-

Supplement to the Minutes of Meeting 110 (Part 1)

X3J3 Fortran

13 to 18 November 1988

Boston, Massachusetts

X3J3/229

P

e

Item
Number

Pk et o d et el fd et e ed
OQNQM#NNHOOMNO\W#NNI—I

NN
—o

NN
2w

CONTENTS

Pre-Meeting Distibution for the 110th X3J3 Meeting

Cambridge, Massachusetts

110-JCA-1
110-JCA-2
110-JCA-3
110-JCA-4
110-JCA-5
110-JCA-6
110-JCA-7
110-JCA-8
110-LJM-1
110-JTM-1
110-LWC-1
110-CDB-1
110-MBM-1
110-MBM-2
110-RCA-1
110-RCA-2

110-NHM-1
110-LRR-1

110-NHM-2
110-JKR-1
110-JKR-2
110-JKR-3
110-KWH-1

November 13-18, 1988

Table of Contentsccovivivieniinirienennennnnanns
Adams, Memo on WG5 Chairccevvuiiinccnencnananas
Harris appointment as X3T2 liaisonc.ovnen
L.G.J Ter Haar paper on simplified precision
Request for membership clarification (Moss, Sund)....
Prof. John Rice letter, Adams responsecceceven
W. van Snyder letters, Adams acknowledgment
Alan Hirsch’s liaison to X3J3 from X3H2
X3J3 suggestions to CBEMA on draft distribution
L. Moss Trip Report on 109th X3J3 Meeting
Proposal to add Pointers and Delete IDENTIFY/ALIAS ..
Suggested Edits to S8.104 (and S8.108)
A Language-based Design for Portable Data Files
Editorial Assignment -- Public Comments 93-319
MIL-STD 1753 Bit Intrinsics & nondecimal constants ..
DO WHILE re-writeccccecenrecncncesarsonesoncnanse
Reduction of intrinsic functions in constant exp. ...
RESOLUTIONS PASSED AT THE PARIS WG5S MEETING
Plea to Retain Simple Internal Procedures
An Alternative to the Schonfelder/Martin Pointer

Proposaliiiiiiiiiiiititiiiaieaieaiiiiroteeann
Marshall Mailing Address
Guidelines for scribescvivriiinieieaiiiiiane,
Using i/0 syntax for array constructors
The WG5 planvoiiiiiieiirnnnnenneanaaacosnsnnnnns
Completing Storage Association in Fortran 8x

ooooooooooooo

P e N

o -Jca-| @

MEMO TO: X3J3 ﬂ A’
FROM: Jeanne Adams M”V

DATE: September 9, 1088

It is with much regret that I plan to withdraw my name from consideration by WG5
as chair of the Paris meeting. I have always enjoyed this work over the past decade,
remembering many pleasant occasions. I made this decision after considerable thought
over the past few weeks. Given the controversy over the draft standard and the pro-
posals brought forth at the Jackson meeting, I feel that my situation would be ambi-
guous if I served as chalr.

There are many reasons for this, an important one being the direction that X3J3 posed
for its delegation:to keep the technical development charge within X3J3 itself. I feel
that under these circumstances I would be unable to be impartial, since my charge
from you is unequivocal. My role as chair of X3J3 must be my first responsibility.

At the meeting, I will ma.ke a statement to this effect.
I am still in support of the full language for Fortran (ABMSW) as modified by the

simplifications and deletions called for by the public comment. However, each of us on
X3J3 has his or her own favorite plan. The work done on this document by the five

-members of X3J3 is technical work in the nature of what we all do in preparing for

meetings or summarizing our points of view. It reflects the work of the past 10 years
on X3J3, and is a matter of record. My support for the full language model of S8 does
not cause me a conflict of interest. X3J3 has decided to prohibit the presentation of
this plan.to WG5. That decision [regret as being precipitous and not well-advised,

smce thns is a public lnternatlonal meetmg

i

Iam hoplng that at the WG5 meeting member countries and plan authors will be able
to come to terms quickly with the plan that will be acceptable to both X3J3 and WGS.
That would be the best of all possible worlds. I plan to work very hard at the Paris
meetlng to achieve this compromise. When I return from Paris, I will send you my
impressions of the meeting in an informal note. Both Andy Johnson and Jeanne Mar-
tin will have formal reports for you.

®

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
Scientific Computing Division
P. O. Box 3000 ¢ Boulder, Colorado ¢ 80307

Telephone: (303) 497-1275 o FTS: 820-1875 ¢ Telez: 45 694 / /0 J" C 9 2.
. 7 -

August 23, 1988

L. J. Gallagher

National Bureau of Standards
Building 225, Room A156
Gaithersburg, Md 20899

Dear Len;

I have appointed Kevin Harris of Digital Equipment as Liaison to X3T2 from X3J3, Fortran.
Would you place his name on your list of liasion contacts and mail him any relevant material
on the work of X3T2?

Kevin Harris
) ZKO 2-3/N30
g Digital Equipment Corp.
! " 110 Spit Brook Road
Nashua, NH 03062

Sincerely yours,
Jeanne Adams, Advanced Methods Group
Chair, X3J3

cc. X3J3 Distribution
W

prraen

2

The National Center for Atmospheric Research is Operated by the University Corporation for Atmospheric Rescarch
ander sponsorship of the National Sesence Foundation. An Egquel Opportunity/Affirmative Action Emploger.

®

NATICNAL CENTER FOR ATMOSPHERIC RESEARCH
Scientific Computing Division/Advanced Methods Section
P. O. Box 3000 ¢ Boulder, Colorado ¢ 80307
Telephone: (808) 497-1275 o FAX: 497-1187 Telez: 989764

/2 JCA b

August 24, 1988

L. G. J. Ter Haar
Expl. & Prod. Laboratory
Kon Shell

Volmerlaan 6

N1-2288 Gd Rijswijk
Netherlands

Dear Leo;
Thank you for your letter about Fortran. I will distribute it in the pre-meeting for the
November meeting. [will also distribute your paper on simplification of precision. There will

be three different simplification plans to be presented as tutorials in November.

Brian Smith is heading the group on J3 that is looking into parallelism. You might ask him to
keep your name on any mailing list that he has.

Will I see you in Paris at the WG5 meeting?

Regards,

Jeanne Adams, Advanced Methods Group

¢o, ja j W Chair, X3J3

5

The National Center Jor Atmaspheric Research i8 Operated by the University Corporation for Atmospheric Research
under sponsorehip of the National Seience Foundation. An Egual Opportunity/Affirmative Action Employer.

Koninklijke/Shell Exploratie en Produktie Laboratorium
Shell Research BV, Jo—TCA-3 ™

®

Ms. Jeanne C, Adams

National Center for Atmospheric Research
P.O. Box 3000

Boulder, Colorado 80307

U L) S L] A L]
Uw/ Your ref.: Rijswijk 2-H, July 29, 1988
Postadres: Postbus 60, 2280 AB Rijswijk Z-H
Onza/Our ref.: LRG/2 Telefoon (070) M. /1391

Dear Jeanne,

Recently I received the minutes of the 108th X3J3 meeting.
My primary reaction was one of disenchantment, my secondary
was far more positive as I believe that the standardisation
efforts are now going the right direction.

Let me elaborate on both. I was disappointed to read that
the concept of deprecation might be deleted from the
language. Although it may be true that some American
comments indicate strong opposition towards deprecation, I
have always had the impression that ISO WGS strongly
supports the concept. Even if we never succeed in
abolishment of the old Fortran concepts, I think it is about
time that we have at least a mechanism to pinpoint the bad
eggs in the basket. Moreover I am strongly convinced that
the deprecation concept will work eventually despite even
the strongest opposition. In order to keep Fortran alive, it
must be a living language. For that reason I also support
strongly the name change from FORTRAN to Fortran.

On the positive side I rate the remainder of the revision
plan for various reasons except for perhaps two items. I am
not in support of adding a DO WHILE. The present proposal is
in my opinion far stronger with the DO EXIT concept. From
the discussions around FORTRAN 77 I still remember the fuzz
about the multiple branch construct. Devotees of Pascal even
refused the ELSE IF THEN until they discovered the real
strength of this statement. DO EXIT and ELSE IF THEN,
. although not basic closed control structures do support good
programming practices and are admirable flexible constructs.

The second item on which at least I have my doubts is adding
INCLUDE to the language. I propagated among many colleages
"Fortran 8X Explained". It is remarkable how many are
enthousiastic about the MODULE concept exactly for the
reasons they want the INCLUDE, i.e. for defining global
variables. A textual INCLUDE is dirty, but sometimes
unavoidable, programming practice, to say the least. Unless .
we make INCLUDE as safe as MODULE, I think we should not
adopt it. I rather would give up (for the time being) the
MODULE as a means for data abstraction than allowing bad
programming practices through the backdoor.

I was pleasingly surprised to read that efforts have started
on developing constructs for paralellism and multi-tasking.
As a matter of fact I would be highly interested to receive
information on tha progress of the Parallel Computing Forum.

~If possible I would even be interested to contribute. May I

hear from you how I could keep up to date with the
developments?

On the subject of simplification of generalised precision I

made a proposal which I would like to be included in the
premeeting distribution of the forthcoming WG5S meeting in
Paris. If required I would be very willing to formally
introduce ‘this proposal at the meeting. As you may see it is
& plea for introduction of "KINDeable" intrinsics, which in
one form or another has already turned up in several
proposals before. I cannot think of a better name (would
TYPEable be appropriate?). It is not a worked out proposal,
but is rather meant as food for thought. I realise that
implementation of this proposal will mean a lot of editorial
work. If however there is sufficient support in X3J3 for
this proposal, I think it is well worth the trouble.

The main reasons,awby this proposal deserves a close look
are: _
- it is easier to understand than the current generalised
precision in F8X
- it supports better programming practices
- it is an extendable feature with opportunities for
future Fortrans ,
- the method is directly applicable to Japanese, Chinese
or other character types.

In order to make sure that in the compromise not a facility
is lost that 1is absolutely required for writing portable
numerical software I made an alternative proposal that (1
think) essentially provides the same facility, namely an
absolute control of the accuracy of scientific calculations.
In my view current practices with REAL* or the proposed HIGH
PRECISION nowhere come near the mark. After much thought I,
even prefer the latter, far simpler proposal.

As from the 1lst of August I have retired from Shell. I will
however keep my activities in Fortran standardisation. Would
you be so kind to have my address changed as from that date?
I wish you and your colleages in X303 all success in the

forthcoming meetings.
Best regards;t

///é;/ L
= Leo ter Haar
Koninklijke/Shell Exploratie
en Produktie Laboratorium
P.0.Box 60
2280 AB RIJSWIJK
The Netherlands

from lst August:
Ds van de Boschlaan 36
2286 PM Rijswijk
The Metherlands

g1

éﬁ@&

o —JCA-3

To: WG5, X3J3

From : Leo ter Haar

Re : Simplification Generalised Precision
Date : 25 July 1988

1. Introduction
1.1 Background

Many critiques of Fortran 8X have concentrated on the concept of
generalised precision. This is strange as it provides a facility
for developing numerical software that is yet unsurpassed in any
other language. Why then meets such a powerful feature so much
opposition? If it is not the feature itself, it must be the
syntaxis. I believe that the method chosen for generalised
precision, namely that of parametrisation, is basically wrong.
This leads to descriptions in the standard that are difficult to
understand, and if fully understood still leaves doubts.

For instance in the TYPE description on the type NODE (page 5-5)
I am still not sure whether the following is standard conforming:
TYPE NODE (PRECISION, EXPONENT RANGE, M)
REAL (PRECISION =PRECISION, EXPONENT_RANGE

EXPONENT _RANGE) :: DOT
CHARACTER (M) :: DASH
END TYPE NODE
And if so why is then the following incorrect:
TYPE NODE (M1, M2, M)
REAL (PRECISION = M1, EXPONENT RANGE= M2) :: DOT
CHARACTER (M) :: DASH

END TYPE NODE)
Furthermore PRECISION and EXPONENT RANGE only define part of the
characteristics of the generalised precision type. The EXPONENT
LETTER statement is(???) still needed for definition of constants
of a certain type.

All of the above would be so much easier to understand if we had
REALs (and COMPLEX) of another KIND. The above NODE definition
would then read:
TYPE NODE (M1, M2)
REAL (KIND=M1l) :: DOT
CHARACTER (KIND=M2) :: DASH
END TYPE NODE

The problem with KIND is however that it is almost impossible to
describe the full characteristics of a generalised precision type
with one single parameter.

The standard says quite. rightly (introduction of chapter 4) :

" A data type is characterised by a set of values, a means to
denote the values, and a set of operations that can manipulate

7

/o -JCA -3

©,

and interpret the values." In other words, the standard defines
for (default) intrinsic types:

- the type definition, i.e. the ways and means to define such
types (e.g. the implicit typing rule for reals)
data object declarations
source representations of constants of such type
edit representations of values of such a type
meaning and interpretation of intrinsic operators for such
type

- coercion rules
The internal representation is necessarily hardware dependent.

What is really needed is a mechanism whereby a Fortran user can
define types of real (complex), integer, character, logical, that
can efficiently be implemented by processors using native

internal representation. The solution may be found in the KIND '

statement (see below), which is worked out for the REAL type only
(would FLOAT be more appropriate?)

1.2 Some thoughts about generic portable software

One would think that generic intrinsic functions would have the
accuracy of the argument. Unfortunately this is not always true
in current implementations of Fortran 77. I believe this
situation must be corrected in Fortran 8X.

JOn the other hand it should be possible to write generic software
with user defined accuracy. (of course this is possible by adding
a dummy argument).

1.3 Basic framework for the proposal

- The KIND statement is introduced to define intrinsic types
whose characteristics differ from the default intrimsic
types.

- The type-spec for intrinsic types has an optional KIND-
selector whose value must have been defined before in a KIND
statement. '

- 2?2 KIND = 0 is equivalent with default type 22?2

- Each intrinsic type has its own set of KIND-specifiers.

- Intrinsic types of a defined KIND must not be EQUIVALENCEAQ.
They have no defined storage characteristics.

- Examples in the text of the document should only refer to
default types unless in the context of the description of the
KIND specifiers for that type.

1.4 Advantages of KIND

In the first place it supports good programming practices. The
KIND specifier may only be used if it is previously defined. This
provides an easy check for the compiler.

It is easy to understand both for implementor and for the Fortran
user. The feature can easily be described in separate paragraphs
of the standard. Especially if we keep the examples in the

lo

—~

“‘-

a4

00— T cH-3

©,

standard confined to default types unless in the context of the

- description of non default types, the average reader of the

document may easily skip the difficult parts. _
.The greatest advantage of . tha proposal is its extendability.

‘Suggestions for extensions are:

- CHARACTER KIND with XIND specifiers like LEN =, LANGUAGE
= 'katakana', LANGUAGE = 'swedish' etcetera

- LOGICAL KIND with specifier PACKED = 'BIT' , 'BYTE'
Would one need a separate BIT type?

- ENUMERABLE specifier

- If we introduce a POINTER intrinsic, the KIND mechanism
would leave the way open for later extensional pointer
types

1.5 About the LEN parameter

As a consequence of the proposal the LEN parameter of the
CHARACTER type may have to be deleted from the language. This is
not a great loss for various reasons. The most important reason
is that the introduction of the LEN parameter introduces an
endless series of standard conforming ways of writing the
CHARACTER statement, e.g.
© CHARACTER*20 MESSAGE

CHARACTER*(20) MESSAGE

CHARACTER*(20), MESSAGE

CHARACTER(LEN=20) MESSAGE

CHARACTER(20) MESSAGE ! etcetera
Especially the 1last example is no improvement on Fortran 77
whatsoever.,

1.6 Discussion of some alternatives

C implementation is not extendable for more than double precision
Common practice REAL*4 etcetera does not work for generic
software

2. Proposal 1 KINDable intrinsics
2.1 The RIND statement

Default intrinsic types have characteristics that are defined by
the language. Some of the intrinsic types may be be parameterised
by means of a KIND parameter. The KIND statement provides a means
of declaring non default characteristics to these intrinsics. The
syntax of the KIND statement is : ; NS

KIND def-type (kind-spec) (kind-param-spec-list)
def-type is REAL (or FLOAT?)
or CHARACTER

. or. LOGICAL
or INTEGER

//

/S0 - TcAH-3
G

kind-spéc is positive integer-contant-expr (or integer-
constant?)

kind-param-spec is float-param-spec
- or character-param-spec
or logical-param-spec
or integer-param-spec

The type declaration for non default types is
REAL ([{KIND=)kind=-spec)
or COMPLEX ([KIND=] kind-spec)

or LA N K B I U I B B O Y)

Intrinsics of a non default KIND may only be EQUIVALENCEd with
types of the same kind.

2.2 Generalised precision
The param-specs for the FLOAT kind are given by:

real-param-spec is PRECISION = prec-expr
. or EXPONENT-RANGE = exp-expr

or EXPONENT-LETTER = letter (other than
D,E, or H)
prec-expr is integer-constant-expr (positive)
or EFFECTIVE_PRECISION (dummy argument)
exp-expr is integer-constant-expr (positive)
or EFFECTIVE_EXPONENT;RANGE (dummy
argument)

constraints : ,

There may only be one KIND statement using dummy argument (which
must be present). This implies generic Maximum allowed value for
the value of precision is processor dependent but at least 2?7?
‘Ditto exponent range If generic precision is used the interface
must be present in the calling program unit.

3. Alternative proposal generalised precision
Background

This proposal is based on the minimum that is required to achieve
the following functionality:
- control in Fortran on the decimal(sic) accuracy of
scientific calculations.
No such funny things as meaningless byte accuracy!!!
- the possibility to write portable numeric (i.e. generic)
software.

In this proposal it is supposed that exponent range does not play
a critical role in scientific calculations other than by means of

12

P

o - TICH-3

the EFFECTIVE_EXPONENT RANGE enquiry function. Furthermore one
must have an unequivocal means of defining accuracy of numeric
constants.

Proposal

- The REAL and COMPLEX. types may be parameterised by means of

the PREC specifier: = . _ ‘
prec-spec is [PREC =] positive integer-constant—expr
or [PREC =] #* ,

~ The maximum allowed value of the integer-constant-expr is
pProcessor dependent (but at least 2?2?

- The * parameter may only appear in subroutines or functions
which must be declared GENERIC. (GENERIC FUNCTION name ete)

= For generic subprograms the calling program must contain the
GENERIC declaration (or the whole interface if you like) o

- The GENERIC declaration has the form GENERIC subprogram-name
(note the. similarity with EXTERNAL)

= !1! In simple assignments of the form:

variable = numeric-constant

Or constant-name = numeric-constant
the constant assumes the accurace of the left hand side.
Otherwise the accuracy is either default real (without D
exponent) or double precision, - .
This last rule gives a sufficient mechanigm to guarantee
required precision and obviates the need for the ugly
EXPONENT_LETTER statement.

~ Parametg¢rised REAL and COMPLEX must not be EQUIVALENCEG

4. Proposal 3, Accuracy of intrinsic functions

Background

For numerical software it is killing not to know the accuracy of
intrinsic functions.

Proposal
Provide a mechanism in Fortran to make sure that the accuracy of

intrinsie functions (SIN, COS etc) is exactly the same as the
accuracy of the argument. ;

|3

'

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
Scientific Computing Division/Advinced Methods Section
P. O. Box 3000 ¢ Boulder, Colorado ¢ 80307
Telephone: (308) 497-1275 o FAX: 808-497-1187 TELEX:989764

August 29, 1958 A %
A —
Cathy Kachurik / /ﬂ J—&

CBEMA, X8 Secretariat
811 First street, N. W. Suite 500

Washington, DC 20001-2178

Dear Cathy;
X3J3 has snstructed me to request another membership clarification from the SMC.

During the past several years, there has been a member (Leonard Moss) and hés alternate {Sylvia
Sund) from the Stanford Linear Accelerator Lab (SLAC). Last month, Sylvia Sund applied for
membership as the representative for SHARE, the IBM User’s Group.

The result of this action is that there are two members from the same organization, SLAC, even
though one is representing the SHARE User’s Group. Would you ask the SMC if Ms. Sund is
eligible for membership privileges? In the meantime, Ms. Sund is accepted as a member with full
voting privileges.

In recent months, there have been numerous membership applications; I appreciate your reviewing
these questions for X3J3.

Regards,

Jeanne Adams, Advanced Methods Group
.Chair, X3J8

15

The National Ceater for Atmespheric Research is Operated by the University Corporation for Atmospheric Rescarch
snder sponsorship of the National Science Foundation, An Equel Oppmmy/mﬁaﬁu Action Enployer.

@

/6

Ho-dch -5
f) of o4
NATIONAL CENTER "OR ATMOSPHERIC RESEARCH
Scientific Computing Division/Advanced Methods Section
P. o- M 3000 » Boulder, Colorldo e 80307
Telcphone: (808) 497-1875 » FAX: 497-1187 Telez: 989764

September 6, 1988

Prof. John Rice

Dept. of Computer Science
Purdue University

West Lafayette, IN 47907

Dear John;

I welcome you to address X3J3 at the November meeting. Comments from: persons and
organizations concerned sbout Fortran are encouraged to make their views known in the
current controversy.

The meeting will take place at the Royal Sonesta Hotel in Cambridge, November 13-18.
Notice that we begin Sunday morning at 10 am. The host is Michael Berry of Thinking
Machines. I can schedule your talk on any morning. I plan to mail & similar letter to Brian
Ford. You may wish to speak on the same day or different days. I will be producing the final

-agenda two weeks before the meeting.

My email addrress is jeanne@scdpyr.ucar.edu. Do you have an email address, in case you need
to communicate with me on arrangements?

I will place your correspondence in the pre-meeting distribution, which I will send to the
distributor next week, before I leave for the Paris meeting of Working Group 5. I look forward
to seeing you again at the meeting of X3J3 in November.

Regards,

Jeanne Adams, Advanced Methods Group
Chair, X3J3

cc. Michael Berry, Thinking Machines

" 17

The Nationel Center for Atmospieric Rescarch is Opersted by the Univeroity Corporation for Atmespheric Research
under spensership of the National Science Foundction. An Egual Opportanity/Affirmetive Action Emploger.

10.88

I~ -7 A

INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING
September 1, 1988

Date :

" Boulder, Colorado 30307

Dear Jeanne;

situation or issues involved as our members are, This letter is also being sent to the X3 com-
glalrtcti.ee along with a request that it also take Steps to promote prompt adoption of a new stan-

Brian Ford and I wish to attend the next meeting of X3J3 to press for a resolution of the
deadlock. We do not have a list of specific constructs or features that we advocate. The
members of IFIP WG2.5 appreciate that there are substantial differences in technical evaluations
on some points. However, we suspect that a deadlock such as this can also be partially due to
other factors, e.g., unwillingness to abandon long held positions and "lose face”, petty commer-
cial advantages of a transient nature, or Just plain stubbornness. Brian and I hope that our
appeal as concemed outsiders will motivate X3J3 members to reevaluate their positions and
move quickly toward a new Fortran standard.

For your information, Brian Ford is the head of NAG, Ltd. and a professor at Oxford
University. NAG (Numerical Algorithms Group) has been producing numerical software
libraries and related products since the early 1970’s and is the leading European company in this
field. I am a professor at Purdue University and head of the Computer Sciences Department. I
have been active in most aspects of numerical software since the 1960’s, for example, I founded
the ACM Transactions on Mathematical Software in 1975 and am still Editor-in-Chief.

Please let me know soon if Brian and I will be addressing X3J3 at its Boston meeting so
we can make travel plans. Thank you for your consideration of this request.

Dept. of Computer Sciences
ik Purdue University

West Lafayette, IN 47907
317-494-6003

Dr. Jeanne Adams

Chairman, X3J3

Scientific Computing Division

.NCAR
- P.O. Box 3000

ce-Cilairman
IFIP WG2.5

JRR:pp \
cc: Brian Ford

Lloyd Fosdick, Chairman of IFIP WG2.5

Mladen Vouk, Secretary of IFIP WG2.5

Richard Gibson, Chairman of X3

oAt St e e 8 S e Y A A T

Vice-President : A. Melbys (Denrmark)

IFIP Secretarizt : 16 place Longomalle, CH-1204 Geneva, Switzoriand - Tel. 41 (22) 28 26 42 - Telex 428 472 IFIP CH - Cable IFIPSEC GENEVA

L2y #

INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING
September 1, 1988

: IP //ﬁ-—JC/f"(

Date :
Address reply 1o : Dept. of Computer Sciences
Purdue University
West Lafayette, IN 47907
317-494-6003
Dr. Richard Gibson
AT&T
5A 211
Rt 202 & 206N

Bedminster, New Jersey 07921

Dear Dr. Gibson:

‘I enclose a letter to the members of X3J3 from the membership of IFIP Working Group
2.5 (Numerical Software). It expresses e deep concem that IFIP WG2.5 feels about the
current deadlock on the X3J3 committee. The second enclosed letter to Jeanne Adams provides
further information. The membership of IFIP WG2.5 feels strongly that the need for hard deci-
sions should not become an excuse for indefinite delay. - -

If there are further steps that are appropriate for our membership to take to pursue further
this end, please advise me of them. Thank you for your consideration of this request.

WRAA

J R. Rice
Vice-Chairman
IFIP WG2.5
JRR:pp _
cc: Brian Ford '
Lloyd Fosdick, Chairman of IFIP WG2.5
Mladen Vouk, Secretary of IFIP WG2.5
Jeanne Adams, Chairman of X313

- 17

Seasidp=s - £ W Goldevenctanv (Bugiegtip: Vize.Oregident : @ Glaser (.68 Serretery 1). Foures ISepana

®

sr0 —Jch -5
P Ay
INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING
September 1, 1988

Date :

Addrezs rsply to : Dept. of Computer Sciences

Purdue University

West Lafayette, IN 47907

317-494-6003

Dear X3J3 Member:

The membership of IFIP WG2.5 (Numerical Software has just received reports of the

deadlock in efforts to produce a new Fortran standard. We are alarmed and appalled. We
believe that a failure of X3J3 to produce a standards proposal soon would be an abdication of its
responsibilities to the scientific community. Our group represents many divergent interests and
needs, yet we all join in strongly asking you to meet the needs of the scientific and engineering
community promptly.
‘ Werealizeduttherearesedousdiﬂ’erencesonsometechnicalissues,thatthereamuncer—
tainties in the relative merits of different approaches to some problems, and that the choices
introduce substantial, but different, costs for users, software developers, and commeon system
providers. Yet we believe thess are all secondary issues and hard choices should not impede the
production of the new Fortran standard.

The criteria for the new standard are simple: (1) Upward compatibility must be main-
tained, (2) Fortran 77 is increasingly outdated and must be enriched by the inclusion of a
number of new constructs and features, and (3) it must form a coherent and useable whole.
There are multitudes of potential standards that meet these criteria. We believe that the user's
needs take priority over those of compiler writers, software developers, or hardware manufactur-
ers.

Further excessive delay in this standard in unconscionable and unacceptable. We offer to
send a delegation to your next meeting both to underscore the seriousness with which we view
this deadlock and to offer more specific help in resolving the issues.

f? . éc\ c—
ohn R. Rice .

