Supplement to the Minutes of Meeting 107 (Part 2)

X3J3 Fortran

8 to 12 February 1988

New Orleans, Louisiana

X3J3/220

Item

Number
9A -
15A -
21A -

22A -

32A -
34A -
35A -
36A -
43 --

45A -
46 -
47A -
48 --

49 --

50 --
51 --

CONTENTS
Supplement to the Minutes
Papers Distributed at the 107th X3J3 Meeting

New Orleans, Louisiana February 8-12, 1988

Note: Document numbers with a ‘A’ suffix denote
documents which were ammended at the 107th
meeting.
Page
Number
107-CDB-2 Personal letter from Jim Matheney 29
107-IRP-1 The DATA Statementcciieiiieiiianrannrceanns 43
107-KWH-3 REPEAT FUnCtionc.cvecvncecenserionnaacnoncnans 105
107-KWH-4 Deallocating Function Resultsceceenenn 107
107-LWC-1 Suggested Edits to S8 dated June 1987 135
107-LWC-3 Letter Ballot Edits for S8 dated June 1987 139
107-PLS-2 Miscellenous Edits ..ovvvnreneenrnirenennaeanennnan 149
107-PCS-3 Changes to Section 9ciiiiiiiiiiiiennaane, 151
107-RAH-1 Rewrite of 106-RAH-2 on Source Form 157
107-CDB-4 Subgroup Nominations for Public Review
Letters 22-47 . ..viiiiiriireenncaterenronennanananas 178
107-CDB-5 Subgroup Nominations for Public Review
Letters 48 and 50-64iiiiiiiiiiiiiiiiniann 272
107-TAH-1 Backward References in Section Notes 305
107-JKR-2 Meeting Minutesccviveiiiinnnnenniiinnnacanns 307
107-JKR-3 Changes to S16.107uverieinniinrnienniiananns 309
107-CDB-6 Subgroup Nominations for Public Review
Letters 10-2]iciiiiiieniiennrentnnoenceronnnns 310
107-IRP-4 Modifications to Subgroup Assignments for
Public Review Comment Processingccevuuenn 323
107-IRP-5 Subgroup Assignmentscciiiiiiiaiiaa, 324
107-JCA-6 UNISYS Tetter to Kachurikc.covivivivaiaiinn, 329

52 --
53 --
54 --

55 --
56 --

57 --
58 --
59 --
60 --
61 --
62A -
63 --
64 --
65 --
66A -
67 --
68A -
69 --
70 --

7 --
72 --
73 --

74 --
75 --

107-JCA-7 X3/SD-4 Projects Manualccocvevvionncnnns 331

107-JCA-8 X3/SD-7 Meeting Schedule & Calendar 355
107-JCA-9 Transmittal of December 1987 SD-6, Membership

and Officers ...coiieieinirinenineenraaansaasaonens 368
107-JCA-10 X3/SD-9 Policy and Guidelineseccnnene. 402
107-JCA-11 Transmittal of Report of Overage Standards

due for 5-Year Reviewcivveieenncnnconncnes 424
107-JCA-12 Second Public Review for Ccivevnnennn. 425
Meeting Agenda (as of Monday, Feb. 8)c.cceiviieiennnanen 426
107-JCA-14 Proposal on Hanzi Processing in Fortran 8x 427
107-JLS-2 Schonfelder letter to Lorin Meissner 429
107-MBM-1 CERN Users Votes on Fortran 8xcccuneen 432
107-AW-1 Revisions to $8.104(June 1987)cccvveuvnnnnn 434
107-ADT-1 Response to P. Sinclair’s Comments 20 and 21 437
Suggested Response for a Public Review Letter from the public 443
Datamation Article on Fortran 8Xccevvmieeiiiniiinnnnnnns 453
107-JHM-2 Review, MOSI Draft Standard, P855/draft 7 11/1/87 456
107-EAJ-1 Fortran 77 Interpretationsccciviiiaan, 460
107-EAJ-2 Deprecated Featurescoveviiiienniicnaiannnes 462
107-EAJ-3 Re-work of Low-Level Syntax and Source Form 463
107-EAJ-4 Fortran 77 Interpretation on Multiple DO

Terminationsciiviieneienneniineecnneninenans 467
107-BAM-1 Lahey Comments on Fortran 8Xxcovvveinnen 471
107-MJAB-1 Comments from Thinking Machines Corporation 477
107-MJAB-2 Thinking Machines Public Commentary on Draft

Proposed Standard X3.9-198xcciiiiniia., 488
107-WCL-1 Interpretation of Fortran 77cccvvivine, 496

107-TMRE-4 British Computer Society Fortran Forum Report 497

76 --
77 --
78 --
79A -
80 --

8l --
82 --
83A -
84 --
85A -
86A -
87A -
88 --

107-TMRE-5 UK response (NO) to the ISO Review of X3J3-S8
107-TMRE-6 British Computer Soc. comments on UK vote to ISO

Japanese Proposal fo Fortran 8x, NCHARACTER type

107-LWC-4 Corrections and Edits for S16 dated December 1987

107-CDB-7 Subgroup Nominations for Public Review
Letters 65-91 s es e aens ey BN N GEW N A ST EEela

F. Engel letter on X3J3 response to Fortran 77 Public Review

107-ALM-2 Compiler-Verifiable Aids to Naming in Fortran 8x

107-JLW-2 X3J3/514.107 (WG5S Resolutions, Liverpool)
107-PLS-1a SCRATCH FileS ...iiviiiiineneeenaancnnesensencnnne
107-JKR-4 S8 Editsivviivriniineenienanscnnetnnrecnoanns
107-LWC-5 Edits for S8.104ciiiieeicniniirnnnennnn
107-JKR-5 Edits .uiiiiiiniirrnnnirninecnanereansranseseennses

107-LRR-1 PUBLIC vs. PRIVATE fix-up with type definition ...

511
514
515
542

544
598
609
611
618
621
623
625
627

R

107-CDB-2
December 31, 1987

From: Carl Burch
To :X3J3
Subj : Blank Interpretation in Internal Files

Encl : Personal letter from Jim Matheny.

History
This is an extension of 106-CDB-1, with more research added, mostly courtesy of Jim Matheny.

Hole in FORTRAN 77

A recent item on the ARPANET notes system asked what the F77 standard says about blanks
read from internal files. I was unable to find anything at all. This is a hole in F8x as well. Jim
Matheny points out an F77 interpretation with regard to preconnected files that seems relevant by
analogy, at least :
® did not have a BLANK= specifier, blank characters in formatted numeric input fields are

ignored because BLANK="NULL’ is the default.”
® ponleading blank characters in formatted numeric input fields is not specified in the standard

and is therefore processor dependent.”

The phrase “is not specified in the standard and is therefore processor dependent” strikes me
as bureaucratese for "OOPS!". If it is supposed (and desired) to be processor dependent, let’s say
that in the dpANS, not in an Interpretation. Personally, I think that the time to move ahead is here.
I propose that we standardize on BLANKS="NULL’ as the default.

Current Status

Paragraph 10.6.6 of S8.104 specifies that blanks "are interpreted as zeros or ignored, depending
on the value of the BLANK = specifier currently in effect for the unit." The BLANK= specifier is in
the OPEN statement, which we don’t have if the transfer is using an internal file.

Proposal

P.9-4, Line 32

Insert as a new paragraph : . L.
(8) On input, blanks are initially-ignored. Jeeated as fuough et TormdT Wad an Wil

P96 Line3 BN e descvigior (0.6 b))
Insert after the paragraph : "On input, blanks are isidellyigaesed” tveated a5 & dme &ile bad

P.10-4, Lines 40-41 bee ompensd wiYh BLANKT NulL ®feeified (W aw OFPEN
Insert between lines 40-41 : ", ‘gcfault for a preconnected or internal file," statrew eu T *R.2800), :
P.10-10, Line 28 s

Insert after "nonleading blank characters” : "from a file connected by an OPEN statement”.
P.10-10, Line 30 - -
Replace "unit." with "unit; uﬂeadingblanks—ﬁoﬂkpreconnected or internal fileg are—initially-
<igneredS g tveded as 18 e Sile Wed beewm cEtned wia

BLAnK = nuLl.

79

2

James H. Matheny
41 Silver Spring Drive
Rolling Hills Estates, CA 90274
(213) 375-5940
December 1, 1987

Carl D. Burch

Hewlett Packard

19447 Pruneridge Avenue
M/S 47LH

Cupertino, CA 85014

Subject: Interpretation of BN/BZ during internal file input.

The FIB-2, page 18, addresses nearly the same problem. If a file
is connected by an OPEN statement, and BLANK= is not specified,
the default is NULL. (Page 12-20, lines 26-27.) If there is no
explicit connection by OPEN, the default is processor dependent.
The FIB says that this was deliberate so that processors could
implement BZ to conform with Fortran 668, and in time wean their
users to BN. See also page B9, lines 5-11.

The FIB does not address internal files as such, but I believe
that it covers the case. I think that it is finally approved,
and thus is a part of the Standard. Page 16 is enclosed.

ce:
E. Andrew Johnson

MS 10C17-3

Prime Computer Inc.

500 0ld Connecticut Path
Farmingham, MA 01701

DEFAULT MEANING OF BLANKS IN NUMERIC INPUT FIELDS @

Question:

What is the default meaning of blanks in numeric input fields? Is the default the same for
preconnected files as for files connected with an OPEN statement? '

Answer: °

For the subset language, ‘nonleading blank characters are interpreted as 2zeros in formartted
numeric input fields unless the BN edit descriptor has been used to cause them to be ignored.

For the full language, there are two default cases:

1. If the formartted file was connected by an OPEN statement that did not have a
BLANK= specifier, blank characters in formatted numeric input fields are ignored
because BLANK='NULL’ is the default.

2. If the formatted file was preconnected, the interpretation of nonleading blank
characters in formatted numeric input fields is not specified in the standard and is
therefore processor dependent.

Discussion:

For the subset language, the standard clearly states that the nonleading blanks in formatted
numeric input fields are interpreted as zeros at the beginning of each formatted input
stztement. Subsequent interpretation of such blank characters is then subject to control by the
BN and BZ edit descriptors.

For the full language, the standard clearly specifies that BLANK="NULL' is the default w nen
the BLANK= specifier is omitted in an OPEN statement, and the standard does not specify anyv
default when files are read without the explicit execution of an OPEN statement. This
omission was intentional so that a processor might continue to use the X3.9-1966 interpretation
of nonleading blanks as zeros in numeric input fields to provide compatibility with the
X3.9-1966 standard. A processor may have a method of specifying the meaning of blanks in
numeric input fields at the time of preconnection.

References:

American National Standard X3.9-1978

Section Heading Page* Lines
1.4.1 Subset Conformance ’ 1-3 1-6
12.10.1 OPEN Statement 12-20 18-29
13.5.8 BN and BZ Editing 13-8 13-28
B12 Section 12 Notes - B-9 518

= D

107(*)IRP-1

To: X333

From: Ivor Philips

Date: January 5, 1988
Subject: The DATA Statement

There is a problem with the current definition of the List-Oriented DATA Statement. The problem
occurs on page 5-12, line 28 where the current definition states that a data-stmt-object can be
object-name. While object is defined in 2.4.3.1, its definition is too broad to be used unqualified in
the context being discussed here. For example, a constant is an object and cannot be initialized.

There are three (at least) ways of changing the definition.
Option 1

1) Page 5-12, line 28: replace by

R528 data-stmt-object is scalar-name

. Or array-name
\

Re ‘-‘-4.— k'i Cca_,--';r:‘.r.‘l,; The ‘{\'b,,;‘im*-(:il,-..iuf must act be conitoatt.
© » «

2) Page 5-

li, line 32:

Page 513, line 44: after “SKEW" add *, DIRECTION®. ° - TN ‘\?\j
\
:\after this\line inse 3 /
CTION /\10000+00,)
13, line 31: after the “.” a {“All 10,000 elements of the ay DIRECTI are
initjalized to the value 90.0N N\ N N

L NN
End\)ption 1

‘Note that this definition of the list-oriented DATA statement does not permit array sections to be
initialized.

.' .o—pflon 2 . y - 1
‘ 6) Page 5-12, lines 28—30:\:e\pla.ce ;

) with AN ;
\\\R528 data;\cq&-obj ect \ iskig\ble . \
/

/ T) Page 512, line 32 delete this lines, N

[2

&3

e

107(*)IRP-1

8) Page 5-13, lines 16-17: replace “whose unqualified name” with “that”.

9) Page 5-13, line 43: after “MILES” add “, NODE". .

10) Page 5-13, line 44: after “SKEW” add “, DIRECTION".

11) Page 5-13, line 47: after this line insert
DATA DIRECTION / 10000*90.0 /
DATA NODE (0:8:2) / 520 /
12) Page 5-13, line 51: after the “” add “All 10,000 elements of the array DIRECTION

are initialized to the value 90.0. The 5 even numbered elements of the array NODE are
initialized to 0.”.

End Option 2

This definition of the list-oriented DATA statement would be more uniform with respect to the
object-oriented DATA statement. In particular, it would permit array sections to be initialized.
This, of course, is enhancing & deprecated feature. Initializing a variable of derived type or a
structure component would still be forbidden.

Option 3
All of Option 2 plus the following:

13) Page 5-13, line 6: delete “of a derived type, a structure component,”.

14) Page 5-13, line 18: before the “A” insert “A derived-type variable is equivalent to a complete
ordered sequence of its components (4.4.1).”.

End Option 3

This, additionally, removes the restriction on the list-oriented DATA statement that prohibits the
initialization of derived-type variables or structure components.

Whether or not one of the above proposals is accepted I propose the following changes in connection
with the DATA statement.

Proposal 1 (Editorial)
15) Page 5-13, line 19: change “4.1” to “4.4”.
16) Page 5-14, lines 18-20: delete the first sentence.

17) Page 5-14, line 26: after “constructs” insert“(8.1.4.4)".

-2-

ez

107(*)IRP-1

18) Page 5-14, line 37: after the “: A" add “, C".

19) Page 5-14, line 39: after this line insert

TYPE (STRING (8)) :: FRUIT

20) Page 5-14, line 42: after this line add

DATA (C = 0.0)
DATA (CHAIRMANY%AGE = 35)
DATA (FRUIT = STRING(6)(5, 'APPLE'))

s T LAY
where CHATRMAN is defined && page—4-7-limes-8=13 and STRING is defined 58-paged-7

lines 42-45.
21) Page 5-14, line 43: insert after “odd” the word “numbered”.

22) Page 5-14, line 43: insert after “zero.” the following sentences “The array C is initialized
to zero. The AGE of the derived-type variable CHAIRMAN is set to 35. The derived-type
variable FRUIT is initialized with LENGTH equal to 5 and VALUE equal to 'APPLE '”.

End Proposal 1

The current definition of the data-implied-do in the list-oriented DATA statement permits a sub-
string to be initialized. This is not in FORTRAN 77 and is, in a sense, more general than the object-
oriented DATA statement. Moreover, the concept has not been correctly defined with respect to
substrings as there are currently no definitions or restrictions on the form of the substring ranges.

Proposal 2 corrects this by eliminating this undefined capability.

Proposal 2 (Error Correction)

23) Page 5-12, line 41: delete this line.
End Proposal 2

Proposal 3 corrects an omission in the constraints of the list-oriented DATA statement.

Proposal 3

24) Page 5-13, line 15: Insert after this line “Constraint: scalar-int-ezpr must not contain any
variables, except for data-i-do-variables from an outer level of the data-implied-do.”.

End Proposal 3

5

Subject: REPEAT Function 107(PROC)KWH-3 (Page 1 of 1)
From: Kurt W. Hirchert

Problem

In order for a function to be elemental, the atributes of its result must be independent of
the value of its arguments. The length of the result of the REPEAT function depends on
the length of the argument STRING (OK) and the value of the argument NCOPIES (not

OK).

Proposal

Reclassify REPEAT as a transformational function:

1. Page 13-1, line 38. Delete “REPEAT,”. L ,
fm\sfcfbmo‘-mnj I?.E —
rPEAT

Line 39. Insert new sentence: “The M—-l-»[function[‘retums repeated -
concatenations of a character string argument.”

2. Page 13-40, line 3. Replace “Elemental” with “Transformational”.
3 f’aje, 13-4, -ane_s Sand &, Chavge of boe' k
Scaler amd of bf"”/ heice

: - /
b Pwe 13-4, line T Champge Resth ... Hagocke’ to
Resull Type , 7y pe Fatoweters, qmol Shape., Chamcbor Scadar’

Discussi

If we ever adopt the concept of functions which are elemental with respect to only

:;;c;tg:rll ta;gpmcrg?, REPEAT could be reclassified as elemental with respect to the

Q

/oj—/
f. o5

TN
e

Subject: Deallocating Function Results 107(PROC/DATA)KWH-4 (Page 1 of 2)
From: Kurt W. Hirchert

Problem

Section 6 says an allocatable function result variable is not deallocated on completion of
the execution of the function, but nowhere does it say when this variable is deallocated.

Dj .
We could approach this either of two ways:
1. We could find some place in the description of expression evaluation to describe
5 when expression evaluation must also deallocated storage.
2. We can adopt the point of view that the result variable is deallocated just like any

other local variable and that it is only its final value that is retained for subsequent
expression evaluation, not the storage itself.

Since the latter approach seems to be more consistent with the treatment of nonallocatable’
o result variables and also seems to involve easier text changes, it is the approach taken.

Note that if we ever actually admit that an allocatable is really a pointer that is

automatically being dereferenced, we may need to reconsider this descriptive decision.

Proposal

1. Page 6-4, line 25. Delete “or function result”.
>\ Page 12-7, line 40. Replace “shape” with “rank”,

15 Line 41. Add new sentence: “The shape is also so determined except in the case
of a function whose result has been declared to be allocatable, in which case the
shape is determined by the final shape of the result variable.”

3. Page 12-9, line 41. Add new sentences: “The value of the result variable at the

Camplehim ok Hiae execution of the function je-eempleted is the value returned by the function.

0 If the function result has been declared to be allocatable, the shape of the value
returned by the function is also determined by the shape of the result variable pe

whan the-time the execution of the function is completed. The value of the result

variable must be defined by the function. If the function result has been declared

allocatable, the result variable must be allocated by the function prior to being

2 defined.”

4, Page C-17, line 2+. Add new section: “

teilar 4o
C.12.x The Result Variable. WNeminadythe result variable isme“b\;e-léke any
other variable local to a function subprogram. Its existence begins when

execution of the function is initiated and ends when execution of the function is
107(PROC/DATA)KWH-4 (Page 1 of 2)

&7

Subject: Deallocating Function Results 107(PROC/DATA)KWH-4 (Page 2 of 2)

From: Kurt W. Hirchert

terminated. However, because the final value of this variable is used subsequently
in the evaluation of the expression that invoked the function, an implementation
may wish to defer releasing the storage occupied by that variable from termination
of the function until after its value has been used in expression evaluation. Ia-the—,

ity U

107(PROC/DATA)KWH-4 (Page 2 of 2) @

2N ,
“ 107(*) LWC=1
December 29, 1987

Page 1 Of 2
TO: X3J3

From: Lloyd Campbell !
Subject: Suggested Edits to S8 dated June 1987

1« ps i1i/2, delete '"uses of',
2. po 1i/¥8, add "(predefined)" atter "“intrinsic" and delete "(prededined)"
at p. 1ii 1ine 30.

3 pe ii/2V, delete "information®.

4o pe 11/26, change “operations on" to "uses of" and delete "use'.

S5e¢ pe ii/41, change "MODULE" to "module™.

bs Pe 1i/47, change "ge use' to "their usage".

7¢ pe 1ii/1, change WBLOCK DATAM to "block data%.

8¢ Do 1ii/31, change ""REAL, inciuding" to MWREAL which includes'.

9. pe iv/12, delete comma after "rules!.

10« pe iv/21, change "intrinsics" to "intrinsic functions".

11« pe iv/37, add hyphen in "derived type'".

12+ ps 1=4418, change "(e.g., array-specg)" to "(for example, "array-spec"
in R513)'. (106=62, #.4)

13 pe 2=1/26, add "a" pefore 'module” and add "an' before "internai'.
(to complete previous partial edit) Also include this
change on copy of this constraint at 12=9/18+ & 12=10/26+.

14+ ps 2=//3, change "Upon invocation of a procedure" to "When a

procedure is invoked'.

15+ ps 3=2/27, change ‘'mapping" to "ASCII collating sequence as" and
delete M"(ASCII)". Also aad sentence: "Note also that
the intrinsiec functions LGT, LGE, LLE, and LLT provide
comparisons between s¥rings based on the ASCII collating
sequence."

16« Pe 4=4/24, change "passed to! to "associated with".

17 ¢ BlmZiZdy add hyphen in "type parameter' e —fdot—arieypmihyedm-

P.7=8/42, 7=9/2,8,9.

18 Pe 4=9/3, add "(7.5.1.4)" after "assignment'.

19« Ps 4=9/7, change 'last period to a colon.

20. pPe 4=10/17, change "which" to "that',

Pe 5=1/4, add comma after "Collectively'.
22+ Pe 5=3/12 & 14, add "type" before "parameters". (twice)
25+ Do 5=3/20=22 & 25=2b, add "In any context that requires type
parameters to agree," to beginning of sentence and
delete it at the end of sentence. (twice) (see L46=48)

24he pe 5>=4/19, change "such a" to 'the''.

25. Pe S5=4/45 & 46, add "type" after Yrange". (twice)

26 De 5=7/40, delete "a!" before “function" and before "localh. (twice)

27+ Pe 5=8/18, delete sentence "If the lower bound is omitted, the
default value is 1." (is covered in next sentence)

28¢ DPe 5=9/34, delete "or SAVE statement". (add sentence below at
S=11/47¢*}.

29+ pe 5=10/13, add Mare' before "equal®. _ " -

30. pe 5=10/42, add "dummy" befere—targumentiy, oLter 3 eccifled .

31e Ds 5=11/47+, add paragraph "A SAVE statement may appear in the

specification part of a main program and has no effect."
(see #28 above)

32. Do 6=3/18, make "effective shape" bold and change ". The" to
"and the". (one sentence to define effective shape.)

33+ Pe 6=~3/41, add hyphen in M"explicit shape'.

p- 135

4.
35.
36.
37
38,
39.

41.

Pe
Pe
Pe
p.
Pe
Pe
Pe

Pe

B p.

23

3%
P

R

4d.
49.

50
51.
52
53
She
55.
56,

57
58.

59.
60

62
63
b5,

66.
67

Pe

Pe

Pe

Pe

Pe
Pe

De
Pe
Pe
p.
Pe
Pe
Pe

p.
DPe
Pe
p.
Pe

Pe

Pe
Pe

Pe
Pe
Pe

107(*)LWC=1

Page 2 of 2 "EI!!’
E=l/26, add "or" after the comma.

?-llgﬁdd Waret! before "definedit,
7=6/41, add Wif"" after "or" and add "is" after "and'.
7=7/3 (twice);5,7s & 12 (twice), add space after the commas.
7=8/28 & 34, change "the".to "al,
/=5/30, delete hyphen in "exponent=range'.
Y=10/23, change "a subscript! to "an array element" and in line
24, change "the" to "its". (106=111 §13)
7=10/26, delete "name".
8=1/11+, add "Constraint: An entry=stmt must not appear within
a block."
8=5/1, change "fragments" to "constructs'.
8=5/20+, in new text, change "“code fragment" to "CASE coénstruct".
8=7, in list item (3) of new text for 8Belelielieliy, add "a" before
WCYCLE" in "an EXIT statement or CICLE statement",
8=8, in new text for 8.1.4.5, change "I/0" to "input/output"
in text following Examples 2 and 7. (twice) a
8=8, in new text for 8.1.4.5, delete "an" in "an END or
CONTINUE" in text following Example 7.
8=10/3, delete "a after “or".
10=1/22=23, delete "or after" and add new item "(3) After a
slash edit descriptor! and renumber o0ld (3) to (4).
(Allow FORMAT(3/I5))
10=2/15, delete 'a" before "control" and before “character".
10=5/7, change "will be" to "are".
10=14/29,delete "Acceptable!.
11=4/14, add colon after "statement".
11=5/6, change "keyword" to Margument keywords".
12=9/22, add "a" after WIf", Also at 12=10/30.
13=12/32, change "“has the value" to "has a value", ("the' was
incorrectly inserted by previous edit)
13=21/33, change "“has value" to "has a value",.
15=28/41, after "without" add "counting".
14=9/9, change "equal sign" to "equals". (as in Sect. 3)
B=5/20, delete "see",
c=4/L2+, add section: "C.7.4 Overloaded Intrinsic Ogerators.
The overloading of an intrinsic operator does not cause
automatic overloading of any syntactical equivalent
operator. For example, overloading .EQ. does not cause
overloading of ==." (106=111 #10)
C=7/42, change "else undefined" to "else maximal record lengtn", -
(106=62 #9 and 106=111 #31)
C=15/18, change "keyword arguments" to "argument keywords".
C=16, in new text, cnange “machinets" to "processor's" and
"machine! to "processor" in paragraph following first
example of MODULE SAMPLie
C=2l;/29, cnange "ixamples'" to "Examgle".
C=24/30, delete "Cel5.9.1 Polynomials."
C=24/29, change "Cel13¢9+" to "Col3eBelle

-3¢

€

1C7(*)LUC=3
Jecemter 29, 1307
Page 1 ot b

s X3J3
From:; Llioyd Campbell
Subject: Letter Ballot Edits for S8 datea June &Y

The following suggested edits are from the last X3J3 letter ballot,.
The page and line numbers save been updated for the current S8. I believe
that taese edits are wortiay of consideration and that most of toem will

improve tae document.

3272 (24) Page 2-8, line 8. Change ‘entity’ to 'object'. [Entities
include expressions.] (TR)

-
242Qn) Page 2-8, line Yo, !Mﬁh'ﬁhgad-mw add

sentence 'A ranged array has effective bounds for each
dimension that ars equal to or lie within the actual bounds;
corresponding to the effective bounds, it has effective
extents, an effective shape, and an effective size.®. (TR

‘?\E‘_O (2n) Page 3-4, line V4, . replace "In free source form (3.3.1), a” with "When a
7 AN statement is labeled using free socurce form (3.3.1), the". CTrw)

?}‘%\(1"\) Page 3-4, .line 15, replace “In fixed source form (3.3.2), a” with “When a
. Statement is labeled using fixed source form (3.3.2), the". See® 3o (TTm)
; 5o,

”

3X4C14) On_page 3-4, line 16, change “1-5; blanks” to "1-5. Blanks"
N [blanks are once again insignificant, so may appear within

labels in both source forms]. (v
G182 s) F‘J-B.LBOJ replace TNRLL L i, | TRET Bt \Steaiotn S R E BN S
i ———— ot ...-.ﬁ'mm.h:!n any eontest hﬁ-r\‘_:_' resuive:
St gy —re tups :var.ar:.ets-rs“a-gre-:-. ths® Ma C:Ls)
r el .
435353) Fe-3,L33 ¢ 37_,/ repiace "The" b"-“_" N B0Y CORTExT Likedh reguivess Shgdtoo
etrbers—gefe UL [STEMELSTE 3Gres, the” CTS)

">

P
’

\ o ' Rep\a.ee .)
}M(}u,) P5-4.L25-26% What—dess “or access such 2 definition® mesmmr—eitirer—tutiars—or
»

HEETT With Yor e iwdve face o Ao Gueching murt Ve axphict) (79

N
GL{L@.n) Page 5-4 1line 42, Change 'Objects' to 'Entities'. (Te)
643(@n) page 5-5 1ine S, Change 'oObject' to 'entity'. (T®)

, \
’><(~1) pe 5=8, line 41, change "dummy array argument" to "dummy argument array". (wed

Ba cay) [5-1%8/ ;q] replace "the array” with "its array” <more specific>

=D

107(*)LWC=3
Page 2 of &

1034 (3y Page 6=4, 11::‘- 10, replace the text by the following

‘array , has been allocated to become deallocated. An array that
1s deallocated muat not be defined or referenced until 4t is
again allocated.' (RS)

lou1 (3 IR o Haik y
‘9 6-4 /14 *,Ihole Add : ‘Constnint:harrag-nm must be the name of an aTlocatabie

array.

1149 (3 4) Page 6-7elines 24 1 would recommend that two additional columns be added 10 Table
' 6.2 - one for "Assumed Shape Array’ and one for 'Assumed Size

To g-uya Armay’. The entries for assumed-shape array would be, in order, Yes,

No, Yes, No7/, No, No, No, Yes, Yes, Yes, No, Yes, Yes, Yes, o,
No, Yes. The entries for assumed-size array would be, in or: r, Q’cs.
No, Yes, No¥? No, No, No, No, No, Yes, No, No, No, Yes' No, No,
Yes. The entuy 'No?" means that I cannot find a discussion of this
issue in Sections 9 or 10.

10 (2y) Page 7=5, line Lpz, add before the period 'for the type of x2' (Rs)

Wy (_11) Pase. 7=5 line l-i‘l)add before the period 'for the types of x! and x2¢ (RS)

1214 @y Page 7-7, line Yo, Insert "(13.9.5, 13.9.6, 13.9.11)" after "inquiry
function® to define exactly which ones may be used. CRR)

1271 (2y) 7-15/7 3%-u1, ! Words in last column are not helpful.
Remove the last column, or f£ill it with more helpful text:

<
true only if x\ is false
true if x1 and x2 are both true
true if x1 and/or x2 is true
true if either is true, but not both
true if both true or both false <BAM)

1283 (3 4 Page 7-18. 1ine S%!ady a paragraph:

e N OTE dwae -

1) the operator == is cverloadeg to operate on type logical;

2) the operator .STARSTAR. is defined to Quplicate the function of ==
on type real:

3) .MINUS. s cefined to duplicate the unary operator -

4) L1 and L2 are type logical aneg X ang ¥ are type real:

l then in precedencs:

1) L1*al2 13 mnigher than XsY;
: 2) X=Y 13 higher than X.STARSTAR.Y: ang CAw)
3) .MINUS.X is migher tnanm -X. ®(end text)

v
a B 04 w .
313G Y [7-21132) »qﬁ:-mmm- Wity add This yalea G ee eras Ha Mkma in e eahon g Ha
O—vas 3 ; wWHERE whvfi\sehsz
<needs clarification; mask-expr is evaluated first. See [7-9/39—7-10/4]> Shdngas v wabibios ¢

amd delete Sextence iw lines 31-792. %ﬂ'mls“‘."‘i'

% QG 3) 8- I/ 340 . Mhole Add: AnENTRY statement must not appear in an executable construct.”

)

107(*)LiC=3

Page 3 of 6
' (3n) 8-5/1 : "fragments" --> Tconstructs"
8-5/2 : Add to end of line: ! Construct 1
8-5/8 : Add to end of line: ! Construct 2 L_Gﬁ\"\\
|8-5/15,: Add to end of line: ! Construct 3

d_ele*‘c
13963) page 8-|o.ﬁLmos 33-34.

-GS
This sort of text should not be part of a standard. (W &S p)

%(3‘3) 92U /iy, edit Add: o-pandismien, The number of files and units available, the
*

allowed values for units and the form of file names, the number of

records in 3 file and the maximum record cize are all processor
dependent.” :

%\3) (10-13/3lreplace "a name” with "an optionally qualified name"

< avoid confusion on different use of the term "name” for namelist i/0>

15an & n) [10-14/39 before "list items” add “scalar” <go all the way>

e p.\‘l.[l"ll -
% G9) [10-15/1810-i5/en] dctere & replace with copy of [10-1¢/ 4 5 ¥ ith-the-foliowing-editsim-

ST CguasT ana-amnp

pd st-directed. Note that the "terminati
encountering "=" or "&" would be an error>

on” (i [l) srill a;’)plia;

ineL (2a) [12-2/2¢] replace “a keyword argument” with "an argument keyword” <see 2:5.2>

>Q (3) Page 122, line 33. Is an explicit interface required if the function result is ranged? If
50, after ‘allocatable’ in line 39, insent ‘or ranged'.

1137 G [12-5/271+] add line "providing its interface is explicit.” <avoid confusion>

\%u?(z.b P. 12-13, line 9 : inserxt "dummy" following "firgt® CLe)
1818 L’Sn) P

12-14, line 2%%"and™ -> "™, A statement function™

Comment: An internal procedure may not be supplied as a
dumm iy azrgument. (LR}

(L)

1823@) p. 13-1, lines 13?\1‘# delete "exteznal"kchﬂ) Ase oknuﬁcl‘au\' +w'a'.

Comment: Why is this distinction made? What about passing it
4s an internal proceduze or a module Proceduzxa?

'B836CGy) 13-2/35+ - edit add eThe $He EFFECTIVE_RANGE and EFFECTIVE_PRECISION functions ea.c'a
return a processor-dependent value that is greater than or equal to
‘e, declared value.”

Covre s QONG in o
’ ike * it" o the lagt centence
L V(39 13. -ug@:edit We shouldn't use a phrase like "best fit". Replace _
>< sHiE=2/uT '-l'i.ed with “The models have processor-dependent parameters which
describe the arithmetic used by the executing program.

4

107(®*)LWC=3

Page 4 of 6

}QG Q) 13=3 / 17 ; ~ edit Begin a new paragraph with "Examples” and add a new paragraph
before it. “This standard only allows one model for integers and
requires at least two models for real numbers. The only raquirement
on the real models is that one (default double) have a larger
EFFECTIVEPRECISION than the other (default real).”

18C0(3)p. 13-5, 1line ®.: preface with the section tle "
)Geonetzic Location ;unctions" (see 13.9.14) ELEZ8 13756 &ffﬁy

133937 1319 /1-3 { edit Replace “[EC1 DIM=1)...ARRAY." with "(d1 ,d2,...4DIM~1 dDIM, ..dn)

where (d1,d2,...dn} is the shape of ARRAY". This makes this text
consistent with the text in other functions.

a1 (3) [13-22/; before "numbers” add "positive” <avoid confusion>

‘a3) j3-23];s-zb:edit Replace "[E(1 DIM-1)...ARRAY." with “(d1,d2,...dDIM-1 ,dDIiM,...dn)
where (d1,d2,...dn) is the shape of ARRAY". This makes this text
consistent with the text in other functions.

13143) 13-23/30: edit Replace “[E(1 DIM-1) EDM+1 n)]" with
: [d1,d2..dDMM=1 dOM+1 .. dn)]".

%(‘3)1’. 13-2%, 1line 2%: append +the sentence "It must not be an
allocatable arzray that is not allocated or an alias array that is

not alias associated.”

CWR)

laé 24 3y p. 13-28, line 7: £following "scalar™, insert "It must '
¢ q?.allocatal':le array that is ngt allocated or an aliasuazz:;ttggt
ignot alias associated.™ CLon) CWRY

18363) 13 25/21 edit Replace “10" with ":". The use of DIM= is.overly redundant for a
one dimensional array.

1quiC3y 13 26 /-8 : edit Rewrite the two sentences into one, eliminate the “"Furthermore".
Change "and™ to °,”. Change ". Furthermore,” to =, and™.

| "?‘7 Y03) Pag_e 1332 lines 44 Q Y2 : Before 'extent’, insert "effective’.

V2 RS (3 - Page 1335 lines ?Fe 17 Before extent’, insert 'effective’.

1443 (3) 13.30/ 26 ' edi ,
-37/ 26 . ' edit A better example is
‘9 3 /) PACK (M, M NE.O, VECTOR = [2,4,6,8,10,12]D = [9,7,6,8,10,12].
' This shows where the elements come from.

% G W) (134 l/-u-]add sentence;;isr to first one in Case (i):
"If BACK is absent or has the vaiue .FALSE., STRING is processed from left to right.”
<say up front the usage of BACK>

§<} (34 [134429] replace “The default” with "Note that the default” <goes with above edit>

Xs Gy (134 1/2] replace first semtence in Case (ii) with:
"If BACK has the value .TRUE., STRING is processed from right to left.”
<parallel Case (i) above>

7D

1U7(*)LiC=3
Page 5 of &

2233 (3 13-43/22-2%%edit Replace "E(1 m)" with “[41,d2,..dn]" and "[EC..)]" with

"{d1,d2,...dDIM~1 MAX(NCOPIES 0}, dDIM,...dn]"

2035 (3)13-43 /29-30: edit Replace “SOURCE(... omitted” with

. SOURCECr1,r2,.rDIM=-1,rDIM+1,. rn1)".
%@\ Page 14.3, line 2

After ’label.’, insert 'Labels with the same or

! . different digit se-
quences in the same or different scoping units cann

ot be associated.’.
%@)'. Page 14-3, line 23 Alfter ‘unit.’, insert "Exponent letters with the same or diffcrent leuers
in the same or different scoping units cannot be associated.’.
%’-) . Page 14-3, line 2.9 Afier 'rank.’, insert *Operators with the same or different letier se-

quences in the same or different scoping units cannot be associated.”.

25 '
Py G D14~ 3/15 edit Change to “deallocation of parent entity ",

Y3) Page 14-5, line | g The phrase:

"Termination of execution of the executable program®

should agree with page 14-4, line 3§; and thus should read

"Tarmination of execution of the [7 R (ﬁ“) (.'3 (L)
. Qreceduve become
L34 @24) A-5/28, "nonstandard conforming syntax" =--> “"nonstandard syntax" |
i 0y
F
2235 (%) Poge B-1, line 7, Change 'ANSI X3.9-1978" to mé’-iﬁﬁ%"n'. SR
- : 3 R
2237 (2n), Page B-1, lines 1e-1),Change 'ANSI X3.9-1978' to 'Feeimem 77'. (Sad
RTRAN N
2233 (1) poge B-1, line I, After 'available' add 'in féma 77", (3R
L3 9 () Page B-1, line 13 Change "logical IF and block IF" 1o 'the IF statement (8.124) or IF
construct’.

2252 Ay . Page B-1, line 2.\ After "'TO’, insert ’statements’.

2264 Q. Page B-2, line 9 After 'TQ’, insert "Statements’.

12 8o (Qw) Page B=3, line 17, replace "Though the” with “The"”, line 18 replace "time,
features” with “time. Features”.

C T

2281 (2unY [B-3/20] replace "only provided” with "provided only” <usage>
L8N (39 Page E-H‘ 1ine ‘-Hf-,Add 2 paragraph:

"It is understood that not all EnTRer:atement usage is this simple:

it is nevertheless believed tnat more complex uses of the ENTRY

statement can be replaced through the Straightforward use of internal

procecures, the CASE construct, the IlF construct, anmga if necessary, CA.\\3

the uncongitional GO TO comstryct.*

%>

2

107(*) LiC=3
Page 6 Of &

7><(36) Page B-6, 1ine Toé,Add a paragraph:

*There are, Of course, oOther uses of the Computed GO TO that JO not
translate directly into a &Ft=te® CASE construct (for instance, one
cannot ‘drop through’ from one case to the next). It is believed,
however, that siraightforward use of the SwEe® CASE construct, the 1F
construct, if nacessary the unconditional GO TO construct., and perhaps
internal procedures, instesd of the Computed GO T0 will result in & a 3
'!.\rg‘m that 1S easier to write, easier t0 read, and essier to maintain,® L ™

L3N (39 Page C-2 line 6. replace “composed of intrinsic types and other” with
” of components of intrinsie type and of other”. (T
f.ons'm*'\\m“
P c-2. 1 Provide an example of the use of an
23206 (3!6\ E;g;NENT_LE"I.’:r‘Ez Et;.tcmnt‘f‘ Ao atter ine 22:
"For axample, with the definitions

REAL (PRECISION = 10) B
EXPONENT_LETTER (PRECISION = 10) L

;'?. lTiteral 10.93L7 nas the sSame precision as th.l variable B8, LAm\
L 342 () Page C4, line 15 Change "The component identified by the reference’ 10 A structure
component’. '

. C=16, line & : "content "
436 QO sptozage'hack to the"<m ents of the

7%@'\\ Page C=11/2.+ =" - - add the following ;

t"he CONTAINS statement is provided to delineate textually
internal procedures from the host code. This is important
primarily for error rescovery, since a missing END statement

im a file of multiple procedures might be difficult to isolate
without CONTAINS.! (RS)

-> "contents of temporary
(LRY

L4424y p. €-17, line S : "extension™ =-> "neuw featuze” (eR) CLo)
2446 (29 p. c-17, line 13: nrectangular slices™ => "subazrxays" R

LXY (2a) Page C-20, line 38 Change ‘may be passed across’ 10 "are specified”.

(07 (%) PLS=2

TO: X373 @ @

FROM: Paul L. Sinclair
SUBJECT: Miscellenous Edits
DATE: November 17, 1987

The following edits to Draft S8, Version 104 are offered for consideration.

References to the document are in the form: p/l or p/l-1 where p is a page

number (for example, 4-5), and 1 is a line number. Material copied from the
draft is in quotes. Items in apostrophes are suggested rewordings.

1. 9-2/9, add after "allowed forms," the following 'a processor-determined
set of allowed actions,’'.

Justification: needed for description of ACTION specifier in 9-8/18.

)ﬂ; 9-7/24-25, delete the sentence "Note that SCRATCH must not be specified
with a named file.".

Justification: 9-7/2 already says this. 9-7/1 is not repeated.
3. 9-7/35, change "If the FORM=" to 'If this'.

Justification: Consistency with the description of other specifiers (for
example, 9-7/14).
pvqseva'

4. 9-7/44, add after "access.", the sentences 'This specifier must be _gsen

when a file is being connected for direct access. If this specifier is

omitted when a file is being connected for sequential access, the default

value is processorjdetermined.’

dependent.
Justification: need to specify what happens when specifier is omitted,
consistency with FORTRAN 77. -

5. 9-8/5, change "If the BLANK=" to 'If this'.

Justification: Consistency with the description of other specifiers (for
example, 9-7/14).

6. 9-8/18, add after last sentence:
'For an existing file, the specified action must be included in the set
of allowed actions for the file. For a new file, the processor creates
the file with a set of allowed actions that includes the specified

action.'

Justification: This is stated for other specifiers. To be consistent,
it should be stated here.

:ﬂ: C-7/42, change "undefined" to 'maximal record length'.

Justification: Consistency with 9-21/1-5.

(J49)

) 072CK) pLS—3

&

FROM: Paul L. Sinclair
SUBJECT: Changes to Section 9
DATE: November 24, 1987

The following edits to Draft S8, Version 104 are offered for consideration.

References to the document are in the form: p/l or p/l-1 where p is a page

number (for example, 4-5), and 1 is a line number. Material copied from the
draft is in quotes. Items in apostrophes are suggested rewordings.

;><: 9-1/32, change "processor-dependent” to 'processor-determined’.
Justification: consistency with 9-2/8-10. Also, this is an attempt to
reduce .the number of terms: processor-determined => there exists for the
processor an algorithm to determine value, processor-defined =) there
exists for the processor a specific value.

;z: 9-1/33, change "processor-dependent™ to 'processor-defined’'.
Justification: See above.

3. 9-1/34, delete "input/".

Justification: Only applies to output list.

4. 9-1/37-38, change "An endfile record is written explicitly by the ENDFILE
statement. The file must be connected for sequential access." to 'An
endfile record is written explicitly pe—a—iii® by the ENDFILE statement;
fhe file must be connected for sequential access.'.

Justification: Consistency with phrase "implicitly to a file" in
following sentence. The sentences are closely related and should be
separated by a semicelon.

;)K; 9-2/12, change "processor dependent" to 'processor-determined’'.

Justification: Consistency with 9-2/8-10.

X

9-2/28, change "to a unit (9.3.2)" to 'to a unit (9.3.2) or if the file
is preconnected, when the file is created (9.3.4)"

Justification: Consistency with 9-6/13-15.
7. 9-3/23, change "the position of a" to 'the position of an external'.
Justification: Consistency with 9-2/23.
;8(9-3/40-42, "On output, a new record is created and becomes the last
record of the file." This does not explain where the file is positioned
prior to data transfer. This would seem to imply that if a program

writes successfully to a file, then rewinds the output file (which
implicity writes an endfile record) and then writes a record, the program

@&

10.

11,

12.

17.

XXX

is non-standard conforming because an attempt was made to write a record
after the endfile record.

9-3/45-46, delete.

Justification: These lines only apply to sequential access and are
redundant after moving lines 9-4/6-8.

9-4/1, change "condition," to 'condition (9.4.3)'.
Justification: Provide reference to definition of term.

QML
9-4/2, change first "endfile record," to 'endfile record hLwt no error

condition exists,'

Justification: Completeness and consistency with 9-4/9 and 9-12/30-32.
9-4/3, change first "condition," to 'condition (9.4.3)'.

Justification: Provide reference to definition of term.

9-4/6-8, move these lines to follow immediately after 9-3/40-42 (as part
of the same paragraph).

Justification: These lines only apply to sequential access and should be
part of that paragraph and they apply prior to data transfer, not after.

9-5/18, change "processor-dependent external unit that is preconnected
for" to 'processor-defined unit that is preconnected to an external file
for'.

9-5/26, change "to a file" to 'to an extermnal file'.

9-7/3, change "FILE =" to 'FILE='.

9-7/13, add 'Any trailing blanks are ignored.' after sentence ending with
"unit.".

Justification: 9-7/4-5 states this for other specifiers but this should
also apply to FILE= according to FORTRAN 77.

9-7/16-17, change "processor dependent" to 'processor-defined’'.
9-7/26, change "processor dependent" toc 'processor-determined’.

9-7/44-45, change "the number of characters"” to 'measured in character
storage units'.

Justification: Consistency with following sentence.
9-7/46, change "dependent"” to 'defined'.

Justification: consistency with 9-21/4.

22.

24.

25.

26.

28.

29.

X X X X

34.

After 9-8/35-36, move 9-9/7-21.

Justification: Consistency with format of OPEN statement on 9-6.

. 9-8/46-47, change "A given" to 'Each’, "the unit specifier must appear.”

to 'an external-file-unit must be specified.' Also, move these two lines
before preceding comstraint.

Justification: Consistency with 9-6/45-48.

9-9/1-2, move this paragraph after following paragraph (9-9/3-6).
Justification: Consistency with format of OPEN statement on 9-7.
9-10/24, delete "or print-stmt".

Justification: Redundant since syntax already does not allow any
specifiers in a PRINT statement.

After 9-10/43, add paragraph

e
‘Constraint: If'EFREC- specifer is present, an END= specifier must not
appear and format must not be *.'
Tiva :*
Justification: This should be a constraint.
9-11/22-23, delete.

Justification: Redundant since discussed in Section 10.l.1 which is
referred to in previous paragraph (9-11/20-21).

9-11/24~-25, delete "and a REC= specifier must not be present".
Justification: This should be a constraint.
9-11/34-35, delete “and.;:END- specifier must not be present”.
Justification: This should be a constraint.
6-12/1, change "processor-dependent" to 'processor-determined".

9-12/3, change "processor-dependent” to 'processor-determined”.

"9-12/27, change "processor-dependent" to 'processor-determined”.

9-12/28-29, delete "The labeled statement must be in the same scoping
unit as the input/output statement."

Justification: This is already a constraint and is redundant here.

b
After 9-12/33, insert '(2) RXhe file specified in the input statement is

4£ositioned after the endfile record.'.

am Aptemal Lile i Re
Justification: Consistency with 9-12/23-29.

>

353 |

35.

37.

9-12/34, change "(2)" to '(3)'.
9-12/35, change "processor-dependent" to 'processor-determined".
9-12/36, change "(3)" to '(4)'.

9-12/36-37, delete "The labeled statement must be in the same scoping
unit as the input/output statement."

Justification: This is already a constraint and is redundant here.

3K 9-12/38, delete.

44,

48,

49.

50.

51.

Justification: This is already a constraint and is redundant here.
9-14/3-4, change "processor dependent" to 'procecessor-defined'.

9-14/7, delete "In this case, the file is positioned after the endfile
record.”

Justification: This is redundant and not applicable here,
9-14/12-30, these lines should be merged with 9-12/21-38,

Justification: Separate definition of condition from actions which occur
because of condition. Currently actions are discussed in two places.

9-14/13-14, delete "If an error condition occurs during execution of an
input/output statement, the position of the file becomes indeterminate."

Justification: This is redundant and not applicable here.
9-15/8, delete "file".,
9-15/19, change "specifier is" to 'specifier, if any, is'.

9-15/42, change "specification." to 'specification, if any.'.

9-16/14, change "agree with the type of" to 'be of the same type and have
the same type parameter values as'. RAlse delele Livst "o dupe ok".
9-16/17, change "agree with the length of" to 'have the same length as'.
0-17/35 Ad‘s; &e\ek Q\'t5* “'“h!. \“"-'S\“\ o-&“ Cnd w \ine \b’ bmle 'ﬁ'_.;“
- , de ete.‘i ° |-N.+‘ _“\‘* :'Q“-

Justification: This is already implied by syntax and definition of

external file unit.

After 9-18/4, insert paragraph 'The IOSTAT= and ERR= specifiers are

described in Sections 9.4.1.5 and 9.4.1.6, respectively.'

9-19/26, change “Ami—ee—Llin—i i

et

"-‘:‘N&U‘:&E shbumet ' 4o ih’\u'\ve-s-@tc-\\\’f“a

15

A

X

¢

. After 9-19/36, insert paragraph 'The IOSTAT= and ERR= specifiers are

described in Sections 9.4.1.5 and 9.4.1.6, respectively.'
9-19/41, change "processor dependent" to '‘processor-defined’.
9-20/20, change "processor dependent" to 'processor~defined’.

9-21/2, change "maximal record length of the file" to 'length of each
record in the file if the file is connected for direct access and is
assigned the value of the maximal length of a record in the file if the
file is connected for sequential access'.

Justification: Consistency with wording in OPEN statement.

9-21/3, change "the number of characters" to ‘measured in character
storage units'.

Justification: Consistency with following sentence.
9-21/5, change "the file does not exist" to 'there 1s no connection’.

Justification: Need to explain what happens when there is no connection.
When there is a connection, value returned is defined whether or not file
exists.

After 9-21/27, add paragraphs

'9.6.1.18 READ= Specifier in the INQUIRE Statement. The
scalar-char-variable in the READ= specifier is assigned the value YES if
READ is included in the set of allowed actions for the file, NO if READ
is not included in the set of allowed actions for the file, and UNKNOWN
if the processor is unable to determine whether or not READ is included
in the set of allowed actions for the file.

9.6.1.19 WRITE= Specifier in the INQUIRE Statement. The
scalar-char-variable in the WRITE= specifier is assigned the value YES if
WRITE is included in the set of allowed action for the file, NO if WRITE
is not included in the set of allowed actions for the file, and UNKNOWN
if the processor is unable to determine whether or not WRITE is included
in the set of allowed actions for the file.

9.6.1.20 READ_WRITE= Specifier in the INQUIRE Statement. The
scalar-char-variable in the READ _WRITE= specifier is assigned the value
YES if READ/WRITE is included in the set of allowed actions for the file,
NO if READ/WRITE is not included in the set of allowed actions for the
file, and UNKNOWN if the processor is unable to determine whether or not
READ/WRITE is included in the set of allowed actions for the file.'

Also, renumber following sections appropriately and add these specifiers
to list on page 9-19.

Justification: Consistency with other inquire specifiers.

9-21/40, change "processor-dependent" to 'processor-determined’'.

(G2

23S

ALy f VERS On

107020, rAH =1

Page i of 4

[

TO: X3J3 .
FROM. DICK HENDRICKSON
SUBJECT: REWRITE OF 106(*) RAH-2 ON SOURCE FORM

This is a rewrite of sections 3.2.5. and 3.3, which describe source form. 1
have attempted to describe what is common between the 2 source forms
and yet separate the descriptions.

I believe the only substantial changes from the 106 version are the changes
from 2640 characters to 19 continuation lines in 3.3.1.4 and the additien of
the last sentence in 3.3.1.3. [believe the first change is in accord with the
straw votes at meeting 106. The single "&" restriction removes and
ambiguity. Is the "&" the first character on the \ine, which means that the
staternent continues at the next character position {which happens to e
only blanks); or is it the last, which means that this line (which happens 2o
only contain blanks) is to be continued? We could define it 2:ther wvay. I
think disallowing ambiguities is generally better than picking 2ither sne.

As an open question should we include a restriction about EMD staterments
in free form source similar to the FORTRAN 77 one in fixed form:
whatever the reason for the restriction in rixed rorm shouldn't it aiso
apply to free form? It would make the language consistent and teachabkle.

There was some discussion at meeting 106 about limiting the lenzta of lines
ss 1 to 132 characters, rather than O to 132. [dida't maike tais part cf tnhie
proposal because [believe it would make the description af "t atwkward, |
think automatic program generators might create zero length lines and

people sometimes hit an extra carriage return by mistalce.

Proposal: Replace lines 10 thru 41 on page 3-4 and all of page I-5 with the
following.

3.2.5 Statement Labels. itatement labelf provide®a means of referring
tof individual statements. Any statement not ferming part of anothe:
statement may be labeled.

1

R324 lakel is rgrt (gt digre(digrel gt] 111

<

Constraint: At least sne digit in a Jjafe/ rmust ke ncnzero.

—

f a statement is lakeled, the statement must contain a nonbians charactzar
The same statement lakcel must not ke given to more tzan cne statzment

a scoping unit. Blanks and leading =zeres are not significant :(n
distinguishing between statement labels. 3Zlanks may appear anivwinars
within a label. For example:

(&7

THAT

3.3.1.3 Free Form Statement Continuation. The character "&" is
used to indicate that the current statement is continued on the nex: linz
assiaded-is not 2 comment line. Comment lines cannot be continued,; an "&" 1
a cormmment has ne effect. Comments may occur within a continuad
statement. When used for continuation, the "%" is not part cof tke
statement. No line mavy contain only a single "&" as the only nonbianz

character.
THAT

3.3.1.3.1 Noncharacter Context Continuation. If an "&" iz the last
nonblank character on a iine or the last nonblank/Characier before a

the statement is continued on the next line m{/.s not a comment lin
the first nonblank character on the nexi,line is an "%", the state
continues at the next character positi following the "%"; other-wise it
continues with the first character pogftion of the nextfine. _J
NON COrmpfrr
3.3.1.3.2 Character Context Continuation. If a character ¢
be continued, the "&" must be the last nonblank t‘haracter on t

somment line and the statement continues with the next .:nara
following the "&". The "&" signifying continuation cannot be followed zv
commentary.

3.3.1.4 Free Form Statements. - A label may precede anv statament T
forming part of another statement. Ncte that no roriran statement begins
with a digit. A statement must not hawve morz than b{"’: inuation lines.

3.3.2 Fixed Source Form. I[n fixed scurce form, e.n.:l ine must
exactly 72 characters and there are restrictions on where a statzmen

ma
appear within a line.

3.3.2.1 Fized Form Commentary. The character "!" initiat2s a
comment except when it appears within a character cgntext or .n
character position 6. The comment extends to the end of the line\ZLifes

beginning with a “C" or "*" in character position i and lines conialning oniy
blanks are also comments. Comments may appear anwvwhere -witiin
program unit,){may precede the first statement of the preogram unit, and
nave no effect on the interpratation of the program unit.

3.3.2.2 Fixed Form Statement Separation. The scharacter .
separates statements, or partal statements, on 2 single source line 2ucaznt
-vhen it appears :n a ctharacter context or in a ctommexnt. [ohw 'E'Z':.‘_".:-Z:‘.":f_’
delimited by one or morz ",' separators contains nc charactars <or noT

ziank :haractersjthe sequence is ignorad.

|F THE FPirs7 NOVBLAne CHAMLACTZE OCn 4 (inE 1S Hr

(WA .
/ 5 THE LINE 1S & cOommgnT [jng .

