referring to a

file.
Ro01 Jjo-unit is external-file-unit
or *
or internal-file-unit
R902 external-file-unit is scafar-int-expr
RO03 internal-file-unit is char-variable

A scalar integer expression that identifies an external file unit must be zero or positive.

The io-unit in a file positioning statement, a file connection statement, or a file inquiry state-
ment must not be an asterisk or an internal-fife-unit. '

The external unit identified by the value of scafar-int-expr is the same external unit in all pro-
gram units of the executable program. In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N=26
REWIND N

The value 6 used in both program units identifies the same external unit.

An asterisk identifies a particular processor-dependent external unit that is preconnected for
formatted sequential access. This is normally the unit preconnected for the PRINT state-
ment or the unit preconnected for the READ format statement.

9.3.1 Unit Existence. At any given time, there is a processor-determined set of units that
are said to exist for an executable program,

All input/output statements may refer to units that exist. The INQUIRE statement and the
CLOSE statement also may refer to units that do not exist.

9.3.2 Connection of a File to a Unit. A unit has a property of being connected or not
connected. If connected, it refers to a file. A unit may become connected by preconnection
or by the execution of an OPEN statement. The property of connection is symmetric; if a
unit is connected to a file, the file is connected to the unit.

All input/output statements except an OPEN, a CLOSE, or an INQUIRE statement must refer
to a unit that is connected to a file and thereby make use of or affect that file.

A file may be connected and not exist. An example is a preconnected new file.

A unit must not be connected to more than one file at the same time, and a file must not be
connected to more than one unit at the same time. However, means are provided to
change the status of a unit and to connect a unit to a different file.

Version 102 1986 November Page 9-5

INPUT/OUTPUT STATEMENTS X3J3/s8

After a unit has been disconnected by the execution of a CLOSE statement, it may be con-
nected again within the same executable program to the same file or to a different file.
After a file has been disconnected by the execution of a CLOSE statement, it may be con-
nected aghin within the same executable program to the same unit or to a different unit.

5 Note, however, that the only means of referencing a file that has been disconnected is by
the appearance of its name in an OPEN or INQUIRE statement. There may be no means of
reconnecting an unnamed file once it is disconnected.

9.3.3 'Preconne_ction. Preconnection means that the unit is connected to a file at the
beginning of execution of the executable program and therefore it may be specified in
10 input/output statements without the prior execution of an OPEN statement.

9.3.4 The OPZM Statement. The OPEN statement may be used to connect an existing
file to a unit, create a file that is preconnected, create a file and connect it to a unit, or
change certain specifiers of a connection between a file and a unit.

An external unit may be connected by an OPEN statement in any program unit of an execut-
15 able program and, once connected, a reference to it may appear in any program unit of the
executable program.

If a unit is connected to a file that exists, execution of an OPEN statement for that unit is
permitted. If the FILE= specifier is not included in such an OPEN statement, the file
remains connected to the unit.

20 If the file to be connected to the unit does not exist but is the same as the file to which the
unit is preconnected, the properties specified by an OPEN statement become a part of the
connection.

If the file to be connected to the unit is not the same as the file to which the unit is con-
nected, the effect is as if a CLOSE statement without a STATUS = specifier had been exe-
25 cuted for the unit immediately prior to the execution of an OPEN statement.

If the file to be connected to the unit is already connected to the unit, only the BLANK =,
DELIM=, PAD=, ERR =, and IOSTAT= specifiers may have a value different from the one
currently in effect. Execution of such an OPEN statement causes any new value of the
BLANK=, DELIM=, or PAD= spacifiers to be in effect, but does not cause any change in

30 any of the unspecified specifiers and the position of the file is unaffected. The ERR= and
IOSTAT = specifiers from any previously executed OPEN statement have no effect on any
currently executed OPEN statement.

It a file is already connected to a unit, execution of an QPEN statement on that file and a
different unit is not permitted.

35 RS04 open-simt is OPEN (connect-spec-list)

R805 connect-spec is [UNIT =] external-file-unit

or IOSTAT = iostat-variable
or ERR = fabe/
or FILE = scalar-char-expr

40 or STATUS = scalar-char-expr
or ACCESS = scalar-char-expr
or FORM = scalar-char-expr
or RECL = scalar-int-expr
or BLANK = scalar-char-expr

45 or POSITION = scalar-char-expr
or ACTION = scalar-char-expr
or DELIM = scalar-char-expr

Yersion 102 1986 November Page 9-6

INPUT/OUTPUT STATEMENTS X3J3/88

10

15

20

25

30

35

40

or PAD = scalar-char-expr

Constraint: |f the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the connect-spec-list.

Constraint: Each specifier must not appear more than once in a given open-simt; an
external-file-unit must be specified.

Constraint: If the STATUS = specifier is 'OLD’ or 'NEW’, the FILE= specifier must be pre-
sent.

Constraint: If the STATUS = specifier is 'SCRATCH’, the FILE= specifier must be absent.

A specifier that requires a scalar-char-expr may have a limited list of character values.
These values are listed for each such specifier. Any trailing blanks are ignored. If a proc-
essor is capable of representing letters in both upper and lower case, the value specified is
without regard to case. Some specifiers have a default value if the specifier is omitted.’

The IOSTAT = specifier and ERR = specifier are described in Sections 9.4.1.5 and 9.4:1.6,
respectively.

9.3.4.1 FILE= Specifier in the OPEN Statement. The value of the FILE = specifier is the
name of the file to be connected to the specified unit. The file name must be a name that
is allowed by the processor. If this specifier is omitted and the unit is not connected to a
file, it may become connected to a processor-determined file.

9.3.4.2 STATUS= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to 'OLD’, 'NEW’, 'SCRATCH’, or "UNKNOWN’. If OLD is specified, the file must exist. |If
NEW is specified, the file must not exist. '

Successful execution of an OPEN statement with NEW specified creates the file and
changes the status to OLD. If SCRATCH is specified with an unnamed file, the file is con-
nected to the specified unit for use by the executable program but is deleted at the execu-
tion of a CLOSE statement referring to the same unit or at the termination of the executable
program. SCRATCH must not be specified with a named file. If UNKNOWN is specified,
the status is processor dependent. [f this - specifier is omitted, the default value is
UNKNOWN.

9.3.4.3 ACCESS= Specifier in the OPEN Statement. The scalar-char-expr must evaluate
to 'SEQUENTIAL’ or 'DIRECT’. - The ACCESS= specifier specifies the access method for
the connection of the file as being sequential or direct. |If this specifier is omitted, the
default value is SEQUENTIAL. For an existing file, the specified access method must be
included in the set of allowed access methods for the file. For a new file, the processor
creates the file with a set of allowed access methods that includes the specified method.

9.3.4.4 FORM= Specifier in the OPEN Statement. The scalar-char-expr must evaluate to
'FORMATTED’ or 'UNFORMATTED'. The FORM = specifier determines whether the file is
being connected for formatted or unformatted input/output. If the FORM = specifier is omit-
ted, the default value is UNFORMATTED if the file is being connected for direct access, and
the default value is FORMATTED if the if the file is being connected for sequential access.
For an existing file, the specified form must be included in the set of allowed forms for the
file. For a new file, the processor creates the fite with a set of allowed forms that includes
the specified form.

Version 102 1986 November Page 9-7

INPUT/OUTPUT STATEMERTS X3J3/58

10

15

20

25

30

35

40

45

9.3.4.5 RECL= Specifier in the OPEN Statement. The value of the RECL= specifier
must be positive. It specifies the length of each record in a file being connected for direct
access, or specifies the maximal length of a record in a file being connected for sequential
access. If the file is being connected for formatted input/output, the length is the number of
characters. |If the file is being connected for unformatted input/output, the length is mea-
sured in processor-dependent units. For an existing file, the value of the RECL= specifier
must be included in the set of allowed record lengths for the file. For a new file, the proc-
essor creates the file with a set of aliowed record lengths that includes the specified value.

9.3.4.6 BLANZ = Specifier in the OPEM Statement. The scalar-char-expr must evaluate
to 'NULL’ or "ZERO’. The BLANK= specifier is permitted only for a file being connected for
formatted input/output. If NULL is specified, all blank characters in numeric formatted input
fields on the specified unit are ignored, except that a field of all blanks has a value of zero.
If ZERO is specified, all blanks other than leading blanks are treated as zeros. If the
BLANK = specifier is omitted, the default value is NULL.

9.3.4.7 POSITION= Specifier in the OPE} Statement. The scalar-char-expr must evalu-
ate to 'ASIS’, 'REWIND’, or 'APPEND’. The connection must be for sequential access. A
file that did not exist previously (a NEW file, either goecified explicitly or by default) is posi-
tioned at its initial point. REWIND positions me-ﬂa‘i:{ﬁ-ix!e at its initial point. APPEND posi-
tions the file at its terminal point such that the endfile record is the next record, if it has one.
ASIS leaves the position unchanged if the file is connected, and unspecified/otherwise. If

this specifier is omitted, the default value is ASIS.

9.3.4.8 ACT!ON= Specifier in tha OPEN Statement. The scalar-char-expr must evaluate
to 'READ’, 'WRITE’, or 'READ/WRITE’. READ specifies that the WRITE, PRINT, and
ENDFILE statements must not refer to this connection. WRITE specifies that READ state-
ments must not refer to this connection, READ/WRITE permits any 1/0 statements to refer
to this connection. If this specifier is omitted, the default value is READ/WRITE.

9.3.4.9 DELIM= Speciiier in the OPEN Statement. The scalar-char-expr must evaluate to
"APOSTROPHE’, 'QUOTE’, or 'NONE’. If APOSTROPHE is specified, the apostrophe will be
used to delimit character constants written with list-directed or name-directed formatting and
all internal apostrophes will be doubled. |If QUOTE is specified, the quotation mark will be
used to delimit character constants written with list-directed or name-directed formatting and
all internal quotation marks will be doubled. If the value of this specifier is NONE, a charac-
ter constant when written will not be delimited by apostrophes or quotation marks. If this
specifier is omitted, the default value is NONE. This specifier is permitted only for a file
being connected for formatted input/output. This specifier is ignored during input of a for-
matted record.

9.3.4.10 PAD= Specifier in the OPEN Statemant. The scalar-char-expr must evaluate to
'YES’ or 'NO’. If YES is specified, a formatted input record is logically padded with blanks
when an input list is specified and the format specification requires more data from a record
than the record contains. !f NO is specified, the input list and the format specification must
not require more characters from a record than the record contains. If this specifier is omit-
ted, the default value is YES.

9.3.5 The CLOSE Statement. The CLOSE statement is used to terminate the connection
of a particular file to a unit.
R906 close-stmt is CLOSE (close-spec-list)

R307 close-spec is [UNIT =] external-file-unit
or IOSTAT = Jjostat-variable

Version 102 1986 November Page 9-8

NN

INPUT/QUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

or ERR = label
or STATUS = scalar-char-expr

Constraint; If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the close-spec-ist.

Constraint: A given specifier must not appear more than once in a given close-simt; the
unit specifier must appear.

The IOSTAT = specifier and ERR= specifier are described in Sections 9.4.1.5 and 9.4.1.6,
respectively.

A specifier that requires a scafar-char-expr may have a limited list of character values.
These values are listed for each such specifier. Any trailing blanks are ignored. |If a proc-
essor is capable of representing letters in both upper and lower case, the value specified is
without regard to case. Some specifiers have a default value if the specifier is omitted.

9.3.5.1 STATUS= Specifier in the CLOSE Statement. The scalar-char-expr must evalu-
ate to 'KEEP' or 'DELETE’. The STATUS = specifier determines the disposition of the file
that is connected to the specified unit. KEEP must not be specified for a file whose status
prior to execution of a CLOSE statement is SCRATCH. |If KEEP is specified for a file that
exists, the file continues to exist after the execution of a CLOSE statement. |f KEEP is
specified for a file that does not exist, the file will not exist after the execution of a CLOSE
statement. |f DELETE is specified, the file will not exist after the execution of a CLOSE
statement. 1f this specifier is omitted, the default value is KEEP, unless the file status prior
to execution of the CLOSE statement is SCRATCH, in which case the default value is
DELETE.

Execution of a CLOSE statement that refers to a unit may occur in any program unit of an
executable program and need not occur in the same program unit as the execution of an
OPEN statement referring to that unit.

Execution of a CLOSE statemient specifying a unit that does not exist or has no file con-
nected to it is permitted and affects no file.

After a unit has been disconnected by execution of a CLOSE statement, it may be con-
nected again within the same executable program, either to the same file or to a different
file. After a file has been disconnected by execution of a CLOSE statement, it may be con-
nected again within the same executable program, either to the same unit or to a different
unit, provided that the' file still exists.

At termination of execution of an executable program for reasons other than an error condi-
tion, all units that are connected are closed. Each unit is closed with status KEEP unless
the file status prior to termination of execution was SCRATCH, in which case the unit is
closed with status DELETE. Note that the effect is as though a CLOSE statement without a
STATUS = specifier were executed on each connected unit.

9.4 Data Transfer Statements. The READ statement is the data transfer input state-
ment. The WRITE statement and PRINT statement are the data transfer output statements.

Termination of an input/output data transfer statement occurs when any of the following con-
ditions are met:

(1) All elements of the input-item-list or output-item-list have been read or written, with
or without editing, to or from the specified file.

(2) An error condition is encountered.

(3) An end-of-file condition is encountered.

Version 102 1986 November Page 9-9

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

'(4) An end-of-record mark (/) is encountered in the record being read during fist-
directed or namelist input.
R908 read-stmt is READ (io-control-spec-fist } [input-item-list |
or READ format [, input-item-ist |
R909 write-stmt is WRITE (jo-control-spec-list) [output-item-list |
R910 print-stmt is PRINT format [, output-item-list |

9.4.1 Control Information List. The jo-control-spec-list is a control information list that

includes:
(1
(2)
(3)
(4)
(5)
(6)
(7)

A reference to the source or destination of the data to be transferred
Optional specification of editing processes

Optional specification to identify a record

Optional specification of an input prompt string

Optional specification of exception handiing

Optional return of counts of values transmitted and values skipped
Optional return of status

The control information list governs the data transfer.

R811 jo-control-spec is [UNIT =] io-unit

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Yersion 102

or [FMT =] format

or [NML =] namelist-group-name
or REC = scalar-int-expr

or PROMPT = scafar-char-expr
or HOSTAT = jostal-variable

or ERR= /abel

or END = Jabel

or NULLS = nulls-variable

or VALUES = values-variable

An io-control-spec-list must contain exactly one io-unit and may contain at most
one of each of the other specifiers.

An END=, a NULLS=, or a PROMPT= 'spec3ifier must not appear in a write-
stmit or print-stmt.

A namelist-group-name must not be present if an input-item-fist or an output-
item-list is present in the data transfer statement.

An jo-control-spec-fist must not contain both a format and a namelist-group-
name.

If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the control information list.

If the optional characters FMT = are omitted from the format specifier, the for-
mat specifier must be the second item in the control information fist and the first
item must be the unit specifier without the optiona! characters UNIT =.

If the optional characters NML = are omitted from the namelist specifier, the
namelist specifier must be the second item in the control information list and
the first item must be the unit specifier without the optional characters UNIT =

1986 November Page 9-10

INPUT/OUTPUT STATEMENTS X3J3/88

10

15

20

25

30

35

40

Constraint: f the unit specifier specifies an internal file, the jo-control-spec-fist must not con-
tain a REC = specifier.

If the data transfer statement contains a format or namelist-group-name, the statement is a
formatted input/output statement; otherwise, it is an unformatted input/output statement.

In a data transfer statement, if an iostat-variable or nulls-variable, values-variable is present,
it must not be associated with another iostat-variable or nulls-variable or values-variable in
the same statement, with any entity in the data transfer input/output list {2.4.2) or namelist-
group-object-list, nor with a do-variable of an io-implied-do in the data transfer input/output
list.

In a data transfer statement, if an iostat-variable or nulls-variable or values-variable is an
array element reference, then its subscript values must not be affected by the data transfer,
io-implied-do processing, or the definition or evaluation of any other specifier in the io-
control-spec-fist.

9.4.1.1 Format Specifier.

R912 format is char-expr
or label
or *
-o:-*-u)’
or scalar-int-variable
The /abel must be the statement label of a FORMAT statement.

The scalar-int-variable must have been assigned (8.2.4) the staterment label of a FORMAT statement that appears in the
same scoping unit as the format.

The char-expr must evaluate to a character object that is a valid format item list (10.2). Note
that char-expr includes a character constant.

If char-expr is an array name, it is treated as if all of the elements, if any, of the array were
specified in subscript order value and were concatenated.

If format is *, the statement is a list-directed input/output statement) and a REC = specifier
must not be present.

9.4.1.2 Namelist Specifier. The NML= specifier supplies the namelist-group-name. This
name identifies a specific collection (5.4) of data objects upon which transfer is to be per-
formed. ‘

If a namelist-group-name is present, the statement is a namelist input/output statement,and
a REC = specifier must not be present@h-a-nemssuet-hpuﬁeuip*ﬂm 2

9.4.1.3 Record Number. The REC = specifier specifies the number of the record that is to
be read or written in a file connected for direct access. |f the control information list con-
tains a REC = specifier, the statement is a direct access input/output statement and an
END= specifier must not be present; otherwise, it is a sequential access inputfoutput
statement.

9.4.1.4 Prompt Specifier. For a formatted external READ statement, the scalar character
expression specified in the PROMPT = specifier is written to the connected unit without line
spacing following it. The input statement is then executed. If the connection is to a device
that does not permit both input and output, the PROMPT= specifier is ignored. The
PROMPT = specifier is not permitted in a WRITE or PRINT statement.

Version 102 ' 1986 November Page 9-11

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

9.4.1.5 Input/Output Status.

R913

iostat-variable is scalar-int-variable

Execution of an input/output statement containing the IOSTAT= specifier causes jostat-
variable to become defined:

(1)

)

3

With a zero value if neither an error condition nor an end-of-file condition is
encountered by the processor,

With a processor-dependent positive integer value if an error condition is encoun-
tered, or

With a processor-dependent negative integer value if an end-of-file condition is
encountered and no error condition is encountered. Note that this condition may
occur only during a sequential input statement.

Consider the example:
READ (FMT = '"(EB.3)', UNIT=3, IOSTAT = I0SS) X

IF (I0SS < () THEN

! PERFORM END-OF-FILE PROCESSING ON THE FILE
! CONNECTED TO UNIT 3.

CALL END PROCESSING

ELSE IF (I0OSS > 0 THEN

I PERFORM ERROR PROCESSING

CALL ERROR_PROCESSING

END IF

9.4.1.6 Error Branch. If an input/output statement contains an ERR= specifier and the
processor encounters an error condition during execution of the statement:

M
(@)

(3)

(4)

Execution of the input/output statement terminates,

The position of the file specified in the input/output statement becomes indetermi-
nate,

if the inputsoutput statement also contains an fostat-variable, the iostat-variable
becomes defined with a processor-dependent positive integer value, and

Execution continues with the statement specified in the ERR= specifier. The

labeled statement must be in the same scoping unit as the input/output state-
ment.

9.4.1.7 End of File Branch. If an input statement contains an END= specifier and the

processor encounters an end-of-file condition and encounters no error condition during exe-
cution of the statement;

(1)
(2)

Version 102

Execution of the READ statement terminates,

If the input statement also contains an IOSTAT = specifier, the ijostat-variable
becomes defined with a processor-dependent negative integer value, and

1986 November Page 9-12

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

(3) Execution continues with the statement specified in the END= specifier. The
labeled statement must be in the same scoping unit as the input/output state-
ment,

In a WRITE statement, the control information list must not contain an END = specifier.

9.4.1.8 Nulls Count.
R914 nulls-variable is scalar-int-variable

Execution of an input statement containing a NULLS = specifier causes nulls-variable 1o
become defined as described below. '

A null value is a value that has no effect on the definition status of the corresponding input
list item. If the input list item is defined, it retains its previous value; if it is undefined, it
remains undefined. A null value must not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire complex constant.

When an input statement terminates, the nulls-variable is defined to be the count of the null
vaiues read by the input statement. The value of the variable can be nonzerc only for list-
directed or name-directed input.

9.4.1.9 Values Count.

R915 values-variable is scalar-int-variable

Execution of an input statement containing a VALUES = specifier causes values-variable to
become defined as described below. When an input/output statement terminates, the
values-variable is defined to be the count of the number of values successfully read or writ-
ten, with or without editing, by the input/output statement.

Any null values are inciuded in the count of values.

9.4.2 Data Transfer Input/Output List. An input/output list specifies the entities whose
values are transferred by a data transfer input/output statement.

R916 input-item is variable
or io-implied-do
R917 output-item is expr
or jo-implied-do
R918 io-implied-do is (lo-implied-do-object-list , io-implied-do-control)
R919 jo-implied-do-object is input-item

or output-item

R920 io-implied-do-controf is do-variable = scalar-numeric-expr , B
K scalar—num_eric-expquscalar-numen‘c-expr]

Constraint: The do-variable must be scalar of type integer, real, or double precision.

Constraint: In an input-item-list, an io-implied-do-object must be an input-item. In an outpul-
item-list, an io-implied-do-object must be an output-item.

Constraint: An input-item must not appear as, nor be associated with, the do-variable of any
io-implied-do that contains the input-item.

Constraint: The do-variable of an io-implied-do that is contained within another jo-implied-do
must not appear as, nor be associated with, the do-variable of the containing
io~impfied-do.

Version 102 1986 November Page 9-13

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

45

If an array name or array section designator appears as an input/output list item, it is treated
as if the elements, if any, were specified in the subscript order value of the array (6.2.4.2).
The name of an assumed-size dummy array must not appear as an input/output list item.

If the name of a derived-type object appears as an input/output list item in a formatted
input/output statement, it is treated as if all of the components of the object were specified
in the same order as in the definition of the derived type. The values count associated with
the derived-type object is that of the objects of intrinsic data type that result from this treat-
ment.

if the name of a derived-type object appears as an input/cutput list item in an unformatted
input/output statement, it is treated as a single value in a processor-dependent form. Note
that, in this case, the appearance of a derived-type object as an input/output list item is not
equivalent to the list of its components.

For an implied do, the loop initialization and execution is the same as for a DO construct
(8.1.4.4).

Note that a constant, an expression involving operators or function references, or an expres-
sion enclosed in parentheses may appear as an output list item but must not appear as an
input list item.

An io-implied-do must not appear in the input/output list of a name-directed formatted data
transfer input/output statement.

9.4.2.1 Error and End-of-File Conditions. The set of input/output error conditions is proc-
essor dependent.

An end-of-file condition exists if either of the following events occurs:

(1) An endfile record is encountered during the reading of a file connected for
sequential access. In this case, the file is positioned after the endfile record.

(2) An attempt is made to read a record beyond the end of an internal file.

Note that an end-of-file condition can occur at the beginning of an input statement or within
a formatted input statement when more than one record is required by the interaction of the
input/output list and the format.

i an error condition occurs during execution of an input/output statement, execution of the
input/output statement terminates and the position of the file becomes indeterminate.

If an error condition or an end-of-file condition occurs during execution of an input/output
statement, execution of the input/output statement terminates. The VALUES = specifier, if
any, is defined with the count of values successfully read or written. On input, any remain-
ing list items list are undefined. For any specific error condition, the number of values
defined is processor dependent. Note that for list-directed and name-directed input, some
elements of the input list may not have had their definition status changed due to null
values.

Let n be the value of the variable specified in a VALUES = specifier. if the nth value of an
input/output list, when related to the format list by the normal matching process, is in the
range of one or more io-implied-dos, the DO variable is defined with the count of values suc-
cessfully transferred for that io-implied-do. Any DO variable defined prior to the occurrence
of the error condition in the matching process remains defined. Any remaining do-variable in
the input/output list is undefined.

If an error condition occurs during execution of an input/output statement that contains nei-
ther an IOSTAT = nor an ERR = specifier, or if an end-of-file condition occurs during execu-
tion of a READ statement that contains neither an IOSTAT= specifier nor an END=
specifier, execution of the executable program is terminated.

Version 102 1986 November Page 9-14

INPUT/QUTPUT STATEMENTS X3J3/S8

10

15

20

25

30

35

40

9.4.3 Execution of a Data Transfer Input/Output Statement. The effect of executing a
data transfer input/output statement must be as if the following operations were performed
in the order specified:

(1) Determine the direction of data transfer

(2) Identify the unit

(3) Establish the format if one is specified

(4) Position the file prior to data transfer (9.2.1.3.1)

(5} Transfer the value of the PROMPT = specifier, if any, to the input unit

(6) Transfer data between the file and the entities specified by the input/output list (if
any)

(7) Position the file after data transfer (9.2.1.3.2)

(8) Cause jostat-variable (if any) to become defined, and cause the variables in the
VALUES = and NULLS = specifiers, if specified, to become defined.

9.4.3.1 Direction of Data Transfer. Execution of a READ statement causes values to be
transferred from a file to the entities specified by the input list, if one is specified. Execution
of a WRITE or PRINT statement causes values to be transferred to a file from the entities
specified by the output list and format specification, if any. Execution of a WRITE or PRINT
statement for a file that does not exist creates the file unless an error condition occurs.

9.4.3.2 Identifying a Unit. A data transfer input/output statement that contains an
input/output control list includes a file unit specifier that identifies an external unit or an
internal file. A READ statement that does not contain an input/output control list specifies a
particular processor-determined unit, which is the same as the unit identified by * in a READ
statement that contains an input/output control list. The PRINT statement specifies some
other processor-determined unit, which is the same as the unit identified by * in a WRITE
statement. Thus, each data transfer input/output statement identifies an external unit or an
internal file.

The unit identified by a data transfer input/output statement must be connected to a file
when execution of the statement begins. Note that the file may be preconnected.

9.4.3.3 Establishing a Format. If the input/output control list contains * as a format, list-
directed formatting is established. |f namelist-group-name is present, namelist formatting is
established. Otherwise, the format specification identified by the format specifier is estab-
lished. f the format is an array, the effect is as if all elements of the array were concate-
nated in subscript order value.

On output, if an internal file has been specified, a format specification that is in the file or is
associated with the file must not be specified.

9.4.3.4 Data Transfer. Data are transferred between records and entities specified by the
input/output list. The list items are processed in the order of the input/output list for all data
transfer input/output statements except name-directed formatted data transfer input state-
ments. The list items for a name-directed formatted data transfer input statement are pro-
cessed in the order of the entities specified within the input records.

All values needed to determine which entities are specified by an input/output list item are
determined at the beginning of the processing of that item.

All values are transmitted to or from the entities specified by a list item prior to the process-
ing of any succeeding list item for all data transfer input/output statements except name-

Version 102 1986 November Page 9-15

INPUT/QUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

directed formatted data transfer input statements. In the example,
READ (N> N, X (N
the old value of N identifies the unit, but the new value of N is the subscript of X.

All values following the name = part of the namelist entity (10.9) within the input records are
transmitted to the matching entity specified in the namelist-group-object-list prior to process-
ing any succeeding entity within the input record for namelist formatted data transfer input
statements. If an entity is specified more than once within the input record during a name-
directed formatted data transfer input statement, the last occurrence of the entity specifies
the value or values to be used for that entity.

An input list item, or an entity associated with it, must not contain any portion of the estab-
lished format specification.

if an internal file has been specified, an input/output list item must not be in the file or asso-
ciated with the file. Note that the file is a character object.

A DO variable becomes defined at the beginning of processing of the items that constitute
the range of an jo-implied-do.

On output, every entity whose value is to be transferred must be defined.

On input, an attempt to read a record of a file connected for direct access that has not pre-
viously been written causes all entities specified by the input list to become undefined
unless one or more formatted records have been read by this READ staterment and
VALUES = has been specified.

9.4.3.4.1 Unformatted Data Transfer. During unformatted data transfer, data are transfer-
red without editing between the current record and the entities specified by the input/output
list. Exactly one record is read or written.

On input, the file must be positioned so that the record read is an unformatted record or an
endfile record.

On input, the number of values required by the input list must be less than or equal to the
number of values in the record.

On input, the type of each value in the record must agree with the type of the corresponding
entity in the input list, except that one complex value may correspond to two real list entities
or two real values may correspond to one complex list entity. If an entity in the input list is
of type character, the length of the character entity must agree with the length of the char-
acter value.

On output to a file connected for direct access, the output list must not specify more values
than can fit into the record.

On output, if the file is connected for direct access and the values specified by the output
list do not fill the record, the remainder of the record is undefined.

If the file is connected for formatted input/output, unformatted data transfer is prohibited.
The unit specified must be an external unit.

9.4.3.4.2 Formatted Data Transfer. During formatted data transfer, data are transferred
with editing between the entities specified by the input/output list and the file. Format con-
trol is initiated and editing is performed as described in Section 10. The current record and
possibly additional records are read or written.

Objects of intrinsic or derived types may be transferred through a formatted data transfer
statement. However, the requirement that the format be established prior to any transfer of

Version 102 1986 November Page 9-16

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

data (9.4.3) and the possibility of variant components may effectively prevent explicitly for-
matted (10.1) input to objects of derived types containing variant components, because of
the interdependence of the input/output list and format specification.

On input, the file must be positioned so that the record read is a formatted record or an
endfile record.

If the file is connected for unformatted input/output, formatted data transfer is prohibited.

On input, the input list and format specification must not require more characters from a
record than the record contains. However, blank padding to satisfy this condition may be
specified by a PAD = specifier in an OPEN statement.

if the file is connected for direct access, the record number is increased by one as each
succeeding record is read or written.

On output, if the file is connected for direct access or is an internal file and the characters
specified by the output list and format do not fill a record, blank characters are added to fill
the record.

On output, if the file is connected for direct access, the output list and format specification
must not specify more characters for a record than have been specified by the RECL=
specifier. :

9.4.3.5 List-Directed Formatting. If list-directed formatting has been established, editing
is performed as described in Section 10.8.

9.4.3.6 Namelist Formatting. The characters in one or more namelist records constitute a
sequence of names, values, and value separators.

G
It namelisteirested” formatting has been established, editing is performed as described in
Section 10.9.

9.4.4 Printing of Formatted Records. The transter of information in a formatted record to
certain devices determined by the processor is calied printing. If a formatted record is
printed, the first character of the record is not printed. The remaining characters of the
record, if any, are printed in one line beginning at the left margin.

The first character of such a record determines vertical spacing as follows:

Character Vertical Spacing Before Printing

Blank One Line

0 Two Lines

1 To First Line of Next Page
+ No Advance

If there are no characters in the record, the vertical spacing is one line and no characters
other than blank are printed in that line.

The PRINT statement does not imply that printing will occur, and the WRITE statement does
not imply that printing will not occur.

9.5 File Positioning Statements.

Ro21 backspace-stmt is BACKSPACE external-file-unit
or BACKSPACE (position-spec-list)
R922 endfile-stmt is ENDFILE external-file-unit

or ENDFILE (position-spec-list)

Version 102 1986 November Page 9-17

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

R923 rewind-stmt is REWIND externalfile-unit
or REWIND (position-spec-list)

Constraint: BACKSPACE, ENDFILE, and REWIND apply only to external files connected for
sequential access.

R924 position-spec is [UNIT = | external-file-unit
or IOSTAT = jostat-variable
or ERR = /abel

Constraint. If the optional characters UNIT = are omitted from the unit specifier, the unit
specifier must be the first item in the position-spec-list.

Constraint: A position-spec-list must contain exactly one external-file-unit and may contain at
most one of each of the other specifiers.

Execution of a BACKSPACE statement causes the file connected to the specified unit to be
positioned before the preceding record. If there is no preceding record, the position of the
file is not changed. Note that if the preceding record is an endfile record, the file becomes
positioned before the endfile record.

Backspacing a file that is connected but does not exist is prohibited.
Backspacing over records written using list-directed or name-directed formatting is prohibited.

Execution of an ENDFILE statement writes an endfile record as the next record of the file.
The file is then positioned after the endfile record. If the file may also be connected for
direct access, only those records before the endfile record are considered to have been writ-
ten. Thus, only those records may be read during subsequent direct access connections to
the file.

After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must be
used to reposition the file prior to execution of any data transfer input/output statement.

Execution of an ENDFILE statement for a file that is connected but does not exist creates
the file.

Execution of a REWIND statement causes the specified file to be positioned at its initial
point. Note that if the file is already positioned at its initial point, execution of this statement
has no effect on the position of the file.

Execution of a REWIND statement for a file that is connected but does not exist is permitted
but has no effect.

9.6 File Inquiry. The INQUIRE statement may be used to inquire about properties of a
particular named file or of the connection to a particular unit. There are two forms of the
INQUIRE statement: inquire by file, which uses the FILE= specifier, and inquire by unit,
which uses the UNIT = specifier. All specifier value assighments are performed according to
the rules for assignment statements.

An INQUIRE statement may be executed before, while, or after a file is connected to a unit.

All values assigned by an INQUIRE statement are those that are current at the time the
statement is executed.

R925 inquire-stmt is INQUIRE (inquire-spec-list) | output-item-fist |
9.6.1 Inquiry Specifiers. Unless constrained, the following inquiry specifiers may be used
in either form of the INQUIRE statement:

R926 inquire-spec is FILE = scalar-char-expr
or UNIT = external-file-unit

Version 102 1986 November Page 9-18

INPUT/OUTPUT STATEMENTS X3J3/586

10

15

20

25

30

35

40

or IOSTAT = iostat-variable

or ERR = fabel

or EXIST = scalar-logical-variable

or OPENED = scalar-logical-variable
or NUMBER = scalar-int-variable

or NAMED = scalar-fogical-variable

or NAME = scalar-char-variable

or ACCESS = scalar-char-variable

or SEQUENTIAL = scalar-char-variable
or DIRECT = scalar-char-variable

or FORM = scalar-char-variable

or FORMATTED = scalar-char-variable
or UNFORMATTED = scalar-char-vatiable
or RECL = scalar-int-variable

or NEXTREC = scalar-int-variable

or BLANK = scalar-char-variable

or POSITION = scalar-char-variable
or ACTION = scalar-char-variable

or DELIM = scalar-char-variable

or PAD = scalar-char-variable

or IOLENGTH = scalar-ini-variable

Constraint: An INQUIRE statement must contain one FILE= specifier or one UNIT=
specifier, but not both, and at most one of each of the other specifiers.

Constraint: The IOLENGTH= specifier and the output-item-list must both appear if either
appears.

When a returned value is of type character and the processor is capable of representing let-
ters in both upper and lower case, the value returned is in upper case.

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry
specifier variables except iostat-variable become undefined.

9.6.1.1 FILE= Specifier in.the INQUIRE Statement. The value of scalar-char-expr in the
FILE = specifier, when any trailing blanks are removed, specifies the name of the file being
inquired about. The named file need not exist or be connected to a unit. The value of
scalar-char-expr must be of a form acceptable o the processor as a file name.

9.6.1.2 EXIST= Specifier in the INQUIRE Statement. Execution of an INQUIRE by file
statement causes the scalar-logical-variable in the EXIST= specifier to be assigned the
value true if there exists a file with the specified name; otherwise, false is assigned. Execu-
tion of an INQUIRE by unit statement causes true to be assigned if the specified unit exists;
otherwise, false is assigned.

9.6.1.3 OPENED= Specifier in the INQUIRE Statement. Execution of an INQUIRE by file
statement causes the scalar-lpgical-variable in the OPENED = specifier to be assigned the
value true if the file specified is connected to a unit; otherwise, false is assighed. Execution
of an INQUIRE by unit statement causes scalar-logical-variable t0 be assigned the value true
if the specified unit is connected to a file; otherwise, false is assigned.

Version 102 1986 November Page 9-19

INPUT/OUTPUT STATEMENTS X3J3/58

10

15

20

25

30

35

40

9.6.1.4 NUMBER= Specifier in the INQUIRE Statement. The scalar-int-variable in the
NUMBER = specifier is assigned the value of the external unit identifier of the unit that is
currently connected to the file. If there is no unit connected to the file, the value -1 is
assigned.

9.6.1.5 NAMED= Specifier in the INQUIRE Statement. The scalar-logical-variable in the
NAMED = specifier is assigned the value true if the file has a name; otherwise, it is
assigned the value false.

9.6.1.6 NAME= Specifier in the INQUIRE Statement. The scalar-char-variable in the
NAME = specifier is assigned the value of the name of the file if the file has a name; other-
wise, it becomes undefined. Note that if this specifier appears in an INQUIRE by file state-
ment, its value is not necessarily the same as the name given in the FILE= specifier. For
example, the processor may return a file name qualified by a user identification. However,
the value returned must be suitable for use as the value of scalar-char-expr in the FILE =
specifier in an QPEN statement.

9.6.1.7 ACCESS= Specifier in the INQUIRE Statement. The scalar-char-variable in the
ACCESS = specifier is assigned the value SEQUENTIAL if the file is connected for sequen-
tial access, and DIRECT if the file is connected for direct access. If there is no connection,
it is assigned the value UNDEFINED.

9.6.1.8 SECUEMTIAL = Specifier in the INQUIRE Statement. The scalar-char-variable in
the SEQUENTIAL = specifier is assigned the value YES if SEQUENTIAL is included in the
set of allowed access methods for the file, NO if SEQUENTIAL is not included in the set of
allowed access methods for the file, and UNKNOWN if the processor is unable to determine
whether or not SEQUENTIAL is included in the set of allowed access methods for the file.

9.6.1.9 DIRECT= Specifier in the INQUIRE Statement. The scalar-char-variable in the
DIRECT = specifier is assigned the value YES if DIRECT is included in the set of allowed
access methods for the file, NO if DIRECT is not included in the set of allowed access meth-
ods for the file, and UNKNOWN if the processor is unable to determine whether or not
DIRECT is included In the set of allowed access methods for the file.

9.6.1.10 FORAM= Specifier in the INQUIRE Statement. The scalar-char-variable in the
FORM= specifier is assigned the value FORMATTED if the file is connected for formatted
input/output, and is assigned the value UNFORMATTED if the file is connected for unformat-
ted input/output. If there is no connection, it is assigned the value UNDEFINED.

9.6.1.11 FORMATTED= Specifier in the INQUIRE Statement. The scalar-char-variable in
the FORMATTED = specifier is assigned the value YES if FORMATTED is included in the
set of allowed forms for the file, NO if FORMATTED is not included in the set of allowed
forms for the file, and UNKNOWN if the processor is unable to determine whether or not
FORMATTED is included in the set of aliowed forms for the file.

9.6.1.12 UNFORMATTED = Specifier in the INQUIRE Statement. The scalar-char-variable
in the UNFORMATTED = specifier is assigned the value YES if UNFORMATTED is included
in the set of allowed forms for the file, NO if UNFORMATTED is not included in the set of
allowed forms for the file, and UNKNOWN if the processor is unable to determine whether ar
not UNFORMATTED is included in the set of allowed forms for the file.

Version 102 1986 November Page 9-20

INPUT/OUTPUT STATEMENTS X3J3/88

10

15

20

25

30

35

40

45

9.6.1.13 RECL= Specifier in the INQUIRE Statement. The scalar-int-variable in the
RECL = specifier is assigned the value of the maximal record length of the file. If the file is
connected for formatted input/output, the length is the number of characters. If the file is
connected for unformatted input/output, the length is measured in processor-defined units.
If the file does not exist, scalar-int-variable becomes undefined.

9.6.1.14 NEXTREC= Specifier in the INQUIRE Statement. The scalar-int-variable in the
NEXTREC = specifier is assigned the value n + 1, where n is the record number of the last
record read or written on the file connected for direct access. If the file is connected but no
records have been read or written since the connection, scalar-int-variable is assigned the
value 1. If the file is not connected for direct access or if the position of the file is indetermi-
nate because of a previous error condition, scalar-int-variable becomes undefined.

9.6.1.15 BLANK= Specifier in the INQUIRE Statement. The scalar-char-variable in the
BLANK = specifier is assigned the value NULL if null blank contro! is in effect for the file
connected for formatted input/output, and is assigned the value ZERO if zero blank control
is in effect for the file connected for formatted input/output. If there is no connection, or if
the connection is not for formatted input/output, scalar-char-variable is assigned the value
UNDEFINED.

9.6.1.16 POSITION= Specifier in the INQUIRE Statement. The scalar-char-variable in the
POSITION = specifier is assigned the value REWIND if the file is connected by an QOPEN
statement for positioning at its initial point, APPEND if the file is connected for positioning at
its terminal point, and ASIS if the file is connected without changing its position. If there is
no connection, scalar-char-variable is assigned the value UNDEFINED. If the file has been
repositioned since the connection, scalar-char-variable is assigned the value UNDEFINED.

9.6.1.17 ACTION= Specifier in the INQUIRE Statement. The scalar-char-variable in the
ACTION= specifier is assigned the value READ if the file is connected for input only,
WRITE if the file is connected for output only, and READ/WRITE if it is connected for both
input and output. If there is no connection, scalar-char-variable is assigned the value UNDE-
FINED.

9.6.1.18 DELIM= Specifier in the INQUIRE Statement. The scalar-char-variable in the
DELIM= specifier is assigned the value APOSTROPHE if the apostrophe is to be used to
delimit character data written by list-directed or name-directed formatting. If the quotation
mark is used to delimit these data, the value QUOTE is assigned. !f neither the apostrophe
nor the quote is used to delimit the character data, the value NONE is assigned. If there is
no connection or if the connection is not for formatted input/output, scalar-char-variable is
assigned the value UNDEFINED.

9.6.1.19 PAD= Specifier in the INQUIRE Statement. The scalar-char-variable in the
PAD = specifier is assigned the value YES if the connection of the file to the unit included
the PAD = specifier and its value was YES. Otherwise, scalar-char-variable is assigned the
value NO.

9.6.1.20 IOLENGTH= Specifier in the INQUIRE Statement. The scalar-int-variable in the
IOLENGTH = specifier is assigned the processor-dependent value that results from the use
of the input/output list in an unformatted output statement. Any DO variables have the
scope of the implied-DO list, as in the DATA statement. It must be suitable as a RECL=
specifier in an OPEN statement that connects a file for unformatted direct access when
there are input/output statements with the same input/output list.

Version 102 1986 November Page 9-21

INPUT/OUTPUT STATEMENTS X3J3/88

9.6.1.21 Restrictions on Inquiry Specifiers. A variable that may become defined or
undefined as a result of its use in a specifier in an INQUIRE statement, or any associated
entity, must not appear in another specifier in the same INQUIRE statement.

The inquire-spec-list in an INQUIRE by file statement must contain exactly one FILE=
5 specifier and must not contain a UNIT = specifier.

The inquire-spec-list in an INQUIRE by unit statement must contain exactly one UNIT=
specifier and must not contain a FILE= specifier. The unit specified need not exist or be

connected to a file. If it is connected to a file, the inquiry is being made about the connec-
tion and about the file connected.

i0 9.7 Restrictions on Function References and List Items. A function reference
must not appear in an expression anywhere in an input/output statement if such a reference
causes another input/output statement to be executed. Note that restrictions in the evalua-
tion of expressions (7.1.7) prohibit certain side effects.

9.8 Restriction on Input/Qutput Statements. If a unit, or a file connected to a unit,
15 does not have all of the properties required for the execution of certain input/output state-
ments, those statements must not refer to the unit.

Version 102 1986 November Page 9-22

10

15

20

25

30

35

40

10 INPUT/OUTPUT EDITING

A format used in conjunction with an input/output statement provides information that directs
the editing between the internal representation of data and the character strings of a record
or a sequence of records in a file.

A format specifier (9.4.1.1) in an input/output statement may refer to a FORMAT statement
or to a character expression that contains a format specification. A format specification pro-
vides explicit editing information. The format specifier also may be an asterisk (*) which
indicates list-directed formatting (10.8), or a namelist-group-name which indicates namelist
formatting {10.9).

10.1 Explicit Format Specification Methods. Explicit format specification may be
given:

(1) In a FORMAT statement, or

(2) As the value of a character expression

10.1.1 FORMAT Statement.

R1001 format-stmt is FORMAT format-specification
R1002 format-specification is (| format-item-list])
Constraint: The format-stmt must be labeled.

Constraint: The comma used to separate format-items in a format-item-list may be omitted
as follows:

(1) Between a P edit descriptor and an immediately following F, E, EN, D, or G edit
descriptor (10.6.5) -

(2) Before or after a slash edit descriptor when the optional repeat specification is not
present (10.6.2)

(3) Before or after a colon edit descriptor (10.6.3)

Note that, for source form purposes, the format specification is considered to be a form of
character context (3.3.1).

10.1.2 Character Format Specification. A character expression used as a format specifier
in a formatted input/output statement must contain a character string whose value consti-
tutes a valid format specification. Note that the format specification begins with a left paren-
thesis and ends with a right parenthesis.

All character positions up to and including the final right parenthesis of the format
specification must be defined at the time the input/output statement is executed, and must
not become redefined or undefined during the execution of the statement. Character posi-
tions, if any, following the right parenthesis that ends the format specification need not be
defined and may contain any character data with no effect on the format specification.

If the format specifier identifies a character array entity, the length of the format specification
may exceed the length of the first element of the array. A character array format
specification is considered to be a concatenation of all the array elements of the array in the
order given by the subscript order value (6.2.4.2). However, if a format specifier refers to a
character array element, the format specification must be contained entirely within that array
element.

Version 102 1986 November Page 10-1

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

10.2 Form of a Format Iltem List.

R1003 format-item is [r] data-edit-desc
or conirol-edif-desc
or char-string-edit-desc
or [r 1 (format-item-list)

R1004 r is int-lit-constant
Constraint: r must be positive. It is called a repeat specification.

Blank characters may precede the initial left parenthesis of the format specification. Addi-
tional blank characters may appear at any point within the format specification, with no effect
on the format specification, except within a character string edit descriptor (10.7.1 and
10.7.2).

10.2.1 Edit Descriptors. An edit descriptor is used to specify the form of a record and to
direct the editing between the characters in a record and internal representations of data.
The internal representation of a datum corresponds to the internal representation of a con-
stant of the corresponding type.

An edit descriptor is either a data edit descriptor, a control edit descriptor, or a character
string edit descriptor.

R1005 data-edit-desc is lw[.m]
or Fw.d
orEw.d[Ee]
orENw.d[Ee]
orGw.d[Ee]

of Lw

or Afw]

orDw.d
R1006 w is scalar-int-lit-constant
R1007 m is scalar-int-lit-constant
R1008 d is scalar-int-lit-constant
R1009 e is scalar-int-lif--constant

Constraint: w and e must be positive and d and m must be zero or positive.
Constraint: The value of m, d, and e may be restricted further by the value of w.
I, F, E, EN, D, G, B, L, and A indicate the manner of editing.

R1010 controf-edit-desc is position-edit-desc
or[r]/
or:
or sign-edif-desc
or kP
or blank-interp-edit-desc

R1011 & is scalar-signed-int-fit-constant

R1012 position-edit-desc is Tn
or TL n
or TR n
or n X

Version 102 1986 November Page 10-2

INPUT/QUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

R1013 n is scalar-int-lit-constant
Constraint: n must be positive.

R1014 sign-edit-desc is S
or SP
or 88

R1015 blank-interp-edit-desc is BN
or BZ

In kP, k is called the scale factor.
T, TL, TR, X, siash, colon, S, SP, S§, P, BN, and BZ indicate the manner of editing.

R1016 char-string-edit-desc is char-lit-constant
or ¢ H character [character]...

R1017 ¢ is scalar-int-lit-constant
Constraint: ¢ must be positive.

Each character in a character string edit descriptor must be one of the characters capable of
representation by the processor.

The character string edit descriptors provide constant data to be output, and are not valid for
input.

Within a character constant, appearances of the delimiter character itself, apostrophe or
quote, must be as consecutive pairs without intervening blanks. Each such pair represents
a single occurrence of the delimiter character.

In the H edit descriptor, ¢ specifies the number of characters following the H that comprise
the descriptor.

10.2.2 Fields. A field is a part of a record that is read on input or written on output when
format control encounters a data edit descriptor or a character string edit descriptor. The
field width is the size in characters of the field.

10.3 Interaction Between Input/Output List and Format. The beginning of format-
ted data transfer using a format specification initiates format control. Each action of format
control depends on information jointly provided by:

(1) The next edit descriptor contained in the format specification, and

(2) The next effective item in the input/output list, if one exists. Zero-sized arrays,
zero-sized array sections, and implied-DO lists with iteration counts of zero are
ignored in determining the next effective item (9.4.2).

If an input/output list specifies at least one list item, at least one data edit descriptor must
exist in the format specification. Note that an empty format item list of the form () may be
used only if no input/output list items are specified; in this case, one input record is skipped
or one output record containing no characters is written. Except for a format item preceded
by a repeat specification r, a format specification is interpreted from lett to right.

A format item preceded by a repeat specification is processed as a list of r items, each iden-
tical to the format item but without the repeat specification and separated by commas. Note
that an omitted repeat specification is treated in the same way as a repeat specification
whose value is one.

To each data edit descriptor interpreted in a format specification, there corresponds one
effective item specified by the input/output list (8.4.2), except that an input/output list item of

Version 102 1986 November Page 10-3

INPUT/QUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

45

type complex requires the interpretation of two F, E, EN, D, or G edit descriptors. For each
control edit descriptor or character edit descriptor, there is no corresponding item specified
by the input/output list, and format control communicates information directly with the record.

Whenever format control encounters a data edit descriptor in a forrmat specification, it deter-
mines whether there is a corresponding effective item specified by the input/output list. If
there is such an item, it transmits appropriately edited information between the item and the
record, and then format control proceeds. If there is no such item, format control termi-
nates.

If format control encounters a colon edit descriptor in a format specification and another
effective input/output list item is not specified, format control terminates.

If format control encounters the rightmost parenthesis of a complete format specification and
ancther effective input/output list item is not specified, format contro! terminates. . However,
if another effective input/output list item is specified, the file is positioned at the beginning of
the next record and format control then reverts to the beginning of the format item list termi-
nated by the last preceding right parenthesis. If there is no such preceding right parenthe-
sis, format control reverts to the first left parenthesis of the format specification. If such
reversion occurs, the reused portion of the format specification must contain at least one
data edit descriptor. If format control reverts to a parenthesis that is preceded by a repeat
specification, the repeat specification is reused. Reversion of format control, of itself, has no
effect on the scale factor (10.6.5.1), the sign control edit descriptors (10.6.4), or the blank
interpretation edit descriptors (10.6.8).

10.4 Positioning by Format Control. After each data edit descriptor or character
string edit descriptor is processed, the file is positioned after the last character read or writ-
ten in the current record.

After each T, TL, TR, X, or slash edit descriptor is processed, the file is positioned as
described in 10.6.1.

If format control reverts as described in 10.3, the file is positioned in a manner identical to
the way it is positioned when a slash edit descriptor is processed (10.6.2).

During a read operation, any unprocessed characters of the record are skipped whenever
the next record is read.

10.5 Data Edit Descriptors. Data edit descriptors cause the conversion of data to or
from its internal representation. On input, the specified variable becomes defined. On out-
put, the specified expression is evaluated.

10.5.1 Numeric Editing. The |, F, E, EN, D, and G edit descriptors are used to specify the
input/output of integer, real, double precision, and complex data. The following generat
rules apply:

(1} On input, leading blanks are not significant. The interpretation of blanks, other
than leading blanks, is determined by a combination of any BLANK = specifier
(9.3.4.6) and any BN or BZ blank control that is currently in effect for the unit
(10.6.6). Plus signs may be omitted. A field containing only blanks is considered
to be zero. '

(2) On input, with F, E, EN, D, and G editing, a decimal point appearing in the input
field overrides the portion of an edit descriptor that specifies the decimal point
location. The input field may have more digits than the processor uses to approxi-
mate the value of the datum.

Version 102 1986 November Page 10-4

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

45

(3) On output, the representation of a positive or zero internal value in the field may
be prefixed with a plus, as controlled by the S, SP, and 88§ edit descriptors or the
processor. The representation of a negative internal value in the field must be
prefixed with a minus. However, the processor must not produce a negative
signed zero in a formatted output record.

(4) On output, the representation is right-justified in the field. 1f the number of charac-
ters produced by the editing is smaller than the field width, leading blanks will be
inserted in the field.

(5) On output, if the number of characters produced exceeds the field width or if an
exponent exceeds its specified length using the Ew.dEe, ENw.dEe, or Gw.dEe
edit descriptor, the processor must fill the entire field of width w with asterisks.
However, the processor must not produce asterisks if the field width is not
exceeded when optional characters are omitted. Note that when an SP edit
descriptor is in effect, a plus is not optional.

10.5.1.1 Integer Editing. The lw and lw.m edit descriptors indicate that the field to be
edited occupies w positions. The specified input/output list item must be of type integer.

On input, an lw.m edit descriptor is treated identicaily to an lw edit descriptor.

In the input field, the character string must be in the form of an optionally signed integer
constant, except for the interpretation of blanks.

The output field for the lw edit descriptor consists of zero or more leading blanks followed by
a minus if the value of the internal datum is negative, or an optional plus otherwise, followed
by the magnitude of the internal value in the form of an unsigned integer constant without
leading zeros. Note that an integer constant always consists of at least one digit.

The output field for the lw.m edit descriptor is the same as for the iw edit descriptor, except
that the unsigned integer constant consists of at least m digits and, if necessary, has leading
zeros. The value of m must not exceed the value of w. If m is zero and the value of the
internal datum is zero, the output field consists of only blank characters, regardless of the
sign control in effect.

10.5.1.2 Real and Double Precision Editing. The F, E, EN, D, and G edit descriptors
specify the editing of real, double precision, and complex data. An input/output list item cor-
responding to an F, E, EN, D, or G edit descriptor must be real, double precision, or com-
plex.

10.5.1.2.1 F Editing. The Fw.d edit descriptor indicates that the field occupies w posi-
tions, the fractional part of which consists of d digits.

The input field consists of an optional sign, followed by a string of digits optionally containing
a decimal point, including any blanks interpreted as zeros. The d has no effect on input if
the input field contains a decimal point. If the decimal point is omitted, the rightmost d digits
of the string, with leading zeros assumed if necessary, are interpreted as the fractional part
of the value represented. The string of digits may contain more digits than a processor uses
to approximate the value of the constant. The basic form may be followed by an exponent
of one of the following forms:

(1) Explicitly signed integer constant

(2) E followed by zero or more blanks, followed by an optionally signed integer con-
stant, except for the interpretation of blanks

(3) D followed by zero or more blanks, followed by an optionally signed integer con-
stant, except for the interpretation of blanks

Version 102 1986 November Page 10-5

INPUT/OQUTPUT EDITING X3J43/58

10

15

20

25

30

35

40

An exponent containing a D is processed identically to an exponent containing an E.

Note that if the input field does not contain an exponent, the effect is as if the basic form
were followed by an exponent with a value of k, where k is the established scale factor
(10.6.5.1).

The output field consists of blanks, if necessary, followed by a minus if the internal value is
negative, or an optional plus otherwise, followed by a string of digits that contains a decimal
point and represents the magnitude of the internal value, as modified by the estabiished
scale factor and rounded to o fractional digits. Leading zeros are not permitted except for
an optional zero immediately to the left of the decimal peint if the magnitude of the value in
the output field is less than one. The optional zero must appear if there would otherwise be
no digits in the output field.

10.5.1.2.2 E and D Editing. The Ew.d, Dw.d, and Ew.dEe edit descriptors indicate that
the external field occupies w positions, the fractional part of which consists of o digits,
unless a scale factor greater than one is in effect, and the exponent part consists of e digits.
The e has no effect on input and d has no effect on. input if the input field contains a deci-
mal point.