Vice Chairman
IFIP WG2.5

Sincerely,

Working Group on Numerical Software

JRR:pp

Lo

Bracicans ¢ 10 Maldayemrain. F81meentio: \fime Depeimems - B Migear 0@ 21 Berrstzon o ' Zeieed (Zecans

5

©

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
Scientific Computing Division/Advanced Methods Section
P. O. Box 3000 « Boulder, Colorzdo ¢ 80307
Telephone: (808) 497-1275 o FAX: 497-1187 Telez: 989764

g — TCA =6

September 7, 1988

- —————

W. van Snyder
Mail Stop 301-490

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Dear Dr. van Snyder;

I will place your August 31, 1988 comments in the pre-meeting distribution for the November
meeting, along with the letters you sent to Dr. Wagener in 1987. Your comments have already
been dlstnbuted

In the Current controversy over the dlrectlon X3J3 should take, many of the detailed criticisms
and suggestions have been set aside for later processing when the broader issues have been

resolved.
iy

f I belpful to hear from Fortran users, as we work toward the resolution of our difficulties.

Regards,

Jeanne Adams, Advanced Methods Group
Chair, X3J3

The National Cester for Atmospheric Research is Operated by the University Corporation for Atmospheric Rescarch
wnder sponsorship of the Netionsl Sciczce Foundation. An Equel Opportunity/Afirmstive Action Employer.

WO -TcAhH -6 @

Jet Propulsion Laborator:
4800 Oak Grove Drive
Pasadena, CA 91109

August 31, 1988

Dr.; Jeanne Adams, Chair X3J3

Scientific Computing Division

National Center for Atmospheric Research
Box 3000

Boulder CO 80307

Dear Dr. Adams:

I have recently seen a summary of the positions of four factions within
X3J3 regarding features that might be removed from or added to S8. Two of the
features I have previously argued were redundant, RANGE and IDENTIFY/ALIAS, are
apparently scheduled for deletion. But my arguments were that these features
could be implemented more regularly by a single more powerful, more easily
described mechanism. I argued that RANGE and IDENTIFY, and the associated
intrinsic functions, could be subsumed into a single mechanism, the accessor.

I haven’t argued that they should simply be removed, since the facility they
provide'is useful.

1 agree that pointers or some equivalent mechanism should be defined. I
think pointer dereferencing and structure element selection can use the same
syntax. I discussed this in my letter to Wagener of 27 September 1987, of
which I sent you a copy. I enclose another copy.

I couldn’t find really serious fault with the precision mechanism. But I
believe the same mechanism should be used for all relevant types -- REALs,
INTEGERs and CHARACTERs. I don't like the Japanese proposal for character
kinds. 1 think the concatenation and automatic sectioning present in character
variables should be extended to all types. See the arguments on page 2 of my
public comment, Critique of 8X. 1 enclose another copy.

I find the sentiment to use I/0 syntax for array constructors interesting.
We (with Krogh) proposed exactly this overloading in response to Wilson's orig-
inal array proposal. Those who advocate I/0 syntax might want to dig up our
old proposal. If it can’t be found we can (maybe) provide one. The essential
extension was to use the "//" operator to distinguish between concatenating
lists to make one column, or concatenating columns to make arrays, etc.

I'm almost neutral on vector-valued subscripts. They're nice, but not if
they add too much baggage.

Most compilers provide some kind of support to access the individual bits
of an integer. The use of MIL-Std ‘functiors is common and a reasonable choice
for standardization. The MIL-Std bit functions, together with something like
PACKED LOGICAL, would completely subsume the BIT data type removed in the
Halifax compromise. But I think most uses of bits are really bit fields, that
could be described more clearly, and implemented more efficiently, by a bit-
field descriptor in the defined-type area. I described this on page 4 of my
formal critique of 8X, and in an addendum to my letter to Wagener, entitled
Packed Structures.

A2

a—

e o

©

I think the only possible time to add significant blanks is when the new
source form is added. I find it interesting that you are in favor of making
blanks significant (presumably only in the new source form), while the other
factions favor removing the new source form.

Internal procedures are an extension provided by most vendors, and they
should be standardized instead of prohibited. It is my understanding that the
controversy surrounds the use of internal procedures as actual arguments. The
reasons I have so far heard against allowing internal procedures to be actual
arguments, or to be nested, are erroneous. I discussed this in my formal
critique of 8X, on page 6.

I think most of the arguments against deprecation are specious. Go ahead
and deprecate silly features, so long as a reasonably efficient substitute
exists or is proposed. They may stay deprecated forever (rather than eventual-
ly disappearing), but that's 0.K too. If the compilers diagnose them," they

will eventually fall into disuse. It doesn’t matter if that takes 10 years or
50.

INCLUDE is another common feature that should be standardized instead of
prohibited.

Defined operators are potentially very useful, especially if an INLINE
attribute can be attached to the defining subprogram. I don’t think it’'s
unreasonable to restrict them to the operators already defined. That is, allow
the user to define a new action of an extant operator in certain contexts, but
don’t let him define operators using new symbols, or names of his choice in
infix (or distfix) positioms.

I'm neutral on array argument association, user elementals and multi-
statement lines.

I like the new source form, but only if blanks (and ends of lines) are
made significant in it.

I think structures are indispensable. I think they should have paramet-
ers. I think they should be extended to include packed structures, and to
allow accessor subprograms (not their addresses) to be structure elements., I
discussed these in the above-mentioned letter to Wagener.

I can do without module procedures, so long as one can still put interface
blocks into modules. (But see the comments in my formal critique of 8X regard-
ing the INLINE attribute for external subprograms). Modules should be kept.

The new syntax for DATA doesn‘t seem to add much baggage, and is much more
flexible than the old. I’'d vote to keep it.

Keyword and optional arguments would be useful, but I've figured out ways
to get along without them, and still have roughly the same functionality.

Any reasonable definition of equivalence of structures (I assume this
means type equivalence, not storage equivalence) is acceptable.

Keeping or discarding obsolescence is moot, since there are no obsolescent

features.
23

I'm not sure what entity-oriented declarations are.

Interface blocks should be kept.

If MODULES are kept, and one believes MODULES are a viable substitute for
COMMON, one shouldn’t need to put structures in COMMON. Don’t introduce new
baggage that isn’t necessary. If MODULES go, but structures stay, by all means
allow structures to be put into COMMON.

Stream I/0 and varying strings would be nice to have if they don’t require
too much baggage.

The summary didn’t mention:

] EXIT should be allowed to apply to any structure, not just loops. A
BLOCK structure, having no other purpose than as the target of an
EXIT should be introduced. Absent this ability, try computing the
predicate "X is not a member of the set S" without using GOTOs or
extraneous logical variables, where S is represented by an array.

® The CASE statement should be extended to REAL ranges. This ISN'T the
same thing as allowing REAL inductors on DO loops, or REAL sub-
scripts.: It’'s an efficient alternative to ELSE IF and ARITHMETIC IF
that doesn’'t require re-evaluation of part of the predicate.

= ARRAY SECTION DESCRIPTOR should be a new type, with values that are
triplets (as described for array section "constants").

» Dynamic allocation should be extended to structures, as part of a
POINTER facility or equivalent.

] Needless restrictions should be removed. Ideally, every constraint
should be formally justified or removed. Tradition isn't an adequate
Justification. Neither is compatibility, since removing a restric-
tion can’t invalidate an existing program that observed it.

i;rcerely,
—

W. Van Snyder
Mail Stop 301-490

217

©

Lo - JchA -6 @

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Sugust 4, 1987

Jerrold L.Wagener
AMOCO Production Company
Tulsa, OK 74102

Dear Mr. Wagener:

As a consequence of the pizevof X3J3/58.104, I have only now noticad the CASE
statement is not usable for REAL case-expr. This might be repaired by the
following small changes: '

On page 8-3, replace lines 24-26 by

{

R812 case-expr is scalar-numeric-expr
or scalar-char-expr

} -

Replace lines 30-36 by

{

R814 case-value-range is case-value [rel * [rel case-value]]
: or * rel case-value

R814.5 rel 18 < or .Li. or <= or .LE,

R815 case-value is scalar-numeric-const-expr

or scelar-char-const-expr
}
OR
{
R814 case-value-range is case-value [rel-op * [rel- op case-value])
‘ or * rel-op case-value
Constraint: If case-v&lue;range is of the form
. case-value rel-op * rel-op cese-value, each Iinstance of rel-op iust be
‘one of <, .LT., <= or .LE., or each instance of rel-op must be one of
>, .GT., >= or .GE.

R815 case-value ie scalar-numeric-const-expr
or sczlar-char-const-expr
)

The constraint on R814 could instead be expressed by more syntax rules.

Allowing a LOGICAL case-expr provides mo functionality or performance benefit
as compared to an IF statement, so I have not included that possibility.

Replace from line 39 on page 8-3 to line 11 on page 8-4 by
(3

8.1.3.2 Execution of a CASE Construct. The execution of the SELECT CASE

statement causes the case expression to be evaluated. The resulting value is

called the casze discriminznt end must match exactly one of the selectors of one

of the CASE statements of the construct, If the cases selector is a case value

range list, the case discriminant matches the selector if it matches any of the ;Zf;

) -

case value ranges in the list. A case discriminent with value ¢ is defined to
match a case value range in the following circumstances:

(1) 1If the case value range contains a single value cv, ¢ matches the
case value range if and only if ¢ .EQ. cv.

(2) 1If the case value range i3 of the form cv, rel, * rel, cv,, ¢ matches
the case value range if and only if cv, rel, ¢ .AND. ¢ rel, cv, is
true.

(3)° 1f the case value range is of the form cv, rel %, ¢ matches the case
value range if and only if cv, rel c is true.

(4) 1If the cass velue range is of the form * rel cv,, ¢ matches the case
value range if and only if c rel cv, is true.

(5) If ¢ matches no other case selector and = CASE DEFAULT selector is
present, ¢ matches the CASE DEFAULT selector.

(6) If ¢ matches no other case selector and no CASE DPEFAULT selector is

prasent, an error is signalled and program cxecution terminates.
)
On page B8-4, line 16, replzce "index" by "discriminant”.

On page 8-4 replace lines 20-30 by
(
8.1.3.3 Examplzs of CASE Constructs. INTEGER and REAL signum functions:

INTEGER FUNCTION SIGNUM (}) INTEGER FUNCTION SIGNUM (X)

INTEGER N REAL X

SELECT CASE (N) SELECT CASE (X)

CASE (* < 0) CASE (* < 0.0)
SIGNUM = -1 SIGNUM = -1

CASE (0) . CASE (* =~ 0.0)
SIGNUM = 0 ° SIGNUM = 0

CASE (0 < *) CASE (* > 0.0)
SIGNUM = 1 SIGNUM = 1

END CASE END CASE

END FUNCTION SIGNUM END FUNCTION SIGNUM

}
Delete lines 1-20 on pag= 8-5.

I don't know if there ara other examplas using the CASE construct and the colon
notation for ¢ range. If so, they would need to be changed.

This change would ullow the CASE construct completely to subsume the function-
ality of the arithmetic IF with no loss of efficiency.
[4

Sincerely,

W. Van Snyder
‘;_é Mail Stop 301-490

o - TcA b @

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Septembex 24, 1987

Jerrold L.Wagener

AMOCO Production Company
4502 East 41st Street

P. 0. Box 3385

Tulsa, OK 74102

Dear Dr. Wagener:

The issue on which my concern is and hes been focused is data abstraction.
When your letter arrived, I had thought it impossible fully to support data
abstraction with any notation other than component(structure), and this is so
given only the weak mechanisms for declaration of subprograms proposed for
Fortran 8X. But I discussed the issue with my colleague, Fred Krogh, and we
found the several notations (even S¥C) to be equally amenable to data abstrac-
tion, given simple extensions of declarative mechanisms. Nome of the notations
would. be a serious mistake.

I have no arguments other than those Pzge sent you in 87100ART0073 (he had more
than I) to distinguish between structure (component) and component(stiucture)
notations. The most surprising result of the discussion with Krogh was that
S%C notation (perhaps with a prettier character than %) allows the clearest
expression of complicated references, but doesn’t inhibit abstraction. In any
case, all the notations must be carefully defined to avoid inconsistencies,
especially between references to statically and dynamically allocated objects.

I had thought that since the desire to transform between structure components
and procedures, and between array elements and procedures, required the common
ability to represent a concept by a procedure, the syntaxes for array element
reference, component reference, and procedurs reference had to be the same. 1
had also thought it impossible transparently to change the representation of an
abstraction between an array of .structures and a collection of dynamically
allocated structures using any notation. But solutions of these problems,
described below, convinced me of the possibility of abstraction using any
notation.

Transformations of the second kind mentioned above arise, for example, when one
needs to change between an array of objects of type T and a linked list of
objects of type T. But it seems that if one uses an array one is required
alvays to mention its name in references, and if one uses pointers to &nonymous
objects there is no name to mention. Whatever refarential syntax is chosen,
data abstraction seems impossible. But by declaring J to be a pointer to T,
and declaring that S casts its argument in the role of pointer to T, one could
change from a representation requiring S(J)SC to one that would require P%C,
and still write S(J)%C!. Similarly one could change from a representation
requiring PYC to one that would require S(J)$C by changing the declaration of P

iThe declarations of S and J may seem redundant, but they allow the
referential syntax not to change when the representations change.

’ 27

0,

-2- September 24, 198,

from "pointer to T" to "subscript of S" and still write P&iC. Without these
declarations, one would still need manually to change between C(5(J)) and C(P),
even when using functional notation. That is, functional notation has no
advantage in this case over S8C for purposes of data abstraction.

Type casting has the added benefit of aliowing a natural notation for referen-
ces using pointers to unions of several types. Suppose one has two types, say
T, and T,, and two objects, say §; and S,, that are arrays of objects of types

T, and T, respectively, and one wants to use the same subscript to access the
arrays. Then Sl(J)%C and S,(J)3C have unambiguous meaning. Suppose that one
must change the representations of S, and §; to collections of allocated
objects. The first step is to define S, and S, to be casts of the appropriate
types. But beyond that, one cannot simply change the declaration of J to
"pointer to T,," because in 5,(J)%C, §,(J) would have incorrect type correspon-

dence. Similarly ome cannot simply change the declaration of J to "pointer to
T;.% One must change the declaration of J to "pointer to union of T, and T,,"

and the presence of S, or S, selects the type to which J points.

The property of Fortran 8X that ultimately prevents reasonable data abstraction
is not referential notation, but that one cannot simply change the declaration
of the representation or a concept from a structure component or array element

to a subprogram: Fortran doesn’t allow subprogram invocations to appear in
value-receiving contexts.

To repair this defect, I believe it is important to introduce "accessor'
subprograms Into Fortran. That is, subprograms that can be invoked in both
value-providing and value-receiving contexts (including use as actual arguments
and in 1/0 lists). If this is done, it is important NOT to implement "left-
hand functions" in the sense usually described in Programming language text-
books: subprograms that are invoked before the value is calculated, and produce
the address at which the calculated value is to be stored. It is important
that the value be calculated before the value-receiver is invoked, and that the
value be passed to the value-receiver as an actual argument. Otherwise the
value-receiver is unable to make decisions about the position of the value in a
data structure, Imagine trying to de something as simple as keeping a list in
order by using left-hand functions that calculate the address of an object
before the value is known! ;

Uniform referential syntax seems essential to allow the representation of
concepts to be changed between structure components and accessors. But we
discovered the syntax issue is irrelevant in this case also if it is possible
to declare that a member of a structure might be an accessor. Then the
notations C(S), S(C) or Ss%C equally well indicate component selection or
accessor invocation, depending only on the declarations of S and C.

In Fortran 8X as it is today, structure declarations can be viewed as a small
subset of module declarations -- they both bundle related objects together.
Allowing components to be procedures, and extending component (storage or
procedure) declarations to allow accessibility attributes, makes structure
declarations a more substantial subset of Module declarations. It would be
more thrifty to remove structure declarations, and allow variables to b
instances of modules.

If one is to allow several instances of a module, one must define "instance of
@ module.” Each instantiation of a module allocates storage space for all of

“ 28

e,

©

-3. September 24, 1987

the (public and private) variables declared directly in the module, or in
directly contained modules, but not for global objects such as common blocks or
procedures, nor for objects declared inside procedures -- the latter would be
allocated only once (per recursive invocation). If modules could be dynamical-
ly instantiated by an allocator, this would provide some of the functionality

of object oriented languages (inheritance and dynamic binding would still not
be provided).

I am no longer convinced that uniform syntax is best. The uniformity conferred
by functional notation comes at tha price of unnscessarily strenuous gymnastics
to refer to such complicated things as arrays of pointers to arrays of struc-
tures having components that are arrays. S$C notation allows more readable and
writable references, and sllows some references not possible in function
notation. Since uniform notation is mnot necessary for data abstraction, I
prefer notation(s) that are ecasiest to read and write.

The % is ugly (and misleading -- in some fonts it looks a lot like +). But I
no longer believe functional notation is the answer. 1 tend toward something
like S°C, which I find more aesthetic than S%C, but this is an fssue of such
narrow content that it probably won’t convince the committee to change any-
thing. Either S%C or S°C has reasonable generalizations allowing pointers to
structures, pointers to anonymous arrays (that are not Structure elements),
arrays of pointers to arrays of structures having components that are arrays of
structures ... And to accessor subprograms, which for me is the real issue.

Although I submitted a proposal to amend S8.99 to incorporate accessor subprog-
rams, I never had substantial hope they would be implemented into Fortran 8X.
But since I have been shown how data abstraction can be accomplished without

uniform syntax, I no longer believe nonuniform syntax is an impediment to
future extensions that support more powerful data abstraction.

I know I‘ve reversed my position. I hope my agitation for uniform syntax
wasn’t the only reason you and Walt and Rex took it up again.

If you would like more comments please feel free to ccll or write. I can be
reached at 818/354-6271.

Singerely,

QA
W. Van Snyder
Hail Stop 301-490

P.S. I must repeat that adequate power to express abstraction would allow
removing much of the specialized baggage of Fortran 8X, e.g. RANGE, ALIAS,

Enclosures

cc: Jeanne Adams, Tom Lahey

27

Let STRU be a derived type havin
of type STRU, P a pointer to ob
(X) a (possibly absent) list o
Scalar to "Sca", Array to "Arr" and Accessor to "Acc".

SUGGESTED NOTATIONS

f arguments.

we couldn’t find any reasonable notation.

©

Page

g a component C, S a statically declared object
Jects of type STRU, I, J and K subscripts, and
In the table below we abbreviate
A question mark means

Pointer Component Notations:
ur t C(S) style S(C) style

No Sca Sca s*c, s’'c, S3C c(8s) S(C)

No Sca Arr s*c(J) c(s)y S(C(I))

No Sca All S or S" or S"STRU STRU(S) or S S(STRU) or S

No Sca Acc S*C(X) C(S)(X) 5(C(X))

No Arr Sca S(K)"c C(S(K)) S(K)(C)

No Arr Arr S(K)“C(J) C(S(K)H) S(K)(C(J3)) -

No Arr All S(K) or S(K)" or STRU(S(K)) or S(K) (STRU) or S(K)
S(K)"STRU S(K)

No Arr Acc S(K)"Cc(X) C(S(K))(X) S(K) (C(X))

Sca Sca Sca P°C c(p) P(C)

Sca Sca Arr P"C(J) c(P)(J) P(C(I))

Sca Sca All P" or P"“STRU STRU(P) P(STRU)

Sca Sca Acc P C(X) C(P) (X) P(C)(X)

Sca Arr Sca P*(K)"C C(P(K)) P(K) (C)

Sca Arr Arr P (K)"c(J) C(P(K)) (J) P(K) (C(J))

Sca Arr All P*(K) or P*(K)" STRU(P(X)) or P(K) (STRU) or
or P*(K)“STRU :

Sca Arr Ace P (K)"C(X) C(P(K))(X) P(K) (C(X))

Sca No Arr P*(K) ? ?

Sca No Sca P* 7 ?

Arr Sca Sca P(I)"C C(P(1)) P(I)(C)

AYr Sca Arr P(I)"C(J) C(P(I))Y(I) P(I)(C(J))

Arr Sca all P(I)" or STRU(P(I)) or P(I)(STRU) or
P(I)"STRU P(1) P(I)

Arr Sca Acc P(I1)"C(X) C(P(I))(X) P(I)(C(X))

Arr Arr Sca P(I)*(RK)"C C(P(I)(K)) P(I)(K)(C)

Arr Arr Arr P(I)"(K)"C(J) C(P(I)(K)) () P{I)(K)(C())

Arr Arr All P(I)*(K) or STRU(P(I)(K)) P(I)(K)(STRU) or
P(I)*(K)" or or P(I)(K) P(I)(K)
P(I)"(K)"“STRU

Arr Arr Acc P(I)*(K)"C(X) C(P(I)(K)) () P(I)(K)(C(X))

Arr No Arr P(I)"(K) ? ? '

Arr No Sca P(I)* ? ?

Several of the functional notations are the same in different circumstances,
but this is just another kind of overloading that may be put to beneficial use
vwhen transformations of representation are necessary.

One might prefer to use commas instead of *parentheses in some circumstances,
such as reference to an array element component of an array element structure.
But one must decide on the order of "arguments.”™ The choices reflect the
conflict between referencing from the general to the specific, and "column
major" storage order. Commas might be too confusing to write or read reliably.

The above notations allow consistent reference to statically and dynamically
allocated objects, except for references to whole structures or unstructured
objects. When P is a pointer it seems more reasonable to interpret P alone to

30

©

SUGGESTED NOTATIONS Page 2

be its value, and use some other syntax such as P" or STRUCT(P) to denote the
value of the object P references. But symmetry demands one write $* to refer
to the value of a statically allocated object, in which case S alone would
naturally be its address. This is incompatible with Fortran 77, but it allows
P=S to assign the address of a statically allocated object to a pointer?, an
operation that regularizes many algorithms.

Since we ordinarily desire S alone to stand for the value of a statically
allocated object, symmetry demands that P alone stand for the thing P referen-
ces, and one must use something like LOC(P) to access the value of P. By
symmetry, LOC(S) would then be the address of a statically declared object §S,
but it would be a function instead of an accessor. One could then still write
LOC(P)=LOC(S). But then if one changes P from a pointer to an integer used as
a subscript, LOC(P) becomes its address instead of its value, and LOC(P)=E is
prohibited. The escape from this inconsistency due to the intrinsic difference
in levels of indirection between pointers and objects that are not pointers is
by strengthening the declarative power: declare an object to be a "locator"
(subscript, pointer or ?). Then to use the value of a locator X in a non-
locating context, one must write LOC(X) no matter whether X is a pointer or
subscript. Declarative solutions to these problems of inconsistent referential
syntax, and the corresponding references, might be

: Address or
Declaration Object value Pointer value

TYPE (STRUCT) S S LOC(S)
TYPE (STRUCT) (POINTER,PARAMETER) S S* or STRUCT(S) S
TYPE (STRUCT) (POINTER) P P LOC(P)
TYPE (STRUCT) (POINTER,VALUE) P P" or STRUCT(P) P
INTEGER (INDEX(S)) P P LOC(P)
TYPE (STRUCT) (CAST) S S(®) P

in which the first two statically allocate storage. The fifth and sixth allow
the transformation of reference of an object between an array of structures and
a collection of dynamically allocated structures. The fifth declares P to be a
subscript of S, and therefore P alone stands for S(P). The sixth has the
effect of casting any pointer argument P of S in the role of "pointer to
STRUCT," no matter what its declaration. It must also be possible to cast a
pointer using a type name.

Continuing this argument seems to lead to trouble. If one is allowed to access
an object using S or S$" or P or P" depending on the declaration, by extension
one should expect to access S C or S°C etc. depending on the declaration of §.
But one needs some punctuation to separate the object from the container when
the container is a scalar. A further observation is that requiring “ prohibits
a (probably very rare) transformation of representation between P"(K)"C and
P(K)*C. To allow this transformation, the standard should make the circumflex
(or %) optional except where needed to provide a boundary between two names.
Both of the above could then be written P(K)C. This is almost the same as
P(K)(C), the S(C) style of notation in both of these cases. But then, does P
mean P or P" or P"" or ...?

ZBy this interpretation S=P would mean "change the address of S to the
value of P, which is clearly nonsense.
- 3

©

ACCESSOR SUBPROGRAMS Page 1

Accessor subprograms are necessary for data abstraction. But there are several
related issues that must be examined. To assist the discussion, we first
present a concrete example, and then discuss the variations resulting from
different choices of declarative issues.

Suppose one needs some stacks. To preserve the possibility that we might want
to change the representation between an array and a linked list, we choose to
represent the stack by a structure, and provide its facilities by components or
accessors, as appropriate to the concrete representation.

TYPE STACK_ELEMENT
END TYPE STACK_ELEMENT

TYPE STACK (SIZE) (REF PUSH_POP)
! The attribute (REF PUSH_POP) means references to objects of type
! STACK are to consist of invocation of the PUSH_POP accessor below.
INTEGER, DATA, PRIVATE :: THIS_SIZE = SIZE
INTEGER, DATA, LIMITED :: QUANTITY = O ! Number of objects in stack
LOGICAL, DATA, LIMITED :: NOTEMPTY = .FALSE.
LOGICAL, DATA, LIMITED :: NOTFULL = .TRUE.
TYPE (STACK ELEMENT) PRIVATE :: E(SIZE)
! In accessors declared within STACK, STACK denotes the variable of
! type STACK on which the accessor is to operate. For example, when
! S"TOP is invoked, $ is bound to STACK.

TYPE (STACK_ELEMENT) ACCESSOR PUSH_POP ()
WHEN FETCH ! Pop operation
IF (STACK"NOTEMPTY) THEN
PUSH_POP = STACK‘E(STACK“QUANTITY)
STACK"QUANTITY = STACK“QUANTITY - 1
STACK"NOTEMPTY = STACK"“QUANTITY < 0
STACK"NOTFULL = .TRUE.
ELSE
CALL UNDERFLOW(STACK) ! quits
END IF
RETURN
WHEN STORE ! Push operation
IF (STACK"NOTFULL) THEN
STACK"QUANTITY = STACK"QUANTITY + 1
STACK"E(STACK"QUANTITY) = PUSH_POP
STACK"NOTFULL =~ STACK"QUANTITY <> STACK"THIS_SIZE
STACK"NOTEMPTY = .TRUE.

ELSE
CALL OVERFLOW(STACK) ! quits

END IF

RETURN .

END ACCESSOR STACK

TYPE (STACK_ELEMENT) ACCESSOR TOP ()
WHEN FETCH
IF (STACK"NOTEMPTY) THEN
TOP = STACK"E(STACK"“QUANTITY)
ELSE
CALL UNDERFLOW (STACK) ! quits

32

ACCESSOR SUBPROGRAMS Page 2

ERD IF
RETURN
WHEN STORE
IF (STACK"NOTEMPTY) THEN
STACK"E(STACK"QUANTITY) =~ TOP
ELSE
CALL UNDERFLOW (STACK) ! quits
END IF
RETURN
END ACCESSOR TOP

SUBROUTINE MAKE EMPTY (S)
TYPE {STACK(%*)) S
S"QUANTITY = 0
S"NOTEMPTY ~ .FALSE.
S"NOTFULL - .TRUE.
RETURN

END SUBROUTINE MAKE EMPTY

SUBROUTINE UNDERFLOW (S)
TYPE (STACK(*)) S

SUBROUTINE OVERFLOW (S)
END TYPE STACK
TYPE (STACK(100)) S, T ! Declare two stacks of 100 elements
TYPE (STACK_ELEMENT) X, ¥

CALL MAKE_ZMPTY (S)
CALL MAKE_EMPTY (T)

The next three statements invoke the accessor PUSH_POP.