&P

107-CDB-4
February 1,1988

From: Carl Burch
To :X3J3

Subj : Subgroup Nominations for Public Review Letters 22-47

Please find attached the annotated copies of Public Review letters 22-47, marked with my
recommendations for subgroup assignments. All subgroup assignments are negotiable between the
Subgroup Chair and the Public Review Working Group. Any omissions noted should be brought to

the attention of the Public Review Working Group.

P /78

42

' A2z @

U T D THE UNIVERSITY OF TEXAS AT DALLAS

Center for Ap hed Optics
13920 Maham Road, #3016

Dallas, Texas 75240
November 19, 1987

X3J3 Chair
X3 Secretariat

311 First Street NW
Suite 500

Washington, DC 20001-2178

Dear Sir:

I think that the array triplet notation is a txmely exte%sxon I also behev!
that the ability to aﬁ

ocate arrays is a timely extenswn I think that the
—>MODULE/USE featur

e is an unneeded change. I am concerned that the DO<=(22 -¥
ILE statement was not in the draft.

] feel that the COMMON
statement must not be deleted from any FORTRAN of the future. I also
' feel that the DIMEN

SION statement must not be deleted from a i‘uture}C
FORTRAN standard.

Too many new features have been added. é@
Sincerely,

Danny Chu [| m\(QLL\

r

Lo leoas .
5"5 Fot //""“"(‘

c——

2.l GEV S
23 -2 paTA =
233 PR € S

2_-'4 CIO -
22—5 G.fﬁ/ t\;
2;-5 & E g

2

:.)-'7 pﬁrﬂ-

338 GEN

P79

©

THE UNIVERSITY OF TEXAS AT DALLAS

UutibD

Center for Applied Optics
- 13920 Maham Rd., #3016
Dallas, Texas 75080

November 18, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW
Suite 500

Washington, DC 20001-2178

Dear Sir: (22_ 2
I think that the array triplet notation is a timely enhancement. I also?
believe that the ability to allocate arrays is an useful improvement. I think
“that the MODULE/USE feature is a needlessly complex extension. I am
~>concerned that the POINTER data type was missing. I am also unhappy
that the DO WHILE statement was not defined. I think that the
DIMENSION statement cannot be removed under any circumstances. I (22 "é'
also think that the alternate RETURN statement cannot be taken out of
from any FORTRAN of the future.

FORTRAN should remain an easy-to-learn languageﬁ(22-8 3

Sincerely,

Danny Chu &mﬂ\t} @LU\

-

£0:2d w2 2 /8.

p. L8

®

THE UNIVERSITY QF TEXAS AT DALLAS

aTID

Center for Applied Optics
13920 Maham Rd., #3018
Dallas, Texas 75240

November 19, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

Washington, DC 20001-2178

Dear Sir:

I believe that the array triplet notation is an useful enhancement. I also

hink that the ability to allocate arrays is a valuable enhancement. I think
sthat the MODULE/USE feature is an unneeded modification to the
language. I am unhappy that the DO WHILE statement was not in thec(22-%

draflt. I think that the COMMON statement cannot be taken out of from
any FORTRAN of the future. I also think that the DOUBLE PRECISION%{ 22 -5

statement cannot be removed from a future FORTRAN standard.

FORTRAN shoufd remain an easy-to-learn la.nguag

Sincerely,

Danny Chu &ﬂ,‘.ﬁw d&k\

/
X

b Zd €270

gL

)

U TID THE UNIVERSITY OF TEXAS AT DALLAS

Center for Applied Optics
13920 Maham Road, #3018
Dallas, Texas 75240

November 19, 1087

X3J3 Chair

X3 Secretariat

311 First Street NW
Suite 500

Washington, DC 20001-2178
Dear Sir:

I believe that the array triplet notation is an usefui' addition. I also feel that
he ability to allocate arrays is a valuable add
MODULE/USE feature is a

ition. I think that the

‘ n inefficient change to FORTRAN. I am
z8hocked that the DO WHILE statement was not in the draft. I think that
the COMMON statement cannot be removed ever. I also think that th
DIMENSION statement cannot be removed under an

e} (22 -5
Yy circumstances. ~

Sincerely,

Danny Chu &QQ‘WL\/ g(&\

po:Zd 921 18.

P (¥2_

DECUS Meeti
allas, Texas> X3 &7

December 15, 1987
87 DEC 22 A1 57

X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

Washington, DC 20001-2178

Dear Sirs:

While I believe that an updated FORTRAN standard is overdue, I must agree with
Digital Equipment Corporation éDEC that the proposed FORTRAN 8x standard is
not in the best interest of the DEC FORTRAN community.

Specifically, I have major concerns in the following areas:

® DEC users have expressed the need for improved data type support. The
proposed standard attempts to satisfy this need by language extensibility "
mechanisms rather than new intrinsic types. The implementations resultin /C-"'- 3=
from this method will be too inefficient. we NEEo A YBiT- DAM TYPEF
3-> ARDA SiMPLE STRUCTURES MECHANISH.
® The new source manipulation eapabilities (MODULE SE) are 2@

owerful than necessary, are too complex, and ntested in practice.
p'I YER T s nu?é APP&;‘PRPﬂTf..e@ P

® The pew features added to enhance portability of numerical software are
untested in practice and are not clearly effective in obtaining the desired @
pog.a.bility because they do not account for such things as round-off error
and accuracy.

e The features chosen for'gossible obsolescence in the future are not justifiable 23-7)
based on potential benefits or costs. The cost of replacing statemeats such
as the COMMON, DIMENSION, and EQUIVALENCE statements will be
excessive.

1 urge the X3J3 Committee to take action to correct these problems with the
roposed FORTRAN 8x Standard. I also request that X3 committee to require the
3J3 committee to correct these and otker problems found during the public review

prior to re-submitting this proposed standard for adoption. Frus

o/

N
W ATA
QKS,\ Cugis “yARN 23- %AT/?
Y

Sincerely,

23°% 47 A
Company: ___SCFTw ARe LExco@RAPNY 7_3—"; heoc
Address: __SBI0 PRksTed \ifw #2074 2:;-5 GEN-,P
.DRLLﬂ'sf Tx 1S 240 ;_1-67 D{f;'ﬂ/

23"

7 (53

#24

DgSUS eeting

las, Texas
December 15, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

Washington, DC 20001-2178

Dear Sirs:

While T believe that an updated FORTRAN standard is overdue must agree with

I
Digital Equipment Corporation E(,DE% that the proposed FORTRAN 8x standard is
not in the best interest of the DEC FORTRAN community.

Specifically, I have major concerns in the following areas: .

e DEC users bave expressed the need for improved data type support. The
proposed standard attempts to satisfy this need by language extensibility
mechanisms rather than new intrinsic types. The implementations resulting
from this method will be too inefficient.

® The new source manipulation eapabilities (MODULE SE) are more @
powerful than necessary, are too complex, and are untested in practice.

® The new features added to enhance portability of numerical software are %CZ 4 -3

untested in practice and sre not clearly effective in obtaining the desired
portability because they do not account for such things as round-off error
and accuracy.

based on potential benefits or costs. The cost of re lacing statements such
as the COMMON, DIMENSION, and EQUIVALENCE statements will be

e The features chosen for gossible obsolescence in the future are not justifiable }
excessive,

! urge the X3J3 Committee to take action to correct these problems with the

roposed FORTRAN 8x Standard. [also request that X3 committee to require the
&3.& committee to correct these and other problems found during the public review
prior to re-submitting this proposed standard for adoption.

/1/’_',,.7‘}»»5.'
St Bavbiy ze-t DT

Sincerely,

PRo C
24>
Company: _&S\V'\/T—Z(’H 24 .3 DM’/‘}
Addr:_gé'[/ Sk llvmen, Flies— 244 CEN
Dallas ,7¢ 7523 1

f&/??

725

WISCONSIN PUBLIC SERVICE CORPORATION

December 14, 1987

Public Comment for Dpans Fortran Revision

X3 Secretariat

Attn: Gwendy Phillips

Computer and Business Equipment Manufacturers Association
Suite 500

311 First Street, NW

Washington, DC 20001-2178

Public Comment for Dpans Fortran Revision
Board of Standards Review

American National Standards Institute
1430 Broadway

New York, NY 10018

.aeX

Gentlemen and Ladies:

IS 22030 18,

Fortran 8X

Since IFM's use of Fortran is significant within GPG
applications, I must concur with IBM's vote of No. ok

It is evident that the developers of GPG have been polled and
have voted against 8X. Therefore, WPSC's interfaces with this_)
product must be compatible.

Sincerely,

Patrick T. Christofferson
Systens Development Projects Supervisor
Information Services Department

“l'.,fu'a .
Subq-ee? g

ks

P. 155

EAA AMlemils Adacan =« M Da. afnAAm Ao .. A VaAM M ammas momon e

cc:

Earl Z. Damewood,Ph.D.
INCO Alloys Int'l. Inc.
P.O. Box 1958
Buntington. WV 25720
December 16, 1987

Public Comment for Dpans Fortran

Revision - X3 Secretariat

Attn: Gwendy Phillips

Computer and Business Equip. Manuf. Assoc.
Suite 500

311 First Street NW

Washington, DC 20001-2178

Dear Ms. Phillips: o

In my opinion the suggested 8x Revisions to Fortran @
77 would

overly complicate the language and detract from
its current simplicity, usefulness and elegance.

A much more constructive thing to do, especially Cor e
by a particular vendor, namely IBM, would be to make the AN "
existing Fortran 77 CICS compatible for on-line use. + f’g :
Only being able to run under TSO or VM severly limits its °

use and integration with other languages and systems.

Sincerely, pont

&..U. St 5“\9'7”)0 Az

Earl 2. Damewood,Ph.D.
Chief Systems Engineer

J. C. Coe - Inco

R. P. Lett - Inco

R. C. Moore - Inco

American National Standards Institute - New York
IBM General Products Division - San Jose, CA
IBM Local Support Office - Buntington, WV

p.(%¢

. #27
C—l\ Liérartoment do Physice-Bhimic

{aboratoire de Reactlwte et Mécanismes
en Chimie Inorganique

Associé au CNRS UA 331 Ms Jeanne ADAMS, Chair

Service de Chimie Moléculaire X3 - Information Processing Systems
N/REf. : DPC/SCM 87 - 618 American Natiopal Standards Institut
Scientific Computing Division
NCAR

P.O. Box 3000
Boulder Colorado 80307

Saclay, December 8, 1987,

Dear Ms. Adans,

Among the new intrinsic functions provided in the "FORTRAN 8X" project
(document X3J3/S8.104 of June 1987) appears the EPSILON Function (page 13-7, line 5).

The definition given for that function, namely : “"number that is almost
negligible compared to one” lacks accuracy, and should be Teplaced by the following
“the smallest positive number ¢ representable into the processor such that, for the
given p:ocesso:. 1+¢ be strictly greater than 1. This number is equal to x:1 o

where b is the base of internal representation of real numbers (function RADIX, line 9),
and m the nunber of digits of the mantissa (function DIGITS, line 2)°".

Besides, it should be explicitly stated that whenever “temporary real mmbers";(
are used, as ig the case wvhen an arithmetic coprocessor is active, the functions DIGITS
and EPSILON return the values corresponding to "permanent real numbers” and not to
"temporary real numbers”.

The enclosed article, submitted to "Cammunications of the AM®, provides the
Decessary explanation and comments for the need of the above sentance.

Yours sincerely

f«}:7.-7 Wom:

?dsn-‘out;:lr 27 -1 D#r/

Dr. Bogar Sounteé 27-> PAY
P.J. : article entitled "The machine precision

in the presence of an arithmetic coprocessor”

P15y ‘

THE MAC!;INE PRECISION IN THE PRESENCE OF AN ARITHMETIC COPROCESSOR

Edgar Soulié

IRDI/DESICP/DPC/SCM et UA 331 du CNRS
CEA CEN/SACLAY

91191 GIF SUR YVETTE CEDEX FRANCE

The machine precision is defined as the snallest positive number e
representable into a processor ("the sachine™) such that, for the given
processor, 1 + ¢ is strictly greater than 1. This number depends on the base b
chosen to represent real nusbers into the sachine, and on the number 3 of
digits in base b which constitute the mantissa of the representation : l-bl".

An algoriths published by Malcola (1) enables the determination of
both b and m, and thus of . .

A recent standard published by IEEE (2) specifies that the basis b
should be equal to 2, and that the number of digits in the mantissa should be
at least 24 in single precision, and 53 in double precision.

When no arithmetic Coprocessor is present or active, the above values
have resulted froam the execution of Malcolm's algorithm on an IBM PC-XT,
several "PC compatible® machines as well as a SUN 3/160. These machines
therefore comply with the corresponding requiresents of the IEEE standard.

When an arithsetic coprocessor is active however, the number of
digits returned by Malcola's algoriths is 64, both in single and double
precision. This surprising result sust be ascribed to the use of "temporary
real nunbers” in the arithmetic Coprocessor (see for example ref. 3). The
latter numbers each occupy 80 bits, among which 64 store the mantissa. The
transfer of a number from the sarithsetic coprocessor to the central
processing unit results in a loss of precision by elimination of those binary
digits beyond the 24P (or the 53™ in double precision).

The actual precision of calculations is therefore deteramined by the
representation of the "persanent real nusbers” and not of the temporary ones.
In other words, Malcola's algoritha is deceived when an arithmetic
coprocessor is active, with the consequence that the smachine precision ¢
cannot be determined autosatically by the execution of the algorithm.
Prograss that use sachine precision in order to determine at which iteration

to stop an iterative calculation such as the resolution of an equation, the f? /-

minimization of s function, 2LC., BAY 20f he Yarmt mamtakl_ fhy =

reason.

Since the project of a new standard (5) for the FORTRAN language
entails numeric intrinsic functions returning the values of b, m and ¢ , it
should be specified in this standard that the values of g and ¢ returned by

these intrinsic functions pertain to the permanent real numbers, and not to
the temporary real numbers.

A sizilar statement should be added in the standard of any
programaming language providing with the values of either m or s.

Thanks

Thanks are expressed to Dr. Gérard Langlet for fruitful discussions.

p. 189

)

References

(1) Michael Malcolm, An algorithm to reveal the properties of floating point
arithmetic, Communications of the ACM, 15, 949 (1972)

(2) IEEE Standard for binary floating-point arithmetic, standard ANSI/IEEE
754-1985, the Institute of Electrical and Electronics Engineers, New-York.
July 1985.

(3) 41APX 86/88, 186/188 User's Manual-Programners's Reference INTEL
Corporation, Literature Departaent, 3065 Bowers Avenue SANTA CLARA
California 95051, May 1983 - table 6-2 page 6-5.

(8) J. Larmouth, Fortran 77 poertability, Software-practice and expérience.
11, 1071 (1981)

Edgar Soulié, Quelgues caractéristiques de bons programnmes, Journal de Chimie
Physique et de Physico-Chimie Biclogique, 80. 397 (1983).

(5) Programming Language FORTRAN, American National Standards Institue,
Inc., Drift S8, version 104, June 1987. page 13-7.

/9. /92

M. Claude Bourstin
Secrétaire de AFNOR/CT97/5C22/GT5
AFNOR Division Informatique

Tour Europe Cédex 7
92080 PARIS la DEFENSE

Monsieur Chavy

Directeur de 1'Informatique
Commissariat & 1'Energie Atomique
29, rue de la Fédération

75015 PARIS

Mr. J.L. Coté
ISO/TC98/5C22Secretariat
Treasury Board of Canadas

140 o'Connor street

10t Floor L'Esplanade Laurier
OTTAWA Ontario KIA OR5

Canada

M. Frangois Genuys
Président de AFNOR/CT97/35C22
IBM

36, av. R. Poincaré

75016 PARIS

Ms. Jeanne T. Martin

Chair of ISO/TC97/5C22/WG5
Lawrence Liversore Laboratory
P.0. Box 808, L-300
LIVERMORE California 94550
Etats-Unis

M. Christian Mas

Animateur de AFNOR/CT97/5C22/CTS

IBM - Service 3580

Tour Septentrion Cédex 9

92081 PARIS la DEFENSE P17

()
#28

December 16, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

washington, DC 20001-2178

Dear Sirs:

I am against adoption of thg/proposed FORTRAN 8x standard
because it is overly compleX and deviates too = from the
FORTRAN implementations currently in use.
FORTRAN is popular in the scientific community because it is
easy to use and widely available. Ease of use is essential
to us because we use the computer as a tool; our main interest
is not in the abstract art of computer science.

28-3%
The proposed standard is not a refinement or specification
of our existing tool, but a substantially redesigned tool
which is both foreign to us and much more difficult to learn.

1f some of you really want a language that loocks like that,
please don’t call it FORTRAN.

more elegantly be provided within the existing language by
function and subroutine libraries. At the same tinme, the

proposed standard omits truly useful contructs such as bit
arrays.

Proposed capabilities such as array operations could much @

DIMENSION, and EQUIVALENCE, which are deeply imbedded in 2%-
virtually every existing FORTRAN program. Adoption of the
proposed standard would eventually prevent recompilation

of our existing programs, which we have neither the time

nor desire to rewrite.

1 also strongly oppose the attempt to do away with COMMON,

Keep FORTRAN simple. Just vote "NO". AG‘"I;.ﬂ;.;I
Subgrp
Sincerely, EV
y 5 -1 -
3,, — Bk L 2¥-2 FEV
2 §-3 rEV
Jesse Black 28 .Y -EN
Suite 1200) DHTA
One Lincoln Centre /LB25 28 -5
5400 LBJ Preeway _é ¢ EN
Dallas, Texas 75240 28

P 192

29

- - - . p--

_—. Catalyst
' @

An Information Technology Firm of Pest Marwick

The Catatyst Group
Peat Marwick Man & Co
303 East Wacker Drive
: Chicago, IL BOSO1

Teiephone 312 838 1000

>
w

December 14. 1987
)

X3 Secretariat

CEBMA

Attn: X3J3 Public Comment
311 First Street NW
Washington, D.C. 20001

=]
~J
=
N
e
©
a
<

Dear Sirs, g

The following comments concerning the proposed X3J3 (FORTRAN 8X) standard are
submitted as my personal opinions and may not represent the opimions of my

employer. My concerns with this proposed standard are all in the area of size and

support. They include:
1) The "NO" vote by representatives of three major vendors is a major }CZQ -

concern, because it may indicate a long period before conforming
compilers are available.

2)

practice.
3) The FORTRAN language will become too large.

4) The FORTRAN standards committee is attempting to make the language
all things to all people - losing the benefits of small, well focused

tanguages.

The reasons for each of my concerns covers largely the same ground - the size of the
resulting FORTRAN 8X language.

With a small language. a programmer is expected to be familiar with all of its
features. As a language grows. s/he can be comfortably familiar with a smaller and
smaller percentage. Then, while there might be a particular construct ideal for a
situation, the programmer is unfamilar with it and does not use it - negating the

benefit of having it.

For many years, the public expression of algorithms occured in ALGOL - because it
had a minimal but sufficient control syntax. This allowed the details of the algorithm
to be clearly expressed without depending on the features available in a particular
language. The reason algorithms were not expressed in FORTRAN, COBOL, or APL
is that each of these hid what was being described. FORTRAN and COBOL did not
posess full control structures while APL was difficult to read for one not versed in it.

The proposed standard is more than a standardization of existing industry (2 1- 7':

297

p. 193

BT _ Catalyst

X3J3 Public Co~ —ent
December 14. 1887
Page 2

Today. PASCAL is commonly used for the same reasons. ADA'™ is not the language
of choice. because its richness limits its usefulness to those who use it frequently.
PASCAL is chosen because aimost anyone (even including COBOL programmers) can
read it.

It is impossible to utilize a new standard until compilers are available. Regardless of
a standards technical merit, it ultimately succeeds or fails depending upon whether it
IS used.

A vendor might have two basic reasons for not approving a standard - technical flaws -4
or insufficient resources to develop a new compiler. The former will, hopefully, be 71
revealed during the public comment period. f. however, major vendors do not

support a standard then. at best. development of new compilers occurs slowly and

receives hmited resources. This can be overcome by pubiic demand - if the public

wants the new features.

item by item the proposed additions may be useful - but most of them have not been cz _6
"battle tested” nor demanded by large numbers of practitioners. Placing them in the Ll
standard today is a long term commitment and significant investment. | am unwilling

to make this investment uniess | am sure there will be an adequate return.

The identified function of the standards committees is to standardize extensions to -1,
the language found in industry. In the FORTRAN 8X standard (as with COBOL 85). cha-
the proposed standard has gone beyond this. | am afraid that, as with COBOL 85. this

-will lead to a long span of time before it is fully adopted by industry.

| recognize and appreciate the effort the committee has expended in drafting the
proposed standard. Until the number of additions are reduced and major vendors
publicly commit to supporting the new language. | am unable to support its adopticn

as a stangard. s /
/Voif“; “
byl
. ? GENV
Very truly yours, Zq - | C gEN
o= W I a1 24w
24 -3 ¢ E”"ﬂ/
- £
Burton M. Strauss i ’Lq 1 ¢ Eﬁ/
Senior Consultant 'Lq ‘ ¢
Peat Marwick Main & Co. 7’%,(,

P 19¥

13

With the Compliments of

The University of Liverpool

J.L. Schonfelder, M.Sc., D.I.C., Ph.D., AFIMA, MBCS

Director of the Computer Laboratory

Centre for Computer Studies,
Chadwick Building,

P.O. Box 147,

Liverpool L69 3BX.

Tel: 051 — 709 - 6022 Ext. 2954 70 -2

Email: JLS @ UK.AC.LIV.IBM

30 -3
7o -7
20-5
30 -4
30-7
30-5
30-7
30 -/0

20-1
2012
20-/3
30 -/7
20 -/5

p. 195

320 -/ Pﬂl—ﬂ‘

GEN
DATH
cxo

GEN
proc
PATH
T 0

PATH
cEN
DATA

CITO
-EN
PATH

GEN

'.

M"l /l;l /{‘.O.‘!S :

3p-/(CEN
GEN
clLO
30 ‘/q cIOo
peoc
30-20 PEOC
30-22 fFoC
20-23 PA7#

20 -2Y4 PKoc
30 -265 GEN

30 -2 GENV
30-27 DATA
30 -2§ fAoc
30-29 PATH
30-30 fE°C
30 -3/ cx?2

©)

j #30

The University of Liverpool

PROFESSOR L.M. DELVES

DIRECTOR

CENTRE FOR MATHEMATICAL SOFTWARE RESEARCH TEL: 051 —~ 709 . 6022 EXT. 2018

VICTOAIA BUILDING BROWNLOW HILL P.0.BOX 147 LIVERPOOL L89S 38X TELEX NO: 627095 UNILPL G
To: X3J3 9 December 1987

Comment on $8.104: Fortran 8X draft standard

I broadly welcome the new standard, and believe that the additional functionality
wvhich it includes will be welcomed and used by most current Fortran 77 sites., I
believe that X3J3 has done well in keeping the language reasonably tidy while
maintaining compatibility with F77. I have however the following detailed
comments and recommendations, in order of priority:

1) Pointers

1.1) The lack of a pointer facility is a glaring omission which mus’t be
Tepaired before the standard is finalised. Pointers are widely used
in scientific programming to provide dynamic and irregular storage
allocation and management. They can also provide space and time
efficient solutions to data sharing probleds, by obviating the need
for copying. The clumsiness of F77 codes simulating what should be
done with pointers is well known; and all major languages (e.g, Ada,
Pascal, Algol 68, C) now include a pointer facility.

1.2) Pointers should be fully typed, and pointers to any object should be
svailable. My own preference would be for a pointer attribute to be
introduced, but I would be willing to go along with (almost) any
syntax.

1.3) Multi-level pointers (up to at least "pointers to pointers”) are
useful in practice, but simple level pointers would do at a push.

1.4) The introduction of a Pointer facility should be matched by the
deletion of the IDENTIFY and SET RANGE facilities, whose functionality
is subsumed by pointers with considerable potential increase in language
regularity.

IDENTIFY

half of a pointer facility
SET RANGE : is a recipe for opaque coding.

Its effect can be achieved by pointing to a slice of the srray whose
range is being set. The number of occasions on which extemsive
multiple range assignments are needed (when SET RANGE would save a
fev repetitious statements) is small, and will become smaller as users
L~

get used to dynamic storage allocation and slicing.

2) ALLOCATE/DE ALLOCATE P /%94

2. ®) .

3) Exception Randling

4)

I am sorry to see no exception handling mechanism in the published draft.

That in Ada is proving to be very useful; a facility should be easy to 363—%'
add to FB8X without disturbing the rest of the language, and indeed I am

avare that X3J3 has made proposals in the past. Let me urge you to put

exception handling back in.

What a pity that:

X3J3 felt it impossible to include:

4.1) Multi-tasking facilities: MIMD machines are already common, and will 30 ”

4.2)

be increasingly so. A decision that it was premature to establish a
standard for multi-tasking probably locked safe in 1980; it looks
less safe now, and F8X will now be instantly non-portable as scon as
it hits the market.

Generic facilities (a la Ada). You have modules, type definitioms,
procedure and operator overloading and a2 degree of type genericism in 3
the parametised reals. It is quite a small step to allowing gemeric
coding with types left undefined in the source code, but instantiated
at run time (Ada ensures that "run time" can alvays be, at the iates:.
"link time").

3

It is too late to include 4.1) or 4.2) now - too much delay would, in
my opinion, ensue. A pity, though.

fescla

L. M. Delves

pIe7

(42

FROM THE DIRECTOR OF THE COMPUTER LABORATORY

J.L. SCHONFELDER, M.SC., D.I.C.. PH.D., AFIMA

TEL: 081 - 709 - 6022
CHADWICK BUILDING P.0.BOX 147 LIVERPOOL LES Jax TELEX NO: 627095

The University of Liverpool

JLS/M3/2954 18th November, 1987

T0: X3 Secretariat/CBEMA
Fortran Public Review
311 First St, N.W,
Suite S00
Washington D.C.
20001-2178
U.S.A.

RE: The Proposed Revision of the Fortran Standard

1. GENERAL COMMENTS

H

The language described in the published draft includes on the
whole a welcome and much needed enhancement to the expressive pover of
Fortran. It also provides a framework which will allov an orderly
evolution of the language. This is a piece of linguistic infrastructure
that is assential for a language vhich has a lifetime longer than a few
years and an aspplications base larger than a small number of academic
users. It is also entirely commendable that this standard indicates an
attempt to apply a reascnably deliberate approach to modern procedural
language design, rather than simplistic "standardisation of existing
Fortran practics".

The provision of a proper global data and program packaging, or
encapsulation facility by the MODULE/USE extension 4is particularly
notevorthy. This is a vastly superior linguistic device to the coamon,
but in detail highly disparate extension using textual INCLUDE. The
proposed MODULE/USE facility provides all the functionality of the
simple textual include but, it also provides vastly more. It supports
along with some of the other extensions a "semantic extansion"
capability. It does this without interacting and causing any serious
syntactic or semantic incompatibility with existing non-standard vendor
extensions. Although MODULE/USE provides for the functionality of
INCLUDE, plus a great deal more, it does so in a way which allows the
coexistence of all current vendor extensions. ’

P /125

®

This situation should be contrasted significantly with the
incorporation of the NAMELIST facility. In this case the functionality
has been modelled closely on a particular set of vendors' extensions.
It is therefore certain to be entirely incompatible with other vendors'
current offerings. To the extent that this functionality is needed it
should have been included in a linguistically consistent and regular

manner; with particular care being taken that no existing extension is
needlessly made unable to coexist.

The process of standardisation by canonising some existing
vendor's, usually ad-hoc, Fortran extension is not a desirable mode of
operation. It is one of the strengths of this draft that it shows
evidence of careful design rather than simple codification of often far
from optimal common practice.

In spite of a generally favourable reaction to the proposed
standard there are a number of significant flaws 4in the extended
language it seeks to define. The most serious of these is the lack of a
pointer capability. Without such a facility the construction and
manipulation of such important data-structure as lists and trees is
excessively cumbersome and inefficient. It is therefore strange, not to
say perverse for the proposed FPortran 8X to include such powerful
data-abstraction and structuring facilities as those offered by derived
types, and the dynamic storage management capabilities of allocatable
arrays without permitting the use of dynamic aliaising to provide the
needed pointer capability.

There are other strange major lacks. There is no facility for
handling variable length strings, or sequeances of objects such as
characters where the length of the object is determined by the value
assigned rather than by the declaration of the name. Nor is there any
input/output facility for handling data-transfer where the number of
objects (usually characters) required is determined by the data rather
than the format; Fortran 8X has no facility for character stream I/0.
Also an entirely adequate syntactic mechanism has been included for
floating-point data-types, but & similar mechanism has been omitted for
integer.

As vell as these unfortunate lacks there are a fev facilities that
have been included that are far from desirable or at least are defined
in ways that are distinctly questionable. FYor example, it is both
confusing ‘and at the risk of being rude, absurd to preserve the keyvord
PARAMETER for the attribute used to declare a symbolic constant. The
facilities for data initialisation are defined in a highly irregular
fashion and need sorting out. Another glaring example is the
RANGE/SETRANGE facility. The ability to take "ganged" identical
sections of a numbar of arrays, to indicate this and to work with the
sections in a concise manner is clearly useful. However, the facility
as defined is cumbersome, restricted in functionality, dangercus in its
notation, and above all relies on vastly toco much syntactic linguistic
baggage to be included in its present form.

A final general comment is that although the evolutionary model
wvith "removed', "obsolescent", and "deprecated" features appears to be
sound, the committee has been altogether too conservative in assigning
features to the various categories. The conservatism would be justified

P 127

if Fortran .was. a proscriptive and closed standard. It is not. A
Fortran processor 1is explicitly permitted to extend the language in any
way that does not conflict with the standard (unlike a language like Ada
which has a standard that proscribes completely the language for both
the programmer and the processor). This permissiveness in the Fortran
Standard would allow much more emphatic use of the evolutionary
possibilities in the architectural design. Facilities could be removed
from the standard, and provided no new facility produced a conflict with
such facilities vendors would be free to maintain them in their
products. Users of course would be more dramatically encouraged to stop
using such facilities. The example of Hollerith in Fortran 77 is a good
guide. Most vendors still support Hollerith but few new Portran 77
programs use Hollerith. Some of the obsolescent features should
therefore be "removed", more of the deprecated features designated
"obsolescent”, and additional features "deprecated". If for no other
reason than to do so opens more options for the 1990's Standards

. Committee.

The remainder of this communication presents more detailed
comments relating to each of the topics summarised in this general
section. Each '"negative comment" or "suggestion for change" will be
presented with a reasonably detailed proposal for what needs to be done
to the language as currently defined to make good the indicated problem.
These will be technical descriptions rather than detailed editorial
instructions for changes to the current draft standard document. It is
considered that it is the responsibility of X3J3 toc make the detailed
editorial changes necessary to implement those comments or suggestions,
with which it agrees.

Finally, the length of this document should not be taken as a sign
of disapproval of Fortran 8X, as a vhole. The language in aspects other
than those explicitly mentioned is a significant and highly desirable
extension to, and improvement of, Yortran.

2. DESTRABLR FACTILITIES NOT CURRENTLY INCLUDED

The following sections include detailed discussions facilities
that are highly desirable but which are not currently included. All of
these facilities provide much needed functionalities and their absence
in most cases causes a significant linguistic irregularity. The
features involved ara:

1. . Pointers
2. Stream I/0
3. Selected range integers.

It should be noted that provided both adequate pointers and stream 1/0
ars included the currently absent functionality of variable length
strings can be implemented via a suitable MODULE. Without pointers an
adequate MODULE for such objects is all but impossible. Without stream
I/0 a somevhat restricted MODULE is possible but string I/O would remain
very cumbersome.

2.1 Pointers

The current proposed Fortran 8X introduces derived types and

)

P Reoz

heterogeneous data structures. It also introduces dynamic storage
management &nd dynamic aliaising. However, these facilities are so
constrained that the only dynamic sized data structure is an array, and
dynamic aliases are restricted to be little more than renamed array
sections. Dynamic data structures such as trees, lists, etc. cannot be
produced easily; nor can structures with dynamically sized components be
manipulated. The best that can be done with structures is to allow them
to be parameterised and hence automatic sized structure components can
be handled; structures with runtime determined sizes can be constructed
on the stack but not on the heap. The programmer will still be forced
to resort to various complex non-portable tricky coding techniques to
map any dynamic - heterogeneocus data-structures onto arrays. Fortran
programmers will still have to map pointer operations into array
indexing. This is clearly unreasonable. The language is forcing most
of the costs of implementation for heap storage management and other
pointer associated overheads, but delivering few if any of the benefits.

: A minimal pointer facility could be sasily produced by removing
the restrictions currently applying to ALIAS-IDENTIFY and the
ALLOCATABLE functionalities. For example allowing objects, including
components of derived types, to be declared simultaneously to have both
attributes would create a basic strongly typed pointer. Allowing both
scalar and array objects to be ALLOCATED, and an alias to have multiple
targets in IDENTIFY statements provides the essential manipulations of
the pointer itself. A rule that provides for automatic de-referencing
of pointers to their current targets in expression contexts and on the
left of assignment provides the desired semantics in virtually all
cases.

However, having these two very closely related attributes is
adding unnecessary baggage to the language. It is also basically a
distinction without functional advantage. An ALLOCATABLE object may be
ALLOCATED to associate the named object with space, an ALIAS may be
associated with space by IDENTIFY, but an ALIAS may not be ALLOCATED,
and an ALLOCATABLE may not be identified. However, vhen a name is
declared with either attribute what is created is a descriptor for an
object. ALLOCATE and IDENTIFY are merely alternative ways of
associating the descriptor with actual space. Having the two separate
attributes and the restrictions on vhich methods of association are
alloved seems only to add to language size and user confusion. The two
attributes could usefully be collapsed into one. The possible attribute
keywords which could be appropriate to characterise such descriptor
declarations could be one of, say, VIRTUAL, DYNAMIC, NAME, or even
POINTER.

The use of dummy arguments that are allocable and procedurss that
deliver results that are allocatable are the twvo features of the
allocatable array facility which rsally only makes sense when vieved as
part of a pointer model; in each case vhat is actually passed is the
descriptor, or pointer to the space not the space itself. All other
operations on allocated arrays (except course ALLOCATE and DEALLOCATE)
treat them like any other array; i.e. the space is referred to not the
descriptor. An alternative regularisation is possible which would
include effective pointers, and preserve simple allocatable arrays for
those applications that merely require such objects. This would retain
the ALLOCATABLE attribute, the ALLOCATE and DEALLOCATE statements, but

-é-

P 2of

disallow allocatable dummy arguments and allocatable function results.
The allocatable attribute then becomes a strictly 1local property
permitting dynamic management of the size of such objects. This
effectively removes the pointer-like properties from the facility. The
locality of the allocatability of such objects also removes the need for
an ALLOCATED function.

The pointer properties and functionality should then properly be
provided by objects having the, say, VIRTUAL attribute. Such objects
would need to be passable as arguments, returnable as results. They
could be associated with space either by allocation or identification
VIRTUAL objects would be entirely appropriate as components of derived

data-types; vhere they would allow linked lists and trees to be handled
conveniently.

The optimisation problem caused by unconstrained pointers can be
handled by requiring any static object that is to be used as the target
of a pointer in an IDENTIFY to be declared as such a potential target; a
TARGET attribute could be used for this purpose (Virtual objects should
alvays be potential targets).

The problem of dangling pointers can be dealt with by requiring
that an object is only deallocated if no other virtual object is
associated with the space or parts of the space to be deallocated.
Similarly, global pointers or dummy pointers must all be disassociated
from any local non-saved objects before a return is exacted.

If pointers are not implemented then it is difficult to see how
the ALIAS/IDENTIFY, ALLOCATABLE, etc. facilitieés can be justified. A
language with data-structures and dynamic storage management overheads
but no pointers is simply not reascnable or acceptable. If pointers are
not to be added the language should be modified to restrict storage
management requirements to stack operations. Heap should not be forced
unless pointers are included.

2-2M

The lack of a method for reading and writing data; particularly
character data, in such a vay that the number of items read or written
is determined by the data stream rather than the format or list is an
extremely serious omission. This is most critical for input, but can
also complicate output. The problem in its simplest form is that each
READ/WRITE statement in Fortran automatically starts on a nev record.

It is not possible to simply read in the next character from the input -

stream, and to go on doing this until end-of-record is flagged before
starting the next record. This makes the processing of varying length
data by Fortran extremely difficult, and makes communication even at the
file level between Fortran and other languages complicated, e.g. a
character file written by a 'C' program could be extremely difficult to
read with a Fortran program. At the very least it must be possible to
turn off the automatic new record on each 1/0 statement, and to provide
a flag for end-of-record.

Stream I/0 could be treated as a characteristic of the connection.
A formatted file could be connected for STREAM access rather than
SEQUENTIAL or DIRECT. For such a connection only "sequential

D

)

READ/WRITE statements would be permitted and no impliecit end-of-records
would occur. Each READ/WRITE would start transfers from the character
position following the last character read or written. End-of-records
would have to be indicated explicitly by the Format. There would also
need to be some way of detecting an attempt to read past an BOR. The
IOSTAT variable for stream I/0 could be defined to return positive for
errors, zero for successfully completed transfer, -1 if an EOR was
detected, and less than -2 if EOFile detected. The VALUES= specifier
could be used to determine how many items were transferred. 1If
PAD='YES' was specified then the list item being transferred at the time
EOR is reached should be converted using the padding. If such a
conversion is possible one is added to the VALUES=, if not VALUES= is
not incremented and the last list item is undefined. If PAD='NO' then
the list item being transferred is undefined. For List-directed streanm
I/0 an EOR would be considered significant. Only the current record
would be searched for input items and only the current record written.
An EOR(NUNIT) intrinsic subroutine would be needed to force the taking
of new records or a NEWLINE (position-spec-list) statement added.
Stream I/0 would never be considered to be printing.

Alternatively any sequential file could be managed for stream 1/0
by using the ci-control-list of the READ/WRITE statements. The RECs
specifier could be permitted for sequential access with allowed values
Zero and one. One would be default and would mean start transfer from
the start of the next record. Zero would mean start transfer from
current position. A READ/WRITE would need to define the position after
transfer as vhere the file pointer ends up, not at the start of next
record as now. The use of IOSTAT to Detect EOR would need to be more
subtle. IOSTAT would be set to -1 only if EOR was encountered when data
was expscted and it could not be correctly interpreted as a separator.

Of the two alternatives the former is probably preferable.

2.3 Ranged Integers

The Fortran 8X proposal very effectively solves the linguistic, if
not algorithmic, portability problems associated with the existence of
multiple different <floating point approximation methods for the
representation of real, complex, and other floating point quantities.
This obvious model should be extended to handle the entirely analogous
problem of various different integer ranges. A suitable keyword for
integers would be FIGURES. The type-spec would nov become

INTEGERrange-selector]
range-selector IS ([FIGURESe]type-param-valus)

A non-default declaration would be, say,
INTEGER(FIGURES=S) :: I

The processor would then be required to select its shortest
integer representation for which HUGE(I)>= 99999

We would also need to have the coercion that in any operation the
result will be in the representation of the longer operand. Obviously
non-default integers must not be permitted in storage association

P.203

contexts. Weé would also need the equivalent of the MOULD (MOLD)
arguments for the INT intrinsic to determine which representation was to
be used for the converted result (see comment 4.7). Simple integer
constants must for compatibility with Fortran 77 produce default-integer
values. It will therefore, be necessary to have an analogue for the
real EXPONENT_LETTER. An obvious regularisation would be to extend this
statement. If we defined it to be

EXPONENT_LETTER numeric-type-spec defined-exponent-letter
numeric-type-spec IS INTEGER [range-spec]
OR REAL precision-selector

Constraint: the letter must not be the same as any other
exponent-letter or the letters E, D or H.

e.g. EXPONENT_LETTER INTEGER(FIGURES = S)F
an appropriate constant could be written as
1234F, 1F4, 100F2, 10000F

The rules relating to REAL(*,*) dummy arguments and parameterised
data-types with PRECISION and EXPONENT_RANGE parameters could be taken
over mutatis mutandis for INTEGER(*) and Datatypes parametered by
FIGURES.

3. THE RANGE/SETRANGE SECTIONING PACILITY

The current facility 4s dirregular cumbersome and of severely
restricted functionality. It uses a declaration attribute to permit a
guaranteed conformant section to be taken in a number of arrays and for
subsequent use of this section to be indicated by the unqualified array
name. This use of the unqualified array-name is undesirable. users
will find it extremely surprising to have A(1:10) possibly addressing
legally more elements than a reference to A. Only one effective range
can be applied to any one array. There is no way of having two simple
sub-windows (ranges) moving through a single array. Also there is a
further complication that all the array inquiry intrinsics are doubled
80 as to deal with both effective and declared bounds.

This is an impossible linguistic price to pay for such a limited
functionality. There is also a considerable processor overhead. A
rangeable array will have to be representsd by a descriptor that
involves two dope vectors. Either this will require the processor to
handle a nev kind of object or it will simply manufacture a hidden name
for the alternative dope vector. The former is a significant processor
overhead for very limited functionality, the sscond is an undesirable
redundancy since this approach could be programmed explicitly by the
user.

A vay of achieving the required functionality already exists by
use of aliases. This does not hide the sectioning since it intreduces a
nev object name for the section but in most cases this will be a
positive advantage and it does not introduce into the language any new
objects. This approach would be particularly appropriate if pointers
are included properly.

P. 20¢

Alternatively, an approach could be employed vhich attaches a name
to a section subseript list which can be subsequently used in a section
reference in place of a complete section-subscript list. This would
have a small notational advantage over the use of pointers to achieve
the effect. It would however have substantial implementation overheads
if a named range was allowed to become another data-type. For this
reason it would be entirely undesirable for such a name to be declared
and it should therefore be distinguished from other names by use of a
reserved special character. A suitable special character would be the §$
which is otherwise still unused. It would be possible therefore to
define a name starting with a $ to be that of a section-subscript list,
or range. The actual “"outline" of such a name could be established by
the execution of a SETRANGE statement, e.§.

SETRANGE($WINDOW) = (I,M:N,J:K)

would define the range SWINDOW to refer to a -rani 3
section-subscript-list and to select the Ith plane from a rank 3 array
and the M:N by J:K rank 2 section from that plane. A statement like

A(SWINDOW) = A($WINDOW) + B($WINDOW)*C($WINDOW)
would be a more convenient notation for
A(I,M:N,J:K) = A(T,M:N,J:K) + B(I,M:N,J:K)*C(I,M:N,J:K).

Of the alternatives simply adding pointers and some mechanism for
making multiple identifications with the same range mapping would have
minimum linguistic overhead and is therefore preferable, but a named
section-subscript-list approach would be acceptable. The current RANGE
facility is quite unacceptable and should be deleted from the standard.

4. MISCELLANEOUS PROBLEMS OR DEYICIENCIES

4.1 DATA/PARAMFTER Attributes

The preservation in the attribute form of the mistake in
nomenclature in Fortran 77 (a further example of inappropriate adherence
to the detail of a common practice) of using the keyword PARAMETER for
the statement defining the values for symbolic constants. The obvious
keyword is CONSTANT. This should be used for the attribute form where a
symbolic constant name is being declared and defined in one operation.
Also the keyword CONSTANT should be alloved as the preferred spelling in
the statement form; PARAMETER could then be deprscated. (In fact the
statement form is entirely redundant and the whole form should be
deprecated).

Similarly the use of DATA as the keyword for the initialisation
attribute is unfortunate. In fact no attribute is required. The
presence of the "= const-expr" in a declaration object list would be
sufficient to indicate a variable initialisation, since constant
definition is specified by the presence of the CONSTANT (PARAMETER)

attribute.
p. 205

-8-

The residual ambiguity of how to interpret

REALA= 3.2

if this was the last specification statement in a program unit could
easily be rescolved by requiring the :: separator if variables are to be
initialised in a declaration.

The removal of the need for the DATA attribute would increase

flexibility. All variables declared in a statement would not have to be
initialised, e.g.

REAL,ARRAY(100):: INPUT = [100{0.0]],0UTPUT
INPUT {is initialised to zero but OUTPUT is left undefined.

Another problem with DATA is that the implied DO 1loop is
singularly out of place in the object oriented form of the DATA
statement. This form basically works as a set .of compile time
assignment statements, each one with an assignable object on either side
of the =. However as currently defined this form allows a loop on the
left of the equals. This is a highly irregular and inherently error
prone construction; or at least one that will be difficult to .use
correctly. If the implied DO is to be retained in this form of the DATA
statement then it should include the entire "assignment" within the
range of the implied do. This would preserve the regularity of the
assignment form. .

4.2 RAMELIST

The need for a standardised version of this functionality is
questionable, but if such a functionality is retained it should not be
in this form. It is too close to but different in detail too many from
existing extensions. Many of these will not be able to coexist with the
current proposal hence rendering a number of existing programs both
non-standard conforming and unrunable. This functionality should only
be retained in a syntactic form consistent with the rest of the I/0
style syntactically and not in direct conflict with existing extensions.

The need for, and desirability of, this functionality is
questionable. Its use as a diagnostic aid has been overtaken by
symbolic dsbuggers, and its use in production code is rars. Unless
there is strong public call for it as justification, this functionality
should simply be delatad.

4.3 The Executable/non-Executable Distinction

Given that run-time management of storage allocation both in stack
form for automatic objects, and heap form for allocatable objects must
be provided by any F8X processor, the distinction between executable and
non-executable statements becomes entirely superfluous. In fact the
maintenance of this distinction becomes positively pernicious. Since
the creation of storage for any automatic object will necessarily have
to be done at run-time wvhen the values of the variable attributes are
known there is no valid reason why executable code should not be
invelved in determining these attribute values. The distinetion betwvesn

P- 22

(2

specification expressions and ordinary executable expressions is
therefore entirely artificial, complicated to describe, and irregular.
In most cases the artificiality of the situation is obvious since it can
be programmed around in an entirely straightforward but cumbersome
manner.

PROGRAM MAINI]
INTEGER:: N
READ(6,*)N
REAL,ARRAY(N,N):: A

is illegal and so is

PROGRAM MAIN2
INTEGER,DATA:: N= F(6)
REAL,ARRAY(N,N):: A
CONTAINS
FUNCTION F(NUNIT)
INTEGER:: NUNIT, ¥
READ(NUNIT,*)F .
END FUNCTION '
END PROGRAM

Hovever, if we add an extra level of sub-program

PROGRAM MAIN3
INTEGER:: N
N = P(6)
CALL AUTO(N)
CONTAINS
SUBROUTINE AUTO(N)
REAL ,ARRAY(N,N):: S

LN]

END SUBROUTINE
FUNCTION F(NUNIT)
INTEGER:: NUNIT, ¥
READ(NUNIT,*) ¥
END FUNCTION

END PROGRAM

ve obtain the obvicusly intended effect, but in a much less clear and
obvious manner. Either MAIN1 or MAIN2 would also be easier to compile
producing efficient code. The current restrictions will either produce
many additional essentially redundant levels of sub-program, or will
force the use of Heap storage when algorithmically stack storage is
totally sufficient.

FYor scoping simplicity it is desirable to retain the restriction
that all specification statements appear before any "executable"
statemants, but reference to internal procedures and accessible module
procedures should be permitted in specification expressions; any object
s0 declared to be considered automatic. The application of a simple
"declare/define before use" rule would deal with any necessary ordering

P22

constraints which are nov a matter of execution logic; specification
statements should be subject to normal sequential processing. The
removal of what is an obsoclete vestige of Fortran 66 static storage
management would have significant advantages in improving the
data-abstraction facilities. A module could define the meaning of
assignment, for say, a character string representing a value of this
type to an object of the type. This definition assignment semantics
could then be employed by user programs to define symbolic constants,
without them having to know the internal structure of the data-type.
The restriction to constant-expressions for the RHS of the = in such
specifications would be reasonable. The .processor has the option of
executing the module procedure at compile time or delaying to run-time.

This regularisation is virtually essential. The current irregular
restriction will require positive additional burdens on both user and
processor to enforce, and therefore, are wholly unacceptable.

4.4 ALLOCATE/DEALLOCATE

The requirement that an explicit DEALLOCATE be applied before an
already allocated array is reallocated is likely to be simply an
irritant rather than any significant aid to implementation or
contribution to safety. It would be entirely consistent with normal
program behaviour if ALLOCATE simply created new space and associated
the allocatable object name with this space. If such a name was
previously associated with space it would automatically be disassociated
i.e. ALLOCATE is equivalent to a DEALLOCATE followed- by ALLOCATE.

4.5 The PORALL Statement/Block

This statement/block is potentially extremely useful. FORALL
provides a highly useful mechanism for writing wvhat is in effect a
“parallel DO loop", which is otherwise missing. It also provides an
extremely simple, if crude, synchronisation wmechanism; the only
construct in the language that does. It should be reinstated in the
language proper. It might with minor modification be made into a proper
parallel-block construct, rather than a controlled array assignment as
at present.

4.6 Class and Scope of Names

The name of a type, derived or intrinsic, is essentially in a
different class from that of a variable, etc. The rules at present
allow

CEARACTER:: CHARACTER
but forbid
type(ATYPE):: ATYFE

This appears to be because the scope and class of type-names is not
defined correctly. Intrinsic type-names have the scope of an executable
program. Derived type-names have, as said in Chapter 14, the scope of
the scoping unit in which the definition is accessible. However
derived-type names are incorrectly defined to be in the same class as

f‘- o

)

variable names, whereas intrinsic type-names are not. Clearly for
compatibility with Fortran 77 intrinsic type-names must be in a separate
class from variables etc. and so for similar reasons should derived type
names. Type-names should form a class.

Also value constructors should be classified as implicitly defined
intrinsic procedures (c.f. type-parameter inquiry functions). This
would remove an ambiguity/irregularity as to users overloading the
type-name to provide an alternative type conversion function. A value
constructor is essentially a type conversion function, which simply
converts a list of arguments that match the components, to an object of
the named type, and so should be described as such.

N.B. the user is permitted to write an overload such as

FUNCTION REAL(C)
REAL:: REAL
CHARACTER(*)::
! convert character string value to real

END FUNCTION

However it is not clear from the current text whether a function
overloading a derived type name in & similar manner would be permitted
or not. It should be permitted and classifying value constructors as
functions would do this unambiguously.

&.7 Conversion Yunctions/Value Constructors

The current set of type conversion functions are highly irregular;
particularly when viewed along with interpreting value constructors as
functions (comment 4.6).

A constructor function has the form

type-name[(output-type-param-value-1ist)] (component-argument-expr-list)

and the semantics "convert the values in the
component-argument-expr-list to a value of type given by type-name
consistent with the values provided in the

output-type-param-value-list".

The Yortran 77 generic conversion function called REAL could
easily be extended consistently to have the form

REAL[output-precision-selector] (A)
output-precision-selector 1S precision-selector
OR (MOULD = real-object).

The constructor could be also extended to allow the optional
type-param-value specification of MOULD = type-name-object.

. 20
All the intrinsic types should have syntactically similar type f 7
conversion functions (including an obvious extension for specified-range

- 1?7 -

integers when included).

The irregular F77 forms of INT, CHAR, ICHAR etc. should be
deprecated.

4.9 Print Piles

The current draft preserves the unfortunate and often disastrous
bar to portability of allowing the processor to decide when a sequential
formatted file is considered to be a printer file. A user therefore has
no standard conforming way of forcing an output file to handle the first
character of any record as data, or as a printer control. Some
processors treat all disk files as non-printer files and swallow the
first character only if the file is connected to a real printer. Others
treat all files as printer files, and there is a spectrum in between.
Some processors provide an additional OPEN specifier which controls how
the initial character is handled.

Some form of user specification is necessary. It would be
possible to add a value to the ACTION specifier of 'PRINT'. A file
connected for ACTION= ‘PRINT' would have to be output only and initial
characters would be treated as carriage control. ACTION= 'WRITE' or
'READ/WRITE' should then be treated as data only files. The default
should be 'UNKNOWN' where it is processor dependent how initial
characters are handled on output, and it is a function of the statements
used and the processor whether it was input, output or both.

4.10 Derived Type 1/0

Unformatted I/0 for derived types is adequate as component by
component, but component by component will frequently not be what is
needed for formatted I/0 of derived types. Unless an adequate extended
definition both requiring and providing facilities for the user to
specify how formatted I/O is to be performed, derived type objects
should not be permitted to appear in formatted I/O lists. The user can
write input procedures that read intrinsic values and can convert them
as required by the semantics of the type, and similarly by a procedure
can convert a value as required to represent it in the file as a series
of character records, or part of a record. To include a partial and
seriously inadequate facility is simply complicating the job of the
next committee in doing the job properly without helping the users in
this round.

An obvious possibility for an object of any type, the value of
which could be represented by a character string contained within a
single record, or field within a single record, would be to allow the
user to define a Format procedure that would be associated with a
derived type definition and would convert between derived type wvalues
and character strings and which could be invoked at the relevant place
in the I/0 processing. Unfortunately many derived types will require
multiple records for their adequate representation in any formatted
file. Therefore this otherwise very attractive approach is not directly
applicable for the general problem.

No fully satisfactory solution to this problem has suggested /’ 2/

objects in Formatted I/O lists.

4.11 Elemental Functions

The rules for elemental functions and elemental assignment are
unsatisfactory. The fact that a function or assignment is to be
callable elementally should be indicated in the definition of such
functions. The rules of when this is possible are broadly correct, but
those scalar arguments, along with the function result, which are to be
extended to permit array valued arguments in an elemental reference
should be declared. There is a need for an ELEMENTAL attribute which
may be specified for scalar dummy arguments and function results (at
least one dummy argument must be declared elemental along with the
result) which may be elementally extended to be array valued. All
elemental arguments must have conformant shapes in any reference..

4.12 Overloading Rules

The present overload resolution rules would allow the shape of an
array or the length of a character string in certain circumstances to
resolve an overload. This is too general a rule. A sufficient rule and
one which allows much cheaper implementations is that arguments must
differ in type and/or rank to resoclve an overload. This simpljfied
overload rule will retain the essential functionality but will reduce
greatly the potential 'size of any ‘'specific name" symbol table that
would be required to handle overload resolution and procedure linkages.

4.13 Array Intrinsic Functions

The removal of RANGE as an attribute of an object and making it a
true section, or based on pointers will reduce the need for duplicate
array inquiry intrinsics. The enquiries for "effective" bounds etc.
will no longer be needed.

There is a need for additional intrinsic functions to perform the
Gather/Scatter operations that are common in sparse matrix applications.
Vector valued subscripts are too uncontrolled to be used for this
purpose and have rightly been deleted from the language, but the more
limited functionality that could be provided by appropriate intrinsic
functions is still a significant need.

4.14 Complex as an Intrinsic Structure

The language should bs marginally extended to allow COMPLEX to be
handled in a fully regular fashion as an intrinsic structure. Basically
this would require the imaginary and real parts to be accessible by the
notation of component selection, say, as ZVARTREAL and ZVARTIMAG. This
simple regularisation would also add much needed functionality. As it
stands at present there is no vay to use array notation to assign into
the real parts of a complex array. ZZIREAL would provide such a
mechanism we would also need (as would be consistent with 4.7) a
type-conversion function

COMPLEX[output-precision-selector] (real-part-exp, imag-part-expr)

where the imag-part-expr argument was optional. }7. ,2/ /

e 14 =

)

4.15 Assignment Overloading

In general it is illegal to overload in such a vay as to seek to
define a new meaning for an already existing operation; it is not
permissible to redefine the semantics of +, for integers. However it
should be permissible to redefine intrinsic assignment {f the arguments
are of a derived type. Intrinsic assignment is defined for derived
type objects with identical type and type-parameters. For many types it
will be necessary to define assignment for non-identical parameters and
this will almost certainly not be simply component by component
assignment. The procedure implementing such an assignment will in most
cases also define assignment for equal type-parameter values as vell as
for non-equal. A rule such as "If a user defined assignment subroutine
with at least one argument of a derived type is accessible this is used
rather than intrinsic assignment even if intrinsic assignment was
applicable"”.