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1).
The .Jorm of the output field for a scale factor of zero is:
[=]1[0]. X%x2- - xgexp
where:
+ signifies a plus or a minus.
XXz - - - Xy are the d most significant digits of the datum value after rounding.

exp is a decimal exponent having one of the following forms:

Edit Absolute Value Form of

Descriptor of Exponent Exponent
Ew.d lexp| < 99 E+tzz;or +£0z,z,

99 < {exp| =< 9939 +Z4222Z3

Ew.dEe texp| = 10° — 1 Exzz,- -2,

Dw.d . lexp| = 99 Dxzz, 0 E £2425

or £0z,z,

899 < |exp| < 999 712523

where z is a digit. The sign in the exponent is required. A plus sign must be used if the
exponent value is zero. The forms Ew.d and Dw.d must not be used if jexp| >999.

The scale factor k controls the decimal normalization (10.2.1, 10.6.5.1). If —d < k < 0, the
output field contains exactly |k| leading zeros and d — |k| significant digits after the decimal
point. If 0 < k < d + 2, the output field contains exactly k significant digits to the left of
the decimal point and d — k + 1 significant digits to the right of the decimal point. Other
values of k are not permitted.

Version 102 1986 November Page 10-6

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

10.5.1.2.3 EN Editing. The EN edit descriptor produces an output field in the form of a
real number in engineering notation such that the decimal exponent is divisible by three and
the absolute value of the mantissa is greater than or equal to one and less than 1000,
except when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external field
occupies w positions, the fractional part of which consists of d digits and the exponent part
consists of e digits. .

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1).
The form of the output field is:

[=]yyyxixz " Xgexp
where:

+ signifies a plus or a minus.

yyy are the 1 to 3 decimal digits representative of the most significant digits of the
value of the datum after rounding (yyy is an integer such that 1 < yyy < 999 or yyy =
0).

XXz * ' - Xy are the d next most significant digits of the value of the datum after
rounding.

exp is a decimal exponent, divisible by three, of one of the following forms:

Edit Absolute Value Form of
Descriptor of Exponent Exponent
ENw.d |exp| = 99 E+zzp or +02425
99 < |exp| =< 999 © £Z4ZoZ3
ENw.dEe lexp| =< 10° — 1 ExzyZp- " Z,

where z is a digit.

The sign in the exponent is required. A pius sign must be used if the exponent value is
zero. The form ENw.d must not be used if Iexpl > 999,

Examples:
tnternal Value Output fieid Using 88, EN12.3

6.421 6.421E+ 00
~.5 '—~500.000E —-03
00217 2.170E-03
4721.3 . AT721E+03

10.5.1.2.4 G Editing. The Gw.d and Gw.dEe edit descriptors indicate that the external
field occupies w positions, the fractional part of which consists of a maximum of d digits and
the exponent part consists of e digits.

The form and interpretation of the input field is the same as for F editing (10.5.1.2.1).

The method of representation in the output field depends on the magnitude of the datum
being edited. Let N be the magnitude of the internal datum. 0 < N < 0.1 0or N = 109,
Gw.d output editing is the same as kPEw.d output editing and Gw.dEe output editing is the
same as kPEw.dEe output editing, where k Is the scale factor (10.6.5.1) currently in effect. If

Version 102 1986 November Page 10-7

INPUT/OUTPUT EDITING X3J3/s8

10

15

20

25

30

35

40

0.1 <= N < 107 or N is identically 0, the scale factor has no effect, and the value of N deter-
mines the editing as follows:

Magnitude of Datum Equivalent Conversion

N=0 Fiw — n).(d — 1), n('b’)
01<N<1 Fw — n).d, n(b’)
1<N<10 Fw — n).(d — 1), n(’b’)

10925 N <109~ F(w —)1, n(b’)
109 '< N < 109 Fiw — n).0, n(’b")

where b is a blank. nis 4 for Gw.d and e + 2 for Gw.dEe.

Note that the scale factor has no effect unless the magnitude of the datum to be edited is
outside of the range that permits effective use of F editing.

10.5.1.3 Complex Editing. A complex datum consisis of a pair of separate real data;
therefore, the editing is specified by two F, E, EN, D, or G edit descriptors. The first of the
edit descriptors specifies the real part; the second specifies the imaginary part. The two edit
descriptors may be different. Control and character string edit descriptors may be ‘processed
between the two successive F, E, D, or G edit descriptors.

10.5.2 L Editing. The Lw edit descriptor indicates that the field occupies w positions. The
specified input/output list item must be of type logical.

The input field consists of optional blanks, optionally followed by a decimal point, followed by
a T for true or F for false. The T or F may be followed by additional characters in the field.
Note that the logical constants . TRUE. and .FALSE. are acceptable input forms.

The output field consists of w — 7 blanks foliowed by a T or F, depending on whether the
value of the internal datum is true or false, respectively.

10.5.3 A Editing. The Alw] edit descriptor is used with an input/output list item of type
character.

If a field width w is specified with the A edit descriptor, the field consists of w characters. If
a field width w is not specified with the A edit descriptor, the number of characters in the
field is the length of the character input/output list item.

Let /len be the length of the input/output list item. If the specified field width w for A input is
greater than or equal to len, the rightmost /en characters will be taken from the input field. f
the specified field width w is less than /en, the w characters will appear left-justified with
fen — w trailing blanks in the internal representation.

If the specified field width w for A output is greater than /en, the output field will consist of
w — len blanks followed by the /en characters from the internal representation. If the
specified field width w is less than or equal to /en, the output field will consist of the leftmost
w characters from the internal representation.

10.6 Control Edit Descriptors. A control edit descriptor does not cause the transfer of
data nor the conversion of data to or from internal representation, but may affect the conver-
sion performed by subsequent data edit descriptors.

Version 102 1986 November Page 10-8

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

10.6.1 Position Editing. The T, TL, TR, and X edit descriptors specify the position at
which the next character will be transmitted to or from the record.

The position specified by a T edit descriptor may be in either direction from the current posi-
tion. On input, this allows portions of a record to be processed more than once, possibly
with different editing.

The position specified by an X edit descriptor is forward from the current position. On input,
a position beyond the last character of the record may be specified if no characters are
transmitted from such positions. Note that an nX edit descriptor has the same effect as a
TRn edit descriptor. '

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be trans-
mitted and therefore does not by itself affect the length of the record. If characters are
transmitted to positions at or after the position specified by a T, TL, TR, or X edit descriptor,
positions skipped and not previously filled are filled with blanks. The result is as if the entire
record were initially filled with btanks.

On output, a character in the record may be replaced. However, a T, TL, TR, or X edit
descriptor never directly causes a character already placed in the record to be replaced.
Such edit descriptors may result in positioning such that subsequent editing causes a
replacement.

10.6.1.1 T, TL, and TR Editing. The Tn edit descriptor indicates that the transmission of
the next character to or from a record is to occur at the nth character position.

The TLn edit descriptor indicates that the transmission of the next character to or from the
record is to occur at the character position n characters backward from the current position.
However, if the current position is less than or equal to position n, the TLn edit descriptor
indicates that the transmission of the next character to or from the record is to occur at posi-
tion one of the current record.

The TRn edit descriptor indicates that the transmission of the next character to or from the
record is to occur at the character position n characters forward from the current position.

Note that n must be specified, and must be greater than zero.

10.6.1.2 X Editing. The nX edit descriptor indicates that the transmission of the next char-
acter to or from a record is to occur at the position n characters forward from the current
position. Note that the n must be specified and must be greater than zero.

10.6.2 Slash Editing. The slash edit descriptor indicates the end of data transfer on the
current record.

On input from a file connected for sequential access, the remaining portion of the current
record is skipped and the file is positioned at the beginning of the next record. This record
becomes the current record. On output to a file connected for sequential access, a new
record is created and becomes the last and current record of the file.

Note that a record that contains no characters may be written on output. If the file is an
internal file or a file connected for direct access, the record is filled with blank characters.
Note also that an entire record may be skipped on input. The repeat specification is optional
on the slash edit descriptor. If it is not specified, the default value is one.

For a file connected for direct access, the record number is increased by one and the file is
positioned at the beginning of the record that has that record number. This record becomes
the current record.

Version 102 1986 November Pag:e 10-9

INPUT/OUTPUT EDITING X3J3/s8

10

15

20

25

30

35

40

45

10.6.3 Colon Editing. The colon edit descriptor terminates format controi if there are no
more effective items in the input/output list (2.4.2). The colon edit descriptor has no effect if
there are more effective items in the input/output list.

10.6.4 S, SP, and SS Editing. The 8, SP, and 5SS edit descriptors may be used to control
optional plus characters in numeric output fields. At the beginning of execution of each for-
matted output statement, the processor has the option of producing a plus in numeric output
fields. If an SP edit descriptor is encountered in a format specification, the processor must
produce a plus in any subsequent position that normally contains an optional plus. If an 8§
edit descriptor is encountered, the processor must not produce a plus in any subseguent
position that normally contains an optional plus. If an S edit descriptor is encountered, the
option of producing the plus is restored to the processor.

The 8, SP, and S5 edit descriptors affect only |, F, E, EN, D, and G editing during the exe-
cution of an output statement. The S, SP, and SS edit descriptors have no effect during the
execution of an input statement.

10.6.5 P Editing. The kP edit descriptor sets the value of the scale factor to k. The scale
factor may affect the editing of numeric quantities.

10.6.5.1 Scale Factor. The value of the scale factor is zero at the beginning of execution
of each input/output statement. It applies to all subsequently interpreted F, E, EN, D, and G
edit descriptors until another P edit descriptor is encountered, and then a new scale factor is
established. Note that reversion of format control (10.3) does not affect the established
scale factor.

The scale factor k affects the appropriate editing in the following manner:

(1) On input, with F, E, EN, D, and G editing (provided that no exponent exists in the
field) and F output editing, the scale factor effact is that the externally represented
number equals the internally represented number multiplied by 10*.

{2) On input, with F, E, EN, D, and G editing, the scale factor has no effect if there is
an exponent in the field.

(3) On output, with E and D editing, the significand (4.3.1.2) part of the quantity to be
produced is multiplied by 10¥ and the exponent is reduced by k.

{4) On output, with G editing, the effect of the scale factor is suspended unless the
magnitude of the datum to be edited is outside the range that permits the use of
F editing. If the use of E editing is required, the scale factor has the same effect
as with E output editing.

(5) On output, with EN editing, the scale factor has no effect.

10.6.6 BN and BZ Editing. The BN and BZ edit descriptors may be used to specify the
interpretation of blanks, other than leading blanks, in numeric input fields. At the beginning
of execution of each formatted input statement, nonleading blank characters are interpreted
as zeros or are ignored, depending on the value of the BLANK = specifier (9.3.4.6) currently
in effect for the unit. If a BN edit descriptor is encountered in a format specification, all
nonleading blank characters in succeeding numeric input fields are ignored. The effect of
ignoring blanks is to treat the input field as if blanks had been removed, the remaining por-
tion of the field right-justified, and the blanks replaced as leading blanks. However, a field
containing only blanks has the value zero. If a BZ edit descriptor is encountered in a format

specification, all nonleading blank characters in succeeding numeric input fields are treated
as zeros.

Version 102 1986 November Page 10-10

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

The BN and BZ edit descriptors affect only |, F, E, EN, D, and G editing during execution of
an input statement. They have no effect during execution of an output statement.

10.7 Character String Edit Descriptors. A character string edit descriptor must not be
used on input.

10.7.1 Character Constant Edit Descriptor. The character constant edit descriptor causes
characters to be written from the enciosed characters of the edit descriptor itself, including
blanks. Note that a delimiter is either an apostrophe or quote.

For a character constant edit descriptor, the width of the field is the number of characters
contained in, but not including, the delimiting characters. Within the field, two consecutive
delimiting characters are counted as a single character.

10.7.2 H Editing. The cH edit descriptor causes character information to be written from
the next ¢ characiers (including blanks) following the H of the cH edit descriptor in the
format-list itseli. If a cH edit descriptor occurs within a character constant delimited by apos-
trophes and the H edit descriptor includes an apostrophe, the apostrophe must be repre-
sented by two consecutive apostrophes which are counted as one character in specifying c.
If a cH edit descriptor occurs within a character constant delimited by quotes and the H edit
descriptor includes a quote, the quote must be represented by two consecutive quotes which
are counted as one character in specifying c.

10.8 List-Directed Formatting. The characters in one or more list-directed records
constitute a sequence of values and value separators. The end of a record has the same
effect as a blank character, unless it is within a character constant. Any sequence of two or
more consecutive blanks is treated as a single blank, unless it is within a character constant.

Each value is either a null value or one of the forms:

c
r*c
r

where c is a literal constant and r is an unsigned, nonzero, integer literal constant. The r#c
form is equivalent to r successive appearances of the constant ¢, and the r# form is equiva-
lent to r successive appearances of the null value. Neither of these forms may contain
embedded blanks, except where permitted within the constant c.

A value separator is one of the following:

(1) A comma optionally preceded by one or more contiguous blanks and opticnally fol-
lowed by one or more contiguous blanks

(2) A siash optionally preceded by one or more contiguous blanks and optionally fol-
lowed by one or more contiguous blanks

{3) One or more contiguous blanks between two nonblank values or following the last
nonblank value, where a nonblank value is a constant, an r*¢ form, or an r# form.

10.8.1 List-Directed Input. Input forms acceptable to edit descriptors for a given type are
acceptable for list-directed formatting, except as noted below. The form of the input value
must be acceptable for the type of the input list item. Blanks are never used as zeros, and
embedded blanks are not permitted in constants, except within character constants and com-
plex constants as specified below. Note that the end of a record has the effect of a blank,
except when it appears within a character constant.

Version 102 1986 November Page 10-11

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

45

When the corresponding input list item is of type real or double precision, the input form is
that of a numeric input field. A numeric input field is a field suitable for F editing (10.5.1.2.1)
that is assumed to have no fractional digits unless a decimal point appears within the fieid.

When the corresponding list item is of type complex, the input form consists of a left paren-
thesis followed by an ordered pair of numeric input fields separated by a comma, and fol-
lowed by a right parenthesis. The first numeric input field is the real part of the complex
constant and the second is the imaginary part. Each of the numeric input fields may be pre-
ceded or followed by blanks. The end of a record may occur between the real part and the
comma or between the comma and the imaginary part.

When the corresponding list item is of type logical, the input form must not include slashes,
blanks, or commas among the optional characters permitted for L editing.

When the corresponding list item is of type character, the input form consists of a character
constant. Character constants may be continued from the end of one record to the begin-
ning of the next record, but the end of record must not occur between a doubled apostrophe
in an apostrophe-delimited constant, nor between a doubled quote in a quote-delimited con-
stant. The end of the record does not cause a blank or any other character to become part
of the constant. The constant may be continued on as many records as needed. The char-
acters blank, comma, and slash may appear in character constants.

If the corresponding input list item is of type character and:

(1) The character constant does not contain the characters blank, comma, or slash,
and

(2) The datum does not cross a record boundary, and
(3) The first nonblank character is not a quotation mark or an apostrophe, and
(4) The leading characters are not numeric followed by an asterisk,

the delimiting apostrophes or quotation marks are not required. If the delimiters are omitted,
the character constant is terminated by the first blank, comma, or slash character and apos-
trophes and quotation marks within the datum are not to be doubled.

Let fen be the length of the list item, and let w be the length of the character constant, if
len is less than or equal to w, the leftmost /en characters of the constant are transmitted to
the list item. If len is greater than w, the constant is transmitted to the leftmost w characters
of the list item and the remaining /en — w characters of the list item are filied with blanks.
Note that the effect is as though the constant were assigned to the list item in a character
assignment statement (7.5.1.4).

10.8.1.1 Wull Values. A null value is specified by having no characters between succes-
sive value separators, no characters preceding the first value separator in the first record
read by each execution of a list-directed input statement, or the r+ form. Note that the end
of a record following any other separator, with or without separating blanks, does not specify
a null value. A null value has no effect on the definition status of the corresponding input
list item.

A slash encountered as a value separator during execution of a list-directed input statement
causes termination of execution of that input statement after the assignment of the previous
value. If there are additional items in the input list, the effect is as if null values had been
supplied for them.

Any DO variable in the input list is defined as though enough null values had been supplied
for any remaining input list items.

Note that all blanks in a list-directed input record are considered to be part of some value
separator except for the following:

Version 102 1986 November Page 10-12

INPUT/OUTPUT EDITING X3J3/S8

10

15

20

25

30

35

40

Version 102

(1) Blanks embedded in a character constant
(2) Embedded blanks surrounding the real or imaginary part of a complex constant

(3) Leading blanks in the first record read by each execution of a list-directed input
statement, unless immediately followed by a slash or comma

10.8.2 List-Directed Output. The form of the values produced is the same as that
required for input, except as noted otherwise. With the exception of nondslimited character
constants, the values are separated by (1) one or more blanks or (2) a comma optionally pre-
ceded by one or more blanks and optionally foliowed by one or more blanks.

The processor may begin new records as necessary, but, except for complex constants and
character constants, the end of a record must not occur within a constant and blanks must
not appear within a constant.

Logical output constants are T for the value true and F for the value false.
Integer output constants are produced with the effect of an Iw edit descriptor.

Real and double precision constants are produced with the effect of either an F edit descrip-
tor or an E edit descriptor, depending on the magnitude x of the value and a range 107
< x < 10%. If the magnitude x is within this range, the constant is produced using
OPFw.d; otherwise, 1PEw.dEe is used.

For numeric outputs, reasonable processor-dependent integer values of w, d, and e are used
for each of the cases involved. Note that underscores are not produced.

Complex constants are enclosed in parentheses, with a comma separating the real and
imaginary parts. The end of a record may occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than, an entire record. The only embed-
ded blanks permitted within a complex constant are between the comma and the end of a
record and one blank at the beginning of the next record.

Character constants produced for a file opened without a DELIM = specifier (9.3.4.9) or with
a DELIM = specifier (9.3.4.9) with a value of NONE:

(1) Are not delimited by apostrophes or quotation marks,
(2) Are not preceded or followed by a value separator,

(3) Have each internal apostrophe or quotation mark represented externally by one
apostrophe or quotation mark, and

(4) Have a blank character inserted by the processor for carriage control at the begin-
ning of any record that begins with the continuation of a character constant from
the preceding record.

Character constants produced for a file opened with a DELIM= specifier with a value of
QUOTE are delimited by quotes, are preceded and followed by a value separator, and have
each internal quote represented on the external medium by two quotes.

Character constants produced for a file opened with a DELIM= specifier with a value of
APOSTROPHE are delimited by apostrophes, are preceded and followed by a value separa-
tor, and have each internal apostrophe represented on the external medium by two apostro-
phes.

If two or more successive values in an output record have identical values, the processor
has the option of producing a repeated constant of the form r*¢ instead of the sequence of
identical values.

Slashes, as value separators, and null values are not produced by list-directed formatting.

! 1986 November Page 10-13

INPUT/QUTPUT EDITING X3.J3/58

10

15

20

25

30

35

40

45

Except for continuation of delimited character constants, each output record begins with a
blank character to provide carriage control when the record is printed.

10.9 Namelist Formatting. The characters in one or more namelist records constitute a
sequence of name-value subsequences, each of which consists of a name followed by an
equals and followed by one or more values and value separators. The equals may optionally
be preceded or followed by zero, one, or more contiguous bianks. The end of a record has
the same effect as a blank character, unless it is within a character constant. Any sequence
of two or more consecutive blanks is treated as a single blank, unless it is within a character
constant.

The name may be any name in the namelist-group-object-list.
Each value is either a null value or one of the forms:

c
r*c
¥

where ¢ is a literal constant and r is an unsigned, nonzero, integer literal constant. The r*c
form is equivalent to r successive appearances of the constant ¢, and the r* form is equiva-
lent to r successive null values. Neither of these forms may contain embedded blanks,
except where permitted within the constant c.

A value separator for namelist formatting is the same as for list-directed (10.8) except that a
value separator containing a slash must not immediately precede a value.

10.9.1 Namelist input. Input for a namelist statement consists of:
(1) Optional blanks

(2) The character & followed immediately by the same namelist-group-name specified
in the namelist input statement

(3) One or more blanks

(4) A sequence of zero or more name-value sequences separated by value separa-
tors.

In each name-value subéequence, the name must be the name of a namelist group object
list item optionally qualified as noted.

If a processor is capable of representing letters in both upper and lower case, a group name
and object name is without regard to case. Any subscripts or substring ranges appearing in
the name must contain only integer constant expressions.

Within the input data, each name must correspond to a specific namelist group object name.
Subscripts and substring ranges within namelist group object names must be integer con-
stants. If a namelist group object name is the name of an array, the name in the input
record corresponding to it may be either the array name or the name of an element or sec-
tion of that array, indicated by qualifying the array name with constant subscripts. [t the
namelist group object name is the name of a variable of derived type, the name in the input
record may be either the name of the variable or of one of its components, indicated by
qualifying the variable name with the appropriate component name. Successive

gualifications may be applied as appropriate to the shape and type of the variable repre-
sented.

The order of names in the input records need not match the order of the namelist group
object items. The input records need not contain all the names of the namalist group object
items. The definition status of any names from the namelist group object that do not occur

Version 102 1986 November Page 10-14

INPUT/OUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

45

50

in the input record remains unchanged. The name in the input record may be preceded and
foliowed by one or more optional blanks but must not contain embedded blanks.

The datum c is any input value acceptable to format specifications for a given type, except
as noted. The form of the input value must be acceptable for the type of the namelist group
object list item. The number and forms of the input values which may follow the equals in a
name-value subsequence depend on the shape and type of the object represented by the
name in the input record. When the name in the input record is the name of a scalar vari-
able of an intrinsic type, the equals must not be followed by more than one value. This
value must be of a form acceptable to format specifications for that type, except as noted.
Bianks are never used as zeros, and embedded blanks are not permitted in constants
except within character constants.

When the name in the input record represents an array variable or a variable of derived
type, the effect is as if the variable represented were expanded into a sequence of list items
of intrinsic data types, in the same way that input/ouput list items are expanded (9.4.2).
Each input value following the equals must then be acceptable to format specifications for
the intrinsic type of the list item in the corresponding position in the expanded sequence,
except as noted. The number of values following the equals must not exceed the number of
list items in the expanded sequence, but may be less; in the latter case, the effect is as if
sufficient null values had been appended to match any remaining list items in the expanded
sequence. For example, if the name in the input record is the name of an integer array of
size 100, at most 100 values, each of which is either a digit string or a null value, may follow
the equals; these values would then be assigned to the elements of the array in the order
specified by subscript order value.

ﬁash encountered as a value separator during the execution of a namelist input statement
Zauses termination of execution of that input statement after assignment of the previous
value. If there are additional items in the namelist, the effect is as if null values had been
supplied for them.

When the corresponding namelist group object list item is of type real or double precision,
the input form of the input value is that of a numeric input field. A numeric input field is a
field suitable for F editing (10.5.1.2.1) that is assumed to have no fractional digits unless a
decimal point appears within the field.

When the corresponding list item is of type complex, the input form of the input value con-
sists of a left parenthesis followed by an ordered pair of numeric input fields separated by a
comma and followed by a right parenthesis. The first numeric input field is the real part of
the complex constant and the second part is the imaginary part. Each of the numeric input
fields may be preceded or followed by blanks. The end of a record may occur between the
real part and the comma or between the comma and the imaginary part.

When the corresponding list item is of type logical, the input form of the input value must not
include either siashes, blanks, equais, ampersand; or commas among the optional charac-
ters permitted for L editing (10.5.3).

When the corresponding list item is of type character, the input form of the input value con-
sists of a nonempty string of characters enclosed in apostrophes or quotation marks. Each
apostrophe within a character constant delimited by apostrophes must be represented by two
consecutive apostrophes without an intervening blank or end of record. Each quotation mark
within a character constant delimited by quotation marks must be represented by two con-
secutive quotation marks without an intervening blank or end of record. Character constants
may be continued from the end of one record to the beginning of the next record. The end
of the record does not cause a blank or any other character to become part of the constant.
The constant may be continued on as many records as needed. The characters blank,
comma, equals, and slash may appear in character constants.

Version 102 1986 November Page 10-15

INPUT/QUTPUT EDITING X3J3/58

10

15

20

25

30

35

40

Let /en be the length of the list item, and let w be the length of the character constant. |f
fen is less than or equal to w, the leftmost /fen characters of the constant are transmitted to
the list itern. If len is greater than w, the constant is transmitted to the leftmost w characters
of the list item and the remaining fen — w characters of the list item are filled with blanks.
Note that the effect is as though the constant were assigned to the list item in a character
assignment statement (7.5.1.4).

If the corresponding list item is of type character and (1) the character constant does not
contain the value separators blank, comma, slash, ampersand, or equals, (2) the character
constant does not cross a record boundary, (3) the first nonblank character is not a quotation
mark or an apostrophe, and (4) the leading characters are not numeric followed by an aster-
isk, then the enclosing apostrophes or quotation marks are not required and apostrophes or
quotation marks within the character constant are not to be doubled.

10.9.1.1 Null Values. A null value is specified by:
(1) r=* form
(2) Blanks between two consecutive value separators following an equals

(3) Zero or more blanks preceding the first value separator and following an equals,
or

(4) Two consecutive nonblank value separators

A null value has no effect on the definition status of the corresponding input list item. If the
namelist group object list item is defined, it retains its previous value; if it is undefined, it
remains undefined. A null value must not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire complex constant.

Note that the end of a record following a value separator, with or without intervening blanks,
does not specify a null value.
10.9.1.2 Blanks. Ali blanks in a namelist input record are considered to be part of some
value separator except for:

(1} Blanks embedded in a character constant,

(2) Embedded blanks surrounding the real or imaginary part of a complex constant,

(3) Leading blanks following the equals unless followed immediately by .a slash or
comma, and

(4) Blanks between a name and the foliowing equals.

10.9.2 Namelist Output. The form of the output produced is the same as that required for
input, except as noted otherwise. |f the processor is capable of representing letters in both
upper and lower case, the name in the output is in upper case. With the exception of
nondelimited character constants, the vaiues are separated by (1) one or more blanks or (2)

a comma optionally preceded by one or more blanks and optionally followed by one or more
blanks.

The processor may begin new records as necessary. However, except for complex con-
stants and character constants, the end of a record must not occur within a constant or a
name, and blanks must not appear within a constant or a name.

Logical output constants are T for the value true and F for the value false.
integer output constants are produced with the effect of an lw edit descriptor.

Real and double precision constants are produced with the effect of either an F edit descrip-
tor or an E edit descriptor, depending on the magnitude x of the value and a range

Versicn 102 1586 November Page 10-16

INPUT/OUTPUT EDITING X3J3/58

(%3]

10

15

25

30

35

10" = x < 10 |i the mafgnitude x is within this range, the constant is produced using
OPFw.d; otherwise, 1PEw.dEe is used.

For numeric output, reasonable processor-dependent integer values of w, d, and e are used
for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating the real and
imaginary parts. The end of a record may occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than, an entire record. The only embed-
ded blanks permitted within a complex constant are between the comma and the end of a
record and one blank at the beginning of the next record.

Character constants produced for a file opened without a DELIM = specifier (9.3.4.9) or with
a DELIM = specifier with a value of NONE:

(1) Are not delimited by apostrophes or quotation marks,
(2) Are not preceded or followed by a value separator,

(3) Have each internal apostrophe or quotation mark represented externally by one
apostrophe or quotation mark, and

(4) Have a blank character inserted by the processor for carriage control at the begin-
ning of any record that begins with the continuation of a character constant from
the preceding record.

Character constants produced for a file opened with a DELIM= specifier with a value of
QUOTE are delimited by quotes, are preceded and followed by a value separator, and have
each internal quote represented on the external medium by two quotes.

Character constants produced for a file opened with a DELIM= specifier with a value of
APOSTROPHE are delimited by apostrophes, are preceded and followed by a value separa-
tor, and have each internal apostrophe represented on the external medium by two apostro-
phes.

If two or more successive values in an array in an output record produced have identical
values, the processor has the option of producing a repeated constant of the form r¥c
instead of the sequence of identical values.

The name of each namelist group object list item is ptaced in the output record followed by
an equals and one or more values of the namelist group object list item.

& namelist-group-name will be produced by namelist formatting at the start of the first output
record to indicate which specific block of data objects J% being output. A slash is produced
by namelist formatting to indicate the end of the namelist formatting.

A null value is not produced by namelist formatting.

Except for continuation of delimited character constants, each output record begins with a
blank character to provide carriage control when the record is printed.

Version 102 1986 November Page 10-17

o

10

15

20

25

30

35

11 PROGRAM UNITS

The terms and basic concepts of program units were introduced in 2.2. An externat program
unit may be a main program, procedure subprogram, module subprogram, or block data sub-
program. An internal program unit is a procedure subprogram.

This section describes all of these program units except procedure subprograms, which are
described in Section 12.

11.1 Main Program.

R203 main-program is [program-stmt]
specification-part
[execution-part]
[internal-procedure-part |
end-program-stmt

R1101 program-stmt is PROGRAM program-name
R1102 end-program-stmt is END [PROGRAM [program-name] |

Constraint: The program-name may be included in the end-program-stmt only it the optional
program-stmt is used and, if included, must be identical to the program-name
specified in the program-stmt.

The program name is global to the executable program, and must not be the same as the
name of any other external program unit, external procedure, or common block in the exe-
cutable program, nor the same as any local name in the main program.

11.1.1 Main Program Specifications. The specifications in the main program must not
include an OPTIONAL statement, an INTENT statement, a PUBLIC statement, a PRIVATE
statement, or the equivalent attributes (6.1.2). A SAVE statement has no effect in a main
program.

11.1.2 Main Program Executable Part. The sequence of execution-part statements
specifies the actions of the main program during program execution. Execution of an exe-
cutable program (R201) begins with the first executable construct of the main program. A
main program execution-part statement may be any of those listed in syntax rules R214,
R217, and R218 of Section 2.1, except a RETURN statement or an ENTRY statement.

A main program must not be recursive; that is, a refarence to it must not appear in any pro-
gram unit in the executable program, including itself.

Execution of an executable program ends with execution of the END PROGRAM statement
of the main program or with execution of a STOP statement in any program unit of the exe-
cutable program.

11.1.3 Main Program Internal Procedures. Any definitions of procedures internal to the
main program follow the CONTAINS statement. Internal procedures are described in Sec-
tion 12. The main program is called the host of its internal procedures.

11.2 Procedure Subprograms. Procedure subprograms are described in Section 12.

Version 102 1986 November Page 11-1

PROGRAM UNITS X3J3/58

10

15

20

25

30

35

40

45

11.3 Module Subprograms. A module contains a set of specifications and definitions
that are to be accessed by other program units.

R207 module-subprogram is module-stmt
specification-part
[procedure-subprogram |...
end-module-stmt

R1103 module-stmt is MODULE module-name
R1104 end-module-stmt is END [MODULE [module-name | |

Constraint: If the module-name is specified in the end-module-simt, it must be identical to
the module-name specified in the module-stmt.

The module name is global to the executable program, and must not be the same as the
name of any other external program unit, externai procedure, or common block in the execut-
able program, nor the same as any local name in the module subprogram.

A USE statement specifying a module name is a module reference. At the time a module
reference is processed, the public portions of the specified module subprogram must be
available. A module subprogram must not reference itself, either directly or indirectly.

The accessibitity, public or private, of specifications and definitions in a module to a scoping
unit making reference to the module may be controlled in both the module and the scoping
unit making the reference. In the module, the PRIVATE statement, the PUBLIC statement
(5.2.3), and the equivalent attributes (5.1.2.2) are used to control the accessibility of module
entities outside the module.

In a scoping unit making reference to a module, the ONLY option on the USE statement
may be used to further limit the availability, to that referencing scoping unit, of the public
entities in the module.

A specification-stmt in the specification-part of a module may be any of those listed in syntax
rule R218 of Section 2.1, except an INTENT statement, an OPTIONAL statement, and the
equivalent INTENT and OPTIONAL attributes.

11.3.1 The USE Statement. The USE statement provides the means by which a scoping
unit accesses data objects, derived types, interface blocks, and procedures in a medule sub-
program.

R1105 use-stmt is USE module-name [, rename-list |
or USE module-name , ONLY : [only-list]
R1106 rename is use-name = > local-name
R1107 only is use-name [= > localname |
R1108 wuse-name is variable-name

or procedure-name
or type-name
or constant-name

The USE statement without the ONLY option provides access to ali public entities in the
specified module.

Each use-name must be the name of a public entity in the module. If a local-name appeais
in a rename-fist or an only-fist, it is the local name for the entity specified by use-name; other-
wise, the local name is the use-name.

A USE statement with the ONLY option provides access only to those entities whose names
appear as use-names in the only-list. In a scoping unit, two or more accessible entities may

Version 102 1986 November Page 11-2

PROGRAM UNITS X3J3/S8

10

15

20

25

30

35

have the same name only if no entity is referenced by this name in the scoping unit. Except
for this, the local name of any entity given accessibility by a USE statement must differ from
the local names of all other entities accessible from the scoping unit through USE state-
ments and otherwise. Note that an entity may be accessed by more than one local name.

In a module, a local name of an entity accessible by a USE statement may appear in a PRI-
VATE or PUBLIC statement, but in no other specification statement in the module. Unless
given the PRIVATE attribute, such accessed entities become public entities of the module.

Examples:

USE STATS_LIB

provides access to all public entities in the module STATS__LIB.
USE MATH_LIB; USE STATS_LIB, PROD => SPROD

makes all public entities in both MATH__LIB and STATS_LIB accessible. If MATH_LIB
contains an entity called PROD, it is accessible by its own name while the entity PROD of
STATS__LIB is accessible by the name SPROD. Both modules may contain an entity called
SUMM, for example, if SUMM does not appear in the scoping unit containing the USE state-
ments and SUMM is not declared in a type statement in the scoping unit.

11.3.2 Examples of Modules.

11.3.2.1 Identical Common Blocks. A common block and all its associated specification
statements may be placed in & module named, for example, COMMON and accessed by a
USE statement of the form

USE COMMON

that accesses the whole module without any renaming. This ensures that all instances of
the common block are identical. Module COMMON could contain more than one common
block.

11.3.2.2 Global Data. A module may contain just data objects, for example

MODULE DATA_MODULE

REAL AC10), B, C(20,20)
INTEGER, INITIAL :: I=0
INTEGER, PARAMETER :: J=10
COMPLEX D(J,J)

END MODULE

Note 'that data objects made global in this manner may have any combination of data types.
Access to some of these may be made by a USE statement with the ONLY option, such as:
USE DATA_MODULE, ONLY: A, B, D-

and access to all of them may be made by the following USE statement

USE DATA_MODULE

Access to all of them with some renaming to avoid name conflicts may be made by:

USE DATA_MODULE, A => AMODULE, D => DMODULE

Version 102 1986 November Page 11-3

PROGRAM UNITS X3J3/58

10

15

20

25

30

35

40

45

11.3.2.3 Data Structures. A derived type may be defined in a module and accessed in a
number of external program units. This is the only way to access the same type definition in
more than one external program unit. For example:

MODULE SPARSE

TYPE NONZERO
REAL A
INTEGER I, J

END TYPE

END MODULE

defines a type consisting of a real component and two integer components for holding the
numerical value of a nonzero matrix element and its row and column indices.

11.3.2.4 Global Allocatable Arrays. Many programs need large global allocatable arrays
whose sizes are not known before program execution. A simple form for such a program is:

PROGRAM GLOBAL_WORK

CALL CONFIGURE _ARRAYS | PERFORM THE APPROPRIATE ALLOCATIONS
CALL COMPUTE | USE THE ARRAYS IN COMPUTATIONS

END PROGRAM GLOBAL _KORK

MODULE WORK ARRAYS I AN EXAMPLE SET OF WORK ARRAYS
INTEGER N

REAL, ALLOCATABLE, SAVE :: A(:), B(:z,:), C(:,:,2)
END MODULE WORK_ARRAYS

SUBROUTINE CONFIGURE_ARRAYS ! PROCESS TO SET UP WORK ARRAYS
USE WORK_ARRAYS

READ (INPUT,*) N

ALLOCATE ¢ AC(N>, B(N,N), C(N,N,2*N))

END SUBROUTINE CONFIGURE_ARRAYS

SUBROUTINE COMPUTE

USE WORK_ARRAYS

I COMPUTATIONS INVOLVING ARRAYS A, B, AND C
END SUBROUTINE COMPUTE

Typically, many procedures need access to the work arrays, and all such procedures would
contain the statement

USE HORK_ARRAYS

11.3.2.5 Procedure Libraries. Interfaces to external procedures in a library may be gath-
ered into a module. This permits the use of keyword and optional arguments, and allows
static checking of the references. Different versions may be constructed for different appli-
cations, using keywords in common use in each application. An example is the following
library module:

MODULE LIBRARY_LLS

INTERFACE
SUBROUTINE LLS (X, A, F, FLAG)
REAL (*, =) X (z, 1)
REAL (EFFECTIVE_PRECISION (X, EFFECTIVE_EXPONENT_RANGE (X)), &

ARRAY (DSIZE (X, 2)) :: A, F

INTEGER FLAG

END INTERFACE

Version 102 1986 November Page 11-4

PROGRAM UNITS X3J3/58

10

15

20

25

30

35

40

END MODULE
This module allows the subroutine LLS to be invoked:
USE LIBRARY_LLS

CALL LLS (X = ABC, A = D, F = XX, FLAG = IFLAG)

11.3.2.6 Operator Extensions. To extend an intrinsic operator symbol to have an addi-
tional meaning, a function subprogram specifying that operator symbol in the OPERATOR
option of the FUNCTION statement may be placed in a module. For example, // may be
overloaded to perform concatenation of two derived-type objects serving as varying length
character strings; + may be overloaded to specify matrix addition and/or interval arithmetic
addition; etc.

A module might contain several such functions. If the operation is written in a language
other than Fortran, it may be written as an external function and its procedure interface
placed in the module.

11.3.2.7 Data Abstraction. A module may encapsulate a derived-type definition and all
the procedures that represent operations on values of this type. An example is given in
Appendix C for set operations.

11.4 Block Data Subprograms. A block data subprogram is used to provide initial
values for data entities in named common blocks.

R208 block-data-subprogram is block-data-stmt
specification-part
end-block-data-stmt
R1109 block-data-stmt is BLOCK DATA [block-data-name |
R1110 end-block-data-stmt is END [BLOCK DATA [block-data-name] |

Constraint: The bilock-data-name may be included in the end-block-data-stmt only if it was
provided in the block-data-stmt and, if included, must be identical to the block-
data-name in the block-data-stmt,

The specifications of a block data subprogram may contain only the following statements:
type declaration, IMPLICIT, PARAMETER, SAVE, COMMON, DATA, DIMENSION, and
EQUIVALENCE.

If an entity in a named common block is initially defined, all entities having storage units in
the common block storage sequence must be specified even if they are not all initially
defined. More than one named common block may have objects initially defined in a single
block data subprogram. Note, therefore, that the primary constituents of a block data sub-
program are type declarations of common block entities, COMMON statements, and DATA
statements.

Only an entity in a named common block may be initially defined in a block data subpro-
gram. Note that entities associated with an entity in a common block are considered to be
in that common block.

The same named common block may not be specified in more than one block data subpro-
gram in an executable program.

There must not be more than one unnamed block data subprogram in an executable pro-
gram.

Version 102 1986 November Page 11-5

10

15

20

25

30

35

12 PROCEDURES

The concept of a procedure was introduced in 2.2.3. This section contains a complete
description of procedures. The action specified by a procedure is performed when the pro-
cedure is invoked by execution of a reference to it. The reference may identify, as actual
arguments, entities that are associated during execution of the procedure reference with cor-
responding dummy arguments in the procedure definition.

12.1 Procedure Classifications. A procedure is classified according to the form of its
reference and the way it is defined.

12.1.1 Procedure Classification by Reference. The definition of a procedure specifies it
to be a function or a subroutine. A reference to a function appears as a primary within an
expression. A reference to a subroutine is a CALL statement or a defined assignment state-
ment.

A procedure is classified as elemental if it may be referenced elementally (12.4.3, 12.4.5).

12.1.2 Procedure Classification by Means of Definition. A procedure is either an intrin-
sic procedure, an external or internal procedure, a dummy procedure, or a statement func-
tion.

12.1.2.1 Intrinslc Procedures. A procedure that is provided as an inherent part of the
processor is an intrinsic procedure.

12.1.2.2 External and Internal Procedures. A procedure that is defined by a procedure
subprogram is an external procedure. Means other than Fortran alsoc may be used to define
an external procedure.

An internal procedure is a procedure definition contained within a main program or proce-
dure subprogram.

If a procedure subprogram contains one or more ENTRY statements, it defines a procedure
for each ENTRY statement and a procedure for the SUBROUTINE or FUNCTION statement.

An internal procedure must not contain ENTRY statements.

12.1.2.3 Dummy Procedures. A dummy argument that is specified as a procedure or
appears in a procedure reférence is a dummy procedure.

12.1.2.4 Statement Functions. A function that is defined by a single statement is a state-
ment function.

12.2 Characteristics of Procedures. The characteristics of a procedure are the
classification of the procedure as a function or subroutine, the characteristics of its argu-
ments, and the characteristics of its result value if it is a function.

12.2.1 Characteristics of Dummy Arguments. Each dummy argument is either a dummy
data object, a dummy procedure, or an asterisk (alternate return indicator). A dummy argument other
than an asterisk may be specified to have the OPTIONAL attribute. This attribute means that
the dummy argument need not be associated with an actual argument for any particular ref-
erence to the procedure.

Version 102 1486 November Page 12-1

PROCEDURES X3J3/58

10

15

20

25

30

35

40

12.2.1.1 Characteristics of Dummy Data Objects. The characteristics of a dummy data
object are its type, type parameters (if any), shape, intent (5.1.2.3, 5.2.1), optionality (5.1.2.7,
5.2.2), and whether it is allocatable (5.1.2.4.3). If a type parameter or a bound of an array is
an expression, the exact dependence on other entities is a characteristic. If shape, size, or
type parameters are assumed, these are characteristics.

12.2.1.2 Characteristics of Dummy Procedures. The characteristics of a dummy proce-
dure are the explicitness of its interface (12.3.1), the characteristics of the procedure if the
interface is explicit, and its optionality (5.1.2.7, 5.2.2).

12.2.1.3 Characteristics of Asterisk Dummy Arguments. An asierisk as a dummy argument has
no characteristics.

12.2.2 Characteristics of Function Results. The characteristics of a function result are its
type, type parameters (if any), shape, and whether it is allocatable. Where a type parameter
or bound of an array is an expression, the exact dependence on other entities is a charac-
teristic. If the length of a character data object is assumed, this is a characteristic.

12.3 Proceciure Interface. The interface of a procedure determines the forms of refer-
ence through which it may be invoked. The interface are the characteristics of the proce-
dure, the name of the procedure, the name of each dummy argument, the defined operator
(if any) by which a reference to a function may appear and whether ot not a reference to a
subroutine may be implied in a defined assignment statement. The characteristics of a pro-
cedure are fixed, but the remainder of the interface may differ in different scoping units.

12.3.1 Implicit and Explicit Interfaces. If a procedure is accessible in a program unit, its
interface is either explicit or implicit in that program unit. The interface of an internal pro-
cedure or intrinsic procedure is always explicit. For example, the subroutine LLS of 11.3.25
has an explicit interface. The interface of an external procedure or dummy procedure is
explicit if an interface block (12.3.2.1) for the procedure is supplied or if the procedure
definition is accessible via a USE statement, and implicit otherwise. The interface of a state-
ment function is always implicit.

12.3.1.1 Explicit Interface. A procedure must have an explicit interface if any of the fol-
lowing is true:
(1) A reference to the procedure appears:
(a) With a keyword argument (12.4.1)
(by As a defined assignment (subroutines only)
(c) In an expression as a defined operator {functions only)
(d) As an elemental reference
(2) The procedure has:
(a} An optional dummy argument
(b) An array-valued result (functions only)
(¢) An allocatable result (functions only)
(d) A dummy argument that is an assumed-shape or allocatable array

(&) A dummy argument with assumed type parameters other than character
length

Version 162 1986 Wovember Page 12-2

PROCEDURES X3J3/58

10

15

20

25

30

35

40

() A result whose type parameter values are neither assumed length (character
type only) nor constant.

(3) Another procedure having the same name is accessible

12.3.1.2 Implicit Interface. An actual argument may be sequence associated (12.4.1.5)
with its dummy argument if its interface is implicit.

12.3.2 Specification of the Procedure Interface. The interface for an internal, external,
or dummy procedure is specified by a FUNCTION, SUBROUTINE, or ENTRY statement and
by specification statements for the dummy arguments and the result of a function. These
statements may appear in the procedure definition, in an interface block, or both.

12.3.2.1 Procedure Interface Block.

R1201 interface-block is interface-stmt
interface-header
[use-stmt ...
[implicit-part]
[declaration-construct]...
end-interface-stmt

R1202 interface-stmi is INTERFACE
R1203 end-interface-stmt is END INTERFACE
R1204 interface-header is function-stmt

or subroutine-stmt

An interface block specifies the interface of the procedure named in the FUNCTION or SUB-
ROUTINE statement in the interface block. The statements are interpreted as if they were
the leading statements of the external procedure definition. -For example,

IMPLICIT NONE
INTERFACE
FUNCTION INVERSE (A)
END INTERFACE

is a valid fragment of code because the FUNCTION statement is interpreted as if it were the
leading statement of an external function, so the default implicit typing rules are assumed.

An interface block that names as a procedure a dummy argument of the host scoping unit
specifies that dummy argument to be a procedure with the specified interface. A dummy
argument must not be so named more than once. Such a dummy argument may be
specified in an OPTIONAL statement or with an OPTIONAL attribute in the host but must not
appear in any other specification statement in the host. For example,

SUBROUTINE INVERSE (A, FN)
REAL A '
INTERFACE

FUNCTION FN (B)
REAL FN, B '

END INTERFACE

specifies a subroutine whose second argument is a real function with a single real argument.

Version 102 1986 November Page 12-3

PROCEDURES X3J3/58

10

15

20

25

30

35

40

In a module, the name of the external procedure may appear in a PUBLIC or PRIVATE
statement or be given the equivalent attribute, but must not appear in any other specification
statement.

The characteristics {12.2) of the procedure itself must be identical with those specified by
the interface block. The presence of the interface block does not require the availability of
the procedure until it is invoked. Within a scoping unit, only one interface block may be pro-
vided for a particular procedure. |f the procedure is a module procedure or an internal pro-
cedure, the names of the arguments and the operator (if present) override those of the pro-
cedure itself.

12.3.2.2 EXTERNAL Statement. An external statement is- used to specify a symbolic
name as representing an external procedure or dummy procedure, and to permit such a
name to be used as an actual argument.

R1205 external-stmt is EXTERNAL external-name-list

R1206 external-name is external-procedure-name
or dummy-arg-name
or block-data-name

The appearance of the name of a dummy argument in an EXTERNAL statement specifies
that the dummy argument is a dummy procedure.

The appearance in an EXTERNAL statement of a name that is not the name of a dummy
argument specifies that the name is the name of an external procedure or block data sub-
program.

Only cne appearance of a symbolic name in all of the EXTERNAL statements in any one
sequence of declaration part statements is permitted.

12.3.2.3 INTRINSIC Statement. An INTRINSIC statement is used to specify a symbolic
name as representing an intrinsic procedure (Section 13). It also permits a name that repre-
sents a specific intrinsic function to be used as an actual argument.

R1207 intrinsic-stmt is INTRINSIC intrinsic-procedure-name-list

The appearance of a name in an INTRINSIC statement confirms that the name is the name
of an intrinsic procedure. The appearance of a generic function name (13.1) in an INTRIN-
SIC statement does not cause that name to lose its generic property.

Only one appearance of a symbolic name in all of the INTRINSIC statements in any one
sequence declaration part statements is permitted. Note that a symbolic name must not
appear in both an EXTERNAL and an INTRINSIC staterment in the same sequence of
declaration-part statements.

12.3.2.4 Implicit Interface Specification. In a scoping unit where the interface of a func-
tion is implicit, the type and type parameters of the function result are specified by implicit or
explicit type specification of the function name. The type, type parameters, and shape of
dummy arguments of a procedure referenced from a scoping unit where the interface of a
procedure is implicit are assumed to be such that the actual arguments are consistent with
the characteristics of the dummy arguments.

12.4 Procedure Reference. The form of a procedure reference is dependent on the
interface of the procedure, but is independent of the means by which the procedure is
defined. The forms of procedure references are:

R1208 function-reference is function-name (| actual-arg-spec-list |)

Version 102 1986 November Page 12-4

PROCEDURES X3J3/58

10

20

25

30

35

40

45

Constraint: The actual-arg-spec-fist for a funclicn reference must not contain an alt-retrn-spec.

R1209 call-stmt is CALL subroutine-name [{ [actual-arg-spec-list 1)]

12.4.1 Actual Argument List.

R1210 actual-arg-spec is [keyword = | actual-arg
R1211 keyword is dummy-arg-name
R1212 actual-arg is expr

or variable
or procedure-name
or alt-return-spec

R1213 alt-return-spec is = label

Constraint: The keyword may be omitted from an actual-arg-spec only if the keyword has
been omitted from each preceding actual-arg-spec in the argument list,

Constraint: Each keyword must be the name of a dummy argument in the interface of the
procedure.

in either a subroutine reference or a function reference, the actual argument list identifies
the correspondence between the actual arguments supplied and the dummy arguments of
the procedure. In the absence of a keyword, an actual argument is associated with the
dummy argument occupying the corresponding position in the dummy argument list; i.e., the
first actual argument is associated with the first dummy argument, the second actual argu-
ment is associated with the second dummy argument, etc. |f a keyword is present, the
actual argument Is associated with the dummy argument whose name is tha same as the
keyword. Exactly one actual argument must be associated with each nonoptional dummy
argument. At most one actual argument may be associated with each optional argument.
Each actual argument must be associated with a dummy argument. For example, the proce-
dure

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT)
INTERFACE
FUNCTION FUNCT (X)
REAL FUNCT, X
END INTERFACE
REAL SOLUTION
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT

may be invoked with
CALL SOLVE (FUN, SOL, PRINT = &)

12.4.1.1 Arguments Associated with Dummy Data Objects. If a dummy argument is a
dummy data object, the associafed actual argument must be an expression of the same type
or a data object or subobject of the same type. The type parameter values of the actual
argument, if any, must agree with or be assumed by the dummy argument. The shape of
the actual argument must agree with or be assumed by the dummy argument except when a
procedure reference is elemental (12.4.3, 12.4.5) or when the actual argument is sequence
associated with the dummy argument (12.4.1.5). Each element of an array-valued actual
argument or of a sequence in a sequence association (1 2.4.1.5) is associated with the ele-
ment of the dummy array that has the same position in subscript order vaiue (6.2.4.2).
Changing the effective range of a dummy argument array has no effect on the effective
range of the associated actual argument array.

Version 102 1986 November Page 12-5

PROCEDURES X3J3/58

10

15

20

25

30

35

40

45

If the dummy argument is allocatable, the actual argument must be an allocatable array that
doses not have the RANGE attribute and the types, type parameter values, if any, and ranks
must agree. The allocation status of the dummy argument becomes that of the actual argu-
ment at invocation of the procedure. This may be changed during execution of the proce-
dure, in which case the actual argument allocation state becomes that of the dummy argu-
ment when the procedure compietes execution.

If the intent of a dummy argument is OUT or INOUT, the actual argument must be definable.
If the intent of a dummy argument is OUT, the corresponding actual argument becomes
undefined at the time the association is established.

12.4.1.2 Arguments Associated with Dummy Procedures. If a dummy argument is a
dummy procedure, the associated actual argument must be the name of an external,
dummy, or intrinsic procedure. The only intrinsic procedures permitted are those listed in
13.10 and not marked with a bullet (»). The actual argument name must be one for which
exactly one procedure is accessible in the invoking procedure. (A specific intrinsic function
and a generic intrinsic function of the same name are considered to be one procedure.)
The actual argument procedure must not have dummy arguments with assumed type param-
eters other than character assumed lengths.

If the interface of the dummy procedure is explicit, the characteristics of the associated pro-
cedure must be the same as the characteristics of the dummy procedure (12.2).

If the interface of the dummy procedure is implicit and either the name of the dummy proce-
dure is explicitly typed or the procedure is referenced as a function, the dummy procedure
must not be referenced as a subroutine and the actual argument must be a function or
dummy procedure.

If the interface of the dummy procedure is implicit and a reference to the procedure appears
as a subroutine reference, the actual argument must be a subroutine or dummy procedure.

12.4.1.3 Arguments Assoclated with Alternate Return Indicators. It a dummy argument is an
asterisk (12.5.2.3), the associated actual argument must be an alternate return specifier. The label in the alternate return
specifier must identify an executable construct in the scoping unit containing the procedure reference.

12.4.1.4 Sequence Association. A sequence array is an allocatable array, assumed-size
array, or explicit-shape array without the RANGE attribute that is either a dummy array asso-
ciated with a sequence array or is not a dummy argument. An actual argument represents
an element sequence if it is a whole array name, array element name, or array element
substring name and the array is a sequence array. If the actual argument is a whole array
name, the element sequence consists of the elements in subscript order value. If the actual
argument is an array element name, the element sequence consists of that array element
and each element that follows it in subscript order value. If the actuat argument is an array
element substring name, the element sequence consists of the character storage units
beginning with the first storage unit in that array element substring and continuing to the end
of the array. The character storage units are viewed as elements consisting of consecutive
groups of character storage units having the length of the array element substring. Thus,
the first such element is the array element substring itself. Note that some of the elements
in the element sequence may consist of storage units from different elements of the original
array.

If the interface for a procedure reference is implicit, the actual argument represents an ele-
ment sequence, and the corresponding dummy argument is an array-valued data object that
is neither allocatable nor assumed shape, the actual argument is sequence associated with
the dummy argument. The rank and shape of the actual argument need not agree with the
rank and shape of the dummy argument, but the number of elements in the dummy argu-
ment must not exceed the number of elements in the element sequence of the actual

Version 102 1986 November Page 12-6

PROCEDURES X3J3/S8

argument. |f the dummy argument is assumed size, the number of elements in the dummy
argument is exactly the number of elements in the element sequence.

Table 12.1. The effects of the shape matching rules in 12.411 and 12.4.1.4 for
nonelemental references.
5 Actual Argument
Nonsequence Other Scalars
Array Sequence Array (Inciuding
Dummy (Including Allocatable Not Assumed- Element of element of
Argument Ranged and size, not Assumed- sequence nonsegquence
10 Allocatable) Not Ranged allocatable size Array array)
Explicit- Allowed Allowed Aliowed Allowed Allowed
Shaped Shape may Shape may Shape may Shape may
differ differ differ diifer
15 Resull is Result is Result is Result is
sequence sequence sequence sequence
Assumed- Allowed Allowed Allowed
Size Shape may Shape may Shape may
20 differ differ differ
Result is Result is Result is
sequence sequence sequence
Assumed- Allowed Allowed Allowed
25 Shape Explicit Explicit Explicit
interface interface interface
required required required
Allocatable Allowed
30 Explicit
interface
required
35 Scalar Allowed Allowed

MNotes for Table 12.1:

(1) A sequence array is one denoted by a whole array name that does not have the
RANGE attribute and which is not assumed-shape. If it is a dummy array, the
association with its actual argument must be described by “Result is sequence” in
40 the table.

(2) For arrays of type character, “slement” includes element substrings.

(3) “Shape may differ” indicates that the shape of the actual argument need not
match the shape of the dummy argument if the interface is implicit.