IF (S"NOTFULL) S = X ! Push X on stack S

IF (T"NOTEMPTY) Y = T { Pop from stack T to Y

S=T | Pop from stack T, push onto stack $

! The next three statements invoke the accessuvr TOP

S"TOP = X ! Replace the top element of S by X

Y = T"TOP ! Replace Y by the cop element of T

S"TOP = T"“TOP ! Copy the top element of T to the top element of §
The next three siatements are illegal because their left hand sides are
! limited to references, not assignments

S"NOTEMPTY «~ ,FALSE.

S"NOTFULL « .TRUE.

S“QUANTITY = O

The first issue is whether accessors may Be declared as independent subprog-
rams, or only as members of structured data types. The example solved the
intended problem using only accessors contained in STACK. But independent
accessors have utility, and impose no extra burden on implementors. Our exam-
ple illustrated a third kind of accessor, PUSH POP: it is not independent, but
it is invoked by the name of an object of the containing type, not by its own
name. The declaration that PUSH_POP is invoked when objects of type STACK are
referenced was denoted by a distinguished syntax in the STACK declaration, viz.
(REF PUSH_POF). It might instead have been accomplished by giving PUSH_POP the
’

33

©

ACCESSOR SUBPROGRAMS Page .

same name as the type, STACK, or by using a distinguished syntax in the
declaration of PUSH _POP, e.g. (REF STACK).

The second issue concerns access to S when S*°C is invoked. There are at least
four ways this may be done. Our example used reference to the containing type,
that is, references to STACK from within PUSH_POP and TOP. A second method is
to declare an instance argument, perhaps with a distinguishing syntax. A third
method is to provide an intrinsic accessor, say SELF(), that accesses §.
Fourth, one might use a distinguished syntax, say #*, to denote SELF(). Using
the second method, the declaration of PUSH_POP might become
TYPE (STACK_ELEMENT) (USING Z) ACCESSOR TOP ()

where USING Z means Z is bound to S when S"TOP is invoked. Using the other
methods, the declaration would be the same. If the second, third or fourth
methods were used, references within PUSH_POP to STACK would change to 2Z,
SELF() and *, respectively.

The third issue concerns access to the value provided to the value-receiving
branch of the accessor. 1In the example, we access the received value using the
name of the accessor. This is symmetric to the way functions specify return
values. A second method might be to declare a received-value argument, perhaps
with a distinguished syntax. A third might be to provide an intrinsic fune-
tion, say RECEIVE(). Fourth, one might use a distinguished syntax, say *, to
access the received value. To declare a value-receiving argument, one might
extend the declaration of PUSH_POP to
TYPE (STACK_ELEMENT) (RECEIVE R) ACCESSOR PUSH_POP ()

The third and fourth methods would not require change to the accessor declara-
tion. In our example, references to PUSH _POP in the WHEN STORE branch of
PUSH_POP would be replaced by R, RECEIVE() and *, respectively. Using the same
distinguished syntax, say *, to refer both to the object on which the accessor
is to operate and the received value would be ambiguous if the received value
is a structure having a component of the same name as the containing type.

The fourth issue concerns whether a component of a structure is invisible,
visible only for reading, visible only for writing, or visible for both. The
private and public accessibility attributes provide the first and 1last,
respectively. A limited accessibility attribute would allow access only for
reading a storage component, without resort to the subterfuge of defining a
private component and a function to access it; an accessor with only a FETCH
branch is equivalent to a function. It probably doesn’t make sense to declare
a write-only storage component, but an accessor with only a STORE branch makes
sense. For example, we might have provided a read-only POP accessor and a
write-only PUSH accessor in STACK, and allowed S=T to denote copying an entire
stack.

The fifth issue concerns the definition of whole-structure assignment of
objects of a structured type when some of the components are accessors. Since
the entire state of the abstraction represented by the whole structure should
be represented by the stored values, it should be enough simply to copy them.
One might think it necessary to copy all storage components, and copy from the
fetch entry to the store entry of each accessor for which both are defined.
But this might put the internal data structures into an inconsistent state, anc
if an accessor has arguments other than the invoking context, there is no way
to provide their values. If copying the storage components is not the correct
action, the programmer can provide an assignment subroutine.

: 3t

©

ACCESSOR SUBPROGRAMS Page 4

Sixth, since references to members of a type from within accessors that are
members of the type will be common, it may be desirable to allow an abbrevia-
tion. For example, in PUSH_POP it would have been more terse to reference
“E("QUANTITY) than to reference STACK"E(STACK"QUANTITY). The * punctuation is
necessary to allow one to reference an object outside the type that has the
same name as an object inside the type, by naring it without punctuation®.

Seventh, when functions or subroutines ar: members of a type' they could be
invoked (to operate on an cbject of the type; using either structural or func-
tional notation. That is, if F is a function that is a member of the type of
S, one might write either F(S) or S"F. We prefer functional notation because
it preserves the comnotation (not enforced by the languaga) that functions have
no side effects (vhile accessors might), and the tradition that functions are
never assigned & value. -

Even allowed accessors, complete abstraction would not be possible in Fortran
8X. Consider a program that uses arrays. If the problems it is to solve
become large, the memory capacity of the machines on which it is to run may be
insufficient. We might choose to simulate virtual memory to solve the problem.
As we did in the STACK exampla above, we might define a type VIRTUAL ARRAY, and
define an accessor that is invoked when objects of type VIRTUAL ARRAY are
referenced. For example:

TYPE VIRTUAL ARRAY (REF ELEMENT, LIMITED)
! The LIMITED attribute means whole-structure access is not defined.
REAL (USING Z) ACGCESSOR ELEMENT(I,J)
WHEN FETCH
! Make sure the I,J e¢lement of Z is in memory, then rsaturn the
! I,J element.
WHEN STORE
! Make sure the I,J element of Z is in memory, then store into
! the 1I,J element.
END ACCESSOR ELEMENT

END TYPE VIRTUAL_ ARRAY

But if X had originally bezen an array, one could have written X(I:J,K) to
reference a section of a column. Since Fortran 8X has no objects of type
ARRAY-SECTION-DESCRIPTOR, one could not simply replace the type of X by a
structured type that provides accessors because the accessors couldn’t receive
arguments such as I1:J,.

Finally, when subprograms are small the cost to call them may well be more
expensive than the body. Since subprograms that ave members of types will
usually be smaller than independent subprograms, this source of inefficiency
will only be exacerbated. Awareness of this expense influences programmers not
to use subprograms as abstraction tools. 1IF subprograms were allowed an INLINE
attribute, the use of small subprograms would be no less efficient than ex-
plicit inline programming.

%0ne might also allow this by a declaration such as IMPORT X, REF Y to
indicate an object X outside the type is to be visible inside the type as Y.

‘The reason one should allow functions and subroutines to be members of a
type 1s to allow them access to private components.

-' . 3%

PACKED STRUCTURES Page 1

Many applications of bit data are related to packed structures. The difficuley
of definition of bit data type could be avoided, and much of the functionality
provided, by allowing & restrictive definition of packed data: an INTEGER datum
might occupy less than an entire storage unit. There should be at least two
mechanisms to declare this. The first is to declare that a structure, or part
of a structure, is PACKED, and to declare each of the components to be a sub-

range of the INTEGER type’. For example, a symbol table object in a compiler
might be declared

TYPE SYMBOL TABLE
PACKED
CLASS(0:31) ! Kind of symbol table object
REF(0:1) ! 1 means object referenced
DEF(0:1) ! 1 means object assigned a value
TYPE(0:15) ! Declared type
FIELDS(0:15) (0:4) ! An array indexed by (0:4)

END PACKED
END TYPE SYMBOL TABLE

Intrinsic functions are necessary to provide the minimum and maximum values of
a component. MIN and MAX would be reasonable (although symmetry with intrins-
ies proposed for Fortran 8X might demand TINY ani HUGE).

The compiler is free to arrange the objects t»> occupy as 1little storage as
possible, or not to pack them at all (if the vendor is too cheap or lazy to
implement packing). One hopes the compiler uses a concrete representation of

the value of a component C in the range 0..MAX(C)-MIN(C), even if MIN(C) is not
Zero.. "

This mechanism is independent of the size of a storage unit, or the radix of
integer representation.

The second declaration specifies exactly which bits of which storage unit are
occupied by each component. We start with an example:

TYPE SYMBOL TABLE () (PACKED)
CLASS(0:31) (0,%:26)

REF(0:1) (0,25:25)
DEF(0:1) (0,24:24)
TYPE(0:15) (0,23:20)

FIELDS(0:15) (0,3:0) (0:4) ! An array indexed by (0:4)

END TYPE SYMBOL TABLE
r
The first parameter list provides the range of the component, the second speci-
fies the storage allocation, and the optional third allows a component to be an
array. The first parameter of the storage allocation declares its word posi-

5If enumerated types were implemented, the components could be allowed to
be either a subrange of INTEGER or any other enumerated type.

34

©

PACKED STRUCTURES Page 2

position in the structure, and the second the bits it occupies®. The second
parameter is optional; if absent, the component occupies all of the specified
word. Allowing storage allocation specification is clearly an opportunity to
get in trouble by assigning overlapping fields, but that is sometimes wvhat is
desired. Unsafe as it might be, this capability is needed because in some
applications, for example in telemetry procassing, the organization of compo-
nents into words might be dicteted by external equipment.

"It is necessary in some applications to declare that objects of a type occupy a
,certain array. To support this the TYPE declaration header above might be
' expanded to "TYPE SYMBOL_TABLE () (PACKED, IN(ST))" to indicate that objects of
‘type SYMBOL_TABLE occupy the array ST. Then a reference SYMBOL TABLE(J)“DEF

means that a template described by the type declaration is to be applied to ST
beginning at ST(J). Since several structures might occupy ST, it is necessary
to cast J into the role of "locator" for SYMBOL TABLE. This is different from
declaring an array of SYMBOL_TABLE elements, because several different types,
perhaps of different sizes, might be declared to occupy the same array. This
is also an opportunity for a programmer to create erroneous code, but again is
sometimes necessary. For example, in telemetry processing one might read a
sequence of integers into an array, and then interpret them to be a sequence of
packed records, not necessarily all the same size.
We dlso allow components to be arrays. For components that are parts of words,
array elements occupy the declared field and adjacent higher order fields of
the same size. That is, SYMBOL_TABLE(J)“FIELDS(0) azcesses bits 3:0 of ST(J),
SYMBOL_TABLE(J) "FIELDS(1) accesses bits 7:4 of ST(J), etc. If a component is a
full word, then subscripting has the usual interpretation.

Additional intrinsic functions are necessary to provide the number of words
occupied by & type, the smallest word index of any component in a type, the
word index of a component, and the high and low bit indices of a component.

An intrinsic type INDIRECT(IN(array)), where the IN clause is optional, allows
field selection to be specified by data. INDIRECT is a packed type containing
components denoting a word index, high bit index, low bit index and range. Let’
these fields be W, H, L and R respectively. Suppose X is a variable of type
INDIRECT(IN(ST)). Then a reference of the form J"X denotes reference to the
field dynamically represented by X. That is, Y=J"X means "Y = (bits X"H:X"L of
ST(J+X"W)) + X"R"MIN," while J"X~Y means "(bits X“H:X'L of ST(J+X"W)) = Y-
X"R"MIN.* If the type of X is not IN an array, then J must be a pointer, and
the reference denotes bits X"H:X"L of the word X"W words from the one denoted
by J (J might not be a word-granularity address). We also allow X to be an
array, and allow indirect references to be interpreted as selection of an
element of a component that is an array. That is, when X is a scalar, J*X(K)
denotes bits K¥(H-L+1)+H:K*(H-L+1)+L of ST(J+W), provided X denotes a component
that occupies part of a word. To provide initial data for objects of type
INDIRECT we allow data statements of the form

SThe low order bit is bit zero, and the high order bit is bit *. Using *
to denote the high order bit might allow the compiler to use a more efficient
access 1f the word size is larger than necessary to contain the field (for
example when the target machine has no bit field instructions, DIVIDE and MOD
would be necessary for unpacking. If the compiler knows the field extends to
the left end of the word, it can unpack the field with a DIVIDE alomne.)

37

©

PACKED STRUCTURES Page

DATA X /SYMBOL_TABLE"CLASS/
or

DATA X /SYMBOL TABLE"“CLASS(constant_expression)/ ! field array component
in which X and the types in the data part (viz. SYMBOL TABLE) must be IN the
same array, or in no array. We also provide an intrinsic generic function,
FIELD, of type INDIRECT, that provides the entire description of a component,
so that assignments such as

X=FIELD(SYMBOL_TABLE“CLASS)
or

X~FIELD(SYMBOL_TABLE“CLASS(K))
are possible. The type of the value of FIELD is INDIRECT, and IN the same
array (if any), as the argument. The type of FIELD must be compatible with its
context. In the present example, the types of X and FIELD() must be the same.
No operations, other than assignment and indirect field selection, are defined
on objects of type INDIRECT.

37

“ i

%

©

Jet Propulsion Laboratory
26800 Oak Grove Drive
Peaadana, Ci 91109

Sapteabar 23, 1987

Jerrold L.Wagener

AMOCO Production Company
4302 Easat 4lst Street

P. 0. Box 3383

Tulaa, OK 74102

Deaar Dr. Yagenar:

After finishing yesterday’s istter I thought of an example that
might help you choose between C(S) and S(C) notations, that Rex
hedn’t put 4in hizs meno. 4da I amntion in mRY othar letter, I’va
changed =y views, and think S%C notation (with a prettier
cheracter then %) ray be best when the whola picture is
considered.

Suppose one has a prograsm that usea couaplexz nurbers, and.
diascovera that tha =moast frequent operations ara multiplication
and ABS. Because conplex xultiplicetion s«nd a2xaninetion of the
nodulus are xuch rmores efficient using polar repreasentation, we
wish to changz thes representation. Thus wa could desine

TYPE P_COHPLEX .
) REAL, LIMITED :: ABS, PHASE ! Read-only cozponenta
REAL FUNCTIYION REAL(2)
TYPE (P_COMPLEX)> Z
RE&AL = ABS(Z2)«COS(PHASE(Z2))
RETURN
END FUNCTION REAL
REAL FUMNCTION AIMAG(2)
t Similsr to REAL
END FUNCTION AIMAG
TYPE (P_COMPLEX) FUNCTION CHPLX(R,I)
REAL R,I
: 4BS and PHASE gr= writable hare because CHPLX ia
t defined inaide P_COMPLEX.
ABS(CMPLX) = SOQRT(R=R+Ial)
PHASE(CMPLX) = ATAN2¢R/I
RETURN
END FUNCTION CHPLX
TYPE (P_COMPLEX)> FUMCTIONW MULT(Z21,22) OPERATOR "«"
t etc.
END TYPE P_COMPLEX .

I£f one than changed ths declaration of & cozplex variable, say T,
fxyor COMPLEX T to TYPE (P_COMPLEX) T, end S(C) notation weare
. used, one would need to change ABS(T) to T(AES) averyvwhere. If
C(S) notation were used, no other changea would be nezded.

On the other hand, 1f an INLINE attribute of functions were
allovwed, one could chaenge the declarction to

-' 39

TYPE P_COMPLEX
REAL MODULUS, PHASE
REAL (INLINEY> FUNCTION ABS(2)
TYPE (P_COMPLEX) Z
ABS=MODULUS of 2 §! choose your favorite notation
END FUNCTIOR ABS
t The rest is about the sane.
END TYPE P_COMPLE

ABS(T) would stil)l be ABSC(T) in S(C) notation, and afficiency
wouldn’t z=uffar (given a competent optimizer). It’s just a
little more work for the programrer and the optimizer to do &
good job, but data abstraction ia =still possibla. -

Another ides I didn’t put into nry other letter 4is that the
standard might e¢llow two referential noteations, that ies both SxC
and C(S). It would be redundant to allow SXC and S(C), since the
primary atitraction of S(C) over C(S) is that it celectas from the
ganeral teo the gspecific (depending on your point of view), but so

doea Sx%C.
Si:cerely,

W. Yan Snyder
Mail Stop 301-490

D,

NATICNAL CENTER FOR ATMOSPHERIC RESEARCH
Scientific Computing Division/Advanced Methods Section
P. O. Box 3000 » Boulder, Colorado ¢ 80307
Telephone: (808) §97-1275 @ FAX: 497-1187 Telez: 989764

, ~JCAR -7
/7 ,,0 / y’ 7
September 7, 1988 ’

Barry Vickers

Martin Marietta

PO Box 2003

Oak Ridge, TN 37831-7001

Dear Mr. Vickers;

I have notifed the vice-chair, Jerrold Wagener, of Alan Hirsch’s assignment 2s liaison to X3J3
from X3H2.

The current liaison to X3H2 from X3J3 is Miles Ellis, whom you reject because of his European
address. I wish to take this matter up at the next meeting of X343 in November. There may
be some way that the mailings can be handled within the US.

Regards,

Jeanne Adams, Advanced Methods Group
Chair, X3J3

41

The National Center for Atirospheric Rescarch is Operated by the University Corporation for Atmespheric Resesrch
snder sponsorship of the National Science Foundation. An Eguel Opporiunity/Affirmative Action Employer.

//ﬂ——:]‘c,4—7@
2N S

Accredited Standards Committee Doc. No.: X3H2-88-297
X3, INFORMATION PROCESSING SYSTEMS

Date: 10 August 1988
Reply to: Barry Vickers
Martin Marietta
P.O. Box 2003
Oak Ridge, TN
37831-7001
(615) 574-7657

Ms. Jeanne C. Adams, X3J3 Chair

National Center For Atmospheric Research
Scientific Computing Division

P.0. Box 3000

' Boulder, CO 80307

Subject: X3H2 and X3J3 Liaison

Dear Ms. Adams:

Procedures for the X3H2 Technical Committee on Database require coordination
of activities with related standards bodies like X3J3, FORTRAN. Periodically
X3H2 verifies the designation of all liaison representatives.

The current X3H2 liaison to X333 is: Alan R. Hirsch
AMOCO Corporation
MC 1008
P.0. Box 87703
Chicago, IL 60680-0703
(312) 856-7041

Our records reflect that X3J3 does not currently have a coordinating liaison
to X3H2. You recently submitted the name of an X3J3 member to serve as
liaison to X3H2, however, we respectfully rejected that designation because
the international address of the individual would have placed an unreasonable
burden in mailing expenses on the X3H2 membership. X3H2 requests that X3J3
designate a coordinating liaison to X3H2 in the immediate future.

As X3J3 coordinating liaison to X3H2, this person will receive X3H2 mailings;
Please enter the name of our X3H2 coordinating liaison on the X333 mailing
list, and please advise X3H2 when X3J3 designates a coordinating liaison to

X3H2.

Regards,

aOVV7 Dr bﬁﬂl“ﬁ

Barry D. Vickers, Corresponding Secretary
X3H2 Database

4.“
& ‘;‘%
i~

., v

e JTCA-Y

ﬂujl

NATIONAL CENTER FOR ATMOSPEERIC RESEARCH
Scientific Computing Division/Acvanced Methods Saction
P. O. Box 3009 ¢ Boulder, Colorado o 80307
Telephone; (308) §97-1£75 « FAX: 303-497-1187 T ELEX:98976¢

September 9, 1988

Cathy Kachurik

CBEMA, X8 Secretariat

311 First street, N. W. Suite 500
Washington, DC 20001-2178

Dear Cathy;

X3J8 has instructed me to suggest lo you some changes that would be helpful in altaining the
mazimum public participation in a public review process.

The exclusive rights thai Global Engineering has in selling copies of a draft standard has a serious
negative impact on the standards process. Many potential reviewers cannoi afford the cost of a
copy. While the government and ISO may produce their own copies, our private industry may
not. There is no journal that would be allowed to reproduce the document without heavy cost.

X8J8 recommends that drafts should be Jreely available from anywhere that commits to the cost of
reproduction. This however does not zxclude the sale by a company such as Giobal. It would
however allow a broader distribution of a draft standard cnd result in a public review that
represents @ broader base of commenters which is the goal of the standards making process.

Would you consider this recommendation, and if possible, bring this matter to the attention of
other Technical Committees?

Regards,

¢ Jeanne Adams, Advanced Methods Group
Chair, X8J8

cc. William R;'nekuls, Chasy, SPARC

73

Ths Naiional Center fer Atmospheric Researc) is Operated 3y the University Corporstion for At-seopheric Restarch
snder sponsership of tie National Seience Foundatios. An Egudl Opportanity/Affirmstise Action Emplog:r.

110-LJNM-01
S L AC MEMORAMANDTUM August 24, 1988

To: Interested FORTRAN users :

From: L. Moss

Subject: Trip Report on §09th X3J3 Meeting, 8-12 Aug 1988

Note: This is & personal report of these meetings and in no sense
does it constitute an official record.

\ SUNMARY
x3q3 met in Jackson, Myoming from 8 through 12 Aug 1988.

At the previous meeting in May, a number of the major concerns
expressed in the public comment were identified and discussed, but the
committee failed to agree to a package of changes to S8 to respond to
these concerns. Many members felt that putting togetiher such a
package in full committee was bound to fail, since the result would
lack consisterncy and have no clear focus. it th2 end of that meeting,
it was agreed thkst a number of individuals and .small groups within
X3J3 would prepare packages according to their own sets of criteria
and present them to the full committee at the August meeting.

Nine such proposals were presented to the committee on Monday. Straw
votes indicated no clear consensus on any of the plans, so the main
order of business for the rest of the week was to try to consolidate
the plans to a smaller number. This was accomplished not in full
committee, but in small, ad hoc meetings between the proponents ot
different plans. Each day, full committee straw votes were taken on

the current set of plans in order to provide some feedback to the
small groups.

By the end of the week, this process had reduced ths number of plans

to three. & number of changes to S$S8/104 uere containzd in all three
plens:

. Delete:
o RANGE/SET RANGE
bl IDENTIFYZ/ALIAS
= Allocatable dummy arguments and function results
= Module procedures
- Concept of deprecation
- Internal procedures
- Elemental calls of user procedures

45

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 (::i)

110-LJM-01 page 2 —

- Free source form and semicolon statement separators (but not
the other neu features of the fixed source form)
- Derived types or structures with parameters
- New form of the DATR statement
° Add:
- DO WHILE
- INCLUDE
- Possibly, pointers (if this can be done in a timely fashion)
° Modify:
- Replace syntax for array constructors with an implied-do-style
syntax
- Reduce set of intrinsic functions allowed in constant
expressions

Note that, although some 0of the plans in the pre-meeting distribution
involved some form of subsets or multiple languages, all of the
surviving plans are for a single, non-subsetted language.

The major differences from S8/104 of each of the three surviving plans
may be summarized as follous.

a H % &

° Delete:
e User-defined operators and user-overloaded intrinsic operators
- Overloaded user procedures
- User-defined assignment
- Keyword and optional arguments
- Concept of obsolescence
= Al)l mandatory use of interface blocks
- ELSEWHERE
. Possibly, DO {(n) TIMES

- MIL-STD-1753 bit intrinsics
-— Required AUTOMATIC keyword for automatic arrays
- Short integers, as a separate, non-parameterized type (i.e.,
SHORT INTEGER rather than INTEGER(KIND=2) or the like)
- Vector-valued subscripts
- Possibly:
-=— Bit data type (if this can be done in a timely fashion)
-= Stream I/0
--~ Support for multibyte character sets
° Modify:
— Replace generalized precision with two new REAL types:
-— 1 with guaranteed 14 digits precision
-= 1 with maximum precision available from processor
- Simplify rules for array passing:
== QArray sections and expressions may only be passed to
assumed-shape dummies
== Whole arrays and array elements may only be passed to
explicit-shape dummies

1¢

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 (:::)
110-LJM-01 page 3

— Move construct names to end of initial statement of construct

(i.e., don't make them look like alphanumeric labels)

- Change structure qualification symbol from "%X" to "."
= Merge DOTPRODUCT and MATMUL _
.- Relax rules for type equivalence: reguire identical

declarations rather than import from the same module ("name
equivalence”)

- Possibly:

-- Replace derived types with VAX structures
~= &Allow structured ocbjects in COMMON

Plan R: Reid

Delete:

- User-defined operators (but not user-overlcaded intrinsic
operators)

- ELSEWHERE

- MIL-STD-1753 bit intrinsics

- Required AUTOMATIC keyword for automatic arrays

Modify:

- Replace generalized precision with a parameterized form of
precision with a single parameter ("KIND") and no assumed
precision (i.e., no “KIND=¥")

- Adopt user-defined generics from Plan W, belou.

- Adopt array passing rules from plan P, zbove.

- Move construct names to end of initial statement of construct

- Merge DOTPRODUCT and MATMUL

- Possibly:
== &llow structures in COMMON
=-—- Relax type equivalence rules toc name equivalence

Plan_W: Heave @t al

Delete:

- User-defined operators and user-overloaded intrinsic operators
- User-definad assignment

- Keyword and optional arguments

- Concapt of obsolescence

- MODULE/USZT

- Entity-oriented declarations

- DO (n) TIMES

- Construct names

- Bit data type

- Short integers as a separate type

- Vector-valued subscripts

— NCHARACTER

- Varying strings (CHARACTER, NCHARACTER and BIT)
- Symbolic logical operators

- Conversion function for each type

y7

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 <:::>
t10-LJM-01 page U4

.,
)

o Modify:

- User-defined generics: replace procedure overloading
mechanism with extension to interface blocks in which the user
provides an explicit mapping from generic to specific names

- Replace derived types with VAX structures

- Allow structures in COMMON

- Simplify generalized precision: delete assumed precision
(i.e., "REAL(¥*,¥)") and parameter kReywords ("PRECISION=" and
"EXPONENT_RANGE=")

The proponents of these three plans will continue the process of
developing their plans in greater detail as well as trying to find
further consolidations with the other plans. It is hoped that a final
plan can be chosen at the Boston meeting in November.

PRESENTATION OF PLANS

iall %3J3 working documents are assigned numbers of the form, "mmm-—
aaa-n", uwhere:

mam is the meeting number (the Aug 1988 meeting was number 109).
aaa are the initials of the author.
n is 2 small number to distinguish different documents from a

single author at one meeting.

The results of straw votes (SV) are, unless otherwise noted, given as:
(yes-no-undecided), with an asterisk next to my vote; formal votes

(FV) are (yes-no-present), but are usually recorded simply as (yes-
nod.

[At this stage in X3J3's deliberations, any change to the draft
requires a tuwo-thirds majority of those voting AND & simple majority
of the entire unembership. The latter requirement translates into a
minimum of 23 votes with the committee's current membership list. A
number of "members-only" straw votes (MSV) were taken at this meeting
in order to give a better indication of whether a given proposal might
later be formally approved. These votes are recorded here as (yes-no-
undecided).]

The following plans uwere each allotted 30 minutes on Monday for a
presentation and discussion. After each discussion, a straw vote was
taken on whether the plan should be adopted as a base for further
work. For each plan, I will give only a very brief list of the major
teatures ("major" according to my personal biases, of course). For a
more complete description, as well as for an explanation of the
philosophy, design criteria, etc., which went into the plan, please
see the referenced documents. I apologize in advance to the authors
of the plans for any mistakes, omissions, or oversimplifications.