4.15 Exponent letters

Exponent letters E, D or any defined exponent letters form a class
of identifiers that is separate from that of any other names, but this
is not stated clearly. It should be so stated.

4.16 Array Component Selection @

A scalar component may be selected from an array of structures
producing an array vhose shape is that of the structure array and wvhose
type is that of the component. An array component may be selected from
a scalar structure producing the component array type and shape.
However, the obvious regularity is not permitted of selecting an array
component of structures with the obvious interpretation as a

multi-dimensional array of the component type.
-2
It might be argued that an array component from an array of @
structures is an array of arrays and this is not a multi-dimensional
array. This argument is spurious. It is a multi-dimensional array in
that it can be described perfectly well be a dopa-vector like any other
array. The argument is confusing the semantic modelling of entities
with properties of their representation. A two-dimensional array of
reals may or may not represent a matrix. This is a Question determined
by the detailed semantics of an actual prograa. Similarly a vector of
vectors @may or may not be a matrix for similar reasons, but if a vector
is represented by a one dimensional array of reals a vector of vectors
is most definitely represented by a two-dimensional array of reals.

g
’

Of course allowing array component selsction from an array of
structures highlights the unfortunate choice of ordering for component

selection, viz.
structure Z component Q

It would be much more regular and consistent with Portran conventions if
the ordering vas

» Rz
component I structure f -

Even in the absence of implicit declaration it is common practice among
many users To continue to use a naming convention which indicates the

type of an object by the first characters of its name.
of a selected component is that of the component this arg

Since the type
ues for putting

the component first. It is also the case that in manipulations of a
selected component the major determining factor controlling what is

permissible is the attributes of the component.

The fact that the

object is selected from a structure is of secondary significance. One
thinks in the main of manipulating the such and such component qualified
by the fact that it is selected from the so and so structure; the
structure is conceptually a qualifying feature and hence more logically
comes second. Also, since Fortran retains column major ordering
putting component first would allow the component and structure
subscripts to associate in a simple left to right correspondence when an
is associated with a

array component from an array
multi-dimensional array of the component type.

better in component % structure order.
this way round given its frequent use as an abbreviation for "care of".

4.17 Very Long and Inconsistent Punction Names

The use of excessive long names and the lack of consistency in the
way these names have been constructed is entirely unreasonable. {Por

example, compare

EFFECTIVE_EXPONENT_RANGE(X)

for the floating point inquiry function with

DUBOUND(A)

for the array bound enquiry function.

the other expanded consistently.

something like
EERANGE(X)
or DECLARED_UPPER_BOUND(A).

structure

The qualification reads

The Z is a logical symbol to use

Either one should be shortened or
That is either we should have

The use of abbreviated names for functions is preferable. Long

nanes for subroutines is reasonable,
expressions vwhere the effect of the very long names is to obscure the
structure of the expression making them both tediocus to write and

extremely difficult to read.

but functions are referenced in

Another possibility would be to provide both long descriptive
names and as well abbreviated aliases.
acceptable is to adopt a set of abbreviated names for all the functions.

The main changes should be

EFFECTIVE_EXPONENT_RANGE
EFFECTIVE_PRECISION
MAXEXPONENT

MINEXPONENT

SETEXPONENT

DOTPRODUCT

- 16 -

Of these possibilities the most

EERANGE
EPREC
MAXEXP
MINEXP
SETEXP
DOTPROD

[2 213

3¢

¢ o

(1)

4.18 Assumed versus Generic Type-parameters

The language has two very different semantics indicated by a
similar syntax. For type-parameters like character length the
declaration of a dummy argument with the type-param-value as an asterisk
indicates that the actual value is taken from the associated actual
argument. Such type-param-value are dynamically variable at runtime.
The creation of such dummy arguments and any local objects with
attributes determined relative to such arguments and parameters are
necessarily automatic and will be allocated space on a stack at
run-time. All such asttributes assume their values independently. For
PRECISION and EXPONENT_RANGE parameters (and also for FIGURES for
integers 1f this were to be included) the specification of asterisk
values for floating-point dummy arguments indicates that the procedure
is to be generic over available floating point representations and these
dummy arguments are the generic arguments. An actual parameter value is
not assumed. All generic dummy arguments must be of the same
representation. All associated actual arguments must have been declared
the same, but on different calls actual sets of arguments with different
declared precision-selectors and hence possibly different floating point
representations may be used.

These two very different semantics should be indicated’ by
different syntax. The problem is really to over-use of the asterisk
symbol. Its use has been extended because of its use for assumed-size
arrays and Fortran 77 'style assumed character lengths, gathering even
greater irregularity. Another character should be used to indicate F8X
assumed parameter values, and the asterisk retained for the deprecated
assumed-size arrays, Fortran 77 assumed character lengths (this should
be deprecated), declaring symbolic character constants, and generic
procedures. These are all different mostly deprecated and the asterisk
becomes and indication that something different is being done with
attribute values. A highly suitable character for indicating the
regular assumption of type-param-values would be the question mark, 7.
This provides a clear indication that when written this value is
unknown, the value to be provided later on invocation.

4.19 PAD and TRIM Characters

In many applications the Blank character is not irrelevant even in
trailing contexts. This makes its use as a pad character and the
character trimmed off by TRIM and ADJUSTL/R functions, unfortunate.
Ideally thers should be a processor directive to define a character to
be used as an alternative to blank. However as there appears to be no
mechanism at present for such directives there should be somevay of
specifying the character to be used as the pad character, in each

context where it is required. The TRIN, LEN_TRIM, ADJUSTL/R functions <&~

could have an optional extra argument which could specify the character

30 -

e

to be used as "padding". The PAD= specifier for an OPEN statement couldé@;

be modified to allow padding to be turned on and to specify the
character to be used for the logical padding. For instance, it would be
possible to say the form of PAD=s is

PAD= char-expr

If LEN(chav-axpr) ®» 0 ns paddine is done ocherwize mnaddine iz narfrrmad

F. 2,

using the character char-expr(1:1) as the pad character; the default
being PAD= 'blank'

This still leaves the problem of assignment where padding if required
would be by blanks (this is why a directive is preferable assignment
would also be changed). However this problem could be programmed
around. [Either accurate precalculation of assigned lengths could
restrict the occurrence of assignment padding where critical, or the
combination

TRIM (TRIM(STRING), PAD= ACHAR(0))

To first remove blanks possibly added by an assignment then to remove
specific padding, assumed to have been added and to be ASCII null.

5. CONCLUSION

The draft standard is a wvelcome and desirable enhancement to the
capabilities of Fortran, but it needs to be amended, to complete the
basic design and to remove a number of infelicities, before it is
adopted as a standard that is intended to define Fortran until the turn
of the Century and beyond. 3

77, 285
vooid 12330 8.

- + = twmenw -'-‘-: Ex

Vg #3
Convex Computer Corp.

701 N. Plano Rd.
Richardson, TX 75081

December 8, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

‘Washington, DC 20001-2178

Dear Sir:

@471 think that the array triplet potation is an important improvement. I also fee] that
@the WHERE statement is a needed extension. I think that the abstract data typing is eQ/

an overly complicated change to FORTRAN.

31
l also feel that the numerical precision control geeded modification to the
language. I am unhappy that the IMPLICIT NONE statement was missing. I believe

@that the DOUBLE PRECISION statement should not be taken out of from any
FORTRAN of the future.

1 am opposed to the standard as currently proposed. Please fix the problems
outlined in this letter in the proposed standard.

Sincer;l‘y.
L'/’l, 3 ‘ Cﬂ() é //lo m;qc/‘r‘.os ',
R;.-qe,e‘ Kellow f_“__ﬂl

3(-1 CEM

3(’2 G ENV

31-3 DATA

3(-9 DATH

3/ -5 DATA

3/-4 @LC/!/

P 2/

®

#352.

November 15, 1987

- N ‘/:;nf ’
emin -
Ms. Catherine Katchurik 5“’1’"{ M plec
X3 Secretariat/CBEMA ——""""vﬁ.'m 37-'7 pRoC
311 First St NW, Suite 500 32-1 oo 328 Lo
Washington, DC 20001 31-2 2oc 32-9 c .
copy to 2-3 ¢ # -/0 PR

Board of Standards Review 3 pAT 32 , GEM
American National Standards Institute 3271 patA | 32/ pAT
1430 Broadway 32‘; 42'/9‘ 332 -2
New York City, NY 10018 32,4 D

I would like to make several comments on the proposed new Fortran
Standard. I will tell you what I think the new sStandard should do to
improve on Fortran 77, and then my points of disagreement with the draft 1
have seen.

First, there are several things which either cannot be done in
Fortran 77 or can be done only with kludges. The first of these is logical
operations on integers. 1 use these very extensively in programs which
directly control hardware registers. The functions AND, OR, NOT (1's
complement), and XOR for integers are implemented in most but not all
implementations of Fortran 77. While it is theoretically possible to get
the equivalent effect using arithmetic operations, it is generally rather
slow, even with the best optimizing compilers. I would have expected .that
these operations would have been included in any new standard. I note that
there is a "bit" data type described in an appendix, but not included in
the standard. The amount of language constructs associated with this
proposed construct is rather large, and except for its proposed array
masking function, would be easily supplanted by simple bit functions. Of
course, these functions would only be guaranteed to generate the same
arithmetic results on positive integers, given the difference between 1's
and 2's complement hardware, and would have to be carefully defined to
allow the (extremely remote) possibility that someone would write a
Fortran Bx on a decimal machine. Nevertheless, they should be included.
The cost is negligible, and the utility extremely great for those persons
who need them.

The second is the difficulty of using Fortran IO using cursor
addressing on a terminal. For example,’ in Fortran 77 it is impossible to
write a prompt on one line and get input on the same line. This is fixed
in the F8x draft with the PROMPT keyword. This is very nice as far as it
goes.

However, it still appears that a carriagereturn will be emitted at the end ‘32"1
of the line inputted. A facility, perhaps a keyword NODEFAULTCAR-
RIAGERETURN, or something shorter, should be included in the OPEN state-

ment, to the effect that neither on input or output should carriagereturns

(or linefeeds, which are worse) be generated unless explicitly asked for.

Fortran lacks any mechanism, such as pointers, for directly address-
ing memory. I do not propose adding pointers. However, I believe that
Fortran should recognize the existence, indeed the dominance, in numbers
of existing computers, of computers in which absolute memory locations 2
need to be used. I refer, of course, to memory mapped video screens. There }2 T/
should be some standard syntax to read and write such memory. It could not
possibly be portable in execution, of course, but I propose that you
include a standard syntax for a "peek" and a "poke" function for memory,
and another pair of functions for those computers which have a separate 10
address space. 1 realize that this would graft a big wart onto the logical

P RI7

31-

1)

structure of Fortran, but the fact is that such a construct is NECESSARY,\\
and you might as well make a standard syntax for it. At the very least,)
this would allow easier porting of programs from one machine to another,
as the programmer would at least be able to find instances of these
constructs by a simple editor search. This is much superior to the
expedient of having the user define such functions in assembly language,
as is now necessary, as these would be inline functions in most implemen-
tations and would thus be much more efficient. It is to be noted, also,
that the compiler would recognize that two successive "peek"s of the same
location might return differing results. That, of course, is a compiler-
dependent implementation issue.

Another problem with Fortran 77 is the impossibility of initlalizing
character variables and arrays (and generating constants) with nonprinting
characters. The proposed mechanism, involving concatenation of strings and
a method of including nonprinting characters, is Quite satisfactory.

I note that some persons have proposed inserting a new construct tdj

allow more than 256 characters, perhaps to accommodate Eastern languages 22 -5
Such as Japanese or Arabic. This is not the province of an American Z

4
32

national standard, or even an international one. It should be left to the
national standards body of the country involved.

1 note the concept of “trigraphs" which would result in character =
Substitutions even in characters strings. This is just plain stupid. If
Someone wishes to use a non-standard character set, they should be the
ones to suffer discomfiture. I note that the corresponding committee
generating a C standard did not see any need for a corresponding kludge.

It is frequently expedient in Fortran 77 to get the bit pattern of
one type of object into another type. This had to be done by the very
kludgy method of using EQUIVALENCE. 1 note that the proposed standard has
the TRANSFER function, which if I read it correctly, will do this. This is
a very useful feature and 1 strongly support its inclusion.

1 note that there are a large list of proposed intrinsic functions. 32 -5
Consistent with any changes to reduce the size of the proposed language
which might render some meaningless, I suggest retaining them.

One of the defects of Fortran 77 is its paucity of looping con-k

an

structs. I would have fixed this by simply including all the constructs
present in the C language, but the constructs which you have provided are
certainly sufficiently expansive that I support their inclusion.

One defect of Fortran 77 is the lack of any INCLUDE facility, and
the lack of a preprocessor or macro facility. I note that you have
declined to include the INCLUDE statement found in many implementations of
Fortran 77. I presume that this was done for two reasons, one being that a
choice would have to be made between then numerous differing syntaxes in
different vendors i{mplementations, the other being that hard-coded
filenames are intrinsically non-portable. The syntax of the MODULE-USE
facility you propose fixes the second objection, and 1 support it.
However, the MODULE construct i{s flawed in that not all of the rest of
Fortran can be included inside a module, in particular code fragments, as
opposed to whole subroutines, appear not to be accommodated. This is a
serious flaw. This construct, that is small fragments of code, i{s extreme-
ly useful, given the lack of a macro facility. The module concept should
be expanded so that any legal construct can be used in it. I note that no
macro facility is included in the proposed draft. I have no opinion pre or
con on whether it should be there, given the other facilities already
there which partially take its place (including your C compiler's preproc-
essor).

I now come to my objections to the proposed standard. Some of these

7 28

®

are so severe that 1 consider it to be fatally flawed. The first of thes;\
is the concept of "deprecated features". 1 note that the list of these
include a large fraction of FORTRAN, FORTRAN II, FORTRAN IV, and FORTRAN
66, including the heart aof Fortran's storage allocation mechanism, COMMON
and EQUIVALENCE. It may have been your intention to include in Fortran 8x
a "superior" mechanism (I don't consider that your proposal is superior,
just different), but the idea of deleting ANY part of present Fortran ls
absolutely, utterly, fatally, flawed. I realize that you don't propose to

remove these constructs from Fortran 8x. But simply to propose that they o
might disappear in the future is a fatal flaw. It is as simple as this: I 2 -l
expect that all my present legal Fortran programs and subroutine libraries 3

will remain valid forever. It is simply a waste of time to have to
rewrite a working program or library. To even propose removing vital parts
of the present language is stupid, indeed laughable. The idea of depre-
cated features should be removed from the draft, and replaced with a
statemert that all of Fortran 77 will remain in future versions, forever.
The present draft should be totally refected until it is changed to state
that all of Fortran 77 is expected to be included in future versions.

I have read that some persons believe that the proposed Fortran 8x
is simply too large. While it is certainly very large, 1 am not sure what
"too large" would be. It does seem that some of the proposed extensions
are redundant.] agree that the proposal to allow operations on sections
of arrays without DO loops is a useful extension and is a good reason to
make the language larger. However, given that a perfectly useful system
for declaration statements now exists, and] expect that it will remain in
Fortran in the future, {t seems that the whole new mechanism which you
propose it eventually replace it is large extension which should be
carefully scrutinized. I believe that a small extension to the present
syntax, to allow more different sizes of integers and reals, without l
changing the flavor of the present system, would be better. Since most 3 -
modern computers have word sizes which are a power of two, it would be
proper at recognize that fact, and design a syntax addition which allow
use of all the word sizes available, with an adaptation for machines with
oddball word sizes. If you were designing a language de novo, your
proposed method would be fine, but 1 feel it better if you simply extended
the present method.

In summary, I strongly suggest that the present proposal be returned
to the drafting committee, with a mandate given to that committee to come
up with a new, smaller, proposal which recognizes that any future revision
should add to the present standard, rather than attempt to supplant any
part of it, Without very substantial changes, the present draft Fortran Bx

should be rejected.

Sincerely,

T e

iversity of Illinois
05 S. Matthews St.
Urbana 111 61801

29. 19

- INNSN #33

National Aeronautics and
Space Administration <:::)
Washington, D.C. Vo e L
20546 AR ST -
L S | I ot
ReoyioAnnot NTD T DEC 9 1887

X3 Secretariat

CBEMA

311 Pirst Street, NW
Suite 500

Washington, DC 20001

Dear Sir or Madam:

Enclosed are comments from four of the National Aeronautics and
Space Administration's field offices concerning the proposed
draft revision to the American National Standard for Fortran.

If you have any questions regarding these comments or require
additional information, please call Mary Bofmann at 453-1794.

Sincerely,

‘5§ZZ~,atqf,4ficizz;/

Russell S. Rice
Director, IRM Policy Division

‘/? enclosures

/1. Review of Proposed Standard from Ames Research Center
2. Review of Proposed Standard from Jet Propulsion Laboratory
3. Review of Proposed Standard from Marshall Space Plight Center
4. Review of Proposed Standard from Kennedy Space Center

cc:
Mr. James H, Burrows, Director

Institute for Computer Sciences and Technology
United States Department of Commerce

National Bureau of Standards

Gaithersburg, MD 20899

f- 22p

§“b 7 ' "/7 /
_ pﬁTﬂ
33 InC
33 -2 on
3 GEWV
33 pROC
A Review of the Proposed Fortran 8 Stazdard 33 1 ‘sgw
David H. Bailey 33 7%, _arh
¥AS Systenms Division 3-6 v
November 25, 1887 ?

Reocently the ANSI oommittee (known as X3J3) that has been vorking
oo the nev Fortran standard oompleted its draft and has gubzmitted
it for public comment. This new standard adds a consideradble
cunber of new fcatures, and in many respects represents a
departure from the oomparatively simple Portran language of _
yesteryear. This note summarizes these new features and atiempts
to assess their impact on scientific oomputation both in the HAS
projcct 'and at NAEA Ames in general.

Qverview

The goal of the ocommittee i preparing this standard was not to
merely standardize & fev pet extieusions that bad come intd
popular ussge., but to moderanize the language so that it Qaa
continue te function as the premier laaguage of scientifio
computing vell into the next century. The proposed Fortraz 8X
standard, in spite of its inclusion of maxy nev features, is
strioctly upwardly compatible vith Portran-77. Thus any
atandard-conforming Fortran-77 program vill alsc be &
standard-oconforming Portran-8X program. The new features that
are prorosed to be incorporated intc Portran 8X represent in most
coses features that have been found to be very effeotive in other
modern languages, suoh as Pascal. APL, and Ada. For example,
structured data types. which vere popularized in the Pascal
language. have dbeen incorporated into 8X. Sismilarly. the array
cperaticns that maay feel aTe the most significant of the nev
features of Portran BX, have their roots im the array operations
of APL. '

Sunnary of New Features

A. Bouroce ocde format
1. Lover case alphabetic okharaoters are alloved.
2. Long identifiers (up to 31 characters long) are allowed.
3. Code may be optionally entered in & nev free forzat.
4. ¢, », ¢=, r= @t0. may be used instead of L., .GT., etc.

B. Ploating-point precision control
1. REAL declarations may include machine-independent
precision levels. For exanple. tde following specifies
tzat X must be represected by a hardware data type with
: at least 12 digits of precimion and an exponeat raage of
at least 10°{+- 80}:
F. 2| REAL (13. 80) X
3. Exponent letters may be defined to specify oonstants vith
a machine-independent level of precision. Example:

©)

X = 3.125F0

New data types
1. The user mey defipe data struotures in a manner quite
sirilar to Pascal and Ada. Exanmple:
TYPE LINE
REAL. ARRAY(2,2) :: COORD
REAL :: WIDTH
INTEGER :: PATTERN
END TYPE LINE
2. Dynanically allocatable data arrays may be defined azd
controlled.

New sudprogran Construots

1. The RECURSIVE descriptor allows a subroutine to ocall
itself.

2. The OPERATOR descriptor in a FUNCTION subprogram allows a
function to be identified by a symbol, such as +, , *,
/.

8. MODULE definiticns allov glocbal data arnd proceduras to be
defined.

4. Keywvords may be used in subprogram references. Bxample:

CALL SUBX (A, B, 3., N = 4)

Nev program oontrol gtatements
1. A CASE oonstruct has been defined. Exanmple:
SBELECT CASE (N)
CASE (:=-1) ! N .LE. -1
SIGNUM = =]
CASE (0Q) ! XN .EQ. O
SIGNUN = O
CASE (1:) 1 3 .GE. 1
SIGNUM = 1
END BELECT
2. Nev DO syntaxes have been defined. Examples:
DO I =1, 100
A(I) - 3. * B(I) ** 2
ENDDO
DO
CALL RANDOM (X)
IP (X .GT. 0.98) GOTO 10
ENDDO
3. A VHEERE-ELSEWHERE construct has been defined that iu
8izilar to the IF-THEN-ELSE construct, except that it
applies to arrays.

Array oconstruots
1. Most arithpetic operations and intrinsioc funotions have
been extended to handle array arguments. Example:
DIMENSION A(S0,80). B(%0.%0). €(100,100) 2
C(1:90,51:100) = 3. * A + SIN (B) ‘
2. An IDENTIFY oconstruot bas been defined to allov a user to
identify a variable vith a subsection of an array.

)

IDENTIFY (DIAG(I) = A(I,I), I = 1:N)
Numerous APL-style intrimsic array operators have been
Qerined. As in APL, they are rather general in
definition, extending ia natural vays to arraye of
several dimensiocns. Exaxples:

MATMUL Performs matrix multipliocation
DOTPRODUCT Computes the dot product of two arrays
MAXVAL Pinds the maximum value of an array
MAXIOC Pinds the locatiorn of thc maximum
TRANSPOSE Trancpoces an array
CSHIPT Performs a oircular shift ia oxne
dimension

v MERGE Joias tvo arrays in one dimension
PACX Cozpresses an array aocoording to & »ask
UNPACX Expands an array aocording to a mssk

G. Nev I/0 oomstructs '
1. The NAMELIST I/0 that has been popularized by a number of
manufacturers has been socepted essentially unchanged
iato the Portran 8X standard.

H. Nev intrinsic functions
1. Numerous anev intrimsic fuactions have been defined, 4
sddition to the array intrinsics mentioned above.

Ezamples:
LEN_TRIM Length of a character string after
trimming tralling blaczks
BCAN Scazns a string for a charactor iz a get
BPSILON Machine hardvare "cpgilon”
RANDOM Pseudo-random number betveen O and 1

DATE_AND_TIME Obtains the ourrent dato and tinme

I. Decrenmental funotions
1. A pumber of construots froa past Fortraa stazdards have
deen declared “decremeantal”, i.e. they are oocnsidercd
“bad” and are candidates for remcval from future
standards. In alzost all cases tleir funotionality is
provided by other Portran 8X oonstructs. Exanmples:
Arithmetic IF statcments
DO loops with REAL ooatrol variables
Ending DO loops vith other than EXDDO or CONTINUE
Assigned GOTO statenments
COMMON blocks
ENTRY stataenmeats
EQUIVALENCE statcmeants
Computed GOTO statements
Specifioc mames for intrimsie functiong }) 22.3

Discussion and Conclusion

There is no doudt that the ocurrent proposed Fortran 8X standard
is ocontreversial AP Tanws Geom macta- e =

D

features to be implemented ¢leanly acd affiniently Bome large
Scientific centers, notably Loes Alamcs, bhave voiced opposition
that it dees not include some Fortran extensions, such as POINTER
types, that they have been Telying on. They also are upset at
the establishment of *decremental® features.

On the other hand. 8tudy of the standards dooument and disoussior
vith oommittee members reveals that the preparation of this
standard has been a very diffioult undgrtaking. MNany pet Portrar
extensions vere proposed for inolusicn, and only a subset oould
be acoommodated without spending even more time and making the
standard even more unvieldly than it already is. Working out all
tke minute ramifications of the array oonsiruots, for exarple,
V&S very demanding, and whenever a revigion vas proposed to the
draf¢ atandard. considerable effort vas required to ingure there
vould be no unforeseen side offects with otler parts of. the
standard.

There ocertainly are featurea of this standard that ia the.

Tevicver'a opinion either unnecessary or disappointingly clussy. .~ -
For example, I doubt if VeIy many sclentific programmers villé?4:£;_a
ever use the Pascal-like structured data types. Similarly, I

den’t think that the nev keyword syntaxes vill gain nuch<e———-<§32§:
acoeptance among Fortran programmers, who for the most part will

R0t even expliocitly declare the types of their variables.

On the other hapd. other features of the standard are badly
needed at NASA Ames and other advanced sclentific cczputation
cénters. Xey among these are the constructs for ;rrayczi————-<zigzz:
oomputation. These oonstructa would provide, at long last, s

means for explicit deolaration of vectorizable and parallelizable
operations. Witk the current Portran language, scientists wko
generally kaov perfectly well that a ocertain operation is
parallelizable or vectorizable must first translate that parallel
concept 1into sequential terms for coding. Vectorizing oompilers

must then attempt to read the prograzmer’s miand, reconstruoting

the original parsllel operation f0r execution on the underlyiag
bardwvare. These oompilers rarely deteot all vectorizable

coastructs -- in some soientific codes, up t0 78% of veotcrizable
locopas are not detected sutozatically Dy the compiler and Tequire
nadual intAarventinn hy the programmor to 30Ri0ove vootorisasion.

Such problems will be oompletely avoided DY usage of the Portraz

8X array oomstructs. In faot. these 4Trray coastruots will
Tepresant the first ooncrete steps tovards a truly
machine-independent parallel Prograaniag language.

ol
Other oonstruots proposed f£or inclusion i the Portran 8X f?
standard are equally orucial for coatinued pProgress in advanoed
goiontifio computing. both at Ames and elsevhors. These include C:i‘
the RECURSIVE subprogram descriptor. vithout vhich a large body < (33
of revly disoovered advanced algorithms cannot be easily -
programmed. The modernization 0f tte Fortraz source code formaté4:::
is ecually eruveial. Hany an hous 282 nreogcamming +dma has mamm

D

Also very important in the proposal are the inclusion of <?3_g
machine-independent precision standards. Theese features will

greatly facilitate the development of scientific prograas that)
are truly pertadle detween machines.

In summary, while I for one do act 1like all of the nev featuree
ian the proposed standard, nonetheless I recommend that Ames
strongly support its adoption, largely because it includes many
features that ve simply ocasunol do without. I? oppoaents of the
proposed standard are successful in derailing it, it may be years
before a rovised standard is approved. In the meantixe, fev
vendors vill sdopt any of its features out of fear that they will
not be oompatible with the revised standard, and Ames progranmxers
vill be deprived of the potential benelits.

|

f‘ 225

Reply to Amn of

NNASN : #34

National Aeronautics and

Space Administration
Washington, D.C. T8 S e e om @
20546 ne N2 00T

NTD ’ T DEC & 1387

X3 Secretariat

CBEMA

311 First Street, NW
Suite 500
Washington, DC 20001

Dear Sir or Madam:
Enclosed are comments from four of the National Aeronautics and
Space Administration's field offices concerning the proposed

draft revision to the American National Standard for Portran.

If you have any questions regarding these comments or reguire
additional information, please call Mary Hofmann at 4353-1794.

Sincerely,

(L sy L. 2

Russell S. Rice
Director, IRM Policy Division

4 enclosures

1. Review of Proposed Standard from Ames Research Center

2. Review of Proposed Standard from Jet Propulsion Laboratory

3. Review of Proposed Standard from Marshall Space Flight Center

V" Review of Proposed Standard from Kennedy Space Center

cc:
Mr. James B. Burrows, Director)
Institute for Computer Sciences and Technology
United States Department of Commerce

National Bureau of Standards

Gaithersburg, MD 20899

22 2L

@)

Comments on the Proposed New Fortran Standard
Phil Hooper
Kennedy Space Center
It is strongly recommended that the following structured
programming constructs be included as extensions to DO:

a. DO {label} WHILE (scalar-logical-expr)

b. DO {label} UNTIL (scalar-logical-expr)
implementing top-test and bottom-test loop control respectively.

A number of vendors have implemented DO WHILE as a language
extension. A lesser number have implemented DO UNTIL,

In addition, it should be noted that Fortran 8x would be a <;¢-
significant improvement over Fortran 77. The addition of array
processing constructs adds a much needed capability to the

language. The addition of case statements and the modification (?4
of the do loop construct improves the structure of the language.
While not yet a "structured" language, much improvement has been

made in this area.

Nothing has been deleted from Fortran 8x that was a part of
Fortran 77, although some items have been identified as not
needed and recommended for future deletion. This means that any
program written to the Fortran 77 standard will compile and run
correctly with a Portran 8x compliant compiler.

There are enough differences between the new and old standards
that current programmers and programming managers may need to
take update seminars to take full advantage of Fortran 8x
compilers.

'Iﬂaf"“‘; .
Gubgrop 722
./ ¢cI?®
34 FEN
;‘-{‘: cT?
3¢

p. 227

— NS .. OFe

National Aeronautics and
Space Administration

WaShlﬂglOn. DC- L ¥4] :- . o
20546 At

€T n STEZ
*oyisama? NTD DEC 9 1987

X3 Secretariat

CBEMA

311 First Street, Nw
Suite 500

Washington, DC 20001

Dear Sir or Madam:

Enclosed are comments from four of the National Aeronautics ang
Space Administration's field offices concerning the proposed
draft revision to the American National Standard for Fortran.

If you have any questions regarding these comments or reguire
‘additional information, please call Mary Bofmann at 453-179%4.

Sincerely,

(Lvncey £ 5,

Russell S. Rice
Director, IRM Policy Division

4 enclosures

l. Review of Proposed Standard from Ames Research Center

2. Review of Proposed Standard from Jet Propulsion Laboratory
/3. Review of Proposed Standard from Marshall Space Flight Center

4. Review of Proposed Standard from Kennedy Space Center

cc:
Mr. James H. Burrows, Director

Institute for Computer Sciences and Technology
United States Department of Commerce

National Bureau of Standards

Gaithersburg, MD 20899

f- 225

D,

Comments on the Proposed New Fortran Standard
John C. Lynn
George C. Marshall Space Flight Center

The proposed draft for the revised Fortran 8x standard appears to
be consistent with the Fortran 77 standards currently in effect.
The Fortran 8x standard will allow existing programs at Marshall
Space Flight Center to run with little or no changes required.

Enhancements to use new features of the language will not be
difficult.

Although we anticipate no problem with acceptance of the Fortran
8x standard, we believe implementation of the following
additional features would be desirable:

a. Do until statement. ?S<::::zi>

b. Do while statement.

c. Range statement (allow user to hard code the actbal (:::::::)
range of a variable).

nu.luff;“‘ :
¢TO
’39"_} p/}Tﬂ'

p- 229

— NNSN\ .- 1368

National Aeronautics and

Space Administration
waShlnngﬂ. DC- v a2 Lot X3S .
20546 ASSTITET NS
€[ToEs
Reoiyio Amnol NTD DEC 9 1987

X3 Secretariat

CBEMA

311 First Street, NW
Suite 500

Washington, DC 20001

Dear Sir or Madam:

Enclosed are comments from four of the National Aeronautics and
Space Administration's field offices concerning the proposed
draft revision to the American National Standard for Fortran.

If you have any questions regarding these comments or reguire
additional information, please call Mary Hofmann at 453-1794.

Sincerely,

S nnees LB

Russell S. Rice
Director, IRM Policy Division

4 enclosures
l. Review of Proposed Standard from Ames Research Center
v2. Review of Proposed Standard from Jet Propulsion Laboratory
3. Review of Proposed Standard from Marshall Space Flight Center
4. Review of Proposed Standard from Kennedy Space Center

cc:
Mr., James B. Burrows, Director

Institute for Computer Sciences and Technology
United States Department of Commerce

National Bureau of Standards

Gaithersburg, MD 20899

. ‘ P 230

e

@ sprte
i

24/ DATH
3{-2 Pﬂf/ﬂ

3¢-3 PRoC

3{5{ Lo

Comments on the Proposed New Fortran Standard 34-5 GEN
Fred T. Krogh and Charles L. lLawson 34 -6 gZ?;

= (-7 /

- Jet Propulsion Laboratory, Section 366 34_3 cto
. "Rec

November 13, 1987 ;2_?0 Leoc

3 o

Comments on Removed Extensions 36-1%

36-/3 CFO

1. Bit Data Type: This is a feature we would like to see,
although there is something else that would be of more use
and which could contain bit data type as a special case.
We would like to be able to stcore and access bit fields L-
that are packed in a word. Procbably the easiest way to E
get this is to allow data structures to be packed and to
give the programmer some way to control this packing.
Such a feature would be useful in packing information in
symbol tables and/or data bases and would make it possible

in some cases to interface with external hardware without
leaving Fortran.

2. Variant Structures: This is a feature that we would also I
find useful. It is almost essential for the E
implementation of a symbol table that contains a variety
of objects. 1If you want to get rid of Equivalence, which
we have mixed feelings about, it would be nice to have
something like this to ease the transitioen.

3. Internal Procedure Name as an Actual Argument: Software for (7, -3
differential equations, quadrature, nonlinear least
squares, and many other areas of mathematical software
frequently requires the user to supply some arbitrary
function. A very clean interface is possible if the user
can pass the name of the function, but keep the code for
the function in the calling program. Thus we would like
any restrictions on the passing of internal procedures as
actual arguments to allew at least this much
functionality. Recursive internal procedures, for
example, would not be important in this application.

4. Condition Handling: This feature is very desirable to have 3477
in a language. It is frequently the case that the
underlying hardware can check for exceptional conditions
with no overhead, that are expensive or awkward to check
vith software. .

5. Significant Blanks in Free Source Form: Future extensions 7(-53
of Fortran are likely to find significant blanks useful.
They make a lexer easier to write, ensure that code is not
written in a way that is very difficult for the human eye

[7.9.3! 1

to lex, and offer the possibility of a slightly cleaner
syntax in the future. Other languages have significant
blanks. The time to make the change is now when there is
no problem with backward compatibility. If it isn't made
at the time free form source is introduced, then it will
be very hard to get in later. We like the idea of free
form source, but would rather see it eliminated than have
it introduced with blanks that are invisible. Note that
programs will certainly be written to convert programs
from the old source form to the new form, and such
programs could very easily remove unnecessary blanks and
insert necessary ones along with the other changes that
they make in the source.

Other Desired Extensions

€. Pointers: We would like to see a pointer facility added to

the language. .

7. Support for Object Oriented Programming: We believe that

‘object oriented programming is a very pronising way to

enable the reuse of software components. The immediate
support desired is to allow functions to receive values.
Notionally such functions might well look like references
to a structure component. Such support would be most

()

36"

useful if one could declare that references to such object

are to be done with code that is in line, since in many
cases the code involved is very small. Inheritance is
probably too much to ask for at this time, but should be
kept in mind for the future.

Control Structure Exits: We use a Fortran preprocessor tha

allows control blocks to be labeled and allows exits from
a control block by naming the label of the bleock in an

exit statement. We have found that such exits remove any
need for the use of unrestricted go to's and thus believe

t (34-

they are well worth having. We suggest the EXIT staterment

be permitted to reference the label of an IF or SELECT
statement as well as that of a looping structure.

9. PRESENT Intrinsic: We have written some codes that contain

a large number of options. It would be nice if these
codes could be written to take advantage of the PRESENT
intrinsic function, but in its present form it would not
be useful for th%g application. What is needed is a way
to ask if the "I™" argument is present and a wvay to get
the value of the "IYBn argument.

10. IOSTAT Message: Frequently one wants to check the status

of an I/0 statement, and in some of the cases would like
to print the message that would have resulted from the I/

2 fﬁ 232

36-

o

®

statement in some of the error cases. Since there is no
standard for the status values returned, there should be
some mechanism for printing such messages, without

. requiring that the system default action be taken.

1l. NAMELIST Comments: We use namelist input with very large 35"A/
data sets. We have found it useful to embed comments in
the namelist input in order to keep track of the various
data sets. We would like to see this supported in the
standard.

12. syntax for Iterative Control Structures: The Fortran Do (24 -/-
loop is a loop. We suggest that the name LOOP be used for
all of the new looping structures since it more clearly
states the function. We believe it is desirable to
qualify indexed loops with the keyword, FOR, and to
provide a WHILE keyword form, since this models a
frequently occurring construct that is provided in many
procedural languages. Thus we would like to have the
following forms:

DO 10 I =1],7,2 {deprecated) v’
LOOP

IOOP FOR I = 1,7,2

LOOP WHILE (X > 0.1)

LOOP (5) TIMES

Overall Comments

We are concerned about the size of the language, but there
is little that we would like to see removed. We do believe
that the size of the language could be reduced if there were
more regularity in the language, but don't see how to get there
from where we are. With better support for abstract data
types, see comment 7 above, we believe that much of the special
baggage for handling arrays could be removed. The bottom line
though is that the new features are sufficiently desirable that
ve would like to sees something close to your current document
approved, rather than living with Fortran 77 for the next 1l years.

P 233

1.

The standard should include not only the ingexed DO loop,
but also the other most commonly used leoop structures that Eii |

OTHER REVIEWER COMMENTS

test the truth of a condition. These are the DO WHILE
which tests the condition at the end of the loop. These
constructs should be included to improve readability of the
source code and to encourage good programming practices.

The namelist standard should allow the user to include 267
comments in the namelist input file. Without this feature
we may have to continue to write our own namelist processor.

c v

f. 234

James H. Matheny §ub7’”/ pﬁTﬁ

41 Silver Spring Drive
Rolling Hills Estates, CA 90274 37
(213) 375-5940

December 7, 1987

X3 Secretariat/ CBEMA

Attn: Fortran Public Review
311 First Street, N. H.

Suite 500

Washington, D. C. 20001-2178

I believe that the Fortran Draft Standard -- X3J3/S8.104, June
1087 -- meets the needs and desires of the Fortran Users
community. This community has many overlapping components,
including:
Professional programmers '
Casual users -- people whose expertise is other than
programming
Large scale scientific users
Commercial users
Systems programmers
Micro computer users
Novice users
Experienced users

The emphasis of the draft Standard Fortran is, properly, on the
needs of large scale scientific users. Some features needed by
cther classes of users have not been included in <the draft
Standard. Of <these, the most significant, in my view, is the
lack of a varying length character capability.

I PROPOSE THE ADDITION TO STANDARD FORTRAN OF A VARYING LENGTH
CHARACTER CAPABILITY.

DISCUSSION

The idea is that, on definition, any character entity has a
length. (The exception to this generalization is treated below.)
With this facility, a user can treat words and sentences as they
exist in normal English (or other natural language) normally, and
not as padded by some specified but arbitrary number of blanks.

The syntactic form proposed is the Fortran 77 character statement
specification without the inclusion of a length specification.
(This bhas problems dealt with below.) Operations on character
entities are permitted whether the length attribute is varying or
specified, and concatenation between character entities of either

p. 235

Dawa 9 .o B

attribute is defined and permitted. For example:

CHARACTER (LEN = 10) A, B
CHARACTER %10 C
CHARACTER D, E

[}

D= “abe™ ; C = ’ defg’

E=Dv/7C /7 A /28 ! Valid operation, LEN(E) = 33

Fortran 8X form
Fortran 77 form
Proposed form

Character functions, intrinsic functions, and substrings are
permitted without added restrictions.

The proposed facility requires heap memory management for the
object program. Years ago this was considered to be too radical,
but now heap memory management is required by the
ALLOCATE/DEALLOCATE mechanism of Fortran 8X, so there is little
additional complexity added in the compiler or in the run-time
environment. (Of course, an implementation need provide this
heap memory management only when the source program(s) ,require
it.)

This proposed facility is common practice. Many other languages
require or allow heap memory management. A varying length
character capability (in a fixed allocaticn) has been implemented
as an extension to several Fortrans, including the CSC Infonet
Fortran 77. A true varying character facility, as proposed (with
a different syntax) has been in the General Electric Information
Systems Fortran for more than ten years.

Calling out known problems with the proposal:

The syntax proposed stumbles across a "mistake” in Fortran
77. If a xLEN is not specified, the default length is
defined to be 1. This proposal uses this form ¢to specify
varying length character. However most existing Standard-
conforming programs that use this syntactic form would work
giving the same (correct) result, but using the varying
character capability. The programs that would be
incompatible are those that use the truncation cepability of
Fortran 77 to extract a first character from a string. This
iz better accomplished using the Fortran 77 substring
notation.

The length of a varying length character entity on definition
is not immediately known for unformatted input or for
formatted input whers the edit descriptor is A without a w
(width) specification. Thus there are times when the user
must specify explicitly ¢the desired length. It is alsc
useful for the user to be able to chbange a length.

A syntactic form to resolve this problem could be the
P, 237

©)

existing LEN intrinsic function, but permitting it to appear
on the left of an equals sign on assignment, and other places
(READ, e. g.) where definition occurs. This is (to me) a
natural syntax, and is used in the CSC INFONET Fortran.
However this syntax violates consistancy criteria of language
design, and would require a substantial rewrite of Section
12 of the draft Standard.

Proposed here is an added SET_LENGTH statement to provide
this functionality.

SUGGESTED TEXT (Words delineated by x*xx are not a part of the
proposal)

i. Page 2-3, line 24+. Add line:

or set-length-stat

2. Page 2-9, lines 15-18. Add clause: ... precision objects ",
character type objects with unspecified length, * . Bust not
appear in a storage association context.

3. Page 4-1, line 17. “has” == "may have".

4. Page 4-5, line 21. "The length is a type parameter; its” ==
"The length may be a type parameter, or it may be determined when
a character entity is defined. Its"

5. Page 3-4, lines 8-8. If neither ... is specified, “"the length
of the data entity is 1." ==> "the length of the data entity is
determined on definition of the data entity, or by a SET_LENGTH
statement. "

Page 5-4, line 32+. Add line:
CBARACTER D, E ! Length determined on definition.
€. Page $-9, line 10. Change: "... character array, character
array element, or a... " == *~ . character array with a

specified length, character array element, or a ...". =xxxasgsumed
size array*xx

Page 5-8, line 14+. Add:
(4) If the actual argument is a character array without a
specified length, the size of the dummy array is the sum of
the array element sizes.

7. Page 5-18, line 24. Add clause: A data object of type
character “"with specified length” may be equivalenced ...

p. 237

Page 3 of &

)

Page 5-18, Line 268. Add sentence: "A data object with
unspecified length cannot be equivalenced.”

8. Page 5-19, line 29. Add clause: ... an array of zero size,
“a character string of unspecified length, " a character string
of zero length, ... =%xxCOMMON statement¥xx

9. Page 6-2, line 38+. Add section, renumber BNF:

6.1.3 SEET_LENGTH Statement. The SET_LENGTH statement provides a
means to set the length of a character entity when the character
type declaration does not include a specific or passed length.

R609+ set-length-stat ig SET_LENGTH (char-variadle = integer-
expr)...

Constraint: char-variable must not have a length-selector.

10. Page 9-4, line 13. Add clause: The file is a character
variable “with specified length”. =x*xxinternal file disallowed*xx

Page 9-4} line 13. Add clause: A record of an internal file
is a scalar character variable “with specified length".

Page 8-4, line 37+. Add:

(3) An internal file may not be specified as a character
variable with unspecified length.

11. Page 9-16, line 17. Add clause: 1If an entity in the input
list is of type character "with specified length", the length ...
xxxunformatted inputxxx

Page 8-16, line 18. Add sentence: If an entity in the input
list is of type character without a specified length, the length
of the character input list item must have been defined by the
. SET_LENGTH statement (6.1.3).

12. Page 10-8, line 30+. Add paragraph: A
For input, if a field width ~ is not specified with the A edit
descriptor, the length of the character input list item must have
been defined by the SET_LENGTH statement (6.1.3).
13. Page 14-7, line 31+. Add paragrach and renumber:
(1+) Execution of a character intrinsic assignment whers the
length is unspecified causes the length of the variable to
becone defined.

Page 14-7, line 33+. Add paragraph and renumber:
p, 22¢"

. _ #3)

(2+) Execution of a masked array character assignment where
the length is unspecified may cause some or all of the
lengths of the array elements in the assignment statement to
become defined.

Page 14-7, line 36+. Add paragraph and renumber:
]

(3+) As execution of an input statement proceeds, each
variable of type character with unspecified length that is
essigned a value from the input file causes the length to be
defined if the input statement is neither an unformatted READ
nor a formatted READ using the A edit descriptor with no w
specification. For the unformatted and A edit descriptor
with no w case, the length must have been defined prior to
the execution of the input statement.

Page 14-8, line 18+. Add paragraph and renumber: i
(14+) The SET_LENGTH statement causes the lengths of the
specified character variables to become defined.

14. Page C-4, line 42+. Add paragraphs:

All character objects have a length. When the length is
specified in the character type statement. the length is the
value provided, or that passed from a calling program. All
elements of an array have this length. Storage association is
permitted.

When the user does not specify a length in the character type
statement, the length is determined at each definition of the
character entity. The lengths of elements of an array are
determined at the definition of each eslement of the character
array, and are maintained individually. Normally storage is
allocated on a heap, so storage association is disallowed.

Expressions and intrinsic functions of type character can contain
either or both forms of length specification. The length of a
character expression is the sum of the component lengths.

For two forms of input, the length of a datum is not necessarily
known by the program or in the data. These forms are the
unformatted READ and the formatted READ using the A edit
descriptor with no width specification. The SET_LENGTH statement
pernmits the definition of the length. This usage also permits
truncation or extension of a character datum, but does not
provide blank padding -- the extended character positions are
undefined.

cc: Board of Standards Review; Ms Jeanne Adams /9. 2397

@) #3

Northern lllinois University I
DeKalb, lilinois 60115

Department of Computer Science
815 753 0378

Bitnet: T9ONWRIEGNIU
Dec 7th, 1987.

Public Comments for Dpans Fortran Revision
X3 Secretariat
ATIN: Gwendy Phillips
Computer and Business Equipment Manufacturers Association
Suite 399
311 First Street, N.W,
Washington, DC 2§@g1-2178

" Dear Sirs,

I am strongly opposed to the proposed Fortran 8x standard. I enclose a
set of detailed comments on some of the features of which 1 disapprove.

Sincerely, ‘

//ﬁ//"-’/‘{
Neil W. Rickert,
Professor of Computer Science.

cc: Public Comment for Dpans Fortran Revision
Board of Standards Review
American National Standards Institute

New York, NY 19918 S J’]""(f
-/ CF
: 3;’) pee <
5 } . pi}TH
= G 5;; GEV
B 3 5 Pkrﬂ Er
= 32-6 > ¢
32—7 -CV
o

[3. AY0

Comments on the proposed Fortran 8x standard.

Neil W. Rickert,
Department of Computer Science,
Northern Illinois University,

DeKalb, IL 60115

Bitnet: T9GNWRIENIU

1. Introduction.

These comments are based on the description of Fortran 8x given in
Draft S8, Version 1P4. All bracketed references (for example [2.4.1]) are
references to paragraphs of that document.

My initial reaction to the report was that if the standard wvere adopted
there would be one of £vo possible outcomes; either the FORTRAN language would
effectively be killed”, or the new standard would be massively ignored with
most programmers continuing to use FORTRAN 77 (or even FORTRAN 66).

On first reading the proposed standard reads as if designed by computer
language theoreticians who have rarely programmed in FORTRAN, and who
certainly have never liked the language. This is particularly apparent in the
discussion of deprecated features, vhere the rationale given for eventual
elimination of some features reveals a surprising ignorance about how these
fsatures are used in practice.

1 shall divide most of my criticisa into two sections; a section on added
features, and a section on deprecated featuras of the language. My commentary
will concentrate on the aspects 1 find most negative. Let me make it clear,
hovever, that I do not find everything negative. It is high time, for
example,~ that support for user dafined data structures wvas included in
FORTRAN::)

Let me first comment on a feature of FORTRAN vhich {s eliminated in the
proposed standard. For although the standard specifies that "no FORTRAN 77
featurqs have been deleted” [OVERVIEW], I find cthat under the nev standard
FORTRAN-has lost its simplicity”. This is indeed a grievous loss, since for
many users (in particular physicists, cheaists and other mnon computer
_lﬁentgts) this simplicity vas a major attraction of the language.

2. Proposed nsv features.

Thers are some nev fsaturss (for example support for dynanically

lhmmummm&rhmdmﬁrm.

2 hormsty, the loss of sinplicity begm with FOKIRAN 77, which made an unfortirats and
ocessivaly camplex coice in the {mplenentation of character data. The representation of a
Mmtgsmmofn-bymtngs(smhmmmﬂdmbm.
l@hdﬁi&,ﬁnmlﬂmdmﬁnmmuyh.

p. 24/

LY

®)

dimensionable arrays) which are long overdue. On some new features I am
neutral, vhile on others I am mildly negative. I do not discuss any of these
in this section. 1Instead I concentrate my comments on the features to which I
am strongly opposed.

Comments on the proposed Fortran 8x standard.

An additional concern, which I mentioned in the introduction, lies in the
added complexity caused by the number of new features added to the language. 35
If users really want a highly complex language they can already choose ADA or =
PL/I. They choose FORTRAN because of its simplicity and because of {its |

efficiency when used with good optimizi g compilers. Any new standard which
threatens this simplicity and efficiency™ {s surely unwise, -

Many of the proposed changes in Fortran 8x read as if taken from the PL/1
langusge. 1If these changes were as {mportant to the future of the language as
the standards committee seems to believe, scientific programmers should have
been flocking to PL/I in the 1979s. No such mass emigration occurred. A few
scientific programmers did briefly experiment with PL/1, but soon drifted back
to the FORTRAN world (or in some cases migrated to C). If members of the
committee had attempted extensive scientific programming in PL/I they might
have discovered why. For the additional cost {n complexity, lengthened

compile time, longer object code and slower running times were far more than
the nev features were worth. ;

(a) Internal Procedures.

It may come as a surprise that I would oppose internal procedures. It
is certainly true that they can simplify programming, and allew more
effective information hiding when that is appropriate. Yet I believe that
the lack of such a feature has been a major strength of FORTRAN.

In current FORTRAN the separately compilable extermal subprogram is
the principal structuring technique available. The natural result is that
programzmers automatically organize their code into separate subprograns.
I believe that it is as a direct result of this that FORTRAN has developed
such extensive libraries of reusable subprograms. And it s generally
agreed that these libraries are a major asset of the FORTRAN community.

I cannot prove my claims. They are based partly on instinctive
feelings about programmer psychology. Howaver thers is some support. For
other languages have not developed the extensive libraries that are so
apparent in FORTRAN. Although COBOL 1is alaost as old as FORTRAN,
substantial libraries have not daveloped. This is surely dus to strong

%mwmmdﬁhmPimnfm-ﬂdwudty. I krow that merty
cxmpurer scientists dismiss effic{ancy, on the basis that ever ircTeasing speeds of
processors eliminats ay meed for eoncem. Bt in tha KRIRAN world this view is mxely
mistalan. FORIRAN prograes are canstantly pushing the limits of our cooputing sbility to
solve ever more difficult problems. Simplicity of the language is equally important, for
vith ircreasing language complexity comes increasing campilation time. It i{s commn for
FORIFAN programs to need frequent reccmpilation as algoritdns are experimentad with at the
forefront of scientific computing,

P 2¢z

Comments on the proposed Fortran 8x standard. @

dimensionable arrays) which are long overdue. On some new features I am
reutral, vhile on others I am mildly negative. I do not discuss any of these
in this section. Instead I concentrate my comments on the features to which I
am strongly opposed.

An additional concern, which I mentioned in the introduction, lies in the
added complexity caused by the number of new features added to the language. (3 5
If users really vant a highly complex langusge they can already choose ADA or
PL/I. They choose FORTRAN because of its simplicity and because of 1{ts \
efficiency when used with good optimizipg compilers. Any new standard which
threatens this simplicity and efficiency’ is surely unwise. -

Many of the proposed changes in Fortran 8x read as if taken frem the PL/I
language. 1f these changes vere as important to the future of the language as
the standards committee seems to believe, scientific programmers should have
been flocking to PL/I in the 1978s. No such mass emigration occurred. A few
scientific programmers did briefly experiment with PL/I, but soon drifted back
to the FORTRAN world (or in some cases migrated to C). If members of the
comnittee had attempted extensive scientific programming in PL/I they might
have discovered why. For the additional cost in complexity, lengthened
compile time, longer object code and slower running times were far more than
the new features vers worth. v

(a) Intsrnal Proc;odurn.

It may cone as a surprise that I would oppose internal procedures. It
is certainly true that they can simplify programming, and allow more
effective information hiding wvhen that {s appropriate. Yet I believe that
the lack of such a feature has been a major strength of FORTRAN.

In current FORTRAN the ssparately compilable extsrnal subprogram is
the principal structuring technique available. The natural result is that
programmers ‘automatically organize their code into separate subprograms.
I believe that it is as a direct result of this that FORTRAN has developed
such extensive libraries of reusable subprograms. And it {s generally
agreed that these libraries are a major asset of the FORTRAN community.

I cannot prove my claims. They are based partly on instinctive
feelings about programmer psychology. However there is some support. For
other languages have not daveloped the extensive libraries that are so
apparent in FORTRAN. Although COBOL is almost as old as FORTRAN,
substantial libraries have not dsveloped. This is surely due to strong

ﬁmwmwmmmdmmmudq. I koow that oy
cooputar scientists disxiss efficisncy, an the besis that ever incressing spesds of
processors eliminats &y reed for concern. But in the KRIFAN wrld this view is saely
mistalan. KRIRAN programs are constartly pushing the limits of our computing sbility
solve ever more difficult problems. Sioplicity of the langmge is equally important, for
vith increasing language camplexity cames increasing campilation time. It is cammn for
FORIRAN programs to need frequent recampilation as algoritins are experinentad with at the
forafront of scientific camputing.

P 2y3

-92.

@

It is often the case with scientific programming that the appropriate
degree of precision is highly dependent on the data. It is sometimes
useful to compute an answer in both single and double precision, then
compare the results to get a crude estimate of the amount of round off
error. Imagine a Fortran 8x program which does this by computing the
ansvers to both 7 and 14 digits of precision. If this program happens to
be run on hardware where both precision specifications are mapped into the
same hardware precision, the remarkable agreement of the two results might
be falsely interpreted as indicating very low round off.

Comments on the proposed Fortran 8x standard.

Vith the new standards, imagine the effect on say the IMSL library of
mathematical subprograms. Currently many routines in this library are
available in both single precision and double precision versions (with
different names for the two versions). 1If this library is to maintain
complete portability and be compatible with Fortran 8x, it will need to
come in perhaps 1§ versions, for precisions of 6,7,....,15. Imagine the
complexity of finding suitable naming conventions, particularly since the
first character in a subprogram name must not be a digit. Of course in
reality there would only be two different versions, since each version
vill map into either single precision or double precision on the host
computer. But vhich is which vill depend on the computer systen.

The committee is creating a Frankenstein's monster.

The intended functionality of the proposed naw floating point
specifications could be more effectively provided with a suitable
preprocessor feature.

(¢c) The proposed array feature.

Here we have a set of nev features vhich superficially appear to offer
great benefit to the programmer. Certsinly the ability to create
dynamically dimensioned arrays is long overdue. But most of the nev
features bring with them costs (in terns of extra complexity and loss of
efficiency) which far outweigh the benefits.