12.4.2 Function Reference. A function is invoked during expression evaluation by a func-

45 tion reference or by ‘defined ‘operations (7.1.3). When it is invoked, all actual argument
expressions are evaluated, then the arguments are associated, and then the function is exe-
cuted. When execution of the function is complete, the value of the function result is avail-
able for use in the expression that caused the function to be invoked.

12.4.3 Elemental Function Reference. A reference to a function is an elemental refer-
50 ence if the interface for the function is explicit, if its dummy arguments and result are all
scalar data objects, and if the type parameters of the result are independent of the values of
the actual arguments. Arguments to such a reference may be arrays, provided all array
arguments have the same shape. The result has the same shape as the array arguments
and the value of each element in the resuilt is obtained by evaluating the function using the
55 scalar arguments and the corresponding elements of the array arguments. For example, if X

Version 102 1986 November Page 12-7

PROCEDURES X3J3/58

10

15

20

25

30

35

40

and Y are arrays of shape [m, n],
MAX (X, 0.0, VO
is an array expression of shape [m, n] whose elements have values

MAX (X (, /5 0.0,Y (¢,)i = 1,2,...m j = 1,2,...n
The result must not depend on the order in which these references are made.
For example, the reference to the procedure

FUNCTION SCALE (A
READ (%, %) FACTOR
SCALE = A *» FACTOR

END

must not be an elemental reference.

A function reference is not interpreted as being such an elemental reference if it may be
interpreted as a nonelemental reference to a function with the same name whose interface
is explicit in the scoping unit containing the reference. For example, the expression
POWER (A (1 : 10)), where A is an array, would not be interpreted as an elemental refer-
ence if a function POWER with one argument having the type and rank of A is accessible.

12.4.4 Subroutine Reference. A subroutine is invoked by execution of a CALL statement
or defined assignment statement (7.5.1.3). When a subroutine is invoked, all actual argu-
ment expressions are evaluated, then the arguments are associated, and then the subrou-
tine is executed. When the action specified by the subroutine is completed, execution of
the CALL statement or defined assignment statement is also completed. if a CALL state-
ment includes one or more alternate return specifiers among its arguments, control may be
transferred to one of the statements indicated, depending on the action specified by the sub-
routine.

12.4.5 Elemental Assignment. A reference to an assignment subroutine may be an sle-
mental reference in a defined assignment statement if its dummy arguments are scalar and
the type parameters of the first dummy argument are independent of the value of the sec-
ond dummy argument. In such a reference, the first actual argument is array valued and the
second is of the same shape or is scalar. The subroutine is invoked once for each element
of the first actual argument, using the corresponding element of the second actual argument
or its scalar value. The result must not depend on the order in which these invocations are
made. An assignment is not interpreted as an elemental assignment if it may be interpreted
as a nonelemental assignment.

12.5 Procedure Definition.

12.5.1 Intrinsic Procedure Definition. Intrinsic procedures are defined as an inherent part
of the processor. A standard-conforming processor must include the intrinsic procedures
described in Section 13, but may include others. However, a standard-conforming program
must not make use of intrinsic procedures other than those described in Section 13.

12.5.2 Procedures Defined by Procedure Subprograms. When a procedure defined by a
procedure subprogram is invoked, an instance (12.5.2.4) of the procedure is created and
executed. Execution begins with the first executable construct following the FUNCTION,
SUBROUTINE, or ENTRY statement specifying the name of the procedure invoked.

Version 102 1986 November Page 12-8

PROCEDURES X3J3/s58

12.5.2.1 Effects of Intent on Procedure Subprograms. The intent of dummy data objects
limits the way in which they may be used in a procedure subprogram.. A dummy data object
having intent IN may not be defined or redsfined by the procedure. A dummy data object
having intent QUT is initially undefined in the procedure. ‘A dummy data object with intent

5 INOUT may be referenced or be defined. A dummy data object whose intent is neither
specified nor implied by the presence of the OPERATOR option is subject to the limitations
of the data entity that is the associated actual argument. That is, a reference to the dummy
data object may appear if the actual argument is defined and may be defined if the actual
argument is definable.

10 12.5.2.2 Function Subprogram.

R204 function-subprogram is function-stmt
specification-part
[execution-part]
[internal-procedure-part |

15 end-function-stmt
R1214 function-stmt is [prefix] FUNCTION function-name B
M (| dummy-arg-name-list |) | suffix]
R1215 prefix is type-spec [RECURSIVE |
or RECURSIVE [type-spec |
20 R1216 suffix is RESULT (resuit-name) | OPERATOR (defined-operator) |
or OPERATOR (defined-operator) [RESULT (resuit-name))
R1217 end-function-stmt is END [FUNCTION { function-name | |

Constraint: FUNCTION must be present on the end-function-stmt of an internal function.

Constraint: If function-name is supplied on the end-function-stmt, it must agree with the
25 function-name on the function-stmt.

The type of a function subprogram may be specified by a type specification in the FUNC-
TION statement or by the function name appearing in a type statement in the declaration
part of the function subprogram. It may not be specified both ways. It it is not specified
either way, it is determined by the implicit typing rules in force within the function subpro-
30 gram. If the function result is array valued or allocatable, this must be specified by
specifications of the function name within the function body. '

The keyword RECURSIVE must be present if the function invokes itself, either directly or
indirectly.

The name of the function is function-name.

35 If RESULT is specified, the name of the resuit variable of the function is result-name and all
occurrences of the function name in execution-part statements in the scoping unit are recur-
sive function references. I RESULT is not specifed, the result variable is function-name and
all occurrences of the function name in execution-part statements in the scoping unit are ref-
erences to the result variable. The result-name must not appear in any specification state-

40 ment.

If OPERATOR is specified, the interface for the procedure includes the ability to invoke it
using a defined operator. This operator must be unary if the function has one dummy argu-
ment and binary if it has two dummy arguments; no other number of dummy arguments is
permitted. The dummy arguments must be nonoptional dummy data objects with intent IN.
45 If the intent of a dummy argument is not specified, the specification of OPERATOR causes it
to have intent IN. If the operator is unary, in any program unit in which this interface is
explicit, any reference to that operator in which the operand has the characteristics

Version 102 1986 November Page 12-9

PROCEDURES %X3J3/58

10

15

20

25

30

35

40

corresponding to the dummy argument of the runcuon is treated as a reference to the func-
tion. If the operator is binary, in any program unit in which this interface is explicit, any ref-
erence to that operator in which the left operand has the characteristics corresponding to the
first dummy argument of the function and the right operand has the characteristics corre-
sponding to the second dummy argument of the function is treated as a reference to the
function.

12.5.2.3 Subroutine Subprogram.

R205 subroutine-subprogram is subroutine-stmt
specification-part
[execution-part]
[internal-procedure-part |
end-subroutine-stmt

R1218 subroutine-stmt is [RECURSIVE | SUBROUTINE subroutine-name B
@ [(dummy-arg-list } | | ASSIGNMENT]

R1219 dummy-arg is dummy-arg-name
or %

R1220 end-subroutine-stmt is END [SUBROUTINE [subroutine-name]]

Constraint: SUBROUTINE must be present on the END statement of an internal subroutine.

Constraint: If subroutine-name is present on the end-subroutine-stmf, it must agree with the
subroutine-name on the subroutine-stmt.

The keyword RECURSIVE must be present if the subroutine subprogram invokes itself,
either directly or indirectly.

it ASSIGNMENT is specified, the subroutine may be referenced as an assignment statement
and is called an assignment subroutine. The subroutine must have exactly two arguments
which must be nonoptional dummy data objects. The first dummy argument must have
intent OUT or INOUT. If its intent is not specified, it has intent QUT. The second dummy
argument must have intent IN. If its intent is not specified, it has intent IN. In any program
unit in which this interface is explicit, any assignment statement in which the variable has
the characteristics corresponding to the first dummy argument of the subroutine and the
expression has the characteristics corresponding to the second dummy argument of the sub-
routine is treated as a reference to the subroutine. Note also the possibility of an assign-
ment statement referencing the subroutine elementally (12.4.5).

12.5.2.4 Instances of a Procedure Subprogram. When a function or subroutine defined
by a procedure subprogram is invoked, an instance of that subprogram is created.

Each instance has an independent sequence of execution and an indepsndent set of
dummy arguments and nonsaved data objects. If an internal procedure or statement func-
tion contained in the subprogram is invoked directly from an instance of the subprogram, the
created instance of that internal procedure or statement function also has access to the enti-
ties of that instance of the host subprogram.

All other entities, including saved data objects, are common to all instances of the subpro-
gram. For example, the value of a saved data object appearing in one instance may have
been defined in a previous instance or by an INITIAL attribute or DATA statement.

Version 102 1986 November Page 12-10

PROCEDURES X3J3/58

10

15

20

25

30

35

40

45

12.5.2.5 ENTRY Statement.
R1221 entry-stmt is ENTRY entry-name [([dummy-arg-list])]

Constraint: A dummy-arg may be an alternate return indicator only if the ENTRY statement
is contained in a subroutine subprogram.

if the ENTRY statement is'contained in a function subprogram, an additional function is
defined by that subprogram. The name of the function and its result variable is enitry-name.
The characteristics of the function resuit are specified by specifications of eniry-name. The
dummy arguments of the function are those specified on the ENTRY statement. If the char-
acteristics of the result of the function named on the ENTRY statement are the same as the
characteristics of the function named on the FUNCTION statement, their result variables are
associated. Otherwise, they are storage associated with the restrictions that they are scalar,
that they have type and type parameters permitting storage association, and that they have
the same lengths if they are of character type,

If the ENTRY statement is contained in a subroutine subprogram, an additional subroutine is
defined by that subprogram. The name of the subroutine is entry-name. The dummy argu-
ments of the subroutine are those specified on the ENTRY statement.

12.5.2.6 RETURN Statement.
Ri1222 return-stmt is RETURN /[scaiar-int-expr]

Constraint: The return-stmt must be contained in the scoping unit of a function or subrou-
tine subprogram.

Constraint: The scalar-int-expr is alowed only in the sconing unit of a cubroutine éubprogram.

Execution of the RETURN statement completes execution of the instance of the subprogram
in which it appears. If the expression is present and has a value n between 1 and the number of asterisks in the
dummy argument ist, the CALL statement that invoked the subroutine transfars control to the statement identified by the
nth alternate return specifier in the actual argument list. It the expression is omitted or has a value outside the required
range. there is no transfer of control ta an atternate return.

Execution of an END statement, END FUNCTION statement, or END SUBROUTINE state-
ment is equivalent to executing a RETURN statement with no expression.

12.5.2.7 CONTAINS Statement. The CONTAINS statement separates the body of a pro-
gram unit from any intefnal procedures it may contain. Execution of the CONTAINS state-
ment in a main program or procedure subprogram causes transfer of control to the END
PROGRAM, END FUNCTION, or END SUBROUTINE statement of the program in which it
appears. A CONTAINS statement in a module subprogram is not executable.

12.5.2.8 Restrictions on Dummy Arguments Not Present. A dummy argument is present
in an instance of a procedure subprogram if it is associated with an actual argument and the
actual argument is a dummy argument that is present in the invoking procedure or is not a
dummy argument of the invoking procedure. A dummy argument that is not optional must
be present. An optional dummy argument that is not present is subject to the following
restrictions:

(1) If it is a dummy data object, it must not be referenced or be defined.
(2) If it is a dummy procedure, it must not be invoked.

(3) It must not be supplied as an actual argument corresponding to a ncnoptional
dummy argument other than the argument of the PRESENT intrinsic function.

(4) It may be supplied as an actual argument corresponding to an optional dummy
argument. The optional dummy argument is then also considered not to be

Version 102 1986 November Page 12-11

PROCEDURES X3J3/S8

associated with an actual argument.

12.5.2.9 Restrictions on Entities Associated with Dummy Arguments. While an entity is
associated with a dummy argument, the following restrictions hold:

(1} No action may be taken that affects the value or availability of the entity or any
5 part of it, except throught the dummy argument. For example, in

SUBROUTINE QUTER
REAL, ALLOCATABLE :: A (%)

ALLOCATE (A1:N))
10 ..
CALL INNER (A)
CONTAINS
SUBROUTINE INNER (B)
15 REAL :: B ()

END SUBROUTINE INNER

SUBROUTINE SET (C, D)
REAL, OUT :: C
20 REAL, IN :: D
C=0D
END SUBROUTINE SET
END SUBROUTINE OQUTER

an assignment statement such as
25 A =1.0

would not be permitted during the execution of INNER because this would be
changing A without using B, but statements such as

B (1) =1.0
or
30 CALL SET (8 (1), 1.0)

would be allowed. Similarly,
DEALLOCATE (A)

would not be allowed because this affects the availability of A without using B. In
this case,

356 DEALLOCATE (B>

also would not be permitted, but would be permitted if B were declared
ALLOCATABLE.

Note that if there is a partial or complete overlap between the actual arguments
associated with two different dummy arguments of the same procedure, the over-

40 lapped portions are unchangeable during the execution of the procedure. For
example, in

CALL sUB (A (1:5) ,A (3:9))

A (3:5) cannot be changed through the first ar.gument because it is part of the
argument associated with the second dummy argument and cannot be changed

Version 102 1986 November Page 12-12

PROCEDURES X3J3/58

10

15

20

25

30

35

40

45

through the second dummy argument because it is part of the argument associ-
ated with the first dummy argument. A (1:2) remains changeable through the first
dummy argument and A (6:9) changeable through the the second dummy argu-
ment.

Note that since a dummy argument declared with an intent of IN cannot be used
to change the associated actual argument, the associated actual argument
remains constant throughout the execution of the procedure.

(2) If any part of the entity is defined through the dummy argument, then at any time
during the execution of the procedure, either before or after the definition, it may
be referenced only through that dummy argument. For example, in

MODULE DATA
REAL 2: W, X, Y, Z
END MODULE DATA

PROGRAM MAIN
USE DATA

CALL INIT (X)
END PROGRAM MAIN

SUBROUTINE INIT (V)
USE DATA

READ (%, *) V
END SUBROUTINE INIT

variable X may not be directly referenced at any time during the execution of INIT
because it is being defined through the dummy argument V. X may be {(indirectly)
referenced through V. W, Y, and Z may be directly referenced. X may, of
course, be directly referenced once execution of INIT is complete.

12.5.3 Definition of Procedures by Means Other Than Fortran. The means other than
Fortran by which a procedure may be defined are processor dependent. A reference to
such a procedure is made as though it were defined by a procedure subprogram. The
definition of a non-Fortran procedure must not be contained in a Fortran program unit and a
Fortran program unit must not be contained in the definition of a non-Fortran procedure.
The interface to a non-Fortran procedure may be specified in an interface block.

12.5.3.1 Statement Function.

R1223 stmt-function-stmt =~ is function-name ([dummy-arg-name-list |) = expr

Constraint: The expr may be composed only of constants (Iterat and symbolic), references
to scalar variables and array elements, references to functions, and intrinsic
operators. If a reference to another statement function appears in expr, its
definition must have been provided earlier in the scoping unit.

Constraint: The function-name and each dummy-arg-spec must be specified, explicitly or
implicitly, to be scalar data objects.

The statement function produces the same result value as an internal function of the form:

FUNCTION function-name { [dummy-arg-name-list])
function-and-dummy-specifications

Version 102 1986 November Page 12-13

PROCEDURES X3J3/58

function-name = expr
END FUNCTION function-name ;

where function-and-dummy-specifications are the specifications necessary to cause function-
name and each dummy-arg-spec to be given explicitly the same type and type parameters

5 that those names are given, explicitly or implicitly, in the scoping unit containing the state-
ment function. Note, however, that unlike the internal function, the statement function
always has an implicit interface and may not be supplied as a procedure argument.

12.5.4 Overloading Names. Two or more functions may be accessible with the same
name in the same program scope. Similarly, two or more functions may be accessible with

10 the same operator symbol in the same scoping unit; two or more subroutines may be acces-
sible with the same name in the same scoping unit, and two or more subroutines may be
accessible as assignments in the same program scope (Section 14). The rules on how any
two such procedures must differ are given in 14.1.2.3.

Version 102 1986 November Page 12-14

10

15

20

25

30

35

i3 INTRINSIC PROCEDURES

13.1 Intrinsic Functions.

An Intrinsic function is either an inquiry function, an elemental function, or a transforma-
tiona! function. An inquiry function is one whose result depends on the explicit or implicit
declarations associated with its principal argument and not on the value of this argument; in
fact, the argument value may be undefined. An elemental function is one that is specified
for scalar arguments, but may be applied to array arguments as described in 13.2. All other
intrinsic functions are transformational functions; they almost all have one or more array-
valued arguments or an array-valued result.

Generic names of intrinsic functions are listed in 13.8.1 through 13.8.15. in most cases,
generic functions accept arguments of more than one type and the type of the result is the
same as the type of the arguments. Specific names of intrinsic functions with correspond-
ing generic names are listed in 13.10.

If an intrinsic function is used as an actuat argument to an external procedure, its specific
name must be used and it may be referenced in the external procedure only with scalar
arguments. If an intrinsic function does not have a specific name, it must not be used as an
actual argument.

13.2 Elementa!l Intrinsic Function Arguments and Results.

if a generic name or a specific name is used to reference an elemental intrinsic function, the
shape of the result is the same as the shape of the argument with the greatest rank. If the
arguments are all scalar, the result is scalar. For those elemental intrinsic functions that
have more than one argument, all arguments must be conformable. In the array-valued
case, the values of the elements of the result are the same as would have been obtained if
the scalar-valued function had been applied separately to correspending elements of each
argument.

13.3 Argument Presence Inquiry Functions. The inquiry function PRESENT permits
an inquiry to be made about the presence of an actual argument associated with a dummy
argument.

13.4 Numeric, Mathematical, Character, and Derived-Type Functions.

13.4.1 Numeric Functions. The elemental functions INT, REAL, DBLE, and CMPLX per-
form type conversions. The elemental functions AIMAG, CONJG, AINT, ANINT, NINT, ABS,
MOD, SIGN, DIM, DPROD, MAX, and MIN perform simple numeric operations.

13.4.2 Mathematical Functions. The elemental functions SQRT, EXP, LOG, LOG10, SIN,
COS, TAN, ASIN, ACOS, ATAN, ATAN2, SINH, COSH, and TANH evaluate elementary
mathematical functions.

13.4.3 Character Functions. The elemental functions ICHAR, CHAR, LGE, LGT, LLE,
LLT, IACHAR, ACHAR, INDEX, VERIFY, ADJUSTL, ADJUSTR, REPEAT, ISCAN, and
LEN__TRIM perform character operations. The TRIM function returns the argument with
trailing blanks removed.

Version 102 1986 November Page 13-1

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

13.4.4 CHARACTER Inquiry Functions. The inquiry function LEN returns the length of a
character entity.

13.4.5 Derived Data Type Inquiry Functions. A derived data type definition that includes
a dummy type parameter list causes the implicit definition of a set of inquiry functions, one
for each type parameter. These inquiry functions have names that are the same as the
dummy parameter names. Each has a single argument whose type must be that defined by
the type definition and returns a single integer result. The result is the value of the indi-
cated parameter for the structure that is the argument.

The scope of these implicitly defined inquiry functions is the same as that of the derived
data type. These functions may be referenced in any scoping unit in which the derived data
type definition may be referenced. Note that the argument need not be defined at the time
the function is referenced. For example, if

TYPE (STRING (100)) :: LINE

declares an object of the type STRING as defined in 4.4.1.1, the function reference
MAX__SIZE (LINE) returns the integer result 100.

13.5 Transfer Function. The function TRANSFER serves to gain access to the physical
representation specified by its first argument in a form specified by its second argument.

13.6 Numeric Manipulation and Inquiry Functions. The floating point manipulation
and inquiry functions are described in terms of a model for the representation and behavior
of real numbers on a processor. The model has parameters which are determined so as to
make the model best fit the machine on which the executable program is executed.

13.6.1 Models for Integer and Real Data. The model set for integer / is defined by:

q ki
i =8X Y, WyXr-
k=1
where r is an integer exceeding one, g is a positive integer, each w, is a nonnegative inte-
ger less than r, and s is +1 or -1. The model set for real x is defined by:

0 or
X =

P

s x b® x Y fxb~K,
k=1

where b and p are integers exceeding one; each f, is a nonnegative integer less than b,
except f, which is also nonzero; s is +1 or —1; and e is an integer that lies between some
integer maximum e s and some integer minimum ey, inclusively. The integer parameters
r and q determine the set of model integers and the integer parameters b, p, €nin, aNd € may
determine the set of model floating point numbers. The parameters of the integer and real
models are available for integer and each real data type implemented by the processor.
The parameters characterize the set of available numbers in the definition of the model.
The floating point manipulation and inquiry functions provide values related to the parame-
ters and other constants related to them. Examples of these functions in this section use
the models:

31
i=8x Lwex2t!
k=1

and

Version 102 1986 Noevember Page 13-2

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

24
X =8 X 2 X [‘/2 + L‘ka2“‘J, -126 < @ <127
k=2

13.6.2 Numeric Inquiry Functions. The inquiry functions RADIX, DIGITS, MINEXP,
MAXEXP, HUGE, TINY, EPSILON, EFFECTIVE__PRECISION, and EFFECTIVE_-
EXPONENT__RANGE return scalar values related to the parameters of the model associated
with the type and type parameters of the arguments. The value of the arguments to these
functions need not be defined.

It is not necessary for a processor to evaluate the arguments of a numeric inquiry function if
the value of the function can be determined otherwise.

13.6.3 Floating Point Manipulation Functions. The elemental functions EXPONENT,
SCALE, NEAREST, FRACTION, SETEXPONENT, SPACING, and RRSPACING return values
related to the components of the model values (13.5.1) associated with the actual values of
the arguments.

13.7 Array Intrinsic Functions. The array intrinsic functions perform the foliowing
operations on arrays: vector and matrix multiplication, numeric or logical computation that
reduces the rank, array structure inquiry, array construction, array manipulation, and geomet-
ric location.

13.7.1 The Shape of Array Arguments. The inquiry and transformational array intrinsic
functions operate on each array argument as a whole. The declared shape or effective
shape of the corresponding actual argument must therefore be defined; that is, the. actual
argument must be an array section, an assumed-shape array, an explicit-shape array, an
allocatable array that has been allocated, or an array-valued expression. It'must not be an
assumed-size array.

Some of the inquiry intrinsic functions accept array arguments for which the shape need not
be defined. Assumed-size arrays may be used as arguments to these functions; they
include the numeric inquiry functions, the functions RANK, ELBOUND, and DLBOUND, and
certain references to DSIZE, ESIZE, EUBOUND, and DUBOUND.

13.7.2 Mask Arguments. Some array intrinsic functions have an optional MASK argument
that is used by the function to select the elements of one or more arguments to be operated
on by the function. Any element not selected by the mask need not be defined at the time
the function is invoked.

The MASK affects only the value of the function, and does not affect the evaluation, prior to
invoking the function, of arguments that are array expressions.

A MASK argument must be of type LOGICAL.

13.7.3 Vector and Matrix Multiplication Functions. The matrix multiplication function
MATMUL operates on two matrices, or on one matrix and one vector, and returns the corre-
sponding matrix-matrix, matrix-vector, or vector-matrix product. The arguments to MATMUL
are arrays of the same type, which may be numeric (integer, real, double precision, or com-
plex) or logical. On logical matrices and vectors, MATMUL performs Boolean multiplication.

The dot product function DOTPRODUCT operates on two vectors and returns their scalar
product. The vectors are of the same type (numeric or logical) as for MATMUL. For logical
vectors, DOTPRODUCT returns the Boolean scalar product.

Version 102 1986 November Page 13-3

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

13.7.4 Array Reduction Functions. The array reduction functions SUM, PRODUCT,
MAXVAL, MINVAL, COUNT, ANY, and ALL perform numerical, logical, and counting opera-
tions on arrays. They may be applied to the whole array to give a scalar result or they may
be applied over a given dimension to vield a result of rank reduced by one. By use of a log-
ical mask that is.conformable with the. given array, the computation may be confined to any
subset of the array {(e.g., the positive elements).

13.7.5 Array Inquiry Functions. The array inguiry function RANK returns the number of
dimensions of its argument. The functions SIZE, SHAPE, ELBOUND, and EUBOUND return,
respectively, the effective number of elements, the effective sizes along each dimension,
and the effective lower and upper bounds of the subscripts along each dimension. The
functions DSIZE, DSHAPE, DLBOUND, and DUBOUND return, respectively, the declared
size of the array, the declared shape, and the declared lower and upper bounds of the sub-
scripts along each dimension.

The values of the array arguments to these functions need not be defined.

It is not necessary for a processor to evaluate the arguments of an array inquiry function if
the value of the function can be determined otherwise.

13.7.6 Array Construction Functions. The functions MERGE, SPREAD, RESHAPE,
PACK, and UNPACK construct new arrays from the elements of existing ones. MERGE
combines two conformable arrays into one by an element-wise choice based on a logical
mask. SPREAD constructs an array from several copies of an actual argument (SPREAD
does this by adding an extra dimension, as in forming a book from copies of one page).
RESHAPE produces an array with the same elements and a different shape. PACK and
UNPACK respectively gather and scatter the elements of a one-dimensional array from and
to positions in another array where the positions are specified by a logical mask.

13.7.7 Array Manipulation Functions. The functions TRANSPOSE, EOSHIFT, and
CSHIFT manipulate arrays. TRANSPOSE performs the matrix transpose operation on a two-
dimensional array. The shift functions leave the shape of an array unaltered but shift the
positions of the elements parallel to a specified dimension of the array. These shifts are
either circular (CSHIFT), in which case elements shifted off one end reappear at the other
end, or end-off (EOSHIFT), in which case specified boundary elements are shifted into the
vacated positions.

The functions MAXLOC and MINLOC return the location (subscripts) of an element of an
array that has maximum and minimum values, respectively. By use of an optional: logical
mask that is conformable with the given array, the reduction may be confined to any subset
of the array.

13.8 Intrinsic Subroutines. Intrinsic subroutines are supplied by the processor and
have the special definitions given in 13.9. An intrinsic subroutine is referenced by a CALL
statement that uses its name explicitly. The name of an intrinsi¢ subroutine must not be
used as an actual argument. The effact of a subroutine reference is as specified in 13.9.

13.8.1 Date and Time Subroutines. The subroutines DATE_AND__TIME and CLOCK
return integer data from the date and realtime clock. The time returned is local, but there
are facilities for finding out the difference between local time and Greenwich Mean Time.

Version 102 1986 November Page 13-4

INTRINSIC PROCEDURES

10

15

20

25

30

35

40

45

X3J3/58

13.9 Tables of Generic Intrinsic Functions.

13.9.1 Argument Presence Inquiry Function.

PRESENT (A)

13.9.2 Numeric Functions.

ABS (A)

AIMAG (Z)

AINT (A)

ANINT (A)

CMPLX (X, Y, MOLD)
Optional Y, MOLD

CONJG (Z)

DBLE (A)

DIM (X, Y}

DPROD (X, Y)

INT (A)

MAX (A1, A2, A3,...)
Optional A3,...

MIN (A1, A2, A3,..))
Optional A3,...

MOD (A, P)

NINT (A)

REAL (A, MOLD)
Optional MOLD

SIGN (A, B)

13.9.3 Mathematical Functions.

ACOS (X)
ASIN (X)
ATAN (X)
ATANZ (Y, X)
COS (X)
COSH (X)
EXP (X)
LOG (X)
LOG10 (X)
SIN (X)
SINH (X)
SQRT (X)
TAN (X)
TANH (X)

13.9.4 Character Functions.

ACHAR (1)
ADJUSTL (STRING)
ADJUSTR (STRING)
CHAR (1)

IACHAR (C),

Version 102

Argument presence

Absolute value

Imaginary part of a complex number
Truncation to whole number
Nearest whole number

Conversion to complex type

Conjugate of a complex number
Conversion to double precision type
Positive difference

Double precision product
Conversion to integet type
Maximum value

Minimum value

Remainder modulo P
Nearest integer
Conversion to real type

Transfer of sign

Arccosine

Arcsine
Arctangent
Arctangent

Cosine

Hyperbolic cosine
Exponential
Natural logarithm
Common logarithm (base 10)
Sine

Hyperbolic sine
Square root
Tangent
Hyperbolic tangent

Character in given position

in ASCII collating sequence
Adjust left
Adjust right
Character in given position

in processor collating sequence
Position of a character

in ASCI| collating sequence

1986 November Page 13-5

INTRINSIC PROCEDURES

10

15

20

25

30

35

40

Version 102

ICHAR (C)

INDEX (STRING, SUBSTRING)
ISCAN (STRING, SET)
LEN__TRIM (STRING)

LGE (STRING_A, STRING__B)
LGT (STRING_A, STRING_B)
LLE (STRING_A, STRING_B)
LLT (STRING__A, STRING__B)
REPEAT (STRING, NCOPIES)
TRIM (STRING)

VERIFY (STRING, SET)

13.9.5 Character Inquiry Functions,
LEN (STRING)

13.9.6 Numeric Inquiry Functions.

DIGITS (X)
EFFECTIVE_EXPONENT_RANGE (X)
EFFECTIVE__PRECISION (X)
EPSILON (X)

HUGE (X)

MAXEXPONENT (X)

MINEXPONENT (X)

RADIX (X)

TINY (X)

13.9.7 Transfer Function.
TRANSFER (SOURCE, MOLD)

13.9.8 Floating-point Manipulation Functions.

EXPONENT (X)
FRACTION (X)
NEAREST (X, S)

RRSPACING (X)

SCALE (X, I)
SETEXPONENT (X, I)
SPACING (X)

13.9.9 Vector and Matrix Multiply Functions.

DOTPRODUCT (VECTOR__A,
VECTOR__B)
MATMUL (MATRIX__A,
MATRIX__B)

1986 November

X3J3/58

Position of a character

in processor collating sequence
Starting position of a substring
Scan a string for a character in a set
Length without trailing blank characters
Lexically greater than or equal
Lexically greater than
Lexically less than or equal
Lexically less than
Repeated concatenation
Remove trailing blank characters
Verify the set of characters in a string

Length of a character entity

Number of significant digits in the model
Effective decimal exponent range
Effective decimal precision

Number that is almost negligible compared to one

Largest number in the model
Maximum exponent in the model
Minimum exponent in the model
Base of the model

Smallest number in the model

Treat first argument as if
of type of second argument

Exponent part of a mode!l number
Fractional part of a number
Nearest different processor number in
given direction
Reciprocal of the relative spacing
of model numbers near given number
Multiply a real by its base to an integer power
Set exponent part of a number
Absolute spacing of model numbers near given
number

Dot product of two arrays

Matrix multiplication

Page 13-6

INTRINSIC PROCEDURES

13.9.10 Array Reduction Functions.

ALL (MASK, DIMm)
Optional DIM
ANY (MASK, DIM)
5 Optional DIM
COUNT (MASK, DIM)
Optional DIM
MAXVAL (ARRAY, DIM, MASK)
Optional DIM, MASK
10 MINVAL (ARRAY, DIM, MASK)
Optional DIM, MASK
PRODUCT (ARRAY, DIM, MASK)
Optional DIM, MASK
SUM (ARRAY, DIM, MASK)
15 Optional DIM, MASK

13.9.11 Array Inquiry Functions.

ALLOCATED {ARRAY)
DLBOUND (ARRAY, DIM})
Optional DIM
20 DSHAPE (SOURCE)
DSIZE (ARRAY, DIM)
Optiona! DIM
DUBOUND {ARRAY, DIM)
Optional DIM
25 EUBOUND (ARRAY, DIM)
Optional DIM
ESHAPE (SOURCE)
ESIZE (ARRAY, DIM)
Optional DIM
30 ELBOUND (ARRAY, DIM)
Optional DIM
RANK (SOURCE)

13.9.12 Array Construction Functions.

MERGE (TSOURCE,
35 FSOURCE, MASK)
PACK (ARRAY, MASK, VECTOR})
Optional VECTOR
RESHAPE (MOLD, SOURCE,
PAD, ORDER)
40 Optionat PAD, ORDER
SPREAD (SOURCE, DIM,
NCOPIES)
UNPACK (VECTOR, MASK,
FIELD)

45 13.9.13 Array Manipulation Functions.

CSHIFT (ARRAY, DIM, SHIFT)
EOSHIFT (ARRAY, DIM,
SHIFT, BOUNDARY)
Optional BOUNDARY

Version 102

1986 November

X3J3/S8

True if all values are true

True if any value is true

Number of true elements in an array
Maximum value in an array
Minimum value in an array

Product of array elements

Sum of array elements

Array allocation
Declared lower dimension bounds of an array

Declared shape of an array or scalar
Total number of elements in declared array

Deciared upper dimension bounds of an array
Effective upper dimension bounds of an array

Effective shape of an array or scalar
Total number of elements in effective array

Effective lower dimension bounds of an array

Rank of an array or scalar

Merge under mask

Pack an array into an array of rank one
under a mask

Reshape an array

Replicates array by adding a dimension

Unpack an array of rank one into an array
under a mask

Circular shift
End-off shift

Page 13-7

INTRINSIC PROCEDURES

TRANSPOSE (MATRIX)

Transpose of an array of rank two

13.9.14 Array Geometric Location Functions.

MAXLOC(ARRAY,MASK)

Optional MASK

MINLOC(ARRAY,MASK)

Optional MASK

X3J3/58

Location of a maximum value in an array

Location of a minimum value in an array

13.10 Table of Intrinsic Subroutines.

10

15

20

CLOCK (COUNT, COUNT__RATE,

COUNT__MAX)

Optional COUNT, COUNT__RATE,

COUNT_MAX
DATE_AND__TIME (ALL, COUNT,

MSECOND, SECCND, MINUTE,
HOUR, DAY, MONTH,

YEAR, ZONE)

Optional ALL, COUNT, MSECOND,
SECOND, MINUTE, HOUR,
DAY, MONTH, YEAR, ZONE

RANDOM (HARVEST) |
RANDOMSEED (SIZE, GET, PUT)

Returns pseudorandom number
Initializes or restarts random number generator

Optional SIZE, GET, PUT

13.11 Table of Specific Intrinsic Functions.

25

30

35

40

45

Version 102

Specific Name

ABS(A)

ACOS{X)

AIMAG(Z)

AINT(A)

ALOG(X)

ALOG10(X)

AMAXO(A1,A2,A3,..)
Optional A3,...

AMAX1(A1,A2,A3...)
Opticnal A3....

AMINO(A1,A2,A3...)
Optional A3,...

AMINT(AT,A2.A3,..)
Optional A3,...

AMOD(A P}
ANINT(A)
ASIN(X)
ATAN(X)
ATANZ(Y X)
CABS(A)

Generic Name

ABS(A)
ACOS(X)
AIMAG(Z)
AINTA)
LOG(X)
LOG10(X)
REAL{MAX(AT,
AZ.A3..)
QOptional A3,...
MAX(AT,
A2,A3,.)
Optional A3,...
REAL(MIN(AT.
£2,A3...)
QOptional A3,...
MIN(AT,
A2 A3...}
Cpticnal A3,...
MOD(AP)
ANINT(A)
AZIN(X)
ATAN(X)
ATAN2(Y X}
ABS(A)

1986 November

Obtain data from the system clock

Obtain date and time

Argument Type

real

real
complex
real

real

real
integer

real

integer

real

real
real
real
real
real
complex

Page 13-8

INTRINSIC PROCEDURES

10

20

25 .

30

40

Version 102

CCOSsX)
CEXP(X}
CHAR()
CLOGX)
CONJG({Z}
COS(X)
COSHX)
CSINGK)
CSQRTEO
DABS({A)
DACOS{X)
DASIN)
DATAN)
DATAN2(Y.X)
DCOS(X)
DCOSH(X)
DDIM{X.Y)
DEXP(X)
DIM(X.Y)
DINT(A)
DLOG(X)
DLOG10(X)
DMAX1(A1,A2,A3...)
QOptional A3....
DMIN1(AT1,A2,A3....)
Optional A3,...
DMOD(A.P)
DNINT(A)
DPROD(X.Y)
DSIGN(A.B)
DSIN(X}
DSINH({X)
DSQRTX)
DTAN{X)
DTANH({X)
EXP(X)
FLOAT(A)
IABS(A)
ICHAR{C)
IDIM{X.Y}
IDINT{A)
IDNINT(A)
IFIX(A)
INDEX(E.T)
INT{A)
ISIGN(A.B)
LEN(S)
LGES.T)
LGT(S.T
LLE(S.T)
LLT(S.T)
MAXO(A1.AZ.A3,)
Opticnal A3.. .
MAXTATA2.A3.)

COSX)

EXP(X)

CHAR(l)

LOG(X)

CONJG{Z)

COS(X)

COSH{X)

SIN(X}

SQRTG

ABS(A)

ACOS(X)

ASINGX)

ATAN(X)

ATANZ(Y. X

COS{X}

COSHX)

DIM(X.Y)

EXP(X)

DIM{X.Y)

AINT(A)

LOG(X}

LOG10(X)

MAX{AT A2AZ...}
Optional A3,...

MIN(AT.AZ.AS,..)
QOptional A3, ...

MOD(A.P)

ANINT(A)

DPROD(X.Y)

SIGN(A,B)

SINGG

SINKX)

SQARTX)

TAN{X)

TANH(X)

EXP(X)

REAL(A)

ABS(A)

ICHAR(C)

DIM(X.Y)

INT(A)

NINT(A)

INT(A)

INDEX(S,T)

INT(A)

SIGN(A.BY

LEN(S)

LGE[S.T)

LGT{S.T)

LLE{S.T}

LLT(S.T)

MAX(A1.A2.A3...}
Optional A3. .

INTIMAX(A1 A2 A3 Y

1986 November

complex
complex

inleger

complex
complex

real

real

complex
compiex

double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
real

double precision
double precision
double precision
dosible precision

double precision

double precision
double precision
real

double precision
doubie precision
double precision
double precision
double precision
double precision
roal

integer

integer
character
integer

double precision
gouble precision
real

character

real

integer
character
character
character
character
character
integer

reai

X3.J3/58

Page 13-9

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

Optional A3.... Optional A3,..
. MINO(AT A2 A3) MIN(AT.A2.AZ...} intcger
Optional A3,... Optional A3....
e MINT(AT,A2 A3,) INT{MIN{AT. A2 A3, 1) real
Optional A3,.. Opional A3)
MODIA.P) MODIA P integsr
NINT(A) NINTAY real
. REAL{A) REAL(A) integer
SIGN{A.B) SIGN(AB) real
SINX) SIN(X) real
SINH{X) SINH(X) real
. SNGL(A) REAL(A} double precisicn
SQRT(X) SQRT(X) real
TAN(X) TAN) redl
TANH(X) TANH(X) real

s These specific intrinsic function names must not be used as an actual argument.

13.12 Specifications of the Intrinsic Procedures. This section contains detailed

specifications of all the intrinsic procedures.

13.12.1 ABS (A).

Description. Absolute value.
Kind. Elemental function.
Argument. A must be of type integer, real, double precision, or complex.

Result Type and Type Parameters. The same as A except that if A is complex, the
result is real.

Result Value. If A is of type integer, real, or double precision, the value of the result
is |Al; if A is complex with value (x,y), the result is equal to a processor-dependent
approximation to Vx2+4y2.

Example. ABS ((3.0, 4.0)) has the value 5.0 {approximately).

13.12.2 ACHAR (I).

Description. Returns the character in a specified position of the ASCIl coilating
sequence. It is the inverse of the IACHAR function.

Kind. Elemental function.
Argument. | must be of type integer.
Result Type and Type Parameters. Character of length one.

Result Value. If | has value in the range 0 <1 = 127, the result is the character in
position | of the ASCIl collating sequence; otherwise, the result is processor dependent.
If the processor is not capable of representing both upper and lower case letters and |
corresponds to an ASCII letter in a case that the processor is not capable of represent-
ing, the result is the letter in the case that the processor is capable of representing.
ACHAR (IACHAR (C)) must have the value C for any character C capable of represen-
tation in the processor.

Example. ACHAR (88) has the value 'X".

Version 102 1986 November Page 13-10

INTRINSIC PROCEDURES X3J3/S8

13.12.3 ACOS (X).

Description. Arccosine (inverse cosing) function.
Kind. Elemental function.

Argument. X must be of type real or double precision with a value that satisfies the
inequality [X| = 1.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
arccos(X), expressed in radians. It lies in the range 0 < ACOS (X) = .

Example. ACOS (0.54030231) has the value 1.0 (approximately).

10 13.12.4 ADJUSTL (STRING).

Description. Adjust to the left, removing leading blanks and inserting trailing blanks.
Kind. Elemental function.

Argument. STRING must be of type character.

Result Type and Type Parameters. Character of the same length as STRING.

Nesult Value. The value of the result is the same as STRING except that any leading
bianks have been deleted and the same number of trailing blanks have been inserted.

Example. ADJUSTL (WORD’) has value 'WORD .

13.12.5 ADJUSTR (STRING).

20

25

Description. Adjust to the right, removing trailing blanks and inserting leading blanks.
Kind. Elemental function.

Argument. STRING must be of type character.

Result Type' and Type Parameters. Character of the same length as STRING.

Result Value. The value of the result is the same as STRING except that any trailing
blanks have been deleted and the same number of leading blanks have been inserted.

Example. ADJUSTR (WORD ') has value ° WORD’

13.12.6 AIMAG (2).

30

Description. Imaginary part of a complex number.

Kind. Elemental function.

Argument. Z must be of type complex.

Result Type and Type Parameters. Real with the same type parameters as Z.
Result Value. !f Z has the value (x, y), the result has value y.

Example. AIMAG ((2.0, 3.0)) has the value 3.0.

13.12.7 AINT (A).

35

Version 102

Description. Truncation to a whoie number.
Kind. Elemental function.

1986 November Page 13-11

INTRINSIC PROCEDURES X3J3/s8

10

15

20

25

30

35

Version 102

Argument. A must be of type real or double precision.
Result Type and Type Parameters. Same as A.

Result Value. [f |[A] < 1, AINT (A) has the value O; if |A| = 1, AINT (A) has value equal
to the largest integer that does not exceed the magnitude of A and whose sign is the
same as the sign of A.

Example. AINT (2.783) has the value 2.0.

13.12.8 ALL (MASK, DIM).

Optional Argument. DIM
Description. Determine whether all values are true in ARRAY along dimension DIM.
Kind. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 =< DIM < n, where n is the rank of MASK.

Result Type and Shape. The result is of type logical. [t is scalar if DIM is absent or
MASK has rank one; otherwise, the result is an array of rank n —1 and of shape (d,,
ds, ..., dom—1, dpm+1s --» dp) where (dy, dy, ..., d,) is the shape of MASK.

Resuit Value.

Case (i): The result of ALL '(MASK) has value .TRUE. if all elements of MASK are
true or if MASK has size zero, and the result has value .FALSE. if any ele-
ment of MASK is false.

Case (i): If MASK has rank one, ALL (MASK, DIM) has value equal to that of ALL
(MASK). Otherwise, the value of element (S1, Sz, ..., SDIM—1, SDIM+1s --» Sn)
of ALL (MASK. DIM) is equal to ALL (MASK (51, S2, ..., SpiM—1s '» SDIM+1+
8n))- :

Examples.
Case (i} The value of ALL ([.TRUE., .FALSE., .TRUE.]} is .FALSE.

Case (if): If B is the array [; 2 g} and C is the array [g 3 g] , then ALL (B .NE.

C, DIM = 1) is [.TRUE., .FALSE., .FALSE.] and ALL (B .NE. C, DIM = 2)
is [.FALSE., .FALSE.]. -

13.12.9 ALLOCATED (ARRAY).

Description. Indicate whether or not an allocatable array is currently allocated space.
Kind. Inquiry function.

Argument. ARRAY must be an allocatable array.

Result Type and Shape. The result is a logical scalar.

-Result Value. The result has the value .TRUE. if ARRAY is currently allocatéd and has

the value .FALSE. otherwise.

1986 November Page 13-12

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 102

13.12.10 ANINT (A).

Description. Nearest whole number.

Kind. Elemental function.

Argument. A must be of type real or double precision.
Result Type and Type Parameters. Same as A.

Result Value. If A > 0, ANINT (A) has the value AINT (A + 0.5); if A <0, ANINT (A)
has the value AINT (A — 0.5).

Example. ANINT (2.783) has the value 3.0

13.12.11 ANY (MASK, DIM).

Optional Argument. DIM
Description. Determine whether any value is true in MASK along dimension DIM.

Kind. Transformational function.

Arguments.
MASK must be of type logical. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM = n, where n is the rank of MASK.

Result Type and Shape. The result is of type logical. It is scalar if DIM is absent or
MASK has rank one: otherwise, the result is an array of rank n—1 and of shape (d,,
ds, ... Opim—1, ApiM+1s - Tn) Where (d4, d, ..., d,) is the shape of MASK.

Result Value.

Case (i): The result of ANY (MASK) has value .TRUE. if any element of MASK is
true and has value .FALSE. if no elements are true or if MASK has size
zero.

Case (ii):)i MASK has rank one, ANY (MASK, DIM) has value equal to that of ANY
(MASK). Otherwise, the vaiue of element (S1s S35 - SDIM—1s SDIM+ 1+ -iv Sn}
of ANY (MASK, DlM) is 9qua] to ANY (MASK (51, Sp, ...y SDIM=1s *» SDIM4+1»

vir Sp)
Examples.
Case (i) The value of ANY ([.TRUE., .FALSE., .TRUE.]) is .TRUE.

Case (i): If B is the array [12 3 g] and C is the array [E} g g] ANY (B .NE. C,

DIM = 1) is [TRUE., .FALSE., .TRUE.] and ANY (B NE. C, DIM = 2} is
[.TRUE., .TRUE.].

13.12.12 ASIN (X).

Description. Arcsine (inverse sine} function.
Kind. Elemental function.

Argument. X must be of type real or double precision. Its value must satisfy the
inequality |X| = 1.

Result Type and Type Parameters. Same as X.

1986 November Page 13-13

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

Version 102

Resuit Value. The result has value equal to a processor-dependent approximation to
arcsin(X), expressed in radians. It lies in the range —7/2 < ASIN (X) < #/2.

Example. ASIN (0.84147098) has the value 1.0 (approximately).

13.12.13 ATAN (X).

Description. Arctangent (inverse tangent) function.
Kind. Elemental function.

Argument. X must be of type real or double precision.
Result Type and Type Parameters. Same as X.

Resuit Value. The result has the value equal to a processor-dependent approximation
to arctan(X), expressed in radians, that lies in the range — /2 < ATAN (X) < =/2.

Example. ATAN (1.5574077) has the value 1.0 (approximately).

13.12.14 ATAN2 (Y, X).

Description. Arctangent (inverse tangent) function. The result is the principal value of
the argument of the nonzero complex number (X, Y).

Kind. Elementa! function.

Arguments.
Y must be of type real or double precision.
X must be of the same type as Y. if Y has value zero, X must not

have value zero.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
the argument of the complex number (X, Y), expressed in radians. it lies in the range
—x < ATAN2 (Y, X) = r and is equal to a processor-dependent approximation to a
value of arctan(Y/X) if X = 0. If Y > 0, the result is positive. If Y =0, the result is zero
if X > 0 and the result is = if X < 0. If Y < 0, the result is negative. If X =0, the abso-
lute value of the result is /2.

Example. ATANZ2 (1.5574077, 1.0) has the value 1.0 (approximately).

13.12.15 CHAR ().

Description. Returns the character in a given position of the processor collating
sequence. It is the inverse of the function ICHAR.

Kind. Elemental function.

Argument. | must be of type integer with value in the range 0 =1 < n—1, where n is
the number of characters in the collating sequence.

Result Type and Type Parameters. Character of length one.

Result Value. The result is the character in position | of the processor collating
sequence. ICHAR (CHAR (l)) must have the value | for 0 =l =<n-1 and CHAR
(ICHAR (C)) must have the value C for any character C capable of representation in the
processor.

Example. CHAR (88) has the value 'X’ on a processor using the ASCIl coliating
sequence.

1986 November Page 13-14

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

13.12.16 CLOCK (COUNT, COUNT__RATE, COUNT__MAX).

Optional Arguments. COUNT, COUNT_RATE, COUNT__MAX
Description. Returns integer data from a real-time clock.

Kind. Subroutine.

Arguments.

COUNT ({optional) must be scalar and of type integer. It is set to a processor-
dependent value based on the current value of the basic clock or
to —-HUGE (0) if there is no clock. The processor-dependent value
is incremented by one for each clock count until the value
COUNT__MAX is reached and is reset to zero at the next count. It
lies in the range O to COUNT__MAX if there is a clock.

COUNT__RATE (optional) must be scalar and of type integer. It is set to the number of
basic clock counts pet second, or to zero if there is no clock.

COUNT__MAX {optional) must be scalar and of type integer. It is set to the maximum
value that COUNT can have, or to zero if there is no clock.

Example. |f the basic system clock is a 24-hour clock that registers time in 1-second
intervals, at 11:30 am. the reference

CALL CLOCK (COUNT = €, COUNT_RATE = R, COUNT_MAX = M)

sets C = 11 x 3600 + 30 x 60 = 41400, R = 1, and M = 24 x 3600 - 1 =
86399.

13.12.17 CMPLX (X, Y, MOLD).

Optional Arguments. Y, MOLD
Description. Convert to complex type.

Kind. Elemental function.

Arguments.
X must be of type integer, real, double precision, or complex.
Y (optional) must be of type integer, real, or double precision. it must not be

present if X is of type complex.
MOLD (optional) must be of type real.

Result Type and Type Parameters. The result is of type complex. If MOLD is pre-
sent, the type parameters are those of MOLD; otherwise, the type parameters are
those of default real type.

Result Value.)f Y is absent and X is not complex, it is as if Y were present with the
value zero: if MOLD is absent, it is as if MOLD were present with default real type;
CMPLX(X, Y, MOLD) has the complex value whose real part is REAL{X, MOLD) and
whose imaginary part is REAL(Y, MOLD).

Example. CMPLX {—3) has the value (—3.0, 0.0).

13.12.18 CONJG (2).

Description. Conjugate of a complex number.

Kind. Elemental function.

Version 102 1986 November Page 13-15

INTRINSIC PROCEDURES X3J3/58

Argument. Z must be of type complex.

Result Type and Type Parameters. Same as Z.

Result Value. If Z has the value (x, y), the result has value (%, —y).
Example. CONJG ((2.0, 3.0)) has the value (2.0, —3.0).

5 13.12.19 COS (X).

10

Description. Cosine function.

Kind. Elemental function.

Argument. X must be of type real, double precision, or complex.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
cos(X). If X is of type real or double precision, it is regarded as a value in radians. If
X is of type complex, its real part is regarded as a value in radians.

Example. COS (1.0) has the value 0.54030231 {approximately).

13.12.20 COSH (X).

15

20

Description. Hyperbolic cosine function.

Kind. Elemental function.

Argument. X must be of type real or double precision.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
cosh(X).

Example. COSH (1.0) has the value 1.5430806 (approximately).

13.12.21 COUNT (MASK, DIM).

25

30

35

Version 102

Optional Argument. DIM
Description. Count the number of true elements of MASK along dimension DIM.

Kind. Transformational function.

Arguments.
MASK must be of type logical or bit. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 = DIM < n, where n is the rank of MASK.

Result Type and Shape. The result is of type integer. It is scalar if DIM is absent or
MASK has rank one; otherwise, the result is an array of rank n —1 and of shape (d4,
ds, oo, Uoim—1, doiMs1y o O} Where (dq, ds, ..., d,} is the shape of MASK.

Result Value.

Case (i): The result of COUNT (MASK) has value equal to the number of true
elements of MASK or has value zero if MASK has size zero.

Case (i) If MASK has rank one, COUNT (MASK, DIM) has value equal to that of
COUNT (MASK). Otherwise, the value of element (84, 82, ..., Spm—1,
SpiM+1s --- Sp) of COUNT (MASK, DIM) is equal to COUNT (MASK (s;, s5,

1986 November Page 13-16

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

ves SDIM—1r & SDIM+1s =+ Sn))-
Examples.
Case (): The value of COUNT ([.TRUE., .FALSE., TRUE.]) is 2.

Case (i) If B is the array [;) g] and C is the array [3 : g] . COUNT (B .NE. C,

DIM = 1) is [2, 0, 1] and COUNT (B .NE. C,DIM = 2)is [1, 2].

13.12.22 CSHIFT (ARRAY, DIM, SHIFT).

Description. Perform a circular shift on an array expression of rank one or perform cir-
cular shifts on all the complete rank one sections along a given dimension of a many-
ranked array expression. Elements shifted out at one end of a section are shifted in at
the other end. Different sections may be shifted by different- amounts and in different
directions.

Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DiM must be a scalar and of type integer with value in the range
1 = DIM =< n, where n is the rank of ARRAY.

SHIFT must be of type integer and must be scalar if ARRAY has rank one;

otherwise, it must be scalar or of rank n—1 and of shape [E
(1:DIM-1), E (DIM+1:n)] where E (1:n) is the shape of ARRAY.

Result Type, Type Parameters, and Shape. The result is of the type and type param-
eters of ARRAY, and has the shape of ARRAY.

Result Value.

Case (i) If ARRAY has rank one, the result is obtained by applying |SHIFT| circular
shifts to ARRAY in the direction indicated by the sign of SHIFT. If SHIFT
has value 1, element i of the result is ARRAY (/ +1) fori = 1,2,....,m — 1
and element m of the result is ARRAY (1) where m is the size of ARRAY.
If SHIFT is . positive, the result is equivalent to SHIFT applications of
CSHIET with SHIFT =1. If SHIFT has value —1, element i of the result is’
ARRAY (i—1) fori = 2,8,...,m and element 1 of the resuit is ARRAY (m).
If SHIFT is negative, the result is equivalent to —SHIFT applications of
CSHIFT with SHIFT = —1. '

Case (i) |f ARRAY has rank greater than one, section (84, S2, ..., SpM-1s * SoiM+1s
..., §,) of the resuit has value equal to CSHIFT (ARRAY (S1, $2, ---» SoiM—1»
., SomMats - Sny 1, sh), where sh is SHIFT or SHIFT (s4, Sz, --.s SpM-1
SpIM+1s -s sn)-

Examples.

Case (i) If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V circularly to the left
by two positions is achieved by CSHIFT (V, DIM=1, SHIFT=2) which has
the value [3, 4, 5, 6, 1, 2]; CSHIFT (V, DIM=1, SHIFT = —2) achieves a cir-
cular shift to the right by two positions and has the value [5, 6, 1, 2, 3, 4].

Case (ii): The rows of an array of rank two may all be shifted by the same amount or

A B C
by different amounts. If M is the array [Q g 81 the value of CSHIFT

Version 102 1986 November Page 13-17

INTRINSIC PROCEDURES

(M, DIM=2, SHIFT=-1) is [

DIM=2, SHIFT=[—1, 1, 0]) is {

X3J3/58

-

, and the value of CSHIFT (M,

000
WOy Pri

B
B
B
B
Cc

PO
L

13.12.23 DATE_AND_TIME (ALL, COUNT, MSECOND, SECOND, MINUTE, HOUR,
DAY, MONTH, YEAR, ZONE}.

Optional Arguments. ALL, COUNT, MSECOND, ‘SECOND, MINUTE, HOUR, DAY,
MONTH, YEAR, ZONE

Description. Returns integer data from the date available to the processor and a real-

10

15

20

25

30

35

40

Version 102

time clock.

Kind. Subroutine.
Arguments.