18

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 (:::)

110-LJIM-

01 page 5

Except as noted, essentially all the plans include (or at least could
live with) the following:

] Delete:

Concept of Deprecation

IDENTIFY/ALIAS -- except plan VI (Barber)

RANGE/SET RANGE =-- except plan VI (Barber), which contains a
simplified, block-oriented form of range)

Bit functions

INCLUDE -- except plan III (Reid)

DO WHILE ~- except plans IV (Smith, et al.) and IX (Weaver,
et al.)

(Red:

Based on $S87104
Delete:

New form of type declarations

User-defined operators and user-overloaded intrinsic operators
User~defined assignment

Overloaded user procedures

Keyword and optional arguments

Neu form of DATA statement

Dependent compilation (in the sense of imposing an order on
compilation)

Concept of obsolescenca (as well as deprecation)

Construct names

Derived type parameters

Elemental calls of user procedures

° Simplify:

Array language:

-— No array-valued functions

-—- Only array sections passed to assumed-shape dumnmies
~= No array sections passed to exrplicit-shaps dummies
~= Restrictions on allocatable arrays

~= Resquire AUTOMATIC keyword for automatic arrays
Precision: Add new floating point data types (both REAL and
COMPLEX):

-~ 1 with guaranteed 14 digits precision

== 1 with maximum precision available from processor
No procedures in MODULEs

No mandatory use of interface blocks

Type matching rules for derived types: Do not require
definition in a MODULE

Restrict set of intrinsic functions allowed in constant
expressions

] Defer until next standard:

BIT data type
Pointers
Support for multibyte character sets

77

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 ::
110-LJM-01 page 6

SV (22-10%-7).

an : a g ¢ ef: 109-HH-1)

T e Based on S8/104
. ® Delete:
P - User~defined operators and user-overloaded intrinsic operators
- User—defined assignment
- Overloaded user procedures
- MODULE/USE
° Simplify:
- Replace derived types with VAX structures
- Precision: find some solution which does not involve REAL(¥,%*)
® Add:
- Support for multibyte character sets
— _ Vector-valued subscripts

SV (10-16%=-14).
: hn Reid (Ref: 169- =%

* Based on S8/104
. Delete:
- Internal and MODULE procedures
- Derived type parameters
- Elemental calls of user procedures
— Overloaded user procedures
- Neuw form of DATA statement
- Free source form (but keep new features of fixed source form)
- ELSEWHERE
e Simplify:
- Precision
-— Single KIND= parametear
-= No acsumed precision (i.e., no "KIND=#%)
—— No intrinsic function to map precision/range into KIND
- MODULE/USE: MNo renames in USE statement, etc.
- Argument associamtion for arrays:
-- No allocatable dummy arguments or function results
-- Simpler rules for assumed-shape dummies, etc.
Add pointers

Modify array constructor syntax: Make it look like an implied-do
Omit INCLUDE

SV (21%-2-17).

5o

Tyvip Report on 109th X3J3 Meeting, 8-12 Aug 1938

110-LIM-01

page 7

plan IV: B. Smith, et al1. (Ref: 109-ABMSWU-9 to =§3)

This is a three layer model:

° Outer or "full"™ layer, containing most of S87104, except:

Delete:

-~ Concept of deprecation

== IDENTIFY/ALIAS

== RANGE/SET RANGE

-— 1Internal procedures

Simplify precision: parameterize with a single ("KIND=")
parameter, no assumed precision (i.e., no "KIND=%"), and add
an intrinsic function to map precisions and exponent ranges
into "kinds"™.

Add:

-~ Pointers

-- Significant blanks in free source form

--— MIL-STD-1753 bit functions, but with different names
Omit DO WHILE

° Intermediate or "core"™ layer,

omitting features of full layer requiring heap storage or

explicit interfaces, namely:

-- Pointers

—=—= ALLOCATE/DEALLOCATE

-— Assumed-shape dummy arguments

-- Elemental calls of user procedures

-~ Parametrized data structures

-~ Private types and MODULE entities

-~ Interface blocks

-= Module procedures

-— USE ONLY and USE renaming

-- User-defined operators and user-overloaded intrinsic
operators

-=- User-defined assignment

-— Overloaded user procedures

-~ Keyword or optional arguments, except for intrinsic
procedures

== INTENT attribute .

-— Several intrinsic functions associated with some of these
features

and making various other simplifications:

-- Omitting entity-oriented type declarations and the neu
form of the DATA statement :

-=- Omitting the intrinsic function mapping precision/range to
"kinds"

] Inner or "base" layer, identical to Fortran 77.

SV (11-18%-10).

Sl

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1983 <:::>
110-LJM-01 page 8 -

an V: E. RA. ohnson and R. Swu (Reg: 10S—-EAJ~-

Based on S8/104
Delete:
- User-defined operators and user-overloaded intrinsic operators
- i'ser-defined assignment
- Module procedures
— USE statement
° Simplify:
- MODULEs: textually INCLUDE modules in referencing routines,
separately compile modules to instantiate data. Also, inside
a MODULE, IMPLICIT NONE and SAVE would aluays be in effect.
- Precision: add new intrinsic REAL types, or parametrize REAL,
Wwith standard-defined minimum precisions
- Rules for optional anéd keyword arguments
L Add:
= Small INTEGERs and LOGICALS
s In addition to new exponent letters associated with neu REAL
types, also add a "generalized"” exponent letter, which assumes
the precision of other operands in an expression

SV (9%=-12-22).

a : G e @F: 109-GJB-1)

° Based on Fortran 77

Add:

- Array language, including:
-= Veector-valued subscripts
-~ Array IDENTIFY (no scalar IDENTIFY)
-=~ Block-oriented RANGE facility

- Simplified interface blocks

- Variant forms of intrinsic types (i.e., either "*n" forms or
"SHORT INTEGER", etec.)

- RAMELIST 170 ’

- MIL-STD-1753 features (i.e., INCLUDE, DO WHILE, ENDDO,
IMPLICIT NONE, &nd bit functions)

- CYCLE and EXIT

- Various neu lexical features (long names, etc.)

— Hex, octal, and binary constants

SV (18%-9-186).
VIiy¥: M. © (Ref: 109- -
This is a two language model.
Fortran 88: consisting of Fortran 77 plus MIL-STD-1753.
Fortran 90: new language, not completely compatible with Fortran

77 or Fortran 88, and based on S8/104:
- Delete:

52

Trip Report on 109th X3J3 Meeting., 8-12 Aug 1988 -

110-LJIM-

01 page 9

-— Fixed source form

--— All the obsolescent features

-— Computed GOTO

-—= ENTRY

-= DIMENSION

-—= H edit descriptor

-~ Numeric labels

Clean up syntax by:

-— Adding significant blanks

-~ Turning all keywords into reserved words, including user-
defined keywords such as derived type names

-- Taking advantage of these two changes to simplify some of
the new syntax (e.g., declarations for objects of derived
type)

~-- Interface to allow calling of Fortran 77 and Fortran 88
subprograms (e.g., F77 ands/or F88 attributes on the
EXTERNAL statement)

-— BIT data type

-- Pointers

~— Suppori for multibyte character sets

SV (7-26%-9) «~- WITHDRANWK.

Plan VIXX: K. MHarusak (Regf: 103-RLM-2 and -3)

This was not a complete plan, but rather a set of guidelines for
constructing a plan along with 2 few examples of houw the guidelines
would apply to some features. Combining these examples, resulting
plans might look something like this:

Based on S8/i0Y4
Delete:

All mandatory dependent compilation (here "independent
compilation™ is defined in a stronger sense than in plan I:

it should be possible to directly type in all code rather than
INCLUDEing or USEing it)

Derived type parameters

. Simplify generalized precision: either drop it entirely (adding
DOUBLE COMPLEX), or find some way to get rid of assumed precision
(i.e., "REAL(*,%)")

° ARdd:

BIT data type

Pointers

Alphanumeric labels

ELEMENTAL keyword for user—-defined elemental procedures

Any combination of neuw, old, and user-defined data types in
COMMON and EQUIVALENCE

No straw vote was taken since the author felt that this was not a
complete proposal but only a set of guidelines.

53

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988

110-LJM-01

page 1

),

Plan IX: R. Weaver, et 31. (109-RUW-1 and -2)

Based on Fortran 77

Add:

Varying length CHARACTER

Two new string types (both fixed and varying):

-= BIY

—=— NCHARACTER

Symbolic BIT operators (&, ++, --, and 7/, for “and", "or",
“xor™, and "not", respectively)

Alternate symbolic relational operators from S8/104 (">",
f==", etc.)

Simplified version of generalized precision from S8/104% (no
REAL(®,%) and no PRECISION and EXPONENT_RANGE Reywords)
DOUBLE PRECISION COMPLEX

New DO construct, including EXIT and CYCLE from innermost
loop, but excluding construct names (NB: DO WHILE omitted)
CASE construct

VAX structures (with some minor variations)

NAMELIST 170Q

Some intrinsic functions allowed in constant expressions
Array and structure assignment

Array and structure named constants (i.e., defined via a neuw
form of the PARAMETER statement)

Conformance statement, similar to that in S8/104, less
deprecated features, etc.

NHew features of fixed source form from S38-/104

IMPLICIT NONE

Some additional intrinsic functions from S8/104

Optional features

Recursion
Dynamic allocation
Most of array language, with simplified rules for assumed-

shape dummy arguments and possibly non-contiguous actual
arguments. "

Other possible addition

Alphanumeric labels
Additional forms of INTEGER
Stream I/0

Defer until next standard: Pointers

Other plans
A couple of other plans uwere mentioned in the agenda, or included in
the pre-meeting distribution

Michael Berry: No document or presentation prepared.

Richard Hendrickson: No document or presentation prepared.

"Comments on the Public Review and Future Directions of FORTRAN
from the Canadian Standards Association®” {item 33 in the pre-

54

s,
\

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 <:::)
110-LIM-01 page 11

meeting distribution): This was not really a plan, but a list of
Canadian positions on individual features, as well as on the plan
presented at the 108th meeting by the Technical Change Review
committee.

. Laurie Schonielder®s plans, 109-JLS-1 and -2: Lawrie withdrew
these before the meeting.

Siraw votes ¢n _initis ans
Follouing the presentation of all the ahove plans and the withdrawal

of plans VII and VIII, the strau votes uere repeated on the remaining
plans, with members only voting:

® Plan I: HSV (22-7%-7).

A Plan II: #SV (6-%17%-jQ).
L Plan I1I: HSV (20%-5-1S5S).
® Plan IV: MHSV (11-20%-7).
° Plan V: [iSV (12%-8-17).

° Plan VI: MSV (1{%=12=3).

. Plan IX: HMSV (16=12%-§).

PLAN CONSOLIDRATION, ROUND 9

Although several of these plans appeared fairly popular none had the
necessary majority of the ifull membership, nor did there appear to be
a clezr uwinner among the leading contenders. Therefore, the
principals involved in each plan were asked to meet in a few small
groups on Tuesday and attempt to consolidate the remaining 7 plans
doun to a more manageable number. Members unaffiliated with any plan
were encouraged to attend these ad hoc meetings in order to provide
additional input, but any compromises were to be left to the
principals themselves in order to retain some consistency and focus in
the resulting plans.

On Hednesdazy, the field had been reduced to 4 plans:

e John Reid and the group represented by lvor Philips had moved
closer together, though they still had some significant
differences.

¢ Andy Johnson had also worked with Philips and Reid, and
‘incorporated some of his ideas into each of their plans. He felt
‘that he could probably accept either of the resulting plans., and
80 withdrew his plan from separate consideration.

55

Trip Report on 109th ¥X3J3 Meeting, 8-12 Rug 1988 <:::)
110-LJM-D1 page 12 ~ ™,

. The group represented by Dick Weaver met with Hideo Wada and
Graham Barber, and agreed to a small set of changes to plan IX.

° The group represented by Brian Smith met and agreed to a few
changes to plan 1V based on the discussions and straw votes on
Monday.

The changes to each of the plans were briefly presented.

lan IX*' (Ref: 10S-RHU-F

U Make all optional features (array language, dynamic allocation,
and recursion) mandatory

Add allocatable arrays with global scope

Add array and structure constructors

Add vector-valued subscripts

Add array-valued functions

Add and modify some array intrinsics

Possibly, sdd block forms of IDENTIFY and/7or RANGE

Add user-defined generics, with mapping to external names provided
explicitly by user via extension to interface blocks

Add DO WHILE and DO forever

Add INTENT statement

Allow all data types to be intermixed in COMMON

Possihly, make some additional changes to REAL precision
Possibly, add INTEGER precision and/or unsigned integers

lan I' C(Ref: 199-IRP=-3)

. Keep entity-oriented declarations

L Disallow derived types in COMMON (unless a good solution can be
found)

. Keep construct names, but move to the end of the initial statement
of a construct (i.e., don't make them look like alphanumeric
labels)

° Keep array-valued and structure-valued functions

° Delete internal procedures and CONTAINS

) Delete semicolons as statement separators

® Delete elemental calls of user procedures and ELEMENTAL keyword

. Add octal and hex constants

] Add vector-valued subscripts

L

Add pointers —-- if2 this can be done in a simple, efficient, and
timely fashion ’
] Fix array passing rules: array expressions, like array sections,
may only be passed to assumed-shape arrays.
° Some possibilities for replacing MODULE/USE:
- Replace with GLOBAL attribute or statement
- Modify according to plan V (i.e., MODULE/INCLUDE)
- Other possibilities which preserve independent compilation (in
the sense of not imposing a8 compilation order)
. Adopt implied-do arrzy constructor syntax from plan III

56

A

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 (:::>
170-LJIM-01 page 13

Merge MATMUL and DOTPRODUCT, as in plan III

. Possibly, allow REAL types to be parameterized wvia CHARACTER
constants

pPlan III' (Regf: 10S~-JKR-7)

o Adopt rules for association of arrays from plan @' (array sections
and expressions <==> assumed-shape arrays)

Delete semicolons as statement separators

Add bit, octal, and hex constants

Require AUTOMATIC keyword for automatic arrays

Move construct names to end of initial statement of constructs
Restrict intrinsic functions allowed in constant expressions
MODULE data always SAVEd

Recommend NCHARACTER as collateral international standard

A number of disagreements with Plan I' remain:

. Mild disagreements:
- Plan I': Add INCLUDE
= Plan I': Add short integers
- Requiirements for derived type equivalence:
-= This plan: imported from same MODULE via USE
~~ Plan I': identical declarations (i.e., same type name;
same component names, types, type-parameters, and shapes;
same component order)

- Plan I': Change "%" to "." for structure qualifier

— Plan !': Delete concept of obsoclescence

— Plan I': Add vector-valued subscripts

- This plan: Add user-defined generics via extensions to
interface block from Plan IX'

o Serious disagreements:

- Simplification to generalized precision:
-- This plan: Parzmeterized precision as in plan IV
== Plan I': no change, i.e., new intrinsic types '

- This plan: Retain overloaded intrinsic operators and
assignment

- This plan: Retain MODULE/USE buit without module procedures

- This plan: Retain keyuword and optional arguments

- This plan: In general, prefers to parametrize similar types
rather than having separate names; for example, this approach
uould be preferred if short integers or multibyte characters
were to be added

= This plan: make use of interiace block for array-valued
functions instead of extending syntax for EXTERNAL, etec.

57

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988

110-LJM-01 page 14

Plan IV' (Ref: 109-BTS-4)

i Delete base and core subsets

° Delete square brackets from array constructor syntax

° Delete user-defined operators (but keep intrinsic operator
overloading, including user overload to the intrinsic "dot"
operators)

. Require ELEMENTAL attribute on dummies for elemental calls of user
procedures

° Change host association to USE association for module procedures

° Delete allocatable dummies

° Integrate all types in COMMON and EQUIVALENCE

o

Other possible changes:

Array association rules from Plan I'

Allow statement label in EXIT and CYCLE

Remove construct names and/or add alphanumeric labels
Add DO WHILE andsor delete DO (n) TIMES

Remove elemental calls of user procedures

Restore MIL-STD-1753 names for bit intrinsics

Remove ELSEWHERE

Adopt implied—-do array constructor syntax from plan III
Remove NAMELIST

Remove allocatable function results

Change syntax of entity-oriented declarations

Adopt user-defined generics via extension to interface blocks,
as in Plan 1IX°®

s gt-round consolidated &NE

Members only

Plan IX': NSV (1S5-12-9%),
Plan I': MSV (17-13%*-4).
Plan II1I': MSV (14%-106-9).
Plan IV': MSV (12%=15-27).

Everyone

Plan IX': SV (24-13-9%),
Plan I': SV (19-13%¥=-10).
Plan III': SV (14%-10-16).
Plan IV': SV (14%¥=-20-10).

GOnKLS O ORTRAN _8X

A number of members and public commenters have remarked at various
times that Fortran 8x did not seem to them to have any clear focus, or
that the development of 8x did not appear to have followued a "top-
doun” approach, starting with an agreed upon set of goals for the neuw

language. Time was thereiore allotted for a discussion of the goals
of Fortran 8x.

58

Trip Report cn 109th X3J3 Meeting, 8-12 Zug 1988
110-LJIM-01 page 15

John Reid pointed out that, in fact, a set of goals had been formally
adopted by the committee in 1983 as part of S6 (a copy of the relevant
pages from S6 was placed on the table as item 92). A number of
members szid they had never seen this document, and essked why no
provision was made to supply such information to new members. Others

questioned whether the goals expressed in 1983 uere still adegquate 5
years later.

A group of interested members, led by Kevin Harris, was asked to
prepare a new list of goals for further discussion. A first drait of
such a list was placed on the table as 109-KH-1, item 106. This is a
fairly complete list of general goals, such as portability, satfety,
etc., with a very detailed breakdown of hou these general principles
apply to a number of different aspects of the complete standard
defining and inplementing cycle. It rightly points out that different
goals very often are in direct conflict. &As part of the discussion of
this document, Kevin asked for several straw votes to try to get a
sense 0f how the committee as a whole assigns weights to these
different goals when they confligt. For sach vote, the question is
sonething like, “When A and B conflict, would you usually consider A
more important than B2"

o Is semantic precision more important than timeliness? SV (20%-4),
° Is power moie important than saftety? 8Y (i7-%),

° Is performance more important than understandsbility? SV (15%-3),.
] Is pouwer aore important than portability? 3V (6-13).

e Is power more important than timeliness? SV (5-17%),

urt Hirchert had placed an alternative statement of goals in the pre-
meeting distribution as 109-KWH-1. This was discussed by a subgroup,

and an amended version was placed on the table as 109-KWH-1a, item
118.

This subject will probably be given more full coumittee time at the
November meeting.

FPLAR CONSOHLIDATION, ROURD 2

Members were asked to study the four round 1 plans overnight and try
to prepare brief summaries of their objections for discussions on
Thursday. At the same time, some of the plan principals met to seek
further consolidations. Although a number of other possible areas of
future compromise were identified, relatively few actual changes were
made at this time. (One exception that I noted, since it changed my
vote on one of the plans, was that Plan I' accepted MODULE/USE without
module procedures when it bzcame clear that this could be implemented

5%

Trip Report on 109th X3J3 Meeting, 8-12 Aug 19838 <::>
110~-LJM-01 page 16 ™

N

without the type of dependent compilation that the plan I' backers
objected to.)

After presentations and discussions of the four plans, but before any
straw votes were taken, there was a discussion of what "adopted as a
base for further work" meant. A strawu vote was requested on the
statement: "The compromise plan should be the final choice of
features™: SV (29-8%=5). A formal vote was requested on the same
statement. Several proponents expressed the fear that, after adopting
a compromise plan, we would continue to make major changes as we did
after Scranton. Some opponents pointed out that many of the plans
were quite sketchy at this point, so that it was not always clear
whether or not a given feature was included in a particular plan.
Moreover, many possible changes had occurred over a short period of
time and many members wanted more time to study any vresulting

compromise plan before irrevocably committing themselves to it.
FV (14-17%) -- FAILS.

Another round of strau votes was taken on the slightly modified, round
2 plans:

° Members only
- Plan IX'? HSY (11-1S=-4%X)
- Plan 1'': NSV (15%=13-1).
- Plan III'*: HSV (13%-10-8).
— Plan IV'': HSV (13%=-12-2).
® Everyone ’
- Plan IX'': SV (18=-17=-4%X),
- Plan I'': SV (19%=17-5).
= Plan III*'*t: SV (16%¥=¢3-12).
b Plan IV'': SV (15¥%¥-23-4).

Another set of straw votes was requested in which people were asked to
vote for their one favorite plan:

MSY (IX*':2 = I*'°:10 = IXI°':7 = IV'':9%),

sV CIX*':48% - I'*:9 = IIXI'"':8 = IV'':10%),

I expressed some concern that none of the plans would ultimately
obtain the necessary support within the committee, and therefore asked
for the following straw vote: "Ii the committee fails to achieve
consensus on any of these plans, then s minimal plan, such as that
presented by Graham Barber, should be pursued®: HSV (6¥%-16-8).

60

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 <:::)
1‘0";\]""0‘ page ‘7

PLAN CONSOLIDATION. ROUND 3

Oon Friday, a further consolidation hasd been achieved: Brian Smith
geplit off from the other proponentis of Plan IV'', and merged his plan
with that of John Reid. 1 will label the resulting plan III'*'', since
the only change from Plan III'' was that INCLUDE was added. Since the
other backers of Plan IV'' were willing to withdraw their plan from
further consideration, the committee was doun to three plans., and
enother round of straw votes was taken:

° Members only .

b Plan IX'': HEY (13=17-13),

- Plan I"': NSV (19%#=-92-3).

- Plan III"*': MSV (i1S¥-1u-6).
° Everyone

= Plan IX'*': SV (32-19-%:%),

- Plan I'': SV (21%-19-5).

bl Plan IXI''"': SV (18%=18-9).

Most (though not all) members felt that considerable progress had been
made by the end of the week: the initial field of nine different
plans had been reduced to 3, and creative new compromises had been
found for some crucial issues. There was some hope of reaching
agreement on a plan at the Boston meeting in Hovember.

A couple of resolutions were proposed and-discussed containing

instructions for the U.S5. delegation to the WG5 meeting in Paris next
month.

The first hed to do with whether or not plan IV'' (the single layer
version of the plan originally presented in & three layer version by
Smith, et al.) shculd be presented to WGS5. Since this plan had been
withdrawun from further active consideration by X3J3, many members felt
it was simply a waste of time to present it in Paris. Motion: "X3J3

instructs the U.S. delegation not to present the ABMSW plan to WGSE.":
FV (11-9%) == DPASSES. :

The second concerned the possibility that WG5S might decide to rescind
its delegation to X3J3 of the job of preparing 2 new, international
Fortran standeacd. The proponents were concerned about the danger of
ending up with tuwo standards, while the opponents uere more afraid of
ending up with no standard at all. Motion: "X3J3 instructs the U.S.
delegation to work to prevent an international split of ounership of
the Fortran standard.™: FV (12-6%) -- PASSES.

¢l

Trip Report on 10%9th X3J3 Meeting, 8-12 Aug 1988 <:::>
110-LJIM-01 page 18

OTHER TECHNICAL WORK

Several major changes which were included in virtually all the plans,
as well as some minor technical fixups, were worked on at this
meeting.

J09-ADT-1 ES Edit bascripior

This was a proposal to add a format descriptor for scientific notation
(i.e., like E or D, but with one significant digit before the decimal
point), analagous to the EN descriptor for engineering notation. Note
that the P (scale factor) descriptor can be used to get this eififect,

. but because it is "sticky" and also applies to F descriptors, is much
more awkuward to use. Initial straw vote: SV (8¥=3-11). Several
people indicated they would prefer a solution such as splitting the P
descriptor into two separate descriptors, one that applied when the
output had no exponent field and another when there was an exponent

field: SV (1=-5-17%). The proposal was withdrawn to go back to
subgroup.

109-JHH-1 CARRIAGE= Specifier

This was a proposal to add a speciiier to the OPEN statement to allouw
the programmer to indicate whether column one is to be interpreted as
carriage control. An initial straw vote was taken whether to provide
such functionality: SV (3%1%-1-0). The proposed values for this
specifier were "FORTRAN™ or "NONE". Several people objected to these
values, noting that DEC has a similar specifier (named
CARRIAGECONTROL=) for which the "NONE"™ value has a different meaning.
A straw vote was taken on using the values "FORTRAN™ and “NONE":

SY (9%=-92-6). There was also some discussion about the name of the
specifier: "COLUMNI" and "CC" were also suggested. The proposal was
sent back to subgroup for further work.

09- =1 ssages 20 values
A couple of public comments suggested providing some way for the
programmer to get the text of the error message that would have been
issued for an 170 error if an IOSTAT= (or ERR=) specifier had not been
coded. This paper outlined several possible ways of responding to
this request. After some discussion, the fifth possibility -- "do
nothing" -~ was straw voted: SV (18%-3-8). :

09-RCA=-2 0OV aAS
The CASE construct in S8 does not allow case ranges corresponding to
different blocks of code to overlap; however, this restriction is
stated in the text rather than as a constraint, so processors are not
required to check it. Proposal 1 in this paper uwould make the
restriction into & constraint. Initial straw vote: SV (20-0-6¥). I
pointed out that this restriction had been intentionally left out of
the constraints by the subgroup, since we did not have a good feel for
how difficult it was to check. Several implementers indicated it was
not difficult at all, so a formal vote was taken: FV (24¥=0) =~

b2

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 :::

110-LJHK-01 page 19

The current text in S8 describing the CASE construct explicitly
permits several case ranges associated with a single block o0f code to
overlap. Proposal 2 would prohibit such overlaps. Initial strauw
vote: SV (12-3-11%). One possible situation where such overlaps
might naturally occur would be if some of the ranges were defined by

means of PARAMETERs. After further discussion, this proposal was sent
back to subgroup.

109-RCA~-23 B, 0, and 2 e descriptors,

Proposal 1 would add 3 new edit descriptors to produce output in
binary (B), octal (0), or hexadecimal (Z), whereas proposal 2 would
add a single new "radix" descriptor which would be "sticky", like the
P descriptor, and would determine the radix to be used with the I
descriptor. Straw votes were taken on each proposal. Proposal 1:

SV (22%-1-5). Proposal 2: 3V (5=-17%-6). Proposal 2 was withdrawn.
and proposal 1 was taken back to subgroup.

109-ABMSUH-10 Delate Concepi o eprecated Features

Since none of the plans included the concept of deprecation, and since
this proposal (part of the original Smith, et al. plan) included the
actual text necessary to implement such a changz to S8, a formal vote
was taken: FV (23%#=-1) ~- PASSES.

EDITORIAL WORR

A number of minor editorial proposals were passed at this meeting.
The details will be available in the formal minutes of the meeting.

A number of editorial, and a few technical. changes have been made to
587104 (the version of the document distributed for public revieu).

Up until nouw, these changes have been preserved in a separate standing
document, S16. It is becoming increasingly difficult to accurately
write proposals against the "virtual™ document obtained by merging S16
changes into S8/104. Accordingly, a new document was created by
carrying out this merge and was distributed before this meeting as
S87108.. A formal motion to adopt this as the new base document uas
discussed and voted: FV (£-25%) -- FAILS. Several objections uere
mentioned in the discussion:

] One appendix was missing entirely, and another seemed to have
reverted to an earlier version.

. Several members said they had not had time to compare the new
document carefully with the old.

There was some confusion as to what changes were included due in
part to a discrepancy between the meeting number on the cover
(108) and that on the bottom of each page (109).