The nev featurss mostly echo facilities already available in PL/I,
vhere they really don't work all that well. Implementing them requires
generating array descriptors (dope vectors) which ars passed along with
argunsents to subprograms. If the PL/I experience is any indication this
vill result {n longer object code, lengthisr linkage cods sequences,
slover access to array elements due to the need of compiler generatad code
to repeatsdly examinse the dope wvectors. Indeed the situation will be
vorse than in PL/I, since the deprecated faaturss of FORTRAN must still be
supported. Thus when X(I) i{s passed as an argunent, the calling program
must assume that {t could be refersnced as an array dunmy argument, so a
dope vector must be constructed and passed to the called program. Then,
to maintain compatibility, dops vectors will probably also be needad vhen
purely scalar arguments ars used. What a sess!

Several years ago I vrote a simple matrix multiplication subroutine in
both FORTRAN and PL/I. I compiled the FORTRAN version on IBM's H-extended
compiler with maximum optimization. I used that vendor's PL/I optimizing
compiler with full optimization, and with the REORDER option, to compile

P, 2y

Comments on the proposed Fortran 8x standard. @

the PL/1 version. I then examined the code generated for the innermost
loop. The difference was disturbing. 1 have done 1little serious
scientific programming in PL/I since that time.

I also experimented in PL/I with whole array operations on cross
sections of an array, believing that this might result in better code.
Inagine my surprise when I found that the compiler was often allocating
scratch storage for temporary arrays in intermediate steps of the
computation. Perhaps this indicates a failure of the PL/I coampller
developers, but I suspect it i{s really a result of the enormous increase
in complexity. I notice a statement (in [7.5.1.5]) to the effect that in
array assignments the entire right hand side is evaluated before any
assignment is made to the target. In many circumstances this
specification can only be guaranteed by first making the assignment to a
temporary array, then copying the temporary array to the destination.

An important factor in scientific computing today is the existence of
high performance parallel computers, vector processors, etc. There is
ongoing research, particularly in FORTRAN, in developing compilers which
can recognize parallelizable constructs wvhich can then be compiled into
code vhich takes greatest advantage of the nevw hardvare. Some of the new
array features will greatly hinder this development.

(d) The PARAMETER statement. .

Here my objection is not to the concept embodied in this statement,
but in the use of the word PARAMETER. Unfortunately this word is
hopelessly ambiguous, and hence potentially confusing. NMost computer
scientists use the word parameter as the equivalent of the FORTRAN term
*dummy argument". On the other hand, vhat physicists and mathematicians
mean vhen they refer to a parameter can perhaps best be described as a
"variable” which varies less often than other variables, or perhaps as a
"constant” whose value can be varied from time to time. The meaning used
by scientists is thus more closely approxinated by a value passed to
subprograms via a variable in named COMMON. These two meanings of
parameter are not only mutually contradictory, but also conflict with the
proposed use for the term for Fortran B8x.

We must remenber that the FORTRAN programmer is likely to spend some
time talking with computer scientists, and some time talking with
scientists and mathematicians. Communication will be clearsr if a common
set of terminology is used. Surely a bettsr tera than PARAMETER can be
found. I would prefer the term NAMED CONSTANT.

3. Deprecatsd features.

In commenting on deprscated features, I discuss thea as if they will be
removed from future versions of the language. This appears to be the long
range expectation of the committee. It is trus that these features ars not
imnediately removed, and if users so insist they may never be removed. But,
one may surely ask, does a committee vhich so misunderstands the importance of
thess featurss retain any cradibility as a rspresentative of the interssts of
the FORTRAN community?

2 2Y5

.5.

Comments on the proposed Fortran 8x standard. @

Some of my objections can be inferred from my comments on new features.
Thus I obviously do not accept the committee's rationale on the statement
function, since I am opposed to the addition of internal procedures. Most of
my minor disagreements with the 1list of deprecated features will go
urmentioned; I instead concentrate on my most serious objections.

(a) The computed GOTO.

The coummittse suggests that the CASE statement can serve as a
replacement for the GOTO. It is certainly true that I can replace

GOTO (198,280) L
by

SELECT CASE (L)
CASE DEFAULT
GOTO 18
CASE (1)
GOTO 192
CASE (2)
GOTO 202
END SELECT v
1§ CONTINUE

but I hardly think that this vas the intention of the committse.

I suspect that the committee is under the aisimpression that the
computed GOTO is used only to create unmaintainable spaghetti code. While
it is undeniably so used, it {s also used in relactivaly well structured
programs. Consider the following example:

CALL SUBR(IERROR,N,X,A)
GOTO (992,958) IERROR
-+« Normal coding in the absence of errors

98 Code to print messages and statistics for error 1

959 Code to print messages and statistics for error 2

This example actually provides a reasonably structured approach to
gracefully backing out from errors. The use of an integer argunent for
subroutines to return error indications is commen throughout the available
scientific subroutine 1libraries. The use of GOTOs here is surely
preferable to the CASE statement; for if & routine calls several
subroutines in this manner, a GOTOless approach could require dseply
nested CASE stataments.

(b) The BQUIVALENCE statement.

In the draft standard [B.3.1.6] several uses are given for the
EQUIVALENCE statement, with suggested replacements. Let me give you an
additional use. The EQUIVALENCE statement makes it possible to do 1list

6. P Y&

Comments on the propofed Fortran 8x standard. (::::)

processing in FORTRAN. List processing is typically done by using a large
array of integers as a pseudo-memory, with the array index as the
equivalent of a pointer variable. The EQUIVALENCE statement allows

storing of & variety of data types into list structures built in this
manner.

I have personally served as a consultant on a large list processing
progran which modelled electric utility rates. I know of compilers and of
parser generators written in FORTRAN; these programs surely do some kind
of list processing. 1 suspect there are many list processing FORTRAN
programs out there, often written by programmers who have never heard of
the term list processing.

Without the EQUIVALENCE statement it would be difficult to write these
programs in Fortran 8x, since pointer data types are not introduced. Even
with pointer data types, list processing in an array is often preferable,
for it allows the list structures to be written to axternal memory (disk
or tape), and to later be reused without requiring exact address matching.

If anything, the EQUIVALENCE statement is badly iIn need of more
functionality. Indeed the ability to use
EQUIVALENCE (A(I),B) .
(vhere it is understood that refersnces to B would use the then' current
value of the index I) would enhance the portability and reliability of the
EQUIVALENCE statement.

(c) Passing a scalar to a dusmy array. 'EIEII%’

This has turned out to be a very powverful feature of FORTRAN. I agree
that other proposed features of Fortran 8x allov alternate methods of
achieving the same goal, but (as I have described above) at an enormous
cost in increased complexity, object code length, subprogram linkage cost,
and run time efficiency. I consider the following example a typical use.

J=N
DO 189 I=1,N
CALL SUBR(I,X(J),A(J,J))
J = J=)
19 CONTINUE
SUBROUTINE SUBR(N,X,A)
DIMENSION X(N) ,A(N)
code to do cne step of the back substitution in
solving a lower triangular linear system

Vith modest values of the array dimensions, the execution time of the
equivalent program could easily double if the Fortran 8x array features
are used to replace the dapracated feature. It is true that for very
large dimensions the efficiency loss may be much less serious, but in many
applications linear algebra problems of small dimension are solved perhaps
millions of tinmes.

p: 29F

-7-

Comments on the proposed Fortran 8x standard. @

4, Summary.

As the saying goes, If it ain't broken, don't fix it. The standards
committee seems to believe that FORTRAN is broken. Indeed the proposed
standard appears to come from a belief that FORTRAN is near death and needs a
massive transfusion and multiple organ transplants. This will surely come as
a8 shock to the troops out in the FORTRAN programming field, who £ind that
FORTRAN is still alive and quite vigorous. It is still true that the FORTRAN
compiler is amongst the first developed for new hardware.

For some time now there has been concern over the reliability of prograns.
As part of this concern FORTRAN has come i{nto criticisz for having a number of
dangerous features. I understand the committee's concern, and its desire to
eliminate these features. There 1is a growing attitude {n some parts of the
computer science community that the language must protect the programmer from
from making mistakes., I vigorously disagree. Good programmers can write
sound reliable programs in any language. Poor programmers can write
unreliable software no matter how protective the language. The enemy of
reliable software is now, as ever, excessive complexity.

My greatest objection to Fortran 8x is that it is philosophically a quite
different language from FORTRAN. By way of example the COMMON area and the DO
loop are central to the FORTRAN tradition, yet in Fortran 8x they are marked
as deprecated features in their well known form. As a philosophically
distinct language Fortran 8x should be released under a different name, and
not pretend to be a language it is not. That would give scientific
programners the opportunity to choose whether or not they desired these
features. It is my belief that they would overvhelmingly reject the new
language, much as they resjectead PL/I.

If the X3J3 committee believes that future FORTRAN programs will only be
vritten by skilled computer scientists who ars well versed in structured
programming, abstract data types, information hiding, ete, then they are
surely victims of self delusion. As ever many FORTRAN programs will be
written by physicists, mathematicians and others whose knovledge includes a
mere smattering of computer science.

». 24¢

-;27‘37
THE UNIVERSITY OF TEXAS AT DALLAS @
uTiD

BOX 830688 RICHARDSON, TEXAS 75083-0688 (214) 690-2445

c:mronﬁmosmmcnuoms r_,_é rou o ima Fous)
o, -/ cew | 218 DATH
X3J3 Chair . 37 9-9 cz0
X3 Secretariat . 3.7-7_ GCEV 3 AT
311 First Street NW 3¢-3 GEN ;q-//o Dpﬂf
Suite 500 -1
Washington, DC 20001-2178 39 -4 €19 ;‘.7,-/:_ CEN
3q-5 PRoc | 20,3 cew
Dear Sirj . 39-6 PATA b9-14 ENM
39-/ D474

As the director of the Center for Lithospheric Studies at the
University of Texas at Dallas, I represent a group of approximately
40 scientific applications programmers whose main working

language is FORTRAN. We view, with some apprehension, many of the
changes preoposed in éx. Our main concern is the lack of backward
compatibility that will occur with the removal of current features,
especially COMMON and EQUIVALENCE. What this means in effect is
that 8x is a new language, not a revised FORTRAN as all existing
sof tware will have to’bo rewritten; this is an unacceptable cost.
While we approve of a few of the proposed changes, such as the 39-:
ability to allocate arrays, the use of inline comments, and the
NAMELIST 1/0, most of the others appear to be of dubious merit. We ({E

anticipate serious problems with dependent compilation and abstract

definition of numerical precision. Other features that would be

9

good additions, but are not included, are BITQN:TPOINTER cata

types, & DO WHILE, a variable length CHARACTER data type, and records

like WS FORTRAN @

nNOV 30 1987
p- 247 GLOBAL ENG.

Wl

Al EOUAL OPPRORTUBIITY/AFFIAMA TIVE ACTION LRSIVERRITY

Other general comments we wish €0 make are that slower compliers an

applications are undesirable”and that too many new features have

been proposed. Most of the proposed changes do not appear to have bee.
G{::::L’€70valuated from the point of view of the users or fhe institutions

that are currently using FORTRAN. While many of the new features

do have some merit, these would be better realized by presenting

ho package as a new language. The disruption that would result

from acceptance of the current draft proposal as the FORTRAN

standard would far outweigh the benefits.

Regards,

%C—\ P Y A

George A. McMechan, Director,
Center for Lithospheric Studies

Y. 25

Sibpeg Mrzmten 2 #40
wo-1 GEM c é @
$o- 2 //(0 ¢ ; ~
40 -3 floc . NOVEMBER 23, 1387
wo-9 CGEN MIS DEPARTMENT
b5 son T T,

CLEVELAND, OHIO 44110

PUBLIC COMMENT FOR DPANS FORTRAN REVISION

X3 SECRETARIAT

ATTN: GWENDY PHILLIPS A
COMPUTER AND BUSINESS EQUIPMENT MANUFACTURERS ASSOCIATION

SUITE 500

311 FIRST STREET, NW

WASHINGTON, DC 20001-2178

SUBJECT : USER COMMENTS ON FORTRAN BX PROPOSAL BY X3J3 STANDARDS COMMITTEE.

DEAR MS. PHILLIPS:

1 AM WRITING IN RESPONSE TO A MAILING WHICH WAS SENT BY IBM'S LANGUAGE
PRODUCTS MANAGER, MILLIE CLARK, TO ALL CURRENT IBM FORTRAN LICENSEES. THE
MAILING CONTAINED A SUMMARY OF A PROPOSED STANDARD FOR FORTRAN 8X, WHICH IS
BEING DEVELOPED BY THE X3J3 FORTRAN STANDARDS COMMITTEE. THE MAILING COVER
LETTER REQUESTED THAT FORTRAN USERS SEND THEIR COMMENTS ON THE STANDARD TO
AN.S.I., AND TO THE X3J3 COMMITTEE. BECAUSE I AM THE PRIMARY FORTRAN USER AT
THIS DIVISION, 1 AM WRITING THIS RESPONSE, ALTHOUGH THESE COMMENTS ARE MINE
AND DO NOT REFLECT AN OFFICIAL COMPANY POLICY.

MY COMMENTS ARE CENTERED AROUND THREE POINTS:
1. 1 AM IN FAVOR OF UPDATING THE FORTRAN LANGUAGE.
2. 1 AM NOT IN FAVOR OF DELETING CURRENT FORTRAN STATEMENTS OR PROPERTIES.
3. 1 AM GENERALLY IN FAVOR OF A NEW STANDARD LIKE THE FORTRAN 8X STANDARD,
BUT BECAUSE OF THE DISAGREEMENTS AND CONFLICTS MENTIONED IN THE NEBGATIVE
BALLOTS INCLUDED WITH THE STANDARDS MAILING, I AM NOT IN FAVOR OF
GOING AHEAD WITH IMPLEMENTATION AT THIS TIME.

ON POINT NUMBER 1, I AM IN FAVOR OF EXPANDING THE FUNCTIONS OF THE FORTRAN
LANGUAGE. ALTHOUGH I AGREE WITH THE BALLOT OPINIONS WHICH SAY THAT FORTRAN IS
A SIMPLE LANGUAGE AND SHOULD STAY THAT WAY, THERE ARE FUNCTIONS WHICH COULD BE
ADDED TO MAKE THE LANGUAGE EASIER TO WORK WITH, WHILE STILL KEEPING THINGS

SIMPLE. THESE CHANGES INCLUDE -
A. LONGER VARIABLE NAMES. THE CURRENT LIMIT OF NAME SIZE TO 6 CHARACTERS<§<ZZ::]>
MAKES 1T VERY DIFFICULT TO COME UP WITH MEANINGFUL NAMES IN ANYTHING OTHER
THAN THE SIMPLEST OF PROGRAMS. I SUGGEST THAT A NAME SIZE OF 12 CHARACTERS,
INCLUDING DASHES, GIVES A BETTER BALANCE OF SIMPLICITY AND DESCRIPTIVENESS. ~
B. A PERFORM-TYPE VERB FUNCTION. THIS FUNCTION WOULD MAKE IT MUCH EASIER To &<7°”
WRITE PROGRAMS USING A STRUCTURED APPROACH, INSTEAD OF THE 60-TO TYPE OF LOGIC
WHICH IS COMMON IN MANY FORTRAN PROGRAMS.
C. MODULAR DATA AND LOGIC DEFINITIONS, AS DESCRIBED IN THE BX STANDARD. THE <£§_§:
SIMPLE ADDITION OF A *COPY® TYPE COMMAND WOULD BE HELPFUL. WHEREVER A COMMON
LOGIC SECTION OR DATA ACCESS DEFINITION IS USED, A "COPY" COMMAND WOULD MAKE
IT MUCH EASIER TO CREATE AND UPDATE THAT AREA.

p. 25|

NOVEMBER 23, 1987 pg 2 of 2

I AM IN FAVOR OF THESE CHANGES BECAUSE THEY WOULD MAKE IT EASIER TO WRITE
FORTRAN PROGRAMS, BUT MORE IMPORTANTLY, THEY ALLOW A PROGRAM TO BE WRITTEN
WHICH IS EASIER TO MAINTAIN. 1IN MY JOB, I AM RESPONSIBLE FOR UPDATING AND
MAINTAINING A SET OF PROGRAMS WHICH INCLUDE FORTRAN AND COBOL LANGUAGE
SUBROUTINES. THE CHANGES WHICH I SUGGEST ABOVE ARE FEATURES OF COBOL WHICH I
AM CONVINCED MAKE COBOL PROGRAMS MUCH EASIER TO MAINTAIN. EVEN THOUGH THE
ADDITION OF THESE FEATURES INCREASES THE TIME NEEDED TO COMPILE AND RUN THE
PROGRAMS, I BELIEVE THAT THE SAVINGS IN PROGRAMMING TIME WOULD OFFSET ANY
LOSSES. :

ON POINT NUMBER 2, I AM NOT IN FAVOR OF DELETING CURRENT FORTRAN CAPABILITIES.CE;<E;
1 SAY THIS FOR THE REASON THAT THERE ARE MANY EXISTING FORTRAN PROGRAMS WHICH
WOULD HAVE TO BE CHANGED TO SIMPLY STAY COMPATIBLE WITH NEW SYSTEMS. ANY TIME
WHICH 1S SPENT CHANGING OLD PROGRAMS WITHOUT IMPROVING THEIR FUNCTION IS TIME
WHICH COULD HAVE BEEN SPENT ON NEW OR IMPROVED APPLICATIONS. 1IF THERE IS A
600D REASON FOR ELIMINATING OLD FEATURES, THE CHANGE SHOULD BE MADE

GRADUALLY. FOR EXAMPLE, THE OLD FEATURE COULD BE DISALLOWED IN ANY NEW
PROGRAMS OR CHANGES FOR A PERIOD OF TIME, AND THEN MADE OBSOLETE AT SOME POINT
IN © FUTURE. THE X3J3 RESPONSE TO IBM'S BALLOT INDICATES THAT NOTHING WILL
BE "-S0.ITED BEFORE THE YEAR 2010, WHICH WOULD ALLOW TIME FOR MANY OF THE

UND .51R4BLE FEATURES TO DIE A NATURAL DEATH AS THE PROGRAMS WHICH THEY ARE IN
ARE REPLACED.

ON POINT 3, I AM IN FAVOR OF A NEW STANDARD LIKE THE 8X STANDARD. I AM NOT IN é?(EZ
FAVOR OF THE STANDARD BEING SUBMITTED FOR IMPLEMENTATION UNTIL A NUMBER OF
DISAGREEMENTS OR MISUNDERSTANDINGS WHICH ARE REFERRED TO IN THE NEGATIVE
BALLOTS ARE WORKED OUT. A KEY PROBLEM SEEMS TO BE THAT THERE IS A
DISAGREEMENT AS TO JUST HOW MUCH CHANGE AND WHAT KIND OF CHANGE SHOULD TAKE
PLACE IN THE LANGUAGE. I HAVE LISTED MY KEY REQUESTS ABOVE, AND SUGGEST THAT
ANY OTHER USER SUGGESTIONS BE TAKEN INTO ACCOUNT, ALONG WITH THE SUGGESTIONS
OF THE “EXPERTS® AT 1BM, DEC, AND SO ON. A UNANIMOUS AGREEMENT WILL NEVER BE
REACHED, BUT THERE IS STILL TOO MUCH DISAGREEMENT.

THE®. /9t SOME PROBLEMS WHICH MAY BE ONLY MISUNDERSTANDINGS. A 600D EXAMPLE
IS "=2° " -t IBM-BALLOT OBJECTS TO WHAT IS ASSUMED TO BE NEAR-TERM OBSOLESENCE
OF ™% NGUAGE FEATURES, WHILE THE X333 REBUTTAL CLAIRS THAT RC MAJOR
DELET.uN> WOULD TAKE PLACE BEFORE THE YEAR 2010. THESE AND OTHER PROBLEMS
NEED TO BE HASHED OUT, AND THEN SOME SORT OF AGREEMENT COULD BE REACHED.

w e

YOURS TRULY,
B oA },,»(A

BOB ZOLLER
PROCESS ENGINEER/PROGRAMMER
TRW VALVE DIVISION

cc: MR. ROBERT J. ANTHONY _
TRW YALVE DIVISION. f 2592

—a = #4

= = CONVEX @

CONVEX COMPUTER CORPORATION 701 PLANO ROAD RICHARDSON, TEXAS 75081 (214) 952-0200
87 DEC 14 5234

X3J3 Chair 5(4L7v-9nf /Von aa ’au: .

X3 Secretariat /-1 czo | 4/-5 GEN
311 First Street NW /-2 PRoc q/-§ GEN
Suite 500 L HI3 GEM | 7 GEN
Washington, DC 20001-2178 yr.q AR\ 4.8 céw

Dear Sir:

The X3J3 committee has done a lot of hard work on the proposed FORTRAN

8x standard over the last few years. Many of the new ideas are good
extensions to the FORTRAN language such as the CASE statement.<{%
Unfortunately, the committee has gone too far in making changes for a single
update of the FORTRAN standard and has produced the draft for a new
language. This lack of focus and scope is probably a key contributor to the
standard being § years late at this time. The fact that the proposed standard

is late, is NOT grounds for approving the proposal as a standard without
proper review and correction of items found to be objectional during the
review period.

It ve that the MODULE/USE feature and many of the other tgangu that
are .osed make FORTRAN too large and to complex to use I understand

the desire to make FORTRAN a more ‘“modern’” language, but FORTRAN
has always been a simple language that could be used by professional
engineers to get their job done with a minimum of effort. I believe the

proposed standard goes against the spirit of the FORTRAN laniage.

I am surprised that a definition of the POINTER data type and the INCLUDE%
sta: - .t are missing from the proposed standard. It was my understanding
that :j:» charter of the committee was to standardize existing practice.
POINTERS, the INCLUDE statement, and many other statements are part of | ~
existing compilers, but in many cases the syntax is slightly different. The goal &
of a standard is to make code more portable between different manufacturer’s
machines. I would suggest a major redirection of the committee to work on

the issue of portability of the language between vendors and not on inventing

a new language.

I also feel that it is unacceptable to consider deleting statements from a.ny
future standard. While this may be viewed by the committee as an L g
evolutionary process, it is viewed by organizations with large volumes of code |
developed over a period of many years as a threat. The threat is that some '
committee will removed those constructs from a future standard, thus//

P. 253

()

requiring expenditures of large sums of money to convert and requalify many
older products. This will be a costly undertaking for minimal gain and the
risk of major problems in restabilizing and productizing application packages.

If I were faced with such a major rework pProject just to make the move to a
more modern language, I would certainly consider moving to a language with 7/
a more stable definition such as C. I would suggest that the committee divide [\ce
the standard into the New FORTRAN language standard and the Current
FORTRAN language standard. Standardize the existing practice, add
enhancements, and make the Current FORTRAN standard better. Define the
New FORTRAN in the New FORTRAN standard. I agree with IBM’s ballot
comments on this subject. -

I also believe that it is a requirement for the committee to assess the econom;\
impact that changes in any standard may have on the people who use that
standard. The fight over COBOL 8x was not really a ‘“‘we don’t want change*’
fight, but rather a ight over the economic impact that the proposed COBOL
8x changes would have on the development and sustaining of code. The
economic impact of the proposed FORTRAN 8x changes is also too great. I
believe that such a major change in model of the language violates section 5.3
of the X3J3 Project Proposal which states, “‘One of FORTRAN'S most
important characteristics is that efficient processors can be implemented at a :-
reasonable cost. One of the most important goals during the next revision wil] |
be to retain this characteristic.”” The amount of new syntax, new syntax
rules, and the dependent compilation model make this a complex language
tha - ' be complex to implement. So, both the implementor and the user will
ha ajor economic impact as a result of this proposed standard. The
im tor as a result of the dramatic increase in complexity of the language
moa. .nd the user as a result of potentially having to redo large amounts of
code becaused of possible deletion of features in future standards. If X3 and
the X3J3 committee does not take these concerns into account and minimize
the potential impact, then another COBOL 8x type problem looms in the
future.

I would urge the committee to review the potential economic impact and
adopt the IBM proposal as stated in their ballot comments as a way to fix the
problem. If the committee does not chose to take such steps, then I believe it //
is the duty of the X3 committee and the Standards Review Board to force /
such a redirection to occur. /

d

Sincerely,

PNLJAH Lot

Presley Smith
Manager, Development Software

| D 44

Catherine A. Kachurik <, .
X3 Secretariat ””"' m gl
Computer and Business Equipment Manufacturers Association y3-/ Dﬁnﬂ $2-7 GEn

311 First Street NW, Suite 500 92 - En
¢ 2-8 F
dashington, DC 20001-2178 ¥2-2 CEN [. ¢ cew
2-3 GEN
¢ o2-70 PROC

Dear madam; 7;'; pﬁrﬂ ga-// PROC
) vﬂrn 42-12 GEA

| would like to register a few of my 1houghts on the Fortr%ﬁ 8X specifications
| have worked with Fortran for 10 years in a variety of jobs and | would |ike
to continue using Fortran in the future. Unfortunately, | have been studying
computer science at the University of Florida for several years and | feel a
need for a better language than Fortran77. The proposed standard does not
satisfy my needs. Here is my list of comments:

1. | feel that several 8X constructs are too complex. Examples are 42 -/
the declarations using user-defined types and numerical precision

specifications.

2. | prefer reserved words. | believe that some syntactical kludges o0 -2
in 8X are caused by the lack of reserved words. A conversion —
program could be written by ANSI and supplied by every compiier
vendor with an 8X compiler to change variable names which conflict

with identifiers.

3. | never have spread an identifier out by inserting spaces and | never CZ
have jammed multiple identifiers together. | suggest eliminating the
nonsense of compacting blanks from source text. Not many users could
have a problem with this, but, once again, a program could be written
to eliminate the misery.

4. |t seems quite apparent to anyone who uses C, Pascal, Ada, etc that (E:E
a modern language needs pointers. Surely, one of these |languages is
close to a reasonable syntax for user-defined types with pointers.

Let me suggest Modula-2.

5. | have impiemented a Fortran pre-processor and determined that a
repeat loop is obviously designed as below:

REPEAT
statements

UNTIL (expression)

Also, the syntax for a while is obviously:

40453 €X

WHILE (expression)
statements

END WHILE

Sl:id €Z AN 8

Surely, these are better than a DO with no iteration control.
Of course, | do favor the CYCLE and EXIT statements. In fact. |

frequently use the following:

WHILE (.TRUE.)]

statements /
if (expression) EXIT ! actually my word is BREAK,
END WHILE 1 but who cares about trivial details /,//

p. 255

©

6.) think that BITs would be nice. However, | would prefer to have
the EQUIVALENCE capability to use an integer array and a bit array U
in the same memory locations. | don’t care if the EQUIVALENCEing
of integers and bits is portable; | just want to easily manipulate
bits for graphic applications. | can deal with all portability
problems. |°ve been doing it for years without bits and | know |
could do better with bits.

N2

7. | believe that any construct equivalent is power to EQUIVALENCE is q2-
going to be contusing if over-used. Therefore, | prefer to leave
EQUIVALENCE in the language and let it work with any new data types.
it may be non-portable, but let me worry about that.

8. Similarly as to 7, COMMON js powerful and potentially dangerous.
It shouid continue to be used with proper respect.

10. | do like the user-defined infix and prefix operators. They should
make some programs clearer.

(ﬁ?
8. | do like the array operators. Perhaps 1'l]l get to use them. (g2 -
(72‘

11. 1 do like the idea of recursion and | see no harm in requiring the

X . -1
word RECURSIVE before a subprogram to make it recursive. 72
| am glad to get some input into the process, but | fear that my comments
will be basically ignored. | read some of the responses to |BM, DEC and

UNISYS and | expect that the committee thinks that it knows what i's best
for me. | resent that.

I propose that there be an election to select the new Fortran standard.
Perhaps, the members of ACM could vote to select one of several competing
standards. Surely the committee members who voted against 8X would prefer
to let the Fortran community sefect their proposed standards. Perhaps

IB¥ would :csent a candidate language and maybe DEC would. Then we could
have an el:.:tion in which my vote would count as much as yours. That would
at least give us another chance for a decent extension to Fortran.

Well, I°ve said enough. I hope Fortran will continue to be my language of
choice, but 8X (if approved) would not be. | would feel compelled to

steer a large group of users (about 100) to a different language.

Thanks for the opportunity to present my views. I wish | had time to present
a cohesive alternative to 8X, but | must study.

Sincerely,

R oo,

Ray Seyfarth

Rt. 4, Box 226
Alachua, FL 32615

[?, 256

o | @ #43

Swanson Analysis Systems, Inc.

., Johnson Road. P.0. Box 65, Houston, PA 15342-0065

TWX 510-690-8855
PHONE (412) 746-3304

September 35 1987 <) corp Wo weiaas
" 29—

7 4z eexT| BE /
43-2 GENV 43-9

43-3 DATA | 43-/0 ¢

y3-y WA |43/
y3-5 WATA | 1372
y3-6 CEW 4313
q3-7 GENV 43-14

c

Mr. Presley Smith

Manager, Development Services
Convex Computer Corporation
701 Plano Road

Richardson, TX 75081

0G:2ld 61 AN

F.
D
>
G

Dear Presley:

The following comments are based on a cursory review of the Fortran 8x
manual _(June 1987). This review, although not in-depth, required considerable
time and will probably require a *second pass” and possibly reference to a
supplemental text in order to better understand the “new” language. ;h:@
presentation style and examples are readable and represent a weicome
improvement over the 77 standard. The complexity of the language, hmver,s@
has increased considerably. s

In general, we have no objection to improving the language. Our own code
also has a documented, publicly used command language that we have to
pe-‘odically improve (with care and upward compatibility). One unfortunate

(% -uence of the present 8x *improvement” is that the compile time will
i _:e and. compilers will be more complex and error prone. We strongly feel
*language overhaul® was not necessary, but that improvements should

have been made to the existing language structure.

AREAS WHICH WE FEEL NEEDED IMPROVEMENT BUT WERE not INCLUDED ARE:
IMPLICIT °*NONE® (to force explicit typing and better error checking) éE

Bit manipulation <—
Pointers (such as Call bi address, .tc.)%

INCLUDE statement

AREAS WHICH WE FEEL NEEDED IMPROVEMENT THAT WERE INCLUDED ARE:
Vector operations (includin trinsics)

Generic Intrinsic names <&

AREAS' THAT WERE INCLUDED WITH USEFWL., BUT MINOR, IMPROVE S ARE:
CASE construct (Computed 60 TO was sufficient)
In-1ine comments <

AREAS THAT WERE INCLUOED WITH LITTLE OR NO IMPROVEMENT AT A SIGNIFICANT
INCREASE IN COMPLEXITY ARE:
USE statement (poar_substitute for INCLUDE)

Derived Type
Variable precision 313 _
appending keywords to (y2-i= >

Alternate inputs for new commands (i.e.,
another command vs. direct input of the keyword as a command) .

Document one or the other.
p- 257

Mr. Presley Smith

Convex Computer Corporation
Page Two

September 3, 1987

Having just received the 8x manual, we haven't had time to adequately
review the language. Additional comments and criticisms may be forthcomming.

Sincerely,

SWANSON ANALYSIS SYSTE INC.

4

hn A. Swanson
President

bp

7258

IBA

Tel: (switchboard) Winchester 823434; (direct line) Winchester

INDEPENDENT BROADCASTING AUTHORITY
Crawniey Court WINCHESTER Hants SO21 2QA Telex: 477211 F‘éﬂ‘é'ﬁénm

Enginecting Divisio

m——————

ETF/sjc/sarah/7909

524&7.-9-7} /Vo-vu.-t/-'-'-l'-

/_

©

23rd October 1987

. Y cT O Committee on Computers Informatidi Processing,
A ; American Bational Standards Institute inc.,
-3 IO 1430 Broadway, 87 NGOV 2 11:
‘7“{ /} New York 10018, ' 3 A3
‘yy-4 PAT USA. RECEIVED
- (" EN A [}
17‘; Z CEN Dear Sirs, NOV 1y 1987
yY -
yy-7 €TO FUTURE ANSI STANDARD IMPROVEMENTS INFORMATION SYSTEMS
9’ y CfO Computers & Information Processing : FORTRAN-77
Yo
.9 GEM We have for many years made intensive use of FORTRAN as our prime
44-9 CENM
language for numerical analysis and data processing, not only because
l/‘f'/ﬁ cIT? FORTRAN is recognised as a world standard for exchange of programs but
also because it contains excellent sub-routine procedures and a
'f‘f"/ / f’ RoC comprehensive sub-set of mathematical functions. 1In particular, the
2 GE N COMPLEX functions are vital to any work on Radic Fregquency and
/‘{ - Electronic systems and are not found, to our knowledge, in any other
‘_”“,3 FENV programming language,
1Y GEN Anyone who has had to solve complicated expressions invelving COMPLEX
9‘{ quantities in other languages such as BASIC of PASCAL will know how
7—/5’ D!}Tﬂ immensely laborious the programming becomes, and how inscrutable the
Y / 10 programs remain after they are written, even to the authors themselves.
-4 €
1 ro For this reason alone, we believe that FORTRAN has survived over the
7'1‘/7 & years owing to the demand by Radio Frequency and Electronic engineers
cTO for the COMPLEX functions. However, with the proliferation of mecdern
y ?"? powerful microcomputers we regard PFORTRAN-77 as being in danger of
49 ¢T 9} passing into extinction, for reasons to be explained shortly. The means
49 b cIO of guaranteeing its survival must be addressed now.
-1 -
44
.2) GEN The implementation of BASIC on 16-bit and 32-bit microcomputers provides
44 the user with many desirable features (apart from COMPLEX functions) not
'11:/-2‘2_ pRo & found in the implementation of FORTRAN-77 on these same wmachines.

Unless FORTRAN can meet this new challenge it could become extinct, We
cite in three Appendices some features of modern BASIC languages which
are of great utility to microcomputer programmers and users. Appendix A
is in our opinion the most important and refers to features that would
permit the user to INTERACT with the machine without breaking out of a
ranning program.

We offer in the three Appendices our suggestions as to what should be
incorporated into a new FORTRAN-88 ANSI standard language, not only to
make it useful to mainframe users but also to make it competitive in the
emerging world of microcomputers. We speak as serious experienced users

o
p- 35_'? ~$.

)

of computers for scientific and technological purposes. Computers are
becoming faster, and in our work they need to become very much faster
When that happens, the complexities of problems that are waiting to |

solved will put a premium not only upon speed and capacity but also upen
the floating-point precision that will then be needed.

We trust that we will not be condemned to a next decade in which
computers are vastly faster and larger, but the programming languages
remain inadequate to obtain the full potential from the new machines.

It is a curious feature of computer programming in the 20th Century that
the ‘high-tech' part of the coding can be written in a few hours, but
then another several weeks are often spent in 'low-tech' matters of
layout, formatting, translating and debugging, hardly the best use of
intellectual resources. Any new facilities that can speed up the
programmer's task will be welcomed.

It might be argued that microcomputer manufacturers will provide
implementations of FORTRAN-77 that will include enhancements, such as
COMPLEX*16. It is our experience that this rarely happens. The
manufacturers may not be fully aware of what the Programmers want, but
what is certain is that they will nearly always provide the full ANSI
standard sub-set. We look to ANSI to ensure that the next ANSI standard

is sufficiently comprehensive to do justice to the vast improvements
expected in the next generation of micres and mainframes.

Yours faithfully,

£l

E.T. FORD (Head of Service Area Planning Section)

P7 At

D.T. HAYTER (Principal Engineer - Radiowave Propagation Studies)

R.LL Ve,
R.H. VIVIAN (Principal Engineer - Advanced Computer Studies)

CKM
C.K. JACOB (Senior Engineer - Antenna Design)

SAtt.

P 260

()

Future FORTRAN Facilities which would be vital on mainframes and
microcomputers and, without which, FORTRAN could possibly become valueless in
the future.

APPEXDIX A

A. (i) INTERACTIVE OPERATION USING INKEY AS IMPLEMENTED IN BASIC @

The keyboard buffer should be constantly scanned to determine if any key is
pressed during real time execution of a program. Thus the user has the option
to interrupt, or to inject changes to variables without interruption, enabling
simulations to be undertaken without breaking out of a running program.

We are unaware of any such facility in FORTRAN, either on mainframes or
microcomputers. The user becomes effectively ‘'locked out' from any
interaction with the machine from the moment the program commences to execute.
In this modern scientific age the inability to interact with the computer is
inexcusable.

A. (ii) INTERACTIVE OPERATION FROM ANALOG-TO=DIGITAL CONVERTERS

We have used potentiometer boards to interact with microcomputers to carry out
real-time tuning simulations on electrical networks, The potentiometezs are
interrogated by analogue-to-digital converters built into our microcomputers.
The converters can only be addressed from within BASIC programs. ' No facilicy
exists in our FORTRAMN-77 implementations, as a consequence of which the
language is becoming less and less frequently used.

Our applications for analogue and keybocard interaction are for serious
scientific simulations, not for the playing of ‘'games' using Joysticks.
Nevertheless it is ironic that analogue interaction was probably devised
originally to satisfy the demands of domestic games programs in BASIC.

A. (iii) WRITING TO VDU SCREEN WITH A LOCATE COMMAND <:::::::>

A feature available $in IBM-compatible BASIC and several other versions of
BASIC has become indispensable in user-friendly programming, namely the
ability to write directly to any part of the VDU screen whilst disabling the
scrolling. In GW-BASIC, for instance, the LOCATE (X,Y) command allows a VDU
screen to be filled with static data in the form of tabulated columns with
headings, whilst one or more dynacic data values can be made to display the
ever-changing position of, say, & digitising-tablet's cursor. These values
‘spin' whilst the static data dces not. In some of our work on terrain maps
there is no other way of coping with this interactive work. A FORTRAN-77
program by contrast (even if it could read from a digitiser in the first
place) would cause every line on the screen to continually scroll off the top,
utterly destroying the utility of the methed.

A. (iv) EXTENDED PRECISION OPTIONS (:::::::)

There is an undesirable tendency of microcomputers to implement DOUBLE
PRECISION to only 16 significant digits in FORTRAN-77. The more powerful and
faster the new computers, the grezter the numerical intensity of computations
will become in the future. There will be a need for precision up to 24
significant digits. This could be provided in various ways, for example a

p e/

Yz
TRIPLE PRECISION declaration as well as DOUBLE PRECISION, or alternatively a
user-defined precision (such as is in Xitan's XBASIC) which in FORTRAN could
be handled by REAL*12, REAL®*16, REAL*20 and REAL®*24 within individua
declarations or globally IMPLICIT declarations.

The provision of DOUBLE/TRIPLE/EXTENDED PRECISION to the COMPLEX type should
surely become a standard ANSI feature. It is preposterous that Complex
Numbers cannot be dealt with in double precision in programs where Double
Precision is essential in all other zespects. Indeed, this extended precision
should be available as standard on all REAL and COMPLEX functions including
trigonometric and hyperbolic functions.

A. (v) INTERPRET/COMPILE OPTION

What a tremendous advantage there would be if microcomputer programmers could
develop and debug their FORTRAN programs in an Interpretive line-by-line mode
exactly analogous to BASIC. The sacrifice would be a loss of speed of perhaps
S to 10 times, but after a successful development the program would then be
compiled and run at full speed. Programmers are reluctant to prepare new
FORTRAN-77 programs on a microcomputer because it can take 15 minutes to
compile, link and re-start a modestly-sized source after each individual
debugging operaticn. In the development of a powerful terrain-illumination
program on a microcomputer, we encountered 1000 debugging operations during
the 3 months preparation time, We were obliged to use BASIC because each
coding correction could then be done in 1 minute rather than the 16 minutes
that would have been required in FORTRAN-77. Unless ANSI, together with the
microcomputer industry, tackle this problem PORTRAN could cease to be used on
microcomputers in the future.

A. (vi) MATRIX ALGEBRA

Vast numbers of numeric solutions require matrices and these are freguently
implemented in BASIC on mainframe and microcomputers. Matrix arithmetic and
inversion would greatly enhance the problem-solving features of an
ANSI-standard FORTRAN, provided of course that the routines could support
EXTENDED PRECISION and COMPLEX variables as standard within the matrices.

A. (vii) PARALLEL PORT PRINTING

A cormand should be included to permit output to be directed to a parallel

printer from within a FORTRAN source program, as distinct from an initial run
command. ‘

A. (iii) GRAPHICS

High speed Screen Graphics are novw an essential tool of the scientific
systems-analyst. ANSI should incorporate a universal standardised set of
monochrome and colour pixel graphics commands, including the addressing of
screen~dump facilities, within <the FPORTRAN source code. Microcomputer
manufacturers could then implement these on their 'ANSI compatible' machines.
{We believe it is already possible to include FORTRAN sub-routine calls for
driving peripheral graph plotters).

}7. LA

APPENDIX B @

Future FORTRAN facilities which, although not wvital, nevertheless would be
exceedingly useful and are already implemented in other languages.

B. (i) Unique unambigquous distinction between variable names longer than
six characters

In BASIC sometimes 40 characters are unambiguous. In FORTRAN at least 16
would make programs much more legible as illustrated by the examples below:

BRANCH4, BRANCHS,
RANGEKM, RANGEMILES, or RANGE_MILES
WAVELENGTHMETRES, WAVELENGTHINCHES, or WAVELENGTH_INCHES.

B. (ii) LABELS

The provision of alphanumeric LABELS to signify blocks of program coding would
be a very useful feature (already available in some of Hewlett-Packard's
programming languages) and is even absent in BASIC. A label could also
terminate a DO-LOOP, for example;

DO 'SMITH' K = =6,100,2
LABEL 'SMITH'

Putting the alphanumeric name within literals would also allow the use of
entirely 'numeric' labels:

e€.g.: LABE], '1988°
GOTO '1989'

Individual statements, and blocks of coding labelled with 'names' rather than
-mbers is mnemonically easier for programmers to ksep track of events, for
=xample:

GOTO ('XVELOCITY®', 'YVELOCITY', 'RETARDATION') N.

B. (iii) COMMON ALL declaration

We recognise and applaud the very powerful SUBROUTINE facilities in FORTRAN
which are superior to GOSUB and PROCEDURE in BASIC and many other languages.
Standard FORTRAN SUBROUTINE CALLS should remain as at present. One
enhancement that cou 14 avoid considerable tedium in program code preparation
would be the option of a COMMON ALL declaration, after which no COMMON lists
would be needed, because all variables would then be commoned with the calling
program, analogous to BASIC's GOSUB.

B. (iv) EXTENSIONS TO IMPLIED LOOPS

FORTRAN already scores many points for this superb facility, not available in
BASIC. It should surely be extended to setting up arrays, using a syntax
thus:

DIMENSION A (0:4000)

(A(K) = 60*X/2000, X = 0,4000)
or better still: A = 60*X/2000

P-2¢3

B. (v) MULTIPLE STATEMENTS ON ONE LINE

To save forests of paper, please let us have the option, within ANSI stan..;
of multiple statements on one line, separated by semicolons. This is alre:z
standard on our Honeywell mainframe Fortran implementation. The exclusion
multiple statements on a line of FORTRAN-77 leads to nonsenses like ¢
following example below, especially on 132-character printer paper:

Xl =
Yl
zl
b &
Y2
22

CoOoOoONMNWSE
9o

why not let us write:

21 =4; Yl = 3; 21 = 2; X2=0.9; Y2 = 0.7; 22 = 0.6

English is read from left to right. why are Programming languages limited
a vertical list down the extreme left side on a long rell of wide paper?
grant that multiple statements on a line should not be overdone, but judicie
use can result in neat coding layouts, e.g.:

ZREAL = AMPL*COS (PHASE) ; ZIMAG = AMPL*SIN (PHASE)
DO 2000 X=0,100; A(X) = LOG(X/2) ; 2000 B(K) = EXP(X/10) '

Not the least advantages during program development are that more coding
be scrutinised on the very-limited 25-line format of most VbUs, and pape
listings of programs would become so much easier to handle.

B. (vi) 80 CHARACTERS PER LINE

Let us have 80 characters per line as the future standard. The 72 characte
line length is historical and reflects the use of teletype machines. Mode:
VDUs are invariably 80-CHARACTER capable. Llower-case remains essential, ¢
course, for comments and format printing.

B. (vii) PRESET/NON-PRESET VARIABLES OPTION

A useful tool for debugging purposes would be an option within the FORTR:
source code to do either of the following:

= preset all variables and arrays to zero at run time, for convenience;

- leave all variables unset and invoke an error message such as 'unknown
or misspelt variable' to highlight any erronecus or unset variables
and arrays when they are encountered during execution.

B. (viii) RS 232 PORTS

Any revision of FORTRAN-77 should reflect the increasing use o
aicrocomputers. Although we believe that ANSI FORTRAN-77 allows direct acc--
to RS 232 serial ports, it does not allow (to ocur knowledge) the serial .
to be opened and closed directly from within FORTRAN scurce code withou
recourse to machine-code routines.

p. ReYy

The new command should allow a serial port to be opened and the baud spee
number of bits, number of stop bits and parity to be specified. There shou
also be a command to permit constant poling of the attached serial devic
Otherwise a 'device time out error' would occur if the 'data set ready' w
not detected. The new command should also allow for additional extensions

control the RTS, CTS, DSR, DC line signals and optional line feed and pari

checking should also be permitted.

29. 265

APFENDIX C @

Future FORTRAN facilities which, although not essential, nevertheless wou..
useful, particularly in translating existing programs from one language
anothez.

C. (1) Unlabelled DO LOOPS so that the programmer does not have to
remember later the terminating statement number, nor alter it, wt
preparing code. BASIC uses a very sensible FOR-NEXT structure whi

does not require to be labelled and this works without ambiguit
An alternative is a ‘'named’ statement rather than a ‘'numbe;e
statement to improve user-friendly programming e.g.

Dq *SPEED' N = 1,1000

{
LABEL °'SPEED'

,7,1.{ ly) C. (ii) Some means of opting to execute a DO LOOP either once minimum
: or not at all. This would ease the translation of programs from ¢
language to another. It is thought that a WHILE-WEND structu
could deal with this potentially serious problem of ¢translati
between languages.

C. (iii) A WAIT command to suspend program execution until the status
of a port had changed.

C. (iv) User-defined screen characters to permit the generat'ion of A,
:j??‘-l/j

7 and the ° degree sign, for instance, on the VDU.

C. (v) To make a great improvement in source code legibility it would
be useful to have the optional recognition of square brackets
allow arrays to be defined with square brackets whilst parenthes
would remain essential for formula translation. The square brack
enhancement would have to be compatible with old programs usi
round brackets, of course.

Example:
A(N] = (AMPL[M]*SIN(PHASE[M]) + AMPL [N} *SIN (PHASE[N]))**2
J-22] C. (vi) Specifically as an aid to translating BASIC into FORTRAN a
K GOSUB call acting on main program code in precisely the same way

BASIC would be useful. There would be no argument lists, ne loc
variables, nc commcn declarations or the like. Two examples below

0

GOSUB 3000 GOSUB 'ROUTEFIND'
Followed later by Followed later by
3000 X =3 LABEL ‘ROUTEFIND'
: X =4
RETURN :
RETURN

Such a translation feature might have considerable sales appeal -
buyers of future FORTRAN compilers.

ETF/sjc/sarah/7909 :
23rd October 1987 P- 264

S“b;,u.-p /Vomsnalsoa .
#45

45-1 cEw | 4577 CE
452 paTA | 158 GEV
45-3 DATAH 45 -9 Fke C @
y5-% DATA | y5-/p GEWN
_ 46 -5 ¢V 45 -/ GEN
X3 Secretariat +5-6 cF0O Dec 7, 1987

311 First Street NW, Suite 500
Washington, DC 20001-2178

Sirs:

1987 marks the fifteenth year | have been e Fortran user. |
sterted with WATFIV on an IBM/360 at Princeton; I've since used 1BM, DEC,
CRAY, CONVEX, SUN, AMDAHL, FPS and even NCUBE Fortran. By end large,
I've considered Fortren & necessary evil — necessary because most of my
colleagues were literate only in Fortran and because the only decent
optimizing compilers were written for Fortran - evil becsuse the
profusion of explicit index calculations snd the limited sel of data types
and operations made programming and debugging cumbersome and error
prone. Because | had a previous background using APL, | felt these
limitations more strongly than most. In order of personal preference,
these are the modifications | would support in @ revised Fortran standard:

(1) Arrays without subscripts. In the vast mejority of cases,
programmers know very simply what they want to do with an array.
DO-loops and subscripts are a cumbersome, error-prone way to
express array manipulations.

(2) Data structures Record handling currently is done with equivalenced
veriables and common blocks - a difficult, nonportable way to handle
informetion. The addition of fixed-length character strings with @
Fortran-77 (the biggest botch of the current Fortran standard in my
opinion) has exacerbated these problems.

(3) Yarigble-length character strings Text is a most unpredictebie

object - 1ts size and shape is usually irreguler and rarely
predictable in advance. Manipulating it in fixed-length, predefined
buffers is tedious and excepticnally error prone. A null string of
zero length is especially desired.

(4) Aytomatic variebles Current schemes for dynamic memory
allocation are based on indices into a fixed base array and the Y5y

pessing of the beginning element of the ares, plus all other relevant
variables, to & subroutine. The ability to simply set or change the
location of an array would be easier. This is not the same as

P 267

e

requiring explicit pointers in the language - implicit pointers would
be sufficient, perhaps even better.

(5) Standard include syntax. Without shared definitions of parameters,
common blocks, and data types, it is impossible to build a reliable,
maintainable body of code. Each computer currently has its own @
distinct preprocessors and syntax for including shared definitions
into 8 program. This usage should be standardized.

(6) DO-WHILE, ENDDO, and BREAK. Once we have array operations, the
stendard fixed-increment DO-1oop becomes much less useful. A
DO-WHILE or FOR loop construct would cleanly handle most non-srrey
iterations, especially if accompanied by uniabelled END-DO's and &
BREAK construct to exit one or more levels of iterstion.

(7) Symbalic labels. Numeric statement labels are peculiar to Fortran.
Even assembly languages have abandoned them in favor of symbolic @
labels. The ASSIGNED GOTO construct does provide a method of

naming statement labels, but has been subject to so much sbuse thet
it is deprecated in virtually every Fortran style guideline.

(8) Longer names, Six characters are just not enough for intelligible,
readable veriable and function names. Twenty or thirty is more like
it.

(9) Argument validation. One of the big time-wasters in debugging

€4 5-8)
Fortran is detecting when & routine is called with the wrong number
or type of argument. While products are available to catch this and

similer probiems, reslistically their cost is much more paiatable

when bundled with the Fortran compiler.

(10) Macro facility Conditions! code compilation end generation of
inline code are currently done in a strongly system-dependent
fashion, if at all. A standerd macro facility for Fortran would be a C‘/ §-/0)
way to aid portability and handle system dependencies in addition to
the treditionel macro function of inline code generation.

(11) Inline comments. Again assembly language has allowed these for
yeers, as have most Fortran compilers. It needs to be standardized.
P. 2. %

In summary, while | believe most of these features are available in the
proposed Fortran standerd, | know that not all are. | ask you to consider
including these suggestions in the final Fortran 8-X standard.

Thank you,

Stewart A. Levin
Mobil Research and Dev.

13777 Midway Rd.
Dallas, TX 75234

P 2¢7

Sué vouy Aomimalisas . @
"’;f:—/’fﬁrﬂ #4¢

75-2 GEV

70/- 3 GEwW
4 £ - r GEN
py £-5 GEN 9812 Matchpoint Place

Dallas, TX 75243

December 8, 1987
X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

Washington, DC 20001-2178

Dear Sir or Madam:

From what I have heard about the proposed 8x Fortran Standard, I am very much
opposed to it in its current form for the following reasons:

e I understand that the MODULE/USE features will increase my compile times on
my PC. The compile times are already unacceptably slow and I have written two
different letters to MicroSoft complaining about that already. I understand the
benefits of the MODULE /USE feature, but don't believe it is worth the cost.

o [have also been told that the language is nearly double the size of the current
Fortran language. This will probably force me to purchase additional memory for
my PC to run an 8x Fortran compiler on my machine. I guess that big companies
might not mind purchasing more memory for all their machines, but I would
certainly prefer to use my money for other things other than memory to run a
n»w Fortran compiler on my PC.

machines at work and there is no way to have common source between them
because the syntax of the INCLUDE statement is different on each machine. Why
didn't the committee standardise the INCLUDE statement?

o The thought of statements possibly being removed from some future standard will
send my manager at TICOS through the roof. I expect he will also write you a
letter on that subject.

(44~
e I am disappointed that the INCLUDE statement was missing. I use two different

When I heard about the proposed new Fortran Standard, I was excited until [went to a p,
presentation on what it contained. Now it just scares me thst it will be too large to work &7
on my old 8088 IBM clone and I will faced with three options: (1) don't use Fortran 8x, (2) cet
purchase a new computer, or (3) quit using Fortran all together. None of those options

appeal to me.

I know that my voice carries little weight, but my position is to leave Fortran alone.

Thanks,
& Lrand Bk
Edward Smith

Professional Engineer

P 270

o (atheaie /1. Kacboerk
CRCH7A

American National Standards Institute
1430 Broadway

New, NY 10018

ReE: X3.9
Dear Folks:

I vote "no® on Fortran 8x for all the reassons
in bis Dec. 1986 ballot, and in addition because
that ve already bave a Pascal - vhy make another one.

with Mr. Weaver’'s list of suggested enhancements to Fo
§till have the language free to be Fortran and yet giv

and strength.

p- 27/

#4

Liv

RE&L=IVED
v 198/

December 6, 1987 Al'®t_ban pr o

5& é?‘—p-ff //"""‘7‘"’7

Y7 -1

N NS

Assoc. Prof.
Lehigh County Comm. College

gEsdd LGN 28

CEN

given by Richard Weaver of IBM
my inner voice was saying

1 also strongly agree
rtran 77, which would
e it added portability

107-CDB-5
February 5,1988

From: Carl Burch
To :X3J3

Subj : Subgroup Nominations for Public Review Letters 48 and 50-64

Please find attached the annotated copies of Public Review letters 48 and 50-64, marked with
my recommendations for subgroup assignments. All subgroup assignments are negotiable between
the Subgroup Chair and the Public Review Working Group. Any omissions noted should be brought

to the attention of the Public Review Working Group.

o272

TO: Carl Burch and Ivor Phillips

FROM: Jeanne Adams— ,

DATE: January 27, 1988

SUBJECT: Public Review Comments #48, 50-64

Enclosed you will find public review comments #48, 50-64. Notice that #49 is missing.
They sent one for Pascal instead of Fortran. It appears that it will remain missing as

well, since they want to keep their numbers straight.

I think these again are all right for the May meeting. But after a few more numbers
we may invite them to the August meeting. See you next week.

cc. Jerry Wagener

p-273

#48 (

THE UNIVERSITY OF GEORGIA

OCIS User Services
Barrow Hall
Athens, Georgis 30602 (804) 542-835%

iz T Ibys

T ed Mf,f p/ @
Publie Cot;men;/faybpan/sf;tran#evision 11 JAN 1988

Board of dards Review - —

Amer i National S,tandards"l-nstitute
1430 Broadway —""

Ne& York,-NY, 10018
A friendly note on the Fortran 8X draft:

i think you are trying to change the language too much. Fortran is
not a “do all" language. |t is a "formula translation” lanugae for
scientist and engineers. Significantly increasing the complexity of
the language presents problems to the compiler author and to the
average user. We are just starting to get good F77 compilers on PCs
and they are cramped. Ffortran 77 has been available on many main-
framas installations for only a few years.

The average user of Fortran is an expert in some field unrelated to
computers. The language must be kept simple (within reason) sc that

these users do not have to go to ''computer experts' to get their

work done. One might say that users don't have to use the new

features, but if they are listed in the manual most (espcially the

new users) will try to use them. As the level of complexity of the

lanuage increases, the more users will find it difficult to use. As

a good rule of thumb, if the user's manual is more than an inch or

so thick, the average user will have problems working with it.