ALL (optional)

COUNT (optional)

must be of type integer and rank one. lts size must be at least 9.
The values returned in ALL are as for the remaining 9 arguments,
taken in order.

must be scalar and of type integer. it is set to a processor-
dependent value based on the currént value- of the basic clock or
to —HUGE (0) if there is no clock. The processor-dependent value
is incremented by one for each clock count until the wvalue
COUNT_MAX (as returned by subroutine CLOCK) is reached and
is reset to zero at the next count. It lies in the range 0 to
COUNT_MAX if there is a clock.

MSECOND (optional) must be scalar and of type integer. It is set to the millisecond

part of the local time, or to —HUGE (0) if there is no clock. It lies
in the range 0 to 999 if there is a clock.

SECOND (optional) must be scalar and of type integer. It is set to the second part of

MINUTE (optional)

HOUR (optional)

DAY (optionai)

MONTH (optional)

YEAR (optional)

the local time, or to —HUGE (0) if there is no clock. It lies in the
range O to 59 if there is a clock.

must be scalar and of type integer. It is set to the minute part of
the local time, or to —HUGE (0) if there is no clock. It lies in the
range O to 59 if there is a clock.

must be scalar and of type integer. It I1s set to the hour part of the
local time, or to —HUGE (0} if there is no clock. It fies in the range
0 to 23 if there is a clock. '

must be scalar and of type integer. It is set to the day of the
month, or to —~HUGE (0) if there is no date available. it lies in the
range 1 to 31 if there is a date available.

must be scalar and of type integer. It is set to the month of the
year, or to —HUGE (0) if there is no date available. 1t lies in the
range 1 to 12 if there is a date available.

must be scalar and of type integer. It is set to the year according
to the Gregorian calendar (e.g. 1988), or to —HUGE (0) if there is
no date available.

1986 November Page 13-18

INTRINSIC PROCEDURES X3J3/58

ZONE (optional) must be scalar and of type integer. It is set to the number of min-
utes that local time is behind Greenwich Mean Time, or to —~HUGE
(0) if there is no clock.

Example.
CALL DATE_AND_TIME (ZONE = HERE)
will assign the value 300 to the variable HERE if the local time is 5 hours behind GMT.

13.12.24 DBLE (A).

10

16

Description. Convert to double precision type.

Kind. Elemental function.

Argument. A must be of type integer, real, double precision, or complex.
Result Type. Double precision.

Result Value.

Case fi): if A is of type double precision, DBLE {A) = A,

Case {ii). If Ais of type iteger or real. the result is as much precision of the significant part of A as.a dou-
ble precision datum can contain.

Case (iii): If A is of type complex, the result is as much precision ot the signiﬁcant part of the.real part of A
zs a double precision datum can contain.

Example. GBLE (-3) has the value —-3.0D0.

13.12.25 DIGITS (X).

20

25

Description. Returns the number of significant digits in the model representing num-
bers of the same type and type parameters as the argument.

Kind. [nquiry function.
Argument. X must be of type integer or real. It may he scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value g if X is of type integer and p if X is of type'real,
where ¢ and p are as defined in 13.5.1 for the model representing numbers of the
same type and type parameters as X.

Example. DIGITS (X) has the value 24 for real X whose model is as at the end of
13.5.1.

30 13.12.26 DIM (X, Y).

35

Version 102

Description. The difference XY if it is positive; otherwise zero.

Kind. Elemental function.

Arguments.
X must be of type integer, real, or double precision.
Y must be of the same type as X.

Result Type and Type Parameters. Same as X.

Result Value. The value of the result is X—Y if X > Y and zero otherwise.

1986 November Page 13-19

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

40

Version 102

Example. DIM (—-3.0, 2.0) has the vatue 0.0.

13.12.27 DLBOUND (ARRAY, DIM).

Optional Argument. DIM

Description. Returns all the declared lower bounds of an array or a specified declared
lower bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It must not be an
allocatable array that is not allocated or an alias array that does not
exist.

DIM (optional) must be scalar and of type integer with value in the range

1 = DIM =< n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size nn, where n is the rank of ARRAY.

Result Value.

Case (i} DLBOUND (ARRAY, DIM) has value equal to the declared lower bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zerc and has the value 1 if dimension DIM has size zero. For an array
section or an array expression, it has the value 1.

Case (i): DLBOUND (ARRAY) has value whose i-th component is equal to
DLBOUND (ARRAY, /), for i = 1, 2,...,n, where n is the rank of ARRAY..

Example. if A is declared by the statement
REAL A (2:3, 7:10)
then DLBOUND (A) is [2, 7] and DLBOUND (A, DIM=2} is 7.

13.12.28 DOTPRODUCT (VECTOR__A, VECTOR__B).

Description. Performs dot-product multiplication of numeric or Bootean vectors.
Kind. Transformational function.

Arguments.

VECTOR_A must be of numeric type (integer, real, double precision, or com-
plex) or of logical type. It must be array valued and of rank one.

VECTOR_B must be of numeric type if VECTOR_A is of numeric type or of

type logical if VECTOR__A is of type logical. It must be array val-
ued and of rank one. It must be of the same size as VECTOR__A.

Result Type, Type Parameters, and Shape. If the arguments are.of numeric type, the
type and type parameters of the result are those of the expression VECTOR_A =*
VECTOR__B determined by the types of the arguments according to 7.1.4. If the argu-
ments are those of the expression VECTOR_A * VECTOR_B as of type logical, the
result is of type logical. The result is scalar.

Result Value.

Case (i): If VECTOR_A is of type integer, real, or double precision, the result has
value SUM (VECTOR_AxVECTOR__B). If the vectors have size zero, the
result has value zero.

1986 November ‘Page 13-20

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

Case (ii): If VECTOR_A is of type complex, the result has value SUM (CONJG
(VECTOR__A)*VECTOR__B). If the vectors have size zero, the result has
value zero.

Case (ii): |t VECTOR_A is of type logical, the result has value ANY (VECTOR__A)
.AND. VECTOR__B). If the vectors have size zero, the result has value
FALSE.

Example. DOTPHODUCT (I, 2, 3], (2, 3, 4]) has the value 20.

13.12.29 DPROD (X, Y).

Description. Double precision product.

Kind. Elemental function.

Arguments.
X must be of type real.
Y must be of type real.

Result Type. Double precision.
Result Value. The value of the result is X * Y.

Example. DPRCD (-3.0, 2.0) has the value —6.0D0.

13.12.30 DSHAPE (SOURCE).

Description. Returns the declared shape of an array or a scalar.
Kind. Inquiry function.

Argument. SOURCE may be of any type. It may be array valued or scalar. It must
not be an assumed-size array.

Result Type and Shape. The result is an integer array of rank one whose size is
equal to the rank of SOURCE.

Resuit Value. The value of the result is the declared shape of SOURCE.

Examples. The value of DSHAPE (A (2:5, —1:1)) is [4, 3]. The value of DSHAPE (3)
is the rank-one array of size zero.

13.12.31 DSIZE (ARRAY, DIM).

Optional Argument. DIM

Description. Returns the declared extent of an array along a specified dimension or
the total declared number of elements in the array.

Kind. Inquiry function.
Arguments.

ARRAY may be of any type. it must not be scalar. If ARRAY is an
assumed-size array, DIM must be present with value less than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with value in the range
1 = DIM =< n, where n is the rank of ARRAY.

Result Type and Shape. Integer scalar.

Version 102 1986 November Page 13-21

INTRINSIC PROCEDURES X3J3/S8

5

10

i5

20

25

30

35

40

Version 102

Result Value. The result has value equal to the declared extent of dimension DIM of
ARRAY or, if DIM is absent, the total declared number of elements of ARRAY.

Examples. The value of DSIZE (A (2:5, —1:1), PIM=2} is 3. The value of DSIZE (A
(2:5, —1:1)) is 12.

13.12.32 DUBOUND (ARRAY, DIM).

Optional Argument. DIM

Description. Returns all the declared upper bounds .of an array or a specified declared
upper bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. it must not be scalar. It may not be an
allocatable array that has not been allocated or an alias array that
does not exist. If DIM is omitted or is present with value equal to
the rank of ARRAY, ARRAY must not be an assumed-size array.

DIM (opticnal) must be scalar and of type integer with value in the range 1 < DIM

=< n, where n is the rank of ARRAY.

Aesult Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i): DUBQUND (ARRAY, DIM) has value equal to the declared upper bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value zero if dimension DIM has size zero. For an array
section or an array expression, its value is the number of elements in the
corresponding dimension.

Case (i) DUBOUND (ARRAY) has value whose i-th component is egual to
DUBQUND (ARRAY, {), fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared by the statement
REAL A (2:3, 7:100
then DUBCUND (A) is [3, 10] and DUBOUND (A, DIM=2) is 10.

13.12.33 EFFECTIVE_EXPOWNENT__RARNGE (X).

Description. Returns the decimal exponent range in the model representing numbers
of the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real or complex. |t may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value INT (MIN (LOG10 (huge), —LOG10 (tiny))), where
huge and tiny are the largest and smallest numbers in the model representing numbers
of the same type and type parameters as X (see 13.5.1); huge has value HUGE (X) and
tiny has value TINY (X).

Example. EFFECTIVE__EXPONENT_RANGE (X) has the value 38 for real X whose

model is as at the end of 13.5.1, since in this case huge = (1—-2"2% x 2'%7 and tiny
x 2-—127

1986 November Page 13-22

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

Version 102

13.12.34 EFFECTIVE__PRECISION (X).

Description. Returns the decimal precision in the mode! representing numbers of the
same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real or complex. It may be scalar or array valued.
Resuit Type and Shape. Integer scalar.

Result Value. The result has value INT ({p —1) * LOG10 (b)), where b and p are as
defined in 13.5.1 for. the model representing numbers of the same type and type
parameters as X, and where k is1 if b is an integral power of 10 and 0 otherwise.

Example. EFFECTIVE__PRECISION (X) has the value INT (23 * LOG10 (2)) = INT
(6.92...) = 6 for real X whose model is as at the end of 13.5.1.

13.12.35 ELBOUND (ARRAY, DIM).

Optional Argument. DIM

Description. Returns all the effective lower bounds of an array or a specified effective
lower bound.

Kind. Inquiry function.

Arguments.

ARRAY may be of any type. [t must not be scalar. It must not be an
allocatable array that is not allocated or an alias array that does not
exist.

DIM {optional) must be scalar and of type integer with value in the range

1 < DIM = n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

Result Value.

Case (i) ELBOUND (ARRAY, DIM) has value equal to the effective lower bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value 1 if dimension DIM has size zero. For an array
section or an array expression, it has the value 1. '

Case (i) ELBOUND (ARRAY) has value whose i-th component is equal to ELBOUND
(ARRAY, i), for i = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared and its range is set as follows:

REAL, RANGE :: A (2:10, 5:10)
SET RANGE (&4:6, 7:9) A

then ELBOUND (A) is [4, 7] and ELBOUND (A, DIM=2) is 7.

13.12.36 EOSHIFT (ARRAY, DIM, SHIFT, BOUNDARY}),

Optional Argument. BOUNDARY

Description. Perform an end-off shift on an array expression of rank one or perform
end-off shifts on all the complete rank-one sections along a given dimension of a
many-ranked array expression. Elements are shifted off at one end of a section and
copies of a boundary value are shifted in at the other end. Different sections may have
different boundary values and may be shifted by different amounts and in different

1986 November Page 13-23

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

Version 102

directions.

Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DIM must be scalar and of type integer with value in the range
1 = DIM < n, where n is the rank of ARRAY.

SHIFT must be of type integer and must be scalar if ARRAY has rank one;

otherwise, it must be scalar or of rank n—1 and of shape [E
(1:DIM—1), E (DIM + 1:n)], where E (1:n) is the shape of ARRAY.

BOUNDARY (optional) must be of the same type and type parameters as ARRAY and
must be scalar if ARRAY has rank one; otherwise, it must be either
scalar or of rank n—1 and of shape [E (1:DIM-1), E (DIM+1:n)].
BOUNDARY may be omitted for the data types in the following
table and, in this case, it is as if it were present with the scalar
value shown.

Type of ARRAY Value of BOUNDARY

Integer 0

Real 0.0
Double precision 0.0D0
Complex {0.0, 0.0}
Logical .FALSE.
Character {len) fen blanks

Result Type, Type Parameters, and Shape. The result has the type, type parame-
ters, and shape of ARRAY.

Result Value. Element (s4, S, ..., Sy} of the result has value that of ARRAY (s, s, ...,
Spm—1» Spm+8h, Spmsts - 8,) where sh is SHIFT or SHIFT (s, &5, ..., Spm—1.
SDIM+1, ---» Sp) provided the inequatlity 1 < sppy + sh = E (DIM) holds and is otherwise
BOUNDARY or BOUNDARY (81, So, oo SDIM—1> SOIM+11 ++s Sn)-

Examples.

Case (i): If Vis the array [1, 2, 3, 4, 5, 6], the effect of shifting V end-off to the left
by 3 positions is achieved by EOSHIFT (V, DIM=1, SHIFT =3} which has
the value [4, 5, 6, 0, 0, 0]; EOSHIFT (V, DIM=1, SHIFT= -2, BOUND-
ARY =99} achieves an end-off shift to the right by 2 positions with the
boundary value of 99 and has the value [99, 99, 1, 2, 3, 4].

Case (if): The rows of an array of rank two may all be shifted by the same amount or
by different amounts and the boundary elements can be the same or

ABC
different. 1f M is the array {A B C}. then the value of EQOSHIFT (M,
ABC
* AB
DIM=2, SHIFT=—1, BOUNDARY="#") is |* A B |, and the vaiue of
* A B .

CSHIFT (M, DIM=2, SHIFT=[—1, 1, 0, BOUNDARY =[%", ’/’, '?']} is

* A B
B8 C v/
ABC

1986 November Page 13-24

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 102

13.12.37 EPSILON (X).

Description. Returns a positive model number that is almost negligible compared to
one in the model representing numbers of the same type and type parameters as the
argument.

Kind. Inquiry function.
Argument. X must be of type real. It may be scalar or array valued.

Result Type, Type Parameters, and Shape. Scalar of the same type and type param-
eters as X.

Result Value. The resuit has value b'~P where b and p are as defined in 13.5.1 for
the model representing numbers of the same type and type parameters as X.

Example. EPSILON (X) has the value 27> for real X whose model is as at the end of
13.5.1.

13.12.38 ESHAPE (SOURCE).

Description. Returns the effective shape of an array or a scalar.
Kind. Ingquiry function.

Argument. SOURCE may be of any type. It may be array valued or scalar. It must
not be an assumed-size array.

Result Type and Shape. The result is an integer array of rank one whose size is
equal to the rank of SOURCE.

Result Value. The value of the resuilt is the effective shape of SOURCE.

Example. The value of ESHAPE (A (2:5, —1:1))' is [4, 3]. The value of ESHAPE (3) is-
the rank-one array of size zero.

13.12.39 ESIZE (ARRAY, DIM).

Optional Argument. DIM

Description. Returns the effective extent of an array along a specified dimension or
the total effective number of elements in the array.

Kind. Inquiry function.
Arguments. :

ARRAY may be of any type. it must not be scalar. if ARRAY is an
assumed-size array, DIM must be present with value fess than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the effective extent of dimension DIM of
ARRAY or, if DIM is absent, the total effective number of elements of ARRAY.

Example. The value of ESIZE (A (2:5, —1:1), DIM=2) is 3. The value of ESIZE (A
(2:5, —1:1})is 12.

1986 November Page 13-25

INTRINSIC PROCEDURES X3J3/58

13.12.40 EUBOUND (ARRAY, DIM).
Optionai Argument. DIM

Description. Returns all the effective upper bounds of an array or a specified effective
upper bound.

5 Kind. Inquiry function.
Arguments.
ARRAY may be of any iype. I must not be scalar. It may not be an

allocatable array that has not been allocated or an alias array that
does not exist. If DIM is omitted or is present with value equal to
10 the rank of ARRAY, ARRAY must not be an assumed-size array.

BIM (optional) must be scalar and of type integer with value in the range 1 =< DIM
= n, where n is the rank of ARRAY.

Result Type and Shape. The result is of type integer. It is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

15 Result Value.

Case (i): EUBOUND (ARRAY, DIM) has value equai to the effective upper bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value zero if dimension DIM has size zero. For an array
section or an array expression, its value is the number of elements in the

20 corresponding dimension.

Case (i) EUBOUND (ARRAY) has value whose /-th component is equal to
EUBOUND (ARRAY, i}, fori = 1,2,...,n, where n is the rank of ARRAY.

Example. If A is declared by the statement
REAL A (2:3, 7:1)
25 then EUBOUND (A) is [3, 10] and EUBOUND (A, DIM=2) is 10.

13.12.41 EXP (X).
Description. Exponential.
Kind. Elemental function.

Argument. X must be of type real, double precision, or complex.

30 Result Type and Type Parameters. Same as X.
Result Value. The result has value equal to a processor-dependent approximation to
eX. If X is of type complex, its imaginary part is regarded as a value in radians.

Example. EXP (1.0) has the vatue 2.7182818 (approximateiy).

13.12.42 EXPONENT (X).

35 Description. Returns the exponent part of the argument when represented as a model
number.

Kind. Elemental function.
Argument. X must be of type real.

Result Type. Integer.

Version 102 1986 November Page 13-26

INTRINSIC PROCEDURES X3J3/68

10

15

20

25

30

35

Version 102

Result Value. The result has value equal to the exponent e of the model representa-
tion (see 13.5.1) for the value of X, provided X is nonzero and e is within range for inte-
gers.

Example. EXPONENT (1.0) has the value 1 for reals whose modei is as at the end of
13.5.1.

13.12.43 FRACTION (X).

Description. Returns the fractional part of the model representation of the argument
value.

Kind. Elemental function.
Argument. X must be of type real.
Result Type and Type Parameters. Same as X.

Result Value. The result has value X x b~®, where b and e are as defined in 13.5.1
for the model representation of X. 1f X has value zero, the result has value zero.

Example. FRACTION (3.0) has the value 0.75 for reals whose model is as at the end
of 13.5.1.

13.12.44 HUGE (X).

Description. Returns the largest number in the model representing numbers of the
same type and type parameters as the argument. o

Kind. Inguiry function.
Argument. X must be of type 'integer or real. It may be scalar or array vaiued.

Result Type, Type Parameters, and Shape. Scalar of the same type and type param-
eters as X.

Result Value. The result has value r?—1 if X is of type integer and (1 —b~P)bm= it X
is of type real, where r, g, b, p, and &y are as defined in 13.5.1 for the mode! repre-
senting numbers of the same type and type parameters as X.

Example. HUGE (X) has the value (1—27?%)x2'% for real X whose model is as at the
end of 13.5.1.

13.12.45 IACHAR (C).

Description. Returns the position of a character in the ASCII collating sequence.
Kind. Elemental function.

Argument. C must be of type character and of length one.

Result Type. Integer.

Result Value. The result is the position of C in the collating sequence described in
ANS| X3.4-1977 (ASCIil). It satisfies the inequality (0 < IACHAR (C)=127). A
processor-dependent value is returned if C is not in the ASCII collating sequence. The
results must be consistent with the LGE, LGT, LLE, and LLT lexical comparison func-
tions. For example, if LLE (C, D) is true, IACHAR (C) .LE. IACHAR (D} is true where C
and D are any two characters representable by the processor.

Example. tACHAR ('X') has the value 88.

1986 November Page 13-27

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

13.12.46 ICHAR (C).

Description. Returns the position of a character in the processor collating sequence.
Kind. Elemental function.

Argument. C must be of type character and of length one. Its value must be that of a
character capable of representation in the processor.

Result Type. Integer.

Result Value. The result is the position of C in the processor collating sequence and
is in the range 0 = ICHAR (C) = n -1, where n is the number of characters in the col-
lating sequence. For any characters C and D capable of representation in the proc-
essor, C .LE. D is true if and only if {CHAR (C) .LE. ICHAR (D) is true and C .EQ. D is
true if and only it ICHAR (C). EQ. ICHAR (D) is true.

Example. ICHAR (X'} has the value 88 on a processor using the ASCII collating
sequence.

13.12.47 INDEX (STRING, SUBSTRING}.

Description. Returns the starting position of a substring within a string.

Kind. Elemental function.

Arguments.
STRING must be of type character.
SUBSTRING must be of type character.

Result Type. Integer.

‘Result Value. If SUBSTRING occurs within STRING, the value returned is the mini-

mum value of | such that STRING (| : | + LEN (SUBSTRING) — 1) = = SUBSTRING;
otherwise, zero is returned. Zero is returned if LEN (STRING) < LEN (SUBSTRING)
and one is returned if LEN (SUBSTRING) = 0.

Example. INDEX (FORTBAN’, 'R’) has value 3.

13.12.48 INT (A).

Description. Convert to integer type.

Kind. Elemental function.

Argument. A must be of type integer, real, double precision, or complex.
Result Type. Integer.

Result Value.

Case (i) If A is of type integer, INT (A) = A.

Case (if): If A is of type real or double precision, there are two cases: if |A] < 1, INT
(A) has the value O; if }A| = 1, INT (A} is the integer whose magnitude is
the largest integer that does not exceed the magnitude of A and whose
sign is the same as the sign of A.

Case (iii}: If A is of type complex, INT (A) is the value obtained by applying the case
(i} rule to the real part of A.

Example. INT(—3.7) has the value —3.

Version 102 1986 November Page 13-28

INTRINSIC PROCEDURES X3J3/58

10

20

25

30

35

Version 102

13.12.49 ISCAN (STRING, SET).

Description. Scan a string for a character in a set of characters.

Kind. Elemental function.

Arguments.
STRING must be of type character.
SET must be of type character.

Resutt Type. Integer.

Result Value. If any of the characters of SET appears in STRING, the value of the
result is the integer index of the leftmost character of STRING that is in SET. The
result is zero if STRING does not contain any of the characters that are in SET or if the
length of STRING or SET is zero.

Example. ISCAN ('(FORTRAN’, 'TR’) has value 3.

13.12.50 LEN (STRING).

Description. Returns the length of a character entity.

Kind. Inquiry function.

Argument. STRING must be of type character. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value equal to the number of characters in. STRING if it
is scalar or in a component of STRING if it is array valued.

Example. |f C is declared by the statement
CHARACTER (11) C €100}
LEN (C) has value 11.

13.12.51 LEN__TRIM (STRING).

Description. Returns the length of the character argument without trailing blank char-
acters.

Kind. Elemental function.

Argument. STRING must be of type character.

‘Result Type. Integer.

Result Value. The result has a value equal to the number of characters before any
trailing blanks in STRING are removed. If the argument contains no nonblank charac-
ters, the resuit is zero.

Examples. LEN_TRIM (" A B8 ’) has value 4 and LEN_TRIM (') has value 0.

13.12.52 LGE (STRING__A, STRING__B).

Description. Test whether a string is lexically greater than or equal to another string,
based on the ASC! collating sequence.

Kind. Elemental fqnction.

Arguments.

1986 November Page 13-29

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

Version 102

STRING__A must be of type character.
STRING_B must be of type character.
Result Type. Logical.

Result Value. [f the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCII character set, the resuit is proc-
essor dependent. The result is true if the strings are equal or if STRING__A follows
STRING__B in the collating sequence described in ANS! X3.4-1977 (ASCII); otherwise,
the result is false.

Example. LGE (ONE’, 'TWO') has the value .FALSE.

13.12.53 LGT (STRING_A, STRING_B).

Description. Test whether a string is lexically greater than another string, based on
the ASCII collating sequence.

Kind. Elemental function.

Arguments.
STRING__A must be of type character.
STRING__B must be of type character.

Result Type. Logical.

Result Value. If the strings are of unequal length, the .comparison is made as if the
shorter string were extended on the right with blanks to the fength of the longer string.
If either string contains a character not in the ASCH character set, the result is proc-
essor dependent. The result is true if STRING__A follows STRING__B in the collating
sequence described in ANSI X3.4-1977 (ASCI); otherwise, the result is false.

Example. LGT ("ONE’, 'TWOQ’) has the value .FALSE.

13.12.54 LLE (STRING__A, STRING_ B).

Description. Test whether a string is lexically less than or equal to another string,
based on the ASCII collating sequence.

Kind. Elemental function.

Arguments.
STRING_A must be of type character.
STRING_B must be of type character.

Result Type. Logical.

Result Value. If the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCIl character set, the result is proc-
essor dependent. The result is true if the strings are equal or if STRING_A precedes
STRING__B in the collating sequence described in ANSI X3.4-1977 (ASCII); otherwise,
the result is false.

Example. LLE ({ONE’, 'TWQ’) has the value .TRUE.

1986 November Page 13-30

INTRINSIC PROCEDURES X3J3/58

13.12.55 LLT (STRING__A, STRING__B).

10

Description. Test whether a string is lexically less than another string, based on the
ASCI| collating sequence.

Kind. Elemental function.

Arguments.
STRING_A must be of type character.
STRING_B must be of type character.

Result Type. Logical.

Result Value. |f the strings are of unequal length, the comparison is made as if the
shorter string were extended on the right with blanks to the length of the longer string.
If either string contains a character not in the ASCIl character set, the result is proc-
essor dependent. The result is true if STRING_A precedes STRING__B in the collat-
ing sequence described in ANSI X3.4-1977 (ASCII); otherwise, the result is false.

Example. LLT (ONE’, "TWO’) has the value .TRUE.

15 13.12.56 LOG (X).

20

25

Description. Natural logarithm.
Kind. Elemental function.

Argument. X must be of type real, double precision, or complex. Unless X is com-
plex, its value must be greater than zero. If X is complex, its value must not be zero.

Result Type and Type Parameters. Same as X.

Result Value. The resuit has value equal to a processor-dependent approximation to
logeX. A result of type compiex is the principal value with imaginary part « in the
range —« < w < x. The imaginary part of the result is = only when the real part of the
argument is less than zero and the imaginary part of the argument is zero.

Example. LOG (10.0) has the value 2.3025851 (approximately).

13.12.57 LOG10 (X).

30

Description. Common logarithm.
Kind. Elemental function.

Argument. X must be of type real or double precision. The value of X must be
greater than zero.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
Iong.

Example. LOG10 (10.0) has the value 1.0 (approximately).

35 13.12.58 MATMUL (MATRIX_ A, MATRIX_B).

Version 102

Description. Performs matrix muitiplication of numetric or Boolean matrices.
Kind. Transformational function.

Arguments.

1986 November Page 13-31

INTRINSIC PROCEDURES X3J3/s8

10

15

20

25

30

35

MATRIX_A must be of numeric lype (integer, real, double precision, or com-
plex) or of logical type. It must be array valued and of rank one or
two. lts shape must be defined.

MATRIX_B must be of numeric type if MATRIX__A is of numeric type and of
logical type if MATRIX_A is of logical type. It must be array val-
ued and of rank one or two. If MATRIX__A has rank one,
MATRIX_B must have rank two. lts shape must be defined. The
size of the first (or only) dimension of MATRIX_B must equal the
size of the last (or only) dimension of MATRIX__A.

Result Type, Type Parameters, and Shape. If the arguments are of numeric type, the
type and type parameters of the result are determined by the types of the arguments
according to 7.1.4. If the arguments are of type logical, the result is of type logical.
The shape of the result depends on the shapes of the arguments as follows:

Case (i): If MATRIX_A has shape [n, m] and MATRIX_B has shape [m, k], the
result has shape [n, k).

Case (ii): |t MATRIX__A has shape [m] and MATRIX_B has shape [m, k], the result
has shape [k}.

Case (iif): If MATRIX__A has shape [n, m] and MATRIX_B has shape [m], the result
has shape [n].

Result Value.

Case {i): Element (i, j) of the result has value SUM (MATRIX_A (i, ;) * MATRIX__B
(:, f)) if the arguments are of numeric type and has value ANY (MATRIX_A
(f, -} .AND. MATRIX__B (:, j)) if the arguments are of logical type.

Case (i) Element (j) of the result has value SUM (MATRIX_A () * MATRIX_B (;,
) if the arguments are of numeric type and has value ANY (MATRIX__A ()
.AND. MATRIX__B (:, f)) if the arguments are of logical type.

Case (iii): Element (i) of the resuit has value SUM (MATRIX_A (i,) #+ MATRIX_B
{:)) if the arguments are of numeric type and has value ANY (MATRIX_A
(i, :} .AND. MATRIX__B (3)) if the arguments are of logical type.

12
Examples. Let A and B be the matrices [; :2; ﬂ and {2 3} ; let X and Y be the

3 4
vectors [1, 2] and [t, 2, 3].

Case (i): The result of MATMUL (A, B) is the matrix-matrix product AB with value
[14 20}
20 29 |-
Case {ii): The result of MATMUL (X, A} is the vector-matrix product XA with value [5,
8, 11].

Case (iii): The result of MATMUL (A, Y) is the matrix-vector product AY with value
[14, 20].

13.12.59 MAX (A1, A2, A3, ..).

40

Version 102

Optionat Arguments. A3, ...
Description. Maximum value.

Kind. Elemental function.

1986 November Page 13-32

INTRINSIC PROCEDURES X3J3/58

Arguments. The arguments must all have the same type which must be integer, real,
or double precision and they must all have the same type parameters. '

Result Type and Type Parameters. Same as the arguments.
Result Value. The value of the result is that of the largest argument,
Example. MAX (-9.0, 7.0, 2.0) has the value 7.0.

13.12.60 MAXEXPONENT (X).

10

15

Description. Returns the maximum exponent in the model representing numbers of
the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real. it may be scalar or array valued.
Result Type and Shape. Integer scalar. '

Result Value. The result has value €.y as defined in 13.5.1 for the model represent-
ing numbers of the same type and type parameters as X

Example. MAXEXPONENT (X) has the value 127 for real X whose model is as at the
end of 13.5.1.

13.12.61 MAXLOC (ARRAY, MASK).

20

25

30

35

40

Version 102

Optional Argument. MASK

Description. Determine the location of an element of ARRAY having the maximum
value of the elements identified by MASK.

Kind. Transformational function.
Arguments.

ARRAY must be of type integer, real, or double precision. It must not be
scalar. -

MASK (optiona!) must be of type logical or bit and must be conformable with
ARRAY. ' '

Result Type and Shape. The result is of type integer; it is an array of rank cne and of
size equal to the rank of ARRAY.

Result Value.

Case (i): If MASK'is absent, the result is a rank-one array whose element values are
the values of the subscripts. (in subscript order value) of an element of
ARRAY whose value equals the maximum value of all of the elements of
ARRAY. The ith subscript returned lies in the range 1 to e;, where g, is
the extent of the ith dimension of ARRAY. If more than one element has
maximum vaiue, the element whose subscripts are returned is processor
dependent. |f ARRAY has size zero, the value of the result is processor
dependent. '

Case (i): |f MASK is present, the result is a rank-one array whose element values
are the values of the subscripts (in subscript order value) of an element of
ARRAY, corresponding to a true element of MASK, whose value equals the
maximum value of all such elements of ARRAY. The jth subscript returned
lies in the range 1 to &, where g; is the extent of the ith dimension of
ARRAY. if more than one such element has maximum value, the element
whose subscripts are returned is processor dependent. If there are no

1986 November Page 13-33

INTRINSIC PROCEDURES X3J3/58

such elements (that is, it ARRAY has size zero or every component of
MASK has the value .FALSE.), the value of the result is processor depend-
ent.

Examples.
Case () The value of MAXLOC ([2, 4, 6]) is [3].
0 -5 8 -31
Case (ii): If A has the value |3 4 -1 2} MAXLOC (A, MASK=A.LT.6) has

1 5 6 —4]
the value {3, 2].

13.12.62 MAXVAL (ARRAY, DIM, MASK).

10

15

20

25

30

35

40

Version 102

Optional Arguments. DIM, MASK

Description. Maximum value of the elements of ARRAY along dimension DIM corre-
sponding to the true elements of MASK.

Kind. Transformational function.

Arguments.

ARRAY rmust be of type integer, real, or double precision. It must not be
scalar. Its shape must be defined.

DIM (optional} must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

MASK {optional) must be of type logical or bit and must be conformable
with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,

the result is an array of rank n—1 and of shape (dy, d, ..., dpm—-1, dom+1s - T}
where (d,, ds, ..., d,)} is the shape of ARRAY.
Result Value.

Case (i): The result of MAXVAL (ARRAY) has value equal to the maximum value of
all the elements of ARRAY or has value —HUGE (ARRAY) if ARRAY has
size zero,

Case (i) The result of MAXVAL (ARRAY, MASK) has value equal to the maximum
value of the elements of ARRAY corresponding to true elements of MASK
or has value —HUGE (ARRAY) if there are no true elements.

Case (iii): |f ARRAY has rank one, MAXVAL (ARRAY, DIM [[MASK]) has value equal
to that of MAXVAL (ARRAY [,MASK]). Otherwise, the value of element (s,
Sz, vcor SDIM-1» SDIM+1: - Sp) Of MAXVAL (ARRAY, DIM [MASK]) is equal
to MAXVAL (ARRAY (81, Soy ..oy SDIM=15 1 SDIM41s. e Sn), [, MASK (31, 8o,
vers SDIM—15 %s SDIM+1s - Sp) 1)-

Examples.
Case (i): The value of MAXVAL ({1, 2, 3]) is 3.

Case (i) MAXVAL (C, MASK = C .GT. 0.0) finds the maximum of the positive
elements of C.

Case (ii): If B is the array B A g} , MAXVAL (B, DIM=1) is [2, 4, 6] and MAXVAL

(8, DIM =2) is [5, 6].

1986 November Page 13-34

INTRINSIC PROCEDURES X3J3/S8

10

15

20

25

30

35

Version 102

13.12.63 MERGE (TSOURCE, FSOURCE, MASK).

Description. Choose alternative value according to value of a mask.

Kind. Elemental function.

Arguments.

TSOURCE may be of any type.

FSOURCE must be of the same type and type parameters as TSOURCE.
MASK must be of type logical or bit.

Result Type and Type Parameters. Same as TSOURCE.
Result Value. The result is TSOURCE if MASK is true and FSOURCE otherwise.

Example. If TSOURCE is the array [12 g g:| FSOURCE is the array [gi g] and

T.T
MASK is the array | T} , where “T” represents .TRUE. and “.” represents .FALSE.,

then MERGE (TSOURCE, FSOURCE, MASK) is [‘7 3 g} .

13.12.64 MIN (A1, A2, A3, ...).

Optional Arguments. A3, ...
Description. Minimum value.
Kind. Elemental function.

Arguments. The arguments must all be of the same type which must be integer, real,
or double precision and they must all have the same type parameters.

Result Type and Type Parameters. Same as the arguments.

Result Value. The value of the resuit is that of the smallest argument.

Example. MIN (—9.0, 7.0, 2.0) has the value —9.0.

13.12.65 MINEXPONENT (X).

Description. Returns the minimum (most negative) exponent in the model representing
numbers of the same type and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value e, as defined in 13.5.1 for the model represent-
ing numbers of the same type and type parameters as X.

Example. MINEXPONENT (X) has the value —126 for real X whose model is as at the
end of 13.5.1.

13.12.66 MINLOC (ARRAY, MASK).

Optional Argument. MASK

Description. Determine the location of an element of ARRAY having the minimum
value of the elements identified by MASK.

1986 November Page 13-35

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

Kind. Transformational function.
Arguments.

ARRAY must be of type integer, real, or double precision. It must not be
scalar.

MASK (optional) must be of type logical or bit and must be conformable with
ARRAY.

Result Type and Shape. The result is of type integer; it is an array of rank one and of
size equal to the rank of ARRAY.

Result Value.

Case (i): If MASK is absent, the result is a rank-one array whose element values are
the values of the subscripts (in subscript order value) of an element of
ARRAY whose value equals the minimum value of all the elements of
ARRAY. The ith subscript returned lies in the range 1 to e;, where g; is
the extent of the ith dimension of ARRAY. If more than one element has
minimum value, the element whose subscripts are returned is processor
dependent. If ARBRAY has size zero, the value of the result is processor
dependent.

Case (ii): If MASK is present, the result is a rank-one array whose element values
are the values of the subscripts (in subscript order value) of an element of
ARRAY, corresponding to a true element of MASK, whose value equals the
minimum value of all such elements of ARRAY. The ith subscript returned
lies in the range 1 to e;, where ¢; is the extent of the ith dimension of
ARRAY. If more than one such element has minimum value, the element
whose subscripts are returned is processor dependent. |f ARRAY has size
zero or every element of MASK has the value .FALSE., the value of the
result is processor dependent.

Examples.

Case (i): The value of MINLOC ([2, 4, 6]) is [1].
0 -5 8 -3

Case (i) 1f Ahasthe value |3 4 —1 2|, MINLOC (A, MASK=A.GT.—4) has
1 5 6 —4

the value [1,4].

13.12.67 MINVAL (ARRAY, DIM, MASK).

35

40

Version 102

Optional Arguments. DIM, MASK

Description. Minimum value of all the elements of ARRAY along dimension DIM corre-
sponding to true elements of MASK,

Kind. Transformational function.

Arguments.

ARRAY must be of type integer, real, -or double precision. It must not be
scalar.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical or bit and must be conformable

with ARRAY.

1986 November Page 13-36

INTRINSIC PROCEDURES X3J3/S8

10

20

Resuit Type, Type Parameters, and Shape. The resuit is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,

the result is an array of rank n—1 and of shape (d, d2, ..., dom—1. dom41s - Cn)
where (d4, d», ..., d,) is the shape of ARRAY.

Result Value.

Case (i): The result of MINVAL (ARRAY) has value equal to the minimum value of all

Case (ii):

Case (iii):

Examples.
Case (i):
Case (ii):

Case (iii):

the elements of ARRAY or has value HUGE (ARRAY) if ARRAY has size
zero.

The result of MINVAL (ARRAY, MASK) has value equal to the minimum
value of the elements of ARRAY corresponding to true elements of MASK
or has value HUGE (ARRAY) if there are no true elements.

If ARRAY has rank one, MINVAL (ARRAY, DIM [,MASK]) has value equal to
that of MINVAL (ARRAY [,MASK]). Otherwise, the value of element (s, S5,
cs SDIM—1» SDIM+1s -1 Sn) Of MINVAL (ARRAY, DIM [,MASK]) is equal to
MINVAL (ARRAY (S1, So, ...y SDIM=15 *» SDIM+1> ++» Sn) [, MASK (81, 85, ey
SDIM-15 ' SDIM+1s -+ Sn) 1)-

The value of MINVAL ([1, 2, 3]) is 1.

MINVAL (C, MASK = C .GT. 0.0) forms the minimum of the positive
elements of C.

If B is the array B 2 g] , MINVAL (B, DIM=1) is [1, 3, 5] and MINVAL (B,
DIM=2jis [1, 2].

13.12.68 MOD (A, P).

Description. Remainder modulo P.

25

30

Kind. Elemental function.

Arguments.
A
P

must be of type integer, real, or double precision.

must be of the same type as A.

Result Type and Type Parameters. Same as A.

Result Value. If P # 0, the value of the result is A—INT (A/P) # P. If P = 0, the
result is undefined.

Example. MOD (3.0, 21.0) has the value 1.0.

13.12.69 NEAREST (X, S).

Description. Returns the nearest different machine representable number in a given

35

Version 102

direction.
Kind. Elem
Arguments.
X

S

ental function.

must be of type real.

must be of type real and not equal to zero.

1986 November Page 13-37

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

Version 102

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to the machine representable number dis-
tinct from X and nearest to it in the direction of the infinity with the same sign as S.

Example. NEAREST (3.0, 2.0) has the value 3+2722 on a machine whose representa-
tion is that of the model at the end of 13.5.1.

13.12.70 NINT (A).

Description. Nearest integer.

Kind. Elemental function.

Argument. A must be of type real or double precision.
Result Type. Integer.

Result Value. If A > 0, NINT (A) has the value INT (A+0.5); if A <0, NINT (A) has
the value INT (A—0.5).

Example. NINT (2.783) has the value 3.

13.12.71 PACK (ARRAY, MASK, VECTOR).

Optional Argument. VECTOR
Description. Pack an array into an array of rank one under the control of a mask.

Kind. Transformational function.

Arguments.
ARRAY may be of any type. It must not be scalar.
MASK must be of type logical or bit and must be conformable with

ARRAY.

VECTOR (optional) must be of the same type and type parameters as ARRAY and
must have rank one. It must have at least as many elements as
there are true elements in MASK and if MASK is scalar with value
true, it must have at least as many elements as there are in
ARRAY.

Result Type, Type Parameters, and Shape. The result is an array of rank one with
the same type and type parameters as ARRAY. If VECTOR is present, the result size
is that of VECTOR; otherwise, the result size is the number t of true elements in MASK
uniess MASK is scalar with value true, in which case the resuit size is the size of
ARRAY.

Resuit Value. Element i of the result is the /-th element of ARRAY that corresponds to
a true element of MASK, taking elements in subscript order value, fori = 1,2,...,t. If
VECTOR is present and has size n > t, element i of the result has value VECTOR (i),
fori =t+1,..,n.

000
Example. The nonzero elements of an array M with value [9 0 0} may be “gath-
007

ered” by the function PACK. The resuit of PACK (M, MASK =M.NE.Q) is [9, 7] and the
result of PACK (M, M.NE.O, VECTOR=[6[0}]) is [9, 7, 0, 0, 0, 0].

1986 November Page 13-38

INTRINSIC PROCEDURES X3J3/58

13.12.72 PRESENT (A).

Description. Determine whether an optional argument is present.
Kind. Inquiry function

Argument. A must be an optional argument of the procedure in which the PRESENT
function reference appears.

Result Type and Shape. Logical scalar.

Result Value. The result has the value .TRUE. if A is present (12.5.2.8) and is other-
wise .FALSE.

13.12.73 PRODUCT (ARRAY, DIM, MASK).

10

15

20

25

30

35

40

Version 102

Optional Arguments. DIM, MASK

Description. Product of all the elements of ARRAY along dimension DIM correspond-
ing to the true elements of MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer, real, double precision, or complex. It must
not be scalar. Its shape must be defined.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM = n, where n is the rank of ARRAY.

MASK (optional) must be of type logical or bit and must be conformable
with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,
the result is an array of rank n—1 and of shape (di, da, ..., dom-1, OpiM+1s -+ Gn)
where (d4, dp, ..., d,) is the shape of ARRAY.

Result Value.

Case (i): The result of PRODUCT (ARRAY) has value equal to a processor-
dependent approximation to the product of all the elements of ARRAY or
has value one if ARRAY has size zero.

Case (i): The result-of PRODUCT (ARRAY, MASK) has value equal to a processor-
dependent approximation to the product of the elements of ARRAY corre-
sponding to true elements of MASK or has value one if there are no true
elements.

Case (ii): If ARRAY has rank one, PRODUCT (ARRAY, DIM [,MASK]) has value equal
to that of PRODUCT (ARRAY: [MASK]). Otherwise, the value of element
(S1, S2, -» SDIM—1s SDIM+1s ---» Sp) Of PRODUCT (ARRAY, DIM [,MASK]) is
equal to PRODUCT (ARRAY (S4, S2, - SDIM=1s s SDIM+15 --» Sp) [MASK

(S1, S2, or SDIM~1s ©» SDIM+1s = Sn) 1)+,

Examples.
Case (i): The value of PRODUCT ([1, 2, 3]) is 6.

Case (ii): PRODUCT (C, MASK = C .GT. 0.0) forms the product of the positive
elements of C.

Case (ii): 1 B is the array B 2 g} PRODUCT (8, DIM=1) is [2, 12, 30] and PROD-

1986 November Page 13-39

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

40

Version 102

UCT (B, DIM=2) is [15, 48].

13.12.74 RADIX (X).

Description. Returns the base of the model representing numbers of the same type
and type parameters as the argument.

Kind. Inquiry function.
Argument. X must be of type integer or real. It may be scalar or array valued.
Result Type and Shape. Integer scalar.

Result Value. The result has value r if X is of type integer and b if X is of type real,
where r and b are as defined in 13.5.1 for the model representing numbers of the
same type and type parameters as X.

Example. RADIX (X) has the value 2 for real X whose model is as at the end of
13.5.1.

13.12.75 RANDOM (HARVEST).

Description. Returns pseudorandom numbers from the uniform distribution over the
range 0 < HARVEST =< 1.

Kind. Subroutine.

Argument. HARVEST must be of type real. It is set td contain pseudorandom num-
bers.

Examples.

REAL HARVEST (10, 10)

CALL RANDOM (X) ! SETS X = RANDOM

CALL RANDOM (HARVEST)

MASK = HARVEST .LT. THRESHOLDS ! PROBABILITY MASK

13.12.76 RANDOMSEED (SIZE, PUT, GET).

Optional Argument. SIZE, PUT, GET

Description. Initializes or restarts the pseudorandom number generator.
Kind. Subroutine.

Argument. There must either be exacly one or no arguments present.

SIZE (optional) must be scalar and of type integer. It is set to the number N of
integers that the the processor uses to hold the value of the seed.
LLLAVIPVE PN LT N

PUT (optional) must be an integer array or rank one and size N. It is used by the
processor to set the seed value.

GET (optionao must be an integer array or rank one and size N. It is set by the
processor to the current value of the seed.

If no argument is present, the processor sets the seed to a processor-determined
value.

Examples.

CALL RANDOMSEED ! PROCESSOR INITIALIZAION
CALL RANDOMSEED (SIZE = K) | SETS K =N

1986 November Page 13-40

NN

INTRINSIC PROCEDURES X3J3/S8

SEED (1 : K)) ! SET USER SEED
OLD (1 : K)) ! READ CURRENT SEED

CALL RANDOMSEED (PUT
CALL RANDOMSEED (GET

13.12.77 REAL (A, MOLD).

10

15

Optional Argument. MOLD

Description. Convert to real type.

Kind. Elemental function.

Arguments.

A must be of type integer, real, double precision, or complex.
MOLD (optional) ~ must be of type real.

Result Type and Type Parameters. Real. If MOLD is present, the type parameters
are those of MOLD; otherwise, they are the processor-dependent default type parame-
ters for real type.

Result Value.

Case (i): If A is of type integer, real, or double precision, the result is equal to a
processor-dependent approximation real part of A.

Case (i): I A is of type complex, the result is equal to a processor-dependent
approximation real part of A.

Example. REAL (—3) has the value -3.0.

13.12.78 REPEAT (STRING, NCOPIES).

20

25

Description. Concatenate several copies of a string.

Kind. Elemental function.

Arguments.
STRING - must be of type character.
NCOPIES must be of type integer. Its value must not be negative.

Result Type and Type Parameters. Character of length NCOPIES times that of
STRING.

Result Value. The value of the result is the concatenation of NCOPIES copies of
STRING.

Example. REPEAT ('H’, 2) has value "HH'.

30 13.12.79 RESHAPE (MOLD, SOURCE, PAD, ORDER).

35

Version 102

Optional Arguments. PAD, ORDER '
Description. Change the shape of an array.

Kind. Transformational function.

Arguments.

MOLD must be of type integer and rank one. lts size must be positive
and less than 8.

SOURCE may be of any type. It must be array valued. Its shape must be

defined. 1f PAD is absent, the size of SOURCE must be at least as

1986 November Page 13-41

INTRINSIC PROCEDURES X3J3/58

10

15

20

25

30

35

Version 102

great as that of the resuli.

PAD (optional) must be of the same type and type parameters as SOURCE. PAD
must be array valued.

ORDER (optional) must be of type integer, must have the same shape as MOLD, and
its value must be a permutation of [1:n], where n is the size of
MOLD. If absent, it is as if it were present with vatue [1:n].

Result Type, Type Parameters, and Shape. The result is an array of shape MOLD
(i.e., SHAPE (RESHAPE (MOLD, SOURCE)) = MOLD) with type and type parameters
those of SOURCE.

Result Value. The elements of the result, taken in permuted subscript order ORDER
(1), ..., ORDER (n), are those of SOURCE in normal subscript order vaiue followed if
necessary by those of PAD in subscript order value, followed if necessary by additional
copies of PAD in subscript order value.

Example. RESHAPE ([2, 3], [1:6]) has value [; 2 g] -

13.12.80 RRSPACING (X).

Description. Returns the reciprocal of the relative spacing of model numbers near the
argument value.

Kind. Elemental function.
Argument. X must be of type real.
Result Type and Type Parameters. Same as X.

Result Value. The result has value | X x b~°| x bP, where b, e, and p are as defined
in 13.5.1 for the model representation of X, provided this result is within range.

Example. RRSPACING (—3.0) has the value 0.75 x 22* for reals whose model is as at
the end of 13.5.1.

13.12.81 SCALE (X, I).

Description. Returns X x b' where b is the base in the mode! representation of X.
Kind. Elemental function.

Arguments.

X must be of type real.

| must be of type integer.

Result Type and Type Parameters. Same as X.

Result Value. The result has the value X x b', where b is defined in 13.5.1 for model
numbers representing values of X, provided this result is within range.

Example. SCALE (3.0, 2) has the value 12.0 for reals whose model is as at the end of
13.5.1.

13.12.82 SETEXPONENT (X, I).

Description. Returns the model number whose fractional part is the fractional part of
the model representation of X and whose exponent part is I.

1986 November Page 13-42

INTRINSIC PROCEDURES X3J3/58

10

Kind. Elemental function.

Arguments.

X must be of type real.

| must be of type integer.
Result Type and Type Parameters. Same as X.

Result Value. The result has value X X b'-®, where b and e are as defined in 13.61
for the mode! representation of X, provided this result is within range. If X has value
zero, the result has value zero.

Example. SETEXPONENT (3.0, 1) has the value 1.5 for reals whose model is as at the
end of 13.5.1.

13.12.83 SIGN (A, B).

15

Description. Absolute value of A times the sign of B.

Kind. Elemental function.

Arguments.
A must be of type integer, real, or double precision.
B must be of the same type as A.

Result Type and Type Parameters. Same as A.
Result Value. The value of the result is |Al if B = 0and —|A| ifB <0.
Example. SIGN (-3.0, 2.0) has the value 3.0.

20 13.12.84 SIN (X).

25

Description. Sine function.

Kind. Elemental function.

Argument. X must be of type real, double precision, or complex.
Result Type and Type Parameters. Same as X’

Result Value. The result has value equal to a processor-dependent approximation to

sin(X). i X is of type real or double precision, it is regarded as a value in radians. If X
is of type complex, its real part is regarded as a value in radians.

Example. SIN (1.0) has the value 0.84147098 (approximately).

13.12.85 SINH (X).

30

35

Version 102

Description. Hyperbolic sine function.

Kind. Elemental function.

Argument. X must be of type real or double precision.
Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
sinh(X).

Example. SINH (1.0) has the value 1.1752012 (approximately).

1986 November ; Page 13-43

INTRINSIC PROCEDURES X3J3/S8

13.12.86 SPACING (X).

10

Description. Returns the absolute spacing of model numbers near the argument
value.

Kind. Elemental function.
Argument. X must be of type real.
Result Type and Type Parameters. Same as X.

Result Value. The result has value b® P, where b, e, and p are as defined in 13.5.1
for the model representation of X, provided this resplt is within range; otherwise, the
result is the same as that of TINY (X).

Example. SPACING (3.0) has the value 2~ for reals whose model is as at the end of
13.5.1.

13.12.87 SPREAD (SOURCE, DIM, NCOPIES).

15

20

25

30

35

Description. Replicates an array by adding a dimension. Broadcasts several copies of
SOURCE along a specified dimension (as in forming a book from copies of a single
page) and thus forms an array of rank one greater.

Kind. Transformational function.

Arguments.

SOURCE may be of any type. It may be scalar or array valued. The rank of
SOURCE must be less than 7.

DIM must be scalar and of type integer with value in the range
1 < DIM < n +1, where n is the rank of SOURCE.

NCOPIES must be scalar and of type integer.

Result Type, Type Parameters, and Shape. The result is an array of the same type
and type parameters as SOURCE and of rank n +1, where n is the rank of SOURCE.

Case (i): If SOURCE is scalar, the shape of the result is [MAX (NCOPIES, 0)].

Case (i): If SOURCE is array valued with shape E (1:n), the shape of the result is [E
(1:DIM-1), MAX (NCOPIES, 0), E (DIM:n)].

Result Value.

Case (i) If SOURCE is scalar, each element of the result haé value equal to
SOURCE.

Case (ij): If SOURCE is array valued, the element of the result with subscript (r, r»,
..ss In41) has the value SOURCE (s, So, ..., 85) where (s4, 85, ..., 85) is (rq,
ro, ..., I'ny1) with subscript rp omitted.

Example. If A is the array [2, 3, 4], SPREAD (A, DIM=1, NCOPIES =3) is the array

2314
234 |.
234

13.12.88 SQRT (X).

Version 102

Description. Square root.
Kind. Elemental function.

1986 November Page 13-44

INTRINSIC PROCEDURES X3J3/S8

Argument. X must be of type real, double precision, or complex. Unless X is com-
plex, its value must be greater than or equal to zero.

Result Type and Type Parameters. Same as X.

Result Value. The result has value equal to a processor-dependent approximation to
the square root of X. A result of type complex is the principal value with the real part
greater than or equal to zero. When the real part of the result is zero, the imaginary
part is greater than or equal to zero.

Example. SQRT (4.0) has the value 2.0 (approximately).

13.12.89 SUM (ARRAY, DIM, MASK).

10

15

20

25

30

35

40

Version 102

Optional Arguments. DIM, MASK
Description. Sum all the elements of ARRAY along dimension DIM with mask MASK.

Kind. Transformational function.

Arguments.

ARRAY must be of type integer, real, double precision, or complex. It must
not be scalar.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

MASK (optional) must be of type logical or bit and must be conformable
with ARRAY.

Result Type, Type Parameters, and Shape. The result is of the same type and type
parameters as ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise,

the result is an array of rank n—1 and of shape (d1, da, .-, doM—1, dDIM+1s =es d,)
where (d4, ds, ..., d,) is the shape of ARRAY.
Result Value.

Case (i): The result of SUM (ARRAY) has value equal to a processor-dependent
approximation to the sum of all the elements of ARRAY or has value zero if
ARRAY has size zero.

Case (ii): The resuit .of SUM (ARRAY, MASK) has value equal to a processor-
dependent approximation to the sum of the elements of ARRAY corre-
sponding to the true elements of MASK or has value zero if there are no
true elements.

Case (iii): |f ARRAY has rank one, SUM (ARRAY, DIM [,MASK]) has value equal to
that of SUM (ARRAY [,MASK]). Otherwise, the value of element (5,4, s2, .-

SpM—1» SDIM+1s - Sn) of SUM (ARRAY, DIM [,MASK]) is equal to SUM
(ARRAY (S+4) Sz, -1 SDIM—1s '+ SDIM+1r =+ Sp) [, MASK (s1, S2, ---» SpiM—1s %
SpIM+13 0y Sp) 1)

Examples.)
Case (i): The value of SUM ([1, 2, 3]) is 6.

Case (i) SUM (C, MASK= C .GT. 0.0) forms the arithmetic sum of the positive
elements of C.

Case (ii); If B is the array B 3 g] SUM (B, DIM=1) is [3, 7, 11] and SUM (B,
DIM=2) is [9, 12].

1986 November Page 13-45

INTRINSIC PROCEDURES X3J3/58

10

i5

Arguments.

VECTOR may be of any type. It must have rank one. Its size must be at
least t where t is the number of true elements in MASK.

MASK must be array valued and of type logical or bit. Its shape must be
defined.

FIELD must be of the same type and type parameters as VECTOR and

must be conformable with MASK.

Result Type, Type Parameters, and Shape. The result is an array of the same type
and type parameters as VECTOR and the same shape as MASK.