63

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 <:::)
110-LJN-01 page 20

It was agreed that an attempt to adopt a new base document should be
made at the next meeting.

In the meantime it was suggested that proposals for the next meeting
should use line numbers from S8,/108, as distributed: FV (19-13¥%) ==
PRSSES.

OTHER BUSINESS

ubli v orum
Three individuals who had sent in public review comments were given
agenda time at this meeting to present their views. They were:
e Tom Lahey, Lahey Computer Systems, Inc. '
° Prof. Geoffrey Hunter, Theoretical Chemistry Department, Oxford
University.

° Dr. Henry Todd, Department of Computer Science, Brigham Young
University.

Fortran 77 Reagijirpation

Due to a new ruling from ANSI, all standards must be either reaffirmed
or withdraun by their tenth anniversary, regardless of where they are
in the revision cycle. As a result, X3 was forced to take emergency
action to reatfirm Fortran 77. Reaffirmation involves a 2 month
public review which will take place from 26 August to 25 October,

1988. Please note that this is simply a pro forma public review,
since the revision process (i.2., the Fortran 8x effort) will continue
independently of the Fortran 77 reaffirmation. ’

Parallel Computing Forum

Brian Smith reported that the Parallel Computing Forum has met twice
since the last X3J3 meeting in May. The PCF is preparing a set of
suggested extensions to Fortran 77 to support parallel computing, and
plans to release a document for public comment sometime this month. A
drait of this document was available on the table (item 96).

IRDS Letter Ballot

X3J3 is a coordinating liaison committee for dpANS IRDS Services
Interface. The committee developing that standard, X3HY, has reached
Milestone 8, which involves a 30-day letter ballot of the coordinating
liason committees. Accordingly, Jeanne Adams is instigating such a
ballot, for the period 26 August to 26 September 1988. Ballots will
be mailed out shortly to any members who did not take one in Jackson.

NB: This is a required letter ballot, which counts towards the tuwo-
out—-of-three membership requirement.

b

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 @
110-LJM-01 page 21

ADMINISTRATIVE BUSINESS

Hembership

At the beginning of this meeting there were 44 members, giving a
quorum of 15 (=1+INT(Memberss/3)), and a majority of the membership oif
23 (=1+INT(Memberss/2)).

Minutes of 1088th Keeting

Motion to approve the minutes of meeting 108, as amended by 109-JKR-2
and 109-JKR-5 (containing late scribe notes and a few other minor
changes): Passed by unanimous consent.

Future Heetings

1988 UGS MHeeting: 19-23 Sep 88, Paris, France (host: C. Bourstin,
AFNOR).

f10th: 13-18 Novenber 1988, Cambridge, Mass. (host: Michael
Berry, Thinking Machines Corporation). The meeting hotel is the
Royal Sonesta, 5 Cambridge Parkuay, Cambridge, Ma 02142, (617)
491-3600. The room rate will be $68 for those entitled to the GSA
rate and $110 otherwise (mention "ANSI Fortran Standards Committee"®
to get these rates). In addition, if you plan to use the GSA rate,
you MUST inform the host ASAP. The registration fee will be $70.

Note that this will be a six day meeting, starting at 10:00 AM on
Sunday., 13 November.

111th: 12-17 February 1986, SLAC, Calif. (hosts: Len Moss and
Sunnie Sund). The meeting hotel will be the Palo Alto Holiday Inn.
The singlesdouble room rates are: $82,/%$92 (GSA: $51.50/%63.50).

t1122h: 7-12 May 89, Long Island, NY (hosts: Bruce Martin and Paul
Libassi). The GSA rate of $103 (!) will be extended to all
attendees; an alternate, less expensive hotel will also be
available.

1989 WCS Meeting: 10-1% July 89, Ispra, Italy (host: Aurelio
Pollicini)

113th: 17-21 July 89, Vienna, Austria (host: Gerhard Schmitt,
Technical University of Viennal.

114th: 5-10 November 89, Dallas, Texas (host: Presley Smith,
CONVEX Computer Corporation).

LS

Trip Report on 109th X3J3 Meeting, 8-12 Aug 1988 <::)
110-LJM~-01 page 22

Mext Distribution

The closing date for the next pre-meeting distribution is 28 September

1988. To get an item into the distribution it should be received
before this date by:

Neldon Marshall

EGEG Idaho Inc.

P.0. Box 1625

Idaho Falls, ID 83415
(208-526-9342)

110-JTM-1
TO: X313
FROM: - Jeanne Martin
SUBJECT: Proposal to Add Pointers and Delete IDENTIFY/ALIAS

REFERENCES: 108-JLS-1(44)
$8.108
109-ABMSW-3(57)
109-JTM-3(85)

1 <Changes io ABMSW-3 Suggested in Jackson
Hole:

109-JTM-3(85) has been incorporated in this proposal. It makes the syntax
for the renaming of module objects consistent with the proposed pointer
assignment statement. The other changes listed below were suggested during
the discussion of 109-ABMSW-3(57) in Jackson Hole or mentioned to me by
individual X3J3 members.

From Rich Ragan: Make sure that the restrictions against overlapping
actual arguments apply equally to pointer targets. [Page 12-13, lines 13-15,
state that this is the case and proceed with an example, lines 16-21. To
make sure that it is clear that this restriction also applies to pointer targets,
I have added a second example; see item 94.]

From Bob Allison: Retain knowledge of one-time allocations for opti-
mization purposes. These could be treated in the same way as static ob jects.
(I felt this would significantly increase the possibilities for optimization, so I
have added an attribute, DEFERRED, that specifies an object that is allo-
cated once and subsequently is treated just as a static entity is treated. It
is neither a target (unless so declared) nor a pointer. Aside from the fact
that its size and location are determined at runtime, it is just like a static,
compiletime object. The DEFERRED attribute is described in item 36; an
example program using it is in item 113 (C.5.4). There are numerous other
changes for this addition throughout the proposal.]

&7

From Len Moss and Paul Sinclair Prevent indirectly recursive point-
ers. (I thought this was covered by Page 4-6, Line 12. However, I have added
a sentence to make it explicit. See item 5.]

From Larry Rolison I prefer pointers not strongly typed. [I felt this
was a minority opinion and did not make any changes to the proposal which
is definitely for strongly-typed pointers.]

From Ivor Philips Remove allocatable dummy arguments and function
results. [This can be done without severely damaging the functionality being
proposed for pointers, however I understand that Ivor is preparing such a
proposal. The items in this proposal that would have to be changed if Ivor’s
proposal is accepted are 24, 25, 32, 55, 56(last paragraph), 62, 69, 83, 84,
. 86, 88, 90, 91, 104, and 115.)

o From Walt Brainerd, Carl Burch, and Brian Smith [A number
. of wording changes were suggested that improve the proposal. These have
been incorporated.]

2 Introduction to the Proposal:

A large number of the public review comments suggested that F8X should
include a pointer facility. A straw vote at the 108th meeting was (21-6-
9) in favor of adding pointers. Another siraw vote was (23-5-7) in favor
of removing IDENTIFY/ALIAS. This proposal accomplishes both of those
tasks.

108-JLS-1 makes use of the IDENTIFY statement for pointer assign-
ment. This proposal removes the IDENTIFY statement, so a new pointer
assignment mechanism is introduced. It is a pointer assignment statement
that uses the symbols => (as in the USE statement). This proposal also
removes the ALLOCATABLE attribute because it has exactly the same se-
mantics as the POINTER attribute (See page 5-8 as revised). This proposal
adds the DEFERRED attribute to specify an object that is allocated once at
runtime, and is subsequently treated in the same fashion as a static, wholly
compiletime-specified object. Otherwise this proposal is identical in intent
to 108-JLS-1.

3 General Description:

This proposal introduces three new attributes, POINTER, TARGET, and
DEFERRED. A pointer must be declared with the POINTER attribute,

(8

along with the type and rank of the allowable target. Any static object that
is to be permitted as a pointer target must be declared with the TARGET
attribute. An object that is allocated once at runtime and subsequently
treated as a static object must be declared with the DEFERRED attribute.
The roles are designed to aid the processor to do as much of the usual
optimization as possible. A pointer is always permitted as a pointer target,
but unless declared as such a static object (including a deferred ob ject) is
not permitted as a target.

An obvious model for interpreting declarations of pointers is that such
declarations create for each name a descriptor. Such a descriptor includes
all the data necessary to fully describe and locate in memory, an object,
and all sub-objects, of the type, type-parameters and rank specified. The
descriptor is created empty; it does not contain values describing how to
access any actual memory space. These descriptor values will be filled in
when the pointer is associated with actual target space.

An object with the DEFERRED attribute must not be associated by
pointer assignment; it can only be associated by allocation and can only be
associated once within its scoping unit. A dummy argument must not be
declared with the DEFERRED attribute.

A pointer may be associated with an object by allocation or pointer
assignment. If a pointer is included in an ALLOCATE statement, space
to hold an object of the relevant type and specified shape is allocated and
is associated with the pointer; any previously existing association of the
pointer with an object is broken. If a pcinter appears in a pointer assignment
statement with a permitted target, the pointer becomes associated with the
space refered to by the target; any previous association of the pointer with
an object is broken.

One or more components of a derived type may be defined to have the
POINTER attribute, in which case any object of this derived type will have
one or more pointers for those respective components. A derived type may
contain a pointer component whose target object is of the derived type being
defined. This allows the construction of lists and trees, etc.

A pointer becomes disassociated from its target object if it appears in
a DEALLOCATE statement, or the program unit in which it is declared
becomes inactive and the pointer is not saved. A pointer becomes disassoci-
ated from any target if it is assigned a pointer target that is itself currently
disassociated. '

In all expression contexts a pointer is dereferenced and the current tar-
get is used. Similarly, when a pointer appears on the left of an intrinsic

3

67

assignment the pointer is dereferenced and the right-hand side value is as-
signed into the space currently associated with the pointer. All the normal
conformance rules apply in both expression and assignment contexts. When
a pointer appears in an input statement, the pointer is dereferenced and the
input value is read into the space currently associated with the pointer. On
the other hand, a pointer assignment between two pointers will make both
reference the same target.

NOTE: Dereferencing can only be applied to whole scalar objects. If a
structure containing a pointer component appears in a dereferencing context,
the pointer component is not dereferenced. This implies that by default,
asgignment of a derived type with a pointer component is interpreted as
component-by-component assignment for the nonpointer components and
pointer assignment for the pointer components.

An undereferencable pointer may not appear in an I/O list.

NOTE: These dereferencing rules are slightly over-restrictive but they’

are safe and could be relaxed by an easy 9X extension. They do not allow
arrays of pointers, which could be produced by selecting a pointer component
from an array of structures, to be treated as a whole array. They do not
allow a structure with a pointer component to appear in an I/O list.

4 Specific Text for $8.109

The following are the edits necessary to implement this proposal. They
are written against $8.109, August 1988, as distributed prior to the August
meeting.

1. Page 2-3, line 5, delete; after line 8, add

or pointer-assignment-stmt

2. Page 2-7, line 37-38, replace “However, ... arrays.” with

The extents of a deferred array are determined when the array is al-
located and do not vary. However, for dummy argument arrays, auto-
matic arrays, and target arrays, the extents may vary during execution.

3. Page 2-8, after line 1, add

2.4.8 Pointer. A pointer is an object descriptor that is derefer-
enced when it appears in an expression. Any data object may have

70

the POINTER attribute (5.1.2.7). Such an object is empty or disasso-
ciated and must not be referenced or defined until it becomes associ-
ated with a target object as a result of executing a pointer assignment
statement (7.5.2) or an ALLOCATE statement (6.2.2). Once associ-
ated, a pointer may appear as a primary in an expression anywhere a
variable with the same type, type parameters, and shape may appear.

s

. Page 2-9, line 4, replace “alias” with “pointer”.

(2]

. Page 4-6, line 12, before the sentence “Ultimatelytype.” add

A component may be a pointer to an object of intrinsic type, to an
object of a previously defined derived type, or to an object of the type
being defined.

=2

. Page 4-6, line 13, before the period, add “or pointers”

-3

. Page' 4-6, move constraint on lines 37-38 to follow line 22.:.

. Page 4-6, line 31-32, replace Rule 419 by

[+

R419 componeni-def-stmt is type-spec [,component-atir-spec-list ::] O
O component-decl-list

9. Page 4-6, following line 34 add

R419.1 component-aitr-spec is POINTER
or ARRAY (component-array-spec)

Constraint: No component-atir-spec may appear more than once in a
given component-dejf-stmd.

Constraint: A type-spec in a component-def-stmt may include the
type-name of its containing derived-type-def only if the
POINTER attribute is specified for that component.

R419.2 component-array-spec is ezxplicii-shape-spec-list
or deferred-shape-spec-list

10. Page 4-6, move constraints on lines 35-36 to follow line 42.

7/

11.

12,

13.

14,

Page 4-6, line 39, replace “ezplicit-shape-spec-list” with “component-
array-spec”

Page 4-7, lines 1-2, replace “attribute specified” with “attribute,
the POINTER attribute, or both are specified”

Page 4-8, line 8, add

A derived type may have a component that is a pointer. For example,

TYPE REFERENCE
INTEGER :: VOLUME,YEAR,PAGE
CHARACTER(LEN=50) :: TITLE
CHARACTER,ARRAY(:),POINTER : ABSTRACT

END TYPE REFERENCE

Any object of type REFERENCE will have the four fixed sized com-
ponents VOLUME, YEAR, PAGE and TITLE, plus a pointer to an
array of characters holding ABSTRACT. The size of this target ar-
ray will be determined by the length of the abstract. The space for
the target may be allocated (6.2.2) or the pointer component may be
associated with a target in a pointer assignment statement (7.5.2).

A pointer component of a derived type may have as its target an object
of the type of which it is a component. For example,

TYPE NODE
INTEGER :: VALUE
TYPE(NODE), POINTER : NEXT.NODE
END TYPE

A type such as this may be used t;: construct linked lists of objects of
type NODE. i
Page 4-9, after line 34, add, ‘

Where a component in the derived'type is a pointer, the corresponding
constructor expressions must evaluate to an object that would be an
allowable target for such a pointer in a pointer assignment statement.
For example, if the variable TEXT were declared (5.1) to be

72

A

15.
16.

17.

18.

19.

CHARACTER, ARRAY(1:400), TARGET :: TEXT
and BIBLIO were declared
TYPE(REFERENCE) :: BIBLIO

the statement

BIBLIO=REFERENCE(1,1987,1, “This is the title of the referenced &
' & paper”, TEXT)

is valid and it identifies the ABSTRACT component of the object
BIBLIO with the target object TEXT.

A constant expression cannot be constructed for a derived type con-
taining a pointer component, since a constant value is not an allowable
target in a pointer assignment statement.

Page 5-1, delete lines 31-32
Page 5-1, after line 33, add

or DEFERRED
Page 5-1, after line 35, add

or POINTER
Page 5-1, after line 37, add

or TARGET

Page 5-1, lines 47-48, replace with

73

20.
21.

22,
23.

24,
25.

26.

27.

28,

Constraint: An object must not have more than one of the attributes:
POINTER, DATA, PARAMETER

Constraint: An object must not have both the TARGET attribute
and the PARAMETER attribute.

Constraint: An object must not have both the DEFERRED attribute
and the DATA attribute.

Page 5-2, line 1, replace “ALIAS” with “POINTER or DEFERRED”

Page 5-2, line 3, replace “an ALIAS or ALLOCATABLE” with “a
POINTER or DEFERRED”

Page 5-2, line 5, delete “ALIAS,”

Page 5-6, lines 21-22, replace "an alias object, an allocatable array,”
with "a pointer, a deferred object,”

Page 5-6, line 35, replace “an allocatable array” with “a pointer”

Page 5-7, line 5, replace “allocatable dummy arguments” with “dummy
pointers”

Page 5-7, line 23, replace “an allocatable array and an alias array”
with “a pointer to an array and a deferred array”

Page 5-7, line 28-29, replace with

REAL, DEFERRED :: C(:) ! deferred array
REAL, POINTER :: D(: ,) ! pointer to an array

Page 5-8, replace lines 16-24 with

5.1.2.4.3 Deferred-Shape Array. A deferred-shape array is a
deferred array or a pointer to an array. An object declared with a
deferred-shape-spec-list is allocatable. If it has the DEFERRED at-
tribute it is a deferred array. If it has the POINTER attribute it may
be used as a pointer or a pointer target.

A deferred array is a named array whose type, type parameters,
name, and rank are specified in a type declaration statement, but

8

7

29.

whose bounds, and hence shape, are determined when it is allocated
by execution of an ALLOCATE statement (6.2.2). It must not be
allocated more than once within its scoping unit.

A pointer tc an array is a named array whose type, type parame-
ters, name, and rank are specified in a type declaration statement, but
whose bounds, and hence shape, are determined when it is associated
with space by execution of a pointer assignment statement (7.5.2) or
when space is allocated for the array target by execution of an ALLO-
CATE statement (6.2.2). It may be associated more than once within
its scoping unit.

Page 5-8, replace lines 27-30 with

The size, bounds, and shape of an unallocated deferred array or an
unassociated or unallocated pointer to an array are undefined. No
reference may be made to any part of such an array, nor may any part

" of it be defined. The upper and lower bounds of each dimension are

30.
31.
32,

33.

34,

35.
36.

those specified in the ALLOCATE statement or the pointer assignment
statement when the array is associated with space.

Page 5-8, line 31, replace “allocated” with “associated”.
Page 5-8, delete lines 33-36
Page 5-8, replace lines 37-39 with

A pointer dummy argument may be associated only with a pointer
actual argument. An actual argument that is a pointer may be asso-
ciated with a nonpointer dummy argument. An array-valued function
may declare its result to be a pointer to an array.

Page 5-9, line 27 and line 32, replace “allocation status” with “associ-
ation status” (twice)

Page 5-9, line 35, replace “an automatic data object, or an alias” with
“or an automatic data object”

Page 5-9, lines 40-47, delete

Page 5-10, before line 1, add

5.1.2.7 POINTER Attribute. The POINTER attribute speci-
fies that only the type, type parameters, rank, and name of the objects

5

declared in the statement are specified. The object called a pointer is
empty, or disassociated. It must not be referenced or defined unless,
as a result of executing a pointer assignment statement (7.5.2) or an
ALLOCATE statement (6.2.2), it becomes pointer associated with a
target object that may be referenced or defined. If the pointer is to
have an array as target object, the pointer must be declared with a
deferred-shape-spec-list. Examples of POINTER attribute specifica-
tions are

TYPE(NODE), POINTER :: CURRENT, TAIL
REAL, ARRAY(:,:), POINTER : IN, OUT, SWAP

5.1.2.8 TARGET Attribute. The TARGET attribute specifies
that an object declared in a declaration containing this attribute may
appear as the target object in a pointer assignment statement (7.5.2),
that associates a pointer with a target. Any object specified to have the
POINTER attribute automatically acquires the TARGET attribute
as well and does not require its explicit specification. Examples of
TARGET attribute specifications are

TYPE(NODE), TARGET :: HEAD
REAL, ARRAY(1000,1000), TARGET :: A, B

5.1.2.9 DEFERRED Attribute. The DEFERRED attribute
specifies that only the type, type parameters, rank, and name of the
object declared in the statement are specified. The object called a
deferred object is disassociated. It must not be referenced or defined
unless, as a result of executing an ALLOCATE statement (6.2.2), it
becomes associated. It may be associated only once within its scoping
unit. It cannot be associated by the execution of a pointer assignment
statement (7.5.2). If the deferred object is an array, it must be declared
with a deffered-shape-spec-list. A deferred object may be specified
to have the TARGET attribute. Examples of DEFERRED attribute
specifications are

REAL, ARRAY(:,;), DEFERRED :: WORK
CHARACTER(:), DEFERRED :: TITLE

37. Page 5-10, line 22, replace “alias” with “pointer, target, deferred”

10

76

38,
39.

40.

41.

42,

43.

46.
47.

49.
50.
51.
52.

Page 5-11, line 24, delete “an alias name,”
Page 5-13, lines 5-7, delete “an alias object,”, replace “an allocatable
array” with “a deferred object, a pointer”

Page 5-14, lines 4—-5, replace “allocatable arrays, alias ob jects” with
“deferred objects, pointers”

Page 5-17, lines 18-19, replace “an alias object, or a deferred-shape
array” with “a deferred object, or a pointer”

Page 5-18, line 6, Page 5-19, line 17,

replace “an alias object, an allocatable array” with “a deferred ob ject,
a pointer” -

Page 6-1, line 3, after “is defined.” add

“A reference to a pointer is permitted only if the pointer is associated
with a target object that is defined”

. Page 6-1, line 22, replace “alias variables (5.1.2.7), allocatable arrays

(5.1.2.4.3)” with “deferred objects, pointers”

. Page 6-3, lines 18-19, replace “allocatable arrays” with “:deferred ob-

jects and pointer targets”
Page 6-3, line 20, delete “array-"
Page 6-3, line 25, replace rule R612 by

R612 allocation is name [(ezplicit-shape-spec-list)]

. Page 6-3, line 26, replace with

Constraint: name must be the name of a pointer or deferred object.
Page 6-3, line 27 and line 31, delete “array-” (twice)
Page 6-3, line 29, replace “other array” by “other object”

Page 6-3, lines 35-37, delete “At the time ... allocatable array.”

Page 6-3, line 45, replace “array” with “ob ject”

11

77

53.

54.
55.

56.

57.

58.
59.

Page 6-3, lines 46-47, delete “Allocating a currently ...ALLOCATE
statement.”

Page 6-3, line 48, replace “arrays” with “objects”

Page 6-4, line 1, line 3, and line 4 replace “array” with “object” (3
times)

Page 6-4, following line 2, add

The pointer target may be referred to by way of the associated pointer.
Additional pointer names may become associated with the pointer
target or a part of the pointer target by pointer assignment. It is not
an error to allocate a currently allocated pointer. In this case a new
pointer target is created as required by the = ttributes of the pointer and
any array bounds specified in the ALLOCATE statement. The pointer
is then associated with this new target. Any previous association with
a target is broken. If the previous target had been created by allocation
it becomes inaccessible unless it can still be referred to by other pointer
names that are currently associated with it.

[X3J3 Note: This is an essential property of pointer allocation. It
is necessary to allow lists to be created by allocating a new node by
way of a working pointer. This is then attached to the list by pointer
assignment as the target for the next % node in the current node of
the list. This process is iterated usually in a conditional exit loop, as
in the example in the Appendix C additions in this proposal.]

At the beginning of execution of a function whose result is a pointer,
the result pointer is disassociated. Before such a function returns it
must associate a target with this pointer.

Page 6-4, after line 5, add

An object with the DEFERRED attribute must not be allocated more
than once within its scoping unit. A DEALLOCATE statement causes
such an object to be disassociated. A DEALLOCATE statement
causes a pointer to be disassociated from its current target.

Page 6-4, line 6, replace “array-name” with “allocation-name”

Page 6-4, line 10, replace with
Each allocation-name must be the name of an object with either the
POINTER or DEFERRED attribute

12

78

#

60.
61.
62.
63.
64,

65.
66.
67.
68.

69.

70.

71.

72

Page 6-4, line 17, replace “array” with “object”

Page 6-4, line 19, replace “array” with “object”

Page 6-4, line 21, replace “An allocatable” with “ A pointer”
Page 6-4, lines 22 and 23, replace “array” with “object” (twice)
Page 6-4, lines 25-26, replace with

Such allocated objects retain their association status at the execution
of the RETURN or END statement.

Page 6-4, line 33, replace “array” by “object”
Page 6-4, line 38, after “array” add, “or a pointer target”.
Page 6-7, line 21 through page 6-10, line 10, delete all

Page 6-10, Table 6.2, delete column 3 (Alias Array), change heading
of column 5 to “Array Target”, replace lines 32-33 with

pointer-assignment-simt No No Yes No No

Page 7-6, after line 27, add after title

H a pointer is referenced as a primary in an expression, the associated
target object is referenced. The type, type parameters, and shape
of the primary are those of the current target. If the pointer is not
currently associated with a target it may appear as a primary only

~ as the actual argument of a procedure whose corresponding dummy
- argument is declared to be a pointer.

Page 7-7, line 39 and Page 7-9, line 20, replace “IDENTIFY” with “a
pointer assignment”

Page 7-9, line 35, between the sentences, add

If the variable is a pointer, it must be associated with a target object
that is defined.

Page 7-19, after line 4, add
If the variable is a pointer it must be currently associated with a
definable target object whose type, type-parameters and shape are

13

19

73.

conformant with the result of evaluating the expression. The result

of the expression evaluation is assigned to the currently associated
pointer target.

If the variable is of a derived type containing a pointer component,
the expression must evaluate to a value of this type. Each of the
values of the nonpointer components is assigned to the corresponding
component variable, and each pointer component is associated with
the corresponding pointer component variable.

Page 7-21, after line 3, add the following section and adjust the fol-
lowing section and rule numbers

7.5.2 Pointer Assignment Statement
R723 pointer-assignment-stmi is pointer-name => target
R724 target is vaeriable

Constraint: The pointer-name must have the POINTER attribute.
The target object must have one of the attributes TAR-
GET or POINTER or it must be a sub-object of an object
with one of these attributes.

Constraint: The target must be of the same type, type parameters,
and rank as the pointer.

A pointer assignment statement associates a pointer-name with a tar-
get object. If target is itself a pointer then pointer-name is associated
with the same object as target. If target is a pointer that is not cur-
rently associated, then pointer-name also becomes disassociated.

Any association with a target object the pointer may have had previ-
ously is broken.

In addition to pointer assignment, a pointer becomes associated with
a target chject by allocation of the poinier-name.

A pointer may not be referenced or defined unless it is associated with
a target that may be referenced or defined.

The following are examples of pointer assignment statements.

14

80

P SN

74.

75.

76.

77.

78,

PNTR.TO.CELL => FIRST_CELL

SIMPLENAME => STRUCTURE % SUBSTRUCT % COMPONENT

ROW => MAT2D(N, :)

WINDOW => MAT2D(I-1:I+1,J-1:J+1)

ROW => MAT2D(K,5:5+K)

EVERY_OTHER => VECTOR(L:N:2)

PATTERN => STRUCTURE_A(L:N) % ARRAY B(1:M)

Page 9-5, lines 43-44, replace “an allocatable array not currently allo-
cated, an alias object not currently alias associated” with “a pointer
or deferred object not currently associated”

Page 9-13, after line 11, add

If an input item is a pointéi' it must be currently associated with a
definable target object. If an input item is a deferred ob ject it must
be currently allocated.

Page 9-13, after line 20, add

If a derived type contains a pointer component, an object of this type
may not appear as an input item, nor as the result of the expression
evaluation in an input/output list.

Page 9-16, after line 16, add

If the input item is a pointer, data are transferred from the file into
the currently associated target object. If the input item is a deferred
object, data are transferred from the file into the allocated ob ject.

Page 11-2, after line 16, add a new paragraph

Hf a procedure gains access to a pointer by host association the associ-
ation of the pointer with a target that is current at the time the pro-
cedure is invoked remains current within the procedure. This pointer
association may be changed within the procedure by allocation, deal-

location, or assignment. When execution of the procedure completes,

the pointer association that was current remains current, except where
the associated target was declared within the procedure and is not
saved. In this case the completion of the procedure causes the pointer
association status of the host associated pointer to become undefined.
Such a pointer may not be used in any way until its association status
is re-established by deallocation, allocation, or assignment.

15

g/

96.

97.

98.