The features | would like to see in the Bx standard include -

- Data Structures é"
- Somea sort of array options to be ready a3s that hardware becomes é—-

more available (but so code will run on "older" machines)

- Bit String Data Type (a bit advances for most users, but worth

the effort in a lot of applications)

- IMPLICIT NONE &
- New form of D0 <

L - ALLOCATE/FREE (could save memory buffers when used correctly) <\ §¥-1
Sup gresp ArmincPias ' gyl £L WP 99 -
— e : o Sincerely, i

sg-o DATH | 4§-¢ cxo .5 EX OZ‘J// Glly—

_ = Richael G. filler
4$§-3 CEN | yg-T DATA Manager, Technical Support
q$- 9 vATA

7 27y

As Equel Dpponmaity / AMirmetive Action lastitsien
wo2s

#50
Los Alamos o T 168E

Los Alamos National Laboratory wastor MS B257
L os Alamos,New Mexico 87545 Teemwone D05 667-7550
FTS 843-T145

5’452”’“/ Nominalonsy !

- co-/ DATA [501/ "f_"ﬁf

Public Comment for Dpans 50-2 GEN | 50-12 DAl .
Fortran Revision 50-3 GEN 50-13 9'9:’_/?‘ g
X3 Secretariat Attn: Gwendy Phillips 5, -v DATA | %° -14 DATA
CBEMA, Suite 300 5 pAA | 5015 eEv F
311 First Street, N.W. 2 SAa | 5o 16 &Y =
Washington, DC 20001.2178 50-6 PN L7 DATA —

50 -7 DAIA ;z 19 FEN =
Dear Ms. Phillips, d e gﬁ;ﬁ £9°0% cEv =

so-la DAT ;0-10 éfu \ :

The following comments are topics that concern me about the propesed new Fortran
standard. Some of the comments are of a general nature (because there are too many
individual features to address individually), others. concern specific features. Page
and line numbers that I cite in my comments refer to the X3J3/58.104 June 1987
report.

1. The meta-standard

I would like to preface my comments by arguing the point that there is more to
Fortran than the written standard. From the stand point of the day-to-day use of
the language. Fortran, like other working programming languages, has an unwritten
standard as well. That unwritten standard takes the form of a mental model of the
general nature of the language. It is the unwritten meta-standard.

The meta-standard exists because the human mind is not capable of applying the
thousands of minute details that constitute the language definition when designing
a problem solving methodology. (There is a saying about the task of draining a
swamp and the problems alligators cause that comes to mind as I write this.) As
analysts, we must rely upon a kernel of generalities, i.e., the meta-st andard. that we
combine in different ways when designing a problem solution. The meta-standard
is really the basis functions that span the problem solving space. Without them,
we would not be able to solve complex problems.

Take completeness as an example. In Fortran IV, an end of file could be written
but there was no standard way of testing for the end of file. Completeness was not
achieved in this area until a standard way of testing for an end of file was put into
the language. To me, completeness means that all aspects of an area are accounted
for-its basis functions completely span the sub-space.

What happens when the basis functions do not completely span the sub-space? You
have a sub-space with holes in it. The more holes you have, the more difficult it is
to design a problem solution. (We're back to alligators and swamp draining.) When
you look at the written standard, sub-space holes come about because of exceptions
and limitations that apply to the use of certain syntax forms. (Ref: Weinberg, G.
M.: The Psychologyv of Computer Programming: Van Nostrand Reinhold).

An Egque! Opportunity Empioyer /Operated by Universtty ot Calltornia

p. 275"

Public Ccmment for Dpans -2- January 5, 1988
X-7-88-U1

Take the rules for using character variables as an example of the effect of sub-
space holes on the use of Fortran. One principal that we as users of the language
have hung our hat on is that all variable types may be put in common. Another
is that variable types may be put in common in any order with all other types.
“Ah”, you say, “character variables cannot be put in common with other variable
types”. Right. Because of that sub-space hole, character variables are a source of
so many problems that they are unusable in many applications. Consequently, we
are forced to use a degraded feature, viz, Hollerith strings, to do what we need to
do in situations where it would be logical to expect to use a character variable.

What is the seriousness of corrupting the unwritten meta-standards of the language?
The seriousness is sever. W hole problem solving methodologies are rooted in the
unwritten meta-standards. In some cases, when those standards are corrupted.
whole computer programs must be thrown out because the method of solving their
problems mnust be completely redesigned.

Consequently, a programming language cannot be changed by looking simply at
the written standard. Fortran is not just a programming Janguage. It is a language
analvsts use to design solutions to complex problems. Because of that. it is the
unwritten meta-standards that are really important in the design of a computer
program. It seems to me that many of the features that are proposed are so bur-
dened with limits of where they can be used that continuing this trend will only
make Fortran die of congenital obesity. One guiding principle that should be fol-
lowed. I think. when changing a language is that you end up with a lean, mean set
of meta-standards.

2. Protectionism

Another area where I have some strong feelings is this controversy of functionalism
versus protectionism. I live with the premise that Fortran is not a static, spe-
cialty language that is designed to teach "good™ programming practices. On the
contrary, it’s a working language that must be flexible so it can be applied in a
dyvnamic, demanding world. Consequently, I am an antiprotectionist professionally
and morally.

Professionally, I object to measures taken in the language to protect me from “shoot-
ing myself in the foot.” Experience over the past twenty-some years of writing
Fortran code has proven to me tLat there is no such thing as the a prori right way
of doing things-the right way in one situation may be a terrible way in another
situation. It’s part of my job, as I see it and as my employer sees it, to make in-
telligent decisions about how the language should be used to solve each particular
problem. For a committee at another place in another time to decide what is in my
professional best interest is deprive me, in the here and the now, of my ability to
best solve the problem at hand.

Morally, I object because it’s un-Fortran-like as well as being un-American. It is
in the spirit of Fortran-ism (as it is understood in the unwritten meta-standards of
the language) as well as Americanism that as much unencumbered freedom should
be allowed as possible. The US constitution has survived for 200 years because it
was designed to stretch with the times and so should Fortran be designed. For a

) 27

) ©

Public Comment for Dpans -3- January 5, 1988

X-7-88-U1l @

programming language to be viable in a dynamic world, it must not be constrained
by the moral dogmas of another time.

3. Automatic arrays

I've see the need for dynamic allocation anJ deallocation of arrays for over twenty
years. For the past six or seven years,] have worked with memory managers
so we could have dynamic arrays in our codes. So, coming with that interest
and background, I was quite interested in the automatic-array capability that is
proposed. My bottom-line judgment, unfortunately, is that it is so bad that we will
not be able to use it. Let me go into the details of what I think is wrong with it.

First, there is a rule that you cannot a.locate an allocated array. But, there is no
test to find out if an array is allocated. That'’s like being able to write an end-of-file

mark on a file without having a way of testing for it.

Second, there is no provided-for way of changing the size of an array. To accomplish
that task in a way that conforms vith the rules of the names of the arrays that
can be allocated, you have to allocute a temporary array. copy the old array into
the temporary array, deallocate the old array, reallocate the old array with its new
length, copy the data from the temporary array in to the newly allocated old array.
and, finally, deallocate the temp.rary array. There is an unnecessary data copy
involved with this that would not have occurred had there been a provided-for way
of changing the size of an array.

Third, there is no explicit garb .ge collection capability. I had a problem the other
day where an array kept getti:.g bigger and bigger. The problem produced blocks
of unused memory scattered tarough memory that were individually too small for
any array to used. The job finally blew off the machine because it couldn't get

enough memory. The fact is. colectively the holes added up to a million and a half
words of memory-more tha:. ample for what was needed.

Fourth. the code designer is at the mercy of how the deallocating is implemented.
There is nothing in the p: >posed standard that says anything about garbage col-
lection. If automatic arr: vs are implemented so memory is allowed to grow to a
high water mark and unu.ec blocks are reassigned when possible, you can get into
the problem referred to in the previous paragraph. Although there were serious
problems in that instan: e, there are situations where the high-water-mark method
of memory managemen’ is exactly what vou want to do. (I cite a finite-difference.
time-marching solutior m=thod as an example.) A second implementation method
is to garbage collect e -ery time an array is deallocated. However, in all but the
most trivial applicaticns. this method is disastrous because of the amount of data
that often has to be :noved around in memory. In general, there is no such thing
as an a prion automa-ic garbage-collection rule that can be used. When to garbage
collect is very much application dependent.

Fifth, the code de-igner is at the mercy of how the allocating is implemented.
In some of our ccdes, hundreds of arrays are dynamically allocated every time 50-8
cycle. Those prot ems then run thousands of time cycles. Typically, if you do the
multiplication, s.ving a problem means that tens to hundreds of thousands of

[).277

Public Comment for Dpans -4- January 5, 1988
X-7-88-U1

arrays are dynamically allocated and deallocated. If we use the wrong allocation

scheme, we are finding that run times are doubling and tripling compared to the

run times using static arrays. It should be mentioned, perhaps, that these problems

require several hours of computer time and make up the lion’s share of the runs we 50-8
have. If we double or triple their run times, we would have to buy another four- Co 7z,
processor Cray to get our work done. Congress would have a fit. Research done at

unjversities on allocation schemes establishes that, as with deallocation, there is no

such thing as an e priori right way to allocate memory. How to allocate memory is,

also, very much application dependent.

Sixth, the capability is maintenance intensive. The number of lines of code that
are required to allocate and deallocate hundreds of arrays can get extensive. It’s
not only the individual allocate and deallocate lines that are involved but also the
lines of logic that are required to decide which arrays to allocate and deallocate
that must also be counted. If we want to add a new array, it could take a week to
figure out how to do it. It’s crazy. We are trying and want to move away from this
maintenance intensive style of code design. The proposed standard would actually
making it harder for us to design and maintain large codes

)

Seventh. automatic arrays cannot be treated like other arrays. Certainly. automatic
arrays cannot be passed in common. That’s a violation of the meta-standard that
any variable can be passed in common. As I understand it (p. 12-5, line 41). a
subroutine array argument must be either an automatic array or a static array. 1
can't call a subroutine once with an automatic array and then again with a static
array. If that’s true, I give the proposed automatic arrays the big thumbs down
accompanied with a hardy Bronx cheer. The amount of work to accommodate that
type of restriction is incredible. Whether my understanding is correct or not on
passing static and automatic arrays, a point I would like to make is that strong
tvping is unbelievably maintenance intensive. It's also a violation of the Fortran
meta-standard that there is no strong typing in Fortran.

zo-K

B

Lest there be some confusion about how I feel about the proposed automatic array
features, let me summarize by saying that it would be a serious mistake to put
them into Fortran. In due time, the consensus will come to feel that they are a bad
implementation. But, by then the language will have been contaminated and then
it will be a mess to clean up.

4. Whole array operations

kicks by trying to use them. Today. I will not even consider them. The places
where they could be used is so far and few between that to include them would just
confuse the readability of the code. We would have to put comments in the code
at the places where the whole-array syntax is used to say what it was.

What about whole array operations? Twenty yvears ago, I would have gotten my @

5. Bit variables
If bit variables are implemented analogously to character variables, forget ther%@

Character variables can’t be used in the application space I work in. If bit variables

P 27 ¢

Public Comment for Dpans -5~ January 5, 1988 @
X-7-88-U1

are implemented the same way,] won’t be able to use them either. For the sake of
code readability, if I have to use a non-stanaard capability in one place in 2 code,
I use it everywhere.

6. Derived data types

I think I like derived data types. I haven’t wrapped my understanding of them
completely around, but so far they seem to make a positive contribution to code
development. For one thing, they partially fill the hole created by character vari-
ables because they provide a way of mixing several data types into a single entity.
That’s really why I like them. I use a lot of descriptive vectors for all kinds of
different things. Changing those to derived data types, it seems, would soften the
maintenance problems that I currently endure. I think their use would reduce the

number of lines of code that I currently have to maintain as well as eliminate some
multiple maintenance points.

On the negative side, they violate the meta-standard that variables of all data types 1
can be put in common. 1 also don'’t feel comfortable with the syntax used to assign
values to derived-type variables (p. 4-9, line 8). The unwritten meta-standard @
clearly states that there should be an equal sign used in all assignment statements.

(An equal sign is important to those of us who use text editors because we use equal
signs to find stuff.) I also feel deep down in my bones that there are going to be

problems associated with using derived types on dynamically allocated memory.

7. Operators

The following are a couple of opinions that I hold with respect to operators. Even
though they are two opinions they both address the same issue.

First, look at operators from the point of view of the use of synonyms. I think
that Fortran should support just the minimal set of relational operators-.LT., .LE..
EQ.. .GE.. .GT., .NE.. There is no end to the number of synonyms that one may
like to use. To meet the requirements for a synonym capability, there should be
either, the preferred case, a macro-like preprocessor that can convert the synonyms
to standard Fortran or, less preferably, a operator derived type capability in the
language. One of the rules of technical writing is to use the same word everywhere
to refer to a concept. You don't use two different names to refer to one thing-it
just confuses the reader. The same is true of programming languages. Don’t mess

up the readability of code with redundant synonyms. Synonyms also slow down the
parsing that the compiler has to do.

Second, look at operators from the point of view of having generic operators. Tra-
ditionally, three notational forms are used with operators: prefix, infix, and postfix.
With prefix notation the operator is placed before the operands. Prefix notation is
used principly with unary operators, e.g., -5, SIN (THETA), etc., and with multi-
operand operators, e.g., MAX (A, B, C, D). Infix notation is used principly with
binary operators, e.g., 2 + 2, A .LT. B, etc. (Infix notation doesn’t generalize cleanly

to other than binary operations.) Postfix notation is use principle with Hewlett-
Packard calculators.

p- 277

Public Comment for Dpans -6- January 5, 1988

X-7-88-U1 @

If the trend is towards generic prefix operators, it seems logically consistent that
there should be generic infix operators. Why is it logically consistent? Simply
because you can map expressions in infix notation onto their counterpart in prefix
space. 2 +_2 maps onto +(2, 2). If the operator should be generic in prefix space, it
should also be generic in infix space-there’s no difference. If the reasons are sound
for adopting generic prefix operators, they should hold for infix operators. If not,
then let’s not have any generic operators. Fortran should not discriminate on the
basis of fix. (P. F-4 ff is littered with fix discrimination. Let’s do away with that
and n_xal):e Fortran an equal opportunity language where all operators can become
generic.

8. Pointers

Where's the pointers? I can’t believe how such an innocent looking feature can have

so much power. I've worked with them as an extension to Fortran for ten years.

They have become such an important part to the way I think of using Fortran that

if pointers were taken away from me, I would take to programming in some other 50-17
language. Why? I can’t tell you. It seems that no amount of discussion works to

convince people of how useful they are. You really have to work with them in the

trenches to appreciate their significance. I will say that pointers in C, where they

are very well implemented, has made C an extremely powerful language. Without

pointers, C wouldn’t be much of a programming language.

9. Order of declaratives

If there remain any rules on the order declarative statements must appear, they :
should be lifted. Why in this long established age of multi-pass compilers should !
the dimensioning declarative appear before the data statement that presets the C5 0 -l 8/
variable? Why should all the type declarations have to appear before the statement-

function definitions? Rules of that nature just serve to confuse the readability of

code and engender poor programming practices. If all the rules of that type have

been lifted, Fortran will be much better off with them gone.

10. Limits on the number of continuation lines

The guy across the hall was telling me about using an automatic code generation'\
program. He worked for three days and finally amved at some long. complicated
expression only to find that all the parentheses that terminated the expression were
on the twentieth continuation line. He said, “when you write your letter about
Fortran §X tell them about that.”

I've personally had to break long data statements up into several statements so @

many times its like “deja vu all over again” (as a famous catcher for the New York
Yankees once put it). That stupid 19-continuation-line limit has about used up all
its toleration points. It’s a source of maintenance problems particularly with data
statements. Besides, you wouldn’t think in this day and age with computers and
all that you would have a limit like that.

So, for the guy across the hall and my damn problems maintaining data statements,
we’ve got computers now, let's go for unlimited continuation lines.

p- 282

Public Comment for Dpans -7- January 5, 1988
X-7-88-U1

changes. They just don’t fit very well. If it’s a question of all or none at all, Fortran,
1 feel, would be better off with none of the proposed changes.

As a long time user of Fortran, I have a very unsettled feeling about the proposed}@
> [

Sincerely yours,

Seh BT 7o

Jack B. Peterson
Staff Member

Computational Physics Group
JBP:pml

cyv: J. B. Peterson, X-7, MS B257
Peterson file
CRMO, MS A150. (2). w/o enc
Board of Standards Review
A. Marusak, C-3, MS B265

P 287

University of San Francisco San Francisco, CA 9411--1080

Department of Congiuter-Science

Harney Science aner (3_1;51 666-6530

5'4 LZ iy d /I/Mo: Ssieant 19 Dec%:er 1287
5/-1 DATH &

ANSI X3 Secretariat 5/-2 ¢
CBEMA, Suite 500 §/-3 DA 74
311 First Street NW
Washington DC 20001

GG 1Y

ATTN: Public Review of dpr ANS X3.9-198X Fortran

I have reviewed the draft Proposal document, and I have the following
comzents:

1. The Type Extensions in Appendix F, Section F.l, relating to BIT data type,
should be reinstated as part of the full language.

A BIT facility in some form is commonly available as an extension to For-
tran 77 in almost all exieting implementations, because such & facility is
needed in many Fortran applications. Examples of use include graph theory,

bit-mapped graphics, and data transmission. :;/))
The same functionality is available in most other languages in one way or

ancther, for example in the form of "sets"™ in Pascal. Bit hanc.ing is not a
novel or untested area of programming language design.

A standard bit handling facility in Fortran is especially needed, since
othervise the current anarchy will continue, with consequent lack of portabil-
ity. Apparently X3J3 has spent considerable time working ou: the best pos-
sible way to conform such a feature to the other parts of tlre proposed lan-
guage; so it may be assumed that the description in Appendixz F gives the most
reasonable way to introduce such 8 feature into Fortran in a standard manner.

2. The feature "Significant Blanks in Free Source Form", described in Appen-
dix F, Section F.5, should be included as part of the full language.

This feature has some impact in simplifying lexical analysis, by making
it possible to more easily recognize the boundaries betrween tokens.

Significant blanks also contribute to the desirable goal of eventually @
providing tools for the analysis of program source text that will work with
more than one language. For example, one would like to have a word processor
tool (text editor) that could globally change occurrences of "X" in a text
file to ™", but only when "X" appears as a data ob ect identifier (and not in
8 comment, for example); and such that the same toc. could work for several
languages including Fortran, Pascal, Ada [TM], etc. Although other features
of the current languages (as well as of the proposed Fortran 8X) preclude the
possibility of such toocls at present, now is the only forseeable opportunity
to make this change that will be necessary (even if not sufficient) for
reaching the eventual goal.

: ¢ p- 281

2

3. A pcinter facility should be added to Fortramn along with the other fea-
tures in the draft proposal.

I have studied recent working papers prepared by members of X3J3, and it
appesrs to me that a pointer facility could be added as a relatively minor
extensicn to the existing ALLOCATE and ALIAS features. This facility would 5/-3
work in much the same way as the pointer facility in Pascal, which is useful
for creating linked data structures, binary trees, etc.

Pointers are provided in all modern programming languages, with a syntax
not too different from that recently suggested. It would be unfortunate to
add user-defined derived (record) types to Fortran without any way to limk
them together into data structures such as linked lists.

SUMMARY :

1 an grestly impressed by the obviously tremendous amount of effort
that has gone into the developement of this draft proposal. I believe that
the new proposed language will be sccepted by the Fortran user community. I
also believe that, given current trends in hardware development, the new lan~
guage will not be "too lsrge™ for implementation on even the smallest scien-~
tific computers that will be available in one or two years. By careful meas-
ures, the proposed language (even with the additions that I have endorsed
above) is smaller than Ada [TM], and it has the advantage that at every step
the developers of Fortran 8X have kept clearly in mind the possibility of
efficient implementation "in the spirit of Fortran".

I hope that my comments will prove to be of value in shaping the further
processing of the propcsed revised Standard language, and in the general
future development of the language.

Sincerely,

Loren P. Meissner, Ph.D.
Professor of Computer Science

P- AE3

#52

Review Letter # 52
3. Vayne Gray Subgroup Nominations :
. Wa
Honeywell O.E.D. 1 &‘f 1 —
830 E. Arapaho 2 |eemrj13 | —
Richardson, Texas 75081 3 (el 13 —_—
4 (Cev 14 -
X3J3 Chair - 5 CErv 15 —
X3 Se;rotuut 6 cew || 16 T
311 First Street WW A = —
Suite 500 L NS d
Vashington, DC 20001-2178 8 [fRocl18 | —
9 {FEAM |19 e
Re: Proposed Fortran BX Standard 10 {(FEAQ 20 —

Sirs:

I support the position of IBM, DEC, DECUS, etc. that the proposed standard is NOT
acceptable.

Specifically, I disagree with the proposal in these areas:

1. The proposed standard sufficiently changes the language to serve & different market. @

That nev market may need such a language, but the proposed standard would abandon the
existing market.

2. In the market currently served by Fortran, the cost of converting existing programs @
would be far in excess the practical, and the cost would far out-weigh the benefits
of the proposed standard.

3. The features chosen for (possible) obsclescence are incorporated in the large
existing softvare base, to such an extent that I believe that elimination of those
features should net be done, at any future date, in a language called "Fortran".

4. The propcsed nevw language would be much slover, and Fortran implementations and 52 -4
applications have usually been speed sensitive.

5. The propcsed new language probably could not be executed or compiled on some of
smaller machines, and the portability and popularity of Fortran would be decreased.

In response to the committee’s reply to some of the NO votes:

1. I disagree with the committee’s stated opinion that "it is important to introduce @
substantial new capabilities in each revision.”

2. I disagree with the implication of the committee’s statement “Evolution of hardware
has-sreated a need for language support.” that hardware should constrain language

strudture.
-
—
3. I disagree vith the committee’s stated opinion that "whether or not Fortran 8X can be
inplﬁenzod in a one-pass compiler is not ...a serious issue....". This was in s
respprse to the module and the USE statement. I believe seperate compilation and 5 ra

“"J linkigpe in the manner of the current implementations of Fortran '77 to be more
~APPropriate to the market Fortran serves than method used by Ada, which seems
malfBus to the proposed Fortran B8X.

P- Y

I believe that if such a language as described in the proposed standard is needed, it

should be seperate from Fortran. The market would then be able to drive the selection

betveen these two different languages. That is the more appropriate method of @
determining which is better, or more needed.

If such a language were needed, that need would have been reflected in the user community
over the years since the last revision of Fortran, and it has not. If such a language
where needed, the need would have been prompted software suppliers to service that

market, and that has not happened.
In my opinion, the committes exceeded its charter (as T understand it) in this proposal,

and I prefer the continuation of the Fortran 77 standard to the current propesal.

\)3 oy &v

2y

OEC 24 M

X3
87

P RE

DBLS Msiae @)

December 15, 1987

X3J3 Cheair

X3 Secretariat

311 First Street NW

Suite 500

Washington, DC 20001-2178

f18.

>
{5]
s

Dear Sirs:

e

While 1 believe that an updated FORTRAN standard is overdue. I must sgree with
Digital Equipment Corporation (DEC) that the proposed FORTRAN 8x standard is
not in the best interest of the DEC FORTRAN community. -9

—

Specifically, I have major concerns in the following areas: =
e DEC users have expressed the need for improved data type support. The
proposed standard attempts to satisfy this need by language extenmsibility
mechanisms rather than new intrinsic types. The implementations resulting
from this method will be too ineflicient.

e The new source manipulation capabilities (MODULEJUSE) are more @
powerful than necessary, are too complex, and are untested in practice. ,
e The new features added to enhance portability of numerical software are ng-g J

untested in practice and are not clearly effective in obtaining the desired

portability because they do not account for such things as round-off error
and accuracy.

e The features chosen for ible obsolescence in the future are not justifiable
based on potential benefits or costs. Tle cost of replacing statements such
as the COMMON, DIMENSION, and EQUIVALENCE statements will be

excessive.

I urge the X3J3 Committee to take action to correct these problems with the

roposed FORTRAN 8x Standard. I also request that X3 committee to require the
&3 3 committee to correct these and other problems found during the public review
prior to re-submitting this proposed standard for adoption.

Sincerely,

Review Letter # 5 2

Subgroup Nominations :
@5‘/ M PATA 11
/ Prec| 13
Company: .{e‘d"{ a #EHrras __ff // 7;/»//; ~E

PATAIl 13
Address: O~ E BLLet LL82 4 £23/20 cENM| 14
LE1toS T 25 R02

15
16
17

O (00 [~J|Or | i [N |

18
19
20

[
o

p- 25%

LAWRENCE LIVERMORE LABORATORY

National MFE Computer Center :} ,
nmrecCC .

= @
fr;:_j.,)))))).\) December 23, 1987

X3 Secretariat \ -L)

311 First Street |

N, Suite 500 5 A 7"’“4’

Washington, DC 20001-2178 v - Feoa -
owm I

Dear Colleagues: CEN

I write to make some general comments about the proposed Fortran 83
Standard. It should be understood that these remarks reflect my personal

opinion and are not to be taken as representing the Lawrence Livermore
National Laboratory.

It is my opinion that the new proposed standard is an effort to
create a new programming language while retaining the old name - Fortran.
1 would accept new features if old ones can be maintained.

I do not @
approve of the new mechanism for deleting features in future editions of
Fortran.

Whatever is done to Fortran it should be backward (or upward)

compatible with previous versions. In its present form I find the 8X
standard unacceptable.

Sincerely yours,

DRV 47

David V. Anderson

N I

-4

]
(V]

Unversity of Caliormia &
PO Bor 8555
Livermore Caniorma 94E5(

Teecrcne i4151422-4217 . Q2 S‘/7
FTS 5324017

Twr 310-386-8336 DOE Lil LVMR

#55 [

Review Letter # 55 RF Moneitho» Ine
Subgroup Nominations : o..n_..__':r_c:4~ LS
December 31, 1987 1 e 11 AR
2 Dﬂrﬂ 13 Toler dpiamims
3 |foc |13
X3J3 Chairman 4 ppigl 14
X3 Secretariat 5 6§ 1S
Computer and Busines 6 lcerv) 16
Manufacturers Asso 7 lcen| 17
311 First Street NW, s |czo| 18
Washington, DC 20001
9 19
Gentlemen: 10 20

I agree that én updated FORTRAN standard is due. I can not

agree that the proposed FORTRAN BX standard is in the best
interest of FORTRAN users. ,

Specifically, I have major concerns in the following areas:

The complexity of this standard is such that implementation is
doubtful on smaller machines. This could totally remove FORTRAN

capability from wusers of personal computers and even some
moderately sized mini's. The 1language that 8X proposes is
larger than PASCAL and ADA put together!

DEC wusers have expressed the need for improved data type <;.5f
support. The proposed standard attempts to satisfy this need by —

mechanisms other than intrinsic types. The result will be
inefficient.

The new source manipulation capabilities (MODULE/USE) are too 3@
complex and are untested in practice.

The new features added to enhance portability of numerical (::::7
software are not clearly effective in obtaining the desired
portability and are untested in practice.

The features chosen for possible obsolescence in the future are}<:::::>
not justifiable. The cost of replacing statements such as

DIMENSION, COMMON, and EQUIVALENCE would be intolerable to many,
if not most, users.

&
I would very much like to see a CASE statement in FORTRAN, as
well as array operations. However, the array concepts included
in the proposed standard will 1likely degrade run-time and
compiler performance.

I strongly recommend the X3J3 committee withdraw the proposed
FORTRAN Bi standard. This standard is such a dramatic departure 7
from the concept of FORTRAN that I am baffled. It would appear 5.
that X3J3 has invented a totally new language. If there is any
support for this standard, it should be resubmitted for public

review as a new language with a name other than FORTRAN.

p 2

®

The proposed FORTRAN BX, if approved, would have such a serious
impact on our company that we would probably be forced to switch

all new application development and most maintenance to another
language.

Sincergly,

o] el

Wayne L. Fink, PE
Manager of Computer Services

¢c: Public Comment for dpANS Fortran Revision
Board of Standards Review
American National Standards Institute
1430 Broadway
New York. NY 10018

G.A. Andersen, President and CED, RF Monolithics
D. Ash, Vice President of Engineering

P 259 -

i

From: CARL MALEC
Boeing Advanced Systems Co.
Advanced Softwvare Technology
L-7184
P.0. Box 3707 M/S 33-22
Seattle, VA 98124-2207
(206) 241-3387

To: Public comments for Dpans Fortran Revision
X3 Secretariat
Attn: Gvendy Phillips

#56

L-7184-0000-911
10 DECEMBER 1987

)

Review Letter # $74

Subgroup Nominations

CE

¢ EA

CEN

ED

PA7A

11
13
13
14
15

PRoC

16

CENMY 17

18

o oo [o Jin | [us {10 [

19

[y
o

20

Computer and Business Equipment Manufacturers Association

Suite 300
311 First Street, N.V.
Vashington, D.C. 20001-2178

cc: Public comments for Dpans Fortran Revision
Board of Standards Review
American National Standards Institute
1430 Broadwvay
Nev York, N.Y. 10018

Sylvia Sund

SLAC, Bin 96

P.0. Box 4349
Stanford, CA 94305

Subject: The new proposed standard FORTRAN-8X.

I have revieved the FORTRAN-8X material sent me in October 1987.

Az "o /8.

oA

[N

i

-

This consisted of the ANSI X3J3/58.104 description of the proposed

PORTRAN-BX standard, dated June 1987.

)7. 29p

)

The statements belov are my opinions, the Boeing Company’s official
opinions have already been delivered to X3J3.

I agree vith the decision of others to vote no, and I agree vith
their reasons given. But I also find significant additional
reasons to oppose the nev standard that have not been addressed
previously by anyone else that I am avare of.

THEY ARE:
1. PORTRAN-8X is an attempt to create a nev language, this new <:::::)
language is simply a Pascal/Ada look-alike. Ve already have

Pascal, and Ada is a fast groving presence in the softvare
community. Ve do not need another (less advanced kludge) Ada
look-alike language. There is no justification for arbitrarily
creating a nev language similar yet inferior to already existing
programming languages.

2. FORTRAN has a place in the scientific and engineering computing
vorkplace. It is a vell streamlined and easy to use programming
language. It is inappropriate to violate the acceptance of a
videly accepted, easy to use standard. Changing FORTRAN just 56.Z
so it can use some (not all) of the nev programming language
constructs found in other languages does not make sense. If the
systems analyst or programmer vants to use these other language
features they should use a different language, and not change
FORTRAN. That'’s vhy languages like Pascal and Ada exist.

3. FORTRAN is not a logic processing language. Attempts to
introduce an incomplete set of language constructs to allov
limited logical processing only misleads the potential user.
The logic programmer should be pointed to languages like LISP
and Prolog. FPORTRAN never was the ansver to this problem and
FORTRAN-8X definitely is not the ansver.

4. The FORTRAN-8X specification is difficult to read. If ve learn
only one lesson from the creators of Ada it should be: to make a
language specification that can be read and understood. The X3J3
committee’s specification of FORTRAN-BX is difficult to read and

at times obscure. For the average programmer the nev proposed
standard document vould be difficult to understand.

Pinally I vould like to add my opinions and observations. Some
—>undesirable changes are the variable definition changes, they are

too bulky and complex. The specific constructs for entities, blocks,

and scoping changes are clumsy and cause poor connectivity, making

it difficult for the pieces of the language to connect and interact.

Some of the proposed changes are valid and good improvements. But

the currently proposed standard has excceeded its charter. It '
contains excessive and unnecessary changes that are not consistent
vith the structure and connectivity of FORTRAN-77.

CARL MALEC

F. 29|

#H57) ®

FLUOR DANIEL

3333 MICHELSON DRIVE
IRVINE. CALIFORNIA 82730 U S A
TELEPHONE (7141 §75-2000

Decezber 22, 1987

Public Comments for Dpans Fortran Revision Review Letter # 5 7
X3 Secretariat Subgroup Nominations :
Attn: Gwendy Phillips 1 |CEM 11
Cozputer and Business Equipment 2 IparAll 13
‘Manufactures Association 3 |eew || 13
Suite 300
311 First street, N.W. 4 1rep)14
Washington, DC. 20001-2178 5 15

6 16

Dear X3 Secretariat:

Enclesed in this letter are the accurulated cozzents of the Engineering
Systexs Group of Fluor Daniel. This group is part of the company's
Inforzation Systems Department and deals mainly with the developzment,
suppert and maintenance of engineering applications. The members of the
group are engineers with some formal prograzzing training, but generally
learr from on-the-job training and experience.

Being end-users of the Fortran language, we are not as concerned with
the specifics of the propesed Fortran 8X compiler as we are with the
general izplications of a new language standard. We interpret the
proposed language standard as being a complication of an already

. powerful progracming language, in other words, "if it already works,
. don't fix it".

The“array operations feature is probably the best idea of the new <:::::>
language standard, however, it would only be exercised with the develop-
ment of a new application and could not be justified for existing

in-house programs. The numerical computation enhancezent could also be
beneficial to increased accuracy, but again the cost associated with the

training, izplezentation, testing, and, finally, verification of the

application makes this benefit uneconomical.

In fact, to take advantage of the new language, a major portion of the)
old programs would have to be scraped and new code would have to be
written. This luxury is just not possible in our business considering
the time and investment required. Although, some of our engineering
applications were written many years ago, they are still a valuable
asset to the company.

We especially object to the use of a "free" and "fixed" source form.
The reascning behind allowing two separate programming forms is unclear

to us. To maintain large applications, the analyst must be able to
quickly follow the coding to determine the operations performed. If the .

[A7

()

FLUOR DANIEL

Coxputer and Business Equipment Decepber 22, 1687
Manufactures Association Page 2

analyst is required to follow two different sets of statements, syntax,
etc.. his task has been unnecessarily complicated. Also, when enhancing
the programs, if one analyst takes advantage of the "free" form, all
analysts will be required to learn the new form to understand and
interface with the "odd" program unit. This cost for training alone
would be burdensome.

In suzzary, we consider the proposed Fortran 8X language standard
unacceptable in its current state and recommend it not be implemented as
a progranmzing language standard without considerable medification. We
hope our cozzents can be of some assistance to you in providing a
general, effective engineering programzing language.

Sincerely,
X, W e
J. A. Beers

Fertran 8X Advisor,
Fluor Daniel

JAB:a2at
565/ jab010

cc: Public Comzment for Dpans Fortran Revision
Board of Standards Review
Azerican National Standards Institute:
New York, NY 10018

Sylvia "Sunnie" Sund

SLAC, Bin 96
Stanford, CA 94305

P 293

Jim Armstrong
Research Mathematiczan. CONVEN Computer Corp
701 N. Plano Rd.
Richardson, TN _75081

December 9, 1

X3J3 Chair
X3 Secretariat

311 First Street NW

Suite 500

987

Washington. DC 2000]-2178

Dear Sir:

I feel that the arrav expression syntax i~ 3 needed enliancemeny.
arravs is a umelv addinon 1 think that the NJODULE US
@ think that the numerical precsion conirol is an overl
zg.51—>the POINTER data type was not m 1l dralt
not standardized
FORTRAN standard

‘Shncerely.

M
ym Armstroi
~

Xa =

{

]
‘

g

87 DC15 N3

] feel thot the

_&, \a\'\\

#5¥

also feel that the ability to allocate
feature is an unneeded change. 1 also
v complicated extension. 1 am not happy that
] ani alac shocked that the DO WRILE statement w.s 58 &

CONIAION statement mus=t not be taken out of from future
~&7D
FORTRAN should remain an easv-to-learn langunge

Review Letter # 4 9
Subgroup Nominations :
1 GCEsM 11
2 _DATA|l BB
3 |Ppocy 13
4 _IpATA Y 14
5 |DATAN 1S
6 cro|l 16
7 16| 17
8 |sen) 18
9 19
10 20

P2ty

David M. Hill
Nerthern Telecom
2405 Golden Oaks
Garland, Texas.75042
December 16, 1987

X2J3 Chair

X2 Secretariat

311 First Street NW
Suite 500

Washington, DC 20001-2178
Dear Sir:

I feel that the ability to allocate arrays is 8 needed addition. I also feel that the CASE
peeded enhancement. I feel that the NAMELIST input/output is a timely improvement.

typing is an inefficient addition.

statement cannot be removed under any circumstances. 1 believe that the DIMENSION statement

must not be removed from a future FORTRAN standard.

The committee should n%t_ be inventing a new language.

Sincerely,

David M. Hill

1 believe that the IDENTIFY “Statemnent is a poorly designed modification to the language. I also
@ — believe that the MODULE,USE feaiﬁ is an unwarranted change. I think that the abstract data

I am unhappy that the INPLICIT NO!\'E‘st/atement was missing/ | am also unhappy that the BIT
data type was not included. I am not happy that the POINTER™data type was not in the draft. I feel
(5- 7./ o; That the COMMION statement must not be deleted. 1 also believe that the EQUIVALENCE

Review Letter # 59
Subgroup Nominations :
1 D474 11 & EM
2 €Tl 13

3 |cTo | 13

4 _IDATAY 14

5 [fPecl 15

6 |pATAN 16

7 _1pATAl 17

8 |DATA 18

9 |p4ATAY 19

10 |[FE4 || 20

p- 295

aD,

X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

Washington, DC 20001-2178

Dear Sir:

1 think that the array triplet notation

1 also feel that the numerical precision control is an

King
GomputerSearch Inc.

Techrical Recruiting and Executive Searzh
9221 LBJ Freeway, Sutte 208
Datias, Texas 75243

(214) 238-1021

2

s an important improvement. 1 also

that the WHERE statement is a need extension.
data typing is an overly complicated change to FORTRAN.

1

thi at the abstract
0.3

unneeded modification £(£2. Y
to the language. I am unhappy that the IMPLICIT NOME statement was missing.<=(2.5
—>1 believe that the DOUBLE PRECISION statement should not be taken out of from

any FORTRAN of the future.

1 am opposed to the standard as currently proposed.

outlined in this letter in the proposed standard.

SPLE(EU.
S ‘
Tisha Motley, CPC

Please fix the problems

Review Letter # £ 0O

Sul

oup Nominations :

88.

- EM

11

& EM

B

'~.'.'I'J CX

D4TH

13

PERTA

14

DHTH

15

CEV

16

17

gv:td L Nre

O |00 [~3 [On [[& (W [N {00

18

19

8

20

/?.

249‘;

X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

washington, DC 20001-2178

Dear Sir: //1:2]:E3
&

1 think that the WHERE statement is a valuable enha
—>that the CASE construct is a helpful additio:n.
that the numerical precision
control is a wasteful change. I am disappointed the the INCLUDE statement was
not standardized. 1 am also unhappy that the POIMTER data type was not

feature is an unneeded addition. 1 also feel

King
ComputerSearch,inc.
Techrucai Recruiing and Executive Search

9221 LBJ Freeway Suite 208
Dallas, Texas 75243

(214) 236-1021

ncement. 1 also believe
1 think that the MODULE/USE &Y

A%,
g

defined. 1 believe that the COMMON statement should not be removed ever. I
also think that the EQUIVALENCE statement must not be deleted under iiiZ(:::::)

circumstances.

] agree with IBM's criticisms of the draft proposed standard.

Review Letter # £/

LI) Ex

Suberoup Nominations :

& &

11

cTo

13

FPRoC

13

g id Linr es,

PATA

14

Proc

15

PATA

16

CEN

17

18

1119

= |0 loo |2 jon [& [L2 o

o

20

P27

King ES
ComputerSearch, Inc.

Technical Recruiting and Executive Search
9221 LB. Freeway. Suiie 208
Daiias. Texas 75243

(214) 238-1021
X3J3 Chair

X3 Secretariat @
311 First Street NW
Suite 500

Washington, DC 20001-2178

Dear Sir: (:g:é::i>

1 feel that the IDEITIFY%atement is a pointless

—>that the 3) POINTER data type was missing. 1 am also unhappy that the INCLUDEZ ‘4::::55
statement was not in the draft. 1 think that the COMMOM statement cannot be
taken out under any circumstances. I

also think that the EQUIVALENCE
statement should not be taken out of any FORTRAN of the future.

extension, 1 am shocked

believe
:hat the DIMENSION statement must not be deleted from any FORTRAN of the
uture.

1 feel that slower compilers are unacceptabTe.éK:ZZ::::j

Sincerely,
[3
® U e
8 >
Sandy Davs 'ﬂ
%2 "3
1 -)
Review Letter # £ 2
Subgroup Nominations : =
1 | pATA 11 =
2 |DATAI 13 ==
3 |fPocli 13
4 |cEAY 14
5§ |eFAA 15
6 16
7 17
& 18
9 19
10 20

P- 29

Review Letter # & 3 g
Subgroup Nominations @ # éj
1 {GCEM 11 phec Alan J. Wallcraft
2 |CEnv |13 |PATH JAYCOR
3 eV B CEN NORDA Code 323
4 |PRecl1a lecenw NSTL
5 KOC 15 CEN MS 39529
6 |7hoc| 16 |cen 01,/05/88
7 \pp7Al 17 \cen
Dear Sirs, 8 |FRocll18 cen
9 |£D 19
Thi 10 {#Rocf 20 raft Proposed Revised American

National Standard Programming Language Fortran, X3.9-198x. I am in broad
agreement with the draft revision, and in particular I approve of the
inclusion of derived data types, array processing facilities, and numerical
computation enhancements. But must object to its approval because of

the problems I have in some areas as outlined below.

1) Source Form. C:::j)

a) The maximum of 132 characters per line in free source form allows
a full line to be displayed on many terminals and most lineprinters. But
all FORTRAN compilers I have ever used add a line or statement number to the
beginning of the line in their compiler listings. The maximum should be
reduced to 126 characters or less, I would prefer 120, to allow compiler
listings that include compiler generated line numbers to be printed on
lineprinters.

b) The standard does not appear to address comment lines ocutside

program units. These can be very useful for providing general comments
about, say, a group of subroutines. Comment lines outside program units
should be explicitly allowed and they should be associated with the
following (rather than the preceeding) program unit.

c) The statement separator, ";", is not well defined. For example
continuation is defined in terms of "lines"” but this does not make sense C:::j)
when a line can have multiple statements on it. 1In either source form
defining ";" as equivalent to a newline and 6 spaces would remove any
ambiguity (if this is really the intent). However some very strange text
then becomes legal FORTRAN, for example:

IF(A.NE.B)THEN;;T-A;AsB;B-T;;;;;;;ELSE;;A-O;ENDIF;;;

A=B;X=&

&Y

2) Statements in Scoping Units.

a) Statement functions should not be allowed in internal <EEEE5
subprograms. Otherwise statement functions cannot be made obsolescent
because there is no FORTRAN BX replacement for statement functions in
internal subprograms.

p- 299

b) COMMON statements should not be allowed in module and internal
subprograms. This leads to no loss of functionality, since any regqguired
COMMON can be defined in the module or the host subprogram, but removes the
possibility of confusion about multiple names for the same object. For

example the following is, I think, currently 8X standard:
SUBROUTINE TEST @

COMMON/A/B,C,D,E
CALL TEST INTERNAL
CONTAINS
SUBROUTINE TEST_ INTERNAL
COMMON/A/1,J,K
K=1;B=C;E=D ! can use I,J,K and B,C,D,E.
END TEST_INTERNAL
END TEST

3) Interface Block.

It makes no sense to allow the redefinition of the arguments to an
internal procudure. Therefore an interface block should not refer to an:
internal procudure. (3.4

4) RANGE.

RANGE adds little or no functionality over ALIAS, and in my ﬁ;; §>
judgement will be very infrequently used. RANGE and the associated i
intrinsic functions should be deleted.

5) OVERLOADING.

At present overloading is the default, but the USE statementczz—é:ES
provides the potential for a large number of procedures to have explicit
interfaces and for these interfaces to be hidden from the casual reader of
the text of a subprogram. 1In fact the major disadvantage of the USE
statement is that it can move information vital to the understanding of a
routine to some far away section of the code. So it is entirely possible
for a procedure to be unknowingly overloaded, and an error in the argument
list to such a procedure call could cause a bug that would be very difficult
to find. Moreover it is not clear to me that linkers and code development
software (such as library utilities) can handle multiple routines with the
same name, i.e. the development of a FORTRAN BX programing environment could
involve far more than just the provision of a compiler. Overloading should
be included, but not by default, and it should be reguired that all
subprograms except, perhaps, internal subprograms have unique names. The
syntax for overloading could be something like, for example:

INTERFACE
SUBROUTINE A _I(I) GENERIC(A)
INTEGER 1

END INTERFACE

INTERFACE
SUBROUTINE A X(X) GENERIC(A)
REAL X

END INTERFACE

f_ 200

The linker would then never need to know about overloading, since the <:EZ>
compiler would substitute the appropriate actual subroutine call for the
generic call. With 31 character names there should be no problem providing
unique names for all subprograms, FORTRAN 77 has that requirement today with
6 character names. 1In the response to Ivor Philips ballot that suggested an
OVERLOAD statement the single argument against the feature was that
non-default overloading could always be extended by a vendor to default
overloading, leading to less standard conformance. But this is true of many
FORTRAN 8X features, for example non-default RECURSIVE could be vendor
extended to default RECURSIVE. This argument is not sufficient to justify
the exclusion of syntax that may reduce the cost of implementing FORTRAN
without reducing the functionality of the language.

6) RECURSIVE.
a) Recursion is not included in the index (Appendix G), all keywor!s
should be in the index.

b) So far as I can tell the total discussion of recursion is aboutGZiZE:
ten lines long. Recursion is by now a well known programming technigue, .but
more discussion is reguired. For example I think the intent is that there
be a single copy of all local variables with the SAVE atribute, i.e. these
are global to all instances of the subprogram, but all other local variables
would be allocated on the stack and each active instance of the subprogram
would have its own distinct set. I am not entirely sure, however, that this
is the only interpretation of the current document. My own preference would
be to ban the SAVEing of local variables in RECURSIVE subprograms, because
all local variables, SAVEA and non-SAVEd, act the same way in non-recursive
subprograms but SAVEd variables have side-effects in recursive subprograms.
It is possible to use registers to hold SAVEd variables in non-recursive
subprograms, provided their values are stored before returning, but this is
not possible in recursive subprograms. SAVEG variables are just another
form of global storage in recursive subprograms, and the identical effect
can be obtained by putting the subprogram in a MODULE that contains the
SAVEd variables as PRIVATE module variables.

7) Intrinsic Procedures.

a) A new procedure, say CPU_CLOCK, similar to SYSTEM CLOCK but
supplying the actual CPU time used by the program should be provided. All
FORTRANS I have ever used has this capability in some non-standard form, so
its implementation should not be a problem and in any case there would be
the option to not implement the routine in a standard way. The
interpretation of the routine on machines with multiple CPUs may be a
problem, vendors who intend to support such configurations should be asked
to propocse the needed extensions.

8) Removed Extensions. Q{:::)
a) I would like a BIT data type in FORTRAN, but only to provide

array MASKing with low storage overhead, i.e. I would support an extension
to the LOGICAL data type, such as LOGICAL(LEN=l), in place of a full BIT
data type. Implementors would then have the option of supplying or not

P 30)

supplying bit or byte length LOGICAL as well as the default word length .
LOGICALs. Non-default LOGICAL variable could be used everywhere default
LOGICALs are legal, except for COMMON storage.

b) I support the removal of all the other features in Appendix F, {
including the removal of significant blanks, and would add the RANGE
capability to the list.

9) Decremental Features.

a) I support the concept of obsclescent and depreciated features, (43-/i
but I am not sure that it will have much practical effect. For example we
use NAMELIST I,/0 heavily and simply will not purchase a computer and/or a
FORTRAN 77 compiler that does not support this non-standard feature.
Because there are people like us out in the market place almost all vendors
support NAMELIST, and I suspect that the depreciated and obsolescent
features will continue to be supported, as extensions to the standard if
necessary, as long as FORTRAN exists for the same reason.

b) Of the obsolescent features the only one in wide use is the

various forms of DO termination. Never the less 1 fully support its
inclusion in the list, since it is simple to make such code standard
conforming.

c¢) It is not clear to me why the DIMENSION statement is "compleg
redundent” in FORTRAN 8X but not in FORTRAN 77, i.e. why it is depreciated
cather than obsclescent. 1In fact the DIMENSION statement is not redundent

in either language because it is the only way to use implicit typing for
arrays. Without the DIMENSION statement the IMPLICIT statement is largely
useless, and since implicit typing has not been depreciated the DIMENSION
statement should be removed from the list.

d) Statement functions can only be depreciated if they are banne!
from internal subprograms (since there is no FORTRAN 8X replacement for such
statement functions).

e) I support the inclusion of storage association features on the

depreciated list. 1In practice, however, I expect these features will always
be available in actual FORTRAN compilers.

Yours sincerely

O -

Alan Wallcraft

F' 30 2.

RoA— oF s QZ-I
p e
o, 5 L0

FROM THE COMPUTER LABORATORY @

CENTRE FOR COMPUTER STUDIES

TELEX €2709%
CHADWICK BUILDING P.O. BOX 147 LIVERPOOL L69 38X TEL 051 - 709 6022

The University of Liverpool

JSM/MJ/2951 17th December, 1987
Review Letter # £ 9
X3 Secretariat/CBEMA Subgroup Nominations :
Fortran Public Review 1 |exTo|l 11
31] First St., N.W. 2 loA7Al 13
Suite 500 =
- 3 108741 13
Washington D.C. -
20001-2178 4 124744 14 o
U.S.A. 5 lpsAll s g o
6 [16 s o

The language as described in the document X3J3/58.1£ is a
long-awaited, welcome revision of the Fortran 77 standard. St will
provide a good migration path to a wmodern language for eemputing
professionals and will greatly improve the teaching of prografming and
conputer science through the medium of Fortran. .Li

I should like to make the following comments on the draft revision
which I have ordered in, what I regard to be, decreasing levels of
importance.

1. Handling of Errors @

As an end-user, teacher, and supporter of Fortran Compilers, I
feel strongly that the standard should include. references to the
capability of processors to detect errors, and report them. For
jnstance I think it is inadequate for the standard to regard a program
which violates array bounds as merely non-standard conforming.

The standard should include words which force implementers to
write compilers which are at least "capable" of being run in such a way
that such errors are reported. A requirement of this sort would not
impede the run-time efficiency of programs (e.g. in real time
applications) since code for it need only be planted at compile time if
required by the user. A restriction of this sort would prevent "early"
versions of compilers being issued without basic debugging checks which
would only serve to give Fortran a bad name. (Vendors are usually
forced to incorporate facilities of this sort eventually because of user

pressure).
2. Pointers .

The lack of a true pointer facility is a serious omission from the @
language. A pointer facility is "almost" in the language anyway via

1
p. 303

ALIAS, ALLOCATE and IDENTIFY and minutes of X3J3 show that it could be
included quite consistently without too much effort.

We surely do not want future generations of Fortran prograrmmers to
continue to model data structures using arrays and indices.

3. Variant Data Structures @

I'm sure X3J3 are well aware of the arguments for including this
facility. So many problems can be modelled using such data structures
that it seems silly to omit it. since this facility, which takes wup
very little description, was moved to the Appendix in the interests of
reducing the size of the language,one wonders how the RANGE facility
remains in the standard when it appears to be useful to a more limited
application area.

4. General Precision Integer)

I fail to understand why this has been left out when such a good
job has been done for Reals. Inclusion of this facility would add to
the functionality and improve the regularity of the language.

The above comments are brief but, I hope, to the point. I know
that comments of this sort, including detailed arguments, will be
submitted from other sources. My intention is to add my voice to those
users of Fortran who, I'm sure, are anxious to see the new standard
emerge as soon as possible, but who also want it to be as useful as it
can be made to as wide an audience as possible.

Yours faithfully,

¥

Dr S. Morgan

- 3oy

107 (*) TAR-1
To: X3J3

From: Tracy Hoover
Date: 4 February 1988

Subject: Backward References in Sectiomn Notes

1. Background

Masscomp was asked at the last meeting to provide backward refer-
ences in the Section Notes for Sections 4, 5, and 6, to the text
in the associated section of S8. Most of my suggestions are for
placing these references after the subsection headings that were
added at the last meeting (106 (*) TAH-1). Where a subsection
heading is not referenced, the backward reference should be
placed at the end of the sentence.

For the actual changes that were made to the Section Notes,
please see pp. 19-20 of 516.106 (Approved Changes document).

2. Proposal

Add the fcllowing backward references to the Section Notes fer
Sections 4, 5, and 6.

3
B. C-2, 1l.1la Replace ‘‘C.4.1 Zero.’’ with ‘'‘C.4.1 Zero (4.4.1)."°

F. C-2, 1.3 Replace '‘'C.4.2 Intrinsic and Derived Data Tvpes.’’ with
**"C.4.2 Intrinsic and Derived Cata Types (4.3, 4.4).7'

4 ¢)

. C=-2, 1.23 Add "MV (4.3.1.2)'" before ''.'’ at end of sentence

last

P. £-2, 1.24 Add "' (4.3.2.1)’’ before ‘'.’’ at end of*sentence

"
(9]
|
(¥

1.42 Replace ‘‘'C.4.3 Precision and Exponent Range Parameters.’’
with ‘*C.4.3 Precision and Exponent Range
Parameters (4.3.1.2).°¢

F. C-2, 1.50 Replace ‘‘'C.4.4 Components and Storage of Derived Types.’’
with Y'C.4.4 Components and Storage of Dezived
Types (4~4)."'
H.4.\
B. C-3, 1,112 Replace '‘C.5.1 Type Declaration Statements.’’ with
“3C.5.1 Tyvpe Declaration Statements (5.1).77

F. C-3, 1.21 Add *'(5.1.1.2)’’ before ‘.’’’ at end of sentence

F. C-3, 1.22 Replace ''C.5.1.1 RANGE Attribute.’’ with
“'C.5.1.1 RANGE Attribute (5.1.2.8, 5.2.8).7"

F, 35

P. C-

P. C-3,

P. C-3'

36

1.39

1.42

Replace “C.S.Z'Array Element References.’’ with
*'C.5.2 Array Element References (5.1.2.4).’7

Replace “'C.6.1 Substrings.’’ with
‘'C.6.1 Substrings (6.1.1)."°

Replace ''C.6.2 Structure Components.’’ with
*'C.6.2 Structure Components (6.1.2).""

To: X313

From: John Reid

107(*)JKR-2

Subject Meeting minutes
Date: 5th February 1988

The attached scribe notes arrived too late for inclusion in the minutes of the last meeting. Please
regard them as supplementing page 44 of X3J3/215.

24 Response to Digital’s X3 ballot

Discussion leader: Hendrickson Scribe: Adamczyk

Hendrickson: It seems like we removed a lot, but we really just tightened it up.

Motion: Document 118 (Hendrickson, Marusak).

Burch: On the bit intrinsic discussion, change "no votes" to "those opposing the dpANS", (Hen-
drickson, Marusak accept this.)

Moss: Change the last sentence of multi-byte character section to match pointers section.
This avoids the promise that the feature will be implemented. (Hendrickson disagrees.)

Weaver: The status of the committee is that no committee time will be given to multi-byte char-
acters (vote on Tuesday). First sentence should also be changed ("X3J3 ... is studying”).

Burch: Effect was to table consideration, not to say we would never do it.

Weaver: Vote was “given an adequate technical proposal, should it be in 8X." It did not get a
2/3 majority.

Hendrickson: Agree to change last sentence to match pointers. Suggest that first sentence be "has
studied”.

Weaver: I disagree. I move to amend. (seconded: Hoover.)