Result Value. The element of the result that corresponds to the i-th true element of
MASK, counting in subscript order value, has value VECTOR (i) for i = 1,2,...,t,
where t is the number of true values in MASK. Other elements have value equal to
FIELD if FIELD is scalar or to the corresponding element of FIELD if it is an array.

Example. Specific values may be “scattered” to specific positions in an array by using

000
UNPACK. If M is the array [o 0 0}, V is the array [1, 2, 3], and Q is the logical
000

. T .
mask [T .. :l where “T” represents .TRUE. and “.” represents .FALSE., then the
.. T

020
result of UNPACK (V, MASK=Q, FIELD = M) has the value {1 0 g} and the resuit of
00

02090
UNPACK (V, MASK=Q, FIELD =0) has the vaiue {1 0 0}.
003

13.12.97 VERIFY (STRING, SET).

20

25

Version 102

Description. Verify that a set of characters contains all the characters in a string.
Kind. Elemental function.

Arguments.
STRING must be of type character.
SET must be of type character.

Result Type. Integer.

Result Value. The value of the result is zero if each character in STRING appears in
SET or if STRING has zero length; otherwise, the value of the result is the position of
the leftmost character of STRING that is not in SET.

Example. VERIFY ('AB’, 'A’) has value 2.

1986 November Page 13-48

10

15

20

25

30

35

14 SCOPE, ASSOCIATION, AND DEFINITION

Each lexical token has a scope, which is either an executable program, a scoping unit, a
single statement, or part of a statement. Within its scope, a lexical token has a single inter-
pretation. An entity identified by a lexical token whose scope is an executable program is
called a global entity. An entity identified by a lexical token whose scope is a scoping unit
is called a local entity. An entity identified by a lexical token whose scope is a single state-
ment or part of a statement is called a statement entity. ' '

14.1 Scope of Names. The names of external procedures, module procedures, and
external program units have a scope of an executabie program.

The names of variables,,constants, statement functions, internal procedures, dummy proce-
dures, intrinsic procedures, keyword arguments, types, type parameters, type components,
range lists, namelist groups and constructs have a scope of a scoping unit.

The name of a variable that appears as a dummy argument in a statement function state-
ment has a scope of the statement in which it appears.

The name of a variable that appears as the DO variable of an implied-DO in a DATA state-
ment has a scope of the implied-DO list.

14.1.1 Global Entities. External program units, common blocks, and external procedures
are global entities of an executable program. A name that identifies a global entity must not
be used to identify any other global entity in the same executable program.

14.1.2 Local Entities. Within a scoping unit, entities in the following classes:

(1) Variable names, named constants, constructs, statement functions, internal proce-
dures, module procedures, dummy procedures, and intrinsic procedures,

(2) Typss,

(3) Range lists,

(4) Namelist groups,

(5) Type parameters, in a separate class for each type,

(6) Type components, in a separate class for each type, and

(7) Keyword arguments, in a separate class for each procedure with an explicit inter-
face

are local entities of that scoping unit.

A name that identifies a global entity in a scoping unit must not be used to identify a local
entity of class (1) in that scoping unit, except for a common block name (14.1.2.1) or an
external function name (14.1.2.2).

Within a scoping unit, a name that identifies a local entity of one class must not be used to
identify another entity of the same class, except in the case of overioaded procedures
(14.1.2.3). A name that identifies a local entity of one class may be used to identify.a local
entity of another class.

The name of a local entity identifies that entity in a single scoping unit and may be used to
identify any local or global entity in ancther scoping unit.

Version 102 1986 November Page 14-1

SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

10

15

20

25

30

35

40

45

14.1.2.1 Common Blocks. A common block name in a scoping unit also may be the name
of any local entity other than a named constant, intrinsic function, or a local variable that is
also an external function in a function subprogram. If a name is used for both a common
block and a local entity, the appearance of that name in any context other than as a com-
mon block name in a COMMON or SAVE statement identiffes only the local entity. Note that
an intrinsic function name may be a common block name in a scoping unit that does not ref-
erence the intrinsic function.

14.1.2.2 Function Results. If a function subprogram does not have a RESULT clause in
its function statement, there must be a local variable with the same name as that function.
If a function subprogram contains an ENTRY statement, there must be a local variable with
the same name as the entry.

14.1.2.3 Procedure Overloading. Within a scoping unit, two procedures may have the
same name provided they both have explicit interfaces and at least one of them has a
nonoptional dummy argument which

(1) Corresponds by position in the argument list to a dummy argument not present in
the other, present with a different type, present with different type parameters, or
present with a different rank when both are deferred-shape arrays; and

(2) Corresponds by keyword argument to a dummy argument not present in the other,
present with a different type, present with different type parameters, or present
with a different rank when both are deferred-shape arrays.

14.1.2.4 Components. A component name has the same scope as the type of which it is a
component. It may appear only within a name of a component of a structure of that type. If
the type is accessible in another scoping unit by use association (14.7.1.3), the component
name is accessible for names of components of structures of that type in that scoping unit.

14.1.2.5 Type Parameters. A type parameter name has the same scope as the type of
which it is a parameter. There is also a variable of the same name whose scope is the
derived-type definition. As a type parameter name, it may appear only in a derived-type
declaration for the type of which it is a parameter. If the type is accessible in another scop-
ing unit by use association (14.7.1.3), the type parameter name is accessible for derived-type
declarations for that type in that scoping unit.

14.1.2.6 Keyword Arguments. A dummy argument name in an internal procedure or a
procedure interface block has a scope as a keyword argument of the scoping unit of its host
program unit. As a keyword argument name, it may appear only in a procedure reference
for the procedure of which it is a dummy argument. If the procedure interface block is
accessible in another scoping unit by use association (14.7.1.3), the keyword argument name
is accessible for procedure references for that procedure in that scoping unit.

14.1.3 Statement Entities. The name of a variable that appears as a dummy argument in
a statement function statement has a scope of the statement in which it appears. It has the
type that it would have if it were the name of a variable in the scoping unit of the statement
function.

The name of an IDENTIFY subscript has a scope of that IDENTIFY statement. It is always
of type integer.

The name of a variable that appears as the DO variable of an implied-DO in a DATA state-
ment has a scope of the implied-DO list. It has the type that it would have if it were the
name of a variable in the scoping unit of the DATA statement.

Version 102 1986 November Page 14-2

SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

10

15

20

25

30

35

The name of a statement entity also may be the name of a global or local entity in the same
scoping unit; in this case, the name is interpreted within its statement scope as that of the
statement variable.

14.2 Scope of Labels. A label has a scope of a scoping unit. No two statements in the
same scoping unit may have the same label.

14.3 Scope of Exponent Letters. An exponent letter has a scope of a scoping unit. It
also may be the name of a global or local entity in the same scoping unit.

14.4 Scope of External Input/Output Units. An external input/output unit has a
scope of an executable program.

14.5 Scope of Operators. The intrinsic operations have a scope of an executable pro-
gram. A defined operator has a scope of a scoping unit. Within a scoping unit, two defined
operations may be identified by the same operator provided they have a pair of correspond-
ing operands with different type, different type parameters, or different rank.

14.6 Scope of the Assignment Symbol. Intrinsic assignment has a scope of an exe-
cutable program. A defined assignment has a scope of a scoping unit. Within a scoping
unit, two assignments may be identified by the assignment symbo! provided they have a pair
of corresponding operands with different type, different type parameters, or different rank.

14.7 Association. Two entities may become associated by name association or by stor-
age association. When entities become associated, each part of one is associated with the
corresponding part of the other.

14.7.1 Name Association. There are three forms of name association: argument associa-
tion, alias association, and use association. Argument and use association provide a
mechanism by which entities known in a scoping unit may be accessed in another scoping
unit. Alias association provides alternative avenues (for example, different names) of access
to a data object or part of a data object within a single scoping unit.

14.7.1.1 Argument Association. The rules governing argument association are given in
Section 12. As explained in Section 12.4, execution of a procedure reference establishes
an association between an actual argument and its corresponding dummy argument. Argu-
ment association may be sequence association (12.4.1.5).

The name of the dummy argument may be different from the name, if any, of its associated
actual argument. (Note that an actual argument.may be a nameless data entity, such as an
expression that is not simply a variable or constant.) The dummy argument name is the
name by which the associated actual argument is known, and may be accessed by, in the
called procedure.

Upon termination of execution of a procedure reference, all argument associations estab-
lished by that reference are terminated. A dummy argument of that procedure may be asso-
ciated with an entirely different actual argument in a subsequent execution of the procedure.

Version 102 1986 November Page 14-3

SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

14.7.1.2 Use Association. The rules for use association are given in 11.3.1. The allow for
the renaming of the entities being accessed.

Use association allows access in one scoping unit to entities defined in another scoping unit
and remains in effect throughout the execution of the executable program.

5 An entity accessed by use association must not appear in a type declaration statement or
otherwise have any of its attributes specified. It assumes all attributes, and only those attri-
butes, of its associated entity. If the entity is renamed in a USE statement in a scoping unit,
the original name is not associated with it in this scoping unit and may be used for other pur-
poses. The new name may be used in exactly the same way as the original name could

10 have been used if there had been no renaming.

14.7.1.3 Alias Association. Alias association provides another form of name association,
in addition to argument association and use association.

An alias provides an alternative access to a data object or part of a data object within a sin-
gle scoping unit. The process of establishing an alias and the resulting relationship is known
15 as alias association.

The rules for alias association are given in 6.2.6. The alias name must have the ALIAS attri-
bute.

An alias association between an alias and a nonalias object is established upon execution of
an IDENTIFY statement and continues thereafter until the first occurrence of:

20 (1) Execution of another IDENTIFY statement in the same scoping unit involving the
same alias,

(2) Termination of execution of the scoping unit, or
(3) Deallocation of the associated nonalias data object.

An alias may be associated with any nonalias data object or subobject that has the same

25 type and type parameters. The association may be established through an existing alias.
An alias must not be referenced or defined unless it is alias associated. An alias association
with an allocatable array must not be established unless the allocatable array is allocated.
Deallocation of an allocatable array terminates all alias associations with it.

Any number of aliases may be associated concurrently with a given nonalias object. Each

30 such alias provides access to the associated data object or part of it, and the nonalias object
continues to be accessible by its original name. An alias may be reassociated by IDENTIFY
statements any number of times with the same data object during execution of a scoping
unit.

Summary Comparison of Alias and Use Associations

35 Characteristic Alias Associations Use Associations
Scope Single scoping unit . Single scoping unit,
plus using scoping units
40 if in a module
Duration Temporary Entire program execution
May change? Yes No
45
How established? Execution of Appearance in USE statement

IDENTIFY statement

Version 102 1986 November Page 14-4

SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

10

30

35

40

45

How terminated? Execution of Termination of execution
IDENTIFY statement of the executable program
Deallocation of the entity
Termination of execution
of the executable program

Appearance in USE statement Not allowed Normal (only) way
to establish
Appearance in IDENTIFY statement As alias variable as host variable

As host variable
Allowed with unallocated host No Yes

May be allocated? No Yes
(appear in ALLOCATE statement)

May be deallocated? Yes Yes
(appear in DEALLOCATE statement)

Host name also accessible? Yes No

ALIAS attribute Explicit or implicit Impligit for all entities
for scalars, required
for arrays, not allowed
for procedures

14.7.2 Storage Association. Storage sequences are used to describe relationships that
exist among variables, array elements, substrings, common blocks, and arguments.

14.7.2.1 Storage Sequence. A storage sequence is a sequence of storage units. The
size of a storage sequence is the number of storage units in the storage sequence. A
storage unit is a character storage unit or a numeric storage unit.

A variable or array element of type integer, real, or logical has a storage sequence of one
numeric storage unit.

A structure, structure component, or structure element has no storage sequence.

A variable, array, or array element with explicitly specified precision and range attributes of
type real or complex has no storage sequence.

A variable of type double précision or complex without explicitly specified precision and
range has a storage sequence of two numeric storage units. In a complex storage
sequence, the real part has the first storage unit and the imaginary part has the second stor-
age unit.

A variable of type character has a storage sequence of character storage units. The number
of character storage units in the storage sequence is the length of the character entity. The
order of the sequence corresponds to the ordering of character positions (4.3.2.1 and
5.1.1.3).

Each common block has a storage sequence (5.4.2.1).

Each data object appearing in a storage association context has a storage sequence (2.4.5).

Version 102 1986 November Page 14-5

SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

10

15

20

25

30

35

40

45

14.7.2.2 Association of Storage Sequences. Two storage sequences s, and s, are asso-
ciated if the ith storage unit of s, is the same as the jth storage unit of s,. This causes the
(i + k)th storage unit of s; to be the same as the (j + k)th storage unit of s,, for each inte-
gerksuchthatt <+ k < sizeof s;and 1 < j + k < size of s,.

14.7.2.3 Association of Data Objects. Two data objects are storage associated if their
storage sequences are associated. Two entities are totally associated if they have the

same storage sequence. Two entities are partially associated if they are associated but not
totally associated.

The definition status and value of a data object affects the definition status and value of any
associated entity. An EQUIVALENCE statement, a COMMON statement, an ENTRY state-
ment, or a procedure reference may cause association of storage sequences.

An EQUIVALENCE statement causes association of data objects only within one scoping
unit, unless one of the equivalenced entities is also in a common block (5.4.1.1 and 5.4.2.1).

COMMON statements cause data objects in one scoping unit to become associated with
data objects in another scoping unit.

In a function subprogram, an ENTRY statement causes the entry name to becorme associ-
ated with the name of the function subprogram which appears in the FUNCTION statement.

Partial association may exist only between two character entities or between a double preci-
sion or complex entity and an entity of type integer, real, logical, double precision, or com-
plex.

Except for character entities, partial association may occur only through the use of COM-
MON, EQUIVALENCE, or ENTRY statements. Partial association must not occur through
argument association, except for arguments of type character.

In the example:

REAL A (4, B

COMPLEX C (2)

DOUBLE PRECISION D

EQUIVALENCE (C(2), A(2), B), (A, D)

the third storage unit of C, the second storage unit of A, the storage unit of B, and the sec-
ond storage unit of D are specified as the same. The storage sequences may be illustrated
as:

Storage unit 1 2 3 4 5
e |—-C(2)
A1) A AG) AW
__B_..
______D....____

A(2) and B are totally associated. The following are partially associated: A(1) and C(1), A(2)
and C(2), A(3) and C(2), B and C(2), A(1) and D, A(2) and D, B and D, C(1) and D, and C(2)
and D. Note that although C(1) and C(2) are each associated with D, C(1) and C(2) are not
associated with each other.

Partial association of character entities occurs when some, but not all, of the storage units of
the entities are the same. In the example:

CHARACTER A4, Bx4, Cx3
EQUIVALENCE (A(2:3), B, C)

A, B, and C are partially associated.

Version 102 1986 November Page 14-6

SCOPE, ASSOCIATION, AND DEFINITION X3J3/S8

14.8 Definition and Undefinition of Variables. A constant has a value throughout the
execution of an executable program and it does not change. A variable may be defined with
a value or may be undefined and its definition status may change during execution of an
executable program.

14.8.1 Variables That Are ‘Always Defined. Zero-sized array and zero-length strings are
always defined.

14.8.2 Variables That Are Initially Defined. The following variables are defined ihit_ially:

Variables specified to have initial values by DATA statements,

Variables specified to have initial values by tybe declaration statements with the
DATA attribute, and

Variables that are always defined.

14.8.3 Variables That Are Initially Undefined. All other variables are initially undefined.

14.8.4 Events That Cause Variables to Become Defined. Variables become defined as

Execution of an assignment statement other than a masked array assignment
statement causes the variable that precedes the equals to become defined.

Execution of a masked array assignment statement causes some of the array
elements in the assignment statement to become defined (7.5.2.2).

As execution of an input statement proceeds, each variable that is assigned a
value from the input file becomes defined at the time that data is transferred to it.

Execution of a DO statement causes the DO-variable to become defined. .

Beginning of execution of the action specified by an implied-DO list in an
input/output statement causes the implied-DO-variable to become defined.

Execution of an ASSIGN statement causes the variable in the statement to become defined with a statement
label value.

A reference to a procedure causes a part of dummy argument to become defined
if the c?rresponding part of the actual argument is defined with a value that is not a
statement label.

Execution of an input/output statement containing an input/output IOSTAT =
specifier causes the specified integer variable to become defined.

Execution of a READ statement containing a NULLS= or VALUES= specifier
causes the specified integer variable to become defined.

Execution of an INQUIRE statement causes any variable that is assigned a value
during the exeuction of the statement to become defined if no error condition
exists.

When a variable of a given type becomes defined, all associated variables of the
same type become defined except that variables associated with the variable in an ASSIGN state-
Inent become undefined when the ASSIGN statement is exectited.

When a variable becomes defined, all parts of become defined.

(13) When all parts of a variable become defined, the variable becomes defined.

5
(M
(2)
10
(3
follows:
15 (1)
(2)
(3)
20
(4)
(5)
(6)
25
@
@
30
9
(10)
35
(11)
(12)
40
Version 102

1986 November Page 14-7

SCOPE, ASSOCIATION, AND DEFINITION X3J3/58

14.8.5 Events That Cause Variables to Become Undefined. Variables become undefined

When a variable of a given type becomes defined, all associated variabies of
different type become undefined.

Execution of an ASSIGN statement causes the variable in the statement to become undefined as an integer.

If the evaluation of a function may cause an argument of the function or a variable
in a module or in common to become defined and if a reference to the function
appears in an expression in which the value of the function is not needed to
determine the value of the expression, the argument or variable becomes
undefined when the expression is evaluated.

The execution of a RETURN statement or an END statement within a subprogram
causes all variables local to its scoping unit or local to the current instance of its
scoping unit for a recursive invocation to become undefined except for the follow-
ing:

(a) Variables with the SAVE attribute.
(b) Variables in blank common.

(¢) Variables in a named common block that appears in the subprogram and
appears in at least one other scoping unit that is making either a direct or
indirect reference to the subprogram.

(d) Variables accessed from the host scoping unit.

(e) Variables accessed from a module subprogram that also is accessed in a
scoping unit that is currently in execution.

() Initially defined entities that neither have been redefined nor have become
undefined.

When an error condition or end-of-file condition occurs during execution of an
input statement, all of the variables specified by the input list of the statement
become undefined, unless counted in a VALUES = specifier.

Execution of a direct access input statement that specifies a record that has not
been written previously causes all of the variables specified by the input list of the
statement to become undefined.

Execution of an INQUIRE statement may cause the NAME=, RECL=, and
NEXTREC = variables to become undefined (9.6).

When any part of a variable becomes undefined, the variable becomes undefined.

When a variable becomes undefined, all its parts and all associated variables
become undefined.

A reference to a procedure causes a part of a dummy argument to become undefined if the corresponding
part of the actual argument is defined with a value that is a statement label value.

When an allocatable array is deallocated, it becomes undefined.

Execution of an IDENTIFY statement changes alias associations and therefore
may change the definition status of alias variables.

Execution of a SET RANGE statement changes the range of one or more arrays
and therefore may change their definition status.

as follows:
)]
5 @)
3)
10
4)
15
20
25 (5)
(6)
30
]
(8)
©)
35
(10)
(11)
(12)
40
(13)
Version 102

1986 November Page 14-8

APPENDIX A FORTRAN FAMILY OF STANDARDS

A host language standard, such as Fortran, should take responsibility for coordinating other
standards built on its base to prevent the development of conflicting collateral standards. A
Fortran Reference Model has been suggested for the Fortran Family of Standards.

(¢]

The Fortran Family of Standards consists of:
(1) The Fortran Language Standard
(2) Supplementary Standards based on Procedure Libraries
(3) Supplementary Standards based on Module Libraries
(4) Secondary Standards

10 X3.9-1978 (the previous Fortran standard) is referred to as Fortran 77 in this appendix.
X3.9-198x is referred to as Fortran 8x. A possible successor is referred to as Fortran 9x.

A.1 The Fortran Language Standard. The Fortran Language consists of primary fea-
tures from Fortran 77, decremental features that are obsolete, obsolescent, or deprecated
in this standard, and incremental features that add new constructs to Fortran. - (See Figure

15 1. .
) FORTRAN Family of Standards

(Refmrance Model)

J—
FORTRAN
oLD NEW
FEATURES IHTERSEETION FEATURES
(DECREMENTAL) (PRIMARY) (INCREMENTAL)

::: Fortran 9x -
r' Fortr-arn B8x ' |
I Fortraeanmn 77 . |

CORE FORTRAN IS
PRIMARY <+ INCREMENTAL FEATURES
Figure 1. The Fortran Language Standard.
A.1.1 Primary Features. These features are those from the Fortran 77 standard that con-

tinue to be useful and characteristic of the language. Primary features are expected to con-
tinue throughout the life of Fortran or at least for the next several revisions of the language.

Version 102 1986 November Page A-1

FORTRAN FAMILY OF STANDARDS X3J3/S8

10

15

20

25

30

35

A.1.2 Incremental Features. These features are new to the language and are needed to
improve the usefulness of Fortran. They are developed from current practice in extended
Fortran implementations and in other contemporary languages.

The criteria for incremental features are:
(1) The feature is responsive to new system architectures.
(2) The feature improves the functionality of Fortran.
(3) The feature is desirable for certain important special purpose applications.
(4) The feature’s inclusion enhances portability.
(5) The feature uses modern language technology.

(6) The feature is compatible with the primary and decremental features.

A.1.3 Decremental Features. Decremental features are those features that are obsolete,
obsolescent, or deprecated in the Fortran Standard. They are candidates for removal from
future versions of the Fortran Standard. Marking a feature as obsolescent or deprecated
does not imply its removal from subsequent standards; notification is given that these fea-
tures may be removed in the next revision.

Appendix B further describes deprecating features.

A.1.4 Compatibility. All of Fortran 77 is included within Fortran 8x. Fortran 8x consists of
the complete language of primary, incremental, and decremental features. No segmentation
or subsetting of the language is implied. Fortran 77 is the combination of the primary fea-
tures and the decremental features. Programs written in Fortran 77 are compatible with For-
tran 8x and, with few exceptions, incremental features may be added to existing Fortran 77
programs.

A.1.5 Core. Core Fortran is the combination of the primary features and incremental fea-
tures.

A.2 Supplementary Standards Based on Procedure Libraries. Supplementary
Standards add functionality to the Fortran language by using the interface mechanisms
specified in the Foriran Language Standard. Examples of supplementary standards are the
Industrial Real Time Fortran specification and the Fortran binding to the Graphical Kernel
System (DP 86511). These are standards themselves and conform with the Fortran 77 stan-
dard. Other possible candidates for supplementary standards might be the standardization
of certain utility or mathematical libraries and the standardization of data base facilities.
While a supplementary standard adds functionality to the Fortran Family, it does not alter the
syntax of constructs in Fortran.

A.2.1 Interface Mechanisms. A supplementary standard based on procedure references
is called a procedure supplementary standard. Such standards must use the interface
mechanisms provided in Fortran to describe specific definitions of a process. The interface
mechanisms provided in Fortran 77 are limited to procedure references. Fortran 8x extends
this interface capability by allowing keywords and optional arguments in procedure refer-
ences.

Version 102 1986 November Page A-2

FORTRAN FAMILY OF STANDARDS X3J3/S8

A.3 Supplementary Standards Based on Module Libraries. A supplementary stan-
dard based on module subprograms is called a module supplementary standard. Supple-
mentary standards may specify module subprograms that provide a high level of application-
oriented functionality. These may include the defining of new data types and their accompa-

5 nying operators. Module subprograms are nonexecutable program units containing
definitions made available to any other program unit by the USE statement. Many problem-
oriented applications would make excellent candidates for module supplementary standards.
Modules may be included in the Fortran Standard document or they may be standardized in
separate documents.

10 A.3.1 Interface Mechanisms. The interface mechanisms provided in Fortran 8x contain a
set of facilities for binding a variety of additional features, such as graphics, to Fortran.
These facilities include module subprograms which make definitions, data declarations, and
procedure libraries available to an executable program. The USE statement provides the
means for referencing specific module subprograms. Supplementary standards may use

15 these mechanisms in defining a specific process within the Fortran Family of Standards.

SUFRFFPLEMENTARY STAaNDARDS

FORTRAN Family of Standards

—

/- N

FORTRAN INTERFACES

Machani sms
Modules
Mechanisms Blocks
Mechani sms Procedure Calls Extended Call
None Derived Type

———
. g Fortranmn 9%
| ; Fortran B8x AJ
| Fortran 77 4]
fpplication Application
) #1 #n
Supplementary Standards Module Supplementary Standards

Figure 2. Supplementary Standards.

Version 102 1986 November Page A-3

FORTRAN FAMILY OF STANDARDS X3J3/58

10

15

20

25

30

35

40

A.3.2 Rules. Some rules governing the preparation of supplementary standards that are
based on procedure and module libraries are:

(1) A module may be appended to the Fortran Standard or it may be a separate stan-
dard.

(2) If a module is appended to the Fortran Standard, it is forwarded for review at the
same time as the standard. If it is a separate supplementary standard, there is an
independent standardization process.

(3) A module is not part of the Standard. It is @ member of the Fortran Family of
Standards.

(4) Standard modules must not use deprecated features (i.e., must conform to the
Fortran Core.) When the Fortran Standard is revised, a formerly standard-
conforming module may cease to be standard conforming because of the use of
(new) decremental features.

(5) When the Fortran Standard is revised, a review may determine that modifications
are needed to take advantage of any new functionality (incremental features) in
the standard.

{6) A name registration for supplementary standards is available from the Fortran
Standards Technical Subcommittee.

(7) Separate standards projects should be defined (SD-3) for each supplementary and
secondary standard. Task groups may be formed within the Fortran Standards
Technical Subcommittee for development of supplementary and secondary stan-
dards.

(8) Standard Modules prepared outside the committee and its task groups must use
the interface mechanisms in the language. Requests for new facilities in the For-
tran Standard must be processed by the Fortran Standards Technical Subcommit-
tee.

(9) The Fortran Standards Technical Subcommittee should review all candidates for
supplementary and secondary standards to determine if they are standard con-
forming. This must be done in a timely manner.

A.4 Secondary Standards. Secondary standards do not impact or change the syntax of
the language nor do they change the semantics of the Fortran Standard. Instead, these
standards may make requirements on the conformance of programs using the Fortran Stan-
dard. For example, certain constructs that control the execution sequence of a program may
be required to flag specific conditions that occur during execution. Validation of programs
during compilation or execution is another example. Conformance requirements could be
expanded in a separate secondary standard. The syntax rules used to help describe the
form that Fortran statements take are included in the Fortran Standard (1.5). These rules
are described in a variation of BNF. A formal grammar might also be produced as a sepa-
rate document. Currently, there are no secondary standards in the Fortran Family of Stan-
dards; however, work is proceeding in these areas for Fortran and for programming lan-

Version 102 1986 November Page A-4

FORTRAN FAMILY OF STANDARDS X3J3/S8

guages in general. See Figure 3.

SECONDARY STANDARDS

FORTFAN Family of Standards

FORTRAN
oLD NEW
FEATURES INTERSECTION FEATURES
(DECREMENTAL) (PRIMARY) "] (INCREMENTAL)

Fortranmn o9x

[7 Fortrarn 8x

| Fortramn 77 . |
r""'l—"l r== - ="
! validation | i Completeness !

Secondary Standards

Figure 3. Secondary Standards.

A.5 Standard Conformance. Any program unit containing syntax not defined in the
Fortran language is not standard conforming with respect to the Fortran Standard. The inclu-
5 sion of a USE statement does not make the nonstandard conforming syntax standard con-
forming. A program unit that uses only syntax and semantics defined in the Fortran lan-
guage standard and one or more standard modules is standard conforming with respect to

the Fortran Family of Standards.

In moving to a revised standard, a number of features rather than the complete standard are
i0 often selected by implementors. It is recommended that partial implementations of major
features not be done. For example, if the array facilities are to be included, as many of the

array features as possible should be implemented.

Version 102 1986 November Page A-5

FORTRAN FAMILY OF STANDARDS X3J3/58

A.5.1 Name Registration. A list of names registered with the Fortran Standards Technical
Subcommittee will be kept for reference by those who are preparing a module intended for
the Fortran Family of Standards.

A.6 Fortran Family of Standards. Figure 4 is the complete diagram of the Fortran

5 Family of Standards. It includes the Fortran language with incremental, decremental, and
primary features. The interface mechanisms shown refer to the procedure and module sup-
plementary standards in the reference model.

FORTRAN Family of Standards

(Reference Model >

st
Decremental Primary Incremental
Interface Interface
Mechanisms Mechanisms
Procedure Calls Modules
et
-0 Fortranmn 9:x
I Fortran 8x]
l Fortrarmn 77 1
Supple®mentary Standards Module Supplementary Standards

Secondary Standards

Figure 4. The Fortran Family of Standards

Version 102 1986 November Page A-6

10

15

20

25

30

35

40

APPENDIX B OBSOLETE, OBSOLESCENT, AND DEPRECATED FEATURES

This appendix more fully describes the rationale for the specific obsolete, obsolescent, and
deprecated features (1.6). Possible alternatives to the obsolescent and deprecated features
are described. '

B.1 Obsolete Features. The obsolete features are those features of ANSI X3.9-1978
that are redundant and considered largely unused. Section 1.6.1 describes the nature of the
obsolete features. The list of obsolete features in the standard is empty.

B.2 Obsolescent Features. The obsolescent features are those features of ANSI X3.9-
1978 that are redundant and for which better methods are available. Section 1.6.2 describes
the nature of obsolescent features. The obsolescent features are:

(1) Arithmetic IF — replaced by logical IF and block IF (8.1.2)
(2) Real and double precision control variables — use integer (8.1.4.1)

(3) Shared DO termination and termination on a statement other than ‘END DO or
CONTINUE — use an END DO or CONTINUE statement for each DO statement

(4) Branching to an END IF statement from outside its IF block — branch to the state-
ment foliowing the END IF oo

(5) Alternate return — see B.2.1
(6) PAUSE statement — see B.2.2
(7) Assign and assigned GO TO — see B.2.3

B.2.1 Alternate RETURN. Alternate returns introduce labels into an argument list to allow
the called program to direct the execution sequence of the called subprogram upon return.
Readability and maintainability suffer when alternate returns are used. A better practice is
to provide a return code argument that is set by the called subprogram and used in a
SELECT CASE construct of the calling program unit to direct its subsequent execution.
Maintainability is enhanced because an additional SELECT CASE construct may be added
without modifying the actual and dummy argument lists. '

CALL subr —name (X, Y, Z, *100, %200, ...)
100 CONTINUE

GO TO 999
200 CONTINUE

GO TO 999

7

999 CONTINUE

where labels 100, 200, etc., are alternate return points. In many cases, the effect can be
more safely achieved with a return code and a SELECT CASE structure:

CALL subr-name (X, Y, Z, RETURN__CODE)
SELECT CASE (RETURN__CODE)
CASE (return,)

CASE (returny)

Version 102 1986 November Page B-1

OBSOLETE, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/S8

10

15

20

25

30

35

40

45

END SELECT

B.2.2 PAUSE Statement. Execution of a PAUSE statement requires operator or system-
specific intervention to resume execution. In most cases, the same functionality can be
achieved as effectively and in a more portable way with the use of an appropriate READ
statement that awaits some input data.

B.2.3 ASSIGN and Assigned GO TO. The ASSIGN statement allows a label to be dynami-
cally assigned to an integer variable, and the assigned GO TO statement allows “indirect
branching” through this variable. This hinders the readability of the program fiow, especially
if the integer variable also is used in arithmetic operations. The two totally different usages
of the integer variable can be an obscure source of error.

Previously, internal subroutines were simulated by the presence of remote code blocks in a
procedure. The assigned GO TO statement provided the simulated return from the remote
code block “internal subroutine”. The addition of internal subroutines to the language
replaces this error prone usage.

Example:
ASSIGN 120 TO RETURN I SET UP RETURN POINT

GO TO 740 ! BRANCH TO ''SUBROUTINE"
120 CONTINUE ’ .

740 CONTINUE
I "SUBROUTINE'" BODY
GO TO RETURN ! "SUBROUTINE' RETURN

This functionality also is provided in this standard through the use of internal subroutines:
CALL SUBR_740

SUBROUTINE SUBR_740
' I SUBROUTINE BODY
END

This illustrates the use of internal subroutines to conveniently provide “remote code block”
functionality.

B.3 Nature of Deprecated Features. Section 1.6 describes a set of obsolescent fea-
tures that are identified in this revision of Fortran. There is another set of features, called
the deprecated features, which will become obsolescent as the new features of this revision
of the Fortran language become widely used. These features are characterized by:

(1) Better methods exist in this document.

(2) It is recommended that programmers use these better methods in new programs
and convert existing code to these methods.

(3) If these features have appeared in a list of obsolescent features in a prior revision
of the Fortran standard and their use has become insignificant in Fortran pro-
grams, it is recommended that future Fortran standards committees consider
removing them from the next revision.

Version 102 1986 November Page B-2

OBSOLETE, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/S8

10

20

35

40

45

(4) It is recommended that future Fortran standards committees do not consider
removing language features defined in this revision that do not exist on this list
unless they have been identified as obsolescent in a prior Fortran revision.

(6) It is recommended that processors supporting the Fortran language continue to
support these features as long as they continue to be used widely in Fortran pro-
grams.

B.3.1 Storage Association. Storage association is the association of data objects through
storage sequence patterns rather than by object identification. Storage association allows
the user to configure regions of storage and to conserve the use of storage by dynamically
designating the objects contained within these storage regions. Though the disadvantages
of the use of storage association have been known for some time, features added in this
standard have provided Fortran with adequate replacement facilities for important functional-
ity formerly only provided by storage association. The six items below are deprecated due
to their use of storage association.

B.3.1.1 Assumed-Size Dummy Arrays. These are dummy arrays declared using an aster-
isk to specify its last dimension. In this standard, dummy arrays may be declared as
assumed-shape arrays by using the colon with no upper bound in one or more: dimension
positions of the dummy array declaration. Assumed-shape arrays include all of the function-
ality of assumed-size arrays. Assumed-size arrays assume that a contiguous set of array
elements is being passed. With assumed-shape arrays, an array section that does not con-
sist of a contiguous set of array elements (such as a row of a matrix) may also be passed.

B.3.1.2 Passing an Array Element or Substring to a Dummy Array. This functionality is
now achieved more safely by passing the desired array section. For example, if a one-
dimensional array XX is to be passed starting with the sixth element, then instead of passing
XX (6) to the dummy array, one would pass the array section XX (6:); if the eleventh through
forty-fifth elements are to be passed, the actual argument would be the array section XX
(11:45).

B.3.1.3 BLOCK DATA Subprogram. The principal use of BLOCK DATA subprograms is to
initialize common blocks. Modules provide a complete replacement for BLOCK DATA sub-
programs. The global data functionality of common blocks is also provided by modules.
Global data in modules may be initialized when specified.

B.3.1.4 COMMON Statement. The important functionality of the COMMON statement has
been in its use in specifying global data pools. In this standard, global data pools may be
provided more safely and conveniently with MODULE program units and USE statements.
Using the COMMON statement, a global data pool could be specified by:

INTEGER X (10007
REAL Y (100, 100)
COMMON / POOLY / X, Y

Each program unit using this global data would need to contain these specifications. Alter-
natively, one can define the global data pool in a MODULE program unit:

MODULE POOL1
INTEGER X (1000)
REAL Y (100, 100

END MODULE

Each program unit using this global data would contain the statement
USE POOLT

Version 102 1986 November Page B-3

OBSOLETE, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/58

10

15

20

25

30

35

40

45

When used in this manner, the MODULE/USE functionality is similar to the INCLUDE exten-
sion in many Fortran implementations. This is safer than using common blocks because the
specification of the global data pool appears only once. In addition, the USE statement is
very short and easy to use. Facilities are provided in the USE statement (not shown here)
to rename module objects if different names are desired in the program unit using the mod-
ule objects.

Another advantage is that modules do not involve storage association. Therefore, they may
contain any desired mix of character, noncharacter, and structured objects. Because a com-
mon block involves storage association, a common block cannot contain both character and
noncharacter data objects.

B.3.1.5 ENTRY Statement. The ENTRY statement is typically used in situations where
there are several operations involving the same set of data objects:

procedure-heading
data-specifications
entry
RETURN

entry»

RETURN

entry,

RETURN
END -

The MODULE program unit-provides the equivalent functionality in the form:

MODULE module-name
data-specifications
procedure

END
procedure »
END
procedure,
END
END MODULE
A program unit using this module may call each procedure in it, exactly as if they were entry
points. One advantage is that some .of the procedures in a module may be functions and

some may be subroutines, whereas all entry points in a function procedure must be invoked
as functions and all entry points in a subroutine procedure must be invoked as subroutines.

B.3.1.6 EQUIVALENCE Statement. A major use of the EQUIVALENCE statement is to
have two or more data objects, possibly of different types, share the same storage region.
This was important in earlier periods when address space was limited making conservation
necessary. The EQUIVALENCE statement also provides the means of simulating certain
data types, structures, and transfer functions. This functionality is now available in the

Version 102 1986 November Page B-4

OBSOLETE, OBSOLESCENT, AND DEPRECATED FEATURES X3J3/S8

10

15

20

25

30

35

40

language.

Reuse of storage can now be achieved by using automatic arrays (5.1.2.4.1) and allocatable
arrays. Following the return from the subprogram, the space for the dynamic local array is
available for reuse.

The derived type capability provides a replacement for the more awkward means of achiev-
ing data structures through the use of EQUIVALENCE statements.

The ability of the EQUIVALENCE statement to alias two or more data objects or remap two
or more arrays is now provided by the RANGE and IDENTIFY statements. Where this new
facility is nevertheless inadequate, the TRANSFER function (13.8.6) may be used.

B.3.2 Redundant Functionality. The features identified below are deprecated simply
because they are now completely redundant, having been superseded.

(1) Fixed source form — replaced by the new source form (3.3)

(2) Specific names for intrinsic function — use generic names (13.1)

(3) Statement functions — replaced by internal functions (12.1.2.2)

(4) Computed GOTO statement — replaced by SELECT construct (see B.2.2 below)

(5) The old form of the DATA statement) and allowing DATA statements among exe-
cutable eiatements Camsiuchs

(6) DIMENSION statement — use type declaration instead (5.1)

(7) DOUBLE PRECISION statement — use precision control atiributes (4.3.1.2,
5.1.1.3)

(8) * charlength specifier — use LEN = char-length
(9) Real or double precision DO variables — use a real or double precision variable
whose value is calculated from the integer DO variable

B.3.2.1 Use of Internal Functions for Statement Functions. The functionality of the inter-
nal function provides a better replacement for the limited statement function capability. For
example:

function-name (dummy-arguments) = expr

may be replaced by the following internal function definition in the internal procedure part of
the program unit.

FUNCTION function-name (dummy-arguments)
function-and-dummy specifications
function-name = expr

END

The use of an internal function in a program unit is the same as the use of a statement func-
tion.

B.3.2.2 Example Replacement of the Computed GO TO Statement. The execution
sequence controlled by the computed GO TO:

GO TO (label+, label,, ..., label,), integer-variable

GO TO label,
label, CONTINUE

Version 102 1986 November Page B-5

OBSOLETE, OBSOLESCENT, AND DEPRECATED FEATURES X343/58

GO TO /abel,
label, CONTINUE

GO TO label,

label, CONTINUE

GO TO label,
label, CONTINUE
10 may be replaced by the SELECT CASE construct:

SELECT CASE (integer-variable)
CASE DEFAULT

CASE (1)
15

CASE (2)

CASE ()
20 END SELECT

Also see Section 8.1.3.

Version 102 1986 November Page B-6

10

15

20

25

30

35

40

APPENDIX C SECTION NOTES

C.1 Section 1 Notes. Use of deprecated features is discouraged. Each deprecated
feature may be considered for removal in the next revision of the Fortran standard.

C.2 Section 2 Notes. Keywords can make procedure references more readabie and
allow actual arguments to be in any order. This latter property permits optional arguments.

C.3 Section 3 Notes. A partial collating sequence is specified. If possible, a processor
should use the American National Standard Code for Information Interchange, ANSI X3.4-
1977 (ASCII), sequence for the complete Fortran character set.

The standard does not restrict the number of consecutive comment lines. The limit of 19
continuation lines or 1320 characters permitted for a statement should not be construed as
being a limitation on the number of consecutive comment lines.

There are 99999 unique statement labels and a processor must accept 99999 as a state-
ment label. However, a processor may have an implementation limit on the total number of
unique statement labels in one program unit.

Blanks are not permitted within statement labels in free source form.

The source form of Fortran 77, Fortfan 66, and the initial Fortran in 1954 was predicated on
a common from of input, the 80-column card. However, on the IBM 704, only 72 columns
could be used and the remaining eight columns were designated as commentary. In some
implementations of Fortran 77, these columns are so used. They contain “line numbers”
and are used by an editor to manage changes to a program.

In developing Fortran 8x, X3J3 sought to eliminate the Fortran 77 restriction on source line
size. X3J3 believes that 66 positions are inadequate to represent readable Fortran source
code, particularly with “long” names and the use of indentation.

Given the need for an incompatible new source form in Fortran 8x, X3J3 relaxed other
restrictons of the rigid card form. Positions six and seven are no longer “special” and the
continuation mark is on the line being continued rather than on the continuation line. Other
features of the Fortran 8x form apply to either form, and are allowed in either.

C.4 Section 4 Notes. A processor must not consider a negative zero to be different
from a positive zero.

ANSI X3.9-1978 provided only data types explicity defined in the standard (logical, integer,
real, double precision, complex, and character). This standard provides those intrinsic types
and provides derived types to allow the creation of new data types. A derived type definition
specifies a data structure composed of intrinsic types and other derived types. Such a type
definition does not represent a data object, but rather, a template for declaring objects of
that derived type. For example, the definition

TYPE POINT
INTEGER X_COORD
INTEGER Y_COORD

END TYPE POINT

specifies a new derived type named POINT which is composed of two components of intrin-
sic type integer (X__COORD and Y__COORD). The statement TYPE (POINT) FIRST, LAST
declares two data objects, FIRST and LAST, that can hold values of type POINT.

Version 102 ' 1986 November Page C-1

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

X3.9-1978 provided REAL and DOUBLE PRECISION intrinsic types as approximations to
mathematical real numbers. This standard generalizes REAL as an intrinsic type with
specifiable precision and exponent range. DOUBLE PRECISION is treated as a synonym for
an implementation defined precision and exponent range of the REAL type. Therefore, the
DOUBLE PRECISION statement is redundant and use of it is deprecated.

The EXPONENT__LETTER statement may be used to designate a letter to be used for the
exponent character in real literal constants to ensure that they have a particular precision
and exponent range.

X3.9-1978 did not allow zero length character strings. They are permitted by this standard.

Derived-types may have parameters as part of the declaration. This allows a derived-type to
represent simple variations in the data structure such as different string lengths and preci-
sions.

Objects are of different derived-type if they are declared using different derived-type
definitions. For example,

TYPE APPLES
INTEGER NUMBER
END TYPE APPLES
TYPE ORANGES
INTEGER NUMBER
END TYPE ORANGES
TYPE (APPLES) COUNT 1
TYPE (ORANGES) COUNT 2
COUNT 1 = COUNT2 ! ERRONEOUS STATEMENT MIXING APPLES AND ORANGES

Even though, all components of objects of type apples and objects of type oranges have
identical intrinsic types, the objects are of different type because they were declared using
different derived type definitions.

C.5 Section 5 Notes. Type declaraction statements in X3.9-1978 required the attributes
of an entity to be specified in multiple statements (INTEGER, SAVE, DATA,..). This stan-
dard allows most attributes of an entity to be specified in a single extended form of the type
statement. For example,

INTEGER -, ARRAY (10, 10), SAVE :: A, B, C
REAL, PARAMETER :: P1 = 3.14159265, E = 2.718281828

To retain compatibility and consistency with Fortran 77, most of the attributes that may be
specified in the extended type statement may alternatively be specified in separate state-
ments.

If precision and exponent range are omitted from a REAL declaration, the objects are of
default real type. This corresponds to the Fortran 77 real type.

The RANGE attribute allows arrays to have a declared upper and lower bound as in Fortran
77 and additionally to have a changeable effective lower and upper bound. The effective
bounds provide a concise way to set the working bounds on a group of arrays and to
improve the readability of the statements. For example, the following statement using the
triplet notation

AWK+, J-1:K) = BW:K+1, J=1:K) + C(J:K+1, J-1:K) + CWJ:K+H, J:K+1)
ACJ:K+1, J-1:K ACJ:K+H, J-1:K) + AQJ:K+1, J-1:K

may be written as follows if the RANGE attribute and SET RANGE statement are used:
SET RANGE (J:K+1, J-1:K) A, B, C

Version 102 1986 November Page C-2

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

A

B+ C+C (:,J:K+1)
A=A+A

Note that the declared bounds of A, B, and C are not changed by the SET RANGE state-
ment. The only change is to the bounds used when a whole array reference or an array
section reference with omitted lower bounds is made.

An explicit subscripted reference to an array element outside the effective bounds is allowed
and is not an error. Subscript references to elements outside the declared bounds remains
undefined as in Fortran 77.

C.6 Section 6 Notes: ‘Substrings are of zero length when the starting point exceeds the
ending point. This was not allowed in Fortran 77. This standard also allows substrings of lit-
eral character constants and sy:‘m;belipcharacter constants. .

"o

Components of a structure are referenced by writing the components of successive levels of
the. structure hierarchy until the desired component is described. For example,

TYPE ID_NUMBERS

INTEGER SSN

INTEGER EMPLOYEE NUMBER
END TYPE ID_NUMBERS

TYPE PERSON_ID
CHARACTER (LEN=30) LAST_NAME
CHARACTER (LEN=1) MIDDLE_INITIAL
CHARACTER (LEN=30) FIRST_NAME
TYPE (ID_NUMBERS) NUMBER

END TYPE PERSON_ID

TYPE PERSON :

INTEGER AGE

TYPE (PERSON_ID)ID
END TYPE PERSON spor

TYPE (PERSON) GEORGE, MARY

PRINT *, GEORGE % AGE | PRINT THE AGE COMPONENt

PRINT *, MARY % ID % LAST_NAME | PRINT LAST_NAME OF MARY

PRINT *, MARY % ID % NUMBER % SSN ! PRINT SSN OF MARY

PRINT *, GEORGE % ID % NUMBER t PRINT SSN AND EMPLOYEE_NUMBER OF GEORGE

The component identified by the reference may be a data object of intrinsic type as in the
case of GEORGE%AGE or it may be of derived type as in the case of
GEORGE%ID%NUMBER. The resultant component may be a scalar or an array of intrinsic
or derived type.

TYPE LARGE
INTEGER ELT (1)
INTEGER VAL
END TYPE LARGE
TYPE (LARGE) A (5) i 5 ELEMENT ARRAY EACH OF WHOSE ELEMENTS INCLUDES
1 A 10 ELEMENT ARRAY ELT AND A SCALAR VAL.
PRINT *, A (1) !
PRINT *, A (1) % ELT (3) !
PRINT *, A (2:4) % VAL !

| PRINTS 10 ELEMENT ARRAY ELT AND SCALAR VAL.
PRINTS SCALAR ELEMENT 3 OF ARRAY ELEMENT 1 OF A.
PRINTS SCALAR VAL FOR ARRAY ELEMENTS 2 TO & OF A.

Version 102 1986 November Page C-3

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

C.7 Section 7 Notes. The Fortran 77 restriction tha! none of the character positions
being defined in the character assignment statement may be referenced in the expression
has been removed (7.5.1.5).

C.8 Section 8 Notes.

C.9 Section 9 Notes. What is called a “record” in Fortran is commonly called a “logical
record”. There is no concept in Fortran of a “physical record”.

An endfile record does not necessarily have any physical embodiment. The processor may
use a record count or other means to register the position of the file at the time an ENDFILE
statement is executed, so that it can take appropriate action when that position is reached
again during a read operation. The endfile record, however it is implemented, is considered
to exist for the BACKSPACE statement.

This standard accommodates, but does not require, file cataloging. To do this, several con-
cepts are introduced.

Before any input/output can be performed on a file, it must be connected to a unit. The unit
then serves as a designator for that file as long as it is connected. To be connected does
not imply that “buffers” have or have not been allocated, that “file-control tables” have or
have not been filled out, or that any other method of implementation has been used. Con-
nection means that (barring some other fault) a READ or WRITE statement can be executed
on the unit, hence on the file. Without a connection, a READ or WRITE statement cannot
be executed.

Totally independent of the connection state is the property of existence, this being a file
property. The processor “knows” of a set of files that exist at a given time for a given exe-
cutable program. This set would include tapes ready to read, files in a catalog, a keyboard,
a printer, etc. The set may exclude files inaccessible to the executable program because of
security, because they are already in use by another executable program, etc. This stan-
dard does not specify which files exist, hence wide latitude is available to a processor to
implement security, locks, privilege techniques, etc. Existence is a convenient concept to
designate all of the files that an executable program can potentially process.

All four combinations of connection and existence may occur:

Connect Exist Examples

Yes Yes A card reader loaded
and ready to be read
Yes No A printer before the
first line is written
No Yes A file named 'JOAN’
in the catalog
No No A reel of tape destroyed

in the fire last week
Means are provided to create, delete, connect, and disconnect files.

A file may have a name. The form of a file name is not specified. If a system does not
have some form of cataloging or tape labeling for a least some of its files, all file names will
disappear at the termination of execution. This is a valid implementation. Nowhere does
this standard require names to survive for any period of time longer than the execution time
span of an executable program. Therefore, this standard does not impose cataloging as a
prerequisite. The naming feature is intended to allow use of a cataloging system where one

Version 102 1986 November Page C-4

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

exists.

A file may become connected to a unit in either or two ways: preconnection or execution of
an OPEN statement. Preconnection is performed prior to the beginning of execution of an
executable program by means external to Fortran. For example, it may be done by job con-
trol action or by processor established defaults. Execution of an OPEN statement is not
required to access preconnected files.

The OPEN statement provides a means to access existing files that are not preconnected.
An OPEN statement may be used in either of two ways: with a file name (open by name)
and without a file name (open by unit). A unit is given in either case. Open by name con-
nects the specified file to the specified unit. Open by unit connects a processor-determined
default file to the specified unit. (The default file may or may not have a name.)

Therefore, there are three ways a file may become connected and hence processed:
preconnection, open by name, and open by unit. Once a file is connected, there is no
means in standard Fortran to determine how it became connected.

An OPEN statement may also be used to create a new file. In fact, any of the foregoing
three connection methods may be performed on a file that does not exist. When a unit is
preconnected, writing the first record created the file. With the other two methods, execu-
tion of the OPEN statement creates the file.

When a unit becomes connected to a file, either by execution of an OPEN statement or by
preconnection, the following connection properties may be established:

(1) An access method, which is sequential or direct, is established for the connection.

(2) A form, which is formatted or unformatted, is established for a connection to a file
that exists or is created by the connection. for a connection that results from exe-
cution of an QPEN statement, a default form (which depends on the access
method, as described in 9.2.1.2) is established if no form is specified. For a
preconnected file that exists, a form is established by preconnection. For a
preconnected file that does not exist, a form may be established, or the establish-
ment of a form may be delayed until the file is created (for example, by execution
of a formatted or unformatted WRITE statement).

(3) A record length may be established. If the access method is direct, the connec-
tion established a record length, which specifies the length of each record of the
file. A connection for sequential access does not have this property. An existing
file with records that are not all of equal length must not be connected for direct
access.

(4) A blank significance property, which is ZERO or NULL, is established for a con-
nection for which the form is formatted. This property has no effect on output.
For a connection that results from execution of an OPEN statement, the blank
significance property is NULL by default if no blank significance property is
specified. For a preconnected file, the property is established by preconnection.

The blank significance property of the connection is effective at the beginning of
each formatted input statement. During execution of the statement, any BN or BZ
edit descriptors encountered may temporarily change the effect of embedded and
trailing blanks.

A processor has wide latitude in adapting these concepts and actions to its own cataloging
and job control conventions. Some processors may require job control action to specify the
set of files that exist or that will be created by an executable program. Some processors
may require no job control action prior to execution. This standard enables processors to
perform a dynamic open, close, and file creation, but it does not require such capabilities of
the processor.

Version 102 1986 November Page C-5

SECTION NOTES X3J3/s8

10

15

20

25

30

35

40

45

The meaning of “open” in contexts other that Fortran may include such things as mounting a
tape, console messages, spooling, label checking, security checking, etc. These actions
may occur upon job control action external to Fortran, upon execution of an OPEN state-
ment, or upon execution of the first read or write of the file. The OPEN statement describes
properties of the connection to the file and may or may not cause physical activities to take
place. It is a place for an implementation to define properties of a file beyond those
required in standard Fortran.

Similarly, the actions of dismounting a tape, protection, etc. of a “close” may be implicit at
the end of a run. The CLOSE statement may or may not cause such actions to occur. This
is another place to extend file properties beyond those of standard Fortran. Note, however,
that the execution of a CLOSE statement on unit 10 followed by an OPEN statement on the
same unit to the same file or to a different file is a permissible sequence of events. The
processor must not deny this sequence solely because the implementation chooses to do
the physical act of closing the file at the termination of execution of the program.

Table 9.1. Values Assigned to INQUIRE specifier variables (assuming no error condition is
encountered).

INQUIRE by File INQUIRE by Unit
Specifier Unconnected Connected Connected Unconnected
EXIST = .TRUE. if file exists TRUE. if unit exists
.FALSE. otherwise .FALSE. otherwise
OPENED = .FALSE. .TRUE. .TRUE. .FALSE
NUMBER = -1 unit no. unit no. -1
NAMED = .TRUE. if file named .FALSE.
.FALSE. otherwise
NAME = filename filename undefined
(may not be same if named
as FILE= value) else undefined
ACCESS = UNDEFINED SEQUENTIAL UNDEFINED
or DIRECT
SEQUENTIAL = YES, NO, or UNKNOWN UNKNOWN
DIRECT = YES, NO, or UNKNOWN UNKNOWN
FORM = UNDEFINED FORMATTED or UNFORMATTED UNDEFINED
FORMATTED = YES, NO, or UNKNOWN UNKNOWN
UNFORMATTED = YES, NO, or UNKNOWN UNKNOWN
RECL = undefined if direct access, next
record #
BLANK = UNDEFINED NULL, ZERO, or UNDEFINED
DELIM = UNDEFINED ' APOSTROPHE, QUOTE
NONE, or UNDEFINED
PAD = YES YES or NO
POSITION = UNDEFINE REWIND, APPEND.
ASIS, or UNDEFINED
ACTION = UNDEFINED READ, WRITE,

or READ/WRITE

IOLENGTH = RECL = value for output-item-list

Version 102 1986 November Page C-6

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

This standard does not address problems of security, protection, locking, and many other
concepts that may be part of the concept of “right of access”. Such concepts are consid-
ered to be in the province of an operating system.

The OPEN and INQUIRE statements can be extended naturally to consider these things.

Possible access methods for a file are: sequential and direct. The processor may implement
two different types of files, each with its own access method. It may also implement one
type of file with two different access methods.

Direct access to files is of a simple and commonly available type, that is, fixed-length
records. The key is a positive integer.

Keyword forms of specifiers are used because there are many specifiers and a positional
notation is difficult to remember. The keyword form sets a style for processor extensions.
The UNIT= and FMT= keywords are offered for completeness, but their use is optional.
Thus, compatibility with ANS! X3.9-1966 and ANSI X3.9-1978 is achieved.