99,

100.
101.

Page 13-3, lines 40-41, change “an allocatable array that has been
allocated, an alias array that is alias associated” to “a deferred-shape
array that has been allocated or associated”

Page 13-5, after line 4, add

13.7.8 Association Status Inquiry Functions. The function AS-
SOCIATED with a single argument returns true if its argument is
currently associated, and false if it is currently disassociated. The
two-argument form is used only for pointers. It compares the argu-
ments. If they refer to the same object the result is true; otherwise
it is false. Two pointers are the same if they are associated with the
same target.

Page 13-7, line 38, delete

Page 13-8, after line 26, add
13.19.15 Association Status Inquiry Function

ASSOCIATED (VIRTUAL_OBJECT, TARGET) association status
or comparison

Page 13-12, lines 34-40, delete

Page 13-13, after line 38, add and renumber
13.12.13 ASSOCIATED (VIRTUAL_.OBJECT, TARGET)

18

79

Optional Argument. TARGET

Description, Returns the association status of its virtual object

argument or indicates the virtual object is associated
with the target.

Kind. Inquiry function
Arguments.,
VIRTUAL.OBJECT must be a pointer or deferred object, may be of any
type
TARGET must be a permitted pointer target
(optional)
Result Type. The result is of type Logical

Result Value.

Case(i): , If TARGET is absent the result is true if VIR-
TUAL_OBJECT is currently associated and false if
it is not.

Case(ii): If TARGET is present, the VIRTUAL_OBJECT must

be a pointer and the result is true if the pointer is
currently associated with TARGET and false if it is
not.

Example. ASSOCIATED(CURRENT, HEAD) is true if CUR-
RENT points to the target HEAD

102. Page 13-19, lines 13-15, change “It must not be an allocatable array
that is not allocated or an alias array that is not alias associated” to
“It must not be a pointer or deferred object that is not associated.”
Make the same change in the following places:

Page 13-20, lines 24-25
Page 13-20, lines 38-40
Page 13-21, lines 14-16

19

g5

103.
104.
105.
106.

107.
108.
109.
110.
111.

112.

Page 13-22, lines 19-20
Page 13-25, lines 10-12

Page 14-1, line 15, delete “as an IDENTIFY subscript,””
Page 14-2, lines 10 and 14 change “allocatable” to “pointers” (twice)
Page 14-3, lines 7-8, delete

Page 14-3, line 30. between “association” and “or” add ¢, pointer
association”. Delete the second “by”.

Page 14-3, line 32, change “four” to “three”

Page 14-3, line 33, delete “alias association,”

Page 14-3, lines 35-36, delete “Alias association ... unit.”
Page 14-4, lines 18-37, delete

Page 14-5, Table 14.2, lines 1-33, delete second column, delete lines
23-26, change title to "Summary Comparison of Use and Host Associ-
ation” -

Page 14-5, after line 33, add new section and renumber

14.7.2 Pointer Association. Pointer association between a pointer
and a permitted target allows the target to be referred to by way of
the pointer. A pointer may be associated with different targets or no
target at different times during execution of a program.

Pointer association is established by allocation (6.2.2) or pointer as-
signment (7.5.2). Pointer association is broken and a pointer disas-
sociated from any target by deallocation (6.2.3) or assignment to an
already disassociated pointer.

The pointer association status of a pointer becomes undefined if the
associated target ceases to exist (12.4.1.1) (11.2.2).

A pointer that is currently associated with a definable target is a vari-
able and it becomes defined or undefined according to the same rules
as for a variable (14.8).

20

g6

by,

113. Add the following section notes

C.4.4 Pointers This standard intreduces pointers as names that can
dynamically change their association with a target object. In a sense,
a normal variable is a name with a fixed association with a specific
object. A normal variable name refers to the same storage space
throughout the lifetime of a variable. A pointer name may refer to
different storage space, or even no storage space, at different times. A
variable can be considered to be a descriptor for space to hold values
of the appropriate type, type parameters and array rank such that the
values stored in the descriptor are fixed when the variable is created
by its declaration. A pointer can also be considered to be a descriptor
but one whose values may be changed dynamically so as to describe
different pieces of storage. When a pointer is declared, space to hold
the descriptor is created, but not the space described, whereas for a
variable, both are created.

A derived type may have one or more components that are defined to

be pointers. It may have a component that is a pointer to an object of
the same type as that being defined. This “recursive” data definition
allows dynamic data structures such as linked lists, graphs and trees
to be constructed. For example

TYPE CELL ! define a “recursive” type
INTEGER 2 val
TYPE(CELL), POINTER :: next.cell
END TYPE CELL
TYPE(CELL), TARGET ¢t head
TYPE(CELL), POINTER :: current, temp ! declare pointers
INTEGER i joem, k
head%val=0
current => head ! current points to head of list
DO
READ(*,* jostat = ioem)k ! read next value if any
IF(ioem.NE.O)EXIT
ALLOCATE(temp) ! create new cell each iteration
temp%val = k ! assign value to cell
current%nextcell => temp ! attach new cell to list
21

¥7

current => temp ! current points to new end of list

END DO

A list is now constructed and the last linked cell contains a disassoci-
ated pointer. A loop can be used to “walk through” the list.

current => head

DO
WRITE(*,*) current%val
IF(.NOT.ASSOCIATED(current%nextcell)) EXIT
current => current%nextcell

END DO

C.5.2 The POINTER. Attribute The pointer attribute is specified
if a pointer is declared. The type, type parameters, and rank that
must be specified at the same time determine the characteristics of
the target objects that can be associated with the pointers declared
in the statement. An obvious model for interpreting declarations of
pointers is that such declarations create for each name a descriptor.
Such a descriptor includes all the data necessary to describe fully and
locate in memory an object and all subobjects of the type, type pa-
rameters, and rank specified. The descriptor is created empty; it does
not contain values describing how to access any actual memory space.
These descriptor values will be filled in when the pointer is associated
with actual target space.

The following example illustrates the use of pointers in an iterative
algorithm.

PROGRAM DYNAM.ITER

REAL,ARRAY(:,:),POINTER :: A, B, SWAP! Declare pointers

read (*,*) N, M

ALLOCATE (A(N,M), B(N,M)) ! Allocate pointers

read values into A
ITER:DO

! Apply transformation of values in A to produce values in B

22

§¢€

IF (converged) EXIT ITER

! Swap A and B

SWAP => A; A => B; B => SWAP
END DO ITER

END

C.5.3 The TARGET Attribute. The TARGET attribute is spec-
ified for any object that may, during the execution of the program,
become associated with a pointer. This attribute is defined entirely
for optimization purposes. It allows the processor to assume that
all objects not explicitly declared as targets may be referred to only
by way of their original declared name. In particular, it means that
implicitly-declared objects may not be used as pointer targets. This
will allow a processor to perform optimizations that otherwise would
not be possible in the presence of certain pointers.

The following example illustrates the use of the TARGET attribute in

' an iterative algorithm.

PROGRAM ITER
REAL,ARRAY(1000,1000), TARGET :: A,B

REAL,ARRAY(:,:),POINTER :: IN,OUT,SWAP

read values into A

IN=>A ! Associate IN with target A
OUT =>B ! Associate OUT with target B
ITER:DO

! Apply transformation of IN values to produce OUT
IF (converged) EXIT ITER
! Swap IN and OUT
SWAP => IN; IN => OUT; OUT => SWAP
END DO ITER

END

23

59

C.5.4 The DEFERRED Attribute. The DEFERRED attribute
is specified for an object whose shape is not declared, but is specified
when the object is allocated. A deferred object must not be allocated
more than once in its scoping unit. This attribute is defined entirely
for optimization purposes. It allows the processor to treat a deferred
object in much the same manner as a fully declared object. A deferred
object must not be a pointer target unless it also has the TARGET
attribute.

The following example illustrates the use of the DEFERRED attribute.

PROGRAM TAILORED
REAL, ARRAY(:,:),DEFERRED :: WORK
CHARACTER(:), DEFERRED :: TITLE

INTEGER M, N, L

read values into N, M, L
ALLOCATE (WORK(N,M), TITLE(L))

! calculations using WORK and output using TITLE

END

C.6.4 Pointer Allocation and Association The effect of ALLO-
CATE and DEALLOCATE (when applied to pointers) and pointer
assignment is that they are interpreted as changing the values in the
descriptor that is the pointer. An ALLOCATE is assumed to create
space for a suitable object and to “assign” to the pointer the values
necessary to describe that space. A DEALLOCATE breaks the associ-
ation of the pointer with the space. Depending on the implementation,
it could be seen as setting a flag in the pointer that indicates whether
the values in the descriptor are valid, or it could clear the descriptor
values to some (say zero) value indicative of the pointer not currently
pointing to anything. A pointer assignment copies the values neces-
sary to describe the space occupied by the target into the descriptor
that is the pointer. Descriptors are copied, values of objects are not.
IF PA and PB are both pointers and PB is currently associated with
an object C, then

PA=>PB

24

90

e

results in PA also being associated with C.

The standard is defined so that such associations are direct and inde-
pendent. A subsequent statement

PB=>D
or ALLOCATE(PB)
or DEALLOCATE(PB)

has no effect on the association of PA with C, only with the association
of PB.

The basic principle is that ALLOCATE, DEALLOCATE and pointer
assignment primarily affect the pointer rather than the target. AL-
LOCATE creates a new target but other than breaking its connection
with the specified pointer it has no effect on the old target. Neither
DEALLOCATE nor pointer assignment have any effect on targets. A
given piece of memory that was allocated and associated with a pointer
will become inaccessible to a program if the pointer is deallocated and
no other pointer was associated with this piece of memory. Such pieces
of memory may be reused by the processor if this is expedient. How-
ever, whether such inaccessible memory is in fact reused is entirely
processor dependent.

C.7.3 Pointers in Expressions A pointer is basically considered to
be like any other variable when it is used as a primary in an expression.
If a pointer is used as an operand to an operator that expects a value
the pointer will automatically deliver the value contained in the space
currently described by the pointer, i.e. the value of the target object
currently associated with the pointer. In value-demanding expression
contexts pointers are dereferenced.

C.7.4 Pointers on the Left Side of an Assignment A pointer
that appears on the left of an intrinsic assignment statement also is
dereferenced and is taken to be referring to the space that is its current
target. The assignment statement is, therefore, the normal copy of
the value of the right-hand expression into this target space. All the
normal rules of intrinsic assignment hold; the type, type parameters,
and array shape of the expression result and the pointer target must
agree.

25

7l

Note that if the object on the left of an intrinsic assignment is of a
derived type which contains a pointer component, the assignment will
copy the “value” of the corresponding pointer component in the ex-
pression. That is, the values of the descriptor will be copied. For
intrinsic assignment of derived types, non-pointer components are as-
signed and pointer components are pointer assigned. Dereferencing is
applied only to entire scalar objects, not selectively to pointer subab-
jects.

For example, if a type such as

TYPE CELL

INTEGER :: val

type(CELL), POINTER :: next_cell
ENDTYPE

and objects such as

type(CELL), TARGET :: head
type(CELL), POINTER :: current

exist, a linked list has been created attached to HEAD and the pointer
CURRENT allocated to associate space, statements such as

current = head
current = current%unext.cell

cause the contents of the CELLs referenced on the right to be copied to
the CELL referred to by CURRENT. In particular, the left-hand side
of the second statement causes the pointer component in the CELL,
CURRENT, to be selected. This pointer is dereferenced since it is in an
expression context to produce the target’s integer value and a pointer
to a CELL that is contained in the target’s CURRENT%NEXTCELL
component. The right-hand side causes the pointer CURRENT to be
dereferenced to produce its present target, space to hold a cell (an
integer and a cell pointer). The integer value on the right is copied to
the integer space on the left and the pointer components are pointer
assigned (the descriptor on the right is copied into the space for a
descriptor on the left). When a statement such as

26

92

114.
115.

current => current%nextcell

is executed, the descriptor value in CURRENT%NEXTCELL is copied
to the descriptor named CURRENT. In this case CURRENT is made
to point at a different target.

In the intrinsic assignment statement, the space associated with the
current pointer does not change but the values stored in that space do.
In the pointer assignment statement, the current pointer is made to
associate with different space. Using the intrinsic assignment causes a
linked list of CELLS to be moved up through the current “window”;
the pointer assignment causes the current pointer to be moved down
through the list.

C.9.11 Pointers in an Input/Output List. Data transfers always
involve the movement of values between a file and internal space. A
pointer as such cannot be read or written. A pointer may, therefore,
appear as an item in an input/output list if it is currently associated
with a target that can receive a value (input) or can deliver a value
(output). A derived type object with one or more pointer components
must not appear as an item in an input/output list because the value
of a pointer component is the descriptor for a location in memory. As
such, this has no processor-independent representation external to the
processor.

C.11.3 Pointers in Modules. A pointer from a module program
unit may be accessible in a procedure via use association. Such point-
ers have a lifetime that is greater than targets that are declared in the
procedure, unless such targets are saved. Therefore, if such a pointer
is associated with a local target, there is the possibility that when the
procedure completes execution, the target will cease to exist leaving
the pointer “dangling”. This standard considers such pointers to be
in an undefined state. They are neither associated nor disassociated.
They must not be used again in the program until their status has
been reestablished. There is no requirement on a processor to be able
to detect when a pointer target ceases to exist.

Page C-16, line 49, change “ALLOCATABLE” to “POINTER”

Add more section notes:

C.12.4 Dummy Arguments as Pointers. If a dummy argument is
declared to be a pointer it may be matched only by an actual argument

27

93

116.

117.
118.

119.
120.
121.

that also is a pointer, and the target object characteristics of both ar-

guments must agree. A model for such an association is that descriptor.

values of the actual pointer are copied to the dummy pointer. If the
actual pointer has an associated target, this target becomes accessible
via the dummy pointer. If the dummy pointer becomes associated with
a different target during execution of the procedure, this target will
be accessible via the actual pointer after the procedure completes ex-
ecution. If the dummy pointer becomes associated with a local target
that ceases to exist when the procedure completes, the actual pointer
will be left dangling in an undefined state. Such dangling pointers
must not be used.

C.13.1 The ASSOCIATED Furnction. The ASSOCIATED intrin-
sic function can be used to test whether a deferred object has been
associated or whether a pointer is associated with a target. The one-
argument form is used for this purpose. In the two-argument form,
the ASSOCIATED function tests whether the pointer first argument
is associated with the space that is referred to by the second argument.
The values shared in the two descriptors are compared. In most cases,
it will be used to test if two pointers are associated with the same
target.

Page C-22, line 23, change the title to “Automatic and Defermd-SHape
Arrays”

Page C-22, line 25, change “allocatable” to “deferred-shape”

Page C-22, line 26, change “ALLOCATE and DEALLOCATE” to
“ALLOCATE, DEALLOCATE, and pointer assignment”

Page C-22, line 29, change “ALLOCATABLE” to “POINTER”
Page C-23, line 14, delete
Appendix H (The Glossary) Delete definitions for alias, alias asso-

ciation, and parent of an alias. Add the following:

pointer (5.1.2.7). A descriptor for an object of the declared type, type
parameters, and rank. A pointer is empty until it becomes associated
with a target object by the execution of an ALLOCATE statement
(6.2.2) or a pointer assignment statement (7.5.2). Once associated, a
pointer may appear as a primary in an expression anywhere a variable
with the same type, type parameters, and shape may appear.

28

77

target (5.1.2.7). An object that may be accessed by a pointer. Any
dynamic object is a permitted target. A static object may be a target
only if it is declared with a TARGET attribute (5.1.2.8).

122. Page H-1, line 13, replace “A named array” with “A named, deferred-
shape array”

123. Page H-1, line 29, change “whether allocatable, whether an alias” to
“whether a pointer or a target, whether deferred”

124. Page H-2, line 7, change definition to “An allocatable array or a pointer
to an array.”

125. Page H-4, lines 27-29, replace “An assumed-size array or an explicit-
shape array” with “An explicit-shape array, an assumed-size array, or
a pointer to a sequence array (which may be allocated)”

5 Proposal

That the above pointer facility be added to Fortran 8X by amending S8.108
as indicated.

29

75

76

B,

110=LWC=1

Sept. 12, 1988
To: X3J3 Page 1 of 2
From: Lloyd Campbell

Subject: Suggested Edits to 58.104 (and 58+108)

Notes: Edits followed by a "(pc no.)" were instigated by that public
comment number. 88.108 page and line numbers are in parentheses
at the end of each item.

1. ?age 1«3, line 17: Change "are elso" to "also are®. (as in 58.108 at
Pe 1=3/17) . .

2. Page 2=l line 43 Add-"(he4.1)" aiter ngefinition. (pc 340.26)(2-3/32)

3, Page 5~2, line 20: AdA % (7e106:3)% after wgpecification=expr!.
(pc 340.48) (5-2/18) .

L. Page 5-10, line 4*: Add new section:

5e1e2¢8 ALLOCATABLE Attributes The ALLOCATABLE atiribute specifies

that the objects declared in the statement are allucatable arrayse
Such arrays must be deferred-shape arrays whose shape is deter=
mined when space is allocated for each array by the execution
of an ALLOCATE statement (6:2+2)a

(pc 338.60) . (5=9/47+)

5. Page 7=2, line 9+3 Add "Constralnt: A definedwuriary=on must not
contain more than 31 letters and must not be the same as any
intrinsic=operator or ;gg;cal»;;teral—constant."

{should repeat constraint from pe. 3=l lines &=9)
(repeat 3=i/6,7 at 7=2/6+)

6. Page 7=19, line 30: Change 17,110 to "7.9". (7-19/49)

7. Page 8=6; lines }5=462 Wincluding, if necwssary eee conversion
(Table 7.11)" should be in small font and "7.11" should be "7.9%.
(pc 338.65) (8=7/18:19)

/8. Page 9=6, line 6: Add "The file must be an external file."
(pc 350.28.17). (96/8)

9. Page 915, line 25+: add "If no format or namelistegroup-nameg is
specified, unformatted data transfer is established.”
(pc 350.28.18, redundant but nice) (9=15/7+)

10. Page 9-21: Move lines 39=4; to page 9=22 line 4+ and renumber
section to 9.6.3. (move g=21/32=36 to 9=21/45+)
Page 9-21, line 45: Change 19,641.21% to "9e6e2"
(pc 350.28420) (9=21/37)

11. Page 10=4, line 12: Change nguch" to "a®. (pc 380.39, to include
both kinds of reversion) (10=4/10)

12. Page 11=3, line 43 Add sentence "The accessed ontities have thé
same attributes as in the module." (pc 350.28.24) (11=3/4)

13. Page 12=4, line 5: Insert sentence #wif an external procedure name
or a dummy procedure pame is used as an actual argument, it
must appear in an EXTERNAL statement or must be declared to be
‘a procedure by an interface block in the scoping unit."
(pc 350.28425) (F77 rule modified by interface block exception)
(12=3/48+)

]

14.

15.

16.

17.

18.

19.

20,

21,

24,

25,

26,

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

110=LWC=1
Page 2 of 2

13=20, line 34: Chapge "X # ¥" to "DBLE(X) * DBLE(Y)",.
(pc 350.28+33) (13=~20/19)

C=23, line 15: Change title "Variance from the Mean" to
" Squared Residuals". (isn't really the varilance)
(c-28/8

F=8, line 14: Delete "arrayw". (pc 380.69) (F=8/9)

F=2, line 4: Change letter "I™ to digit "i", (pc 382.64)
(P=1/44)

F=27, line 20: Change "defined" to "undefinea,
(pc 380.75) (F=26/30)

2=6, lines 43=44: Change "Statements" to "statements" four
times and change "Type Declarations" to "type declarations".
(pc 167.21) (2=5/43,44)

3=1, line 16: Change "delimited character" to "character
constant". (pc 167.28) (3=1/16)

3=2, line 29: Change "These" to "Lexical tokens'.
(pc 167.34) (3=2/32)

4=2, line 38: After "types" add "(7.2.1).
(pe 167.45) (y=2/33)

l=6, line 26: After "typemspec! add "(5.1)".
(pc 167061}) (4"6/53)

4=75 line 20+: Add "An example of declaring a variable
LINE SEGMENT to be of type LINE is:", (pc 167.67) (4w7/37+)

=10, line 27: Add "allocatablef! after "optional}'.
(pc 167.110) (5.10/22)

12=9, line 33: Make "RECURSIVE" bold. (to get it in index)
(pc 63.9) (12~9/36)

7%

0

*“ 110-CDB-1
September 2u,1588

From : Carl Burch

To : X333

Subj : A Language-based Design for Portable Data Files
This is the second draft of this proposal. The first

was on .the table in Jackson and many of you were asked to

comment on it then. Your comments (and those you passed it

to) have been considered and this draft reflects them, par-

ticularly with regard to the language bindings and the han-

dling of translation failures.

The more comments, tﬁk beiter.

nl

77

A Language-based Design for Portable Data Files

Carl Burch

Hewlett-Packard Company
19447 Pruneridge Avenue
Cupertino, CA 95014

ABSTRACT

Currently data files to be accessed remotely from dissimilar systems must be
transformed to the local language processors’ file format and data representation; a
process that has changed little since punch cards were the main form of portable
data files. A proposal is presenied for languages to use the data typing information
available to the runtime library to make these data transformations before the data
is transferred to the file or the user’s variables. By specifying exactly one binary
format for each basic data type (integer, real, logical, etc) and a file format that is
portable between record-oriented and stream-oriented file systems, we can establish
file formats that will be usable on practically all current systems.

This is a rough draft of a proposal for portable data file access. Earlier drafts have been
reviewed by members of several ANSI langusge committees. It is provided as a request for your
comments.

Background
At the May 1988 meeting of the ANSI standards committee for Fortran! (X3J3), Mr. John
Swanson (President of Swanson Analysis Systems, Inc.) was kind enough to address X3J3 on his
views of the draft Fortran 8x standard. One of his concerns was that there is no provision in the
draft standard for portable access to data files, particularly in the case of networks of dissimilar
machines that offer relatively' transparent access to remote files (e.g., NFS (Suan), RFA (HP),
RFS(AT&T)). While his primary .concern was for binary data files, I have addressed character
(called herein "formatted” to disambiguate them from binary files contammg only character data)
files as well, since they also can suffer portability problems.

It should be noted that the problem of porting data files between systems existed even when
the primary mode of transport was magnetic tape. Today, the same concerns exist with the type of
non-transparent copying of remote files that is more common between machines iunning widely dis-
similar operating systems (e.g., FTP (ARPA), NFT (HF)).

Objectives

The objectives of this proposal are :

® Provide for transparent access to data files by both remote and local copies of the same source
program, for systems similar enough (e.g. UNIX?-derived) to have network file access by nam-
ing convention (as opposed to a file transfer command or program).

1 The X33 committee voted in 1984 that Fortran had passed into the language as a proper noun and no longer was
required to be in all capitals when used genericall. FORTRAN 77 specifically is spefled exactly that way in the
X3.9-1978 Standard.

2 UNIX is a registered trademark of AT&T.

Second DRAFT loo Second DRAFT

Second DRAFT -2- " Second DRAFT

© Allow copying of data files written on remote machines to the local machine for input to the
same source program compiled locally, for file systems without transparent remote file access.

® Allow access to data files by different programs (possibly written in different languages) using
a common {le format known to each of the programs, which may also be used on dissimilar
remote machines,

Discussion

I see an opportunity for languages that incorporate ac I/O library (Fortran, Pascal, COBOL,
etc) and (more tentatively) those with standard 1/0 moduies (Ada, and to some extent C) to use the
data typing information available to the runtime library to make these data transformations before
the data is transferred to the file or the user’s variables. By specifying exactly one binary format for
each basic data type (integer, real, logical, etc) and a file format that is portable between record-
oriented and stream-oriented file systems, we can establish file formats that will be usable on practi-
cally all current systems. -

Limitations

We will have to specify the capability to read and write files in units of eight-bit bytes. This
alone is vsually enough to preclude this sort of proposal being included in major language standards.
On the other hand, it is near-universal enongh to make a collateral standard an attractive alternative.
I am interested in hearing opinions on whether my assumption is correct, that this proposal cannot
be a more general standard - after all, Ada specifies the use of ASCII for a character set.

We will avoid requiring full record lengths for direct-access files to not be rounded up (and
padded) to match some multiple of bytes (usually the machine’s word length). There remains an
option to later define file structures covering file systems that do not rcad and write in multiples of
bytes.

Reiated Standards

Sun Microsystems’ XDR (External Data Representation) addresses ihe Remote Procedure
Call (RPC) interface between cooperating processes, with a notatior that it may also be used with a
stream file model. It's drawbacks for data file migration are that it requires explicit coding in both
the sender and receiver programs and it is defined only in C (i.c., I haven’t found any other language
binding).

Apollo Computer’s NDR (Network Data Representation?), part of their Network Computing
System (NCS), is similar except that it uses two or three intermediate formats for each data type.
Each machine translates its native data to the nearest of the standard types (for transmission) and
from each of the standard types (on receipt). I have failed to find any provision for data file use of
NDR. It is a kind of programming language as well, using a compiler to generate code from a C-
like description of the data to be passed.

The ISO X.409 standard is generally similar to NDR, but usss the self-describing ASN.1 data
format. The ASN.1 data format hopes to provide more portability across dissimiler systems and more
general send/receive code. It is fairly verbose, approaching the data expansion of ASCIL.

None of the above approaches to standardizing data item representations address file formats

to support remote file access on dissimilar file systems, especially not direct (random) access.

Language Bindings and Implementation Notes

Fortran
The OFEN statement will require a new specifier (keyword) that tells the runtime library that
the file being opened is to be maintained in the portable format. The INQUIRE statement
tends to include all the OPEN’s specifiers, so it will also need the same specifier to inquire
about the format of a (presumably open) file. While I do not have a strong preference for the
syntax to be used, my favorite (so far) is to overload the FMT= specifier of the READ or
WRITE. In that case, the argument must be a character expression that evaluates to either

Second DRAFT loj Second DRAFT

Second DRAFT -3- Second DRAFT

'STANDARD’ or 'NATIVE’, Another alternative would be t¢ make the argument a logical
expression and call it something like STANDARD = <logexp>>.

The IOSTAT = and ERR = specificrs will be used for translation error reportmg.

For Unformatted Direct files, the RECL= specifier must be interpreted as being in bytes
(when FMT ="STANDARD’), not processor-defined words as allowed by the FORTRAN 77
Standard. This is so that the same source program will be interpreted the same on varying
implementations.

Note that in the discussion below, only Fortran seems to have much use for the concept of
direct access to a formatted file. An issue here is whether Du'ect Formatted files should also
be padded to a multiple of four bytes?

Fortran also seems to be the only language to allow Sequential access to DIREC'I‘-organized
files as a common extension to the official ANSI/ISO siandard. Is this a requirement for this
standard?

The requirement to translate data items on the basis of their declared data type implies that
lying to the compiler about the data to be stored will canse nonportable results. The major
cause of this sort of practicc was the Jack of a character data type in Fortran 66, forcing pro-
grammers to use Hollerith strings and store characters in numeric variables. This will work
only when the declared data type happens to be implemeated on the local system the same way
as the standard required - i.e., there is no transformation required before the data is written or
after it is read. A program that stores eight characters in a DOUBLE PRECISION variable
on a machine that uses 64-bit IEEE will be able to read and write such a variable successfully -
but the HP1000/VAX/IBM 370 that tries to access the data thercin will hash those characters
into the local floating-point format. This will severely limit the portability of data files from
Fortran 66 programs like Spice that use this trick. Similarly, programs that use
EQUIVALENCES to an array to construct a Pascal record (or C struct) will be disappointed
in the results of writing out the record as a whole (homogeneous) array and then reading it on
a different machine.