Moss: I bave suggested wording. Strike first sentence. Add "Japanese” before "and Chinese”.
Last sentence as changed — to match pointer section ("As yet, an adequate con-
sensus...”). "have studied” is not honest - we have studied, but do not plan to do any-
thing about it.

Hendrickson: I accept the amendment.

Marusak: I do not accept it.

Sth February 1988

1of2

pP-307

107(*)JKR-2

Matheny:
Paul:
Vote:

Hendrickson:

J. Martin:
Adams:
Marusak:

Adams:

Marusak:
Ellis:

Final Vote:

Sth February 1988

What Len [Moss] has said is right, but is not reflected in his wording. I agree with Dick
[Weaver] that we should call a spade a spade.

We failed on Tuesday to immediately create a task force. The long-term prospects are
unknown. This is not an outright rejection of the proposal.

I think this reflects the committee much better than Weaver’s "rather draconian” state-
ment. One has to freeze the status at some point. This is more accurate.

Nevertheless, the vote is that currently we are not studying this issue.
I suggest the wording "no further activity at this time".
This is not an out-and-out rejection -- only "at this time".

There will be no formal action, but there will be action. Just nothing happening in full
committee.

The subgroup spent several hours - We have addressed this topic at this meeting,
This action is pending the public review process.
Amendment passes, 13-12,

Suggest adding “within X3J3" to the wording on lack of consensus on multi-byte charac-
ters.

Change sentence on lack of consensus in each of 1, 2, and 4. (Marusak agrees.)

In consensus section, change "among the committee" to "within the committee”. (Hea-
drickson, Marusak agree.)

In the procedural issues section, keep the first sentence. I feel quite strongly that pro-
cedural rules have been followed. I would like to see that sentence in.

The subgroup thought the other way was better. It’s a positive statement rather than a
denial.

I felt the ballot was accusing me personally.

It’s still better to respond positively, It’s like "Honest Abe Lincoln" rather than "T-am-
not-a-crook Nixon",

A positive statement is better. To say we've never done anything wrong is a dangerous
thing to put down.

23-4. Passed with revisions.

20f2
f. 308

107(*)JKR-2

To: X313 107(*)JKR-3
From: John Reid

Subject: Changes to $16.107
Date: 2nd February 1988
Proposal. Make the following changes to $16.107:
¥ TItem 39. Change ‘lowerbound’ to ‘lower bound’ and ‘upperbound’ to ‘upper bound’.
X Items 47, 73, 82, 83, and 135. ‘Constraint’ should not be set in bold.
X Item 47. Change ‘parens’ to ‘parent’.
Y Items 53 and 224. Delete ‘(Tech.)’.
& Item 63. Delete *, provided ...]'. (See item 171.)
¢ Item 71. Delete ‘.’ before ‘!Selects’.
7. Item 72. Change ‘CONSTRUCT’ 10 ‘Construct’.

& Item 73, 74, and 84, titles of sections 8.1.4.1, 8.1.4.1.1, 8.1.4.1.2, 8.1.4.2, and 8.1.4.5. Change
‘construct’ to‘Construct’.

¥ Item 73, R817. Move ‘end—do’ left 1o align with *do—stmz".

X4 Item 73, first two constraints. Use tiny font for ‘default real, or double precision real’.
3 Item 73. Use tiny font for the whole of 8.1.4.1.2.

X Item 73, 8.1.4.1.2, second constraint, line 2. Change ‘smmts’ to ‘stme’.

JX Item 74. Use tiny font for the second paragraph of 8.1.4.2.

14. Item 75. Change ‘i.e.’ to ‘that is’.

D Item 82, page 9, lines 1-3, 5-7, and 7-9. Use tiny font for the sentences ‘If ... executed.’, ‘In ...
executed.” and ‘Uniess ... executed’.

16. Item 84, page 12, penultimate line of Example 7. Change ‘ENDDQ’ to ‘EIND DO".
17. Item 85. Change ‘line 23’ to ‘lines 23-24".
D& Item 89. Change ‘correct’ to ‘current’.
I Item 103. Change ‘line 28" to ‘line 18°.
2€(Irem 147. Add 13-12, line 32.
X Ttem 147 and 149. Delete the changes to Appendix F. (See item 278.)
& ltem 148. Delete 13-12, line 32 and add 13-20, line 24.
2% Items 163, 260, and 273. Delete ‘(Ed.)".
>X Item 172. Add marrix brackets around the matrix.
25. Item 197, line 3. Change ‘lines 42-44° to ‘lines 42-45".
7€ Item 214. Change ‘lines 1 and 20’ to ‘line 20°.
X Ttem 231. This should be part of item 230.

2nd February 1988 1ofl 107(*)JKR-3

f. 309

107-CDB-6
February 5,1988

From : Carl Burch
To :X313

Subj : Subgroup Nominations for Public Review Letters 10-21

Please find attached the annotated copies of Public Review letters 10-21, marked with my
recommendations for subgroup assignments. All subgroup assignments are negotiable between the
Subgroup Chair and the Public Review Working Group. Any omissions noted should be brought to
the attention of the Public Review Working Group.

Val

ol

F' 30

710

Tony Linthicum .
Convex Computer Corporation

701 N. Plano Rd
Rickardson. Tx. 75243
December 7, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW
Suite 500

Washington, DC 20001-2178
10~
Dear Sir: - '/@

1 feel that the array triplet notation is s helpful improvement. I alqszéel that the WHERE statement
is an useful improvement. I believe that the inline comment facilify is an important extension.] feel
@-—)thaz the numerical precision control is an overly complicated change to FORTRAN. I also feel that

the internal procedures is an unnecessary modification to the language. 1 am unhappy that the 3)
@ POINTER data type was not standardized.] am also shocked that the DO WHILE statement was
m missing. 1 feel that the COMMON statement must not be taken out of under any circumstances.]

10-7
also think that the EQUIVALENCE statement cannot be removed {rom any FORTRAN of the -
future. | believe that the statement function statement should not be taken out of ever. /-

Designating COMMON and EQUIVALENCE for future removal is unacceptable.
Sin

5'4 L?"""f Somian fisas

/10 -1 GENV
16 -2 G ENV
10 -3 G EN
16~ DATH
/6 -5 pro ¢
/&-é PATH
10 -7 cIT O
/0 -5 CEN

P 1]

|

Bonnie Lee Hill -

Convex Computer Corporation
2405 Golden Oaks

Garland, Texas 75042
December 16, 1987

X3J3 Chair

X3 Secretariat

811 First Street NW
Suite 500

Washington, DC 20001-2178
@)

Dear Sir: J

1 feel that the CASE construct is an useful improvement. I also feel that the NAMELIST
input/output is & needed extension.

@“9 I believe that the MODULE /USE feature is an ineflicient change to FORTRAN. I also believe that the

/-9

_smabstract data typing is an unpeeded modification to the language. I believe that the numerig @
I-

precision coptrol is an unwarranted extension. @
&
m alsc shocked that the BIT

1 am disappointed that the IMPLICIT NONE statement was missifig. [a
data type was pot defined. I am concerned that the POINTER 4lata type was not included. 1 believe

that the COMMON statement should not be removed from the language. I also feel that the
EQUIVALENCE statement must not be deleted from a future FORTRAN standard. I think that the

DIMENSION statement must not be deleted from a future FORTRAN standard.

The committee should not be inventing a new language. Instead, the committee should be setting 4—
standards for existing practices and intrinsics functions.

Sincerely,

Bowni Zew 2l

Bonnie Lg# Hill
=
<
t .
:_r) & | Subgroup Nominations :
= Iz 11 | C1o
° 11-2 CI10
11-3 PROC
114 DATA
11-5 DATA
116 | DATA
11-7 DATA
11-8 | GEN
11-9 GEN
11-10 | DATA

F. 3.

#H12

Ron Lieberman

Software Engineer/Convex Computer Corp.
140% Kesser Dr.

Plaro, Texas. 75023

December 6, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW

Suite 500

Washington, DC 20001-2178

Dear Sir: @ /@

&
1 believe that the CASE construct is a timely enhancement. 1 believe that the numerical precision
control is a superfluous change to FORTRAN. | am unhappy that the VMS RECORD structures was @
pot in the draft. I think that the COMMON statement must not be taken out of under any
circumstances,] also think that the DOUBLE PRECISION statement cannot be removed under any} @
circumstances.

The committee should be standardizing existing practice. @

Sincerely,).
e /
JOre TL €2 me~

Ron Lieberman

{ Subgroup Nominations :
12-1 | CI0
12-2 | DATA
12-3 | DATA
124 | GEN
12-5 | GEN

p. 313

#13

Susan Linthicum
Philadelphia Life Insurance
500 N. Akard

Dallas, Tx. 75221
December 7, 1987

X313 Chair

X3 Secretariat

311 First Sireet NW

Suite 500

Washington. DC 20001-2178

Dear Sir: @

1 feel that the CASE construct is a timely enbancement.] also feel that the ability to allocate arrays
is a timely addition. 1 believe that the MODULE/USE feature is an unnecessary change to
FORTRAN.] also believe that the internal procedures is a poorly designed modification to the
language. | am disappointed that the VMS RECORD structures was missing. 1 think that the

computed GOTO statement cannot be removed ever\l also feel that the ENTRY statement must}
not be deleted from a future FORTRAN standard. 1 think that the alternate RETURN statement

cannot be deleted from any FORTRAN of the future.

The committee should not be inventing a new language.
Sincerely.

oo Fotlicam

Susan Linthicum

Subgroup Nominations :
13-1 | CIO

13-2 | DATA

13-3 | PROC

13-4 | PROC

13-5 | DATA

136 | GEN

13-7 | GEN

P2

#14

Randall Mercer

Convex Computer Corporation
6406 Gila Court

Plano. Texas 75023

December 7, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW
Suite 500

Washington. DC 20001-2178
Dear Sirs: . @

-7
I believe that the CASE construct is a valuable addition. 1 believe that the IDENTIFY statement 2</

an unnecessary extension.] also feel that the numerical precision control is an unneeded extensiont] @
am shocked that the INCLUDE statement was missing.] am also concerned that the POINTER data &

type was not defined. T think that the COADMON statement cannot be removed ever. 1 also believe
that the EXTRY statement cannot be removed under any circumstances.

The committee should not be inventing a new languagt@

Sincerely.

nlalt Mewesn_

Randall Mercer

['subgrou Nominations
141 | CIO

142 | GEN

143 | DATA

144 | GEN

14-5 | DATA

14-6_| GEN

]
147 | GEN _

)9,215_

HI5

John William Torkelson
Convex Computer Corporation
PO Box 833851

Richardson, TX 75083-3851
December 7, 1987

X3J3 Chair
X3 Secretariat

311 First Street NW
Suite 500

Washington. DC 20001-2178
Dear Sir: @

1 feel that the CASE construct(’is 2 helpful addition. 1 feel that the MODULE/USE feature is an
overly complicated addition. 1 am shocked that the DO WHILE statement was not included. I am also
disappointed that the VMS RECORD structures was not defined. (DY @

FORTRAN should remain an easy-to-learn language.

John William Torkelson

ON
.
s Subgroup Nominations :
= 151 | CIO
o = 152 | PROC
& 153 | C10
154 | DATA
15-5 | GEN

p 306

CONVEX Computer BV
World Trade Center
Strawinskylaan 737

10772XX Amsterdam
Netherlands
X3J3 Chair
X3 Secretariat
311 First Street NW
Suite 500
Washington, DC 20001-2178 l
Dear Sir: Jb -

#16

@i +hink that the WHERE statemenf is a valuable enhancergent. I also believe that
195

he CASE construct is a helpful addition. I think that

the)
ar unneeded addition. I also feel that the numerical pregt
@change. 1 am disappointed that the INCLUDE statement

ec{sion ¢

ODULE/USE4eature is

ontrol is a wasteful é@

'as pot standardized.] am

also unhappy that the POINTER data type was not defined. 1 believe that the)
COAMMVON statement should not be removed _ever.
EQUIVALENCE statement must not be deleted under any circumstances.

I agree with IBM's criticisms of the draft proposed standard

Sin.cere]y,

Jan Boerhout-Software Analyst

1 also think tha

| Subgroup Nominations :
16-1 | GEN
16-2 | CIO
16-3 | PROC
" 164 | DATA
16-5 | GEN
£ 166 | DATA
- 16-7 | GEN
B - 16-8 | GEN
; >
v. =
™
> B

p.317

t the}

LTV Aerospace & Defense
P.O. Box 225907 MSF-73

Dallas, TX 75265
October 21, 1987

X3J3 Chair

X3 Secretariat

311 First Street N\W
Suite 500

Washingtor, DC 20001-2178

Dear

1 believe that the CASE construct is a needed addition. I believe that the numerical precision contro

Sir:

A7

17-2

is poorly designed modification to the language.] am disappointed that the DO WHILE statement & 71-3

was not included. I am also shocked that the VMS RECORD structuresgwas missing.] am unhappy
@lhat the INCLUDE statement was not defined. 1 fee]l that the CONMO?

removed ever.

Sincerely,

Gary

l{ Ramsey

f’ 318

-

statement must not b

Subgroup Nominations :
17-1 | CIO

17-2 | DATA

17-3 | CIO

174 | DATA

17-5 | GEN

17-6 | GEN

/7€

Duke University

Dept of Computer Science
Durham NC 27705
Ociober 21, 1987

X3J)3 Chair
X3 Secretariat
313 First Street NW

Suite 500
Washington, DC 20001-2178

Dear Sir:

I feel that the array triplet

arrays is a timely extension. 1 believe that the
disappointed that the 3) POINTER data type was not

RECORD structures was Inissing.

notation%s a valuable extension. I also thi
CASE construc

H1Y

18"

that the ability to allocate
js an useful addition. 1 am
standardized. I am also surprised that the W\S

1 feel that the DOUBLE PRECISION statement cannot be

removed under any circumstances. i,

Sincerely,

Jonathan Becher

Su oup Nominar;
18-1 GE; —HHations ;
18-2 | DATA

183 | c10

184 | DATA

18-5 | DATA
18-6 | GEN

)’7. 319

“GED

2\

John P. Kole

13323 Maham Road #501
Dallas. Texas 73240
December 9, 1987

X3J3 Chair

X3 Secretariat

311 First Street N\W

Suite 500

Washington, DC 20001-2178

Dear Sir: J /72

1 believe that the inline comment facility is a valuable extension.] also believe that the NAMELIST
input/output is a helpful addition. 1 believe that the MODULE/USE feature is a poorly designed /7-3

modification to the language.] also belicve that the abstract data typing is a wasteful modification to =
the language 1 am shocked that the INCLUDE statement yvas missing. 1 am also not happy that the @

» IN{PLICIT NONE statement was missing.] believe that (he COMMON statement cannot be deleted ;
from a future FORTRAN standard. 1 also feel that the EQUIVALENCE statement should not I /9~7)
taken out of from a future FORTRAN standard. m -~

The committee should not be inventing a new language.

Sincerely.

o ——-. /‘
;

~N -y Yoo
John P. Kole

Subgroup Nominations :
19-1 | GEN

19-2 | CIO

19-3 | PROC

194 | DATA

19-5 | GEN

196 | GEN

19-7 | GEN

19-8 | GEN

P: 320

#20

U T D THE UNIVERSITY OQF TEXAS AT DALLAS

Center for Applied Optics
Box 830688
Richardson, Texas 75083-0688

November 20, 1987

X3J3 Chair

X3 Secretariat

311 First Street NW
Suite 500

Washington, DC 20001-2178

Dear Sir:

&

— _1 believe that the MODULE/USE feature is a pointless change. I am
[zo-z)=>disappointed that the POINTER data type was not defined. I am also

-

——%5.»concerned that the DO WHILE statement was not standardized. I feel that

&27°" the DOUBLE PRECISION statement must not be removed under any @
circumstances. I also think that the DIMENSION statement cannot be

deleted from a future FORTRAN standard.

1 agree with IBM's criticisms of the draft proposed standard.

Sincerely,

7..{--[1 ~— ﬂﬂ \'-L-}

Nolan Davis

| Subgroup Nominations :
20-1 | PROC
202 | DATA =
20-3 | CI0
204 | GEN
20-5 | GEN

p0:Zd 82730 /8.

F‘ 32)

AN EQUAL OPPOARTUNITY/APPFIRMATIVE ACTION EMPLOYER

80X 688 RICHARDSON TEXAS 78080

ASSIG

SUBGROUP

ASSIGNED COMMENTS
(Letter.#)

CIO

6.5

8.1

10.7
11.1
11.2
12.1
13.1
141
15.1
15.3
16.2
171
17.3
18.3
19.2
20.3
21.1
21.2

p- 324

ENTS

-~

vl

UBGROU

SIG

SUBGRCUP

ASSIGNED COMMENTS
(Letter.#)

DATA

2.7
2.9
2.10
2.11
5.2
5.3
6.6
9.4
9.5
10.1
10.4
10.6
114
11.5
11.6
11.7
11.10
12.2
12.3
13.2
13.5
14.2
14.3
145
15.4
16.4
16.6
17.2
17.4
18.1
18.2
18.4
18.5
19.4
20.2
214
21.6
21.7

P 3257

UP_ASSIG

SUBGROUP

ASSIGNED COMMENTS
(Letter.#)

GEN

11
1.2
1.3
14
2.0
2.1
2.2
2.3
24
2.5
2.8
2.12
2.13
3.1
4.1
4.2
5.0
5.1
5.5
6.0
6.1
6.3
8.4
7.1
7.2
7.3
7.4
7.5
9.0
9.1
9.2
9.3
9.7
10.2
10.3
10.8
11.8
11.9
12.4
12.5
13.6
13.7
14.6
14.7
15.5

P 326

NTS

(Cont.)

(Cont.)

SUBGROUP ASSIGNMENTS

SUBGROUP

ASSIGNED COMMENTS
(Letter.#)

GEN

16.1
16.7
16.8
17.6
18.6
19.1
19.6
19.7
19.8
204
20.5
21.5
21.8
21.9

P 3a7

SUBGROUP ASSIGNMENTS

SUBGROUP

ASSIGNED COMMENTS
(Letter.#)

PROC

2.6

54

6.2

6.7

9.6

10.5
113
13.3
134
144
15.2
16.3
16.5
175
19.3
19.5
20.1
21.3

f, 32%

UNISYS (7]

cc:

Unisys Cerporation

PO Box 500 001
7 (% X) 5CH —6

Blue Beli PA 1&

December 14, 1987

C. A. Kachurik Subject: FORTRAN &
X3 Secretariat Ref.: X3LB 916
CBEMA, Suite 500

311 First St., NW

Washington, DC 20001

Dear Cathie:

¥3J3's undated respcnse, X3/87-11-126-X, was received in my cffice
on Dec. 7 and circulated for comment. We appreciate the time
taken by X3J3 to review the Unisys comments and form the response
to us in a timely manner.

While the TC responded to each of our concerns, i.e., compilation
cost, object code size, etc., the conclusions reached are not
sufflclently adequate to change our vote to yes. We are still
concerned that 8X is too big an increment over 77 and that the
addition of "modern" concepts has distorted the language nearly
beyond recognition.

Consequently, please be advised that the Unisys no vote stands as
submitted.

Very truly yours,

Than”

M. W. Bass
Member, X3
Unisys Corporation

Jeane Adams

R. P. Kelble
L. R. Rolison

P 3297

fo7 (R)sCh= T

Accredited Standards Committee Doc. No.: [X3/B1=12-055-X,1,5,4)
X3, INFORMATION PROCESSING SYSTEMS*

Date: December 14, 1987

Project:
Ref. Doc.:
Reply to:

TO: Members X3, SPARC, JT/AC, SMC
Officers, X3/TC’'s, SC’s and SPARC/SG’s

SUBJECT: Transmittal of December 1987 Edition, SD-4, Project Manual

Attached is the nevly updated SD-4. Ve have added all newv projects that have
been approved since the last printing in June 1987.

Ve apologize for missing our last quarter production date. I’m sure that you
realize with a 50% turnover in staff assignment, placement and training took a
tremendous amount of time and the addition of 11 projects assigned since June
fell to a lover than usual priority.

If you have any questions or suggestions, please direct your inquiries to Lynn
Barra vho is nov handling production of this document. Lynn can be reached at
202-737-8888 Ext. 52. Ve velcome all comments. Now that Lynn has done the
first, you can expect SD-4 on a timely basis.

/‘/ -

thef ne A. Kachurik
Administrative Secretary, X3

Attachment: December 1987 SD-4

f. 330

*Operating under the procedures of The American National Standerds Instituts.
X3 Secretariat: Computer and Business Equipment Manufacturers Association

Tel: 202/737-8888
311 First Strest, N.W., Suite 500, Weshington, DC 20001-2178

Fax: 202/638-4922

JCH -7

X3/SD-4
December 1987

ACCREDITED STANDARDS COMMITTEE*
X3-INFORMATION PROCESSING SYSTEMS

PROJECTS MANUAL

*Operating under the procedures of the American National Standards Institute

SECRETARIAT:

Computer & Business Equipment Manufacturers Association M
P 33/

X3 Standing Documents

This document is one of a series, developed by X3 and the X3 Secretariat, which
provides a "data base” of information on Accredited Standards Committee X3 -
Information Processing Systems. Each document is updated periodically on an
individual basis.

The series is intended to serve several purposes:

o To describe X3 and its program to inquirers

o To inform committee members of the organization and operation of X3

o To provide a system of orderly administration incorporating the procedures
required by ANSI together with supplements approved by the X3 Secretariat,

for the guidance of X3 officers, members, subgroups and the Secretariat staff.

The series of Standing Documents consists of the following:

'X3/SD-0 Informational Brochure - September 1985

X3/SD-1 Master Plan - May 1987

X3/SD-2 Organization & Procedures - October 1985

X3/SD-3 Project Proposal Guide - May 1987

X3/SD-4 Projects Manual - December 1987

X3/SD-5 Standards Criteria - September 1984

X3/SD-6 Membership and Officers - December 1987

X3/SD-7 Meeting Schedule and Calendar - December 1987

X3/SD-9 Policy and Guidelines - (to be issued)

X3/SD-10 X3 Subgroup Annual Report Format -June 1987
SD-4, X3 PROJECTS MANUAL

X3/SD-4 ides a listing of the current X3 projects, arranged by technical discipline
and cross-referenced to the related ISO/TC97 projects, proposals and approved standards.

Corrections and suggestions for improvement will be welcomed, and should be addressed to:

X3 Secretariat/CBEMA
Attn: Lynn Barra
311 First Street, NW
Suite 500
Washington, DC 20001-2178

I?: 332

HEADINGS AND ENTRIES

EXPLANATION OF COLUMN @

X3 PROJECT NUMBER

An arbitrary project identifier. Numbers 1 - 199 were assigned,
upon initiation of the X3 Project Management System, to all then-
active subcommittee Program of Work line items, under a
»grandfather clause”. Numbers above 200 were assigned to then-
existing pre-standardization studies, and subsequently (o all new
proposal study projects and liaison projects as they are established.
When more than one standard results from one project, separate
project numbers are assigned as each new standard is identified.

X3 PROJECT TYPE

S . STUDY project to determine the feasibility and need for a
development project which has been proposed to X3 (see
X3/SD-3). Suxiy projects are managed by X3/SPARC.

D - DEVELOPMENT project, formally recommended by
X3/SPARC and approved by X3, to produce an
American National Standard.

DT - DEVELOPMENT project to produce an X3 Technical
Report.

R - REVISION project, to revise an existing approved
American National Standard.

«F - REAFFIRMATION project, as a result of the ANSI-
required five year review when the X3 Technical
Committee recommends that an existing American
National Standard be reaffirmed without change.

M - MAINTENANCE project, the stams into which a
Development project is automatically placed upon
approval of an American National Standard by ANSL
Activity for this type of project includes responses to
inquiries for clarification and any comments received on
experience with its use. As appropriate in individual
cases, maintenance activity usually includes also the
suppart by X3 toward adoption of its technical content as
an International Standard.

L - LIAISON project, formal recognition of relations with
another standards body on & project for which X3 has no
existing standard or work in process. A Liaison project is
automatically established for each project established by
ISO/TC97, and for others when requested by an X3
Technical Committee and approved by SPARC and X3.
These projects as initially established are "passive"—for
information receipt only. Upon request by the X3
Technical Committee and approval by SPARC and X3,
they may become "active” liaison to permit technical
contribution and participation. Upon approval by
SPARC and X3, they may also become Development
projects, to develop corresponding American National
Standards.

I1- INTERNATIONAL DEVELOPMENT project, with an
approved New Work Item which X3 has commited o
support, and which is intended to result in an
International Standard.

DOCUMENT NUMBER
X3n-19xx = ANSI catalog number of an approved American
National Standard. (* = revision being

developed)

BSR X3an - A Draft proposed American National Standard
approved by the ariginating X3 Technical
Committee, accepted by X3 for public comment
and submitted to the ANSI Board of Standards
Review for concurrent review. It is continued
with this identifier until approved by ANSI,
when the "BSR" is removed and the year of
approval added. (* = revision of a published

standard)

p-X¥TR - Proposed X3 Technical Report, being reviewed
for approval by X3.

X3/TR-n - Published X3 Technical Report

ESTIMATED COMPLETION
Anticipated year of approval by ANSI of a completed Standard, or
publication of an X3 Technical Report.

ISO/TC97 PROJECT

Related project within ISO/TC97-however, respective boundaries
of the two projects may not exactly coincide. Absence of an entry
in this column indicates that no related TC 97 project has been
established--two or more entries indicate that TC 97 has divided
the work. Within the Project Number, the middle digit(s)
identifies the responsible TC 97 Subcommittee, the last digit(s)
identifies the project.

ISO/TC97 DOCUMENT
The ISO documents listed are related to the X3 poject in
technical subject, but may agree or differ in technical content

R - Published ISO/Recommendation. (*=revision being
developed)

DP - Draft Proposal being developed within a subcommitiee
of ISO/TC97.

DIS - New Draft International Standard, approved by a
subcommittee and being considered by ISO/TC97. (*
= proposed revision of published Recommendation of
the same number)

DRS - Draft revision of published Intemational Standard of the
same number.

ISO - Approved ISO Intemational Standard. (* = revision
being developed)

DTR- Draft ISO Technical Report

TR - Approved ISO Technical Report

f. 333

)

X3 PROJECTS MANUAL (SD-4)

B

FOREWORD

X3 administers its responsibilities for consideration and development of
standards within its scope by means of a Project Management System.

- New X3 work is initiated by a Proposal, which, if sufficient
interest is found, causes initiation of a STUDY project to determine
the feasibility and.need for standards on that subject.

- When the Study conclusions are affirmative, a project
Recommendation is submitted to X3 letter ballot. If approved by
at least 2/3 of the X3 membership, a DEVELOPMENT project is
established to produce a standard.

- The project is converted to MAINTENANCE type when the
proposed draft is approved by ANSI as an American National
Standard.

- It is converted to REVISION type when a substantive change is
proposed to and approved by X3, as a result of experience with
and comments on the standard.

- The project is converted to REAFFIRMATION when, five years
after publication the standard is reviewed and found to require ne
modification.

- LIAISON projects identify work of an industry, government,
professional or international standards body, in which X3 has an
interest but for which it has no directly related project.

- An INTERNATIONAL DEVELOPMENT project is one with an
approved New Work Item which X3 has committed to support,
and which is intended to result in an International Standard.

The Project Management System provides X3 the means used to identify,
catalog, monitor and report its activities, and for filing its technical papers.
A project may be terminated by X3 decision at any time prior to
completion of a standard. However, once an American National Standard is
published, the project remains, going through cyclic Maintenance, Revision
and/or Reaffirmation stages as required until the standard is withdrawn.

X3/SD-4 provides a listing of the current X3 projects, arranged by technical

discipline and cross-referenced to the related ISO/TC97 projects, proposals
and approved standards.

- 33y

X3 FROJ.

I)_CH_LE TITLE
X3Al - OCR & MICR

0017-R Print Specifications for Magnetic Ink
Character Recognition
Incorporates X3 Proj. 314

oole-L Bank Check Specifications for Magnetic
Ink Character Recognition

0057- Character Set for Optical Character
Recognition (OCR~A}

0061-M Character Set for Optical Character
Recognition (OCR-B)

DO62-M Character Set for Handprinting

D069-M Optical Character Recognition (OCR)
Character Positioning

D227-1 Matrix Character Sets for Optical
Character Recognition

0228-L OCR font for 7 and 9
Matrix Printers (Liaison
with EQWA/TCH)

0254-M Paper Used In Optical Character
Recognition (OCR) Systems

0274-M Design of OCR Forms

0284-M optical Character Recognition
(OCR) Inks

0285-M Guideline for Optical Character

. Recognition (OCR) Print Quality
0312-DT Basic Information on OCR

0312-§ Bar Code Standards

0477-D ANS for Guideline for Bar Code
Print Quality

0611-D Optical Character Recognition (OCR)
Matrix Character Sets OCR-MB
X385 — DIGITAL MAGNETIC TAPE

0038-M Magnetic Tape lLabels and File Structure
for Information Interchange

J70-M Unrecorded Magnetic Tape for Information
Interchange (9-Track 200 and 860 CPI,
NR21, and 1600 CPI, PE)

0071-M Recorded Magnetic Tape for Information
Interchange {200 CPI, RRZI) (With X3L2
see Project 237-M)

0072-M Recorded Magnetic Tape for Information
Interchange (800 CPI, NRZI)

0073-M Recorded Magnetic Tape for Information
Interchange (1600 CPI, PE)

0213-M Magnetic Tape Cassettes for Information
Interchange (3.81 mm, 0.150 inch) Tape
at 32 bpmm (800 BPI), PE

0217-M Magnetic Tape Cassette Label

0221-R Urrecorded Magnetic Tape Cartridge for
Information Interchange (0.250 Inch,
1600 BPI, Phass Encoded)

0233~-M Recorded Magnetic Tape for Infe. Inter-
change (6250 CPI, Group Encoded
Recording}

0236-L Recorded Magnetic Tape {(7-Track,

200 CPI NRZI)

0250-M ore-Half Inch Magnetic Tape Interchange
Using a Self-Loading Cartridge

0255=-M Recorded Magnetic Tape Cartridge for
Info. Interchange, 4-Track, 0.250 Inch
630mm, 1600 BPI, 63 BPMM Phase Encoded

0256-w Magnetic Tape Cassette for Info. Inter-

change, Dual Track Complimentary
Return-To-Bias, Four-States Recording

DESIG-

X3.2~1976

X9.13-1983
X3.17-19681
X3.49-1982

X3.4%5-1982
X3.93M-1981

X3.111-1986

X3.62-1987

A3 /TR-5-1982
X3.86-1987

%3.99-1983
X3 /TR-XX-

X3.27-1987

X3.40-1983

X3.14-1983

X3.22-1983
X3.39-1986

X3.48-1986

1S0 4341-1984
X3.55-1982

X3.54-1986

X3.85-1987

X3.56-1986

X3.59-1981

6/86

1987
1985

1988
1984

1986

1986

1988

1988

1988
6/86
3/86

1989
12/85

6/86

1986

1985

1986

/7, 335

IS0
PROJ.
pEsIc.

97.03.07

97.03.01

97.03.01

97.03.02

97.15.1

97.11.04

97.11.02

97.11.03
97.11.05

97.11.06

97.15.3
97.11.10

97.11.11

97.11.01
97.11.12

97.11.10

97.11.08

150

1so

1s0

IS0

Iso

1s0

1s0

1s0

IS0

Iso

150

Iso
1s0

1so

1s0

Iso

IS0

1004-77

1073/1-76

1073/11-76

1831-80

1831-80

1001-79

1864-85

1862-75

1863-76
3788-76
3407-76

4341-78
4057-79

5652-83

1661-75
6098-82

4057-79

I

SPARC/82-477

SPARC/854

X3/85-31R

SPARC/78-136
SPARC/84-320

X3/86-14T7R

X3/85-1204

SPARC/82-1053

X3/85-1219

SPARC/573

SPARC/591

SPARC/82-421

i

0271=-M

0282-M

0350-1
0366-M

0391=-p

0403-D

0404-M

0405~D

0406~-M

0472-1

0485-D

0486-D

0487-D

0488-D

0553-D

0561~-D

0562-D

0565-D

0566-W

0567w

0568-D

0645-D

ZEas

X385 - DIGITAL NMEIETIC TAFE (COETINUED)
Parallel Rec. Maqg. Tape CArtriEo for
Info. Interchange, 4-Track, 0.250 Inch,
6.30 mm, 1600 BPI, 63B3FM, Phase IDncoded
Uncecorded Magnetic Tape Minicassette
For Information Interchange, Coplanar
3.81 mm (0.150 Inch}

Recorded Magnetic Tape Cartridge,

1/4 Inch 6400 BPI, 4-Track

Unrecorded 1/4 Inch Recorded Magnetic
Tape Cartridge (6400-10000 BPI)
Recorded Magnetic Tape for Information
Interchange, 0.5 in (12.7 mm) Tape, Nine
Track, 3200 CPI (126 CPMM)

Unrecorded MagTape Cartridge for
Information Interchange 0.250 Inch

{(6.30 sm), 10000 ftpi, (394 ftpem)
Serial Recorded Magnetic Tape Cartridge
for Information Interchange, Pour and
Nine Track

Unrecorded Magnetic Tape Cassette for
Info. Interchange 3.81 ma (0.150 In),
252 to 194 ftpsm (6400 %o 10000 fepi)
Serial Recorded Magnetic Tape Cassetts
for Info. Interchange, 0.150 in (1.81mm)
8000 bpa {315 bpmm) Group Code Recording
Receorded Magnetic Tape Minicassette for
Information Interchange, Coplanar 3.81
mm (0.150 Inch) Phase Encoded
tnrecorded Magnetic Tape Cartridge for
Info. Interchange 0.500 In (12.65 mm)
6000~15000 f£tpi {236-590 ftpmm)
Recorded Magnetic Tape Cartridge for
info. Interchange, 0.500 In (12.65 mm),
6000-15000 bpi (236-5390 bpsm)

tmrecorded Mag. Tape and Crtrdg for Info
Intchng., l8=Track, Parallel, 12.65mm
{1/2 in), 1491 cpmm (37 871 cpi)

Rec. Mag. Tape & Cartr. for Info. Intchg
18-Track, Parallel, 12.65mm (1/2 in),
1491 cpmm (37 871 cpi) Grp—Coded Recrdng
ANS for Unrecorded Magnetic Tape Mini
Cartridge for Info. Interchange, 0.25 In
(6.30 mm), 12500 fepi (492 ftpmm)
Unrecorded Magnetic Tape and Cartridge
Systea for Mechanical and Magnetic
Interchangeability between Infec. Systems
Recorded Magnetic Tape Cartridge for
Information Interchange 0.500 in {12.63
sm), 22-Track, Serial, 6667 bpi
Unrecorded Magnetic Tape Cartridge for
information Interchange 0.500 iach
(12.65 mm), 6667 ftpi (262 frpmm)
Recorded Magnetic Tape Mini-Cartridge
for Info. Interchsnge, 0.250 IN (630 mm)
12 and 24 Track, 10000 bpi (394 bpmm)GCR
Recorded Magnetic Tape Cartridge for
Info. Interchange, 0.500 IN (12.65 mm)
24=-Track, Serial 8000 bpi (J15 bpam) GCR
Unrecorded Magnetic Tape Cartridge fot
Info. Intecchange, 0.500 IN (12.65 mm)
10000 ftpi (393 ftpmm)

Recorded Magnetic Tape Cartridge for
Information Interchange, 20-Track Serial
1/2 in (12.65mm) 12 000 fetpi (472 ftpmm)
Unrecd. Magnetic Cart. for Information
Interchng. 0.150 in 10 000 ftpi
Coercivity 500 Osrsteds (44 000 meters)

X3.72-1987
X3.103~-1983

X3.116-1986
x3.127-1987

X3.157-1987

X3.136-1986
X3.164-198x
X3.158-1987

X3.104-1983

]233&

-2-

6/36

386

12,35

3/86

1988

1986

1986

387

s

13787

el

1787

/87

12/87

/87

6/87

s/87

97.11.10

97.11.10

97.11.10

97.11.10

DIs 8063/2

DIS 8063/1

.

180 4057

DP 8462/2

;
i

SPARC/831
SPARC/754

SPARC/80-564
SPARC/82-420

SPARC/83-517
SPARC/B3-671
SPARC/81-698
SPARC/83-690
SPARC/03-689
SPARC/754
X3/84-718
X3/B4-71%
X3/84-720
X3/84-721
X3/85-1420
X3/85-1547

X3/85-1548

‘X3/85=-1549

X3/85-1419

X3,/85-1544

X3/85-154%

X3/85-1546

X3/37~09-030

PROJ .
DESIG.

SD-3 REF.
IMBER

&)

DESIG.

i

AEILE

0646-D

0647-D

0649-D

0230-w
0291-D

0371-D

0383-D

0641-D

0592-D

0064-M

0065-M

0123-L

0124-L

0224-M

0225-M

0251-M

0275-M

0277-RF

0321-M

0328-M

0343-M

0344-M

0353-M

0356-D

385 ~ DIGITAL MAGEETIC TAPE { CONFTINUED)
Recd. Magnetic Tape Mini-Certridge for
Info. Interchng. 13-Tk. 0.150 im, 20-Tk.
0.250 in (6.30) 10 000 fepi, MM

Recd. Magnetic Tape Cartridge & for
tnfo. Interchng. 1/2in, Ser. Serpentine,
22-Tk., 6667 £tpi & 48-Tk., 10 000 ftpi
Unrecd. Magnetic Tape Cartridge & for
Info. Interchng. 1/2in, Ser. Serpentine,
22-Tk. 6 667 £tpi & 48-=Tk. 10 000 fepi

386 ~ DISTRMMENTATION TAPE
Instrumentation Magnetic Tape
High-Density Digital Magnetic Recording
(HDDR)

Recording Characteristics of
Instrumentation Magnetic Tape
Characteristics of Unrecorded Instrusen—
cation Msgnetic Tape — Interchange
Practices and Recosmended Test Methods
Precision Reels for Magnetic Tape Used
in Interchange Instrumentation
Applications

standards Commands ¢ Mnemonics to Be
Used with IEEE-488, RS-232 & Other
Remote Interfaces Instrumentation
Digital Recording Based on the SMPTE b-1
Format

387 -~ MAGNETIC DISES

Unrecorded Magnetic Six-Disk Pack
(Genaral, Physical, and Magnetic
Characteristics)

tmrecorded Magnetic Eleven-Disk Pack,
General Physical and Magnetic
Characteristics

Track Format for Six Disk Pack

Track Format for Single Disk Cartridge
(Top Loaded)

Unrezorded Single Disk Cartridge (Front
Ltoading, 2200 BPI)

Interchangeable Magnetic Twelve—Disk
Pack (100 Megabytes!

Interchangeable Magnetic Twelve-Disk
Pack (200 Megabytes)

Unrecorded Single-Disk, Double-Density
Cartridge (Front lLoading 2200 BPI, 200
TPI)

Unformatted Single~Disk Cartridge

(Top Loading, 200 TPI, 4400 BPI)
Physical, Mechanical & Magnetic Charac-
teristics of an Unformatted 80 Megabyte
frident Pack for Use at 370 TPI, 6000BPI
14-Inch (356 sm) Diameter Low Surface
friction Magnetic Storage Disk

Ccontact Start/Stop Storage Disk, 158361
PFlux Transitions Per Track, 8.268 Inch
Outer and 3.937 Inch Inner Diameters
Contact Start/Stop Storage Disk, 95840
Flux Transitions Per Track, 7.874 Inch
Outer & 2.50 Inch Inner Diameters
Contact Start/Stop Storage Disk: 83000
Flux Transition Per Track 130 mm (5.118
iIn) Outer Diam. 40 sm (1.575 In) Ianer
A Contact Start/Stop Metallic Thin Pilm
Storage Disk, 83,333 Flux Transition Per
Track, 130MM Outer Dia. & 40MM Ianer Dia

150 1860-~-198x

X3.46-1983

x3.58-1984

X3.52-1987
X3.63-1581
X3.04-1981

X3.89-1987

X3.76-198x

X3.115~1984

X3.112-1984

X3.119-1984

X3.120-1984

X3.128-1985

X3.163-190x

-3 -

1988
1987

1986

1989

1989
1986
1986

1986

1986
1989

1989

1986

/’- 337

97.12
97.12.9

97.12.7

97.12.8

97.12.1

97.10.1.

97.10.4

97.10.6

97.10.7

1

IS0 3802-81
Dp 8441

D18 6371

DIS 1860

180 2864-74

IS0 3564-76

180 1561-76
280 31563-76

I0S 4337-77

DIS 5653

18 6901

DIS 7298

180 7297

DP 7929

X3,/87-09-031
X3/87-09-032

X3/87-09-013

SPARC/77-30
SPARC/82-637

SPARC/83-45,
03-361

SPARC/83-488
X3/86-1895R

X3/86-1696

SPARC/598

SPARC/750-A

SPARC,/750~C

SPARC/78-137

SPARC/79-35R

SPARC/080-234
REV.

SPARC/80-235R
10/10/,80

SPARC/81-52R
V. 3/18/81

X3/85-607

m

0360-M
0369-D
0479-D
0489-L

0492-D

0582-8

0231-1
0232-D
0272-D
0286-M

0287-M

0306=-R

0322-m

0354-M

0373-D
0453-w

0475-1

0454-D

0589-D

0386-L

0389-D

0101-R

01021

0437~

0438-m

X387 ~ MAGEETIC

S 1/4 Inch Rigid Disk Removable
Cartridge

Nomiral 8 inch Rigid Media Removable
Cartridge

95 MM Rigid Digital Recording Disk
Liaison with the Semiconductor Equipment
Manufacturers Institute (SEMI) for the
Developmant of Substrate Standards

100 mm Rigid Digital Recording Disc
for Cartridge Applications

I587.1 - TEST METHODS AND PROCEDURES

study Pre)cct on Test Mathods and
Procedures

X388 - FLEXTHLE DISK CARTRIDGES (FDC)
Single~Sided Unformatted Flexible Disk
Cartridge for 6631 BPR Use

Flexible Disks - Recorded
Chatacteristics

Flexible Disk Labels and File Structures
Two—-Sided Unformatted 8=Inch (200 MM)
Double Density Plaxible Disk Cartridge
(Por 13262 FTIPR Two—headed Application)
Twe Sided Unformatted (200 mm) Double
penszity Flexible Disk Cartridge, General
Physical and Magnetic Raquirements
one—-Sided Single-Density Unformatted
5.25 Inch Flexible Disk Cartridge
Two—-Sided, Double—Density, Unformatted
5.25 Inch (130 mm} 48-tpi (1.9 tpmm)
Plexible Disk Cartridge for 7958 BFR Use
One or Two—Sided Double Density
Unformatted 5.25 Inch (130 mm) 96 Tracks
Per Inch Flexible Disk Cartridge

3.5 Inch Flexible Disk Cartridge
Unformatted 72 am (3 Inch Neminal)
Two-Sided Double Density Flexible Disk
Cartridge for Informatien Interchange
WT TC97 N1368, Std. of Flexible Disk
Cartridges for Data Interchange Maving
s Diameter Smaller than 100 MM

5.25 Inch High Density (130 mm) Flexible
Disk Cartridge

Data Intchng on 30mm (3.5 in) Plex Disk
Cartdg Using Modified Praq Modulation
Recording at 15916 ftprad, om 80 Tracks
90 mm (3.5 in) Fleaible Disk Cartridge
at 15916 ftprad

X3B8.]1 - IRACK FURNAYS FOI FLEXTELE DISK CARTRITXES

Lisison with all 1C97 Development
Projects for Recorded Characteristics of
Flexible Disk Cartridges

ANS for Flexible Disk Track Fora for
Information Interchange

389 - PAPER
Spocita.clu.n for Gemeral Purpose Paper
Cards for Information Interchange
Rectanqular Boles in Twelve—Row Runched
Cards

Basic Shest Sizes and Standard Stock
Sizes for Bond Paper and Index Bristols
(PORMERLY X%4.4-1972)

Specifications for Single-Ply,
Non—carbonized Adding Machine Paper
Rolls (PORMERLY X4.8-1973)

BST. I
STD. QL. ROJ.
DRSIG. DATE DESIG.
X3.155-1987 1906 97.10.11
x3.156-1987 1986 97.10.12
- 1987
- A
- 1987
X3.73-1986 1986 97.11.9.1
- 1986 97.112.9
180 7665~ 1987 97.15.8
X3.121-1984 1989 97.11.9.3.1
X3.121-1984 1989
x3.82-1980 1986 97.11.9.4.1
X3.125-1984 1989 97.13.9.5.1
X3.126-1986 1990 97.11.158
X3.137=-198x 1886
X3.1l42-198X 198S
- 97.11.18
X3.162~-198x 1986
- A
- 1986 DP 8630,2
X3.11-1969 1985
X3.21-1980 1985 97.0.2
x3.151-1987 1985
X3.152-1987 1985

P 33¢

-4 o

130 5654/1-84
180 5654,2-82

IS0 7663
IS0 7065/1-2

180 6596/1-2

150 7487/1

TCY7 m1I68

oP 8630/1,/2

IS0 1682-73

?
I

SPARC/81-893R
1/16/,02
SPARC/81~-285R
S/14/81
SPARC/84~527
X3/84-916

SPARC/84-~471

X3/06-1027

SPARC/541
SPARC/818
SPARC/80-818
SPARC,/77-28

SPARC/77-20

SPARC/77-27

i
SPARC,/79-71%
SPARC/81-313R
8/3/81
SPARC/83-423
SPARC/83-731

SPARC/84-429

X3/84-1065R

X3/86~960

X3/86-1601

SPARC,/83-310

SPARC/81-311

B/
Grandfather
Clause

0439-D
0440-M

0441-M

0442-D
0443-M

0444-D

0445-DT
0446-DT

0447-1

0430-M
0431-M
0432-M
0433-L
0434-M
0436-M
0471~1
0586-D
0590-D

0595-D

0609-D

0633-D

0634-D

0635-D

0636~D

0372-D

0402-M

0459-D

0511-D

X3R9 — PAPER PORMS/LAYOUTS (CONTINUED)
Standard for Business Latterhead Sizes
conversion of paper Substance Weights
from Ream Weights to g/m2

Paper Sizes for Single Part Continuous
Fusiness Forms

Faper Roll Sizes

Printable/Image Aress for Text and
Facsimile Communication Equipment
Quality Requirements for Paper for
Continuous Forms

Forms Tutorial

Publications on the Advantages of North
American Sizes vs. ISO A Sizes

Office Machines and Business Forms
Character and Line Spacing

(PORMERLY X4.17-1976)

X3B10 — CREDIT/ID CARDS

Credit Card Specifications

Magnetic Stripe Encoding on Credit Cards
Addendum to X4.16-1976, Encoding

for Track 3; Liaison with X9

Liaison with X9 - Magnetic Encoding
Track 3

interindustry Message Specifications
for Credit Cards

PIX Pad Specifications

pIS 7501, Machine Readable Passports
Identification Cards - Physical
Characteristics

{REF. ISO 7810}

Identificaticn Cards - Recording
Techniques - Part 1: Embossing
Identification Cards - Numbering System
and Registration Procedure for Issuer
Identifiers

Identification Cards ~ Financial
Transaction Cards

Identification Cards - Recording
Techniques - Part 2: Magnetic Stripe
Identification Cards ~ Recording
Techniques — Part 3: Location of
Embossed Characters on 1D Cards
Identification Cards - Recording
Technigues — Part 4: Location of Read-
only Magnetic Tracks - Tracks 1 & 2
Identification Cards - Recording
Techrniques - Part 5: Location of Read-
Write Magnetic Track - Track 3

X3B10.1 - INTEGRATED CIRCUIT CARDS
Integrated Circuit Cards

X3810.2 — REVISION OF X3.149-1986
Location of Imprinted Information on a
Credit Card Charge Form

(FORMERLY X4.18-1977 PRIOR TO REVISION)

STD.
DESIG.

X3/TR-2-1982

X3.96-1983

X3.117-1984

X3.150-1987

X4.13-1983
X4.16-1983
X4.16A-1977

X4.21-1981

X3.118-1984

ISO 7810-198x

Iso 7811/1-198x

IS0 7812-198x

ISO 7813-198x
IS0 7811/2-198x

IsO 7811/3-198x
IS0 7811/4-138x

150 7811/5~198x

X3.149-1986

X3810.3 — MINTMIM PEYSICAL REQUIREMENTS OF SA

Minimum Physical Requirements of
Savingsbooks

X38510.4 - OPTICALLY EMCODED CARD MEDIA
ANS for Optically Encoded Card Media

1988
1988
1984

1986

1989

1986

1991

1985

1986

}7. 339

Be

97.17.9

97.17.8

LAY

Dp 7552

1s0

Is0

DIS

DIS
150

1s0

1s0

1s0

150

1so

IS0

IS0

180

7810
7811/1-5
7812, 7813

7580

7501
7810

78111

7812

7813
7811/2

781173

7811/4

7811/5

7816/1-3

8484

N/A—
Grandfather
Clause

N/A
X3/86-1778

X3/86-1778

X3/86-1778

X3/86-1779
X3/86-1778

X3/86-1778

X3,/86-1778

X3/86-1778

X3/85-009R

SPARC/83-639

SPARC/B3-696

Rev. 1/19/84

X3/84-1403

i

0407-D

0408-D

0456-D

0457-D

0480-0

0481-D

0482-D

0483-D

0484-D

0524-D

0581-D

0607-1

0355-M
0363-M

0525-D
8571-~-D

0583-L

0594-D

0630-D

0596-1

0597-1

0612-D

ey

E_B_‘l_‘l - CPTICAL DIGITAL DATA DISKS
Uncecorded Optical Media Unit for
Digital Information Interchange, Nominal
200 mm (8.00 Inch) Diameter

Unrecorded Optical Media Unit fer
Digital Information Interchange, Nominal
300 mm (12.00 Inch) Diameter

Unrecorded Optical Media Unit for
Digital Information Interchange, Nominal
120 mm (4.72 Inch) Diameter

Unrecorded Optical Media Unit for
pigital Information Interchange,

Nominal 156 mm (14.00 Inch) Diameter
Unrecorded Optical Media Unit for
pigital Information Interchange,

Rominal 130 mm (5.25 Inch) Diameter
Recorded Characteristics of optical
Media Units for Digital Info. Inter-
change, Nominal 120 mm (4.72 Inch)
Recorded Characteristics of optical
Media Units for Digital Info. Inter-
change, Nominal 130 mm (5.25 Inch)
Recorded Characteristics of optical
Media Units for Digital Info. Inter-—
change, Nominal 200 mm {8 Inch)
Recorded Characteristics of optical
Media Units for Digital Info. Inter-
change, Nominal 300 mm {12 Inch)
Recorded Characteristics of Optical
Media Units for Digital Info. Inter-—
change, Nominal 356 mem (14 Inch)

rile Structure and Labelling of Optical
pDigital Data Disks for Information
Interchange:

Unrecorded Optical Media Unit fer
pigital Information Interchange =
Nominal 90 mm (3.5 inch) Diameter
Unrecorded Reversible Optical Madia Unit
for Digital Information Interchange
Nominal 130 mm (5.25 in) Diameter

X3R2 — DATA BASE
Database language NDL
patabase lLanguage SQL

ANS for Extended Database Langquage sQL
Embedding of SQL Statements into
Programming Languages

Remote Data Access (RDA)

Service and Protococl

pDatabase Language SQL/Addendum 1
(Integrity Enhancement Feature)
Embedding of NDL Statements inte
Programming Language

363 - COMPUTER GRAPHICS

TC97 NWI N 1620, Technical Report for
Info. Processing Sys - Computer Graphics
- Conformity Texting of Graphics Stds.
TC97 NWI N 1619, Computer Graphics -
Peasibility of Formally Specifying
Graphic Standards

Pascal Language Binding of the
Programmer’s Hierarchical Interactive
Graphics System (PHIGS)

EST. 190

STD. owL. FROJ.
DESIG- DATE DESIG.

- 1/96 97.23.3

- 1/86 97.23.2

- 1/86

- 1/86 97.23.1

- 1/86 97.23.4

- 1986

- 1986 97.23.4

- 1986 97.23.3

- 1986 97.23.2

- 1986 97.23.1

- 1988

~198% 1988

X3.133-1986 1986 97.21.3.1
X3.135-1986 1986 97.21.3.2
- 2/86

- 2/86

%3.135.1-1928x

25

NWI TC97 N1421

NWI TC97 N1420

KWL TC97 N1419

NWI TC97 N1422

MW TC9T N1422

NWI TC97 Ni421

NWI TC97 N1420

NWI TC97 N1419

sc2l N174
§C21 K173

IS0 1620

IS0 1619

;
I

SPARC/83-536R
SPARC/83-517K
SPARC/83-540R
SPARC/83-538R
SPARC/83-539R
SPARC/84-600
SPARC,/84-601
SPARC/84-602
SPARC/84-603
SPARC/84-604
X3/85-356

{
X3/86-15¢
X3/86-1588
SPARC/81-191R
SPARC/81-689R
3/4/82

X3/85-657R
X3/85-658R

X3/86-1760
X3/86=1761

X3/86-1560

X3/87-02-068

i

0460-D

0346-D
0347-M

0620-1

0529-D

0530-D

0531-D

0532-D

0533-D

0534-D

0535-M

0543-D

0544-1

0545-1

0546-1

0559-D

0560-D

0268-M

0547-1

0552-D

0336-D

0570-0T

TITLE

X3p3.1 - PROGRNWMERS S NI
Programmer ‘s Hierarchical Interactive
Graphics System (PHIGS)

Z3H3.3 — VIRIUAL DEVICE INTERFACE
Computer Graphics Interface (CGI)
computer Graphics Metafile (CGM)
(Formerly VDM)

TC97 NWI N1793, Information Processing
Sytems - Computer Graphics - Reference
Model of Computer Graphics

383 .4 — LANGUAGE BINDING

ANS for Ada Language Binding of

the Graphical Kernel System {GKS)

ANS for the *Ada Language Binding of
the Programmers Hiezarchical Interactive
sraphics Standard (PHIGS)

ANS for the Pascal Language Binding

of the Graphical Kernel System (GKS)
ANS for the Fortran Language Binding of
the Programmers Hierarchical Interactive
Graphics Standard (PHIGS)

¢ Language Binding of the Graphical
Kernel System (GKS)

C Language Binding of the Programmers
Hierarchical Interactive Graphics
System (PHIGS)

Graphical Kernel System {GKS)

FORTRAN Binding

ANS for the Ada*® Langquage Binding of the
3-D Extensions to GKS (*Ada is a Regis-
tered trademark of the U.S. Government)
Fortran Language Binding of the 3-D
Extensions to GKS

Pascal Langquage Binding of the 3-D
Extensions to GKS

¢ Language Binding of the 3-D
Extensions to GKS

€ Language Binding of the Computer
Graphics Interface

Fortran Language Binding of the Computer
Graphics Interface

X3Hu3.5 - GRAPHICAL KERNEL SYSTEM {GKS)
Information Processing Systems -
Computer Graphics = Graphical

Kernel Svstem

Three-Dimensional Extensions to GKS
{Graphical Kernel System)

X3EI.6 — WINDOW MANAGEMENT
Window Management

X3R4 - INPORMATION RESOURCE & DICTIOHARY
Information Resource Dictionary
system (IRDS}

xsu.1-:msmm
Technical Report, Reference Model
for Information Resource pictionary
System (IRDS)

STD.
DESIG.