Format specifications may be included in the READ and WRITE statements, as in:
READ (UNIT = 10, FMT = '(I3, A4, F10.2)') K, ALPH, X

List directed input/output allows data editing according to the type of the list item instead of
by a format specifier. It also allows data to be free-field, that is, separated by commas or
blanks.

If no list items are specified in a list-directed input/output statement, one input record is
skipped or one empty output record is written.

An example of a restriction on input/output statements (9.8) is that an input statement must
not specify that data are to be read from a printer.

C.10 Section 10 Notes. !f a character constant is used as a format specifier in an
input/output statement, care must be taken that the value of the character constant is a
valid format specification. In particular, if the format specification contains an apostrophe
edit descriptor, two apostrophes must be written to delimit the apostrophe edit descriptor and
four apostrophes must be written for each apostrophe that occurs within the apostrophe edit
descriptor. For example, the text:

2 ISN'T 3

may be written by various combinations of output statements and format specifications:
WRITE (6, 1000 2, 3

100 FORMAT (1X, I1, 'ISN''T', 1X, ID)
WRITE (6, "(1X, 11, 1X, ''ISN'''"'T'', 11X, I11D") 2, 3

WRITE (6, "C(A)') ' 2 ISN''T 3!

The T edit descriptor includes the carriage control character in lines that are to be printed.
T1 specifies the carriage control character and T2 specifies the first character that is printed.

The length of a record is not always specified exactly and may be processor dependent.

The number of records read by a formatted input statement can be determined from the fol-
lowing rule: A record is read at the beginning of the format scan (even if the input list is
empty), at each slash edit descriptor encountered in the format, and when a format rescan
occurs at the end of the format.

The number of records written by' a formatted output statement can be determined from the
following rule: A record is written when a slash edit descriptor is encountered in the format,

Version 102 1986 November Page C-7

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

when a format rescan occurs at the end of the format, and at completion of execution of the
output statement (even if the output list is empty). Thus, the occurrence of n successive
slashes between two other edit descriptors causes n — 1 blank lines if the records are
printed. The occurrence of n slashes at the beginning or end of a complete format
specification causes n blank lines if the records are printed. However, a complete format
specification containing n slashes (n > 0) and no other edit descriptors causes n + 1 blank
lines if the records are printed. For example, the statements

PRINT 3
3 FORMAT (/)

will write two records that cause two blank lines if the records are printed.

The following examples illustrate list-directed input. A blank character is represented by b.
Example 1:

Program:

J=3
READ *, I
READ *, J

Saquential input file;

b1b,4bbbbb
, 2bbbbbbbb

Result: 1 = 1,J = 3.

Explanation: The second READ statement reads the second record. The initial comma in
the record designates a null value; therefore, J is not redefined.

Example 2:
Program:

CHARACTER A *8, B *1
READ *, A, B

Sequential input file:

record 1: 'bbbbbbbb’
record 2: 'QXY'b'Z'

Result: A = 'bbbbbbbb', B = 'Q'

Explanation: The end of a record cannot occur between two apostrophes representing an
embedded apostrophe in a character constant; therefore, A is set to the character constant
'bbbbbbbb’. The end of a record acts as a blank, which in this case is a value separator
because it cccurs between two constants.

C.11 Section i1 Notes. The name of the main program or of a block data subprogram
has no explicit use within the Fortran language. It is available for documentation and for
possible use within a computer environment.

A processor may implement an unnamed main program or unnamed block data subprogram
by assigning it a default name. However, this name must not conflict with any other global
name in a standard-conforming executable program. This might be done by making the
default name one which is not permitted in a standard-conforming program (for example, by
including a character not normally allowed in names) or by providing some external mechan-
isra such that for any given program the default name can be changed to one that is other-
wise unused.

Version 102 1986 November Page C-8

SECTION NOTES X3J3/s8

10

15

20

30

35

40

45

This standard, like its predecessors, is designed to permit processors in which each program
unit can be separately translated in preparation for execution, commonly referred to as sepa-
rate compilation. In the predecessor standards, all information necessary to translate a pro-
gram unit was contained within that program unit, thus allowing translations to be indepen-
dent as well as separate. In this standard, there is one exception to this independence, the
ability of the USE statement to import information declared in a MODULE subprogram.

The independence of translation under previous standards was to some extent illusory, as it
was achieved by requiring the program to redundantly state information in each program unit
where it was needed. To reduce the burden of preparing these redundant statements,
many processors were extended to provide a mechanism with which a block of text could be
logically included at multiple points in a program. Although such a mechanism is relatively
easily implemented, it suffers from a number of drawbacks:

(1) There are portability problems resulting from the variations in the syntax used for
the inclusion directive. These could be eliminated through standardization.

(2) There are portability problems resulting from the variations in the ways in which
these inclusions interact with file systems. In particular, some systems are based
on the inclusion of entire files while others are based on the inclusion of elements
or members of some kind of library file. Standardization here would require either
reducing all processors to dealing only with entire files or standardizing some kind
of minimal text library facility.

(3) The file names themselves are not portable. This affects not only the transport of
programs to other processors, but also such tasks as maintaining multiple versions
of a program on the same processor, since different versions may require different
versions of the text to be included. It may also comiplicate the task of “packag-
ing” the source for a program and other source maintenance issues.

(4) Because the obvious implementation of an inclusion directive involves temporarily
suspending the reading of the current source file in order to read from the file
containing the text to be included, most processors place some kind of a limit on
the extent to which included text can itself contain inclusion directives. Too low a
limit may inhibit well structured programming. Variations in the limit may cause
portability problems.

(5) Because of the ordering restrictions in Fortran, it is frequently not possible to use
a single inclusion directive to access all the text for a given set of information.
For example, it is normally necessary to separate the text of a statement function
from the text describing its type and the type of it arguments.

(6) The necessity of reinterpreting the included text each place it appears slows down
the translation process. Because included text is frequently made large and gen-
eral enough to cover an entire class of related entities, this reinterpretation often
involves descriptions of entities that won’t even be used in the program unit being
translated.

(7) Because of the way in which Fortran specifications can interact, there is the possi-
bility that the varying interpretations of the included text may yield different results.
Although such variation is occasionally intended and useful, it is more often the
source of subtle errors.

The MODULE/USE facility was specifically designed to avoid most of these drawbacks.

(1} Information is included on the basis of the processor-independent module name
rather than a processor-dependent file name or file element name, with the proc-
essor performing any necessary name mapping. When translating an entire pro-
gram using a well-designed processor, it should not be necessary to understand

Version 102 1986 November Page C-9

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

2

3)

(4)

this mapping at all. When translating a program that is already partially translated,
it may be necessary to understand this mapping in order to access the resuits of
the earlier translation, but this task can be made no more arduous than accessing
the executable results oi earlier translation from a procedure library and should be
performable entirely outside the Fortran source, leaving the source itself portable.

A processor may requiré a module to be translated before translating any program
unit containing a USE statement referencing that module. During the translation
of the module, information obtained from any USE statement it might contain may
be incorporated in the translation of the module. Thus, USE statements indirectly
referencing modules to arbitrary depths can be supported in an implementation
that accesses only one auxiliary file at a time.

Because the information obtained is not included textually, it is not subject to the
usual ordering constraints and may group whatever collection of information is
moest useful.

Because a module can be translated once and then referenced many times, it can
be processed more efficiently. Also, the information obtained from it will be the
same in each program unit that references it, independent of any other
specification which may be present iri those program units.

In addition the MODULE/USE facility offers several other benefits:

(1)

@)

3)

(4)

(8)

It is possible to reference only selected entities in a module. Thus, a module that
is very large and general may safely be used without being aware of the names of
all the entities it contains.

When modules are written by different peopie, the possibility exists that the same
name wili be used for different entities in two different modules. The renaming
capability makes it possible to use both entities in a single program unit by chang-
ing one or both of the names used to refer to the entities. Renaming can also be
used to avoid conflicts between the names of entities in a module and the names
of entities declared locally in the program unit that uses it. However, renaming
should be used sparingly in order to avoid making a program difficult to read.

It is possible for two modules to each use the information contained in a third
module. If a program unit then uses both modules, it is not necessary to resolve
the apparent conflict of the two modules having entities with same names,
because the processor is expected to recognize that the definitions of these enti-
ties actually came from the same source (the third module) and that they are thus
the same entities.

If a program unit uses two modules containing different entities with the same
name but does not actually use one of these ambiguous names, it is not neces-
sary to resolve the name conflict.

If the definitions contained in a module are changed in successive versions of a
program, it is possible for a processor to provide assistance in assuring that all
program units using that module are translated using the same version of it. How-
ever, a prccessor is not required to give such assistance.

Variables declared in a mcdule retain their definition status on much the same basis as vari-
ables in a common block. That is, saved variables retain their definition status throughout
the execution of a program, while variables that are not saved retain their definition status
only during the execution of program units that reference the module. In some cases, it
may be appropriate to put a USE statement such as

USE MCDULE, ONLY:

Version 102

1986 November Page C-10

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

in a program unit in order to assure that other procedures that it references can communi-
cate through the module. In such a case, the program unit would not access any entities
from the module, but the variables not saved in the module would retain their definition sta-
tus throughout the execution of the program unit.

There is an increased potential for undetected errors in a program unit that uses both
implicit typing and USE statement without an ONLY:list. For example, in the program frag-
ment

SUBROUTINE SUB

IMPLICIT INTEGER (I-N), REAL (A-H, 0-2)
USE MY_MODULE

X =F (B)

A=G (X) +HX+1D

END SUBROUTINE

X could be either an implicitly typed real variable or a variable obtained from the module
MY_MODULE and might change from one to the other because of changes in
MY_MODULE unrelated to the action performed by SUB. Logic errors resulting from this
kind of situation can be extremely difficult to locate. Thus, the use of these features
together is discouraged and the rules of Fortran allow them to be used together only if both
features have been explicitly requested.

The PUBLIC and PRIVATE attributes, which can be declared only in modules, can divide the
entities in a module into those which are actually relevant to a program unit referencing the
module and those that are not. This information may be used to improve the performance of
a Fortran processor. For example, it may be possible to discard much of the information on
the private entities once a module has been translated, thus saving on both storage and the
time to search it. Similarly, it may be possible to recognize that two versions of a module
differ only in the private entities they contain and avoid retranslating program units that use
that module when switching from one version of the module to the other.

in addition to providing a portable means of avoiding the redundant specification of informa-
tion in multiple program units, a module provides a convenient means of “packaging” related
entities, such as the definitions of the representation and operations of an abstract data type.
The following example of a module defines a rather complete data abstraction for a SET
data type where the elements of each set are of type integer. The standard set operations
of UNION, INTERSECTION, and DIFFERENCE are provided. The CARD function returns the
cardinality of (number of elements in) its set argument. Two functions returning logical
values are included, ELEMENT and SUBSET, both of which have the operator form .IN.;
ELEMENT determines if a given scalar integer value is an element of a given set, and SUB-
SET determines if a given set is a subset of another given set. (Two sets may be checked
for equality by comparing cardinality and checking that one is a subset of the other, or
checking to see if each is a subset of the other.)

The transfer function SET converts a vector of integer values to the corresponding set, with
duplicate values removed. Thus, a vector of constant values can be used as set constants.
An inverse transfer function VECTOR returns the elements of a set as a vector of values in
ascending order. An assignment coercion allows assignment between sets of different sizes,
and checks to see if the receiving set data object has an adequate maximum size (returning
the null set if not). In this SET implementation, set data objects have a maximum size (num-
ber of elements in set) of 200.

Examples (A, B, and C are sets; X is an integer variable):
I EXAMPLE TO BE FIXED AS SPECIFIED IN 100.JLwW-3

IF (CARDCA) .GT. 100 ... | CHECK TO SEE IF A HAS MORE THAN 10 ELEMENTS

Version 102 1986 November Page C-11

SECTION NOTES X3J43/58

10

15

20

25

30

35

40

IF (X .IN. A .AND. .NOT. X .IN. B) ... ! CHECK FOR X AN ELEMENT OF A BUT NOT OF B
C = UNION (A, INTERSECTION (B, SET ([1 : 1001)))
! C IS THE UNION OF A AND THE
| RESULT OF B INTERSECTED WITH THE INTEGERS 1 TO 100
IF (CARD (INTERSECTION (A, SET ([2:100:21))) .6T7. O) ...
| DOES A HAVE ANY EVEN
| NUMBERS IN THE RANGE 1:100?
PRINT *, VECTOR (B) I PRINT OUT THE ELEMENTS OF SET B, IN ASCENDING ORDER
MODULE INTEGER_SETS

IMPLICIT TYPE SET (A-I, U), INTEGER (X)

TYPE SET ! DEFINE SET DATA TYPE
INTEGER CARDINAL_NUMBER
INTEGER ELEMENT_VALUE (200) { COULD BE ANY DATA TYPE

END TYPE SET

INTEGER FUNCTION CARD (A) | RETURNS CARDINALITY OF SET A
CARD = A % CARDINAL_NUMBER
END FUNCTION CARD

LOGICAL FUNCTION ELEMENT (X,A) OPERATOR (.IN.) ! DETERMINES IF
ELEMENT = .FALSE. I ELEMENT X IS IN SET A
IF (CARD(A) .EQ. 0) RETURN
IF (ANY (A % ELEMENT_VALUE (1:CARD(A)) .EQ. X)) ELEMENT = .TRUE.
END FUNCTION ELEMENT

FUNCTION UNION (A,B) : | UNION BETWEEN SETS A AND B
N = CARD (A)
UNION = SET (A % ELEMENT_VALUE(1:N))
DO J=1, CARD (B)
IF (.NOT. B % ELEMENT_VALUE(CJ) .IN. A) THEN
N = N+1
UNION % ELEMENT_VALUE(N) = B % ELEMENT_VALUE (J)
END IF
END DO
UNION % CARDINAL NUMBER = N
END FUNCTION UNION

FUNCTION DIFFERENCE (A,B) | DIFFERENCE OF SETS A AND B
DIFFERENCE = SET ([1:01)
DO J=1, CARD(A)
X = A % ELEMENT_VALUECJ)
IF (.NOT. (X .IN. B)) DIFFERENCE = UNION (DIFFERENCE, SET (X})
END DO
END FUNCTION DIFFERENCE

FUNCTION INTERSECTION (A,B) | INTERSECTION OF SETS A AND B
INTERSECTION = DIFFERENCE (A, DIFFERENCE (A, B))
END FUNCTION INTERSECTION

Version 102 1986 November Page C-12

SECTION NOTES X3J3/58

5

10

15

20

25

30

35

40

45

LOGICAL FUNCTION SUBSET (A,B) OPERATOR (.IN.) ! DETERMINES IF SET A IS
LOGICAL L (SIZE(A % ELEMENT_VALUE)) ! A SUBSET OF SET B
SUBSET = CARD (A) .LE. CARD (B)! OVERLOADS .IN. OPERATION
IF (.NOT. SUBSET) RETURN
SUBSET = ALL (A % ELEMENT_VALUE (1 : CARD (A)) .IN. B)

END FUNCTION SUBSET

TYPE SET FUNCTION SET(V) | TRANSFER FUNCTION BETWEEN A
INTEGER V(:) ! CORRESPONDING SET OF ELEMENTS
SET % CARDINAL_NUMBER = 0 | REMOVING DUPLICATE VALUES

DO J=1,SIZE(V)
IF (.NOT. V(J).IN.SET) THEN
SET % CARDINAL NUMBER = SET % CARDINAL NUMBER + 1
SET 7% ELEMENT_VALUE (SET % CARDINAL NUMBER) = V(J)
END IF
END DO
END FUNCTION SET

FUNCTION VECTOR (A) ! TRANSFER THE VALUES OF SET A
INTEGER VECTOR(:) I INTO A VECTOR OF ASCENDING ORDER
INTEGER I
ALLOCATE (VECTOR(CARD(A)))

VECTOR = A 7% ELEMENT_VALUE (1:CARD(A))
DO I=1,CARD(A)-1
DO J=1,CARD(A)-1
IF (VECTOR(J+1) .LT. VECTOR(J) THEN
K = VECTOR(J); VECTOR(J) = VECTOR(J+1); VECTOR(J+1) = K
END IF
END DO
END DO
END FUNCTION VECTOR

SUBROUTINE SET_ASSIGNMENT_COERCION (A,B) ASSIGNMENT

A = SET(); N = CARD(B)

IF (SIZE (A % ELEMENT_VALUE) .GE. N) A = SET (B % ELEMENT_VALUE(1:N))
END SUBROUTINE SET_ASSIGNMENT_COERCION

END MODULE INTEGER_SETS

C.12 Section 12 Notes. Of the various types of procedures described in this section,
only external procedures have global names. An implementation may wish to assign global
names to other entities in the Fortran program such as internal procedures, intrinsic proce-
dures, procedures implementing intrinsic operators, procedures implementing input/output
operations, etc. If this is done, it is the responsibjlity of the processor to insure that none of
these names conflict with any of the names 48Tthe external procedures or other globally
named entities in a standard-conforming program. For example, this might be done by
including in each such added name a character that is not allowed in a standard-conforming
name.

There is a potential portability’ problem in a program unit that references an external proce-
dure without declaring it in either an EXTERNAL statement or a procedure interface block.
On a different Fortran processor, the name of that procedure may be the name of a nonstan-
dard intrinsic procedure and the processor would be permitted to interpret those procedure
references as references to that intrinsic procedure. (On that processor, the program would

Version 102 1986 November Page C-13

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

50

also be viewed as not conforming to the standard bacause of the references to the nonstan-
dard intrinsic procedure.) Declaration in an EXTERNAL statement or a procedure interface
block causes the references to be to the external procedure regardless of the availability of
an intrinsic procedure with the samme name. Note that declaration of the type of a procedure
is not enough to make it external, even if the type is inconsistent with the type returned by
an intrinsic of the same name.

A processor is not required to provide any means other than Fortran for defining external
procedures. Although the machine assembly language is the definition method most fre-
quently thought of in this regard, it should be noted that this also covers procedures written
in Fortran extended with nonstandard features. Another common example is a procedure
defined using a Fortran 77 processor. (Any processor conforming to this standard is also a
Fortran 77 processor, but it may be necessary to use procedures which have already been
translated using a processor that supports only Fortran 77.)

The fact that a procedure defined by means other than Fortran is described as being an
external procedure should not be interpreted as a prohibition against such a procedure hav-
ing an internal procedure defined by the same means. Rather, it is a reflection that an inter-
nal procedure does not have a global name and thus is not directly accessible in the Fortran
program units.

A Fortran processor may limit its support of procedures defined by means other than Fortran
such that these procedures may affect entities in the Fortran environment only on the same
basis as procedures written in Fortran. For example, it might prohibit the value of a local
variable from being changed by a procedure reference unless that variable were one of the
arguments to the procedure.

In Fortran 77, the interface to an external procedure was always deduced from the form of
references to that procedure and any declarations of the procedure name in the referencing
program unit. In this standard, features such as keyword arguments and optional arguments
make it impossible to deduce sufficient information about the dummy arguments from the
nature of the actual arguments to be associated with them, and features such as array-
valued function results and allocatable function results make necessary extensions to the
declaration of a procedure which can not be done in a way that would be analogous with the
handling of such declarations in Fortran 77. Hence, mechanisms are provided through which
all the information about a procedure’s interface may be made available in a program unit
that references it. A procedure whose interface must be deduced as in Fortran 77 is
described as having an implicit interface. A procedure whose interface is fully known is
described as having an explicit interface.

A program unit is allowed to contain a procedure interface block for procedures that do not
exist in the executable program, provided the procedure described is never referenced. The
purpose of this rule is to allow implementations in which the use of a module providing pro-
cedure interface blocks describing the interface of every routine in a library would not auto-
matically cause each of those library routines to be a part of the program referencing the
module. Instead only those library procedures actually referenced would be a part of the
executable program. (In implementation terms, the mere presence of a procedure interface
block would not generate an external reference in such an implementation.)

In Fortran 66, the only information a procedure could obtain from the program unit referenc-
ing it was the location of the initial storage unit of the actual argument. All other information
about the structure of the dummy argument had to be supplied in the procedure, possibly
using the value of another dummy argument. In Foriran 77, this remained largely true, but it
was possible to determine the length of a character argument without passing it explicitly. In
the development of this standard, it became desirable to allow additional information, such
as the shape of an array argument, similarly to be implicitly passed. In addition, notational
extensions, such as array section notation, made it possible to describe actual arguments

Version 102 1986 November Page C-14

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

50

whose location could not be described merely by describing the location of its first element.
All of this suggested that, in the general case, the mechanisms used to associate actual
arguments with dummy arguments in Fortran 77 processors would not suffice for a processor
conforming to this standard. On the other hand, there are a number of clear advantages to
a processor that can reference and be referenced by procedures defined by a Fortran 77
processor, at least in limited cases. In order to allow processors with this property, require-
ments were added such that the interface must be explicit for any procedure that may obtain
additional information (such as array shape) from a dummy argument. Thus, for any proce-
dure with an expiicit interface, a processor may use that interface to determine whether For-
tran 77 argument association suffices or whether a more general association method is
required; for a procedure with an implicit interface, it may safely assume that a Fortran 77
argument association suffices. However, for actual arguments whose location cannot be
described with a single address because it does not exist in contiguous storage, in order to
use Fortran 77 argument association, it may be necessary to copy the argument to contigu-
ous temporary storage before invoking the procedure, use the temporary storage as the
actual argument, and then copy the contents of the temporary storage back to the
discontiguous storage after invoking the procedure. ‘

Note that while this is the specific implementation method these rules were designed to sup-
port, it is not the only one possible. For example, on some processors, it may be possible to
implement the general argument association in such a way that the information involved in
Fortran 77 argument association may be found in the same places and the “extra” informa-
tion is placed so it does not disturb a procedure expecting only Fortran 77 argument associa-
tion. With such an implementation, argument association could be translated without regard
to whether the interface is explicit or implicit. Alternatively, it would be possible to disallow
discontiguous arguments when calling procedures defined by the Fortran 77 processor and
let any copying to and from contiguous storage be done explicitly in the program. Yet
another possibility would be not to allow references to procedures defined by a Fortran 77
processor.

One special case of information being made implicitly available through argument association
is the use of dummy arguments with precision or exponent range type parameters that are
assumed. The use of these dummy arguments has been constrained such that information
is available only about the effective attributes of the actual argument, not the declared attri-
butes. In addition, there can be only one such argument in any given procedure interface.
Finally, such procedures may not be used as an actual argument. These restrictions allow
implementations in which the translation of such a procedure is a collection of procedures,
one for each possible representation of the assumed attribute dummy argument, where the
representation of the actual argument in a procedure reference is used to determine which
procedure in the collection is actually referenced.

Argument intent specifications serve several purposes in addition to documenting the
intended use of dummy arguments. A processor can check whether an intent IN dummy
argument is used in a way that could redefine it. A slightly more sophisticated processor
could check to see whether an intent OUT dummy argument could possibly be referenced
before it is defined. If the procedure’s interface is explicit, the processor can also verify that
actual arguments corresponding to intent OUT or INOUT dummy arguments are definable. A
more sophisticated processor could use this information to optimize the translation of the ref-
erencing program unit by taking advantage of the fact that actual arguments corresponding
to intent IN dummy arguments will not be changed and that any prior value of an actual
argument corresponding to an intent QUT dummy argument will not be referenced and can
thus be discarded.

Note that intent OUT means that the value of the argument after invoking the procedure is
entirely the result of executing that procedure. If there is any possibility that an argument
should retain its current value rather than being redefined, then the intent should be INOUT

Version 102 1986 November Page C-15

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

rather than OUT, even if there is no explicit reference to the value of the dummy argument.

Note also that intent INOUT is not equivalent to the default. The argument corresponding to
an intent INOUT dummy argument must always be definable, while an argument correspond-
ing to a dummy argument with default intent need be definable only if the dummy argument
is actually redefined.

The restrictions on entities associated with dummy arguments are intended to allow a proc-
essor to translate a procedure on the assumption that each dummy argument is distinct from
any other entity accessible in the procedure. This allows a variety of optimizations in the
translation of the procedure, including implementations of argument association in which the
value of the actual argument is maintained in a register or in local storage.

This standard does not allow internal procedures to be used as actual arguments, in part to
simplify the problem of insuring that internal procedures with recursive hosts access entities
from the correct instance of the host. If, as an extension, a processor allows internal proce-
dures to be used as actual arguments, the correct instance in this case is the instance in
which the procedure is supplied as an actual argument, even if the corresponding dummy
argument is eventually invoked from a different instance.

C.13 Section 13 Notes.

C.13.1 Summary of Features. This section is a summary of the principal array features.

C.13.1.1 Whole Array Expressions and Assignments. An important extension is that
whole array expressions and assignments will be permitted. For example, the statement

A=B+Cx*SIN (D)

where A, B, C, and D are arrays of the same shape, is permitted. It is interpreted element-
by-element; that is, the sine function is taken on each element of D, each result is multiplied
by the corresponding element of C, added to the corresponding element of B, and assigned
to the corresponding element of A. Functions, including user-written functions, may be array
valued and may overload scalar versions having the same name. All arrays in an expression
or across an assignment must “conform”; that is, have exactly the same “rank” (number of
dimensions) and “shape” (set of lengths in each dimension), but scalars may be included
freely and these are interpreted as being broadcast to a conforming array. Expressions are
evaluated before any assignment takes place.

C.13.1.2 Array Sections. Whenever whole arrays may be used, it is also possible to use
rectangular slices called “sections”. For example:

ACz, 1:N, 2, 3:1:-1)

consists of a subarray containing the whole of the first dimension, positions 1 to N of the
second dimension, position 2 of the third dimension and positions 1 to 3 in reverse order for
the fourth dimension. This is an artificial example chosen to iliustrate the different forms. Of
course, the most common use is to select a row or column of an array, for example:

A, D

C.13.1.3 WHERE Statement. The WHERE statement applies a conforming logical array as
a mask on the individual operations in the expression and in the assignment. For example:
WHERE (A .GT. 0 B = LOG (A)

takes the logarithm only for positive components of A and makes assignments only in these
positions.

Version 102 1986 November Page C-16

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

The WHERE statement also has a block form (WHERE construct).

C.13.1.4 Automatic and Aliocatable Arrays. A major advance for writing modular soft-
ware will be the presence of AUTOMATIC arrays, created on entry to a subprogram and
destroyed on return, and ALLOCATABLE arrays whose rank is fixed but whose actual size
and lifetime is fully under the programmer’s control through explicit ALLOCATE and DEAL-
LOCATE statements. The declarations

SUBROUTINE X (N, A, B)
REAL WORK (N, N), HEAP (:, :)

are associated with an automatic array WORK and an allocatable array HEAP. Note that a
stack is an adequate storage mechanism for the implementation of automatic arrays, but a
heap will be needed for allocatable arrays.

C.13.1.5 Array Constructors. Arrays, and in particular array constants, may be con-
structed with array constructors exemplified by:

(1.0, 3.0, 7.21

which is an array of size 3,

[1001.3,2.71, 7.11

which has size 21 and contains [1.3,2.7] repeated 10 times followed by 7.1, and

[1:N]

which contains the integers 1, 2, ..., N. Only rank-one arrays may be constructed in this
way, but higher dimensional arrays may be made from them by means of the intrinsic func-
tion RESHAPE.

C.13.1.6 Intrinsic Functions. All of the Fortran 77 intrinsic functions and all of the scalar
intrinsic functions that have been added to the language have been extended to be
applicable to arrays. The function is applied element-by-element to produce an array of the
same shape. In addition, the following array intrinsics have been added, many of which
return array-valued results.

C.13.1.6.1 Vector and Matrix Multiply Functions.

DOTPRODUCT(VECTOR_A,VECTOR B) Dot product of two arrays
MATMUL (MATRIX A,MATRIX-B) Matrix multiplication

C.13.1.6.2 Array Reduction Functions.

ALL(ARRAY,DIM) True if all values are true
ANY (ARRAY ,DIM) True if any value is true
COUNT (ARRAY,DIM) Number of true elements in an array.

MAXVAL (ARRAY,DIM,MASK) Maximum value in an array
MINVAL (ARRAY,DIM,MASK) Minimum value in an array
PRODUCT (ARRAY,DIM,MASK) Product of array elements
SUM(ARRAY,DIM,MASK) Sum of array elements

C.13.1.6.3 Array Inquiry Functions.

ALLOCATED (ARRAY) Space allocation
LBOUND(ARRAY,DIM) Lower dimension bounds of an array
RANK (SOURCE) Rank of an array or scalar

SHAPE (ARRAY) Shape of an array

SIZE(ARRAY,DIM) Total number of array elements

Version 102 1986 November Page C-17

SECTION NOTES X3J3/S8

10

15

20

25

30

35

UBOUNDCARRAY,DIM) Upper dimension bounds of an array

C.13.1.6.4 Array Construction Functions.

DIAGONAL(VECTOR,FILL) Create 2 diagonal matrix
MERGE (TSOURCE, FSOURCE , MASK) Merge under mask
PACK (ARRAY ,MASK, VECTOR) Pack array into a vector under a mask

REPLICATE(ARRAY,DIM,NCOPIES) Replicates an array by increasing a dimension
RESHAPE(MOLD, SOURCE,PAD,ORDER) Reshape an array

SPREAD (SOURCE,DIM,NCOPIES) Replicates an array by adding a dimension
UNPACK (VECTOR,MASK, FIELD) Unpack a vector into an array under a mask

C.13.1.6.5 Array Manipulation Functions.

CSHIFT (ARRAY,DIM,SHIFT) Circular shift
EOSHIFT (ARRAY,DIM,SHIFT,BOUNDARY) End-off shift
TRANSPOSE (MATRIX) Transpose of matrix

C.13.1.6.6 Array Geometric Functions.

FIRSTLOC (MASK,DIM) Locate first true element
LASTLOC (MASK,DIM) Locate last true element
PROJECT (ARRAY,MASK,BACKGROUND,DIM) Select masked values

C.13.2 Examples. The array features have the potential to simplify the way that almost any
array-using program is conceived and written. Many algorithms involving arrays can now be
written conveniently as a series of computations with whole arrays.

C.13.2.1 Unconditional Array Computations. At the simplest level statements such as
A=B+C or S=SUM(A) can take the place of entire DO loops. The loops were required to
do array addition or to sum all the elements of an array.

Further examples of unconditional operations on arrays that are simple to write are:

matrix multiply P = MATMUL(Q,R)
largest array element L = MAXVAL(P)
factorial N = PRODUCT(L2:N1)

N

The Fourier sum F = Y a; x cosx; may also be computed without writing a DO loop if one
i=1

makes use of the element-by-element definition of array expressions as described in Section

7. Thus, we can write

F =SUM (A *x COS (X)).

The successive stages of calculation of F would then involve the arrays:

A = [ACD), ..., A(ND]
X = [X(M,...,XN]
cos(Xy = [COS(X(1)),...,COSCXCN))]
A*COS(X) = [AC1)*COSCX (1)), ... , A(NI*COS(X(N))]

The final scalar result is obtained simply by summing the elements of the last of these
arrays. Thus, the processor is dealing with arrays at every step of the calculation.

Version 102 1986 November Page C-18

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

C.13.2.2 Conditional Array Computations. Suppose we wish to compute the Fourier sum
in the above example, but to include only those terms a(f) cos x(i) that satisfy. the condition
that the coefficient a(/) is less than 0.01 in absolute value. More precisely, we are now
interested in evaluating the conditional Fourier sum :

5§ CF = Y a xcosx
|al < 0.01

where the index runs from 1 to N-as before.

This can be done using the MASK parameter of the SUM function, which restricts the sum-
mation of the elements of the array A * COS(X) to those elements that correspond to true
elements of MASK. Clearly, the logical expression required as the mask is ABS(A) .LT.
0.01. Note that the stages of evaluation of this expression are: R

A
ABS (A)
ABS(A) .LT. 0.01

(A, ...,AMN)]
[ABSCA(1)),...,ABS(A(N))]
[ABS(AC1) .LT. 0.01,...,ABSCA(N)) .LT. 0.01]

The conditional Fourier sum we arrive at is:
CF = SUM (A * COS (X), MASK = ABS (A) .LT. 0.01)
If the mask is all false, the value of CF is zero.

The use of a mask to define a subset of an array is crucial to the action of the WHERE
statement. Thus for example, to set an entire array to zero, we may write simply A = 0; but
to set only the negative elements to zero, we need to write the conditional assignment

WHERE (A .LT. O =0

The WHERE statement complements ordinary array assignment by providing array assign-
ment to any subset of an array that can be restricted by a logical expression.

In the Ising model described below, the WHERE statement predominates in use over the
ordinary array assignment statement.

C.13.2.3 A Simple Program: The Ising Model. The Ising model is a well-known Monte
Carlo simulation in 3-dimensional Euclidean space which is useful in certain physical studies.
We will consider in some detail how this might be programmed. The model may be
described in terms of a logical array of shape N by N. Each gridpoint is a single logical vari-
able which is to be interpreted as either an up-spin (true) or a down-spin (false).

The Ising model operates by passing through many successive states. The transition to the
next state is governed by a local probabilistic process. At each transition, all gridpoints
change state simultaneously. Every spin either flips to its opposite state or not according to
a rule that depends only on the states of its 6 nearest neighbors in the surrounding grid.
The neighbors of gridpoints on the boundary faces of the model cube are defined by assum-
ing cubic periodicity. In effect, this extends the grid periodically by replicating it in all direc-
tions throughout space.

The rule states that a spin is flipped to its opposite parity for certain at points where a mere
3 or fewer of the 6 nearest neighbors currently have the same parity as it does. Also, the
flip is executed only with probability P(4), P(5), or P(6) if as many as 4, 5, or 6 of them have
the same parity as it does. (The rule seems to promote neighborhood alignments that may
presumably lead to equilibrium in the long run).

Version 102 1986 November Page C-19

SECTION NOTES X3J3/S8

10

15

20

25

30

35

40

45

C.13.2.3.1 Problems To Be Solved. Some of the programming problems that we will
need to solve in order to translate the Ising mode! into Fortran statements using entire
arrays are:

(1) Counting nearest neighbors that have the same spin;
(2) Providing an array-valued function to return an array of random numbers; and

(3) Determining which gridpoints are to be flipped.

C.13.2.3.2 Solutions in Fortran. The arrays needed are:

LOGICAL ISING (N, N, N), FLIPS (N, N, N)
INTEGER ONES (N, N, N), COUNT (N, N, N
REAL RANDOTHRESHOLD (N, N, N)

The array-valued function needed is:

FUNCTIOM RANDOM (N, N, N)
REAL THRESHOLD (N, N, N} -

The transition probabilities may be passed across in the array
REAL P(6)

The first task is to count the number of nearest neighbors of each gridpoint g that have the
same spin as g. .

Assuming that ISING is given to us, the statements

ONES = 0
WHERE (ISING) ONES = 1

makes the array ONES into an exact analog of ISING in which 1 stands for an up-spin and 0
for a down-spin.

The next array we construct, COUNT, will record for every gridpoint of ISING the number of
spins to be found among the & nearest neighbors of that gridpoint. COUNT will be com-
puted by adding together 6 arrays, one for each of the 6 relative positions in which a nearest
neighbor is found. Each of the 6 arrays is obtained from the ONES array by shifting the
ONES array one place circularly along one of its dimensions. This use of circular shifting
imparts the cubic periodicity.

COUNT = CSHIFT(ONES, DIM = 1, SHIFT = =10 &
+CSHIFT(ONES, DIM =1, SHIFT = 1) &
+CSHIFT(ONES, DIM = 2, SHIFT = -1) &
+CSHIFT(ONES, DIM = 2, SHIFT = 1) &
+CSHIFT(ONES, DIM = 3, SHIFT = -1) &
+CSHIFT(ONES, DIM = 3, SHIFT = 1)

At this point, COUNT contains the count of nearest neighbor up-spins even at the gridpoints
where the Ising model has a down-spin. But we want a count of down-spins at those
gridpoints, so we correct COUNT at the down (false) points of ISING by writing:

WHERE (.NOT. ISING) COUNT = 6 - COUNT

Our object now is to use these counts of what may be called the “like-minded nearest neigh-
bors” to decide which gridpoints are to be flipped. This decision will be recorded as the true
elements of an array FLIP. The decision to flip will be based on the use of uniformly distri-
buted random numbers from the interval 0 < p < 1. These will be provided at each
gridpoint by the array-valued function RANDOM. The flip will occur at a given point if and
only if the random number at that point is less than a certain threshold value. In particular,
by making the threshold value equal to 1 at the points where there are 3 or fewer like-

Version 102 1986 November Page C-20

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

45

minded nearest neighbors, we guarantee that a flip occurs at those points {because p is
always less than 1). Similarly, the threshold values corresponding to counts of 4, 5, and 6
are set to P(4), P(5), and P(6) in order to achieve the desired probabilities of a flip at those
points (P(4), P(5), and P(6) are input parameters in the range 0 to 1).

The thresholds are established by the statements:
THRESHOLD = 1

WHERE (COUNT .EQ. 4) THRESHOLD = P(4)
WHERE (COUNT .EQ. 5) THRESHOLD = P(5)
WHERE (COUNT .EQ. 6) THRESHOLD = P(6)

and the spins that are to be flipped are located by the statement:
FLIPS = RANDOM (N) .LE. THRESHOLD

All that remains to complete one transition to the next state of the ISING model is to reverse
the spins in ISING wherever FLIPS is true:

WHERE (FLIPS) ISING = .NOT. ISING

C.13.2.3.3 The Complete Fortran Subroutine. The complete code, enclosed in a subrou-
tine that performs a sequence of transitions, is as follows:

SUBROUTINE TRANSITION (N, ISING, ITERATIONS, P)

LOGICAL ISING (N, N, N), FLIPS (N, N, N)
INTEGER ONES (N, N, N), COUNT (N, N, N
REAL THRESHOLD (N, N, N), P (6)

! This interface block is needed to specify
! that RANDOM is array-valued.
INTERFACE
FUNCTION RANDOM (N)
REAL RANDOM (N, N, N)
END INTERFACE

DO (ITER = 1, ITERATIONS)

ONES = 0

WHERE (ISING) ONES =1

COUNT = CSHIFT (ONES, 1, —1) + CSHIFT (ONES, 1, 1) &
+CSHIFT (ONES, 2, -1) + CSHIFT (ONES, 2, 1) &
+CSHIFT (ONES, 3, —1) + CSHIFT (ONES, 3, 1)

WHERE (.NOT. ISING) COUNT = 6 — COUNT

THRESHOLD = 1 '

WHERE (COUNT .EQ. 4). THRESHOLD = P(4)
WHERE (COUNT .EQ. 5) THRESHOLD = P(5)
WHERE (COUNT .EQ. 6) THRESHOLD = P(6)

FLIPS = RANDOM (N) .LE. THRESHOLD
WHERE (FLIPS) ISING = .NOT. ISING
END DO
END

C.13.2.3.4 Reduction of Storage. The array ISING could be removed (at some loss of
clarity) by representing the model in ONES all the time. The array FLIPS can be avoided by
combining the two statements that use it as:

WHERE (RANDOM (N) .LE. THRESHOLD) ISING = .NOT. ISING

Version 102 1986 November Page C-21

SECTION NOTES X3J3/88

but an extra temporary array would probably be needed. Thus, the scope for saving storage
while performing whole array operations is limited. If N is small, this will not matter and the
use of whole array operations is likely to lead to good execution speed. If N is large, stor-
age may be very important and adequate efficiency will probably be available by performing

5 the operations plane by plane. The resulting code is not as elegant, but all the arrays
except ISING will have size of order N2 instead of N3.

C.13.3 FORmula TRANslation and Array Processing. Many mathematical formulas can
be translated directly into Fortran by use of the array processing features.

We assume the following array declarations:
10 REAL X (N), A (M, N
Some examples of mathematical formulas and corresponding Fortran expressions follow.
C.13.3.1 A Sum of Products. The expression
N M
Y I1a
j=1i=1
15 can be formed using the Fortran expression
SUM (PRODUCT (A, DIM=1))

The argument DIM =1 means that the product is to be computed down each column of A. If
A had the value

ABC
20 DEF

the result of this expression is AD + BE + CF.

C.13.3.2 A Product of Sums. The expression

o S

!

25 can be formed. using the Fortran expression
PRODUCT (SUM (A, DIM = 2))

The argument DIM = 2 means that the sum is to be computed along each row of A. If A
had the value

ABC
30 DEF

the result of this expression is (A+B+C)(D+E+F).

N
Y a;
=1

1§

C.13.3.3 Addition of Selected Elements. The expression

XX

X > 01
35 can be formed using the Fortran expression
SUM (X, MASK = X .6T. 0.1

The mask locates the elements where the array of rank one is greater than 0.1. If X had the
value [0.0, 0.1, 0.2, 0.3, 0.2, 0.1, 0.0], the result of this expression is 0.7.

Version 102 1986 November Page C-22

SECTION NOTES X3J3/88

10

15

20

25

30

35

C.13.4 Variance from the Mean. The expression
N
Y6 —x mean)’
=1

can be formed using the Fortran statements

XMEAN = SUM (X) / SIZE (X)
VAR = SUM ((X - XMEAN) ** 2)

Thus, VAR is the sum of the squared residuals.

C.13.5 Matrix Norms: Euclidean Norm.
NORMZ2 (A) = SQRT (SUM (A*%2))

(Note: The Euclidean norm of a real matrix is the square root of the sum of the squares of
its elements) '

C.13.6 Matrix Norms: Maximum Norm.
NORM_INFINITY (A) = MAXVAL (SUM (ABS (A), DIM = 2))

(Note: The maximum norm of a real matrix is the largest row sum of the matrix of its abso-
lute values)

C.13.7 Logical Queries. The intrinsic functions allow quite complicated questions about
tabular data to be answered without use of loops or conditional constructs. Consider, for
example, the questions asked below about a simpie tabulation of students’ test scores.

Suppose the rectangular table T (M, N) contains the test scores of M students who have
taken N different tests. T is an integer matrix with entries in the range 0 to 100. Exampie
A: the scores on 4 tests made by 3 students held as the table

85 76 90 60
T = |71455080
66 45 21 55

Question: What is each student’s top score?

Answer: MAXVAL (T, DIM = 2); in Example A: [90, 80, 66].
Question: What is the average of all the scores?

Answer: SUM (T) / SIZE (T); in Example A: 62.

Question: How many of the scores in the table are above average?

Answer;: ABOVE = T .GT. SUM (T) / SIZE (T); N = COUNT (ABOVE); in Example A:
ABOVE is the logical array (t = true, . = false):

ttt.
t. .t
t.o..

and COUNT (ABOVE) is 6.
Question: What was the lowest score in the above-average group of scores?

Answer: MINVAL (T, MASK = ABOVE), where ABOVE is as defined previously; in Example
A: 66.

Version 102 1986 November Page C-23

SECTION NOTES X3J3/58

10

15

20

25

30

35

40

Question: Was there a student whose scores were all above average?

Answer: With ABOVE as previously defined the answer is yes or no according as the value
of the expression ANY (ALL (ABOVE, DIM = 2)) is true or false; in Example A the answer is
no.

C.13.8 Parallel Computations. The most straightforward kind of parallel processing is to

.do the same thing at the same time to many operands. Matrix addition is a good example of

this very simple form of parallel processing. Thus, the array assignment A = B + C
specifies that corresponding elements of the identically-shaped arrays B and C be added
together in parallel and that the resulting sums be assigned in parallel to the array A.

The “process” being done “in parallel” in the example of matrix addition is of course the
process of addition. And the array feature that so successfully implements matrix addition as
a parallel process is the element-by-element evaluation of array expressions.

These observations lead us to look to element-by-element computation as a means of imple-
menting other simple parallel processing algorithms.

The applications of element-by-element computation to parallel processing include the foliow-
ing:

C.13.3.1 Parallel Evaluation of Polynomials. This encompasses both the evaluation of
several polynomials at one point and the evaluation of one polynomial at several points.

C.13.8.2 Parallel Computation of FFTs. In radar signal processing it is convenient to per-
form the Fast Fourier Transform in parallel on many sets of radar signals (each such set
might consist of, say, 64 complex numbers).

C.13.8.3 Parallel Sorting. We will address the problem of sorting the several columns of a
matrix in parallel.

C.13.8.4 Parallel Finite Differencing. We will examine the parallel computation of finite
difference approximations to partial derivatives at all points of a grid.

C.13.9 Examples of Element-by-Element Computation.

C.13.9.1 Polynomials. Several polynomials of the same degree may be evaluated at the
same point by arranging their coefficients as the rows of a matrix and applying Horner’s
method for polynomial evaluation to the COLUMNS of the matrix so formed.

This procedure is illustrated by the code to evaluate the three cubic polynomials:

in parallel at the point t = X and to place the resulting vector of numbers [P(X), Q(X), R(X)]
in the real array RESULT (3).

The code to compute RESULT is just the one statement
RESULT =M (:, 1D + X * (M (:, 2 +X* (M, 3N +X*M(:, &N
where M represents the matrix M (3, 4) with value

P(t) =1 + 2t — 3t2 + 413

Qt) =2 — 3t + 42 — 513

R(t) = 3 + 4t — 5t + 613

Version 102 1986 November Page C-24

SECTION NOTES X3J3/S8

1 2 -3 4
2 -3 4 -5
3 4 -5 6

C.14 Section 14

Version 102 1986 November Page C-25

1
R101 executable-program
Constraint:
R102 external-program-unit
R103 main-program
R104 procedure-subprogram
R105 function-subprogram
R106 subroutine-subprogram
R107 module-subprogram
R108 block-data-subprogram
Constraint:

SAVE statements.

R108 specification-part
R110 implicit-part
R111 stmt-function-part
Version 102

APPENDIX D SYNTAX RULES

INTRODUCTION

is external-program-unit

{ external-program-unit |...

An executable-program must contain exactly one main-program program-unit.

is main-program

or procedure-subprogram
or module-subprogram
or block-data-subprogram

is [program-stmt]
specification-part
[execution-part |
[internal-procedure-part |
end-program-stmt

is function-subprogram
or subroutine-subprogram

is function-stmt
specification-part
| execution-part |
[internal-procedure-part |
end-function-stmt

is subroutine-stmt
specification-part
[execution-part |
[internal-procedure-part |
end-subroutine-stmt

is module-stmt
specification-part
| procedure-subprogram]...
end-module-stmt

is block-data-stmt -

A block-data-subprogram specification-part may contain only IMPLICIT, PARAME-

- far“' m.ss.n1

TER, type declaration, COMMON, DIMENSION, EQUIVALENCE, DATA, and

is [use-stmt]...
[implicit-part |
| declaration-construct |...
[stmt-function-part |

is [implicit-part-stmt |...
impficit-stmt

is stmt-function-stmt
[stmt-function-part-stmt 1...

1986 November

Page D-1

SYNTAX RULES

R112 implicit-part-stmt

R113 declaration-construct
R114 stmt-function-part-stmt
R115 execution-part

R116 execution-part-construct
R117 internal-procedure-part
R118 internal-procedure

R119 specification-stmt
Constraint:

Version 102

or

is
or
or
or
is
or
or
or
or
or
or
is
or
or
or

or

is

or
or
or
or
or
or
or
or
or
or
or
or

data-stmt
[stmt-function-part-stmt }...

implicit-stmt
parameter-stmt
format-stmt
entry-stmt

derived-type-def
interface-block
type-declaration-stmt
specification-stmt
parameter-stmt
format-stmt
entry-stmt

format-stmt
data-stmt
entry-stmt
stmt-function-stmt

executable-construct
[executable-part-construct]...

executable-construct
format-stmt
data-stmt

entry-stmt

contains-stmt
[internal-procedure ...

function-stmt
specification-part
[execution-part]
end-function-stmt
subroutine-stmt
specification-part
[execution-part]
end-subroutine-stmt

access-simt
exponent-letter-stmt
external-stmt
data-simt
intent-stmt
intrinsic-stmt
namelist-stmt
optional-stmt
range-stmt
save-stmt
common-stmt
dimension-stmt
equivalence-stmi

1986 November

X3J3/58

An intent-stmt or optional-stmt may appear only in the scoping unit of a proce-
dure subprogram because they apply only to dummy arguments.

Page D-2

INTRODUCTION SYNTAX RULES

Constraint: An access-stmt may appear only in the scoping unit of a module subprogram.

R120 executable-construct is action-stmt
or case-construct
or do-construct
or if-construct
or where-construct

Ri21 action-stmt is allocate-stmt
or assignment-stmt
or backspace-stmt
or call-stmt
or close-stmt
or continue-stmt
or cycle-stmt
or deallocate-stmt
or endfile-stmt
or exit-stmt
o ot e idaah iy aiut
or inquire-stmt
or open-stmt
or print-stmt
or read-stmt
or return-stmt
or rewind-stmt
or set-range-stmt
or stop-stmt
or where-simt
or write-stmt
or- arithmetic if-stmt
or ass:gn-stmt
or assigned-goto-stint
or. <.mputed-goto-stimt
or paum-stmt

Constraint: An entry-stmt or return-stmt may appear only in the scoping unit of a procedure
subprogram; an entry-stmt must not appear in a construct.

3 CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM

R301 character ; is alphanumeric-character
or special-character
R302 alphanumeric-character is letter
or digit
. oF underscore
R303 Mme is letter | alphanumeric-character |...

i .
Constraint: The maximum length of a symbolic-name is 31 characters.

R304 constant is literal-constant

Version 102 1986 November Page D-3

SYNTAX RULES

R305

R306
R307

R308
R309

R310

R311
R312

R313
R314
R315
R316

R317

R318
R319

literal-constant

reved
eymbelie-constant

intrinsic-operator

power-op

mulit-op
add-op

concat-op

rel-op

not-op
and-op
or-op

equiv-op

defined-operator

defined-unary-op
defined-binary-op

Version 102

or
is

or
or
or
or
is

is

or
or
or
or
or
or
or
or

is
or
or

is

4
m«:onstant

int-constant
real-constant
complex-constant
logical-constant
char-constant

syﬁbe#;name

power-op
mult-op
add-op
concat-op
rel-op
not-op
and-op
or-op
equiv-op

ik

*
/
+

.NOT.
.AND.
.OR.

.EQV.
.NEQV.

defined-unary-op
defined-binary-op
overloaded-intrinsic-op

. letter [letter]... .

. letter [letter |... .

1986 November

X3.J3/58

Page D-4

CHARACTERS, LEXICAL TOKENS, AND SOURCE FORM SYNTAX RULES

Constraint: A defined-unary-op and a defined-binary-op must not contain more than 31 char-
acters and must not be the same as any intrinsic-operator or logical-constant.

R320 label is digit [digit [digit [digit [digit 1111

4 INTRINSIC AND DERIVED DATA TYPES

R401 signed-int-lit-constant is [sign] int-lit-constant
R402 int-lit-constant is digit [digit]...
R403 sign is +
or —
R404 signed-real-lit-constant is [sign | real-lit-constant
R405 real-lit-constant is significand | exponent-letter exponent |
or int-lit-constant exponent-letter exponent
R406 significand is int-lit-constant . [int-lit-constant |
or . int-lit-constant
R407 exponent is signed-int-lit-constant
R408 exponent-letter ~ is E
or D
or defined-exponent-letter
R409 exponent-letter-stmt is EXPONENT LETTER [precision-selector | Bl

B defined-exponent-letter
R410 defined-exponent-fetter is letter

Constraint: A defined-exponent-letter must be a letter other than E, D, or H.

R411 complex-lit-constant is (real-part, imag-part)
R412 real-part is signed-int-lit-constant
or signed-real-lit-constant
R413 imag-part is signed-int-lit-constant
or signed-real-lit-constant
R414 char-constant is ' [character]..."’
or " [character]... ”
R415 logical-constant is .TRUE.
or .FALSE.
R416 derived-type-def is derived-type-stmt

component-def-stmt

[component-def-stmt]... — tmd- h pe- 51"_].
R417 derived-type-stmt is [access-spec] TYPE type-name [(type-param-name-list) |

R418 end-type-stmt is END TYPE [type-name]

Constraint: A derived type type-name must not be the same as any intrinsic type-name nor
the same as any accessible derived type-name.

Constraint: If END TYPE is followed by a type-name, the type-name must be the same as
that in the derived-type-stmt.

Version 102 1986 November Page D-5

SYNTAX RULES X3J3/S58

R419 component-def-stmt is type-spec [[, component-atir-spec |... :: | component-decl-list
Constrainl: A type-spec in a component-def-stmt must not contain a type-param-value that is

an asterisk.
R420 component-attr-spec is PRIVATE

or ARRAY (explicit-shape-spec-list)
R421 component-dec! is component-name [(explicit-shape-spec-list) |
R422 derived-type-constructor is type-name [(type-param-spec-list)] (expr-list)

Constraint: The type-param-spec option must be supplied if and only if the referenced type
definition includes type parameters.

R423 array-constructor is [array-constructor-value-list]
or (/ array-constructor-value-list /)

R424 array-constructor-value is scalar-expr
or rank-1-array-expr
or scalar-int-expr : scalar-int-expr [: scalar-int-expr |
or [int-constant-expr | array-constructor

5 DATA OBJECT DECLARATIONS AND SPECIFICATIONS

R501 type-declaration-stmt is type-spec [[, attr-spec |... ::]| object-decl-list

R502 lype-spec is INTEGER
or REAL [precision-selector |
or DOUBLE PRECISION
or COMPLEX [precision-selector |
or CHARACTER [length-selector |
or LOGICAL
or TYPE (type-name [(type-param-spec-list) |)

R503 type-param-spec is [type-param-name =] type-param-value
R504 type-param-value is specification-expr

or "
R505 attr-spec is value-spec

or access-spec

or ALIAS

or ALLOCATABLE

or ARRAY (array-spec)

or INTENT (intent-spec)

or OPTIONAL

or RANGE [/ range-list-name /]
or SAVE

R506 object-dec! is object-name [(array-spec)| B
W [* charlength | [= constant-expr]

Constraint: No attr-spec may appear more than once in a given type-declaration-stmt.

Constraint: The object-name may be the name of a data object, an external function, an
intrinsic function, or a statement function.

Version 102 1986 November Page D-6

DATA OBJECT DECLARATIONS AND SPECIFICATIONS SYNTAX RULES

Constraint: The = constant-expr must appear if and only if the statement contains a value-
spec attribute (5.1.2.1, 7.1.6.1).

Constraint: The * char-length option is permitted only if the type-spec is CHARACTER.

Constraint: The ALLOCATABLE and RANGE attributes may be used only when declaring
array objects.

Constraint: An array must not have both the ALLOCATABLE and the ALIAS attribute.
Constraint: The ALIAS attribute may be specified with type and array attributes only.

Constraint: An array specified with an ALIAS attribute must be declared with an allocatable-
spec.

Constraint: The value, accessibility, ALIAS, and SAVE attributes must not be specified for
dummy arguments.

R507 precision-selector is (type-param-value R
B [, [EXPONENT_RANGE =] type-param-value |)
or (PRECISION = type-param-value &
B [, EXPONENT_RANGE = type-param-value |)
or (EXPONENT_RANGE = type-param-value B
@ [, PRECISION = type-param-value |)

Constraint: The type-param-value must be an integer type parameter expression (7.1.6.2) or

an asterisk.
R508 length-selector is ([LEN =] type-param-value)
or * char-length [,]
R509 char-length is (type-param-value)
or scalar-int-constant
R510 value-spec is PARAMETER
or DATA
R511 access-spec is PUBLIC
or PRIVATE
R512 intent-spec is IN
or OUT
or INOUT
R513 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-fist
or assumed-size-spec
R514 explicit-shape-spec is [lower-bound : | upper-bound
R515 lower-bound is scalar-int-expr
R516 upper-bound is scalar-int-expr

Constraint: An explicit shape array whose bounds depend on the values of nonconstant
expressions must be either a dummy argument or a local array of a procedure.