COBOL/RPG

A new keyword STANDARD is added that parallels the EXTERNAL and GLOBAL keywords
in the File Description (FD).

COBOL and RPG are typically implemented with no awareness on the part of the I/0O library
of individual fields of a record. This is not possible with the design that each data item must
be translated to the standard equivalent of its processor-dependent value - each item of funda-
mental type must be handled individually. On the other hand, the editing that is performed in
the MOVE statement can be extended to the translations necessary for the portable data file
format,

The FILE STATUS clause will be used for translation error reporting.

This proposal makes no provision for COBOL’s indexed files. RELATIVE files are discussed
below as direct access files,
Pascal .

A new keyword STANDARD will be introduced that precedes the FILE keyword. Similarly, a
new type “standard_text” ‘will correspond to "text", _
Pascal also is typically implemented with no awareness on the part of the I/O library of indivi-
dual fields of a binary file record. The new keyword will switch in library code to expand the
records into their components of fundamental type (See "Structures” below). "Text" records
are written one item at a time, however, which makes the concept less alien.

One problem peculiar to Pascal is that none of the Pascal standards include a means of han-
dhng I/O errors. Perhaps this standard could provide a minimal facility like the C library’s
“errno” to allow the reportmg of translation errors.

lo2a,

Second DRAFT Second DRAFT

S

Second DRAFT -4- Second DRAFT

C

The binding to C will be via the fopen(3) library call. The fopen(3) call’s "type” argument will
be extended to add a new letter ’s’ to make the format designation and a ’d’ to specify that the
file will be accessed directly. The °b’ value defined in the X3J11 draft suffices to define the
other bit of information needed to specify the format.

The C library’s "errno” values defined in <errno.h> will be extended to include ETRANS for
the reporting of translation errors.

Therearesevcralmgmﬁcantproblemsmthusmgthlsstandardmc the most glaring being
that it is designed to support the record-oriented I/O model of Foriran/COBOL/Pascal on
both record- and stream-oriented underlying file systems, not C’s stream-oriented model on
record-oriented systems, The best rationale I can give for C's inclusion would be that it allows
access to the files written by programs in other langueages, for programs willing to do their I/O
in logical records, not seeking around in a file with all bytes being created equal.

Extending the file open routine will allow the library to do the translations necessary, but what
about maintaining the record structure of the file? Providing the record structure is as neces-
sary for communicating with programs in another language as it is to solve C’s classic problem
of garbage left before the end-of-file on record-oriented file systems. We can provide a new
library call to mark the end of record (which will write the length word both before and after
the user’s data for sequential binary records, pad direct records, etc), but will anyone use it?
An earlier draft of this paper stipulated an interface at the open(2) level as well, but making
read(2) and write(2) be library calls (to support the translations necessary) did too much

‘violence to C for there to be any hope of making it work.

‘Whether this model will work with C's style of charging the user with designing and maintain-
ing the file formats is hard to anticipate. There is no technical reason why it won't, but pro-
gramming style is as difficult to revise as amy other human behavior. One of the main
strengths of this proposal with regard to the other languages is that very little revision is
required in coding style or rewriting of existing programs - just add the keyword and recom-
pile. This is not true of C, and I wonder if the idea is an acceptable fit to C at all. As a
minimum, the standard will serve to allow formatted files to be accessed across systems that
normally use different CR/LF sequences to break lines.

Ada’s standard 1/O packages will be replaced by a STD_IO package with the same mterfaces,
but reading and producing files in the standard formats. Translation errors w111 raise a new
exception defined by the STD_TO package.

File and Record Formats

The file formats we need are all designed to support the record-oriented file access model on

byte-stream file systems - if we provide the means of detecting the end of line (EOL) and end of file
(EOF), stream access on record-oricnted systems is relatively casy. We need logically separate
representations for files that will be accessed (all the combinations of) sequentially and directly; and
that contain binary and formatted (in this case, ASCII) data.

Formatted Files

All data is represented in ISO 646 (cight-bit ASCII) characters.

Sequentizl Formatted-
Logical records are separated by newline characters (ASCII 10 decimal) on byte stream-
oriented file systems; variable record-length files are used on record-oriented systems,
Note that this assumes transparent access to remote files will be possible only among dis-
similar systems that have byte-stream file systems - a logical conclusion considering the
varying naming conventions for dissimilar file systems. Current remote file access sys-
tems have to be cued by the name that the file requested is remote, hence they only work
if the naming conventions are compatible.

E

Second DRAFT Second DRAFT

Second DRAFT -5- Second DRAFT

Direct Formatted
Fixed record lengths are required, and must be specified in bytes, Logical records are
not separated by any delimiter on stream file systems. Records written that do not fill the
record to the specified record length are padded on the end with blanks (ASCII 32
decimal).

Binary Files

Data items are represented as below in "Bimary Data Item Representauon and are not

separated or padded internally (e.g., for alignment).

Sequential Binary
Each logical recocd is preceded aand followed by 2 32-bit posmve nteger which holds the
number of data bytes in that record (not te include the size of the length words them-
selves). The trailing length word is necessary to efficiently support the BACKSPACE
operation. On record-oriented file systems, logical records may cross “physical” record
boundaries with no extra bytes being inserted. The data is read until the number of bytes
in the record is exhausted or the request is satisfied.

End of file is indicated by a 32-bit length word with ali bits set (two’s complement -1).
The file system EOF is not used, avoiding problems with trailing garbage on record-
oriented file systems.

Direct Binary
Logical records are not separated by any delimiter on stream file systems. The record
length specified (explicitly in Fortran, otherwise implied by the record description) is
rounded up to Le a muitiple of four bytes (c.g, a system givan a record length of five,
would create a flle with 8-byte records). Reocords written thai do not fill the record to
the specified record iength arc padded cn the end with ASCII nulls (0 decimal).

Binary Data Item Representztion

The proposals below represent my idca of maximal use of industry standard data types. A
more "standards” approach weould be to employ (a subset of) ibe ASN.1 seli-describing data formats
and just accept the performance overhead in order to maximize portability. As the ASN.1 standard
defines multiple encoding rules for differing implementatioius, we wovic have to choose one for each
class of data type. The concept of defining only one data format for each basic type is crucial in
order to determine what size integer to write for liters! constant values and to deal with varying
definitions of purposely vague declarstions liks REAL or DOUBLE PRECISION. Either data item
representation (or others) could be used with the file formats above.

All data items are written into filcs with the high-order bits first (i.c., not byte-swapped). Note
that the requirement for conversions on scme systems implies that abuses like putting Hollerith char-
acter strings in logicals, etc. will not be supported. See the section on Fortran above.

Integers

Thirty-two bit two’s complement formet.
Reals ’
Sixty-four bit IEEE 754 format. This format bas an exponeni range of +308 (more on the
small ¢nd if denormalized aumbers are supported), and cver 16 decimal digits of precision.
Another alternative is to adopt all thzee basic IETE 754 data formats. Since in most languages
real constaats define their iype by the letter starifng the erponent, the main problem (of the
two cited above) with using ike TEEE formats for the reeai typs is that most language standards
define any number of rather amorphous real data types - zxcept three. Fortran has REAL and
DOUBLE PRECISION, Pascal only real, C float/double (ANSI C 2dds long double), Ada a
parameterized scheme that works off the user’s precision specification. The latter maps well
into the IEEE versions, as both the nser’s data definition and the TEEE standard include preci-
sion and exponcnt range requitements. The other languages at most specify an ordering of
their type’s precision, not the values ia any rigoreus semse. This cavalier treatment in the
language standards has been a particular pain to thost doing mathematical software in Fortran,

Second DRAFT loY Second DRAFT

Second DRAFT) -6- Second DRAFT

particularly with respect to supercomputers that define REAL to be the same 64-bit size that
most other machines use for DOUBLE PRECISION. Even these machines tend to have only
two real formats supported in hardware, If I had to choose two formats only, the choice would
not please supercomputer users since I 'would have to observe that far more machines and
users expect 32 and 64-bit reals than 128,

As the goal here is to support portably the main thrust of computing, I propose to stay with
the one data type, ons format rule. Giving up the 128-bit reals is the supercomputer’s contri-
bution to the cause of portability, a counterpoint to the minicomputer’s dismay at losing part of
the performance advaniage of 32-bit reals.

Complex '

Two sixty-four bit format reals, real part followed by imaginary.

Logical/Boolean
One byte, zero if false and all ones (Hexadecimal FF)if true.

Packed Decimal ,
As far as T know, there is no official standard for Packed Decimal data. If COBOL or RPG
are supported, the de facto standard for BCD will be nceded. This includes four-bit digits with
the values 0-9 (decimal) and the values for the sign digit (Hexadecimal D for negative and hex
C for positive). The sign digit is the low-order (rightmost) digit. Data items with an even
number of digits specified will be represented in files as one digit longer, adding a zero digit to
the left so that the value (with sign) will evenly fill a multiple of eight-bit bytes. ..

Character ,
One byte per ISO 646 character, left to right, with apologies to’ our Japanese and Chinese
friends. -Perhaps when there is a firm ISO standard for large character set representation a
multi-byte type can be added.

Arrays : .
Arrays are supported, as if the same number of items were presented one at a time. Whether
column-major or row-major order is used for multiple-dimensioned arrays is a likely source for
theological debate. If other languages are not intercsted in the idea, column-major order

clearly would be adopted for Fortran.

Pointers
Pointers clearly must be barred from being written to any external file.

Structures
Structures (e.g., Pascal RECORDS, C structs, etc.) are a thorny problem. If there were no
features like variant records in Pascal ("unions” in C), they could be "exploded” into their com-
ponent parts down to items of the intrinsic data types and then converted and packed into the
output record (reverse on input). Variant records present an ambiguity to the compiler -
which variant is the real data type? Even when a tag field is present (in Pascal), is it valid to
determine the variant? The alternatives I sec are to allow them only if no variants are defined
or to preclude structures altogether (requiring the user to expand them to their items of native
type). As barring structures altogether would severely hamper languages like C where most of
the code involves structures or languages like COBOL and Pascal where I/O itself is defined in
terms of structures, I snggest that only variant records not be allowed. "Not be allowed" in this
case means that the user will have to explicitly select out the fields (of intrinsic type or nori-
variant aggregates) one at a time on the 1/O list, not just put the name of the record by itself
on the I/O list.

Enumerations
Enumerated types are represented as a 32-bit non-negative integer, with the values starting
with zero assigned to the enumeration values in the order of their declaration, increasing by
one for each value.

Sets Sets are represented one bit per possible member, left justified in the fewest number of bytes
that will hold the number of possible members. Any trailing bits left undefined will be written

Second DRAFT / 0 5‘ Second DRAFT

Second DRAFT -7- Second DRAFT

as zero. The order of the bits is left to right in their cardinal order (increasing comparison
order for integer or character sets, crder of declaration for enumerated types). "Infinite” sets
(such as SET OF INTEGER) are barred. Pascal SET OF CHAR (or equivalent) must be
allowed.

Translation Faflures

What if there is no plausible translation from the native data type to the type specified to be
written on the file? This can occur when a real is written that requires an exponent outside the
range of the IEEE 754 64-bit type (ie. £308). Another example is an EBCDIC machine trying to
translate a character that does not exist in- ASCII. These cases will be reported to the user as
‘described in each languages’ notes above. In particular, exponent overflows and underflows on reals
will not be rolled to infinities or zero, respectively. The general rule is that the translation must be
exact except for (possibly) the low order bits of a real’s mantissa, or an error is reported. While the
above addresses output, note that translation failures can also occur on input.

Acknowledgments
Walter Underwood (HP Software Development Environments) and Jason Zions (HP Colorado

Networks Division) both provided descriptions of the remote file access systems that were the basis-

of the Related Standards section. The other HP representatives on the various ANSI language com-
mittees (Sue Meloy, Pat Mayekawa, and Julia Rodriguez) and many other members of HP’s com-
piler laboratory were instrumental in helping my understanding of their languages’ problems and
approach to file I/O. Matt Yamamoto was particularly helpful in understanding the (considerable)
problems of C doing I/O on record-oriented systems,

Last but most importantly, the management of HP’s compiler labs were farsighted enough to
understand that helping our customers solve their problems (even with using other vendors’ equip-
ment) is the surest way to keep our profit-sharing checks up.

Second DRAFT [¢ Second DRAFT

'Y

110.MBM -1

MEMORANDUM September 15, 1988
To: X313 @
From: M. Metcalf
Ref: 109-LWC-2
Subject: Editorial Assignment — Public Comments 93-319

INTRODUCTION

The editorial comments on the following page are marked

1. with the appropriate comment number from 109-LWC-2 (a single digit), or
2 with a comment number from the next section (e.g. M2), or
3. a reassignment (group code).

The page and line numbers are based on S8.109.

NEW RESPONSES
* MIB(L)J) is an array section of five elements. It is thus a variable according to R601.

» M2 Please refer to P. 7-5, lines 45-47.

K M3 Your proposed changes would conflict with the intended meaning of the document.

° M4 The DATA attribute is defined in R510.

MISCELLANEOUS PROPOSALS
L. P. 5-11, 1. 32. After "program” add “, other than the main program”.

2. P. 13-1, 1. 23. At beginning of line add "13.3 Positionzl and Keyword Arguments.”, and
renumber subsequent sections.

lo7

Editorial Assignment — Public Comments 93-319

93.11 — M1

93.18
13323
14163
1414
1415
141.6
144427
1586
158.9
158.10
158.11
15813
158.15
158.19
158 .22
‘5802b
158 .28
158 431
158.32
15833
158.3%
158459
158,60
158.62
158066
158 +69
158.71

158.72 .

189.7

189.11
189.12
190.6

190.11
190.12
1915

191.8

191.9

191.11
191.12
198.22
198 .26
198.28
198,30
198.35
198 .42
19844
198 46
198.52
198.55
198.86
198 .48

¢
R
£

1
i
6
1
1
PRoC
2
Z
2
2
NO
2
1
1
<
-
8
1
g
1
2
2
6
1
1
2
1
g
2
2
SEN
3
2
6
2
MA
2
8

2
3
5
2
2
3
2
'+
M2

=
2

REPLY NeLSsSARY

lod

198.92
198.93
1980104
199.9
203.1
204 <44
20642
206 .4

216612
216415
2264
230.15
230.25
230 o441
230.42
234414
23415
255429
23547
235454
23557
23564
2355495
235496
235,108
235.136
251 .14
254 ¢5
25745
257.6
25747
25914
263 .26
263627
263.28
26329
263430
265429
26536
26555
319.1
319.12
319.17

P YL NN INpPRPPREPR -

| 2]
©

P

R
<
o

In
XX

~PPRARaIN

S ST N

|

Editorial Assignment — Public Comments 93-319 page 3@

PROPOSALS BASED ON THIS SET OF COMMENTS

1. 133.23
P. 8-12, L. 10-11. Move the sentence beginning “When an inputloutpui statement” to follow
line 12.
2. 141.6

P. 13-17, 1. 11. Write the matrix as
AAA
BBB
cCCC

1. 12. Write the matrix as
CCC
AAA
BBB

1. 13. Write the matrix as
CBA
ACB
BAC

P. 13-42, 1. 40. Write the matrix as
222
333
444

3. 158.38
P. 8-11, 1. 19. Replace “select-stmt” by “select-case-stmt”.
4. 190.11
P. 2-8, 1. 3-4. Add hyphen between the words association dependent”.
P. 3-2, 1. 19 and 22-23. Add hyphen between words “lower case”.
5. 198.28
P. vi, . 12. Change “Vacant” to “E. Andrew Johnson”.
6. 198.44
P. 4-5, 1. 17. Change “indicated” to “given”.
7. 198.92
P. C-16, 1. 20. Add 't THE EMPTY SET” at end of line.
8. 203.1

P. 5-7, 1. 8. Change “TRANSFER" to "MOVE".

(07

Editorial Assignment — Public Comments 93-319 page 4

10.

11.

12.

13.

14.

230.15

P. 4-10, 1. 20. The sentence beginning "The type” should start a new paragraph.
230.25

P. 6-8, 1. 24. Change first occurence of “bound” to “bounds”.

P. 8-6, 1. 6+ . After R824 add the line:
R82S end-do-stmt is END DO

P. 8-6, 1. 33+ . After R831 add the line:

R832 do-term-shared-stmt is action-stmt

and renumber following rules.

230.42

P. 7-9, 1. 23. After "specification expression” add “(R 504)".
235.54

P. 5-7, L. 40—. Add "An automatic array is an explicit-shape array that is not a dummy
argument but whose bounds are dummy arguments to the procedure.”

263.26
A-1, 1. 31. Change "They” to "Obsolescent features”,
319.17

P. 5-14, 1. 12. Before “must” add *(4.5)".

END OF PROPOSALS

M. Metcalf

l/o

110MBM -2

MEMORANDUM September 17, 1988
To: Xa13 . @
From: M. Metcalf
Subject: MIZ-ETD 1753 Bit lutrinsics and nondecimal constants

INTRODUCTION

The strong sentiment in favour of adding these intrinsics to'S8, regardless of what form that docu-
ment will finally assume, resulted in my being asked to resubmit this proposal. It now incorporates all
the improvements and 'suggestions contained in ABMSW-4, and ‘additional onés sent me by Brian
Smith. The onz exception is that I have retained the original names, in order to conform to exisisting
practice. This will enable a far easier migration of existing code to the new standard, even though the
names themselves are less than ideal.

PROPOSAL 1

Add the intrinsic procedures defined in MIL— STD 1753 to Section 13, with extensions to handle arrays.
Existing sections require appropriate renumnbering.

On p. iii, line 51 and p. tv, line 1, replace “functions and a comprehensive ... functions.” with:

functions, a comprehensive set of numerical environmental inquiry functions, and a set of procedures
for manipulation of bits in nonnzsgative integer data.

On page 13— 1, line 16, change the title “Elemental Intrinsic Function Arguments and Results” to “Ele-
mental Intrinsic Procedures” and put this title on a separate line. Insert the title "13.3.1 Elementzl
Intrinsic Function Arguments and Results.”. On p. 13—/, after line 25, add the new section 13.3.2:

13.3.2 Elemental Intrinzic Subroutiine Arguments. If a generic name is used to reference an elemental
intrinsic subroutine, cither all actual arguments must be scalar, or all output arguments must be arrays
of the same shaps and the remaining arguments must be conformable to them. In case the output
arguments are arrays, the values of the elements of the results are the same as would be obtained if the
subroutine with scalar arguments were applied separately to corresponding elements of each argument.

On p. 13— 2, before the section “Derived-Type Inquiry Function”, add the following section and remum-
ber the subsequent sections:

13.4.5 Bit Manipuiation and Inquiry Proczdures. The bit manipulation procedures consist of a set of
ten functions and one subroutine. Logical operations on bits are provided by the functions IOR,
IAND, NOT, and IEOR; shift operations are provided by the functions ISHFT and ISHFTC; bit
subficlds may be referenced by the function IBITS and by the subroutine MVBITS (13.8.3); single-bit
procesting is provided by the functions BTEST, IBSET, and IBCLR. Thess procedures were originally
defined by MIL-STD 1753 for sczlar arguments, and are extended in this standard to accept array
arguments and to retum array-valued results.

1]

@,

MIL-STD 1753 Bit Intrinsics page 2

For the purposes of these procedures, a bit is defined to be a binary digit w located at position k
of a nonnegative integer scalar object based on a model nonnegative integer defined by

and for which w, may have the valuc 0 or 1. An example of a model number compatible with the
examples used in 13.6.1 would have s = 32, thereby defining a 32-bit integer.

An inquiry function BIT_SIZE is available to determine the parameter s of the model. The value
of the argument to this function need not be defined. It is not necessary for a processor to evaluate the
argument of this function if the value of the function can be determined otherwise.

Effectively, this model defines an integer object to consist of s bits in an ordered sequence num-
bered from right to left from 0 to s— 1. This model is valid only in the context of the use of such an
object as the argument or result of one of the bit manipulation procedures. In all other contexts, the
model defined for an integer in 13.6.1 applies. In particular, whereas the models are identical for
w,_, =0, they do not correspond for w,_, =1, and the interpretation of bits in such objects is processor
dependent. .

On p. 13— 35, add after line 14 (Section 13.8.2) the new section:

13.8.3 Bit Copy Subroutine. The subroutine MVBITS copies a bit ficld from a specified position in
one integer object to a specified position in another.

Onp. 13—~7, add after line 2 the new section:

13.9.7 Bit Manipulation and Inquiry Functions.

BIT_SIZE (I) ' Number of bits in the model

BTEST (I, POS) Bit testing

IAND (L, J) Logical AND

IBCLR (I, POS) Clear bit

IBITS (I, POS, LEN) Bit extraction

IBSET (I, POS) Set bit

IEOR (1, J) . - Exclusive OR

IOR (L, 1) Inclusive OR

ISHFT (I, SHIFT) Logical shift

ISHFTC (1, SHIFT, SIZE) Circular shift
Optional SIZE

NOT (D) Logical complement

On p. 13~ 8, add before line 28:

MYVBITS (FROM, FROMPOS, LEN, TO, TOPOS) Copies bits from one object to another
On p.13~ 14, add the following scctions after line 24 ané renumnber sections:

13.12.15 BIT_SIZE ()

Description. Returns the number of bits s defined by the model.

12

MIL-STD 1753 Bit Intrinsics page 3

Kind. Inquiry function. @

Argument. I must be of type integer.

Result Type. The result is of type integer.

Result Value. The result has the value of the number of bits s in the model integer defined for bit
manipulation contexts in 13.4.5.

Example. BIT_SIZE (1) has the value 32 if s in the model is 32.
13.12.16 BTEST (1, POS)

Description. Tests a bit of an integer value.

- Kind. Elemental function.

Arguments.
I must be of type integer.
POS must be of type integer. It must be nonnegative and be less than BIT_SIZE (1).
Result Type. The result is of type logical.

Result Value. The result has the value .TRUE. if bit POS of I has the value 1, and has the value
.FALSE. if bit POS of I has the value 0.

Example. BTEST (8, 3) has the value . TRUE.
On p.13—27, add the following sections after line 2 and remaonber sections:
13.1245 L4AND (I, J)
Description. Performs a logical AND.
Kind. Elemental function,
Argumeut:,
I must be of type integer.
] mustbe of type integer.
Result Typz. The result is of type integer.

Result Value. The result has the value obtained by combining I and J bit-by-bit according to the fol-
lowing truth table:

I J.IAND (I, J)

1 1
0 0
1 0

O =

.,,iq 113

MIL-STD 1753 Bit Intrinsics page 4

00 O

Example. IAND (1, 3) has the value 1.
13.12.46 IBCLR (I, POS)

Description. Clears one bit to zero.

Kind. Elemental function.

Arguments.
I ’must be of type integer.
POS must be of type integer. It must be nonnegative and less than BIT_SIZE (I).
Result Type. The result is of type integer.

Result Value. The result has the value of the sequence of bits of I, except that bit POS of I is set to
Zero.

Example. IBCLR (14, 1) has the value 12,

13.12.47 IBITS (I, POS, LEN)
Description. Extracts a sequence of bits.
Kind. Elemental function.
Arguments,

1 must be of type integer.

POS must be of typc integer. It must bte nonnegative and POS + LEN must be less than
BIT_SIZE (I).

LEN must be of type integer and positive.
Result Type. The result is of type integer.

Result Value. The result has the value of the sequence of LEN bits in I beginning at bit POS
right-adjusted and with all other bits zero.

Example. IBITS (14, 1, 3) has the value 7.
13.12.23 IBSET (I, POS)

Description. Sets one bit to one.

Kind. Elemental function.

Arguments.

I must be of type integer.

Ya 1Y

MIL-STD 1753 Bit Intrinsics page 5

®

Result Value. The result has the value of the sequence of bits of I, except that bit POS of I is set to
one.

POS must be of type integer. It must be nonnegative and less than BIT_SIZE (I).

Result Type. The result is of type integer.

Exsmple. IBSET (12, 1) has the value 14.
On p.13— 27, add the following section after line 14 and renumber sections:
13.12.46 IEOR (1, J)
Description. Performs an exclusive OR.
Kind. Elemental function.
Arguments,
I must be of type integer.
J must be of type integer.
Result Type. The result is of type integer.

Result Value. The result has the value obtained by combining 1 and J bit-by-bit according to the fol-
lowing truth table:

IJ IEOR (I J)

OO
O r— O =
(=T]

Example. [EOR (1, 3) has the value 2,
On p.13— 28, add the following sections after line 7 and rerumber sections:
13.1248 IOR (i, J)
Description. Performs an inclusive OR.
Arguments.
I must be of type integer.
J must be of type integer.

Rezult Type. The result is of type integer.

MIL-STD 1753 Bit Intrinsics page 6

Result Value. The result has the value obtained by combining I and J bit-by-bit according to the fol-
lowing truth table: '

11 IOR(LJ)

[— N)
O O
(=

Example. IOR (1, 3) has the value 3.
. 13.12.49 ISHFT (1, SHIFT)

Description. Performs a logical shift.

Kind. Elemental function.

Arguments.
I must be of type integer.
SHIFT must be of type integer. The absolute value of SHIFT must be less than BIT_SIZE (I).
Result Type. The result is of type integer.
Result Value. The rosult has the value obtained by shifting the bits of I by SHIFT positions. If SHIFT
is positive, the shift is to the left, if SHIFT is negative, the shift is to the right, and if SHIFT is zero,
no shift is performed. Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are
shifted in from the opposite end.
Example. ISHFT (3, 1) has the value 6.
13.12.50 ISHFTC (I, SHIFT, SIZE)

Optional Argument. SIZE

Description. Performs a circular shift of the rightmost bits.

Kind. Elemental function.

Arguments,
I must be of type integer.
SHIFT must be of type integer. The absolute value of SHIFT must be less than cr equal to SIZE.

SIZE (optional) must be of type integer. The value of SIZE must be positive and must not exceed
BIT_SIZE (I). If SIZE is absent, it is as if it were present with the value of BIT_SIZE .

Ruult'l‘ype.'l‘hemsultsisoftypeimeger.

Result Value. The result has the value obtained by shifting the SIZE rightmost bits of I circularly by
SHIFT positions. If SHIFT is positive, the shift is to the leR, if SHIFT is negative, the shift is to the

J/? {16

MIL-STD 1753 Bit Intrinsics page 7

right, and if SHIFT is zero, no shift is performed. No bits are lost. The unshifted bits are unaltered. @
Example. ISHFTC (3, 2, 3) has the result 5.
On p.13— 35, add the following sections after line 42 and renumber sections:
13.12.67 MVBITS (FROM, FROMPCS, LEN, TO, TOPOS)

Description. Copies 7 sequence of bits from one data object to another.

Kind. Elemental subroutine.

Arguments.
FROM must be of type integer. It must be conformable with TO.
FROMPOS * must be of type integer. It must be conformable with TO. If TO is a scalar,
FROMPOS+LEN must. be less than BIT SIZE (FROM), and otherwiss MAXVAL
(FROMPOS + LEN) must be less than BIT_SIZE (FROM).
LEN must be of type integer and positive. It must be conformable with TO.
TO must be a variable of type integer, and may be the same varisble as FROM. It may be scalar
or array-valued. TO is set by copying one or more szquences of bits of length LEN, starting at posi-
tions FROMPOS of FROM, to positions TOPOS of TO, element-by-clement. No other bits of TO
are altered.
TOPOS must be of type integer. It must be nognegative. It must be conformable with TO. If TO is
a scalar, TOPOS+LEN must be less than BIT _SIZE (TO), and otherwise MAXVAL
(TOPOS + LEN) must be less than BIT_SIZE (TO).