%3.144-196%

X3.161-198x
X3.122-1986

X3.124.3-198X

x3.124.2-198x

X3.144.1-198x

X3.124.4-198x

X3.124.1-1985

X3.124-1985

%3.138-198x

548

rS MTERARCHTCAL. INTERACTTVE GRAPRICS SYSTEM (PTIGS)

1987

1986

1987

1987

1987

1987

1987

1988

1990

1988

1987
1988
1988
1988

1988

1990

1989

1986

1987

DESIG.

97.21.24

97.21.26
97.21.5

97.21.42

97.21.7.3

97.21.27.3

97.21.7.2

97.21.27.1

97.21.7.7

97.21.27.4

97.21.7.1

97.21.7.6

97.21.7.4
97.21.7.5
97.21.7.8
97.21.26.2

97.21.26.1

97.21.2

97.21.5.2

97.21.06

180
DoC.
m.

Sc21 N819

§c21/2 Nil179
DIS 9632

TC97 W1793
DP 8651/3

8C21 N668

DIS 8651/2
SC21 N667
SC21 N669

DP 8651/1

Dp 8806/1

DIS 7942

DIS 8805

NWI TC97 1243

SpD-3 REF.

SPARC/83-832

REV. 1/18/84

SPARC/80-420R
SPARC/80-557

X3/85-1166R

X3/85-1168R

X3/85-1169R

x3/85-1172R

X3/85-1173R

X3/85-1175R

X3/85-1167R

%3/85-1171R
%3/85-1170R
%3/85-1174R
X3/85-1559

X3/85-1560

SPARC/79~52R,
81-930

X3/85-963R

%3/85-1531

SPARC/80-147

X3/85~1110R

x3 PROJ.
m/TIFE

0557-0T

0569~D

0212-M
0297-MT

0296-R

0215-RF
0352-M
0584-D

0067-R
0021-D

0022-M
0585-D

0640-1

0055-M
08315-MT

0316-MT

0361-0T

0317-M

0345-D

0331-D
a577-p

0381-D

0507-D

=nz

I304.2 ~ IRDS EXTERNAL SOPFTVARE INTERFACE
Technical Report on Integration of
External Software Envizonments with

the IRDS

Information Resource Dictionary System
(IRDS) Softvare Interface

X3J1 -

Programming Language PL/I

Technical Report for Real Time Subset
of Full PL/Z, X3.53-1976

2371.3 ~ GINERAL PUNPOSE SUBSET
PL/1 General Purpose Subset

332 - BASIC

Programming Language Minimal BASIC
Programming language Full BASIC
Addendum to Programming Language Full
BASIC, Modules and Individual Character
Input

X3J3 - PORTRAR
Programming Lanquage FORTRAN

X3J4 - COBOL

COBOL Information Bulletins

(CIB NO. 23}

Programming Language COBOL

Addendum to ANSI X3.23-1985, Programming
Langquace COBOL

Correction Addendum 1SO 1985

for Programming Language COBOL

X337 - APY

Programminag Language APT

APT lLanguage - Postprocessor Interface
Modules

APT Language - Expository Remarks
Concerning X3.37-1980

Tutorial for X3.37, Revision

3 of Programming Language APT

X337.1 - PROCESSOR LANGUAGES
¥337.2 - POSTPROCESSOR LABGUAGES
T337.3 - LATHE LANGUAGE
X377.4_— ROBOTICS LABGUAGE

X3J9 - PASCAL

Programming Langquage PASCAL
(Note: Complete Designation is
ANSI/IEEE770X3.97-1983)

X3J39.1 -~ PASCAL EXTERSIONS
Extended Prograsming Language PASCAL

I3J10 - APL
Programming language APL
ANS for Advancements in the APL Language

X3J11- PROGRAMMING LANGUAGE C
Programming lLanguage C

X3J12 - DIBOL
Programming Language DIBOL

X3.53-1987
X3/TR-7-1985

X3.74-198x

X3.60-1978
X3.113-1987

X3.9-198x

X3.23-19085
X3.23A-198x

X3.37-1987
X3/TR-4~1982

X3/TR=-3-1982

X3/TR-X-198X

X3.97-1983

X3.160-190x

X3.123-198X

X3.159-198x

X3.165-198x

p-393

1986

1985

1987

1990

1986
1987

1987

1986

1988

1986

1986
1991

1985

1987

97.22.5

97.22.6

97.05.02

97.05.01

97.09.01-09

97.05.10

97.05.11

[ol
X

IS0 6160

IS0 6522

oP 6373

ISO 1539-80

IS0 1989-78

IS0 3592-78

DIS 7185

DP 8485

SD~-3 REF.

X3/85-1113R

X3/85-1115R

SPARC/841
X3/84-961

SPARC/82-310

SPARC/509
SPARC/B1~51R
X3/86-1546

SPARC/78-33

SPARC/81-257
X3/86~413

SPARC/B4-

SPARC/84-480

SPARC/79-111

X3,85~1500

SPARC/79-34%
X3,86~527

SPARC/83-T9R
3/2/83

X3/84=-994R

ST, Imo 180
3 FR0J. oTD. CNPL. . poc. SD-] NEF.
®/TIE TTNE DRSIG. DATE ™. RFEER 5Q/
13 - COMKN LISP
0574-D COMON LiSP - 1/88 86-344
X314 - FORIN
0610-D Programming language Porth - 1988 x3/86-1777
Kl - CMPUTER DOCUMNENTATION
0016-M Guide for Technical Documentatien X3/TR-6-1982 1987
of Computer Projects
0264-L Computer Configuration Charts - 97.5.5
0266-L Specification of Single-Hiit - 97.7.7 DIS 3806
Decision Tables
Kl - CONPUTER DOCIMENTATION (CONTINGED)
0299-1L Symbols & Conventions for Program Flow, - 97.7.8 DIS 5807
Program Networking, Data Flow & Computer
Configuration
0506-L Guidelines for the Documsentation of - 97.7.3 DP 6592 N/A
Computer-Based Systems
0516-D Documentation Standard for Small - 1987 97.07.03 8C7 W337 X3/85~-112
Computer Applications
0517-D togical Flow of Activities in the - 1986 X3/85-111
Life of an Automated System
TIKS — VOCABULARY POR INFPORMATION PEDCESSING SYSTEMS
0026-D American National Dictionary fer . X3/TR-1-1982 3788 SPARC/84-581
Information Processing Systems
(ANDIPS)
0027-L 150 Vocabulary of Datas Processing - 97.1.1~-.20 IS0 2382/1-XV1I
Section 01: Pundamental Terms 97.1.1 1S0 2382/1-84
Section 02: Mathematics & logic. Arith. 97.1.2 130 2382/2-76
& Logic Oper.
Section 03: Eguipwent Technology 97.1.3 180 2382/3-76
Section 04: Organization of Data 97.1.4 IS0 2382/4-74
Section 05: Representation of Data 97.1.5 150 2382/5-74
Section 06: Preparation of Handling Data 97.1.6 150 2382/6-74
Section 07: Digital Computer Programs 97.1.7 IS0 2382/7-
Section 08: Contrel, Integrity, and Security 97.1.8 130 2382/8-
Section 09: Dats Commmication 87.1.9 180 2382/9-79
Section 10: Operating Techniques & Pacilities 97.1.10 180 2382/10-76
Section 11: Control, Input-Output & 97.1.11 IS0 2382/11-76
Arithmetic Equipment
Section 12: Storage Techniques & Data Media 97.1.12 150 2382/12-7%
Section 13: Computer Graphics and Micrographics 97.1.13 1S0 2382/13-84
Section 14: Reliability, Maintainability & 97.1.14 DIS 2382/14-
Availability
Section 15: Programming Languages 97.1.15 DIS 2382/15-
Section 16: Information Theory 97.1.16 IS0 2382/16-78
Section 17: Data Bases 97.1.17
Section 18: Open Systems & Distributed $97.1.18 DP 2382/18
Data Networks
Section 19: Analogue Computing 97.1.19 130 2382/19-80
Section 20: Systems Development 97.1.20 oP 2382/20
Section 21: 1Interface Terminology 97.1.21 DP 2382/21
0398-L tiaison with IS0 TC97 SC1, DIS 5138, 1sO - 180 S118
otfice Machines Vocabulary
Section 01: Dictstion Equipment 1s0 S138,/1
Section 02: Duplicaters 180 5138,2
Section 03: Addressing Machines DIS 5138/3
Sectioen 04: Letter Opening Machines 180 S138/4
Section 05: Llatter Folding Machines IS0 5138/5
Section 06: Calculatoers DIS 5138/6
Section 07: Postal Pranking Machines DIS 5138/7
Section 08: Document Copying Machines DIS 5138/8
Section 09: Typewriters 150 5138,/9-84
Section 10: Word Processing Equipment pP 5138/10
Section 11: Document Inserting Machines DIS 5138/11

0448-D Glossary of Word Processing, Definition -
of Terms and Punctions

p. 373

B

0006~

0007-L

0012-M

0013~RF

0103-RF

0105-R

©0106-D

0107-M

0216-R

0237-M

0239-L

0240-L
0257-M

0294-L

0304-M

0349-M

0351-M

0387-D

0388-D

0392-D

0397-D

0466~1

0495-D
0509-1

0514-D

0536-5

0537-5

0538-5

e

X3L2 - CODES AND CHARACTER SETS
Graphic Representation of the Control
Characters of the American National
Code for Information Interchange

Rules for the Definition of 4-Bit
subsets (TC97/SC2 and EQWA 21)
Information Processing—Coded Character
Sets—~7-Bit American National Standard
Code for Info. Interchange (7-bit ASCII)
USA Sponsorship Procedures for 1SO
Registration According to 150 2375
Hollerith Punched Card Code

Code Extension Technigques for Use with
the 7-Bit Coded Character Set for the
ANS Code for Informstion Interchange
USA Candidates for Registry

Perforated Tape Code for Information
Interchange

Magnetic Tape Cassette Code (Por X3B3:
REF. X3.48-1977, PROJ. 213-R)

Recorded Magnetic Tape for Information
Interchange (200 CPI, NR2I) (Liaison
with X3RS for Coding; Ref. Proj. 71)
Transformation of Data Between Telex
Code and 7-Bit Code

Coding of Character Sets for OCR & MICR
cCodes for Magnetic Tape Cartridge
(0.250 Inch) (Fer X385; Ref. Proj. 255)
Codes for Flexible Disks (For X3B8/X3L3)
Hexadecimal Input/Output to
Microprocessors Using S5-Bit

and 7-8it Teleprinters

Coded Character Set for Use with
%3.98~1933 Text Information Interchange
In Page Image Format (Ref. Proj. 450)
Coded Character Sets for Use with X4.23
and X4.22 Keyboard Arrangements for
Alphsnumecic Machines

control Function Coding for X1Vl Basic
Processable Text Interchange Format and
Text Processing functions

Additional Graphic Character Sets for
Use with ASCII

7-Bit and B-Bit ASCII Supplemental
Multilingual Graphic Chagracter Set
(ASCII Multilingual Set)

X3L2 Project for X3H3 Computer Graphics
Metafile (CGM) and Computer Graphics
Interface (CGI) Functions

TC97 NWI N1285, 7-Bit Coded

Character Set for the Arsbic

Language

8-8it ASCII - Structure and Rules

NWI TCO97 N1416, Coding of Audio Informa-
tion, Particularly Synthesized Sound, as
Part of Interchangeable Documents

ANS for Alternate Controls for
Character Imaging Devices

Identifying Videotex Requirements to be
Met by Message Handling Systems Under
Dav. in TC97/SC18 & X3V1 (MOTIS) & CCITT
praft Joint X3L2/X3V1 Project for
Identifying Data Link Protocol
Requirements for Videotex

Joint X3L2/X3V1 Project for fdentifying
Session Layer Protocol Requiremetns for
Videotex

DESIG.

%3.32-1973

X3.4-1986

X3.083-198x

%3.26-198x
X3.41-1974

X3.6-1973

%x3.14-1983

X3.56-1986

X3.95-1982

X3.114-1984

X3.134.2-198X

X3.134.1-198X

- 10 -

p 3t

1985

1983
1986

1985

36

1988

1985
R/A
1987

19a8

1989

1986

1985

1986

1986

1986

1985

12/86

12/86

12786

DESIG.

97.02.01

97.02.10

97.02.01

97.02.04

97.02.15
97.02.02

97.02.12
97.02.04

97.02.05

97.02.07

97.02.09
97.11.10

97.11.09

97.02.14

97.02.13

97.02.14

97.02.20

97.02.17

97.02.19

97.02.21

1s0

180

150
180

IS0

Iso

Is0

150

DIS
Iso

I1s0

IS0

NWI

2047-81

963-73

646-33

237580

6586-80
2022-82

1113-79
327%-74

962-74

6936-83

2033-83
4057-79

6863
£936-82

6937

TC97 N1413

TCI97 Ni4le

TC7 N1285

TCI97 N1498
TCIT N1416

;
I

SPARC/83-542

SPARC/83-1393

SPARC/82-1053

SPARC/82-421
SPARC/77-93
SPARC/80-663
6937/1~-2-1
SPARC/80-

SPARC/83-548

SPARC/83-546

SPARC/83-547
SPARC/83-549
SPARC/84-385

X3/84-1080
X3,/84-926

X3/84-1651

X3/85-1207
X3,85-1208

X3,85-1209

bl
w

E

0539-5

0540-5

0554-D

0555-DT

0564-0D

0359-M

0572-0T

0004-R

0396-D

0043-W

0045-M

0083-M
0084-M
0085-M
00B6-W
0087-D
0088-wW
0050-R
0091-R

0092-R

0093-M
0095-W
0096-L

0097-L

TIILE

X312 — CODES AND CHARACTER SETS {CONTINUED)

Foint X3L2/X3V1 Project for Identifying
Presentation Layer Protocol Requirements
for Videotex

Isint X3L2/X3V1 Project for Identifying
Common Application Layer Protocol
Requirements for Videotex

Extending ANS X3.110-1983, NAPLPS, to
Accommodate Office Systems Requirements
For Videotex: See also X3 Proj. 359
Technical Report for Specifying
Guidelines for Implementors of
%3.110-1983

Extending ANS X3.110-1983, Videotex/
Teletext Presen. Level Protocol Syntax,
to Include Photographic Image Coding

I3r2.1 -

Videotex/Teletext Presentation Layer
Protocol Syntax (North American PLPS)
Technical Report for the NAPLPS
Verification Test Package

SID.
pes1c.

X3.110-1983

X312.2 — ADDITIONAL CONTROL FUNCTIONS FOR X3.64

Zontrol Codes for 8-Bit Sets

x312.3 — TWO-BYTE GRAPHIC CHARACTER SET
Two-Byte Graphic Character Set for
Processing and Interchange

X3L3 — DATA REPRESENTATION

Guilde for Standardization of
Representation of Data Elements
Representation for U.S. Customary, s1
and other Units to be used in Systems
with Limited Character Sets
Representation of Calendar Date and
ardinal Date for Information Interchange
Representation of Local Time of Day for
Information Interchange
Representations of Universal Time, Local
Time Differentials, and U.S. Time Zorie
References for Information Interchange
Identification of Individuals
Structure for Identificatioen of
Organizations

Identifiers of Accounts

Identification of the States, the
District of Columbia, and the outlying
Areas of the U.S. for Info. Interchange
Structure for the Identification of the
Counties of the U.S. for Information
Interchange

Structure for the Identification of
Named Populated Places and Related
Entities of the States of the U.S.
Representation of Geographic Point
tocations for Information Interchange
Representation of Mailing and shipping
Addresses (Liaison with TC154/SCl)
Identification of Countries

(ANSC 239/5C27)

fdentification of Sub-Divisions

of Countries

X3.64-1979

X3TR-X~198x

X3.50-1986

%3.30-1585

X3.43-1986

X3.51-1986

(X3 Project Suspended)

X3.38-1598x
X3.31-198x
X3.47-198x

X3.61-1986

239.27-1976

-11 -

p- 395

5/86

6/86

1988

1986

1986

1985

1986

1986

1990
1990

1986

1986
1986

1986

1986

1986

/A

97.02.14

57.02.08

97.02.18

97.14.4

97.14.2

97.14.3.1

97.14.3.2

97.14.5

97.14.5

97.14.6

TC46,/WG2

15

1S0 €937/1~-2

ISO 6429-83

IS0 2955-83

IS0 3307-75

150 4031-78

180 £523-84

DIs 6523

IS0 6709-83
TC154/5C1
IS0 3166-81

180 3166~81

SD-3 REF.
HEpE

X3/85-1210
X3/85-1211
X3/85-1206
%3/85-1214

X3/85-1212

SPARC/B1-684

X3/85-1213

SPARC/83-543
83-544

SPARC/83-545

X3/84-1418

X3/84-1414

X3/84-1419

X3/85-806
X3/84-1413
X3/84=-1417

X3/84-1420

:

!

0241-W
0242-~L

0243-L

0244w

0258-W
0259-L
0608-D

0510-M

0400-0T

0399-DT

0455-D

0110-M

0113-L

0ll6~-L

0117~-L

0120-L

0121-L

0122-L

0245-L

0246~-L

0260-L

0261-L
0280-M

ZITLE

Z3L8 - DATA REPRESENTATION (CINTINUED)
Identification of Continents
Representation of Human Sexes
(Lisason with TC97/5C14)
Representation of Human Blood Type
{Liaison with TC97/5Cl4)
Representation of Human Blood Type
Classifications (Liaison with
TC97/5C14)

Representation of Classifications of
Occupations (Liaison with TC97/SCl4)
Check Characters

(Liaison with TC97/5C14)

Groupings of Geopolitical Entities of
the World

ANS for Codes for Identification of
Hydrelogic Units in the U.S. and the
Caribbean Outlying Areas

T3L8.5S - ATTRIBUTES OF DATA ELEMENTS
Technical Report for a Guideline for the
Development of Attributes of Data
Elements

X3L8.6 — CILASSIFICATION OF DATA ELEMENTS
Technical Report for a Guideline for the
Classification of Data Elements

XiLS.7 - MNEMORIC PFOR DATA ELEMENTS
Generaticn of Mnemonic Codes for Data
Eleaments and Data Items

X3S3 - DATA COMMUNICATIONS

Synchronous Signaling Rates for Data
Transmission

Signal Quality at Interface Between DTE
and Synchronous DCE for Serial Data
Transmission (Liaison with EIA TR-30)
Interface Between DTE and DCE

(Liaison with EIA TR-30 on DTE/DCE
Interface Definition, EIA RS-232D)
Interface Between ACU and DTE

(Liaison with EIA TR-30 on EIA

RS-366)

Concentration and Multiplexing Systams
({Liaison with CCITT re .Concentration &
Multiplex. in CCITT Access Arzangements)
Interfaca Between Connecting
Arrangements and OTE

(Liaison with EIA TR-30)

Connector Pin Allocations for Use with
High Speed DTE (Liaison with EIA TR-30
on Connector Pin Assignment)

rault Isolation Mathods and Remote Test
— Public Data Networks (Liaison with
CCITT SGD on the Subject re PDNs)

Elec. & Mech. Charac. of Interfaces (IC
Techn. (EIA RS 422 & 423) 25-Pin, 37 Pin
15-Pin DTE/DCE Connector and Pin Assign.
pats Transmission over Telephcne Type
Pacilities - Liaison with CCITT, COMXVII
{Active Liaison through CCITT SG D)
Other TC97/5C6 Liaison Activities
Determination of Performance of Data
Communications Systems that Use Bit-
Oriented Control Procsdures

x3

X3

X3

X3

5

5

5

-145-1986

1986

1988

.1-1987 1986

.24=-1968 /A

.79-1987 1986

- 12 -

P3¢

97.14.9
97.14.10

97.14.11

97.14.13

97.14.8

97.14.15

97.06.25

97.06.09

97.06.05

97.06.09

97.06.22

97.06.23

150

Doc. SD-3 RET.

™. MMBER

DP 4827

150 5218-77

DP 4828

150 7064-83
X3/86-1949R
X3/84-1421
SPARC/83-585
SPARC,/83-583
SPARC/83-584

1s0 2593

IS0 2110,4902-3

0288-D

0289-L

0290-L

0298~L

0324-8

0332-M

0368-L

0462-D

0493-D

0598-1

0622-1

0625-1

0629-1

0643-DT

0644-D

0648-D

0248-L

0047-M

0l1l-M

0112-M

0114-M

0281-D

0326-S

0365-D

0549-D

X3S3 - DATA COMMUNICATIONS (CONTINUED)
Start/Stop Signal Quality Between DIE &
Non-Synchronous DCE (Lisison with EIA
TR 30 on EIA RS-303-79)

Electrical Characteristics of Balanced
Voltage Digital Interface Circuits
{EIA SP-1220, REV. OF RS-422)
Electrical Characteristics of Unbalanced
Voltage Digital Interface Circuits
(EIA-1221, REV. OF RS-423)

DTE's Punctional and Electrical
Specifications (Liaison with EIA TR-30)
0SI Reference Model, Physical Layer
IPS - 0SI - Cemnection Oriented
Transport Layer Protocel Specification
(See also CCITT X.214 and X.224)

%353 Liaison Project with IEEE Project
802 on Local Area Networks

Protocol Providing Connectionless Trans—
port Service Using Connecticnless or
Connection-Oriented Network Service
Transport Service pefinition to Provide
Connectionless—mode Data Transmission
TC97 NWI N 1606, Procedures for Testing
conformance to 150 8073, Transpoert
Protocol

TC97 NWI N1794, Data Link Layer
Management

oC97 N1797, Local Area Networks -
Logical Link Control, Type 3 Operation -
Acknouledged Connectionless Service
TC97 N1802, LAN Communication Interface
Connectors

Technical Report on Network Layer
Routing Architecture

gnd System to Intermediate System
Routing Information Exchange Protocol
for Use in Conjunction with ISO 8473
End System to Intermediate System
Routing Information Exchange Protocol
for Use in Conjunction with IS0 8208

X353.1 - DATA COMMUNICATIONS PLANNING
Data Transmission Vocabulary

2353.3 - NETWORK LAYER

Structure for Formatting Message
Headings for Information Interchange
Using ASCII for Data Comm. Sys. Control
Bit Sequencing of ASCII in Serial-By-Bit
Data Transmission

Character Structure and Character Parity
Sense for Serial-By-Bit Data
Communication in ASCII

Character Structure and Character Parity
Sense for Parallel-By-Bit Data
Communication in ASCII

Code Independent Massage Heading rormat
(From 47)

OSI Reference Model, Network lLayer

ANS for Open Systems Interconnection—
Referance Model Internetwork Protocol
of the Network Layer

Information Processing Systems - Data
Communications - Network Layer
Addressing

STD.
DESIG.

X3.140-1986

X3.57-1986

%X3.15-1983

X3.16-1983

X3.25-1983

- 13 -

1987

1986

1987

1987

1986

1988

1988

1988

1986

1986

1987

1987

P 397

28

DESIG.
——

97.06.25

97.06.25

97.06.25

97.06.25

97.06.30

97.06.35

97.06.16

97.16.14

97.06.44

97.06.43.02.02

97.06.47

97.06.14

97.06.01

97.06.01

97.06.01

97.06.32

97.06.16

97.06.32.05

150

Doc. SD-3 REF.

. FRMEER

DIS 7480

150 8072 & SPARC/79~330R
8073

pP 8802/2,/3,/4 SPARC/B2-978

TC97 N1254 SPARC/84-367
SPARC/84-366
REV.

180 1606

TCYT N1794

TCIT N1797

TC97 N1802
X3/87-08-108

x3/87-08-109

X3,/87-08-110

180 2382/09

180 1177

1S0 1155/1177

DIS 8348
DP 7777 & SPARC/82-134
8473

X3/85-375R

i

0550-D

0551-0T

0623-1

0627-1

0628~1

0048-M

0325-s
0624-1

002B8~RF

0319-M

0320-M

0223-D

0278~-D

0279-M

0364-D

0508-1

0626-I

0293-M

0295-M

0308-S
0323-M

6339-D

0340-D

TITLE

2353.3 - NETWORK LAYER (CONTINUED)
Information Processing Systems - Data
communications - Network Layer Service
Definition

Information Processing Systems - Data
Communications - Technical Report on
Network Layer Architecture

TC97 NWI N1795, Local Area Networks
togical Link Control - Flow Control
Technigques for Multi-Segment Networks
TC97 N1799, Provision of the Underlying
Service Assumed by 150 8473 Over Point—
to-Point Subnetworks which provide OSI
TC97 N1801, OSI Network Layer -
Intermediate System Punctions

x353.4 - CONTROL PROCEDURES

Procedures for Use of the Communication
Control Characters of the ASCII Code in
Specified Data Comsnnication Links
Advanced Data Communication Control
Procedures {ADCCP)

0SI Reterence Model, Data Link Layer
Tc37 NWI N1796, Asynchrenous Start/Stop
Transmission Operation of HDLC Protocols

X353.5 — COMMINICATION

Communication Systems

Data Communications Systems and Services
—Measurement Methods for Useg Oriented
performance Evaluation

Data Communication User Oriented
Performance Parameters

x353.7 - PUBLIC DATYA NETWORK ACCESS
General Purpose Interface Between DIE &
DCE for Synchronous Operation on Public
Data Networks (Liaison with CCITT X.21)
Network Characteristics Including User
Classes of Service Facilities fof Public
pata Networks

Intecface Between DTE & DCE for Packet
Mode Operation with Packet Switch Data
Communications Networks {CCITT X.25)
standard Intecface for Data Terminal
Equipment Operating in the Packet Mode
{See alsec CCITT X.25)

NWI TC97 N1433, Dezsign of Procedures
for Testing & Conformance to Data Comm—
unications Protocel Sased on CCITT x.25
TC37 N1798, Provision of OSI Network
Service over X.25 Persanent Virtual
circuits

I3T1 - DATA ENCRIPTION

Data Encryption Algorithm

pata Link Encryption

Data Encryption

Medes of Operation for the

pata Encryption Algorithm
Presentation (Level 6) Encryption and
Decryption

Encryption and Decryption at Transport
Level 4

PERPORMANCE
BSd.0 - e —————
Determinaticn of the Performance of Data

STD.
pestc.

X3.28-1986

X3.66-1979

X3.44-198X

X3.141-1986

%3.102-19083

X3.69-198X

X3.100-1983

X3.92-1987
X3.105-1983

X3.106-1983

- 14 -

EST. IS0 IS0
CHPL. PRDJ. ooc.
oarE ™.
1986 97.06.32.

01,.02
1988 97.06.32.03

97.06.42.02.01 TC97 N1795

97.06.32.04.03 TC97 N1799

97.06.46 TC97 N1801
1986 97.06.01 IS0 1745-75
1986 97.06.16 180 3309 & 4335
1987 97.06.31

97.06.16.01.03 TC97 N1796

1986

1986

1988

/A 97.06.11.21

1986 97.06.13

1988 97.06.11

1986 97.06.11 Dp 8208

A 97.06.38 TC97 N1433
97.06.45 TC97 N1798

1986

1988

1988

P 345

SD-3 REF.
NMMBER

X3/85-377R

X3/85-376R

X3,/84~1470

X3/84-1127R

SPARC/78-121

SPARC/78-1"

SPARC/82-274

X3/84-1167

SPARC/77-16
SPARC/77-96

SPARC/80-209

SPARC/80-210

- Ry
b Ti

0040-M
0104-RF
0520-1
0521-1

0558-D
0593-D
0602-D
0202-DT

0300-L
0410-I

0411-1
0458~-5

0461-I

0463-1
0464-1
0465-I
0526-1
0527-1
0613~1
0614-I

0615-I
0617-X
0618-1
0619-1

0621-1
0631-1

0642-D

0650-D

TITLE

X3T2 - DATA

Information Processing - Specification
fcr a Data Descriptive File for
Information Interchange
Representation of Nuseric Values in
Character Strings for Informstion
Interchange

tnformation Processing — OSI -
Specification of Abstract Syntax
Notation One (ANS.1)

Information Processing - OSI -
Specification of Basic Encoding Rules
For Abstract Syntax Notation One (ASK.l)
Presentation Transfer Syntax and
Notation

Common Language-Independent Data Types
tanguage Independsnt Procedurse Calls

I3TS - OPEZN SYSTEMS INTERCONNECTION
Operating Systems Command and Response
Language

Open Systems Interconnection

W1 TC97 N1216, OSI Security
Architecture

NWI TC97 N1217, OSI Naming

and Addressing

study Project for OSI Protocol
Conformance Test Standardization

W1 TCST7 N1253, Addendum to the
Transport Service Standard for
Connectionless Mode Dats Transmission
NWI TC97 N 1278, Pormal

Description Techniques

WWI TCY7 N1265, OSI Registration
Autheraty Framework

RWI TC97 N1266, OSI Common Application
Service Elements and Protocol

W1 TC97 N1524, OSI Management
Information Services

W1 TC97 N1525, OSI Directery

Services and Protocols

TC97 NWI N1790, Basic Reference Model
of Open Distributed Processing

TCH7 NWI N1792, Conformance Test Suites
for FTAM

»C97 NWI N1785, Conformance Test Cases
Por Session, Presentation and Common
Application Protocols

TC97 NWI N1786, Connectionless Session
Protocol to Provide Connectionless—Mode
Session Service

TC97 NWI N1788, Addendum to the
Presentation Service Standard for
Connectionless Mode Dsta Transmission
7C97 NWI N1789, Connectionless
Presentation Protocol to Provide
Connectionless—Mode Presentation

TC37 WWI N1791, Terminal Managemsnt
WWI TC97 N1742, Transaction-Mode
Application Service Elemsnt and Protocol
for OSI

Application Layer Service Definition
Supported by Presentation Connectionleas
Mode Transaission

Application Layer Protocol Definition
Supportaed by Presentation Connectionless
Mode Transmission

IS0 8211-1986

X3.42-1975

=15 -

1991

g

10/86

1985

1985

53

P- 3997

DESIG.

97.15.6

97.15.4

97.21.17.03

97.21.17.04

97.22.17

97.16.08,.09
97.16.11

97.16.12

97.16.13

97.16.15
97.16.16
97.16.17
97.21.28

97.21.29

97.21.41

97.21.35

97.21.36

97.21.38

97.21.39

97.21.40

180 8211

150 6093.2

DIS 8824

DlS 8825

7C97 N1524
TC9T7 N1525
TC97 W1790
TCH7 N1792

TC97 N1785

TC97 M1T786

TC97 N1788

TCI7 N1789

TCIT N1791
TC97 N1742

?
I

5

SPARC/79-514

N/A
R/A

X3/85-954
X3/87-428R
X3/87-429R

SPARC,79-20,
X3/86-365R

SPARC/77-112
SPARC/84-032
SPARC/84-032
SPARC/84-168

SPARC/84-206

SPARC/84~312
SPARC/84-314
SPARC/84-313
X3/085-723

X3/85-722

X3/87-08-002

X3,/87-08-001

b

0327-5

0348-D

0333-M

0334-D

0335-D

0249-L
0374~L
0376-L

0467-M

0468-D

0496-M

0503-D

0504-D

0505-M

0541-0D

0587-D

0591-D

0651-D

0375-R

0052-R
0053-M
0054-L
0329-M

0370-R

oL

X3TS.1 - OSI ARCHITECIURE
Development of the X3 Master Plan
0SI Reference Model

{Aligned with CCITT X.200)

X3TS.4 - OST MANAGENENT PROTOCDLS
O0SI Management Protocouls

I375.5 — APPLICATION & PRESENTATION LAYERS

Open Systems Interconnection - Basic
Connection Oriented Session Protocol
Specification

Application Layer Protocols

Presentation Layer Services & Protocols

X3T9 - 1/0 INTERFACE

Interface Between Computing Systems and
Industrial Processes

Liaison with IEEE Project 802 on
Local Area Networks

Liaison with ECMA TC24 on Local
Area Networks

Intelligent Peripheral Interface,
Logical Device Specific Command Sats
for Magnetic Disk Drives

Intelligent Peripheral Interface,
Logical Device Genmeric Command Set
Intelligent Peripheral Interface -
Logical Device Generic Command Set
for Optical and Magnetic Disks

Fiber Distributed Data Interface (FDDI}
Station Management (SMT) Standard
intelligent Periphecral Interface -
Logical Device Generic Command Set
for Communications

Intelligent Peripheral Interface —
Logical Device Generic Command Set
for Magnetic Tape

ANS for Fiber Distributed Data Interface

sto.
pEsTG.

X3.153-1987

%3.130-1986

X3.132-1987

X3.147-1986

X3.166-198x

(FDDI) Physical Layer, Medium Dependent (FMD)

Enhanced Small Device Interface (ESDI)
Intelligent Peripheral Interface,
Logical Device Specific Command Set for
Magnetic Tapes

ribetr Distributed Data Interface (FDDI)
Physical Medium Dependent Single—Mode
(PMD~SM) & Assignment to X3T9

379.2 - LOWER LEVEL INTERFACE
Small Computer Systems Interface
{SCSI)

£379.3 - DEVICE LEVEL INTERFACE
Intecrfaces Between Flexible Disk
cartridges and Their Hest Centrollers
Storage Module Interfaces

small Computer to Peripheral Bus
Interface, Data Transfer Between
Computer and Peripheral

Interfaces Between Rigid Disk Drives
and Hosts

Intelligent Peripheral Interface
Physical Level

X3.131-196x

X3.80-198X

X3.91M-1987

X3.101-1984

X3.128~-198x

- 16 =

p- 35

1985

1986

1986

1986

1987

1986

1986

1987

1986

1986

1986

1989

190 130

PROJ . DoC.
pesic. m.
97.16.1.8, 150 7498
97.16.1.9

97.16.07

97.16.03

97.16.04,

.05,.06

97.16.10

97.13.4-5

97.13.10 TC97 N143l
97.13.10 TC97 R1431
97.13.7, .10 TC97 NW1431
97.13.9 DP 7069
97.13.10 TC97 N1431
97.13.10 TC97 N1431

g
i

SPARC/79-330R

SPARC/80-446R
SPARC/79-331
REV.
SPARC/79-333
REV. 1/7/80

SPARC/79-332
REV. 1/7/80

SPARC/83-14
SPARC/83-164

SPARC/084-221

SPARC/84-222

X3,/84-1090

X3/84-1093

X31/84~109
X3/84-1081
X3,/85-985
X3/86-1673

X3/86-1687

X3/87-09-022

SPARC/82-878

SPARC/83-360,
REV.
X3/84=-1449

SPARC/79-342

X3,/86-1688

0337-D

0338-D
0357-D
0377-D
0379-D
0380-M
0382-D

0556-D

0573-D

0378-M

0401-D

0576-D
0580~

0412-1

0414-1

0417-1

0491-D

0497-L
0498-L
0499-L

0500-L

0384-D
0385-D

0478-D
0501-I
0522-D

X379.5 — LOCAL DISTRIBUTED DATA INTERFACE
Physical Layer Interface for Local
pistributed Data Interfaces to a Non-
Branching Coaxial Cable Bus

pata Link Layer Protocol for Local
pistributed Data Interfaces

Physical Layet Protocol for Local
pistributed Data Interface

Local Distributed Data Interface (LDDI)
Network Layer Protocol

Fiber Distributed Data Interface (FDDI)

Physical layer

riber Distributed Data Interface (rpol)
Token Ring Media Access Control (MAC)
Fiber Distzibuted Data Interface (FDDI)
Network Layer Protocol

ANS for Local Distributed Data Intexface
{LDODI) Star-Wiced Physical Interface

Sublayer

fFiber Distributed Data Interface {FDpD1)
Rybrid Ring Control (HRC)

X379.6 - CARTRIDGE TAPE

Device Level Interface for Streaming
cartridge and Cassette Tape Drives
Enhanced Device Level Interface for
Cartridge Tape Drives

X3Vl - TEXT: OFFICE & PUBLILSHING
SGML Document Interchange Format (SDIF)
Print Image for Interchange - office

Systems

x3v1.1 - USER REQUIREMENTS: M.S.T.
Text Preparation and Interchange
Equipment: Basic and optimal

Requirements

Text Preparation and Interchange
Equipment : Classification & Terminology
Text Preparation and Interchange
Equipment: Minimum Requirements for Text

Presentation

Progression of presentation/Rendition
Capabilities Relative to User

Requirements

User Requirements for Taext Preparation,
Interchange and Presentation
User Requirements for Text Preparation

and Interchange

Reference Model for Text Preparation and

Interchange

Message-Oriented Text Interchange System

User Regquirements

X3v1.3 — DOCUMENRT

V.
office Document Architecture
Office Document Architecture —
pocument Description

office Document Interchange Format

Text Structures

ANS for Text Intsrchange on

Magnetic Media

DESIG.

X3.108-198x

%3.148-198x

X3.139-1987

X3.167-198x

X3.146-1986

-17 -

1987

1987

1986

12/86
1987

1985

1985

6/86

p. 357

97.13.01

97.13.01

97.18.18

97.18.20

97.18.23

97.18.07
97.18.07.01
97.18.07.02

97.18.07.03

97.18.10.01
97.18.10.03

97.18.10.04
97.18.10

T

p1s 8879

SC18 N274 Rev.

Dp 86131
DP 8613/3

DP 8613/4
DP 8613

SPARC/80-145
REV. 3/19/80

SPARC/80-146
REV. 3/19/80
SPARC/81-104
SPARC/82-1056
SPARC/82-1058
SPARC/82-1059
SPARC/82-1060

X3/85-986

%3,/85-1903R

X3,/85-0029

%X3,/85-0030

X3/86-715R
X3/86-1035R

SPARC/84-033

SPARC/B4-033

SPARC/84-0313

X3/84~684

N/A
N/A
N/A

N/A

SPARC/83-108
SPARC/83-107

SPARC/84-357
N/A
X3,/85-557

0358-D

0476-D

0490-D

0393-D
0394-D
0395~

0449-L

0450-M

0502-1

0203-D

0542-D

0600-T

0413-1

0415-1

0416-1

0418-1

0424-R

0425-M

0451-D

0515-1

0578-S

0601-I

0632~

23vl.4 - TEXT

Message Protocol Standsrds —

Procedure for Commmnication of

Prepared Text

Communication Access Requirements

for Office Systems

MOTIS (Message—Oriented Text Intarchange
Systems) Naming Convention and Directory
Services

ZIV1.5 - CONTENT ARCHITECTURE
Text lmaging Capabilities

Positioning of Text on Hard Copy Devices

Basic Processable Text Interchange
Fformat

Ltiaison with X3B9 Project 443-M on
¥3.117-1984, Printable/Image Areas for
Text & Facsimile Communication Equipment
Text Information Interchange in Page
Image Format

(with X3L2; see Proj. 349-D)
Characteristics of Systems Elements

for the Presentation of a Text

Z3v1.8 — TEXT DESCRIPTION & PROCESSING
Information Processing — Text and Office
Systems - standard Generalized Markup
Lanquage (SGML) (AKA—DIS 23879)
ANS for Generalized Music Representation
for Information Processing

TC97 NWI N 1608, Description and
Identification of Character Fonts

X371.9 - USER SYSTEMS INTERFACE & SYMBOLS
NWI TC97 N1210, Text Preparation and
Interchange Equipment: Test Charts
and Text Patterns
NWI TC97 N1212, Text Preparation
and Interchange Equipment: Graphic

ols
NWI TC97 N1213, Text Preparation and
Interchange Equipment: Minimum
Information to be Specified .
W1 TCO7 N1215, Layout and Operation
of the Keyboard for Multiple Latin
Alphabet LlLangquages
Keyboard Arrangement for Alphanumeric
Machines
Alternate Keyboard Arrsngemsnt for
Alphanumeric Machines
classification of Vocabulary of Word
Processing for Document Preparation
TC97 WWI N1450, Punctionality and
Layout of Function Keys
User System Intecfaces for Standards
Related tc Text Processing: office and
Publishing Systems
797 NWI N 1607, Document Interchange
Format for Storage Media
Operation Through a Swithched Telephone
Retwork, a Circuit Switched Dats Network
or an Integrated Ser. Digital Network

DESIG.

X3.98-1983

%3.143-198x

%3.154-198x

X4.22-1983

1986

1987

12/86

1985

- 18 -

F’ 352

1988

10/85

3/86

ROJ.

DESIG.

97.18.11

97.18.11.1,.2

97.18.12.01

97.18.12.02

97.18.13

97.18.12

97.18.15

97.18.19

97.18.08, .21

97.18.22

97.18.24

97.18.08, .09

97.18.25

97.06.48

35

DP 8505, 8506

DP 8613/5-10
DP 8564

DP 8613/6

DP 8613/5-10

DP 8879/6

IS0 1608

SC18 N387, 388

SC18 N389, 390

SC18 NAl4

SC18 NS5, 56

NWI TC97 N1450

150 1607

1S0/TC97 N1912

SD-3 REF.

SPARC/81-495R
8/3/81

X3/84-680

X3/84-681

SPARC/83-104R
7/25/83
SPARC/33-10SR
/25,83
SPARC/83~106R
/25783

N/A

SPARC/79-08

X3/85-964

SPARC/84-033

SPARC,/84-033

SPARC/84-033

SPARC/84-033

X3/85-1272

X3/84-1572

%2/86~888R

EST. 180 150
X3 PROJ. STD. CPL. PROJ . DoC. SD-3 REF.
O/TYPE TITLE DESIG. DATE DESIG. Rno. NUMBER
XIV1.9 — USER SYSTEMS INTERFACE & SYMBOLS (CONTINUED)
0637-31 Protocol ldentification in the Network - 97.06.49 1S0/TC97 N1919
layer
0638-1 Local Area Networks - MAC Sublayer - 97.06.43.01.01 1S0/TC97 N1920
Interconnection (MAC Bridging)
I3V1.10 — FONT AND CHARACTER IRPORMATION
0575-D ANS for Font and Character Information - 6/87 X3/86-716-S
Interchange
SP, ~ DATA BASE SYSTEMS STUDY GROUP
0226-5 Data Base Management Systems - 1987 97.21.2%
0528-1 NI TC9? N1526, Reference Model for - 97.21.30 TCH7 N1526 X3/85-724
DBMS Standards
SS1SG -~ SOFTMARE SYSTEMS INTERFACY STUDY GROUP
0599-1 Software Systems Interface -
SPARC — STANDARDS PLARNTNG AND REQUIREMENTS COMMITTEE
0076-M One-Inch Perforated Paper Tape for X3.18-1982 1987 97.0.3 IS0 1154-75
Information lnterchange
0077-M Eleven-Sixteenths Inch Perforated Paper X3.19-15982 1987
Tape for Information Interchange
0078-M Take-up Reels for One Inch Perforated X3.20-1982 1987 97.0.6 IS0 3692-76
Tape for Information Interchange
0079-M Specifications for Properties of X3.29-1984 1989
Unpunched Oiled Paper Perforator Tape
0080-M Interchange Rolls of Perforated Tape for X3.34-1984 1989
Information Interchange
00R1-W Flow Chart Symbols and Their Usage in X3.5-1970 1985 97.7.1-2,4 IS0 1028 & 2636
Information Processing
0211-M Computer Program Abstracts X3.88-1987 1986
0218-M Representation of Vertical Carriage X3.78-1987 1986
Pesitioning Characters in Information
Interchange
0253-M Programming Language - Progamming Aid X3.94-1985 1990
for Numerically Controlled Manufacturing
0263-L Programming Lanquage for Industrial - 97.5.5 SPARC/649
Process (PLIP}
0265-L Program Design - 97.7.3
0267-5 Long Range Planning for Programming -
Languace Standards
029-L Programming Language MUMPS -
(MUMPS Development Committee)
0342-L SPARC Liaison Project with DOD High - X3,/80-307
Ordet Language Group on Ada*
0422-M Minimum Markings to Appear on Containers X4.19-1985 1990
Used for Printing Ribbons
0423-M office Machines & Printing Machines X4.20-1985 1990
Used for Information Processing, Widths
of Fabric Ribbons on Spoeols
0426-M 10-Key Keyboard for Adding and X4.6-1984 1989
Calculating Machines
0427-M Minimum Requirsments for Office-Type X4.9-19084 1989
Dictating Equipment
0428-M Remote Dictation Through an Inter- X4.10-1984 1989
communications Switchng System
0452-5 Programming Languages Study - SPARC/83-55R
SC7 TAG — U.S. TAG TO TC97/SC7
0469-1 NWI TC97 N1248, Guidelines for - 97.07.18 TC97 N1248, SPARC/83-710
Software Development Methods 1445
0604-1 TCO7 NWI N1627, Standard Diagrams for -

Software Development Models

- 19 -

P 393

X3 PROJ. STD.
NO/TYPE TITLE DESIG.

PROJ . Doc.
DESIG. .

L
g
i

$C21 TAG — U.S. TAG 0 m‘lgx

0513-1 TC97 NWI N1448, A Survey of DEMS -
Related Standardization Activities

0548-I TC97 NWI N1555, Informstion Processing - - 97.21.31 TC9? N1555 X3/85-1146
Remote Database Access Service and
Protocol

5

97.21.28 NWI N1448 X3/84-1550

SC22 TAG - U.5. TAG TO TC97/5C22

0473-1 W@l TC97 N1315, Guidelines for - 97.22.13 SPARC/84-175
Preparation of Programming Language
standards

0474-1 WWI TC97 N1316, Binding Techniques for - 97.22.14 SPARC/84-176
Programming Languages

0512-L U.5. TAG to TC97/5C22/WG12, - N/A
Conformance and Validation

0523-1 WwWz TC97 N1519, Conformity Requirements - 97.22.15 X3/85-608
and Testing in Programming langusge
Standards

0605-1 TC97 NWI N 1773, Portable Operating Sys. - 280 1773
Interface for Computer Environments,
POSIX

0606=-1 TC97 NWI N 1602, Specification of - IS0 1602
Computer Programming language Modula 2

0616~ TC97 N1594, Programming Language ALGOL - TCY9T7 NWI N1594
'68

- 20 -

p.35Y

/70 JA-8

X3/SD-7 @
December 1987

ACCREDITED STANDARDS COMMITTEE*
X3-INFORMATION PROCESSING SYSTEMS

MEETING SCHEDULE &
CALENDAR

*Operating under the procedures of the American National Standards Institute

SECRETARIAT: (CBEME\)

Computer and Business Equipment Manufacturers Association

P. 355

X3 Standing Documents

This document is one of a series, developed by X3 and the X3 Secretariat, which
provides a "data base" of information on Accredited Standards Committee X3 -
Information Processing Systems. Each document is updated periodically on an
individual basis.

The series is intended to serve several purposes:

o To describe X3 and its program to inquirers

o To inform committee members of the organization and operation of X3

o To provide a system of orderly administration incorporating the procedures
required by ANSI together with supplements approved by the X3 Secretariat,
for the guidance of X3 officers, members, subgroups and the Secretariat staff.

The series of Standing Documents consists of the following:

X3/SD-0 Informational Brochure - September 1985
X3/SD-1 Master Plan - May 1987

X3/SD-2 Organization & Procedures - October 1985
X3/SD-3 Project Proposal Guide - May 1987

X3/SD-4 Projects Manual - December 1987

X3/SD-5 Standards Criteria - September 1984

X3/SD-6 Membership and Officers - December 1987
X3/sD-7 Meeting Schedule and Calendar - December 1987
X3/SD-9 Policy and Guidelines - (to be issued)

X3/SD-10 X3 Subgroup Annual Report Format -June 1987

SD-7, MEETINGS SCHEDULE & CALENDAR

X3/SD-7 provides the current scheduled meeting dates and their locations
which have been reported to the X3 Secretariat. It is suggested that
anyone attending a committee meeting for the first time contact the
committee chair (see X3/SD-6) and confirm that there are no changes

in the schedule.

Corrections and suggestions for improvement will be welcomed, and should be addressed to:

X3 Secretariaty CBEMA
Attn: Nadine Morgan
311 First Street, NW
Suite 500
Washington, DC 20001-2178

17. 356
=1~

X3TC JAN FEB

SD-7 — MEETING SCHEDULE AND CALENDAR 1987/1938

X3 9-10
SD-? Tutorials o8

TECH ED TR.

JTC1

JIC1 AG

JTC1 TAG

JIC1 TAG /AC 21-22

10-11

SMC 26

SPARC

SPARC/DBSSG
SPARC/SSISG
SPC 28-29

12-14

44 168
SWG/FS TAG

XAl

X3Al.l1
X3Aal.2
X3Al1.3

X3B5
X3B6

16-18
15-16

X3p7
X3pe
X3ps.1
X3B9
X3810
X3B10.1
X3810.2
X3B10.3
X3810.4
X811

12-13

X3IH2 08-10
X3H3.1
X3H3.2
X3IH3.3
X3H3.4
X3H3.5
X3H3.6
X3H4 08-11
X3H4.1

X331

%331.3

x332 25-26
X333
%334
%337
x337.1
%337.2
X337.3
x337.4
%339
%339.1
%3310
x3311
x3312
x3313
%3314

08-12
25-~29

X3K1
X3K5 12-15
X3L2

¥3n2.1

XiL2.2

29-02
29-30
29-30

28

11-15
20-22

29-30 25-26

28 12

22-25 3-5

09-11

10-12
23-24

11-12

11-14

19-22

09-13
10-13

08-11

22-25 17-20

15-16

20

12-14

15-16

19-22

07-10

6-10 19-22

20-24
20-22
20-22

P 357

12-13
11

13-14
19-20

27

13-15

06-07

14-15

22-25

24-25
08-12
03-06

13-16

27-30

12-16
12-13
12-13

TC

;gu_---_..--------_-__-__-_-......----------...._-_.._.._-

JAR mmmmmmmmxz

x3n2.3
x3L8

X3L8.4
x318.5
x3L8.6
Xx3rs.7

X383

x3s3.1
X383.2
x383.3
x3583.4
x383.5
2383.7

%372
X312
X375
X375.1
x375.4
x3ITS.5
X319
Xx379.2
X379.3
X379.5
X3T9.6

x3vi

Xavi.l
X3vi.3
x3v1.4
X3vV1.5
X3ivi.8
X3V1.9

e —— _—

29-30 20-22 12-13
01-03 06-08

12 1-2 24-25 19-21 30
11-1%
22-26

27=29 27=-29 . 27=29 TBA
22-25 18-20 7-8
23-24
23=24
23-24
22-26 25-29 2024 15-19

14-18 25-29 6-10 19-23

ANSI Conference 15-16

ANS1/1SSB

8C21 TAG
SC22 TAG

18

SD-7 — NEETING SCHEDULE AND CALENDAR 1988/89

1988 = = = = — = == = — = - 1989 e e m—m— === — == R
| .4 DEC JANN FEB FAR AFR MAY JUNE

ﬁm

sD-2 Tutorial
JTCl
JTC1 TAG
sMC

XIAL
%372
X334
X339
x3r2
x3L2.1
X312.2
x312.3

—_— —_—

07-08 13-14

6~9
08~09 14-15
09

24-2%
03-06
07-10 06-09
05=-09
05-06
05-06
05-06

I 35%

-3-

JAMARY 1988 AMID LOCATIONS

X383.3 11~-15 Santa Clara; CA
X383 12 Washington, DC~-CBEMA
X3B7 12-13 Santa Ana, CA

SFARC 12-14 San Prancisco, CA
X3K5 12-1% vashington, DC-CBEMA
X3B6 15-16 Anaheim, CA

JTC1/AC 21-22 Washington, DC-CBEMA
X332 25=26 San Francisco, CA
%334 25=29 La Jolla, CA

sMC 26 Washington, DC-CBEMA
X3T2 27-29 Los Angeles, CA

SPC 28-29 Washington, DC~CBEMA

FEERUARY 1988 DATES AND LOCATTIONS

Sb-2 Tutorial 08 Monterey, CA

rr 01 Washington, DC-CBEMA
rr o8 Monterey, CA

X3L8 01-03 Washington, DC~CBEMA
X3H2 8-10 orlando, FL

X3H4 08~-11 Washington, DC

X333 08-12 New Orleans, LA

X3 9-10 Monterey, CA

JTC1 TAG 10-11 Monterey, CA

X3BS 16-18 Riviera Beach, FL
1858 18 New York, NY

X375 22-25 Washington, DC~CBEMA
x3s3.7 22-26 Palo Alto, CA

X3T9 22-26 TBA .
X3T5.1 23-24 Washington, DC-CBEMA
X3T5.4 23-24 Washington, DC-CBEMA
X375.5 23-24 Washington, DC-CBEMA
X3L2.1 25-30 Dallas, TX

x3L2.2 29-30 Dallas, TX

x3n2.3 29-30 Dallas, TX

X312 29-02* Dallas, TX

FMARCH 1988 DATES AND LOCATIONS

X3s3 01-02 washington, DC~GSA
x3L2 -02 Dallas, TX

X339 08-11 Newport Beach, CA
X3Al1 09-11 New Orleans, LA
X3vi 14-18 Golden, NBX

ANST 15-16 New York, NY

SPARC 22-25 Washington, DC~CBEMA
X3IKS 22-25 Washington, DC-CBEMA
X3B6 23-24 Laurel, MD

SMC 28 Washington, DC~CBEMA
JTC1/AC 29-30 Washington, DC-CBEMA

APRIL 1988 DATES AND LOCATIORS

SWG/PS TAG 06 Washington, DC-CBEMA
XiH2 11-14 Pasadena, CA

X375 19-20 Washington, DC-CBEMA
X3H4 19-22 San Prancisco, CA
JTC1 NG 20-22 Washington, DC-CBEMA
X3T9 25~-29 TBA

X3vi 25-29 SC18 Plenary, Hague
X3aT2 27-29 washington, DC—CBEMA
TECH ED 28

Washington, DC~CBEMA

MAY 1988 ARD LOCATIONS

SPARC 03-05 Scottsdale, AZ

X333 09-13 Urbana, IL

X3BS 10-12 Annspolis, MD

X334 10-13 Litchfield, CT

X3B7 11-12 San Prancisco,CA
X3K5 17-20 Washington, DC-CBEMA
SMC 18 New York, NY

X3s3 24-25 Washington, DC-CBEMA

JTC1/AC 25-26 Washington, DC—CBEMA

JURE 1988 DATES AND LOCATIONS

S e —————————————

X3L8 0608 Washington, DC-CBEMA
X3vi 06-10 Beston, DEC

X3IKS 06-10 perlin, Gersany-DIN
X375 07-08 washington, DC-CBEMA
X3J9 07-10 Minneapolis, MN

§D-2 Tutorials 13 Washington, DC-CBEMA
X3 14-15 washington, DC-CBEMA
JTC1 TAG 15-16 Washington, DC-CBEMA
X3IB6 18-16 San Mateo, CA
x3n2.1 20-22 Boston, MA

x3L2.2 2022 Boston, MA

x3L2.3 20-22 Boston, MA

X3L2 20-24 Boston, MA

X319 20-24 TBA

JULY 1988 DATES ARD LOCATIONS

e e ————————

SPARC 12-14 fhiladelphia, PA
x3s3 19-21 Boulder, CO

X334 19-22 U.K.

X3K5 19-22 wmshington, DC-CBEMA

SMC 20 washington, DC-CBEMA
X3T2 27-29 Seattle, WA

ADGUST 1988 DATES AND LOCATIONS

e ———————————

x3J3 08-12 Estes Park, CO

X3T9 15-19 TBA

X3H2 22-25 Boulder, CO .