Constraint: The bounds in an explicit-shape array decla:ation must be specification expres-
sions (7.1.6.3). '

R517 assumed-shape-spec is [lower-bound] :
R518 deferred-shape-spec is

£519 assonad e e 82 e
Version 102 1986 November Page D-7

SYNTAX RULES X3J3/58

Consiraint: assumed-size-spec must not be included in an ARRAY attribute.

Constraint: The value to be returned by an array-valued function must not be declared as
an assumed-size array.

R519 intent-stmt is INTENT (intent-spec) [:: | dummy-arg-name-list
R520 optional-stmt is OPTIONAL [:: | dummy-arg-name-/'st
R521 access-stmt is access-spec [[::] object-name-list]

Constraint: An access-stmt may appear only in the scoping unit of a module and only one
accessibility statement with omitted object name list is permitted in a scoping

unit.
R522 save-stmt is SAVE [[::] saved-object-list |
R523 saved-object is object-name

or / common-block-name /

Constraint: An object name must not be a dummy argument name, a procedure name, a
function result name, an automatic array name, an alias name, or the name of
an object in a common block. lts type parameters must be constant.

Constraint: If a SAVE statement with an omitted saved object list occurs in a scoping unit,
no other occurrence of the SAVE attribute or SAVE statement is permitted in
the same scoping unit.

Din tm-"‘** S W [, array-name (array-spec) |...
‘Constraint: In a DIMENSION statement, only explicit shape and assumed-size array-specs
are permitted.
émTA (data-value-def-list D

is data-stmt-object-list / data-stmt-value-list /

R524 data-stmt-init

R525 data-stmt-object is object-name
or array-element
or data-implied-do

R526 data-stmt-value is [data-stmt-repeat * | data-stmt-constant

R527 data-stmt-constant is constant
or signed-int-constant
or signed-real-constant

R528 data-stmi-repeat is int-constant
or scalar-int-m-constam
R529 data-implied-do is (data-i-do-object-list, do-i-do-variable = W

B scalar-int-expr, scalar-int-expr [, scalar-int-expr |)

R530 data-i-do-object is array-element
or data-implied-do
or data-init-implied-do = data-init-implied-do-value

R531 data-init-implied-do is (data-init-implied-do-object , data-init-implied-do-control)

R532 data-init-implied-do-object is array-element
or data-init-implied-do

R533 data-init-implied-do-control is do-variable = &
M scalar-int-expr , scalar-int-expr | , scalar-int-expr |

R534 data-init-implied-do-value is array-constructor

Version 102 1986 November Page D-8

DATA OBJECT DECLARATIONS AND SPECIFICATIONS

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

data-i-do-variable must be of type integer.

The data statement repeat factor must be a positive integer constant. If the
data statement repeat factor is a named constant, it must have been declared
previously in the scoping unit or made accessible by a USE statement.

A variable whose name is included in a data-stmt-object-list or a data-i-do-
object-list must not be of a derived type, a structure component, a dummy argu-
ment, made accessible by a USE statement, in a named common block unless
the DATA statement is in a BLOCK DATA subprogram, in a blank COMMON
block, or a function name. An array whose name is included in either of the
above object lists must not be an automatic array, an allocatable array, or a
zero-sized array.

Neither the name of variable in data-value-def (R534) nor the name of array-
element in data-init-implied-do-object (R536) can ve accessible names of the
whole or part of dummy arguments, procedures, function results, automatic or
allocatable arrays, alias, or objects in a common block.

The only variables that may appear in subscripts of the array-element in a data-
init-implied-do-object (R536) are DO variables from some level of the data-init-
implied-do. Each such DO variable must appear in some subscript of the array-
element.

Each data-init-implied-do-control must conform to the rules of the DO construct
(8.1.4.1). The DO variable must be an integer. The only variables that may
appear in scalar-int-expr are DO variables from an outer data-init-implied-do-
control.

A variable, or part of a variable, must not be initialized more than once.

The size of the array-constructor must be equal to the number of elements ref-
erenced by the data-init-implied-do-controls.

SYNTAX RULES

Constraint: Each element of the array constructor must be a scalar constant expression.

R535 parameter-stmt is PARAMETER (named-constant-def-list)

R536 named-constant-def is named-constant-name = constant-expr

R537 range-stmt is RANGE [/ range-list-name / | array-name-list

R538 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE

R539 implicit-spec is' type-spec (letter-spec-list)

R540 letter-spec . is letter | — letter]

R541 namelist-stmt is NAMELIST / namelist-group-name / namelist-group-object-list B
B [[,] / name-list-group-name / namelist-group-object-list]... M=

R542 name-list-group-object ' is variable

Constraint: namelist-group-name must not be the same name as any variable or array

Constraint:

known within the current scoping unit.

A namelist-group-object must not be an array dummy argument with nonconstant
bounds, an array element or section, a structure component, a structured object
with assumed parameters, an allocatable array, or a substring.

R543 equivalence-stmt is EQUIVALENCE equivalence-set-list
R544 equivalence-set is (equivalence-object , equivalence-object-list)
Version 102 1986 November Page D-9

SYNTAX RULES X3J3/58

R545

equivalence-object is object-name
or array-element
or substring

Constraint: object-name must be a scalar variable name or an array variable name.

Constraint: An equivalence-object must not be the name of a dummy argument, an object of

derived type, a structure component, an allocatable array, an automatic array,
an object of real type unless of default real type, an object of complex type
unless of default complex type, an array of zero size, or a function name.

Constraint: Within an equiviance-set, if one equivalence-object is of type character, all must

be of type character.

Constraint: Each subscript or substring range expression in an equivalence-object must be

an integer constant expression.

R546 common-stmt is COMMON [/ [common-block-name] /] B

B common-block-object-list B
W [[,]/][common-block-name)/ B
B common-block-object-list]...

R547 common-block-object is object-name [(explicit-shape-spec-list) |

Constraint: object-name must be a scalar-variable-name or an array-variable-name. Only

one appearance of a given object-name is permitted in all common-
block-object-lists within a scoping unit.

Constraint: A common-block-object must not be the name of a dummy argument, an objéct

of derived type, a structure component, an alias object, an allocatable array, an
automatic array, an object of real type uniess of default real type, an object of
complex type unless of default complex type, an array of zero size, or a func-
tion name.

Constraint: Each bound in the explicit-shape-spec must be an integer constant expression.

R601

R602
R603

R604
R605
R606

6 USE OF DATA OBJECTS

variable is scalar-variable-name
or array-variable-name
or array-element
or array-section
or structure-component
or substring

substring is parent-string (substring-range)

parent-string is char-scalar-variable-name
or char-array-element
or scalar-char-structure-component
or scalar-char-symbolic-constant
or scalar-char-constant

substring-range is [scalar-int-expr | : | scalar-int-expr |
structure-component is parent-structure % component-name [array-selector |
parent-structure is derived-type-scalar-variable-name

Version 102 1986 November Page D-10

USE OF DATA OBJECTS SYNTAX RULES

or derived-type-array-variable-name
or derived-type-array-element

or derived-type-array-section

or derived-type-structure-component
or derived-type-symbolic-constant

Constraint: An array-selector may appear only if the component specified by component--
name is an array.

R607 array-selector is (subscript-list)

or (section-subscript-list)
R608 allocate-stmt is ALLOCATE (array-allocation-fist)
R609 array-allocation is array-name (explicit-shape-spec-list)

Constraint: array-name must be the name of an allocatable array.

Constraint: A bound in an array-allocation explicit-shape-spec must not depend on any other
bound in the same allocate-stmt.

Constraint: The number of explicit-shape-specs in an array-allocation explicit-shape-spec-list
must be the same as the declared rank of the array.

R610 deallocate-stmt is DEALLOCATE (array-name-list)

R611 array-element is parent-array (subscript-list)

Constraint: The number of subscripts must equat the declared rank of the array.

R612 array-section is parent-array (section-subscript-list) [(substring-range)]

R613 parent-array is array-variable-name
or array-symbolic-constant-name

Constraint: At least one section-subscript must be a subscript-triplet.

Constraint: The number of section-subscripts must equal the declared rank of the array.

R614 subscript is scalar-int-expr
R615 section-subscript is subscript
or subscript-triplet
R616 subscript-triplet is [subscript] : [subscript][: stride]
R617 stride is scalar-int-expr
R618 set-range-stmt is SET RANGE ([effective-range-list |) array-name-list

or SET RANGE ([effective-range-list |) / range-list-name /

R619 effective-range is explicit-shape-spec
or [lower-bound | : [upper-bound |

Constraint: The number of effective ranges in an effective-range-list must equal the rank of
the arrays being ranged.

Constraint: All arrays being ranged must have the same rank and declared lower bounds in
corresponding dimensions.

Constraint: An array that is a member of a range list must not appear in an array-name-list
of a SET RANGE statement.

R62C identify-stmt is IDENTIFY (alias-name = parent)
or IDENTIFY (alias-element = parent-element , B

Version 102 1986 November Page D-11

SYNTAX RULES

R621

alias-element

R622 parent-element

R623 subscript-mapping

Constraint:

R624 alias-range-spec
Constraint:
Constraint:
Constraint:

alias-range-specs.
Constraint:
Constraint:

7

R701 primary
R702 level-1-expr
R322 defined-unary-op
R703 mult-operand
R704 add-operand
R705 level-2-expr
R308 power-op
R309 mult-op
R310 add-op
R706 level-4-expr
R314 concat-op
R707 level-5-expr
Version 102

X3J3/58

W alias-range-spec-list)
is alias-name (subscript-range-list)

is parent-name (subscript-mapping) B
B [% component-name [(subscript-list)]]...

is subscript-list

Each subscript must be in a canonical form in which each of the alias-efement

subscript-names appears in at most one term, and each subscript must be lin-
ear in each of the alias-element subscript-names.

is subscript-range = subscript : subscript

The alias and parent objects must conform in type, rank, and type parameters.
The alias object must have the alias attribute.

The number of subscript-names in an alias element must equal the number of

The subscript ranges in a subscript-name-list must be identical to the subscript

ranges in the corresponding alias range specification list, and must appear in
the same order. A name must not appear more than once in such a list.

The bounds in an alias-range-spec may be arbitrary integer expressions, but

must not depend on any other bound in the same identify-stmt.

EXPRESSIONS AMD ASSIGNMENT

is constant

or variable

or array-constructor

or derived-type-constructor
or function-reference

or (expr)

is [defined-unary-op | primary

is . letter [letter]... .

is level-1-expr | power-op mult-operand]
is [add-operand mult-op | mult-operand

is [add-op | add-operand
or level-2-expr add-op add-operand

is w g

is *
/

is +

or —

is [level-4-expr concat-op | level-3-expr

is //

is [level-4-expr rel-op | level-4-expr

1986 November Page D-12

EXPRESSIONS AND ASSIGNMENT

R315 rel-op

R708 and-operand
R709 or-operand

R710 equiv-operand
R711 level-6-expr
R316 not-op

R317 and-op

R318 or-op

R319 equiv-ép

R712 expr

R323 defined-binary-op
R713 specification-expr
R714 assignment-stmt
R715 where-stmt

R716 where-construct
R717 where-construct-stmt
R718 mask-expr

R719 elsewhere-stmt
R720 end-where-stmt
Constraint:

R801 block

Version 102

is

or
or
or
or
or
or
or
or
or
or
or

is
is
is
or

SYNTAX RULES

EQ.
NE.
LT.
.LE.
.GT.
.GE.

<>
<
< =
>
> =

[not-op 1 level-5-expr

[or-operand and-op | and-operand

[equiv-operand or-op | or-operand

[level-6-expr equiv-op | equiv-operand
NOT.

.AND.

.OR.

EQV.
.NEQV.

[expr defined-binary-op | level-6-expr

. letter [letter |... .

scalar-int-expr

variable = expr

WHERE (array-mask-expr) array-assignment-stmt

where-construct-stmt
[array-assignment-stmt |...
[elsewhere-stmt
[array-assignment-stmt 1... |
end-where-stmt

WHERE (array-mask-expr)
logical-expr

ELSEWHERE

END WHERE

The shape of the mask-expr and the variable being defined in each array-

assignment-stmt must be the same.

is

EXECUTION CONTROL

[execution-part-construct]...

1986 November Page D-13

SYNTAX RULES X3J3/58

R802 if-construct is if-then-stmt
block
[else-if-stmt
block }...
[else-stmt
block |
end-if-stmt
R803 if-then-stmt is [ifconstruct-name : | IF (scalar-mask-expr) THEN
R804 else-if-stmt is ELSE IF (scalar-mask-expr) THEN
RB05 else-stmt is ELSE
R806 end-if-stmt is END IF [if-construct-name |

Constraint: If an if-construct-name is present, the same name must be specified on both
the if-then-stmt and the corresponding end-if-stmt.

R717 mask-expr is logical-expr
R807 if-stmt is IF (scalar-mask-expr) action-stmt

Constraint: The action-stmt in the if-stmt must not be an if-stmt.

R808 case-construct is select-case-stmt
[case-stmt
block]...
end-select-stmt
R809 select-case-stmt is [select-construct-name : | SELECT CASE (case-expr)
R810 case-stmt is CASE case-selector
R811 end-select-stmi is END SELECT [select-construct-name |

Constraint: If a select-construct-name is present, the same name must be specified on both
the select-case-stmt and the corresponding end-select-stmt.

R812 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr

R813 case-selector is (case-value-range-list)
or DEFAULT
Constraint: Only one DEFAULT case-selector may appear in any given case-construct.
R814 case-value-range is case-value
or [case-value | : [case-value]
R815 case-value is scalar-int-constant-expr

or scalar-char-constant-expr
or scalar-logical-constant-expr

Constraint: For a given CASE construct, each case-value must be of the same type as
case-expr. For character type, length differences are allowed.

Constraint: A case-value-range using a colon (i.e., the second form) must not be used if
case-expr is of type logical.

R816 do-construct is do-stmit
do-body
do-termination

Version 102 1986 November Page D-14

EXECUTION CONTROL SYNTAX RULES

R817 do-stmt is [do-construct-name : 1 DO [label] [| ,] loop-control |

R818 /oop-control is do-variable = scalar-numeric-expr, Bl
B scalar-numeric-expr [, scalar-numeric-expr |
or (scalar-int-expr TIMES)

Constraint: The do-variable must be a scalar integer, real, or double precision variable.

Constraint: Each scalar-numeric-expr in loop-control must be of type integer, real, or double

precision.
R819 do-body is [execution-part-construct]...
R820 do-termination is end-do-stmt

or continue-stmt
or do-term-stmt
or do-construct

Constraint: An exit-stmt or a cycle-stmt must be within the range of one or more do-
constructs.

Constraint: An exit-stmt or cycle-stmt using a do-construct-name must be within the range
of the do-construct that has that name.

R821 do-term-stmt is action-stmt

Constraint: If the label is omitted in a do-simt, the corresponding do-termination must be an
end-do-stmt.

Constraint: If a label appears in the do-stmt and the correspending do-termination is not a
do-construct, the do-termination must be identified with that label.

Constraint: |f the do-termination is a continue-stmt

Constraint: A do-term-stmt must not be a continue-stmt, goto-stmt, return-stmt, stop-stmt,
exit-stmt, cycle-stmt, arithmetic-if-stmt, assigned-goto-stmt, compuled-goto-stmt,
nor an jf-stmt that causes a transfer of control.

Constraint: If the do-termination is a do-construct, both of the corresponding do-stmts must
specify the same label. .

Constraint: If a do-termination is a do-construct, the do-termination of that do-construct must
not be an end-do-stmt.

R822 end-do-stmt is END DO [do-construct-name |

Constraint: If a do-construct-name is used on the do-stmt, the corresponding do-termination
must be an end-do-stmt that uses the same do-construct-name. If a do-
construct-name does not appear on the do-simt, a do-construct-name must not
appear on the corresponding do-termination.

R823 exit-stmt . is EXIT [do-construct-name]
R824 cycle-stmt is CYCLE [do-construct-name]
R825 goto-stmt is GO TO label

Constraint: /abel must.be the statement label of a branch-target that appears in the same
scoping unit as the go-to-stmt.

R826 computed-goto-stmt *is GO TO (label-list) [,] scalar-int-expr

Constraint: Each /abe/ in /abelist must be the statement label of a branch target that
appears in the same scoping unit as the computed-goto-stmt.

R827 assign-stmt is ASSIGN /abel TO scalar-int-variable

Version 102 1986 November Page D-15

SYNTAX RULES X3J3/58

Constraint: /abel must be the statement label of a branch target or a format-stmt.
R828 assigned-goto-stmt is GO TO scalar-int-variable | [,] (iabeklist)]

Constraint: Each /abel in label-list must be the statement label of a branch target that
appears in the same scoping unit as the assigned-goto-stmt.

R829 arithmetic-if-stmt is IF (scalar-numeric-expr) 'abel, fabei. fabsl

Constraint: Each /abel must be the label of a branch target that appears in the same scop-
ing unit as the arithmetic-if-stmt.

Constraint: The scalar-numeric-expr must not be of type complex.

R830 continue-stmt is CONTINUE
R831 stop-sitmt is STOP [access-code |
R832 access-code is scalar-char-constant
or digit [digit [digit [digit [digit]]]]
Re33 pause-stmt is PAUSE [access-code |

9 INPUT/QOUTPUT STATEMENTS

R901 Jjo-unit is external-file-unit
or *
ot internal-file-unit
R902 external-file-unit is scalar-int-expr
R903 internal-file-unit is char-variable
R904 open-stmt is OPEN (connect-spec-list)
R905 connect-spec is [UNIT =] external-file-unit

or IOSTAT = jostat-variable

or ERR = /abel

or FILE = scalar-char-expr

or STATUS = scalar-char-expr
or ACCESS = scalar-char-expr
or FORM = scalar-char-expr
or RECL = scalar-int-expr

or BLANK = scalar-char-expr
or POSITION = scalar-char-expr
or ACTION = scalar-char-expr
or DELIM = scalar-char-expr
or PAD = scalar-char-expr

Constraint: If the optional characters UNIT = are omitted from the unit specifier, the unit
specifier must be the first item in the connect-spec-iist.

Constraint: Each specifier must not appear more than once in a glven open-stmt; an
external-file-unit must be specified.

Constraint: If the STATUS = specifier is 'OLD’ or 'NEW’, the FILE = specifier must be pre-
sent.

Version 102 1986 November Page D-16

INPUT/OUTPUT STATEMENTS SYNTAX RULES

Constraint: If the STATUS = specifier is 'SCRATCH’, the FILE = specifier must be absent.
R906 close-stmt is CLOSE (close-spec-list)

R907 close-spec is [UNIT = | external-file-unit
or |IOSTAT = iostat-variable
or ERR= label
or STATUS = scalar-char-expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the close-spec-list.

Constraint: A given specifier must not appear more than once in a given close-stmt; the
unit specifier must appear.

RO08 read-stmt : is READ (io-control-spec-list) [input-item-list]
or READ format [, input-item-list | ‘

R909 write-stmt is WRITE (io-control-spec-list) [output-item-list |

R910 print-stmt is PRINT format [, output-item-list |

R911 io-control-spec is [UNIT=] io-unit

or [FMT =.] format

or [NML =] namelist-group-name
or REC = scalar-int-expr

or PROMPT = scalar-char-expr
or |IOSTAT =" iostat-variable

or ERR= /abel

or END = Jabel

or NULLS = nulls-variable

or VALUES = values-variable

Constraint: An io-control-spec-list must contain exactly one io-unit and may contain at most
one of each of the other specifiers.

Constraint: An END=, a NULLS=, or a PROMPT = specifier must not appear in a write-
stmt or print-stmt.

Constraint: A namelist-group-name must not be present if an input-item-list or’ an output-
item-list is present in the data transfer statement.

Constraint: An io-control-spec-list must not contain both a format and a namelist-group-
name.

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in-the control information list.

Constraint: If the optional characters FMT = are omitted from the format specifier, the for-
mat specifier must be the second item in the control information list and the first
item must be the unit specifier without the optional characters UNIT =.

Constraint: !f the optional characters NML= are omitted from the namelist specifier, the
namelist specifier must be the second item in the control information list and
the first item must be the unit specifier without the optional characters UNIT =.

Constraint: If the unit specifier specifies an internal file, the io-control-spec-list must not con-
tain a REC = specifier.

R912 format is char-expr
or label

Version 102 1986 November Page D-17

SYNTAX RULES X3J3/58

or scalar-int-variable

R913 Jjostat-variable is scalar-int-variable
R914 nulls-variable is scalar-int-variable
R915 values-variable is scalar-int-variable
R916 input-item is variable
or io-implied-do
R917 output-item is expr
or io-implied-do
R918 jo-implied-do is (io-implied-do-object-list , io-implied-do-control)
R919 Jjo-implied-do-object is input-item

or output-item

R920 io-implied-do-control is do-variable = scalar-numeric-expr , Bl

Constraint:

Constraint:

Constraint:

Constraint:

" scalar—numeric—exprQ[sscalar-numeric-expr]
The do-variable must be scalar of type integer, real, or double precision.

In an input-item-list, an io-implied-do-object must be an input-item. In an output-
item-list, an io-implied-do-object must be an output-item.

An input-item must not appear as, nor be associated with, the do-variable of any
io-implied-do that contains the input-item.

The do-variable of an io-implied-do that is contained within another io-implied-do
must not appear as, nor be associated with, the do-variable of the containing
io-implied-do.

R921 backspace-stmt is BACKSPACE external-file-unit

or BACKSPACE (position-spec-list)

R922 endfile-stmt is ENDFILE external-file-unit

or ENDFILE (position-spec-list)

R923 rewind-stmt is REWIND external-file-unit

Constraint:

or REWIND (position-spec-list)

BACKSPACE, ENDFILE, and REWIND apply only to external files connected for
sequential access.

R924 position-spec is [UNIT =] external-file-unit

Constraint:

or IOSTAT = Jjostat-variable
or ERR = fabel

If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the position-spec-list.

Constraint: A position-spec-list must contain exactly one external-file-unit and may contain at
most one of each of the other specifiers.

R925 inquire-stmt is INQUIRE (inquire-spec-list) [output-item-list]

R926 inquire-spec is FILE = scalar-char-expr

Version 102

or UNIT = external-file-unit
or IOSTAT = Jjostat-variable

1986 November Page D-18

INPUT/OUTPUT STATEMENTS

SYNTAX RULES

or ERR = Jabel

or EXIST = scalar-logical-variable

or OPENED = scalar-logical-variable
or NUMBER = scalar-int-variable

or NAMED = scalar-logical-variable

or NAME = scalar-char-variable

or ACCESS = scalar-char-variable

or SEQUENTIAL = scalar-char-variable
or DIRECT = scalar-char-variable

or FORM = scalar-char-variable

or FORMATTED = scalar-char-variable
or UNFORMATTED = scalar-char-variable
or RECL = scalar-int-variable

or NEXTREC = scalar-int-variable

or BLANK = scalar-char-variable

or POSITION = scalar-char-variable
or ACTION = scalar-char-variable

or DELIM = scalar-char-variable

or PAD = scalar-char-variable

or IOLENGTH = scalar-int-variable

Constraint: An INQUIRE statement must contain one FILE= specifier or one UNIT=
specifier, but not both, and at most one of each of the other specifiers.

Constraint: The IOLENGTH = specifier and the output-item-list must both appear if either

appears.

10

R1001 formai-stmt

R1002 format-specification

INPUT/OUTPUT EDITING

is FORMAT format-specification

is ([format-item-list])

Constraint: The format-stmt must be labeled.

Constraint: The comma used to separate format-items in a format-item-list may be omitted

as follows:
R1003 format-item

R1004 r

is [r] data-edit-desc
or control-edit-desc

or char-string-edit-desc
or [r] (format-item-list)

is int-lit-constant

Constraint: r must be positive. It is called a

R1005 data-edit-desc

Version 102

islw[.m]
orFw.d
orEw.d[Ee]
orENw.d[Ee]
orGw.d[Ee]
or Lw

or A[w]

1986 November Page D-19

SYNTAX RULES X3J3/58

orDw.d
R1006 w is scalar-int-lit-constant
R1007 m is scalar-int-lit-constant
R1008 d is scalar-int-lit-constant
R1009 e is scalar-int-lit-constant

Constraint: w and e must be positive and d and m must be zero or positive.
Constraint: The value of m, d, and e may be restricted further by the value of w.
R1010 control-edit-desc is position-edit-desc

orr]/

or:

or sign-edit-desc

or kP

or blank-interp-edit-desc

R1011 k is scalar-signed-int-lit-constant

R1012 position-edit-desc is Tn
or TL n
or TR n
ornX
R1013 n is scalar-int-lit-constant

Constraint: n must be positive.

R1014 sign-edit-desc is S
or SP
or SS
R1015 blank-interp-edit-desc is BN
or BZ
R1016 char-string-edit-desc is char-lit-constant

or ¢ H character | character |...
R1017 ¢ is scalar-int-lit-constant

Constraint: ¢ must be positive.

11 PROGRAM UNITS

R203 main-program is [program-stmt |
specification-part
[execution-part |
[internal-procedure-part |
end-program-stmt

R1101 program-stmt Is PROGRAM program-name
R1102 end-program-stmt is END [PROGRAM { program-name |]

Constraini: The program-name may be included in the end-program-stmt only if the optional
program-stmt is used and, if included, must be identical to the program-name
specified in the program-stmt.

Version 102 1986 Novembe: Page D-20

PROGRAM UNITS SYNTAX RULES

R207 module-subprogram is module-stmt
specification-part
[procedure-subprogram]...
end-module-stmt

R1103 module-stmt is MODULE module-name

R1104 end-module-stmt is END [MODULE [module-name]]

Constraint: If the module-name is specified in the end-module-stmt, it must be identical to
the module-name specified in the module-stmt.

R1105 use-stmt is USE module-name | , rename-list]
or USE module-name , ONLY : [oniy-list]
R1106 rename is use-name = > local-name
R1107 only is use-name [= > local-name |}
R1108 use-name is variable-name

or procedure-name
or type-name
or constant-name

R208 block-data-subprogram is block-data-stmt .
R1109 block-data-stmt is BLOCK DATA [block-data-name |
R1110 end-block-data-stmt is END [BLOCK DATA [block-data-name 1]

Constraint: The block-data-name may be included in the end-block-data-stmt only if it was
provided in the block-data-stmt and, if included, must be identical to the block-
data-name in the block-data-stmt.

12 PROCEDURES

R1201 interface-block is interface-stmt
interface-header
[use-stmt]...
[implicit-part]
[declaration-construct]...
end-interface-stmt

R1202 interface-stmt is INTERFACE
R1203 end-interface-stmt © is END INTERFACE
R1204 interface-header is function-stmt
or subroutine-stmt
R1205 external-stmt is EXTERNAL external-name-list
R1206 external-name is external-procedure-name

or dummy-arg-name
or block-data-name

R1207 intrinsic-stmt is INTRINSIC intrinsic-procedure-name-list

R1208 function-reference is function-name (| actual-arg-spec-list |)

Version 102 1986 November Page D-21

SYNTAX RULES X3J3/58

Constraint: The actual-arg-spec-fist for a function reference must not contain an alt-return-

spec.
R1209 call-stmt is CALL subroutine-name [([actual-arg-spec-list]}]
R1210 actual-arg-spec is [keyword =] actual-arg
R1211 keyword is dummy-arg-name
R1212 actual-arg is expr
or variable
or procedure-name
or alt-return-spec
R1213 alt-return-spec is * label

Constraint: The keyword may be omitted from an actual-arg-spec only if the keyword has
been omitted from each preceding actual-arg-spec in the argument list.

Constraint: Each keyword must be the name of a dummy argument in the interface of the
procedure.

R204 function-subprogram is function-stmt
specification-part
[execution-part |
[internal-procedure-part]
end-function-stmt

R1214 function-stmt is [prefix] FUNCTION function-name ®
B ([dummy-arg-name-list |) [suffix]
R1215 prefix is type-spec | RECURSIVE |
or RECURSIVE [type-spec]

R1216 suffix is RESULT (result-name) | OPERATOR (defined-operator) |
or OPERATOR (defined-operator) | RESULT (result-name) |

R1217 end-function-stmt is END [FUNCTION [function-name | |
Constraint: FUNCTION must be present on the end-function-stmt of an internal function.

Constraint: if function-name is supplied on the end-function-stmt, it must agree with the
function-name on the function-stmt.

R205 subroutine-subprogram is subroutine-stmt
specification-part
[execution-part]
[internal-procedure-part |
end-subroutine-stmt

R1218 subroutine-stmt is [RECURSIVE | SUBROUTINE subroutine-name B
B [(dummy-arg-list)] [ASSIGNMENT |

R1219 dummy-arg is dummy-arg-name
or *

R1220 end-subroutine-stmt is END [SUBROUTINE [subroutine-name] |

Constraint: SUBROUTINE must be present on the END statement of an internal subroutine.

Constraint: If subroutine-name is present on the end-subroutine-stmt, it must agree with the
subroutine-name on the subroutine-stmt.

R1221 entry-stmt is ENTRY entry-name [([dummy-arg-list])]

Version 102 1986 November Page D-22

PROCEDURES SYNTAX RULES

Constraint: A dummy-arg may be an alternate return indicator only if the ENTRY statement
is contained in a subroutine subprogram.

R1222 return-stmt is RETURN [scalar-int-expr |

Constraint: The return-stmt must be contained in the scoping unit of a function or subrou-
tine subprogram.

Constraint: The scalar-int-expr is allowed only in the scoping unit of a subroutine subpro-
gram.

R1223 stmt-function-stmt is @ 7

Constraint: The expr may be composed only of constants (literal and symbolic), references
to scalar variables and array elements, references to functions, and intrinsic
operators. If a reference to another statement function appears in expr, its
definition must have been provided earlier in the scoping unit.

Constraint: The function-name and each dummy-arg-spec must be specified, explicitly or
implicitly, to be scalar data objects.

Version 102 1986 November Page D-23

SYNTAX TERM CROSS REFERENCE

SYNTAX TERM

access-code
access-spec
access-stmt
action-stmt
actual-arg
actual-arg-spec
adad-op

agc-cperand
alias-element
alias-range-spec
allocate-stmt
alphanumeric-character
alt-return-sgec
angd-op

ang-operand
arithmetic~-if-stmt
array-allocation
array-constructer
array-constructor-value
array-element
array-section
array-seiactor
array-spec
assign-stmt
assignea-goto-stmt
assignment-stmt
assumed-shape-spec
assumed-size-spec
attr-spec
backspace-stmt
blank-interp-edit-desc
plock

block-data-stmt
plock-data-subprogram
c

call-stmt
case-construct
case-expr
case-selector
case-stmt

case-value
case-value-range
char-length
char-lit-constant
char-string-edit-desc
character

close-spec

close-stmt
common-block-object
common-stmt
complex-lit-constant
componant-attr-spec
component-dec!
component-def-stmt
computed-goto-stmt
concat-op
connect-spec

constant
continue-stmt

contrgol -edit-desc
cycle-stmt

d

data-edit-dasc
data-i-do-object
data-implied-do
data-init-implied-do
data-init-impl ied-do-control
data-init-implied-do-object
data-init-impl ied-do-value
data-stmt
data-stmt-constant
data-stmt-intt
data-stmt-object

DEF INED

R832
R511

R522

R221
R1212
R1210
R310
R704
RG621
R624
R608

R302

R1213
R314
R708
RB2%
RE09
R423
R424
R611
RG612
R607
R513
RB827
R828
R714
RS17
R519
RS0S
RO21
R1015
RBO1
R11C9
R208
R1017
R1208
R808
RB12
R813
R810
R815
R814
R509
R4 14
R1016
R301
R90O7
R906
RS51
RSS0
R411
R420
R421
R419
R826
R311
RSOS
R304
R830
R1010
R824
R1008
R100S
R533
RS32
RS35
RE37
RS36
RS38
R526
R530
R527
RS28

REFERENCED

R831
R417
R21¢
R220
R1210
R1208
R307
R704
R620
R620
R221
R301
R1212
R307
R7C8
R221
R608
R424
R423
R528
R601
RGOS
R505
R221
R221
R221
R513
R513
RS01
R221
R1010
R80Q2
R208
R202
R1016
R2214
R220
R80%9
R810
RBO8
R814
R813
RS06
R1016
R 1003
R414
R906
R221
RS550
R219

R419
R4 19
R416
R221
R307
R904
R305
R221
R1003
R221
R1005
R1003
RS532
RS28
RS34
RS35
R535
R534
R211
R529
R526
RS27

RB33
R508

R807
R1209

R705
R705

R303

R708

R538
R423
RS33
R&6Q6

R506

R716

R802

R814

RSO8

R4 14

RSS50

R416
R706

R30S
R820

RS22

RB21

R705
R7085

R701

R536

R525

R716

R802

R1016

R406 R509 RS30 RS30 RS31

R549 R&01

R603 R606

R716

RBO8

R603

R100S5 R1005 R100S5 R100S

R533
R536

R214

R216 R219

R701

4

data-stmt-repeat
data-stmt-value
data-value-def
deallocate-stmt
declaration-construct
deferred-shape-spec
def ined-binary-op
def ined-exponent-letter
def ined-operator

def ined-unary-op
derived-type-constructor
derived-type-def
derived-type~-stmt
dimension-stmt
do-body

do-construct

do-stmt

do-term-stmt
do-termination
dummy-arg

e

effective-range
else-if-stmt
else-stmt
elsewhere-stmt
end-block-data-stmt
end-do-stmt
end-function-stmt
end-{1f-stmt
end-interface-stmt
end-module-stmt
end-program-stmt
end-select-stmt
end-subroutine-stmt
end-type-stmt
end-where-stmt
endfile-stmt
entry-stmt

equiv-op
equiv-operand
equivatence-cbject
egquivalence-set
equivalence-stmt
executable-construct
executable-program
execution-part
execution-part-construct
exit-stmt
explicit-shape-spec
exponent
exponent-letter
exponent-letter-stmt
expr
external-file-unit
extarnal-name
extarnal-program-unit
external-stmt

format

format-item
format-specification
format-stmt
function-reference
function-stmt
function-subprogram
goto=-stmt
identify-stmt
if-construct

if-stmt

if-then-stmt
imag-part
implicit-part
implicit-part-stmt
implicit-sp=c
implicit-stmt
inpu~1item
inaiire-spec
inquire-stmt

R531
R529
R534
RE10
R213
R5 18
R31¢
R410
R317
R318
R422
R4 16
R417
R525
R818
R816
RB17
RB21
R820
R1219
R1008
R618
R804
R80O5
R719
R1110
R822
R1217
R80O6
R1203
R1104
R1102
RB11
R1220
R4 18
R720
R922
R1221
R316
R710
R549
R548
R547
R220
R201
R215
R216
R823
R514
R407
R408
R409
R712
R902
R1206
R202
R1205
R912
R1003
R1002
R1001
R1208
R1214
R205
R825
R€20
R802
R80O7
RB0O3
R413
R210
R212
R543
RS42
R916
RS26
R92S5

R5289
RS27
R526
R221
R209
R513
R317
R408
R1216
R317
R701
R213
R416
R219
R816
R220
RB16
RB20
RB816
R1218
R1005
R618
RBO2
R802
R716
R208
RB20
R205
RBO2
R1201
R207
R203
R808
R206
R416
R716
R221
R212
R307
R710
R548
R547
R218
R215

R203
R215
R221
R420
R405
R405
R218
R422
RO0O1
R1205
R201
R219
RS0O8
R1002
R1001
R212
R701
R205
R204
R221
R221
R220
R221
R802
R4 11
R209
R210
R542
R210
R90O8
R925
R221

R1201
R712
R408

R1216
R7C2

RB20

R1221
R1005
R618

R218

R218

R213
R711
R711

R216

R205
R801

R421
R405
R405

R424
R905

R910
R1003

R213

R218

R1201

R212
R908

R1005

R214

R206
RB19

R513

R424
RO0O7

R911

R214

R1204

RS19

R216

R218

R519

R424
RO21

R216

R218

R551

R515
RS22

R0 R618

R516 RS532 RB37
R923 R824 R926

R604 R

int-1it-constant R401 R402 R405 R406 R406 R1003 R1006 R1007 R1008 R1008 R

1ntent-spec R512 R5Q0% RS520
intent-stmt R520 R219
interface-block R1201 R213
interface-heaaer R1204 R1201
interface-stmt R1202 R1201
internal-file-unit RS03 R9O0O1
internal-procedure R218 R217
internal-procedure-part R217 R203 R205 R206
intrinsic-operator R307

intrinsic-stmt R1207 R218

io-control ~spec R911 RO0O8 RS09
io-1mplied-do R918 R816 R917
jo-1mplied-do-control R920 R918
10-implied-do-object R919 RO 18

ic-unit R9O1 R911
icstat-variable RS13 RO0O5 R907 R911 RS24 RS26
k R1011 R1010

keywcrd R1211 R1210

labetl R320 R817 R825 RB26 R827 R828 R829 RS05 RS0O7 RS11 R
length-selector R508 R502

letter-spec RS544 R543
level-1t-expr R702 R703
level-2-expr R705 R705
level-4-expr R706 R70€6 R707
level-5-axpr R707 R708
ieve!-6-expr R7 t1 R711 R712
literal-constant R305 R304
logical-lit-constant R415

loop-control . R818 R817

Jower=bound R515 R514 RB517 R513 R618
m R 1007 R1005
main-program R203 R202

mask-expr R718 R718 R717
moduie-stmt R1103 R2Q7
modu!e-subprogram R207 R202

mult-op R309 R307 R704

mul t-operand R703 R703 R704

n R1013 R1012 R1012 R1012 R1012
name R303 R306 RS525 R609
named-constant R306 R304 R531 R606
named-constant-def RS540 R538

namel ist-group-object R546 R545 RS545
name!ist-stmt R545 R218

not-op R313 R307 R708
nulls-variable R914 R911

object-decl RS06 R501

only R1107 R1105

open-stmt R904 R221
optional-stmt R521 R219

or-op R315 R307 R710
or-operand R709 R709 R710
output-item R917T RSO8 R910 R919 RS25
parameter-stmt RS39 R212 R213
parent-array R613 R611 RE12
parent-element RG22 RE620
parent-string R&03 R602
parent-structure RE606 R60S5

pause-stmt R833 R221
position-spec , R824 R921 RS822 R923
positional-~edit-desc R1012. R1010

power-op R308 R307 R703
precision-selector RS07 R409 R502 RS502
prefix R1215 R1214

primary R701 R702

print-stmt RS10 R221
procedure-subprogram R204 R202 R207
program-stmt R1101 R203

r R1004 R1C03 R1003 R1Q10
range-stmt R54'1 R219

reac~-stmt R908 R221
real-1it-constant R405 R404

real-part R412 R4114

rel-op R312 R307 R707
renama R1106 R1105
return-stmt R1222 R221

rewind-stmt R923 R221

save-stmt
saved-object
sectiron-subscript
seiect-case-stmt
set-range-stmt

sign

sign-edit-desc
signed-int-lit-constant
signed-real-lit-constant
significand
specification-expr
specification-part
specification-stmt
stmt-function-part
stmt-fuhction-part-stmt
stmt~function-stmt
stop-stmt

stride
structure-component
subroutine-stmt
subrout ine-subprogram
subscript
subscript-mapping
subscript-triplet
substring
substring-range
suffix
type~-declaration-stmt
type-param-spec
type-param-value
type-spec
upper-bound -

use-name

use-stmt

value-spec
values-variable
variabile

W .
where-construct
where~construct-stmt
where-stmt

write-stmt

-------- end of cross reference

contains-stmt
real-constant
complex-constant
logical-constant

over loaded-intrinsic-op
signed-int-constant
signed-real-constant
subscript-range
subscript-range

-------- end of undefined terms

not
not
not
not
not
not
not
not
not

R218
R523
R60O7
R808
R221
R402
R1010
R407
R412
R40S5

R203
R213
R209
R211
R211
R221
R616
RE601
R20€
R204
RE60O7
RG22
R615
R549
RG602
R1214
R213
R422
R503
R419
RS14
R1106
R209
R505
R911
R534
R1005
R220
R716
R221
R221

begin undefined terms

def ined;
defined;
def ined;
defined;
def ined;
def ined;
def ined;
def ined;
def ined;

R612

R404

R412 R413
R413

R205 R206

R211
R214

RG603 R606
R218 R1204

R611 R615

RGO 1
R612

R502
R507 RS0O7
R501 RB543
R619
R1107
R1201

R546 R701

R101

R207

RE616

RS0O7
R121

R714

1

5

R1005 R100S R100S

referenced
referenced
referenced
referenced
referenced
referenced
referenced
referenced
referenced

in
in
in
in
in
in
in
in
in

DTODOVDDDTOAN

R208 R218 R218

RG623 RG24
R508 RS0S
R1215

R827 R828 R903 RS907
R1005 R1005 R1005 R100S5

217
305
305
308
317
530
530
621
624

R211

10

15

20

25

30

35

40

APPENDIX F SUGGESTED EXTENSIONS

This appendix contains features that are not part of the standard, but are compatible with the
standard. These features did not meet the criteria for inclusion in this revision of the stan-
dard, but if they are implemented as extensions and are found to be useful by the user com-
munity, they may be among the features considered for inclusion in a subsequent revision of
the standard. S

The Fortran standard permits upward compatible extensions; that is, a processor may be
standard conforming if it contains extensions to the standard. If extensions similar to these
are implemented, it is strongly urged that the syntax and semantics given here be adopted. -

Some of the extensions remove restrictions or constraints in the standard. Some are addi-
tional features. :

The procedure extensions remove. constraints that prevent internal procedures from contain-
ing internal procedures, and prevent the passing of an internal procedure name as an actual
argument. Although arrays of derived-type objects are permitted, and the objects them-
selves can have array components, treating such higher order objects as arrays is not per-
mitted, except via IDENTIFY. These restrictions are removed in this set of extensions.

The additional features are condition handling, bit daia type, variant structures, array ele-
ment assignment (FORALL), vector-valued subscripts, and some additional array intrinsics.

F.1 Type Extensions.

F.1.1 Bit Data Type. Bit is a nonnumeric intrinsic type that has two values. Objects may
be declared to be of type BIT and literal constants of type BIT are allowed. Intrinsic gpera-
tions and functions are provided for objects of this type. Bit -objects may appear in expres-
sions and may be used to mask arrays. Bit expressions can appear in control constructs.
Input and output is provided for list objects.

F.1.1.1 Bit Constant. Rule R305 for literal constants must be extended to include a bit
constant. i

R601 constant -is literal-constant
or named-constant

R602 literal-constant is int-constant
or real-constant
or complex-constant
or logical-constant
or char-constant
or bit-constant

F.1.1.2 Bit Operators. Rule R307 for intrinsic operators must be extended to include bit
operators,

R603 intrinsic-operator is power-op
or mult-op
or add-op
or bnot-op
or band-op
or bor-op
or concaf-op

Version 102 1986 November Page F-1

SUGGESTED EXTENSIONS X3J3/58

10

15

20

25

30

35

40

or rel-op
or not-op
or and-op
or or-op

or equiv-op

R604 bnot-op is .BNOT.
R605 band-op is .BAND.

R606 bor-op is .BOR.
or .BXOR.

F.1.1.3 Bit Declaration Statement. A bit object may have rank and shape. There are no
additional attributes for objects of type bit. Rule 502 must be extended to include a BIT dec-
laration.

R607 type-spec is INTEGER
or REAL [precision-selector |
or DOUBLE PRECISION
or COMPLEX [precision-selector]
or CHARACTER [length-selector |
or LOGICAL
or BIT
or TYPE (type-name [(type-param-spec-list) |)

The BIT type specifier specifies that all objects whose names are declared in this statement
are of intrinsic type bit (4.3.2.3).

An equivalence-object must not be the name of an object of bit type.
A common-block-object must not be the name of an object of bit type.

The variables or arrays whose names are included in the data-i-do-object-list must not be of
type bit.

F.1.1.4 Bit Expressions.

F.1.1.4.1 Bit Objects in Expressions. To include bit expressions, an additional category
or expressions is required.

These categories are related to the different operator precedence levels and, in general,
defined in terms of other categories. The simplest form of each expression category is a pri-
mary. The rules given below specify the syntax of an expression. For convenience, the
low-leve! operator construction rules, but not the constraints, have been duplicated below
from Section 3 where appropriate. See Section 3.2.4 for the constraints on defined-unary-op
(7.1.1.1) and defined-binary-op (7.1.1.7). The semantics are specified in 7.2 and 7.3.

F.1.1.4.2 Primary.

R608 primary is constant
or variable
or array-constructor
or derived-type-constructor
or function-reference
or { expr)

Version 102 1986 November Page F-2

SUGGESTED EXTENSIONS X3.J3/58

Examples of a primary are:

Example ‘Syntactic Class
1.0 constant

5 A variable
£1.0,2.01 array-constructor
PERSON('Jones', 12) derived-type-constructor
F(X,Y) function-reference
(5+T) (expr)

10 F.1.1.4.3 Level-1 Expressions. Defined unary operators have the highest operator pre-
cedence (Table 7.1). Level-1 expressions are primaries optionally operated on by defined
unary operators:

R609 level-1-expr is [defined-unary-op] primary
R322 defined-unary-op is . letter [letter 1... .
15 Simple examples of a level-1-expr are:
Example Syntactic Class
A primary

.INVERSE. B level-1-expr
20 A more complicated example of a level-1 expression is:
.INVERSE. (A + B)

F.1.1.4.4 Level-2 Expressions. Level-2 expressions are level-1 expressions optionally
involving the numeric operators power-op, mult-op, and add-op.

R610 mult-operand is level-1-expr | power-op mult-operand]
25 R611 add-operand is [add-operand mult-op | mult-operand
R612 level-2-expr is [add-op] add-operand
or level-2-expr add-op add-operand
R308 power-op is *=*
R309 mult-op is *
30 or /
R310 add-op is +
or —

Simple examples of a level-2 expression are:

a5 Example Syntactic Class
A level-1-expr
B *xx C mult-operand
D*E add-operand
F-1 level-2-expr

40 +1 level-2-expr

A more complicated example of a level-2 expression is:
— A+ D% E+B=xx(

Version 102 1986 November Page F-3

SUGGESTED EXTENSIONS ' X3J3/58

F.1.1.4.5 Level-3 Expressions. Level-3 expressions are level-2 expressions optionally
involving the bit operators bnot-op, band-op, and bor-op.

R613 band-operand is [bnot-op | level-2-expr
R614 bor-operand is [bor-operand band-op | band-operand
5 R615 level-3-expr is [level-3-expr bor-op | bor-operand
R311 bnot-op is .BNOT.
R312 band-op is .BAND.
R313 bor-op is .BOR.
or .BXOR.
10 Simple examples of a level-3 expression are:
Example Syntactic Class
A level-2-expr
.BNOT. B band-operand
15 C .BAND. D bor-operand

E .BOR. F level-3-expr
G .BXOR. H level-3-expr

A more complicated example of a level-3 expression is:
A .BXOR. B .BAND. .BNOT. C

20 F.1.1.4.6 Level-4 Expressions. Level-4 expressions are level-3 expressions optionally
involving the character operator concat-op.

R616 level-4-expr is [level-4-expr concat-op | level-3-expr
R314 concat-op is 7/
Simple examples of a level-4 expression are:
25 Example Syntactic Class
A level-3-expr

B//C level-4-expr
A more complicated example of a level-4 expression is:
30 X // Y // 'ABCD'

F.1.1.4.7 Level-5 Expressions. Level-5 expressions are level-4 expressions optionally
involving the relational operators rel-op.

R617 level-5-expr is [level-4-expr rel-op] level-4-expr

R315 rel-op is .EQ.
35 . or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
40 or ==
or <>
or <
or <=

Veision 102 1986 November Page F-4

SUGGESTED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

or >
or >=

Simple examples of a level-5 expression are:

Example Syntactic Class

A level-4-expr
B .EQ. C Jevel-5-expr
D<E level-5-expr

A more complicated example of a level-5 expression is:
(A +B) .NE. C

F.1.1.4.8 Level-6 Expressions. Level-6 expressions are level-5 expressions optionally
involving the logical operators not-op, and-op, or-op, and equiv-op.

R618 and-operand is [not-op | level-5-expr
R619 or-operand is [or-operand and-op] and-operand
R620 equiv-operand is [equiv-operand or-op | or-operand
R621 level-6-expr is [level-6-expr equiv-op | equiv-operand
R316 not-op is .NOT.
R317 and-op is .AND.
R318 or-op is .OR.
R319 equiv-op : is .EQV.
or .NEQV.

Simple examples of a level-6 expression are:

Example Syntactic Class

A level-5-expr

.NOT. B and-operand
C .AND. D or-operand

E .OR. F equiv-operand
G .EQV. H level-6-expr

S .NEQV. T level-6-expr

A more complicated example ‘of a level-6 expression is:
A .AND. B .EQV. .NOT. C

A bit intrinsic operation, character intrinsic operation, relational intrinsic operation, and
logical intrinsic operation are similarly defined in terms of a bit intrinsic operator (.BAND.,
BOR., .BXOR., and .BNOT.), character intrinsic operator (//), relational intrinsic operator
(EQ., .NE., .GT., .GE, .LT. LE., ==, <>, >, >=, <, and <=), and logical intrinsic
operator (.AND., .OR., NOT., .EQV., and .NEQV.), respectively. A bit relational intrinsic
operation is a relational intrinsic operation where the operands are of type bit and the oper-
ator is .EQ., .NE., ==, 0r <>.

Table 7.1. Type of Operands and Result for the Intrinsic Operation [x,] op x,. (The symbols
I, R, D, Z, B, C, L, and Dt stand for the types integer, real, double precision, complex, bit, char-
acter, logical, and derived-type, respectively. Where more than one type for x, is given, the
type of the result of the operation is given in the same relative position in the next column.)

Intrinsic Operator Type of Type of Type of

Version 102 1986 November Page F-5

SUGGESTED EXTENSIONS X3J3/58

10

15

20

25

30

35

40

45

50

op X4 X2 [x1] op x3
unary +, — bR, D Z LR, D Z
binary +, —. %, /, %% I IR, D Z IR, D, 2Z
R LR,D,Z R/RDZ
D LR, D Z D,D, D, Z
z WR,D,Z 2,22, Z
.BNOT. B B
.BAND., .BOR., .BXOR. B B B
// C Cc Cc
EQ.,, NE, ==, <> | LR, D2 L, L L, L
R I,R,D,Z L LLL
Z IL,R. D, Z LLLL
D LR, D, Z LLLL
C Cc L
B B L
Dt Same as x; L
.GT., .GE,, .LT., .LE. I IR, D L, L L
>, >=,<,<= R IR, D L L L
D I, R, D L L L
C C L
.NOT. L L
AND., .OR., .EQV., NEQV. L L L

F.1.1.4.9 Evaluation of Bit Intrinsic Operations. The rules given in 7.2.2 specify the
interpretation of bit intrinsic operations. Once the interpretation of an expression has been
established in accordance with those rules, the processor may evaluate any other expression
that is bit-wise equivalent, provided that the integrity of parentheses is not violated. For
example, for variables B1, B2, and B3 of type bit, the processor may choose to evaluate the
expression

B1 .BOR. B2 .BOR. B3

as

B1 .BOR. (B2 .BOR. B3)

Two expressions of type bit are bit-wise equivalent if their values are equal for all possible
values of their primaries.

F.1.1.4.10 Bit Intrinsic Operations. A bit operation is used to express a bit computation.
Evaluation of a bit operation produces a result of type bit, with a value of B’0’ or B'1". The
permitted data types and shapes for operands of the bit intrinsic operations are specified in
7.1.2.

The bit operators and their interpretation when used to form an expression are given in
Tabie 7.3, where x; denotes the operand to the left of the operator and x, denotes the oper-
and to the right of the operator.

Table 7.3. Interpretation of the Bit Intrinsic Operators.

Use of

Version 102 1986 November Page F-6

SUGGESTED EXTENSIONS

X3J3/58 .

Operator Representing Operator Interpretatibn
BNOT. Bit Negation BNOT. x, Bt negation of X,
.BAND. Bit Conjunction x, .BAND. x, Bit conjunction of x; and x,
5 .BOR. Bit Inclusive Disjunction x; .BOR. x, Bit inclusive disjunction of x; and x;
BXOR. Bit Exclusive Disjunction x, .BXOR. x, Bit exclusive disjunction of x, and x;
The values of bit intrinsic operations are shown in Table 7.4.
Table 7.4. The Values of Operations Involving Bit Intrinsic Operators
10 X4 X2 .BNOT. x, x;.BAND. x» X .BOR. x; x{ .BXOR. x,
B’1 L ’ B!.'! B!ol B’1l Bl11 B!o’_
Bl1’ B’Ol B‘!-‘l Blo’ Bl1l Bl1l
B!O! B!1 b B!o? B!1 ’ B!1 ¥
Blo) B’O! B!Ol Blo’ Blol

15 Derived-type operands may contain bit components.

A derived-type operand x; is considered to be equal to x; if the values of all corresponding
components (including tags and selected variant components) of x; and x, are equal when
of numeric, bit, character, or derived-type or are equivalent (.(EQV.) when of logical type.
Otherwise, x, is considered to be not equal to x.

20 F.1.1.4.11 Precedence of Bit Operators. There is a precedence among the intrinsic and
extension operations implied by the general form in 7.1.1, which determines the order in
which the operands are combined, unless the order is changed by the use of parentheses.
This precedence order is summarized in Table 7.9.

Table 7.9. Categories of Operations and Relative Precedences.
25 Category
of Operation Operators Precedence
Extension defined-unary-op Highest
Numeric *% .
30 Numeric * or /
Numeric unary + or —
Numeric binary + or —
Bit .BNOT.
Bit .BAND.
35 Bit .BOR. or .BXOR.
Character /1
Relational .EQ., .NE., .LT,, .LE., .GT., .GE.
==,<>, <, <=,>,>=
Logical .NOT.
40 Logical .AND.
Logical .OR.
Logical .EQV. or .NEQV. .
Extension defined-binary-op Lowest
The precedence of a defined operation is that of its operator, whether it is an overioaded
45 intrinsic operator or an extension operator.
Version 102 1986 November

Page F-7

SUGGESTED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

45

F.1.1.5 Array Mask Expressions of Type Bit. The value of a list array expression may be
used to mask the evaluation of expressions and assignmsnt of values in array assignment
statements.

F.1.1.5.1 General Form of the Masked Array Assignment. A masked array assignment
is either a WHERE statement or WHERE construct.

R622 masked-array-assignment is where-stmt
or where-construct

R623 where-stmt is WHERE (array-mask-expr) array-assignment-stmt

R624 where-construct is where-construct-stmt
[-array-assignment-stmt |...
[elsewhere-stmt
| array-assignment-stmt)... |
end-where-stmt

R625 where-construct-stmt is WHERE (array-mask-expr)
R626 array-mask-expr is logical-expr
or bit-expr
R627 elsewhere-stmt is ELSEWHERE
R628 end-where-simt is END WHERE

Constraint: The shape of the mask-expr and the variable being defined in each array-
assignment-stmt must be the same.

Examples of a masked array assignment are:
WHERE (TEMP > 100.0) TEMP = TEMP — REDUCE_TEMP

WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP — 5.0

END WHERE

F.1.1.5.2 Interpretation of Masked Array Assignments. The execution of a masked array
assignment causes the expression array-mask-expr to be evaluated. The array assignment
statements following the WHERE and ELSEWHERE keywords are executed in normal execu-
tion sequence. An array may be defined in more than one array assignment statement in a
WHERE construct. A reference to an array may appear subsequent to its definition in the
same WHERE construct.