X353 30 washington, DC-CBEMA

SEPTEMBER 1988 DATES AND LOCATIONS

e e e ————————————

X3Aal TRA Myrtle Beach, SC
X3H2 TBA San Francisco

x3T2 TBA wWashingten, DC-CBEMA
Xx3n2.1 12-13 Raleigh, NC

x3ar2.2 12-13 Raleigh, NC

x312.3 12-13 Raleigh, NC

X3r2 12-16 Raleigh, NC

X339 13-16 Framingham, MA
SPARC 13-15 Marrimack, NH

X387 14-15 las Vegas, NV
JTCl/AC 19-20 washington, DC-CBEMA
x3vi 19-23 Atlanta, Bell Smith
X3KS 27-30 washington, DC—CBEMA

OCTOBER 1988 DATES ARD LOCATIONS

e e ——

X3T9 17-21 TBA

x3L8 03-05 washington, DC-CBEMA
X3J4 03-06 Carmel, CA

X3B6 i 06-07 Warminster, PA

SD-2 Tutorial 11 wWashington, DC—CBEMA
X3 12-13 washington, DC-CBEMA
JTC1 TAG 13-14 washington, DC—CBEMA
X332 24=25 Annapolis, MD

X3T2 26-28 Pennsylvania, PA

FOVEMBER 1988 DATES AND LOCATIONS

bt b B et

SMC 09 wWashington, DC-CBEMA
X3J14 10-11 washington, DC-CBEMA
X3H2 14-16 Long Island, NY

SPARC 15-18 Washington, DC-CBEMA
X3KS 15-18 washington, DC~CBEMA
X3s3 29-30 wWashington, DC=CBEMA

P 3597

D e e e

x3L2.1
x3L2.2
x3L2.3
X312
x3T9
x3vi
X339

05-06
05-06
05-06
05-09
05-09
05-09
06-09

1989 DATES AND LOCATIONS

e —————————— S ——

x3
JIC1 TAG

2339
X379

x3
JTC1 TAG

Peb.

1L

7-8

. =9

. 7=10
.« 6=9

. 6=9

. 13-14
. 14=-15

Tampa, FL
Tampa, FL
Tampa, FL
Tampa, FL

TBA

Raleigh, NC-IEM
Los Angeles, CA

Phoenix, A2

Phoenizx, AZ
Monterey, CA
Pacific Grove, CA
Radford, VA

Paris, france
Washingten, DC-CBEMA
washington, DC~CBEMA

s e scumnu (5
Monterey, CA

February 09-10
June 14-15
October 12-13

Washington, DC-CBEMA
Washington, DC-CBEMA

X3 1989 Advance Planning:

February 07-08
June 13-14
October 11-12

February 10-11
June 15-16

October 13-14

Phoenix, AZ
Washington, DC-CBEMA
Washington, DC-CBEMA

Monterey, CA
Washington, DC-CBEMA
Washington, DC-CBEMA

JTC1 TAG 1989 Advance Planning:

February 08-09
June 14-15
October 12-13

January 21-22
March 22-25
May 25-26
September 19-20

January 12-14
March 22-25
May 03-05

July 12-14
September 13-15

January 26
March 28
May 18

July 20 _
September 27
November 9

January 28-29

February 1
February 8

April 6

F' 3¢o

Phoenix, AZ
Washington, DC-CBEMA
Washington, DC-CBEMA

Washington, DC-CBEMA
Washington, DC-CBEMA
Washington, DC-CBEMA
Washington, DC-CBEMA

San Francisco, CA
Washington, DC-CBEMA
Scottsdale, AZ
Philadelphia, PA
Mermrimack, NH

Washington, DC-CBEMA
Washington, DC-CBEMA
New York, NY

Washington, DC-CBEMA
Washington, DC-CBEMA
Washington, DC-CBEMA

Washington, DC-CBEMA

Washington, DC-CBEMA
Monterey, CA

Washington, DC-CBEMA

AMasting YedonQOay
Wmmm
JTC | Plenasy 871111 7-20
Taxonomy Group 8711913
Taxonomy Group 88/05/10-13
SG on Funct. Swis- 88/05/16-18
SG on Funct Sids. 8/JarvFeb
SG on Funct. Suis. 89/0cyNav
SC1: YOCABULARY
JTC 1 SCOt Plenary 88/06/08-10
JTC1 SCO1 Plenary 8300
JTC1 SCOt WG04 87N172-8
JTC1 SCO1 WG0S gninse
JTC 1 SCOt WG08 87111620
JTC1 SCO01 WGD8 8712

JTC1 SCo2 WGO1

JTC1 SC02 WGR2

JTC1 §CO2 WGO2

sanon7-21

88/03/14-18

88 Spring

88 Summer

Now Otani Hotel

o be confimed

10 be confemed

To be determinad

10 be determined

3¢/

Tokyo

Munich

JTCIN1

JTC1N70 Ry

JTCINTORY

JTC1N70Rw

JIC1INJD

971 N 1080

JTCIND

JTC1N3O

JTCINX

1N 1060

JTC1N31

JTCINI

JICINN

JICIND

®

JTC 1 SCO8 Planary

JTC 1 SCo8 WGO1 ConTest

JTC1 SC08 WGO1

JTC 1 SCo8 WGO1

JTC1 SC06 WG02

JTC 1 SC08 WGO02

JTC 1 SCO8 WGO3

47110205

aaov/2s-02102

88/01/25-0202

88/09/10

88/01/25-02-02

87111620

St. Pigrre Park Hotel

Guemsey, JTC1N32

JTC1 SCO7 WGE2

JTC {1 SCO7 WG4

w
DN Beriin SN 481Y
Rec.19
St. Plerre Pask Howl Guemssy, JTCI1NI2
1 4
Denmark JTC1N32
St. Pierme Park Hotel Guemssy, JTC1N32
X
USA JTC1N32
St Pierre Park Howl Guemsey, JTIC1N32
WX
Gemany JTC1N3R2
m
Japan JTCIN32
APNCR Paris &4 N 283
St. Plerre Park Hotel Guemsey, JTC IN32
(V4
Deit Netheriands JTC 1 N X3
Amsardam
New York
Montreal Canada 7 N 841

JTC1 SC1

JTC1 SC11

JTC1 SC1t

Switz. JTC1IN34

USA JTC1N34

France JTC1NIM4

W
JTC 1 SC13 Penary 88/10/03-07 Tokyo
JTC1 SCi4 Plsnary e USAor TX dd
China &7n10s
JTC 1 SCi4 Plenary 29 Belgumor TXdd
ux 871105
SC 17 - IDENTIFICATION AND CREDIT CARRS
JTC1 SCO17 WGO4 88/02/29-03/04 San JTC1IN38
Francieco
JTC1 SCO17 WG4 88/08/20-25 Copenhagen JTC 1 N 38
SC 18 - TEXT AND OFFICE SYSTEMS
JTC 1 SCi8 Pienary & HODC 88/04/25-29 TheHague JTC1N39
JTC 1 SC18 Plenary & HODIC 89%/AprMay AFNOR Paris
(Tentatve)
JIC 1 SCi8 Plenary & HODIC a0 or 91 AprAday Germany
(Tentative)
JTC 1 SCi18 WGO1 8801/25-29 USA JTCIN3S
JTC1 SC18 WGO1t 88/04/18-22 Eurcpe JTCINJS
JTC1 SCie WGO3 8711/02-11 ARNOR Parnis JTCIN3S
JTC1 SCI10 WG04 88/02/01-05 Paris 18N 1263
JTC 1 SC18 WGO4 ss/man2-18 Spain or USA 18N 1283
JTC1 SC18 WGO0S 8711/09-13 ARNOR Paris JTC1N39
JTC 1 SC18 WGOS 88/01/11-15 20 o] Ottawa JTC1INJS
JTC1 SC18 WGDS 88/05/02-06 WANG Brussels B N1052
JTC 1 SC18 WGO0S 88/10/03-07 JIsC Tokyo IBN 1052
JTC 1 SC18 WG08

88/01/18-22 Tontatve Los Angles,
-8_ CA [,' 343

JTC1 SC18 WG08 8304/18-2 BS! london 13N 1108

JTC1 SC18 WG08 881017-21 Paris BN 1108
(Temtative)

JTC1 SC18 WGO08 SWG on 88/06/13-17

SPOL

JTC1 SC18 WG09 88/03/07-11 Span

SC20- DATA,_CRYPTOGRAPHIC TECHNIOUES

JTC1 SC20 Plenary 08041415 London,UK JTC 1 N 40

JTC1 SC20 WGO1 8804 London, UK JTC 1 N 40

JTC1 SC20 WGO1 88/Autumn Turin, JTCtN4&
Rtaly

JIC1 SC20 WGO2 S&/Apri London,UX JTC 1 N 40

JTC1 SC20 WG03 88/April London,UK JTC 1 N 40

JTC1 SC20 WGO3 © se/Auwmn Turin, JTC1N40

JTC 1 SC21 Plenary san1s-18 Quaiity inn Wash..DC JTCIN4
JTC1SC21 HODKC 88/03/11-14 CBEMA Wash.,DC 21N 1901
JTC 1 SC21 Panning 87/11/3-13 AFNOR Paris 21 N 1901
JTC1 SC21 WGO1 88/02/29/03-08 Mclsan VA,USA JTC1N41
JTC1 SC21 WGO1 88r11/28M12-14 Sydney JICIN&G
Austraila
JTC1 SC21 WGO01 Open 87110206 Cambridge 21 N 2021
distributed
processing

frog

JIC1 SC21 WG01,Q48.1,
Q482

JTC1 SC21 WGO3

JTC1 SC21 WGRd

JTC 1 §C21 WG4
JTC 1 SC21 WG4

JTC 1 SC21 WGO04

JTC 1 SC21 WG04 Direc.
cerT

JTC 1 SC2t1 SWG Reg. Auths.

JTC 1 SC21 WGO04 Manag.
info. Services

JTC 1 SC21 WGOS

JTC1 SC21 WGDS

JTC1 SC21 WGO05

JTC1 SC2t WGOS5OSCRL

JTC 1 SC21 WGOS5 POSIV
OSCRL SC 22
WG n

JTC1 SC21 WGOS VT Basic
Class

JTC1 SC21 WGOs

JTC 1 SC21 WGOS

JTC1 SC21 WGOeé

JTC 1 SC21 WGO6 ASN.1

8712/07-11

88/02-29/03-04

ssn128/12-14

88-03-03/10

sani/ee2-14

88/03/02-10

8711/09-18

871110918

88/01

a8/11-28M12-14

88/03/01-08

871236

8801

88/02/29/03/08

s8/11/28/12-14

88/0229-
88/03/08

87111214

=10~

Quality Inn
Capital Hill

p. 36§

Stirling 21N 2029

Gathers- JTC1N4t
burg, MD

Sydney JTC 1 N 4t
Australie

Tysons Cor. JTC 1 N 41
VA, USA
Sydney JTCINM
Australia

Tysons Cor. 21 N 1901
VA, USA

Giloucester 21 N 2158

London 21 N 1919

Crystal JTCINa
Clty. VA

Sydney JTCINA
Australis

MclLsan VA 21N 1901

Dubiin 215N275

Hagenor 21 N 2082
London

New 21 N 2082
Orieans

Wash.DC JTCIN&1

Sydney JTCINA4Y
Austraia

Wash.DC 21 N 2082

Gloucester 21 N 1989

——— = - B
e i e

Manting YeMonOay

;
®

JTC1 SC21 WGOS RegAuth. 87111/16-20 ARNOR Pals 21N 1989
JTC1 SC21 WGOS Sess. LOTOS 87MNowiDec OMXE Pisa 21N 1900
JTC1 SC21 WGOSUnkmied 88K02722.28 ANSI NYC 21 N 1989

JTC1 SC2 AG sano Tokyo JTIC1N42
JTICt SC2 WG02 88/02/02-05 Amswrdam JTC1N42
JIC1 SC2 WG4 8810/03 Landon JTC1N4
JTC1 SC2 WG09 87120708 Boston

JTC1 WG12 88/04/06-08 laly

J-rc1 SC22 WG13 880171115 Nice France

Jrc 1 sca WG4 87111112 Amsierdam

JTC1 SC2 WG12 880171118 Nice France JTCIN4
JTIC1 SC2 WGI1S 88M02/24-25 APNCR Pllil JTC1N42
SC.21- OPTICAL DIGITALDATADISKS

JTC1 SCZ Plenary 8811/29-12-02 Amswrdam 23N 170
W

JTC1SC24 Pansy 87112/01-03 on Bein 24N1
JTC 1 SC24 Lang. Binding &7113-10 Stutigarnt Fa 24N3
S0 X3 - INFORMATION TECHNCLOGY EQUIPMENT

JTc1 SC8 as0s2-5 Swiockhoim JTC 1 N4S
JTC1 SC33 WG PBR sInans Mumnich JTCIN4S
JIC1 SC83 WGO1 8804 Tentative JTCIN4S

p- 3¢

=11~

&)

1988

1989

1990

New Year's Day

Friday/January 1

Sunday/)anuary 1

Monday/January 1

Martin Luther King Jr.'s Birthday

Friday/January 15

Sunday/January 15

Monday/January 15

M.L. King Jr.s Birthday Obs.

Monday/January 18

Monday/January 16

Monday/Januzry 15

Abrzham Lincoln’s Birthday

Friday/February 12

Sunday/February 12

Mon&ayl February 12

St. Vaientine's Day

Sunday/February 14

Tuesday/February 14

Wednesday/ February 14

Presidents’ Day

| Monday/February 15

Monday/February 20

Monday/February 19

Ash Wednesday

Wednesday/February 17

Wednesday/February 8

Wednesday/February 28

George Washington's Birthday

Monday/ February 22

Wednesday/February 22

Thursday/February 22

St. Patrick’s Day

Thursdav/March 17

Friday/March 17

Saturday/March 17

|

1
Paim Sunday Sunday/March 27 | Sunday/March 19 . Sunday/April B
Good Friday | Friday/April 1 | Friday/March 23 - Friday/April 13
Passover Saturday/ April 2 | Thursday/April 20 | Tuesday/April 10
Easter Sunday/ April 3 Sunday/March 26 i Sunday/April 15

Mother's Day

Sundav/May 8

Sunday/May 14

Sunday/May13

Armed Forces Day

Saturday/May 21

Saturdav/May 20

- Saturday/May 19

Victoria Day (Canada)

-Monday/May 23

- Monday/May 22

Monday/May 21

Memorial Day Observance

Monday/May 30

i Monday/May 29

Monday/May 28

Traditional Memorial Day

; Monday/May 30

- Tuesday/May 30

Wednesday/May 30

Flag Day

. Tuesday/June 14

Wednesday/June 14

- Thursday/June 14

Father's Day

Sunday/june 19

Sunday/June 18

Sunday/June 1

Dominion Dayv (Canada)

Friday/July 1

- Saturday/july 1

Sunday/july 1

Independence Day

Monday/July 4

Tuesday/Julv 4

Wednesday/July 3

Labor Day Monday/September 5 i Monday/September 4 . Monday/September 3
Rosh Hashanah Monday/ September 12 " Saturday/September 30 * Thursday/Sepiember 20
Yom Kippur Wednesday/ September 21 i Monday/October 9 i Saturday/September 29

Columbus Day Observance

Monday/October 10

Monday/October 9

Monday/October 8

Columbus Day

Wednesday/ October 12

Thursday/ October 12

Friday/ October 12

Thanksgiving (Canada)

Monday/October 10

Monday/October 9

Monday/October 8

United Navions Day

Monday/October 24

Tuesday/ October 24

Wednesday/ October 24

Halloween

Monday/October 31

Tuesday/October 31

. Wednesday/ October 31

Election Day

Tuesdav/November 8

Tuesday/November =

. Tuesday/November 6

Veterans Dav

Fridav/ November 11

. Saturday/ November 11

Sunday/November 11

Thanksg:ving

Thursday/November 24

 Thursdav/November 23

Thursday/ November 22

Hanukkah

Sunday/December 4

Saturday/December 23

! Wednesday/ December 12

Christmas

Sunday: December 25

Mondav/December 25

i Tuesday/December 25

=12-

P 387

Accredited Standards Committee Doc. No.: JT;BB:IO —
X3, INFORMATION PROCESSING SYSTEMS* Dt “January 4, 1988
Project:
Ref. Doc.: A
wt.Doc: /4 7 (56) TCA-T
To: Members, X3, IAC, SPARC, SMC

Officers X3TC’s, TG’'s & SPARC/SG's
Members, JTC1 TAG and AC

Subject: Transmittal of December 1987 SD-6, Membership & Officers

Enclosed is the December 1987 SD-6. Ve have attached an SD-6 change form so
that you may notify us of any changes as soon as possible. Please locate your
name and check the address, phone number, and membership status that our records
reflect. If there is an error please let us knov about it by completing and
returning the attached change form.

You will also notice that we have included membership lists for the JTC1 TAG and
the JTC1 TAG Advisory Committee. These membership lists will be reflected in
the X3/5D-6 until the next meeting of the JTC1l TAG and the next publication date
of the Standing Documents. After February, we will issue independent JTC1 TAG
Standing Documents. '

Ve appreciate your help and any suggestions you may wish to offer.
Sin ;ely, "
5

H,; L

-

erine A. Kachurik
Director, X3 Secretariat

Enclosures: December 1987 SD-6
December 1987 SD-6 Change Form

“Opersting under the procedures of The American Nations! Standsrds Institute.

X3 Secretarist: Computer and Business Equipment Manufacturers Associstion Tel: 202/737-8888
311 First Street, N.W., Suite 500, Washington, DC 20001-2178 Fex: 202/638-4922

P 3¢Y

DECEMBER 1937 SD-6 CHANGE
FORM

 PLEASE MAKE THE FOLLOWING CHANGE(S) TO THE
DECEMBER 1987 SD-6:

PAGE __
' CHANGE FROM:

TO:

PLEASE RETURN THIS FORM TO:

CARESSA WILLIAMS

X3 SECRETARIAT/CBEMA
311 FIRST STREET, NW
SUITE 500

WASHINGTON, DC 20001

or call 202-737-8888 ext. 54

P,SG?

X3/SD-6
December 1987

ACCREDITED STANDARDS COMMITTEE*
X3-INFORMATION PROCESSING SYSTEMS

MEMBERSE

P & OFFICERS

*Operating under the procedures of the American National Standards Institute

Secretariat:

Computer & Business Equipment Manufacturers Association (CBEMPD

P37

(51

X3 Standing Documents @

This document is one of a series, developed by X3 and the X3 Secretariat, which
provides a "data base" of information on Accredited Standards Committee X3 -
Information Processing Systems. Each document is updated periodically on an
individual basis.

The series is intended to serve several purposes:

o To describe X3 and its program to inquirers

o Toinformcommitteemcmbcxsofmeorganizaﬁonandoperaﬁonofm

o To provide a system of orderly administration incorporating the procedures
required by ANSI together with supplements approved by the X3 Secretariat,
formegcﬁdmceofmofﬁcexs.members.subgmupsandthesmmﬁatmff.

The series of Standing Documents consists of the following:

X3/SD-0 Information Brochure - 1986

X3/SD-1 Master Plan - May 1987

X3/SD-2 Organization & Procedures - October 1985

X3/SD-3 Project Proposal Guide - May 1987

X3/SD-4 Projects Manual - December 1987

X3/SD-5 Standards Criteria - September 1984

X3/SD-6 Membership and Officers - December 1987
X3/SD-7 Meeting Schedule and Calendar - December 1987
X3/SD-9 Policy & Guidelines - September 1984 (to be issued)
X3/SD-10 X3 Subgroup Annual Report - October 1985

X3/SD-6 Membership and Officers

X3/SD-6 provides the current, approved organizational membership of Accredited Standards
Committee X3, together with the name, mailing address and telephone number of Principal
and Alternate Representatives. Also listed are representatives of other organizations which
have requested liaison staws, ether with ex-officio and individual Observers. Finally,

X3 SecretariayCBEMA
311 First Street, NW

Suite 500
Washington, DC 20001-2178

p. 37/

TABLE OF CONTENTS

Accredited Standards Committee X3
Producer Members

Consumer Members

General Interest Members

Observers

S

X3 Standing Committees
Secretariat Management Committee (SMC)

Standards Planning & Requirements Committee (X3/SPARC)

o R]

7-9

Joint Technical Committee TAG Membership
JTC1 TAG Advisory Committee

X3 Technical Committee Officers

10

11

X3 - Information Processing Systems
A - Character Recognition

11

B - Media

12

12-13

H & J - Programming Languages
K - Documentation

14

L - Data Representation

S - Data Communication

.14

14

T & V - Systems Technology

15

Technical Committee Officer Appointment Dates

16-18

Alphabetical Listing of Officers’ Mailing Addresses

19-23

SPARC & IAC Liaisons

24

X3 Organizational Charts
General

25

Detailed

26

ISOMEC/JTC1

27

International Organizational Chart
Names and Addresses of Chairmen of U..S. Held
Secretariats for ISO/IEC/JTC1 Subcommittees

28

28

Names and Addresses of Working Group Convenors

P 272

X3 MEMBERSHIP

CHAIRMAN YICE CHAIRMAN ADMIN, SECRETARY
RICHARD GIBSON DONALD C. LOUGHRY CATHERINE A. KACHURIK GWENDY J. PHILLIPS
ATAT HEWLETT-PACKARD X3 SECRETARIATCBEMA X3 SECRETARIAT/CBEMA
ROOM 5A 211 INFO. NETWORKS DIVISION 311 FIRST STREET, N.W. 311 FIRST STREET, N.W.
ROUTE 202 & 206N 19420 HOMESTEAD RD. MS £4UX SUITE 500 SUITE 500
PEDMINSTER NJ 07921 CUPERTINO CA 95014-0606 WASHINGTON, DC 20001 WASHINGTON, DC 20001
201-234-37195 408-257-7000 X2454 202-737-8888 202-737-8888
PRODUCERS (57)
aM COMPANY. NCR CORPORATION
PAUL D. JAHNKE (P) LEE SCHILLER (P WILLIAM E. SNYDER ()
3M COMPANY DATA GENERAL CORPORATION NCR CORPORATION
3M CENTER, BLDG. 236-GL-19 62 T. W. ALEXANDER DRIVE WHQ-SE
ST. PAUL MN 55144 RES. TRIANGLE PK., NC 27709 DAYTON, OH 45479
61360117 919-248-5807 513.445-1986
LYMAN CHAPIN (A) A. R DANIELS (A)
EDWARD KELLY (P) DATA GENERAL CORPORATION NCR CORPORATION
AMP INCORPORATED M/S Di12 WHQ-SE
MJS 21001 4400 COMPUTER DRIVE DAYTON OH 45479
P. O. BOX 3608 WESTBORO, MA 01580 S13/445-1310
HARRISBURG PA 17105-3608 617-8T0-6056
717.561-6153
STEPHEN AZARIAN (P)
RONALD LLOYD (A) GARY S. ROBINSON (P) PRIME COMPUTER, INC.
AMP INCORPORATED DIGITAL EQUIPMENT CORPORATION MJS 10B-10
P.O. BOX 3608, M/S 210-01 146 MAIN STREET, MLO12B/ES1 500 OLD CONNECTICUT PATH

HARRISBURG, PA 17105
717-564-0100

J

KARL KIMBALL (P)

APPLE COMPUTER, INC.

20525 MARIANI AVENUE M/S 22Y
CUPERTINO, CA 95014
408-573-2403

MICHAEL J. LAWLER (A)

AIXT

PAUL D. BARTOLI (P}

AT&T

CRAWPORD CORNERS ROAD
ROOM 1M-311

HOLMDEL,NJ 07733
201549-5965

THOMAS F. FROST (A)
ATAT
ROUTE 2m2-206 NORTH

201-234-8750

ERNEST L. FOGLE (P)
CONTROL DATA CORPORATION

KEITH A. LUCKE (A)

CONTROL DATA CORPORATION
901 EAST 78TH STREET, BMWO3M
BLOOMINTON MN 55420-1334
612/353-4380

MAYNARD MA 017542572
617/493-4094

HEWLEIT:PACKARD

DONALD C. LOUGHRY (P)
HEWLETT-PACKARD

INRORMATION NETWORKS DIVISION
19420 HOMESTEADRD. MS 43UX
CUPERTINO CA 95014-0606
408-257-7000 X2454

HONEYWELL BULL
DAVID M. TAYLOR ()
HONEYWELL BULL
3800 W. 80TH STREET
MM70-407

MINNEAPOLIS, MN 55431
612-996-3790

IEM_CORPORATION
MARY ANNE GRAY (P)
IBM CORPORATION

2000 PURCHASE STREET
PURCHASE NY 10577-2597
914457-T224

ROBERT H. FOLLETT (A)
IBM CORPORATION
643RCTRPE

6705 ROCKLEDGE DRIVE
BETHESDA, MD 20817
301-564-2108

D. H ODDY (P)

MOORE BUSINESS FORMS
MOORE RESEARCH DIVISION
300 LANG BOULEVARD
GRAND ISLAND, NY 14072-1697
TI&TT3-0378

P 373

FRAMINGHAM, MA 01701
617-879-2960 X013

JAMES A. BAKER (P)

SCIENTIFIC COMP. SYS. CORP.

C/O 131 AVENIDA DRIVE
BERKELEY, CA 94708
415-548-3557

UNISYS
MARVIN W. BASS (P)

UNISYS

M/S 2G4, P. O. BOX 500
BLUE BELL, PA 19424-0001
215/542-3319

JEAN G. SMITH (A)
UNISYS

M/S E11-121

P.0. BOX 500

BLUE BELL, PA 19424-0001

1.). INECOE (P)

WANG LABORATORIES, INC.
M/S 014 A1B

ONE INDUSTRIAL AVENUE
LOWELL, MA 01851-5161
617967.5514

SARAH WAGNER (A)

WANG LABORATORIES, INC
M/S 1389

ONE INDUSTRIAL AVENUE
LOWELL, MA 01851-5161
617-967-6366

ROY PIERCE (P)
XEROX CORPORATION
1301 RIDGEVIEW
M1

LEWISVILLE TX 75067
214-420-2804

: CONSUMERS ®
SUBE GUIDE INTERNATIONAL G. W. WETZEL (A)
THOMAS EASTERDAY (P) FRANK KIRSHENBAUM (P) RECOGNITION TECH. USERS ASSN.
CUBE GUIDE INTERNATIONAL GRAHAM MAGENTICS
10'W. 306TH STREET AMERICAN MANAGEMENT SYSTEMS 6625 INDUSTRIAL PARK BLVD.
P.O.BOX 527 31 MEADOWOOD DRIVE NO. RICHLAND HILLS TX 76118

11140 ROCKVILLE PIKE
ROCKVILLE MD 20852-3164
301/468-0303 X 41

RECLS

JAMES EBRIGHT (P)

BECUS :

€0 SOFTWARE RESULTS CORP.
2887 SILVER DRIVE
COLUMBLUS, OH 43211-1081
614-267-203

PHOTOGRAPHIC TECHNOLOGY DIV.

1700 DEWEY AVENUE, BLDG. 69
ROCHESTER, NY 14650
T16-477-3597

CHARLETON C. BARD (A)
EASTMAN KODAK

C/O 74 CORNWALL LANE
ROCHESTER, NY 14617
TI6/122-5432

WICHARD W. SIGNOR (P)
GENERAL ELECTRIC COMPANY
BLDG. 30EW

1235 BOSTON AVENUE
BRIDGEPORT, CT 06601-2385
203-382-3610

WILLIAM R. KRUESI (A)
GENERAL ELECTRIC COMPANY

FAIRFIELD CT 06432-1008
AB3TI-2402

WILLIAM C. RINEHULS (P)
GENERAL SERVICES ADMN.
ADTS

$4S7 RUSHING CREEK COURT
SPRINGFIELD VA 22153-2532
X02/566-1180

LARRY L. JACKSON (A)
GENERAL SERVICES ADMN.
ADTS

8457 RUSHING CREEK COURT
SPRINGFIELD, VA 22153-2532
ARIS66-0194

JERICHO NY 11753-2833
212/618-0300

SANDRA SCHWARTZ ABRAHAM (A)
GUIDE INTERNATIONAL

25 HORNOR LANE

PRINCETON, NJ 08540

DAVID F. STEVENS (P)

LAWRENCE BERKELEY LABORATORY
BUILDING S0B, ROOM 2258

1 CYCLOTRON ROAD

BERKELEY CA 94720

415/486-7344

ROBERT L. FINK (A)

LAWRENCE BERKELEY LABORATORY
UCLBL

M/S 50B-258

BERKELEY, CA 94720

415-486-5692

MAPTOPR

JAMES D. CONVERSE (P)
MAP/TOP

C/O EASTMAN KODAK COMPANY
1099 JAY STREET
ROCHESTER, NY 14650
T16-464-5705

MIKE KAMINSKI (A}

MAP/TOP

C/O GM. ADVANCED ENGINEERING
30300 MOUND ROAD

WARREN, MI 48090-9040

DENNIS BODSON (P)

NATIONAL COMMUNICATIONS SYSTEM
STH & SO. COURTHOUSE ROAD
ARLINGTON, VA 22204-2198
202-692-2124

GEORGE W. WHITE (A)

NATIONAL COMMUNICATIONS SYSTEM
STH & SO. COURTHOUSE ROAD
ARLINGTON VA 22204-2198
202/692-2124

MONCURE N. LYON (P)
RAILINC CORPFORATION
50 F STREET, NW
WASHINGTON, DC 20001
202-639-5542

HERBERT F. SCHANTZ (P)
RBCOGNITION TECH. USERS ASSN.
HLS ASSOCIATES

1701 CREEKSIDE DRIVE, STE. 100
SOUTHLAKE, TX 76092
817-481-3062

p- 37

8172819450

THOMAS B. STEEL ()

C/O HOFSPRA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
HEMPSTEAD, NY 11550

516-560-5556

ROBERT P. RANNIE (A)

SHARE, INC.

DEPT. OF COMPUTER SCIENCES
NORTHERN ILLINOIS UNIVERSITY
DE KALB, I 60115

815-753-0423

JOSEPH T. BROPHY (P) :
TRAVELERS INSURANCE COMPANIES
1 TOWER SQUARE

HARTFORD CT 06115-1599

203/ZT7- 3112

FRED VIRTUE (P)

U.S. DEPT. OF DEFENSE

HQ USAF/SCTT

ROOM 5C1083, PENTAGON
WASHINGTON DC 20330-5190
202/695-0499

BELKIS LEONG-HONG (A)
US. DEPT. OF DEFENSE

OASD (C), MS, IRMS.

ROOM 1C 535 PENTAGON
WASHINGTON, DC 20301-1100
202/695-4470

CHRIS TANNER (P)

VIM INCORPORATED

CHALK RIVER NUCLEAR LABS
CHALK RIVER, ONT KOJ 1J0
CANADA

613-584-3311 X 4053

M. SPARKS (A)

VIM INCORPORATED

C/O UNISYS

1500 PERIMETER PKWY. STE 400
HUNTSVILLE, AL 35806-1686
205-837-7610

JOHN L. WHEELER (P)
WINTERGREEN INFORMATION SYS.
CARRIAGE HOUSE COMMONS
SUTTE 347, 159 WEST MAIN ST.
WEBSTER, NY 14580
716-671-4087

- X3 MEMBERSHIP

GENERAL INTEREST

PAUL E. PETERS (P)

AMERICAN LIBRARY ASSOCIATION
NEW YORK PUBLIC LIBRARY

STH AVE. & 42ND ST. RM. 213

NEW YORK. NY 10018

212-930-0720

GERALDINE C. MAIN (P)
AMERICAN NUCLEAR SOCIETY
BCS RICHLAND, INC.

P. 0. BOX 300

RICHLAND WA 99352-0300
509.376-2287

SALLY HARTZELL (A)

C/O POWER COMPUTING COMPANY
25 VAN NESS AVENUE. SUTTE 550
SAN FRANCISCO, CA 94102
415-626-T273

DATA PROCESSING MNGMT,

ASSQC,

WARD ARRINGTON (P)

DATA PROCESSING MNGMT. ASSOC.
241 SHORE DRIVE EAST

MIAML, FL, 33133

305-593-4015

WALLACE R. MCPHERSON, IR. (A)
DATA PROCESSING MNGMT. ASSOC.
ROB #3, ROOM 4682 '

400 MARYLAND AVENUE, S.W.
WASHINGTON, DC 20202
202-245-0361

[EEE
SAVA L SHERR (P)

NEW YORK. NY 10129
201-662-2029

H. WOOD (A)

IEEE

C/O NATIONAL BUREAU OF STDS.
TECHNOLOGY BLDG., ROOM B134
GAITHERSBURG, MD 20899-0999
301-975-3240

ROBERT E. ROUNTREE (P)
NATIONAL BUREAU OF STANDARDS
BUILDING 225, ROOM B168
GAITHERSBURG MD 20899-0999
301-975-2827

MICHAEL HOGAN (A)

NATIONAL BUREAU OF STANDARDS
BUILDING 225, ROOM Aé6l1
GAITHERSBURG MD 20899
301-975-2926

P 375

&)

OMNICOM, INC,
HAROLD C. FOLTS (P)
OMNICOM, INC.

115 PARK STREET, S.E.
VIENNA, VA 22180
703/281-1135

CHERYL C. SLOBODIAN (A)
OMNICOM, INC.

115 PARK STREET, S.E.
VIENNA. VA 22180
703-281-1135

-

YISAUS.A,

JEAN T. MCKENNA (P)
VISAUSA

P. O. BOX 8999

SAN FRANCISCO CA 94128
415-570-3422

PATTY GREENHALGH (A)
VISA US.A

P.O. BOX 8999

SAN FRANCISCO, CA 54128
415-570-3424

" X3 MEMBERSHIP

EX-OFFICIO MEMBERS - WITHOUT

YOTIE:

CHAIRPERSON X3/SPARC
CHAIRPERSON SMC
CHAIRPERSON X3/SPC
CHAIRPERSON X3/TCS
CHAIRPERSON JTC1 TAG
CHAIRPERSON JTC1 TAG AC

MEMBERS OF SMC

MEMBERS OF X3/SPARC

MEMBERS OF X3/SPC

OFFICERS X3/TCS, SCS & SPARC/SG'S

N
JAMES H. BURROWS (L)
NATIONAL BUREAU OF STANDARDS
BUILDING 225, ROOM B160
GAITHERSBURG, MD 20899-0999
301-975-2822

LIAISON OBSERVERS

AMERICAN NAT'L STANDARDS

INSTITUTE

FRANCES SCHROTTER (1)
ANSI

1430 BROADWAY

NEW YORK NY 10018-3308
2126424934

CODASYL/PROGRAMMING
LANGUAGE COMMITTEE
JAN PROKOP (L)
MCGRAW-HILL, INC.

29 HARTWELL AVE.

LEXINGTON, MA 02173
617/863-5100

ASC T1 - TELECOMMUNICATIONS
ALVIN LAI (L)

EXCHANGE CARRIERS STDS. ASSOC.
5430 GROSVENOR LANE

BETHESDA, MD 20814-2122
"3D1-564-4505

CYNTHIA L. FULLER (L)

AMERICAN BANKERS ASSOCIATION
1120 CONNECTICUT AVENUE, N. W.
WASHINGTON DC 20036-3973
202-663-5000

TOM JONES (L)

WESTERN DATACOM
5083 MARKET STREET
YOUNGSTOWN, OH 44512
216-788-6583

ANSC 239 - LIRRARY &
INFORMATION SCIENCES AND

RAY DENNENBERG (L)

LIBRARY OF CONGRESS
NETWORK DEVELOPMENT OFFICE
WASHINGTON DC 20540-0001
202/287-5894

PAUL REED (L)
HUMAN FACTORS SOCIETY
C/O AT&T BELL LABORATORIES
184 LIBERTY CORNER ROAD
WARREN, NJ 07060
201-580-5618
X3 LIAISON TO ANSI PLANNING
BANEL ON INDUSTRIAL

N
LEROY RODGERS (L)
DIGITAL EQUIPMENT CORPORATION
CONTINENTAL BLVD., MK1-2/L5
MERRIMACK, NH 03054
603-884-8318

X3 LIAISON TO IEEE COMPUTER
SOCIETY STANDARDS ACTIVITIES

BOARD

GARY S. ROBINSON (L)

DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET, MLO12B/ES1
MAYNARD MA 01754-2572
617/493-4094

EDWARD KELLY (L)

AMP INCORPORATED

M/S 210-01

P. O. BOX 3608
HARRISBURG PA 17105-3608
717-561-6153

RICHARD GIBSON (L)
AT&T

ROOM 5A 211

ROUTE 202 & 206N
BEDMINSTER NI 07921
201-234-3795

p-378

OBSERVERS

WALTER G. FREDRICKSON (0)
HARRIS CORPORATION

1025 WEST NASA BLDV. MS/14
MELBOURNE, FL 32919
305-727-9100

STUART M. GARLAND (0)
ATAT

TELETYPE CORPORATION
5555 WEST TOUHY AVENUE
SKOKIE IL 60077-3235
312/982-359%

PIERRE L'ALLIER (O)
CONCURRENT COMPUTER CORP.
227 BATH ROAD

SLOUGH

BERKSHIRE SL14AX ENGLAND

KENNETH MAGEL (0)

ASSN. FOR COMPUTING MACHINERY
300 MINARD

NORTH DAKOTA STATE UNIVERSITY
FARGO, ND 58105

GERARD A. RAINVILLE, JR. (O)
NATIONAL SECURITY AGENCY
P.0.BOX 11

ANNAPOLIS JUNCTION, MD 20701
301-776-1684

D. L. SEIGAL (O)

AMERICAN EXPRESS
TRAVEL RELATED SERVICES
1647 E. MORTEN AVENUE
PHOENIX, AZ 85020
602-371-3637

SELMA ZINKER (O)
TANDEM COMPUTERS
CORPORATE INFO. CENTER
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-2599
408-725-6343

SECRETARIAT MANAGEMENT

COMMITTEE (SMC)

CHAIRMAN,

DELBERT L. SHOEMAKER (P)
DIGITAL EQUIPMENT CORPORATION
1331 PENNSYLVANIA AVE N.W.
SIXTH FLOOR

WASHINGTON, DC 20004
2M0-383-562

YICE CHAIRMAN

EDWARD KELLY (P)

AMP INCORPORATED

M/S 21001

P. 0. BOX 3608
HARRISBURG PA 17105-3608
717-561-6153

SECRETARY

PATRICIA A. STEINER

X3 SECRETARIAT/CBEMA
311 FIRST STREET, N.W.
SUTTE 500

WASHINGTON, DC 20001
202-737-8888

CHARLETON C. BARD ()
EASTMAN KODAK

C/O 74 CORNWALL LANE
ROCHESTER, NY 14617
NETR-5432

MARVIN W, BASS (P)
UNISYS

M/S 2G4

P. Q. BOX 500

BLUE BELL, PA 19424-0001
215/542-3319

MARY ANNE GRAY (P)
IBM OORPORATION

2000 PURCHASE STREET
PURCHASE NY 10577-2597
S14/97-T224

BELKIS LEONG-HONG (P)
USS. DEPT. OF DEFENSE

OASD (C), MS, IRMS.

ROCM 1C 535 PENTAGON
WASHINGTON, DC 20301-1100
2A/H5-44T0

PAUL E. PETERS (P)

AMERICAN LIBRARY ASSOCIATION
NEW YORK PUBLIC LIBRARY

STH AVE. & 42ND ST.,RM. 213

NEW YORK, NY 10018

212-930-0720

WILLIAM C. RINEHULS (P)
GENERAL SERVICES ADMN.
ADTS

8457 RUSHING CREEK COURT
SPRINGFIELD VA 22153-2532
A2/566-1180

THOMAS B. STEEL (/)

SHARE, INC.

C/0 HOFSPRA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
HEMPSTEAD, NY 11550

516-560-5556

JANUARY 1989

JANUARY 1589

JANUARY 1989

JANUARY 1968

JANUARY 1988

JANUARY 1950

JANUARY 1990

JANUARY 1950

JANUARY 1988

I 377

)

RICHARD GIBSON
AT&T

ROOM 5A-211

ROUTE 202 & 206N
BEDMINSTER, NJ 07921
201-234-3795

GARY HAINES
EASTMAN KODAK
PHOTO. TECH. DIV.
1700 DEWEY AVENUE
BUILDING &
ROCHESTER, NY 14650
7164773597

CATHERINE A. KACHURIK
X3 SECRETARIATCBEMA
311 FIRST STREET, N.W.
SUTTE 500

WASHINGTON, DC 20001
202-737-3838

WILLIAM HANRAHAN
CBEMA

311 FIRST STREET, N.W.
SUTTE 500
WASHINGTON, DC 20001
202-737-8888

STANDARDS PLANNING AND
REQUIREMENTS COMMITTEE -

CBAIRMAN

WILLIAM C. RINEHULS
GENERAL SERVICES ADMN.
ADTS

8457 RUSHING CREEK COURT
SPRINGFIELD VA 22153-2532
202/566-1180 '

YICE CHAIRMAN

LEROY RODGERS (P)

DIGITAL EQUIPMENT CORPORATION
CONTINENTAL BLVD., MK1-2/L6
MERRIMACK, NH (3054

603-384-8318

SECRETARY

GWENDY J. PHILLIPS

X3 SECRETARIAT/CBEMA
311 FIRST STREET. N.W.
SUTTE 500

WASHINGTON, DC 20001
20.737-8888

MARVIN W. BASS (P)
UNISYS

M/S 2G4

P. 0. BOX 500

BLUE BELL, PA 19424-0001
215/542-3319

MARGARET K. BUTLER (P)
ARGONNE NATIONAL LABORATORY
9700 SOUTH CASS AVENUE
BUILDING 201

ARGONNE, IL 60439-4801
312972172

THOMAS EASTERDAY (P)
CUBE

10 W. 106TH STREET

P.O. BOX 527
INDIANAPOLIS, IN 46206
317-8464211

ERNEST L. FOGLE (P)

CONTROL DATA CORPORATION
901 EAST 78TH STREET

ROOM BMWIOM
BLOOMINGTON, MN 55420
612/253 6937

ROBERT H. FOLLETT (P)
IBM CORPORATION
643RCTRIE

6705 ROCKLEDGE DRIVE
BETHESDA, MD 20817
301-564-2108

(SPARC)

MARY ANNE GRAY (A)
IBM CORPORATION

2000 PURCHASE STREET
PURCHASE NY 10577-2597
914/697-724

GARY HAINES (P)

EASTMAN KODAK

PHOTOGRAPHIC TECHNOLOGY DIV.
1700 DEWEY AVENUE, BLDG. 69
ROCHESTER, NY 14650

716-477-3597

THOMAS M. KURIHARA (P)
2058 CARRHILL ROAD
VIENNA, VA 22180
2m-366-9717

WILLIAM P. LAPLANT, JR (P)
P.0. BOX 2130

ARLINGTON, VA 22202-0130
301-763-3905

KEITH A. LUCKE (A)

CONTROL DATA CORPORATION
901 EAST 78TH STREET, BMWO3M
BLOOMINTON MN 55420-1334
612/853-4380

THOMAS J. MCNAMARA (P)
41 SUMMIT AVENUE
WOLLASTON, MA 02170
617-479-8400

STEVE OKSALA (A)
UNISYS

M/S 2G4, P. O. BOX 500
BLUE BELL, PA 19424-0001
215/542-3319

ROBERT E. ROUNTREE (A)
NATIONAL BUREAU OF STANDARDS
BUILDING 225, ROOM B168
GAITHERSBURG MD 20899-0999
301-975-2827

(,\

I——— R e ————

ROY G. SALTMAN ()

NATIONAL BUREAU OF STANDARDS
BUILDING 225, ROOM A266
GAITHERSBURG, MD 208990999
301-975-3376

MARVIN SCHLENOFF (A)

SOCIAL SECURITY ADMINISTRATION
ROOM 530 COMPUTER CENTER

6401 SECURITY BOULEVARD
BALTIMORE, MD 21235-7999

DELBERT L. SHOEMAKER (A)
DIGITAL EQUIPMENT CORPORATION
1331 PENNSYLVANIA AVE N.W.
SIXTH FLOOR

WASHINGTON, DC 20004
22-383-5622

DOROTHY STAPLETON (A)
U.S. DEPT. OF DEFENSE

HQ USAF/SCTT

ROOM 5C1083, PENTAGON
WASHINGTON DC 20330-§190
22/695-0499

FRED VIRTUE (P)

U.S. DEPT. OF DEFENSE

HQ USAF/SCTT

ROOM 5C1083, PENTAGON
WASHINGTON DC 2(330-5190
202/595-0499

STUDY GROUP CHAIRMEN
SOFTWARE SYSTEMS INTERFACE

T

ROBERT H. FOLLETT (L)
IBM CORPORATION
G643RCTRPE

6705 ROCKLEDGE DRIVE
BETHESDA, MD 20817
301-564-2108

EDWARD L. STULL (L)

. GTE GOVERNMENT SYSTEMS

1700 RESEARCH BOULEVARD
ROOM 3095

ROCKVILLE, MD 20850
301-294-8649

PLEASE NOTE:

Until the next meeting of JTC1 TAG and the next publication date of the Standing Documents, we

| will show the JTC1 TAG mem! ip combined with the X3/Standing Document 6. After February,
we will issue independent JTC1 TAG Standing Documents.

p- 379

JTC1 TAG MEMBERSHIP LIST ()

CHAIRMAN

JOSEPH DEBLASI

IBM CORPORATION

2000 PURCHASE STREET
PURCHASE, NY 10577-2597
914-697-7280

*

VICE CHAIRMAN

ROBERT E- ROUNTREE

NATIONAL BUREAU OF STANDARDS
BUILDING 225, ROOM B168
GAITHERSBURG, MD 20899-0999
301-975-2827

CATHERINE A. KACHURKK
X3 SECRETARIAT/CBEMA
311 FIRST STREET, N.W.
SUITE 500

WASHINGTON, DC 20001
202-737-8888

GWENDY J. PHILLIPS

X3 SECRETARIAT/CBEMA
311 FIRST STREET, N.W.
SUTIE 500

WASHINGTON, DC 20001
202-737-8888

M COMPANY
PAUL D. JAHNKE (P)
3M COMPANY

3M CENTER

BLDG. 26-GL-19

ST. PAUL, MN 55144
6127360117

THOMAS M. KURIHARA (P)
AICCP _

C/O 2058 CARRHILL ROAD
VIENNA, VA 22180
202-366-9717

ALLEN-BRADLEY

RONALD H. REIMER (P)
ALLEN-BRADLEY

1201 SOUTH SECOND STREET
MILWAUKEE, WI 53204
414382277

-

PAULE PETERS (P)

AMERICAN LIBRARY ASSOCIATION
NEW YORK PUBLIC LIBRARY

STH AVENUE & 42¥D ST, RM. 213
NEW YORK, NY 10018

212-930-0720

P.O. BOX 300
RICHLAND, WA 993520300
509-376-2287

* TO BE DETERMINED

25 VAN NESS AVENUE, STE. 550
SAN FRANCISCO, CA 94102
415-826-7213

AMP INCORPORATED
EDWARD KELLY (P)

AMP INCORPORATED

M/S 21001

P.O. BOX 3608

HARRISBURG, PA 17105-3608
7175616153

RONALD LLOYD (A)
AMP INCORPORATED
P.0. BOX 3608

M/S 21001
HARRISBURG, PA 17105
717-564-0100

KARL KIMBALL (P)
APPLE COMPUTER, INC.
20525 MARIANT AVENUE
M/S 2Y

CUPERTINO, CA 95014
408-973-2403

MICHAEL J. LAWLER (A)
APPLE COMPUTER, INC.
20525 MARIANI AVENUE
CUPERTINO, CA 95014
408-973-4671

ATAT

PAUL D. BARTOLI (P)

ATAT

CRAWFORD CORNERS ROAD
ROOM 1M311

HOLMDEL, NJ 07733
201-949-5965

THOMAS F. FROST (A)
ATAT
ROUTE 200-206 NORTH

CHARLES E. COOPER (P)
CONTROL DATA CORPORATION
901 EAST 78TH STREET, BMWOI3M
BLOOMINGTON, MN 55420-1334
612-853-4080

KEITH A. LUCKE (A)

CONTROL DATA CORPORATION
901 EAST 78TH STREET, BMWIM
BLOOMINGTON, MN 55420-1334
612-853-4380

p- 38»

CUBE

THOMAS EASTERDAY (P)
CUBE

10 W. 106TH STREET

P.0. BOX 527
INDIANAPOLIS, IN 46206
317-8464211

DONALD MILLER (A)
CUBE

WOLPOFF & ABRAMSON
11140 ROCKVILLE PIKE
ROCKVILLE, MD 20852-3164
301-468-0303 X41

\'
LYMAN CHAPN ()
DATA GENERAL CORPORATION
M/S D112
4400 COMPUTER DRIVE
WESTBORO, MA 01580
617-870-6056

LEE SCHILLER (A)

DATA GENERAL CORPORATION
62 T. W. ALEXANDER DRIVE
RES. TRIANGLE PK., NC 27709
919-248-5807

WARD ARRINGTON (P)

DATA PROCESSING MNGMT. ASSOC.
241 SHORE DRIVE EAST

MIAML FL 33133

305-5934015

WALLACE R. MCPHERSON, IR. (A)
DATA PROCESSING MNGMT. ASSOC.
ROB #3, ROOM 4682

400 MARYLAND AVENUE, S.W.
WASHINGTON, DC 20202
20-245-0361

DECLS
JAMES EBRIGHT (P)
DECUS

C/O SOFTWARE RESULTS CORP.
2887 SILVER DIRVE
COLUMBUS, OH 43211-1081
614-267-2208

GARY S. ROBINSON (P)

DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET

M/S MLO12B/ES]

MAYNARD, MA 01754-2572
617-493-4054

DELBERT L. SHOEMAKER (A)
DIGITAL EQUIPMENT CORPORATION
1331 PENNSYLVANIA AVE, NW.
SIXTH FLOOR

WASHINGTON, DC 20004
20-383-5622

JTC1 TAG MEMBERSHIP (CONTINUED)

EASTMAN KODAK

GARY HAINES (P)

EASTMAN KODAK

PHOTOGRAPHIC TECHNOLOGY DIV.
1700 DEWEY AVENUE, BLDG. 69
ROCHESTER, NY 14650

T16-477-3557

CHARLES C. BARD (A)
EASTMAN KODAK

C/O 74 CORNWALL LANE
ROCHESTER, NY 14617
T16-722-5432

.
ASSOCIATION

KELLY (P)

AMP INCORPORATED

M/S 21001

P.0. BOX 3608

HARRISBURG, PA 17105-3608
717-561-6153

OLE GOLUBJATNIKOV (A)
GENERAL ELECTRIC COMPANY
FARRELL ROAD, PLANT 1,RM. D-6
SYRACUSE, NY 13221
3154564744

MARTIN T. SULLIVAN (P)
EXCHANGE CARRIERS STDS. ASSOC.
C/O BELLCORE

331 NEWMAN SPRINGS ROAD

BOX 7020, ROOM 1F-321

RED BANK, NJ 07701-7020
201-758-2233

ALVIN LAI (A)

EXCHANGE CARRIERS STDS. ASSOC.
5430 GROSVENOR LANE

BETHESDA, MD 20814-212
301-564-4505

RICHARD W. SIGNOR (P)
GENERAL ELECTRIC COMPANY
BUILDING 30EW

1285 BOSTON AVENUE
BRIDGEPORT, CT 06501-2385
203-382-3610

WILLIAM C RINEHULS (P)
GENERAL SERVICES ADMN.
ADTS :

3457 RUSHING CREEK COURT
SPRINGFIELD, VA 22153-2532
2AD-566-1180

LARRY L. JACKSON (A)
GENERAL SERVICES ADMN.
ADTS

8457 RUSHING CREEK COURT
SPRINGFIELD, VA 22153-02532
202-566-0194

GUIDE INTERNATIONAL

FRANK KIRSHENBAUM (P)

GUIDE INTERNATIONAL

AMERICAN MANAGEMENT SYSTEMS
31 MEADOWOOD DRIVE
JERICHO, NY 11753-2833
212-618-03000

SANDRA SCHWARTZ ABRHAM (A)
GUIDE INTERNATIONAL

25 HORNOR LANE

PRINCETON, NJ 08540

HEWLET-FACKARD

DONALD C. LOUGHRY @)
HEWLETT-PACKARD

INFORMATION NETWORKS DIVISION
19420 HOMESTEAD RD., M/S 43UX
CUPERTINO, CA 95014-0606
408-257-7000

HONEYWELL BULL
DAVID M. TAYLOR (P)
HONEYWELL BULL
3800 W. 80TH STREET

M/S MM70-407
MINNEAPOLIS, MN 55431
612-896-3790

PAUL REED (™

HUMAN FACTORS SOCEETY

C/O ATAT BELL LABORATORIES
184 LIBERTY CORNER ROAD
WARREN, NJ 07060

201-530-5618

[BM CORPORATION
MARY ANNE GRAY (P)
IBM CORPORATION

2000 PURCHASE STREET
PURCHASE, NY 10577-2597
914-697-7224

ROBERT H. FOLLETT (A)
IBM CORPORATION
643RCTRBE

6705 ROCKLEDGE DRIVE
BETHESDA, MD 20817
301-564-2108

IEXE

SAVA L SHERR ()
IEEE

C/O P. O. BOX 20757
MIDTOWN STATION
NEW YORK, NY 10129
201-662-2029

HELEN M. WOOD (A2)

IEEE

C/O NATIONAL BUREAU OF STDS.
B154 TEGHNOLOGY
GAITHERSBURG, MD 20899
301-975-3240

P 38/

ALAN EBRIGHT)
LASERDRIVE LTD.

1101 SPACE PARK DRIVE
SANTA CLARA, CA 95054
408-970-3600

DAVID F. STEVENS (P)

LAWRENCE BERKELEY LABORATORY
BUIDLING 50B, ROOM 2258

1 CYCLOTRON ROAD

BERKELEY, CA 94720

415-436-7344

ROBERTL FINK (A)

LAWRENCE BERKELEY LABORATORY
UCLBL, M/S 50B-258

BERKELEY, CA 94720

415-436-5692

MAP/TOR

JAMES D. CONVERSE (P)
MAP/TOP

CJ/O EASTMAN KODAK COMPANY
1099 JAY STREET

ROCHESTER. NY 14650
T16-464-5705

MIKE KAMINSKI (A)

MAP/TOP

C/0 G. M. ADVANCED ENGINEERING
30300 MOUND ROAD

WARREN, Ml 48090-9040

ROBERT E. ROUNTREE (P)
NATIONAL BUREAU OF STANDARDS
BUILDING 225, ROOM B168
GAITHERSBURG, MD 20899-0995
301-975-2827

MICHAEL HOGAN (A)

NATIONAL BUREAU OF STANDARDS
BUILDING 225, ROOM A61
GAITHERSBURG, MD 20899
301-975-2926

DENNIS BODSON (P)

NATIONAL COMMUNICATIONS SYSTE®
STH & SO. COURTHOUSE ROAD
ARLINGTON, VA 22204-2198
202-692-2124

DONALD WILSON (A)

NATIONAL COMMUNICATIONS SYSTE!
$TH & SOUTH COURTHOUSE ROAD
ARLINGTON, VA 22204-2198

NCR CORPORATION
WILLIAM E. SNYDER (P)
NCR CORPORATION

WHQ-SE
DAYTON, OH 4547
513-445-1986 -¢

' JTC1 TAG MEMBERSHIP (CONTINUED)

A R DANIELS (A)
NCR CORPORATION
WHQ-5E

DAYTON, OH 45479
513-445-1310

NiSQ

PAT HARRIS (P)

NISO

NATIONAL BUREAU OF STANDARDS
ADMIN. 101-LIBRARY, E-106
GAITHERSBURG, MD 20899

DMNICOMLINC,
HAROLD C. FOLTS (P)
OMNICOM, INC.

115 PARK STREET, S.E.
VIENNA, VA 22180

CATHERINE HOWELLS (A)
OMNIOOM, INC.

501 CHURCH STREET, N.E.
SUITE 304

VIENNA, VA 22180
703-281-1135

CHERYL C. SLOBODIAN (A2)
OMNICO