When an array-assignment-stmt is executed in a masked-array-assignment, the expr in the
where-stmt or each expr in the array assignment statements, immediately following the
WHERE keyword, is evaluated for all elements where array-mask-expr is true (or for all
elements where array-mask-expr is false in the array assignment statements following ELSE-
WHERE), and the result is assigned to the corresponding elements of variable. For each
false value of array-mask-expr (or true value for the array assignment statements after ELSE-
WHERE) the value of the corresponding element of variable in each array assignment state-
ment immediately following the WHERE keyword is not affected, and it is as if the expres-
sion expr were not evaluated. If an array-mask-expr is of type BIT, the elements with value
B’1’ are treated as true and elements with value B’0’ are treated as false.

If a transformational function reference occurs in expr, it is evaluated without any masked
control by the array-mask-expr; that is, all of its argument expressions are fully evaluated and
the function is fully evaluated. Elements corresponding to true values in array-mask-expr

Version 102 1986 November Page F-8

SUGGESTED EXTENSIONS X3J3/s8

(false in the expr after ELSEWHERE) are selected for use in evaluating each expr.

In a masked array assignment, only a WHERE statement may be a branch target. Changes
to entities in array-mask-expr do not affect the execution of statements in the masked-array-
assignment. Execution of an END WHERE has no effect.

5 F.1.1.6 Bit Expressions in Control Constructs.

F.1.1.6.1 IF Construct. If the scalar mask expression is of type BIT, an expression with
value B'1’ is treated as true and an expression with value B'0’ is treated as false.

F.1.1.6.2 IF Statement. If the scaldr mask expression is of type BIT, an expression with
value B'1' is treated as true and an expression with value B0’ is treated as false.

10 F.1.1.6.3 CASE Construct. A case expression méy be a scalar list expression. Rule 812
must be extended. '

R629 case-expr is scalar-int-expr
or scalar-char-expr

or scalar-logical-expr
15 or scalar-bit-expr

A corresponding case value in a case selector may be a scalar list constant expression.
Rule 815 must be extended.

R630 case-value-range) is case-value
‘or [case-value | : [case-value]

20 R631 case-value is scalar-int-constant-expr
or scalar-char-constant-expr
or scalar-logical-constant-expr
or scalar-bit-constant-expr

If the case value range is of the form low:, :high, or :, the data type must not be bit.
25 F.1.1.7 Bit Input/Output Editing.

F.1.1.7.1 Bit Edit Descriptor. There is a bit edit descriptor: B. R1005 must be extended.

R632 data-edit-desc , is lw[.m]
orFw.d
orEw.d[Ee]

30 or ENw.d[Ee]
orGw.d[Ee]
or Bw
orLw
or A[w]

35 orDw.d

F.1.1.7.2 B Editing. The Bw edit descriptor indicates that the field occupies w positions.
The specified input/output list item must be of type bit.

The input field consists of w — 1 blanks and either a 0 or a 1, in any order. The output field
consists of w — 1 blanks foliowed by either a 0 or a 1. The specifiers BZ and BN have no
40 effect on bit editing.

Version 102 1986 November Page F-9

SUGGESTED EXTENSIONS X3J3/88

10

15

20

25

30

35

40

F.1.1.7.3 List-Directed and Name-Directed Output. The form of the bit output constant
produced for the value B’1’ is 1. The form of the bit output constant produced for the value
B0’ is 0.

F.1.1.8 Bit Functions. The elemental functions LBIT and BITL convert between bit and
logical type. The transformational functions IBITLR and BITLR convert between a bit array
and an integer, counting bits from left to right; IBITRL and BITRL are similar functions that
count bits from right to left.

The inquiry function MAXBITS returns the maximum size of a bit array that can be converted
to an integer. :

BITL (L) Convert from logical to bit type
BITLR (I,SIZE) Convert an integer to a bit array,
Optional SIZE counting left to right
BITRL (1,SIZE) Convert an integer to a bit array,
Optional SIZE counting right to left
IBITLR (B) Convert a bit array to an integer,
. counting left to right
IBITRL (B) Convert a bit array to an integer,
counting right to left
LBIT (B) Convert from bit to logical type
MAXBITS (1) Maximum bit array length for conversion

F.1.1.8.1 BITL (L).
Description. Convert logical to bit type.
Kind. Elemental function.
Argument. L must be of type logical.
Result Type. Bit.

Result Value. The result has the value B’1’ if L has the value .TRUE. and the value
B’0’ if L has the value .FALSE.

Example. BITL (TRUE.) has the value B’1’.

F.1.1.8.2 BITLR (I, SIZE).
Optional Argument. SIZE
Description. Convert an integer to a bit array, counting left to right.
Kind. Transformational function.
Arguments.
l must be scalar and of type integer. Its value must not be negative.

SIZE (optional) must be scalar and of type integer with a positive value. If it is
omitted, it is as if it were present with the value MAXBITS (1).

Result Type and Shape. The result is a bit array of rank one with SIZE number of
elements.

Result Vaiue. The result is a bit array containing the binary representation of the argu-
ment. The array element with the largest subscript value will contain the least
significant bit of the binary representation. Zero exterision or truncation will take place
at the low end of the array as necessary. IBITLR (BITLR (J)) must have the value J for

Version 102 1986 November Page F-10

SUGGESTED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

Version 102

any value of the integer J. BITLR (IBITLR (B), SIZE (B)) must have the value B for any
value of a bit array B for which SIZE (B) < MAXBITS (1).

Example. BITLR (5, 6) has the value [B’0’, B'0’, B’0’, B’1’, B’O', B'1].

F.1.1.8.3 BITRL (i, SIZE).

Optional Argument. SIZE

Description. Convert an integer 10 a bit array, counting right to left.

Kind. Transformational function.

Arguments.

| must be scalar and of type integer. lts value must not be negative.

SIZE (optional) must be scalar and of type integer with a positive value. If it is
omitted, it is as if it were present with the value MAXBITS (1).

Result Type and Shape. The result'is a bit array of. rank one with SIZE number of
elements.

Result Value. The result is a bit array containing the binary representation of the argu-
ment. The array element with the largest subscript value will contain the most
significant bit of the binary representation. Zero extension or truncation will take place
at the high end of the array as necessary. IBITRL (BITRL (J)) must have the value J
for any value of the integer J. BITRL (IBITRL (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) = MAXBITS (1).

Example. BITRL(5,6) has the value [B'1’, B'O’, B’1’, B'0’, B'0’, B'0'].

F.1.1.8.4 IBITLR (B).

Description. Convert a bit array to an integer, counting left to right.
Kind. Transformational function.

Argument. B must be of type bit and rank one. Its size must satisfy the inequality
SIZE (B) = MAXBITS (1).

Result Type and Shape. Scalar integer.

Result Value. The result has value equal to the integer represented by the bits in the
array B, regarded as a bit string with the element having the largest subscript value
being the least significant bit of the result. IBITLR (BITLR (J)) must have the value J
for any value of the integer J. BITLR (IBITLR (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) < MAXBITS (1).

Example. IBITLR ([B’0", B'1’, B’0’, B'1’]) has the value 5.

F.1.1.8.5 IBITRL (B).

Description. Convert a bit array to an integer, counting right to left.
Kind. Transformational function.

Argument. B must be of type bit and rank one. lts size must satisfy the inequality
SIZE (B) = MAXBITS (1).

Result Type and Shape. Scalar integer.

Result Value. The result has value equal to the integer represented by the bits in the
array B, regarded as a bit string with the element having the largest subscript value
being the most significant bit of the result. IBITRL (BITRL (J)) must have the value J

1986 November Page F-11

SUGGESTED EXTENSIONS X3J3/58

for any value of the integer J. BITRL (IBITRL (B), SIZE (B)) must have the value B for
any value of a bit array B for which SIZE (B) = MAXBITS (1).

Example. IBITRL ([B'1’, B'0’, B't’, B’0']) has the value 5.

F.1.1.8.6 LBIT (B).

5 Description. Convert bit to logical type.
Kind. Elemental function.
Argument. B must be of type bit.
Result Type. Logical.

Result Value. The result has the value .TRUE. if B has the value B’1’ and the value
10 .FALSE. if B has the value B’0’.

Example. LBIT (B'1’) has the value .TRUE.

F.1.1.8.7 MAXBITS (1).

Description. Returns the maximum size of a bit array that can be converted to a value
of type integer.

15 Kind. Inquiry function.
Argument. | must be of type integer.
Result Type and Shape. Integer scalar.
Result Value. The result has value equal to the maximum size of a bit array B that
can be converted to integer using IBITLR (B) or IBITRL (B).

20 F.1.1.9 Bit Mask Argument. A MASK argument may be of type BIT. When the argument
is of type BIT, a B’1’ value is interpreted as true and a B’0’ is interpreted as false.
The following intrinsic functions have MASK arguments that may be of type bit: ALL,
ANY, COUNT, FIRSTLOC, LASTLOC, MAXLOC, MAXVAL, MERGE, MINLOC, MINVAL,
PACK, PRODUCT, PROJECT, SUM, and UNPACK.

25 F.1.1.10 Bit Storage Sequence. A bit data object has no storage sequence.
F.1.2 Variant Structures.
F.1.2.1 General Form of Variant Structures. Derived data types may contain variant

parts. Rule R417 that defines derived types must be extended.

R633 derived-type-def is derived-type-stmt
30 component-def-stmt
[component-def-stmt]...
[variant-part |
end-type-stmt

R634 derived-type-stmt is [access-spec | TYPE type-name [(type-param-name-list) |
35 R635 end-type-simt is END TYPE [type-name |
Constraint: A derived type type-name must not be the same as any intrinsic type-name.

Constraint: If END TYPE is followed by a type-name, the type-name must be the same as
that in the derived-type-stmt.

'R636 component-def-stmt is type-spec [[, component-attr-spec]... ::] component-decl-list

Version 102 1986 November Page F-12

SUGGESTED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

45

Constraint: A type-spec in a component-def-stmt must not contain a type-param-value that is

an asterisk.
R637 component-attr-spec is PRIVATE
or ARRAY (explicit-shape-spec—list)
R638 component-dec! is component-name [(explicit-shape-spec-list)]
R639 variant-part is SELECT CASE (component-name)
[case-stmt | component-def-stmt
END SELECT

Constraint: The conponent-name must be the name of the immediately preceding compo-
nent. It must be scalar, must not lie within a variant part, and must be of type
integer, logical, bit, or character.

R811 case-stmt is CASE case-selector
R814 case-selector is (case-value-range-list)
or- DEFAULT

Constraint: Only one DEFAULT case-selector may appear in any given case-construct.

R815 case-value-range is case-value
or [case-value | : | case-value]

R816 case-value is scalar-int-constant-expr
or scalar-char-constant-expr
or scalar-logical-constant-expr

Constraint: Each case-value must be of the same type as the component-name of the
SELECT CASE statement.

A variant part specifies alternative sequences of companents. Only one such sequence
has an interpretation at any given time in a structure of that type. The nonvariant com-
ponent immediately preceding the variant part of a variant derived type is the tag com-
ponent. It must be scalar and of type integer, logical, bit, or character. The value of
the tag component in a structure determines which sequence of components in the var-
ying part is selected. The selection follows the rules for the CASE construct (8.1.3),
except that nesting and construct names are prohibited.

An example of a variant structure is:
TYPE Geometric

REAL X, Y '
REAL AREA

CHARACTER (LEN = 10) SHAPE ! TAG

SELECT CASE (SHAPE) ! VARIANT PART

CASE ('CIRCLE') ; REAL RADIUS
CASE ('SQUARE') ; REAL SIDE
CASE ('RECTANGLE'); REAL HEIGHT, WIDTH
CASE ('POLYGON') ; INTEGER NUM_EDGES; REAL EDGES &[8))
END SELECT
END TYPE GEOMETRIC

F.1.2.2 Comparison of Entities with Variant Parts. Two entities of the same derived type
with variant parts may be compared, even if the values of their tag components are not
equal; the resuit of a comparison with unequal tag components is that the objects are
not equal.

Version 102 1986 November Page F-13

SUGGESTED EXTENSIONS X3J3/58

5

10

15

20

25

30

35

40

A derived-type operand x; is considered to be equal to x, if the values of all corre-
sponding components (including tags and selected variant components) of x; and x,
are equal when of numeric, character, or derived-type or are equivalent (.EQV.) when
of logical type. Otherwise, x; is considered to be not equal to x,.

F.1.2.3 Definition Status of Variant Structures. When any component of a structure and
any other component containing that component becomes undefined, the structure
becomes undefined. This does not imply that the undefinition of one component of a
structure causes all other components to become undefined. Redefinition or
undefinition of the tag name component also causes undefinition of components
selected by all cases.

F.2 Array Extensions.

F.2.1 Structure Arrays of Arrays Treated as Higher-Order Arrays. Array objects may be
of any intrinsic type or derived type.

An array object may be a component or a parent structure that is an element of an
array. A resulting data subobject has array propertiés if the parent or component has
array properties.

If the parent has shape P and the selected component (including the array selector, if
any) has shape C, the component will be an array of shape [C, P], using the array con-
structor notation from Section F.2.1.1 The remaining attributes are determined by the
component declaration in the derived-type definition.

Example:
ARRAY_PARENT % ARRAY_FIELD!array component of array parent

The IDENTIFY statement (F.2.4.2) permits the mapping of arrays onto structure arrays
of arrays.

F.2.2 Vector-Valued Subscripts. A vector integer expression, used as a subscript, can
specify an array section. Rule R615 must be extended:

R615 section-subscript is subscript
or subscript-triplet
or vector-int-expr

Constraint: A vector-int-expr section-subscript must be a rank one integer array expression.
The constraint following rule R613 also must be extended:
Constraint: At least one section-subscript must be a subscript-triplet or a vector-int-expr.

An array section is an array subobject designated by an array name with a section
subscript list.

Each subscript triplet and each rank-one expression in the section subscript list indi-
cates a sequence of subscripts.

A section subscript that is a rank-one integer expression designates a sequence of sub-
scripts that are the values of the expression; each element of the expression must be
defined. The sequence is empty if the expression is of size zero.

For example, suppose Z is a two-dimensional array of shape [5,7] and U and V are
one-dimensional arrays of shape [3] and [4], respectively. Assume the values of U and
V are:

Version 102 1986 November Page F-14

SUGGESTED EXTENSIONS X3J3/S8

5

10

15

20

25

30

35

40

Uu=1[132]
V=1[2113]

Then Z (3, V) consists of the elements from the third row of Z in the order:
Z@3,2 2@3.1) 2@ 1) Z2@B3

and Z (U, 2) consists of the column elements:
2(1,2) 23,2 22,2

and Z (U, V) consists of the elements:

Z(1,2) Z(1, 1) Z(1, 1) Z(1,3)
732 2@ 1) 231233
222 221 2@ 1) 223

Because Z (3; V) and Z (U, V) contain duplicate elements from Z, the sections Z(3,V)
and Z (U, V) must not be redefined as sections. ‘

There are some restrictions on the use of vector-valued subscripts. The left-hand side
of an assignment statement (R716) must not include an array element more than once
in an array section with vector subscripts. An internal file is a character variable other
than an array section with any vector subscripts.

E.2.3 Element Array Assignment—FORALL. The element array assignment statement is
used to specify an array assignment in terms of array elements or array sections. The
element array assignment may be masked with a scalar logical or bit expression..

F.2.3.1 General Form of Element Array Assignment.

R640 forall-stmt ' is FORALL (forall-triplet-spec-list | ,scalar-mask-expr 1ym
B forall-assignment -

R641 forall-triplet-spec is subscript-name = subscript : subscript [: stride]
Constraint: subscript-name must be a scalar-symbolic-name of type integer.

Constraint: A subscript or a stride in @ forall-triplet-spec must not contain a reference to any
subscript-name. in the forall-triplet-spec-list.

R642 forall-assignment is array-element = expr
or array-section = expr

Constraint; The array-section or array-element in a forall-assignment must reference all of
the forall-triplet-spec subscript-names.

For each subscript name in the forall-assignment, the set of permitted values is deter-
mined on entry to the statement and is

my + (k—1) x ma, where k = 1,2, ..., INT((m2 - my + mg)/ma)

and where m,, m,, and m, are the values of the first subscript, the second subscript, and
the stride respectively in the forall-triplet-spec. If stride is missing, it is as if it were present
with a value of the integer 1. The expression stride must not have the value 0. If for some
subscript name INT((mz - my + M3 y/ms) < 0O, the forall-assignment is not executed.

Examples of element array assignments are:
FORALL (I = 1:N, J = 1:N) H (I, J) =1.0 / REAL (I +J — D

FORALL (I = 1:N, J

1:N, A (I, J) .NE. 0.0) B (I, §) = 1.0/ A1, d

Version 102 1986 November Page F-15

SUGGESTED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

Version 102

F.2.3.2 Interpretation of Element Array Assignments. Execution of an element array

assignment consists of the evaluation in any order of the subscript and stride expres-
sions in the forall-triplet-spec-list, the evaluation of the scalar mask expression, and the
evaluation of the expr in the forall-assignment for all valid combinations of subscript
names for which the scalar mask expression is true, followed by the assignment of
these values to the corresponding elements of the array being assigned to. If the sca-
lar mask expression is omitted, it is as if it were present with value true. If the scalar
mask expression is of type BIT, an expression with value B’1’ is treated as true and an
expression value B’0’ is treated as false.

The forall-assignment must not cause any element of the array being assigned to be
assigned a value more than once. The scope of the subscript name is the FORALL
statement itself. A function reference appearing in any expression in the forall-
assignment must not redefine any subscript name.

F.2.4 Intrinsic Functions. Additional array intrinsic functions are provided for array con-

FST

struction (REPLICATE, DIAGONAL), array manipulation, and array geometric location
(PROJECT).

REPLICATE constructs an array from several copies of an actual argument by increas-
ing the size of one of the dimensions. DIAGONAL constructs a diagonal matrix. PROJ-
ECT extracts the elements the lie along an edge of an array. For example, to extract
from the integer table TABLE (M, N) the vector containing the first positive number in
each column, first locate the desired elements in a logical mask FST (M, N) by:

= FIRSTLOC (TABLE .GT. O, DIM = 1)
and then assign the elements to FSTC by:

FSTC = PROJECT (TABLE, FST, DIM =1, FIELD = 0

F.2.4.1 DIAGONAL (ARRAY, FILL).

Optional Argument. FILL

Description. Create a diagonal matrix from its diagonal.

Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must have rank one.

FILL (optional) must be of the same type and type parameters as ARRAY and
must be scalar. It may be omitted for the data types in the follow-
ing table; in this case it is as if it were present with the value
shown.,

Type of ARRAY Value of FILL

Integer 0

Real 0.0
Double precision 0.0D0
Complex (0.0, 0.0)
Logical .FALSE.
Character (len) len blanks

Result Type, Type Parameters, and Shape. The result is of the type and type param-
eters of ARRAY and it has rank two and shape [n, n} where n is the size of ARRAY.

1986 November Page F-16

SUGGESTED EXTENSIONS - X3J3/S8

10

16

20

25

30

35

40

Result Value. Element (i, /) of the result has value ARRAY (i) for 1< i =n. Al other
elements have the value FILL.

100
Example. DIAGONAL ({1, 2, 3)) has the value {8 .(?) g}

F.2.4.2 PROJECT (ARRAY, MASK, FIELD, DIM).

Optional Argument. DIM
Description. Select masked values from an array.

Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar. Its shape must be
defined.

MASK must be of type logical or bit and of the same shape as ARRAY. If
DIM is absent, MASK must have at most one true element; other-
wise, each section MASK (sy, ..., SpiM-15 *» SDIM+1s ..., .Sp) must
have at most one true element.

FIELD must be of the same type and type parameters as ARRAY. 1t must

be scalar if DIM is absent. If DIM is present, FIELD must have
rank n —1 and shape [E (1:DIM—1), E (DIM +1:n)}, where E (1:n) is
the shape of ARRAY.

DIM (optional) must be scalar and of type integer with value in the range
1 < DIM = n, where n is the rank of ARRAY.

Result Type, Type Parameters, and Shape. The result is of the type and type param-
eters of ARRAY. It is scalar if DIM is absent or ARRAY has rank one; otherwise, the
result has rank n—1 and shape [E (1:DIM-1), E (DIM+1:n)] where E (1:n) is the
shape of ARRAY.

Result Value.

Case (i): The result of PROJECT (ARRAY, MASK, FIELD) is the element of ARRAY
corresponding to the true element of MASK if there is one and is FIELD
otherwise. Note that if MASK has zero size, the result has value FIELD.

Case (i): |f ARRAY has rank one, PROJECT (ARRAY, MASK, FIELD, DIM) has value
equal to that of PROJECT (ARRAY, MASK, FIELD). Otherwise, the value

of element (81, ..., SDIM—1: SDIM+1s = s,) of PROJECT (ARRAY, MASK,
FIELD, DIM) is equal to PROJECT (ARRAY (Sy, -, Som—1, % SOt -
Sn), MASK (81, ey SDIM=1s > SDIM+1s =3 Sn), FIELD (51, cees SDIM—1> SDIM+1»

..., 8;)). Note that if ARRAY (and MASK) have size zero because E (DIM)
has value zero, the result may have nonzero size with all its values coming
from FIELD.

Examples.

Case (i): If V is the array [1, 2, 3, 4] and P is the mask [., ., T, .], where “T" repre-
sents .TRUE. and “.” represents .FALSE., the value of PROJECT (V,
MASK =P, FIELD=0) is the scalar 3, and the value of PROJECT (V,
MASK =V.GT.5, FIELD=99) is the scalar 99. If A is the array

147 10 e
{2 58 11} and L is the array { . T .],the value of PROJECT (A,
36 9 12 .. i

Version 102 1986 November Page F-17

SUGGESTED EXTENSIONS X3J3/S8

10

MASK =L, FIELD =0) is the scalar 8

Case (ij): Using the arrays of case (i), the value of PROJECT (A, L, [0, O, 0], DIM=2)
is the array [0, 8, 0], and the value of PROJECT (A, L, [0, 0, 0, 0], DIM=1)
is the array [0, 0, 8, 0].

The first nonzero number in each column of the table TABLE =

0 .o

8 is located by the mask M = : T T A vector which
1460 T

contains those nonzero numbers can be extracted from TABLE by the

PROJECT function. Thus, the value of PROJECT (TABLE, M, [—-1, —1,

—1, —1)], DIM=1) is that vector, namely [1, 2, 5, —1]. Note that M itself is
the value of FIRSTLOC (TABLE.NE.Q, DIM=1).

WO
Qoo
QOO

F.2.4.3 REPLICATE (ARRAY, DIM, NCOPIES).

15

20

25

Description. Replicates an array by increasing a dimension.

Kind. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

DIM must be scalar and of type integer with value in the range
1 < DIM < n, where n is the rank of ARRAY.

NCOPIES must be scalar and of type integer.

Result Type, Type Parameters, and Shape. The result is an array of the same type,
type parameters, and rank as ARRAY and has shape [E (1:DIM-1), MAX (NCOPIES, 0)
* E (DIM), E (DIM + 1:n)], where the shape of ARRAY is E (1:n).

Result Value. Each element of the result has value equal to that of the corresponding
element of ARRAY obtained by subtracting from subscript DIM sufficient integral multi-
ples of E (DIM) to bring it into the range [1:E (DIM)].

Example. If A is the array [gﬂ REPLICATE (A, DIM=2, NCOPIES=3) is
[232323}
343434

F.2.4.4 RANK (SOURCE).

30

Version 102

Description. Returns the rank of an array or a scalar.
Kind. Inquiry function.

Argument. SOURCE may be of any type.

Result Type and Shape. Integer scalar.

Result Value. The result has value zero if SOURCE is scalar and otherwise has value
equal to the rank of SOURCE.

Example. RANK ([1:N]) has the value one.

1986 November Page F-18

SUGGESTED EXTENSIONS X3J3/S8

F.2.4.5 FIRSTLOC (MASK, DIM).

10

15

20

25

Optional Argument. DIM

Description. Locate the leading edges of the set of true elements of a logical or bit
maskK.

Kind. Transformational function.

Arguments.

MASK must be of type logical or bit. It must not be scalar. lts shape
must. be defined.

DIM (optional) must be scalar and of type integer with value in the range

1 < DIM =< n, where n is the rank of MASK.

Result Type and Shape. The result is an array of the same shape as MASK and of
type logical.

Result Value.

Case (i): The result of FIRSTLOC (MASK) has at most one true element. If MASK is
all false, the result is all false. |f MASK contains one or more true
elements, the result has a single true element and it is in the position cor-
responding to the first true element (in subscript order value) in MASK.

Case (i) The result of FIRSTLOC (MASK, DIM) is defined by applying FIRSTLOC to
each of the one-dimensional array sections of MASK that lie parallel to

dimension DIM. Thus, section (S1, S2, :--» SDiM=1: :r SDIM+1s «+=s Sn) of the
result has value equal to FIRSTLOC (MASK (s1, S2, ... SpiM-1, 5 SDIM+1s
cery S ;
A
Examples. If MASK is | ° ; T T where “T” represents .TRUE. and “.” repre-

sents .FALSE., then

Case (i): FIRSTLOC (MASK) is and

¢

Case (i) FIRSTLOC (MASK, DIM=1) is the “top-edge” | * '

r

F.2.4.6 LASTLOC (MASK, DIM).

30

35

Version 102

Optional Argument. DIM

Description. Locate the trailing edges of the set of true elements of a logical or bit
mask. ‘

Kind. Transformational function.

Arguments.
MASK must be of type logical or bit. It must not be scalar.
DIM (optional) must be scalar and of type integer with value in the range

1 < DIM < n, where n is the rank of MASK.

1986 November Page F-19

SUGGESTED EXTENSIONS X3J3/s8

10

15

20

25

30

35

Result Type and Shape. The result is an array of the same shape as MASK and of
type logical???.

Result Value.

Case (i): The result of LASTLOC (MASK) has at most one true element. If MASK is
all false, the result is all false. If MASK contains one or more true
elements, the result has a single true element and it is in the position cor-
responding to the last true element (in subscript order value) in MASK.

Case (ii): The result of LASTLOC (MASK, DIM) is defined by applying LASTLOC to
each of the one-dimensional array sections of MASK that lie parallel to

dimension DIM. Thus, section (s1, $2, .-, SpIM—1, s SDIM+1s ---» Sp) Of the
result has value equal to LASTLOC (MASK (S4, S2, ---s SDIM—1s I SDIM41» --=s
8n))-

T

T

Examples. If MASK is | - ; 1|+ where “T” represents .TRUE. and “.” repre-

sents .FALSE., then

Case (i LASTLOC (MASK)is | * * * ;| and

r

Case (ii): LASTLOC (MASK, DIM=2)is | * ° T

F.3 Procedure Extensions.

F.3.1 Nesting of Internal Procedures. An internal procedure may host other internal pro-

cedures.

F.3.2 Internal Procedure Name as an Actual Argument. If a dummy argument is a

dummy procedure, the associated actual argument must be the name of an external,
internal, dummy, or intrinsic procedure.

The actual argument name must be one for which exactly one procedure is accessible
in the invoking procedure.

The actual argument procedure must not have dummy arguments with assumed type
parameters other than character assumed lengths.

The characteristics of the associated procedure must be the same as the characteris-
tics of the dummy procedure (12.2).

When a function or subroutine defined by a procedure subprogram is invoked, an
instance of that subprogram is created. Each instance has an independent sequence
of execution and an independent set of dummy arguments and nonsaved data objects.
If an internal procedure or statement function contained in the subprogram is invoked
directly from an instance of the subprogram or a procedure having access to the enti-
ties of that instance, the created instance of that internal procedure or statement func-
tion also has access by explicit or implicit USE statements to the entities of that
instance of the host subprogram. Similarly, if the internal procedure is supplied as an

Version 102 1986 November Page F-20

SUGGESTED EXTENSIONS X3J3/58

10

15

20

25

30

35

40

Version 102

F.4

actual argument from an instance of the subprogram or a procedure having access to
the entities of that instance, the instance of that internal procedure created by invoking
the associated dummy procedure also has access by explicit or implicit USE statements
to the entities of that instance of the host subprogram.

All other entities, including saved data objects, are common to all instances of the sub-
program. For example, the value of a saved data object appearing in one instance
may have been defined in a previous instance or by an INITIAL attribute or DATA state-
ment.

Condition Handling. This exception handling extension provides a structured way
of dealing with relatively rare, synchronous events, such as errors in input data or insta-
bility of an algorithm near a critical point.

F.4.1 Definitions.

F.4.1.1 Condition. A condition is a named exceptional event or set of circumstances
when it is inappropriate to continue the normal execution sequence. Conditions may
be user-defined .or intrinsic to the processor. A processor must be able to detect the
following intrinsic conditions:

(1) NUMERIC__ERROR. This condition occurs when the processor is unable to pro-
duce an acceptable resuit for an intrinsic numeric operation, either because the
result is mathematically undefined or because the processor has no adequate rep-
resentation for the result.

(2) BOUND__ERROR. This occurs when an array subscript, array sections subscript,
substring range expression, or effective range violates its bounds. This does not
include violations of the requirements derived from the size of an assume-size
array.

(3) O_ERROR. This condition occurs when an input/output error (9.4.2.1) is encoun-
tered in an input/output statement containing no IOSTAT = or ERROR= specifier.
If this condition is enabled, it may be handled as described below instead of caus-
ing immediate termimation of the executable program.

(4) END_OF_FILE. This condition occurs when an end-of-file condition (9.4.2.1) is
encountered in an input statement containing no IOSTAT = or END= specifier. If
this condition is enabled, it may be handled as described below instead of causing
immediate termination of the executable program.

(5) ALLOCATION__ERROR. This condition gccurs when the processor is unable to
perform an allocation requested by an ALLOCATE statement (6.2.2)

A processor may define additional intrinsic conditions.
Conditions may be passed as actual arguments and received as dummy arguments or
dummy conditions.

F.4.1.2 Enabling. In order for an intrinsic condition to be detected -automatically by
the processor, it must be enabled. User-defined conditions may be enabled, though
they need not be since they can be detected only by the user program itself. Dummy
conditions must not be enabled.

1986 November Page F-21

SUGGESTED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

45

Version 102

F.4.1.3 Signaling. A condition may be signaled when the associated event or circum-
stances are detected. Conditions may be signaled expli¢itly by the execution of a SIG-
NAL statement (F.4.3.2) or, in the case of intrinsic conditions, implicitly by the proc-
essor.

F.4.1.4 Handler. Signaling a condition causes a transfer of control to a sequence of
statements called a condition handler.

F.4.2 Specification Statements. The exception handling facilty adds one new

specification statement (CONDITION) as well as modifying an existing specification
statement (INTRINSIC).

F.4.2.1 CONDITION Statement. A CONDITION statement is used to declare a user-

defined or dummy condition.

R218 specification-stmt is access-stmt

or condition-stmt
or exponent-letter-stmt
or external-stmt

or initialize-stmt

or intent-stmt

or intrinsic-stmt

or optional-stmt

or range-stmt

or save-stmt

or common-stmt

or dimension-stmt
or equivalence-stmt

R643 condition-stmt is CONDITION [[, condition-attr-spec]... ::] &

M condition-name-list

R644 condition-attr-spec is OPTIONAL

or ENABLES (condition-name-list)
or HANDLES (condition-name-list)

Constraint: A condition-name must not be declared in more than one condition-stmt or

intrinsic-stmt (F.4.2.2) in a scoping unit.

Constraint: There must not be more than one OPTIONAL attribute, one ENABLES attribute,

and one HANDLES attribute in a condition-stmt.

Constraint: A dummy condition must not appear in either an ENABLES or a HANDLES attri-

bute specification, nor may a dummy condition be declared in a condition-stmt
which contains either of these attributes.

Constraint: The OPTIONAL attribute may appear only on a condition-stmt declaring a

dummy condition.

Each name in a CONDITION statement (other than those in an ENABLES or HANDLES
attribute specification) is declared to be a nonintrinsic condition. If the name also
appears as a dummy argument in the current scope, it is a dummy condition; other-
wise, it is a user-defined condition. Each condition name in an ENABLES or HANDLES
attribute specification must be declared previously in a CONDITION statement or
INTRINSIC statement (F.4.2.2).

Each request to enable one of the declared conditions is also a request to enable the
conditions listed in the ENABLES attribute specification, if any. Each handler for one of

1986 November Page F-22

SUGGESTED EXTENSIONS X3J3/S8

10

15

20

25

30

35

40

45

the declared conditions is also a handler for the conditions in the ENABLES attribute
specification, if any, except for those explicitly handled by other handlers in the same
ENABLE construct (F.4.3.1).

Each handler for one of the declared conditions is also a handler for the conditions in
the HANDLES attribute specification, if any, except for those explicitly handled by other
handlers in the same ENABLE construct.

F.4.2.2 INTRINSIC Statement. An INTRINSIC statement also may be used to specify a
symbolic name as representing an intrinsic condition (F.5.1.1).

R1209 intrinsic-name is intrinsic-procedure-name
or intrinsic-condition-name

R645 intrinsic-condition-name is symbolic-name

Each intrinsic-name riust correspond to an intrinsic entity (either an intrinsic procedure
or an intrinsic condition) supported by the processor.

If an intrinsic condition name is used as an actual argument to a nonintrinsic procedure,
it must be declared in an INTRINSIC statement.

F.4.2.3 Implicit Declaration of Condition Names. If every occurrence of a symbolic name
in a scoping unit is in'an ENABLE or HANDLE statement (F.5.3.1), a SIGNAL statement
(F.5.3.2), as the CONDITION argument to the ENABLED or HANDLED intrinsic functions
(F.5.9), or as a dummy argument, the name is declared implicitly to be a condition
name. If the name does not match any of the processor-supported intrinsic condition
names, it identifies a user-defined condition; otherwise, it identifies the matching intrin-
sic condition.

F.4.2.4 Scope and Association of Condition Names. User-defined and intrinsic condi-
tions are two separate classes of global entities of an executable program. User-
defined conditions belong to the same class as external program units, common blocks,
and external procedures (14.1.1). A symbolic name that identifies a user-defined condi-
tion must not be used to identify any other global entities in this class. Intrinsic condi-
tions belong to a second class of global entities. Within a single scoping unit, a sym-
bolic name that identifies an intrinsic condition must not be used to identify any other
global entities; however, in a different scoping unit it may be used to identify a global
entity of the first class.

Dummy conditions are local entities of the current scoping unit, of the class as dummy
procedures (14.1.2).

Conditions may be passed as actual arguments as described in 12.4.1.

R1214 actual-arg is expr
or variable
or procedure-name
or condition-name
or alt-return-spec

If a dummy argument is a dummy condition, the associated actual argument, if any,
must be a condition. If the dummy condition has the OPTIONAL attribute and if no cor-
responding actual argument is supplied when the procedure is invoked, the dummy
condition must not be signaled, nor supplied as the CONDITION argument to the intrin-
sic functions ENABLED or HANDLED. It may be supplied as an actual argument corre-
sponding to an optional dummy condition. Then the optional dummy condition also is
considered not to be associated with an actual argument.

Version 102 1986 November Page F-23

SUGGESTED EXTENSIONS X3J3/58

F.4.3

F.4.3

Executable Constructs. The exception handling facility adds one new block con-
struct (ENABLE) and a new action statement (SIGNAL).

.1 ENABLE Construct. The ENABLE construct is used to enable the automatic
detection of intrinsic conditions, supply handlers for conditions. and delimit a block that
may be affected by the signaling of a condition.

executable-construct is action-stmt
or case-construct
or do-construct
or enable-construct
or if-construct
or where-construct

enable-construct is enable-stmt
block
[handle-stmt
block 1...
end-enable-stmt

enable-stmt is [enable-construct-name : |} B
M ENABLE [(condition-name-list)]

handle-stmt is HANDLE (condition-name-list)
or HANDLE DEFAULT

end-enable-stmt is END ENABLE [enable-construct-name |

Constraint: A condition-name must not appear more than once in an enable-stmt.

Constraint: A condition-name appearing in an enable-stmt or handle-stmt must not be a

dummy condition.

Constraint: HANDLE DEFAULT may appear at most once in an enable-construct.

Constraint: If an enable-construct-name is present, the same name must be specified on

5
R219

10
R646

15
R647
R648

20
R649

25

30

35
F.4.3
40 R650

45
Version 102

both the enablestmt and the corresponding end-enable-stmt.

The block immediately following the ENABLE statement is the ENABLE block. Each
block following a HANDLE statement is called a HANDLE block.

A condition name must not appear explicitly in more than one HANDLE statement of an
ENABLE construct. If a condition name does not appear explicitly in any HANDLE
statements of an ENABLE construct, it must not be implied directly or indirectly, via
HANDLES or ENABLES attributes (F.5.3.1) in the same scoping unit, by CONDITION
names listed on more than one HANDLE statement of the construct.

Both the ENABLE statement and the END ENABLE statement are branch target state-
ments (8.2); however, it is permissible to branch to an END ENABLE statement only
from within its ENABLE construct. :

.2 SIGNAL Statement. Any condition, including intrinsic and dummy conditions, may
be signaled explicitly be a SIGNAL statement.

action-stmt is allocate-stmt
or assignment-stmt
or backspace-stmt
or call-stmt
or close-stmt
or continue-stmt

1986 November Page F-24

SUGGESTED EXTENSIONS X3J3/58

[8)1

10

15

20

30

40

45

Version 102

R651

or cycle-stmt

or deallocate-stmt
or endfile-stmt

or exit-stmt

or forall-stmt

or goto-stmt

or identify-stmt
or if-stmt

or inquire-stmt

or open-stmt

or print-stmt

or read-stmt

or return-stmt

or rewingd-stmt

or set-range-stmt
or signal-stmt

or stop-stmt

or where-stmt

or write-stmt

or arithmetic-if-stmt
or assign-stmt

or assigned-goto-stmt
or computed-goto-stmt
or pau.te—stmt

signal-stmt is SIGNAL (condition-name)
or SIGNAL (*)

Constraint: SIGNAL (*) is permitted only in a HANDLE block.

F.4.4 Condition Enabling. All conditions that are enabled for the ENABLE statement itself

remain enabled throughout the ENABLE construct. Any other conditions in the condi-
tion name list, if any, of the ENABLE statement, including those implied, either directly
or indirectly, by any ENABLES attributes (F.5.3.1) in the current scoping unit, are ena-
bled only within the ENABLE block. Enabling a condition in one procedure does not
enable that condition in any procedure invoked from within the ENABLE block.

F.4.5 Condition Signaling. A condition is signaled immediately if it is detected during

expression evaluation or assignment. An indeterminately signaled condition affects
entities in the innermost ENABLE block or scoping unit that contains the operation
causing the signal. If circumstances are such that two independent operations could
each signal a condition indeterminately in the same ENABLE block, the condition that
serves as the basis for transfer of control is processor dependent.

A condition is signaled determinately if it is detected in any other way. A determi-
nately signaled condition can affect only entities in the statement in which the condition
is detected.

The intrinsic conditions. if they are enabled, are signaled implicitly by the processor
whenever the events the represent are detected.

Execution of a SIGNAL statement determinately signals the condition indicated by the
condition name that appears in the statement. If the SIGNAL statement appears in a
HANDLE block and the condition name is specified by *, the condition signaled is the
condition that caused the transfer to the block. Signaling a dummy condition is

1986 November Page F-25

SUGGESTED EXTENSIONS ' X3J3/58

10

15

20

25

30

35

40

45

Version 102

equivalent to signaling the corresponding actual argument in the current scoping unit.
A condition need not be enabled to be signaled explicitly.

F.4.6 Execution of an ENABLE Construct. Execution of an ENABLE construct begins

with the first executable construct of the ENABLE block, and continues to the end of
the block unless a condition is signaled. f no condition is signaled anywhere within the
ENABLE block, the execution of the entire construct is complete when the execution of
the ENABLE block is complete.

F.4.6.1 Condition Handling. If a condition is signaled in an ENABLE block and the

ENABLE construct either:
(1) contains a HANDLE statement that explicitly lists the condition, or

(2) contains no HANDLE statement that explicitly list the condition, but does contain a
HANDLE statement which implies the condition, either directly or indirectly, via
ENABLES or HANDLES attributes in the same program unit (F.5.3.1), or

(3) contains no HANDLE statement that lists or implies the condition, but does contain
a HANDLE DEFAULT statement -

the associated HANDLE block is called the handler for that condition and the ENABLE
construct is said to supply the handler. An ENABLE construct never supplies a han-
dler for a condition detected in one of its HANDLE blocks. The block foliowing the
HANDLE DEFAULT statement is called the defauit handler for that ENABLE construct.
It handles all conditions not otherwise handled in that ENABLE construct.

When a condition is signaled, control is transferred to the HANDLE block supplied by
the innermost ENABLE construct that supplies a handler for that condition. Execution
of the HANDLE block completes the execution of the ENABLE construct.

F.4.6.2 Condition Propagation. If a condition is signaled, but no handler is supplied in the

current scoping unit, the condition is propagated. A condition must not be propagated
from a main program. A condition, either intrinsic, user-defined, or dummy, is propa-
gated from a function or subroutine by signaling it in the invoking procedure, regardiess
of whether it was enabled in that procedure. If the current procedure was invoked dur-
ing expression evaluation or assignment, the condition is signaled indeterminately in
the invoking procedure, either in the innermost ENABLE block or in the entire scoping
unit. Otherwise, it is signaled determinately in the statement invoking the current pro-
cedure.

F.4.7 Effects of Signalling on Definition. The signaling of a condition also may cause

entities to become undefined (14.8). When a condition is signaled determinately in a
statement, the entities affected are those whose definition status could have been
affected by the statement had no condition been signaled, with one exception: if the
statement is a READ statement with a VALUES = specifier and if the signaled condition
is either IO_ERROR or END__OF__FILE, the specified variable and, possibly, some or
all of the variables in the input/output list become defined as described in 9.4.2.1.

When a condition is signaled indeterminately in an ENABLE block, the entities affected
are those whose definition status has been affected or could have been affected by
statements in the block had no condition been signaled.

When a condition is sighaled indeterminately outside any ENABLE block, the entities
affected are those whose definition status has been affected or could have been
affected by statements anywhere in the scoping unit had no condition been signaled.

1986 November Page F-26

SUGGESTED EXTENSIONS

10

15

20

25

30

35

40

45

F.4.7.1 Examples of ENABLE Constructs. Example 1:

10 CHECK: ENABLE (IO_ERROR, END_OF_FILE)
READ (%, '(IS)") I
READ (%, '(I5)', END = 90) J
Go T0 100
90 CONTINUE
J=0
GO TO 100
HANDLE (END_OF_FILE)
WRITE (%, *) "UNEXPECTED END-OF-FILE'
STOP
HANDLE (IO_ERROR)
WRITE (8, *) 'I/0 ERROR'
sToP

END ENABLE 10_CHECK
100 CONTINUE

X3J3/S8

In this example, if an input/output error occurs in either of the READ statements or if

an end-of-file is encountered in the first READ statement, the appro

priate condition will

be signaled determinately (thus affecting only the value of the variable in the
input/output list), and a handler will receive control, print a message, and terminate the
program. However, if an end-of-file is encountered in the second READ statement, no
condition will be signaled and control will be transferred to the statement indicated in

the END = specifier.
Example 2:

ENABLE (SINGULARITY_ERROR)
ENABLE
. | FIRST TRY THE ''FAST'' ALGORITHM:
CALL FAST_INV (AMATRIX, VMATRIX, SDET, ESIZE (AMATRIX, 1))
HANDLE (SINGULARITY_ERROR)
. | MEAST' ALGORITHM FAILED; TRY ''SLOW'' ONE:
CALL SLOW_INV (AMATRIX, VMATRIX, SDET, ESIZE (AMATRIX, 1))
END ENABLE
HANDLE (SINGULARITY_ERROR)
WRITE (*, *) "CANNOT INVERT MATRIX'
sToP
END ENABLE
RETURN

CONTAINS
i HERE'S FAST_INV:
SUBROUTINE FAST_INV (AMAT, VMAT, DET, NMAT)
REAL AMAT (NMAT, NMAT), VMAT (NMAT, NMAT)
VMAT = 0
ENABLE (NUMERIC_ERROR)

ENABLE

DET = DETERMINANT (AMAT, NMAT)

Version 102 1986 November

Page F-27

SUGGESTED EXTENSIONS X3J3/58

END ENABLE

HANDLE (SINGULARITY_ERROR, NUMERIC_ERROR)
DET =0
5 SIGNAL (SINGULARITY_ERROR)

END
END

ENABLE
SUBROUTINE FAST_INV

| ASSUME SLOW_INV IS AN EXTERNAL ROUTINE

| AND HERE'S DETERMINANT:

10 REAL FUNCTION DETERMINANT (X, N)
INTEGER, INTENT (IN) :: N
REAL, INTENT (IN) 2 X (N, N)
ENABLE (NUMERIC_ERROR)

15 I

F (DIAG == 0) SIGNAL (SINGULARITY_ERROR)

DETERMINANT = ..
HANDLE (SINGULARITY_! ERROR NUMERIC_ERROR)

. ! CLEANUP

20 SIGHAL (*)

END
END

25

30

35

ENABLE
FUNCTION DETERMINANT

Assume NUMERIC__ERROR is signaled implicitly somewhere inside DETERMINANT >
The handler does any necessary cleanup, then simply resignals NUMERIC__ERROR.
Since there is no further handler in DETERMINANT, the condition is propagated. In
FAST__INV, NUMERIC__ERROR is signaled indeterminately because DETERMINANT
was invoked during expression evaluation; however, the invocation of DETERMINANT is
bracketed by ENABLE and END ENABLE, and the arguments are INTENT (IN), so only
DET becomes defined. The handler sets DET to zero and remaps the condition by sig-
naling SINGULARITY__ERROR, which is then propagated because there is no further
handler in FAST_INV. In the host, SINGULARITY_ERROR is signaled determinately
in the call to FAST__INV, so control is passed to the first handler. Here an external
subroutine with a better but slower algorithm is called. If this routine also signals
SINGULARITY__ERROR, control is passed to the second handler, which gives up and
terminates the program.

F.4.8 Condition Status Inquiry Functions. The inquiry functions ENABLED and HAN-

DLED permit inquiries to be made about whether a condition has been enabled or
would be handled.

F.4.8.1 ENABLED (CONDITION, LEVEL).

40

45

Version 102

Optional Argument. LEVEL

Description. Determine whether a condition is enabled.
Kind. Inquiry function.

Arguments.

CONDITION must be a condition name.

LEVEL (optional) must be scalar and of type integer. Its value must not be negative.
If omitted, the result is determined as though LEVEL were present

1986 November Page F-28

SUGGESTED EXTENSIONS _ X3J3/s8

with value 1.

Result Type and Shape. Logical scalar.

Result Value. The result is defined recursively, as follows:

Case (i):
5 Case (ii):

Case (iii):

If the condition specified by CONDITION is enabled, the result is .TRUE.

If case (i) does not apply and either LEVEL is zero or the current scoping
unit is that of a main program, the result is .FALSE.

If neither of the first two cases hold, the result is that of ENABLED (CONDI-
TION, LEVEL —1) evaluated at the point of reference to the current proce-
dure. '

10 F.4.8.2 HANDLED (CONDITION, LEVEL).
Optional Argument. LEVEL

Description. Determine whether a condition would be handled.

Kind. Inquiry function.

Arguments.
15 CONDITION

must be a condition name.

LEVEL (optional) must be scalar and of type integer. Its value must not be negative.

If omitted, -the result is determined as though LEVEL were present
with value HUGE (0).

Result Type and Shape. Logical scalar.

20 Result Value. The result is defined recursively as follow:

Case (i):

Case (ii):

25 Case (iii):

F.4.9 Notes on

If a handler is supplied for an occurrence of the condition specified by
CONDITION, the result is .TRUE.

If no such handier is supplied and either LEVEL is zero or the current
scoping unit is that of a main program, the result is .FALSE.

If neither of the first two cases hold, the result is that of HANDLED (CON-
DITION, LEVEL-1) evaluated at the point of reference to the current proce-
dure.

Exception Handling. Intrinsic conditions that correspond to violations of

language or processor restrictions also may be signaled by the processor even if not

30 enabled. H

owever, programs that rely on such behavior are not standard conforming.

Moreover, the result returned by the ENABLED intrinsic inquiry function must not
depend on the presence of absence of such processor extensions.

Version 102

1986 November Page F-29

APPENDIX G

accessibility attribute 5-5

active 8-6

alias association 14-3

alias association 14-4

ALIAS attribute 5-7

allocatable array 5-6

ALLOCATE statement 6-3
approximation methods 4-2
argument association 14-3
Argument keywords 2-9

array 2-7

array 6-2

ARRAY attribute 5-5

array constructor 4-7

array element 2-7

array element ordering 6-4

array elements 6-2

array intrinsic assignment statement 7-18
array section 2-7

array section 6-5

assignment subroutine 12-10
associated 14-6

association 2-9

assumed-shape array 5-6
assumed-size array 5-6

attributes 5-1

automatic 5-6

belong 8-6

blank common 5-15

block 8-1

branch target statement 8-9
Branching 8-9

CASE construct 8-3

case index 8-3

character constant expression 7-7
character context 3-4

character intrinsic assignment statement 7-17
character intrinsic operation 7-4
character relational intrinsic operation 7-5
character set 3-1

character string 4-4

character string edit descriptor 10-2
character type 4-4

characteristics 12-1

CLOSE statement 9-8

collating sequence 3-2

comment 3-4

common block storage sequence 5-16
common blocks 5-15 !
COMMON statement 5-15

complex type 4-4

Version 102

1986 November

INDEX

concatenation 4-5
conformabie 2-8
connected 9-5

constant 2-7

constant expression 7-7
control edit descriptor 10-2
control information list 9-10
create a file 9-2

current record 9-3
currently allocated 6-3
DATA attribute 5-4

data edit descriptor 10-2

.data entity 2-7

data entity 4-1

data object 2-7

data object or subobject reference 2-9
DATA statement 5-9

data transfer input statement -1
data transfer output statements 9-1
data type 2-6

DEALLOCATE statement 6-3
declaration 2-9

declared range 6-3

declared shape 6-3

default complex 4-4

default real 4-3

definable 6-7

defined 29

defined assignment statement 7-18
defined binary operation 7-5
defined operation 7-5

defined operator 7-5

defined unary operation 7-5
definition 2-9 '

delete a file 9-2

deprecated features 1-4

derived type 2-6

derived-type intrinsic assignment statement 7-18

derived-type relational intrinsic operation 7-5
digits 3-1

direct access input/output statement 9-11
dummy procedure 12-1

edit descriptor 10-2

effective range 6-3

effective shape 6-3

element sequence 12-6

elemental 12-1

elemental function 13-1

elemental reference 12-7

endfile record 9-1

ending point 6-1

Page G-1

INDEX

end-of-file condition 9-14
EQUIVALENCE statement 5-14
executable program 2-4
executable statements 2-5
execution cycle 8-7

exist 9-2

explicit 12-2

explicit branches 2-6

explicit shape array 5-5
exponent range 4-2
exponent range parameter 4-6
expression 7-1

extension operation 7-6
extent 2-7

external file 9-2

external procedure 2-4
external program unit 2-3
field 10-3

field width 10-3

file 9-2

file connection statements 9-1
file inquiry statement 9-1

file positioning statements 9-1
Fixed form 3-4

format control 10-3
formatted input/output statement 9-11
formatted record 9-1

Free form 3-4

function 2-4

Generic names 13-1

global entity 14-1

host 11-1

host 24 .

host scoping unit 2-4
IDENTIFY statement 6-6

|IF construct 8-1

IF statement 8-1

imaginary part 4-4

implicit 12-2

inactive 8-6

initial point 9-3

Input statements 9-1

inquire by file 9-18

inquire by unit 9-18

inquiry function 13-1
instance 12-10

integer constant expression 7-7
INTENT attributes 5-5
interface 12-2

internal procedure 12-1
internal procedure 2-4
internal program unit 2-3
intrinsic 2-9

intrinsic assignment statement 7-17

Version 102

1986 November

X3J3/58

intrinsic binary operation 7-4
intrinsic function 13-1

intrinsic module 1-5

intrinsic operation 7-4

intrinsic operator 7-4

intrinsic procedure 12-1

intrinsic type 2-6

intrinsic unary operation 7-4
iteration count 8-7

keyword 2-8

length 4-4

letters 3-1

list-directed input/output statement 9-11
Literal character constants 4-5
literal constant 2-7

local entity 14-1

logical constant expression 7-7
logical intrinsic assignment statement 7-18
logical intrinsic operation 7-4
logical type 4-5

loop 8-7

low-level syntax 3-2
many-to-one 6-7

masked array assignment 7-19
module 2-4

module reference 11-2

name association 14-3

named common blocks 5-15
named file 9-2

namelist input/output statement 9-11
NAMELIST statement 5-13

next record 9-3

nonexecutable statements 2-5
null value 9-13

numeric constant expression 7-7
numeric intrinsic assignment statement 7-17
numeric intrinsic operation 7-4
numeric intrinsic operator 7-4
numeric relational intrinsic operation 7-5
object 2-7

obsolescent features 1-4
obsolete features 1-4

OPEN statement 9-6

operator 2-9

OPTIONAL attribute 5-7

Output statements 9-1
PARAMETER attribute 5-4
PARAMETER statement 5-12
parameters 4-2

partially associated 14-6

position 9-2

preceding record 9-3

precision 4-2

precision parameter 4-6

Page G-2

INDEX

Preconnection 9-6

PRINT statement 9-9

printing 9-17

procedure interface block 2-4
procedure reference 2-9
Procedures 2-4

processor 1-1

program name 11-1

range 8-6

RANGE attribute 5-8

RANGE statement 5-12

rank 2-8

READ statement 9-9

reading 9-1

real part 4-4

record 9-1

record number 9-3

reference 6-1

relational intrinsic operation 7-4
repeat specification 10-2
restricted expression 7-8
SAVE attribute 5-7

saved object 5-7

scalar 2-7

scalar 6-1

scale factor 10-3

scope 14-1

scoping unit 2-3

sequence array 12-6
sequence associated 12-6
sequential access input/output statement 9-11
set of allowed access methods 9-2
set of allowed forms 9-2

set of allowed record lengths 9-2
SET RANGE statement 6-6
shape 2-8

shape conformance 7-6

share 8-6

size 2-8

size of a storage sequence 14-5
source forms 3-4

special characters 3-1

Specific names 13-1
specification expression 7-8
standard module 1-5
standard-conforming programs 1-1
starting point 6-1

statement entity 14-1
statement function 12-1
statement keyword 2-8
Statement iabels 8-9

storage associated 14-6
storage association 14-3
storage association 2-8

Version 102

1986 November

X3J3/58

storage sequence 14-5
storage sequence 5-16
storage unit 14-5

storage units 2-8

structures 4-5

subobject designator 2-8
subroutine 2-4

substring 6-1

symbolic constant 2-7
Symbolic names 3-2

Syntax rules 1-2

terminal point 9-3

totally associated 14-6
transformational functions 13-1
type declaration statement 5-1
type parameter expression 7-8
type specifier 5-2 _
type-parameter restricted expression 7-7
undefined 2-9

unformatted input/output statement 9-11
unformatted record 9-1

unit 9-5

use association 14-3

USE statement 11-2

value separator 10-11

values 2-7

variable 2-7

variable 6-1

whole array 6-2

whole array constant 6-2
WRITE statement 9-9

writing 9-1

Page G-3