Example. If TO has the initial value 6, the value of the result TO afier the statement CALL MVBITS
(7,2, 2, TO, 0) is 5.

On p.13— 36, add the following sections after line 20 and renumber sections:
13.12.69 NOT (I) |

Desciiption. Performs a logical complement.

Kind. Elemental function.

Argument. I must of type integer.

Result Type. The result is of type integer.

Result Value. The result has the value obtained by complementing I bit-by-bit according to the fol-
lowing truth table:

I NOT ()
1 0
0 1

Ha

MIL-STD 1753 Bit Intrinsics and nondecimal constants page 8

/=t

Example. If I is represented by the string of binary digits 01010101, NOT (I) has the binary value
10101010.

END OF PROPOSAL 1

BIT CONSTANTS

It has been suggested that bit constants be added to S8, in addition to the B, O, and Z edit descriptors
of 109.RCA-3. This proposal attempts to do that. The basic problem is to define a constant that is not
an integral part of a type definition in the way that other constants are. Here they are associated with
integer entities without developing new types, as we follow the MIL-STD in allowing them only in
specification statements.

PROPOSAL 2
1. P. 3-1, 1. 20, add: An exception is their use in a nondecimal literal constant (R404).
2. P. 3-3,1 8+, add:
or non-dec-literal-constant
3 P.4-3,1 6+, add:

In type declaration statements (5.1) in which the value-spec (R510) is specified, and in
DATA statements (5.2.6) and PARAMETER statements (5.2.7), further forms of unsigned
nondecimal hiteral constants may be associated with integer scalar entities.

R404 non-dec-literal-constant is binary-constant
or octal-constant

or hex-constant

Constraint: A nondecimal literal constant may appear only in a type declaration statement, a
DATA statement, or a PARAMETER statement.

R405 binary-constant is B'digif{ digit]...’
Constraint: digit may have only the values 0 or 1.
R406 octal-constant is O’digid digit]...”
Constraint: digit may have only the values 0 through 7.
R407 hex-constant is Z’hex-digitl hex-digit]... ’
R408 hex-digit is digit
or A
orB
or C

orD
orE

&

MIL-STD 1753 Bit Intrinsics and nondecimal constants page 9

. ()

hthmwnnamﬂ.mebina:y,oaahmdhcxadwimddigiumhterpmtedmrdingmmdr
respective number systems.

and rerumber subsequent rules.

4, P. 5-6, I. 7, before the period add: *, except that a nondecimal literal constant may be associ-
ated only with an integer object”.
P. 5-6, 1. 15, before the period add: , except that a nondecimal literal constant may be asso-
ciated only with an integer object”.

5. P. 5-13, 1. 27, add:

If a constant is a nondecimal literal constant the corresponding object must be of type inte-
ger.

P.5-14,1. 24, add: .~

However, if the constant is a nondecimal literzl constant the corresponding object must be of
type integer.

P.5-15,1 6, add:

However, if the constant is a nondecimal literal constant the corresponding object must be of
type integer.

END OF PROPOSAL 2

M. Metcald

19

24 In

]20

To: X313 110-RCA-1
From: Bob Allison

Subject: DO WHILE re-write
Date: September 9, 1988

This proposal is based on public review comments. The Control construct and I/0O
subgroup voted to forward it to the full committee. The BNF has deliberately
been chosen 50 as to conform to MIL-STD 1753.

The proposal has been rewritten from (109-RCA-1) with different explanatory text:
the BNF is unchanged (except the line numbers for S$8.109 are in parentheses).

PROPOSAL

Add after page 8-5, line 30 (48):
or [,] WHILE (scalar-logical-expr)

Add after page 8-7, line 11 (29):
If loop-control takes the form [,] WHILE (scalar-logical expr), the result is as
if no loop-control existed and the following were added as the next

statement

IF (.NOT. scalar-logical-expr) EXIT

| &1

l22-

e,

To: X3J3 110-RCA-2
From: Bob Allison

Subject: Reduction of intrinsic functions in constant expressions

Date: September 9, 1988

This proposal is based on the compromise plans. The plans by JKR, IRP, and RWW
have agreed in principle to accept some form of simplification in this area.

The proposals are at the concept stage, so no specific text is provided.

Proposal 1 is tied to Inquiry functions, the most likely intrinsic functions to appear
where specification statements require constant expressions.

Some believe that there arz some intrinsic functions other than inquiry functions
which are interesting. Proposal 2 attempts to come up with some simple rule which
covers most useful cases. This proposal happens to contain all the functions in
Proposal 1, plus a few more.

PROPGSAL 1

Only allow Inquiry Functions whose arguments do not depend on other objects.
Le., the SHAPE of an array with constant bounds is allowed, but not the shape of
an assumed-size array.

PRESENT and ALLGCATED never meet this criteria.

Inquiry functions which meet this criteria:

LEN TINY

DIGITS LBOUND

EPSILON SHAPE

HUGE SIZE

MAXEXPONENT UBOUND

MINEXPONENT EFFECTIVE__EXPONENT__RANGE
RADIX EFFECTIVE__PRECISION

|23

110-RCA-2

PROPOSAL 2

Only allow intrinsic functions with INTEGER results whose arguments do not
depend on other objects.

Intrinsic functions which meet this criteria:

<Inquiry functions in Proposal 1>

ABS INDEX

INT EXPONENT
MAX COUNT
MIN MAXVAL
MOD MINVAL
NINT PRODUCT
ICHAR SUM

<Specific names of intrinsic functions above>

INT is not very useful in the list above since it may only take the other functions
listed above or an integer constant as an argument and still be a constant
expression (and the other functions return integers), but it keeps the rule simple.

-1

RESOLUTIONS PASSED AT THE PARIS WG5 MEETING (:::)

[NB: Although this text is believed to be correct in every respect, it is a
unofficial record of the resolutions, produced in order to allow quick
distribution. David Muxworthy]

P1 LETTER CONCERNING INTERNATIONAL FORTRAN STANDARD

That WG5 requests SC22 to ask the US meumber body that X3J3 be reminded
that X3J3 had been given the responsibility to develop the international
standard for Fortran as well as the American national standard.

Passed: Individual 35 yes - 0 no - 2 abstain: Country 9 yes = 0 no - 0 abst

P2 REVISION OF DP1539

That WG5 agrees, based upon the ISO member bodies comments as documented in
ISO/IEC JTC1l/SC22 N464 and ISO/IEC JTC1l/SC22 N495, and upon the X3J3 straw
votes documented in X3J3/221 and ¥3J3/224, that DP1539 be revised in the
following way:

a) in accordance with X3J3/S16 (S16 is a list of editorial changes)

b) as per the text in ISO/IEC JTC1/SC22/WGS N302 with regard to the
following features

1l remove the concept of deprecation (US) '
2 remove RANGE/SET RANGE (Ca,D,NL,UK,US)
3 remove ALIAS/IDENTIFY (Ca,D,NL,UK,US)
4 /remove specified REAL/COMPLEX precision (REAL(*,*)) (D,J,NL,US)
5 remove internal procedures (USs)
6 remove square brackets for array constructors (D)
7 add pointers (and associated facilities). (Ca,F,D,NL,UK,US)
8 add MIL-STD bit intrinsic functions
(but with original MIL-STD names restored) (A,Ca,F,D,NL,UK,U
9 add significant blanks to free form source (Ca,F,D,NL,UK,US)
10 change host association to use association
in module procedures and remove host association (Us)
1l add parameterization (KIND=) to INTEGER (UK)
12 add parameterization (KIND=) to REAL/COHMPLEX (D,J,NL)
13 add parameterization (KIND=) to CHARACTER so as
to allow multiple character set support (Ca,Ch,F,J,NL)
14 add the INCLUDE statement (US) :

c) text to be developed

1 remove user-defined elemental functions (Us)
2 remove the new form of the DATA statement (US)
3 change interface blocks to that described in
ISO/IEC JTC1/SC22 WG5S N316 (US)
4 change array constructor syntax to use I/0 syntax (US)
5 remove parameter to derived types (Us)
6 add stream I/O intrinsic procedures (D, UK)

|25

7 add binary, octal and hexadecimal constants and @
edit descriptors (Ca,NL,UK)
8 add parameterized LOGICAL (KIND=) (A,Ca,F,D,NL,UK,U
The codes alongside each point denote the member bodies which mentioned
point in their comment. The abbreviations used are: A-Austria, Ca-Canaaa,
Ch-China, F-France, D-Germany, J-Japan, NL-Netherlands, UK-United Kingdom,
US-United States.

Passed: Individual: 30 - 2 - 5; Country: 8 - 0 - 1.

P3 WG5 AND X3J3 COOPERATION

That WG5 urges X3J3 to accept the plan passed as resolution P2 as the
draft proposed standard for Fortran 8X.

Passed: Individual: 32 - 2 - 3; Country: 8 - 0 - 1.

P4 NAME OF LANGUAGE

That WG5 records its intent that Fortran 8X will be called Fortran 88,
based on the 1988 date of passing resolution P2.

Passed: Individual: 30 - 0 - 7; Country: 7 - 0 - 2.

P5 A REVISED FORTRAN STANDARD IS NEEDED NOW!

That WG5 believes timely release of a revised Fortran standard to be cr
and therefore establishes the following procedure and milestones:

September 23, 1988 WG5 adopts plan for revision of DP1539, accordin
resolution P2; Convenor arranges for preparation
revised text.

October 21, 1988 Draft text for revised DP1539 distributed to X3J
(November 13-18, 1988 X3J3 meeting.)
December 5, 1988 Draft, with possible editorial changes and corre

of technical errors which might be recommended b
X333, distributed by Convenor to WG5 for letter
ballot authorizing the Convenor to forward the d

to sc22.
January 20, 1989 End of VG5 letter ballot.
(February 17, 1989 End of X3J3 February 1989 meeting.)

If WG5 approves the draft, the Convenor forwards it to SC22, with possible
editorial changes and correction of technical errors which might be
recommended by X3J3 and as a result of WG5 ballot comments, after the Febru
1989 X3J3 meeting for further processing by SC22. The Convenor will arrang
with SC22 the date of forwarding the draft so that the SC22 review period w
be completed before the July 1989 WG5 meeting.

Passed: Individual: 24 -~ 4 - 9; Country: 6 - 0 - 3.

126

Pe WGS REPRESENTATION AT X3J3 MEETING (:::)
That WG5 commission Gerhard SCHMITT (or an alternative to be named by the
Convenor) to attend the next X3J3 meeting (November, 1988) for the purpose
of helping communicate the WG5 position to X3J3.

Passed: Individual: 36 - 0 - 1; Country: 9 - 0 - 0O

P7 VARYING CHARACTER MODULE

That WG5 requests the German member body to prepvare a proposal for a
Fortran module for varying character and the WG5 Convenor subsequently
to request SC22 to split the work item to allow standardization of the
module.

Passed: Individual: 33 - 1 - 3; Country: 9 - 0 - 0

P8 WG5 DELEGATION AT SC22/AG MEETING

That WG5S commission Gerhard SCHMITT or Brian MEEK as alternate to represent
WG5S Convenor at the SC22/AG meeting October 17-19, 1988,

Passed: Unanimously

P9 WG5 CONSULTATION

That WG5 urges all its member bodies to ensure, at the time of public
comment on a draft proposed standard, the widest possible distribution
of the document within their respective countries, and to obtain
reasoned technical comment, both positive and negative, from the largest
possible number of Fortran users.

Passed: Unanimously

P10 VALIDATION

That WG5 requests the British member body to investigate the possibility of
preparing a validation suite for Fortran 88 processors.

Passed: Individual: 31 - 0 - 6; Country: 8 - 0 - 1

P11l TESTING EXAMPLES

That WG5 requests members of the "Alvey Software Engineering Portable
Package Framework/Fortran 8X Tools" Project to test the sample programs and
program fragments contained in the revised DP1539 to be prepared in October
1988 and to report any suggested changes to the WG5 Convenor by November
21, 1988.

Passed: Individual: 30 -~ 2 - 5; Country: 8 - 0 - 1

127

@

That WG5 expresses its appreciation of the work of the X3J3 committee i
preparing the draft proposed standard (DP1539) for balloting in sc22.

P12 APPRECIATION OF X3J3 WORK

Passed: Unanimously

P13 VOTE OF THANKS

That WG5 would like to express its appreciation to the Convenor (Jeanne
MARTIN), the Chairman (Bert BUCKLEY), the Host (Christian MAS), the
Organizer (Claude BOURSTIN), to AFNOR and its staff and to those

organizations who provided further support and who have contributed to the
success of the meeting.

Passed: Unanimously

- - End of WG5 Paris Resolutions - e e ——————

125

110-NHM-1 @

To: X3J3 .
From: N.H. Marshall

Subject: Plea to Retain Simple Internal Procedures

As a user, I feel that we should retain the Internal Procedure as a simple
expansion of the statement function facility. If often happens that one
needs to repeat the same basic functionality twoe or move times within a
single program unit (and never need it outside of the program unit).
Currently one’s only recourse is to duplicate the coding several times,

use external procedures, or to create spaghetti code by using Go to’s.

These options are not always desirable. If the desired functionality can

be expressed in 5 to 10 Fortran statements, one may hesitate to duplicate
that much coding tiree or four times. On the other hand, one may be reluctant
to create an external procedure which is so short and called by a single
program unit. In this day and age, it is never desirable to create spaghetti
coding. '

Simple Internal Procedures fill 2 basic need of Foriran prugrammers.
Personally, I would prefer to sze Internal Procedures flagoed with the
keyword INTERMAL rather that use a COMTAIMS statzment. For example: -

INTERNAL. SUBROUTINE COLOR(BLUE)
IRTERNAL INTEGER FUNCTION FCN(X)

1 297

|30

"o

110(*)LRR~1

To: X3J3

From: Larry Rolison :
Subject: An 2lternative to the Schonfelder/liartin pointer proposal
Date: 13 September 19848

Since the topic of gointers seems to be on the ascendancy again and I
strongly disagree with the concepts and syntax of the Schonfelder/Martin
proposals, I'm unearthing my pointer paper from meeting 106 and once
again offering it as an alternative. "It has been somewhat refurbished
by adding more justifications, rationslizations, and examples but the
essential ideas "have been mainteined. This Rager is a thought-piece.
If the ideas are accepted, the text changes will ba provided later.

I have repeatedly said that I contend the general FORTRAN [sic

population wants basically nothing more than an address to play with an

a simple dynamic storage scheme to accompanx gointers. My main goal is
to present a model that is simple and straii”t orward. It has been said
many times that simplicity is one of the hallmarks of FORTRAN and likely
one of the main reasons for its succegs. I think that the concept of
pointers is a fairly simple idea. They ve been around for a long time
and anyone other than a novice programmsr has a grﬁtty good feel for
what they are and how they re used. Such an alleged simple idea, then,
should be expressed in & language in siuwple syntax and semantics.

I have also repeatedly said that Fortran should not repeat the mistake
of Pascal by implementing only strongl¥ typed pointers. ~Remember just a
few years ago winen Pascal was the darling of t 8 indusgry bﬁcﬂuse t was
so very safe? Remembor how it enforced “correct” and "good” programmin
b{ onlz providin§ strongl¥ typed pointers so a programmer could noi
shoot her/himself in the foot even if s/he wanted to? Remember what a
great systems programming language it was supposed to be? And then ¢
crawled out from under its rock &nd into the "dariing of the industry
spotlight because % prograzmers found out very auickly that
systems programming could not be done with Pascal, and there was little
c offerin§ them all the freedom (and more) that tﬁey had been hungering
for. Vell, al programmers (you know, the full-contact vatiety§ also
use FORTRAN [sic] and in_the same token will require untyped pointers to
solve resl problems. If the stendard does not come out with untyped
pointers, vendors will immediately extend it to implemecnt them due to
user demand so we mey as well standardize them now.

I contend that the employment of a fparticular pointer mechanism
(strongl{ typed vs. unﬁxggg) should be enforced by the programming shop,
not the language. FORTH is a permissible and. powerful language
because its users require it to bas so. I will tr{ to appease both camps
in this paper by suggesting a method for implewenting both strongly
typed anc untypad pointers. I, az convigjced that the Fortran user
community rsquires forms of “pointers” to ba incorporated into the

language.

So, OK, 1let's gat to specifics. Tha first thing needed is = pointer
data type. In the previous version of this paper, cyrically said that
dabbling in recursive data structures end considering "the semantics of
combining ALIAS and ALLOCATABLE wmight be an interesting intellectual
exercise for some of us but that the great unwashed are crying for
pointers so let's gust give them to them. I'm happy to now regort (a
year later) that the committece in general seems to have accepted the
contention that the introduction of a pointer data type is the proper
course of action.

If we're going to invent a new data type, then the first thing to do is
turn to Section 4 of S8 to find out what a data type is. To quote the
Book: "A data type has 51) a name, (2) a set of valid values, (3) a
médns to denote such values (constants), and (4) a set of operations to

131

manipulate the values." Let's take these one at a time.

{1) a name

This one's easy. The type specifier for the pointer type is the keyword
POINTER. v ype =P P b v

(2) a set of valid values

The set of values for the pointer type consists of the addresses capable
of being computed by the processor.

This is the point where the strongly- yped/untyped camps part. The
strong t{ping contingent restricts the valid values for a particular
pointer to only those addresses for objects of the type to which the
pointer is bound. The untyped pointer contingent allows a pointer to be
ablée to contain ,address the_processor would otherwise be capable of
computin§. While I'm personally more inclined to the laissez faire
brand pointer, I see no reason why a language (in particular, Fortran)
should not be able to accommodate both Erefereuces. To do so, a syntax
must exist that allows one to simply declare a variable to be a pointer
and & syntax must exist to bind a pointer to something.

To declare an untyped pointer (that may point at an arbitrary data
object), you write:

POINTER arb_ptr
I refer to this style of pointer in this proposal as being unbound.
To declare a strongly typed pointer, I propose the following syntax:

POINTER(type=info)
I refer to this st¥1e of pointer as a pointer because it is bound
to a particular set of attributes. A bound pointer is implemented as an
address to a data object as well as an lementation-dependent

descriptor, if needed, to validate the pointer s use. (I believe a
descriptor must exist only if the pointer is accessible externally to
the program unit in which it is declared, but this is more a question of
implementation I think.?)

an the 106 version of this paper, I had "type-name" in place of

type-info". I restricted a gointer to_ being bound to a derived type
definition. At that time, I thought allowing tzpe declaration info "in
the parens to be too awkward (even though in my heart I wanted a pointer
to be able to be bound to a set of attributes describing a sjmple
scalar). I have rethought my position. I now intend type-info~ " to
mean a type declaration.

The followin§ example shows how to declare a pointer that may only point
at objects of a given derived type:

TYPE fruit
INTEGER color
INTEGER size

END TYPE

POINTER(TYPE(fruit)) :: fruit_ptr
The declaration of the pointer FRUIT_PTR states that it may onlg be used
to locate structures of type FRUIT. The pointer is defined to be bﬂ!ﬁd
to the type FRUIT. If 8x retains type parameters, I would prefer the
binding to ignore them.

The following examgle shows how to declare a pointer that is bound to a
specified set of attributes:

132

L

POINTER(REAL,ARRAY(:,:)) :: agg ptr

The type declaration contajned in the parens must follow the same basic
rules as a normal type declaration statement.

The declaration of the pointer AGG_PTR states that it may only be used
to locate data objects that are real, two-~dimensioned arrays. I have
not nailed down this fcrm entirely. If this proposal is accepted, I
invite discussion of how restrictive (or generous) wg want this form to
be. For _instance, should we also ellow array bounds to be specified

thereby only allowing the pointer to locate arrgzg with the same bounds

Should we allow storage attributes such as ALLOCATABLE or Ivor' s new
AUTOMATIC so the Eointer may only point at an allocatable or an
automatic item? I believe this form allows us as much freedom as we
wish to grant it.

There gre two additionral points I wish to emphasize:
% Pointers are mnot 1nexorab1j linked to "zllocatableness".

No declaration for a data object of type FRUIT is skown above. The
omission was by intent. A bound pointer declaration nsed not know
anything about the actual data object that the pointer may be used
to locate and, in particular, the object need not be allgcatable. I
am purposely separating pointers from “allocatakbleness” because I
maintain they are tiro separate topics. They may irteract with each
:ﬁ%erlb%t they do not depend on each other. I will come back to
s later.

% Pointers may only poiat at data objects and subobiacts.

Let's immediately dispense with notions like ¢ pointer may point at
a procedure. A pointer is a datg address pure and simplas.

{3) a means to donote¢ such values (copstants)

Schonfelder/Martin avoids the issue of a pointer comsiant by using the
function ASSOCIATED to determine whether or mot a pointer is associated
with an object. I oppose this method because I feel it is inconsistent
with the rest of the data types in the language. By this I mean that
the language has no similar test to determine whether or not a numeric
data item, a character string, etc. is currently defined. I don't think
we should invent thics idea for onme particular data type.

I prefer POINTER to ba consistent with other data types in that if no
value has aver been assisned to it, it is vndefined. (Like other data
types, it may reach the undefined stgte by other means also.) The user
may choose a veluz (such &s 0 or

character string is defined but does not contain an "interesting value.
In the same way, I propose the pointer constant NULLPTR. We can likely
argue for hours on the spelling. PL/I uses NULL, Pascal uses pii, etc.
I suggest NULLPTR bscause it mnemonically contains both ideas of what it
is: a nuil valus aind of type pointer. If a future committee wants to
use the keyword NULL for some general purpose, it will be available to

em. :

tc indicjite an integer or

.

Since NULLPTR is a comstant but has the same form 2s an identifier, we
probably should allow it to also be & variablc name since Fortran has no
reserved keywords. This 2llows the pathological case:

REAL nullptr
POINTER abe

nellptr = 3.22
abe = nullptr

but since Fortran is zlready context sensitive a compiler can indeed
determine that the real value 3.22 is not being propagated to the

1332

4

pointer ABE. This is analogous to declaring an intrinsic function to be
a type other than is language~defined type: it is not sufficient to
remove its intrinsic and gemeric properties.

An alternative (which I favor because I think it will reduce confusion)
would be to define NULLPTR in the same manner that the standard defines
numeric and character constants. That is, since it is a constant like
any numeric or charagter constapt, it may not be declared (i.e., becajpse
one may not write "INTEGER 2", one may not write INTEGER NULLPTR").
This would eliminate the above code comfusion. This rule would not
invalidate any existing standard-conforming program because the name
NULLPTR is longer than 6 characters.

The null constant is the same for both bound and unbound pointers.
There iz no need to distinguish between a null-valued unbound pointer
and a null-valued bound pointer.

(4)_a set of operations to manjpulate the values
I want to make several points in this section.

* The only operations permitted on a pointer are the tests for
equality and inequality.

A gointer may not (let me repeat that: may NOT) be an operand of an
arithmetic expression. We have argued this before ad nauseum. Many
people decry pointers as being inherently nonportable but it mostly
comes down to the fact that they are nonﬁortable when one performs
arithmetic on them to cleverly step through a character string or
some such nonsense.

A grocessor must be capable of generating an address for every valid
data object and subobject. Since it can do so, it follows that a
ointer value can be constructed for every object and subobject
and, yes, it may require the ﬁointer to be a software simulated
pointer’ if the object to which it is pointing is not on a machine
addressing boundary but it is a pointer nonetheless). Thus,

(1) since all Fortran data objects are portable,

(2) since a processor must be capable of addressing all objects
and subobjects, and

(3) since a pointer is an address,

the pointer facility %ﬁ gortable. , Note that the xg%ﬁg of the
poig gi is not portable but we don't care about that. e code is
portable.

#* Both pointer operands of a comparison operator must be bound to the
same type if at least one of them is bound to a type. An unbound
pointer maﬁ oan be compared to another unbound pointer. The
cogs%ant may be compared to either a bound or unbound
pointer.

These restrictive rules are a safetx net for the strong typing camﬁ.
A compiler writer could certainly relax the rules to allow the
comparisons that I grohibit but I believe it would defeat the
purpose of bound pointers.

* A pointer bound to a tgpe may be assigned onlg to a pointer bound to
the same type. An unbound pointer m%x only be assigned to another
unbound pointer. The constant NULLPTR may be assigned to either a
bound or unbound pointer.

As stated above, this is a safety net to those who want to exercise
control over the use of pointers.

131

5

The following points are not strictly part of the definition of a data
type but are needed to clarify my definition of the pointer data type.

* A pointer may not be an I/0 list item nor may it be a subobject of
an I/0 list item.

In case I have inadvertently left any loagholes, my_intent is to bar
I/0 of gointers completely.” This Trestrictjon will likely be the
roverbial straw that " broke the camel's back for " diehard
it-twiddlers (after already having had arithmetic operations on

gointers taken away from them) but we really must close the door on
his issue to maintain portability of a pointer facility.

The complaint may arise that someone wishes to read a record from a
file into a structure and link the structure into a linked list.
They want the file record and the linked list structure to have the
same declaration. Too bad. The programmer will simglx have to
declare the file record to be a substructure of the linke ist node
gthe linked list node coatains the additional pointer member). The
ile record can then be written from o: read incvo the substructure.

%* A pointer may be a component of a structure.

Actually this is a moot point. Since in my model a pointer is a
data type in full standin§ witih 211 other data types, this is a lot
like saying a real variable may be a structure component. I have no
difference (I think) with Schonfelder/Martin on this topic. I would
allow either type of pointer to be a structure compoment. I would
also allow a bound pointer to be bound to the s2me structure
definition as the structure in which the pointer is contained (to be
able to set up linked lists) as well as being bound to any other
structure defirition. For «xzample, the following declaration is

valid: -
TYPE vehicle
CHARACTER*8 :: license_number
POINTER(TYPE(vehicle)) :: next_vehicls
POINTER(TYPE (owner)) :: owner_rec_ptr
POINTER :: addl_info_ptr
ERD TYPE

* Arrays of pointers are allowed.

Again, this is a moot point in my model because it's 1like saxini
arrays of objects of type real are #llowed. However, in my model,
don't know that you can do anything really tricky with them. Given
the declaration:

POINTER, ARRAY(10) :: p, q

it would certainly be »nossible to write the' array assignment
stetements:

p = NULLPTR
q=p

I'm getting a little ahead of myself here but since I restrict a
ointer to be a scalar when it is beini used to reference sn object,
he following form is not currently valid in my model:

p~>something = gq->something else

I say "currentlg" because I think the idea might be too strange for
Fortran (consider the logical progression from whole array pointer
gualification to section references and trying to explain that) but

f the details and sensible semantics can be worked out, I could be
convinced otherwise. (A reviewer commented that this capability
seemed to bz a natural extension of array syntax.)

* A pointer has no storage sequence.

I originally had this restriction in the 106 version in order to
prevent access to a_pointer value via EQUIVALENCE. I still want to
say that a pointer (either format) has no storage sequence so access
via E UIVALENCE can be prohibited” but if the compromise works out a
method where items with no storage sequence can be named in a common
block, I could go along with gointet being allowed in common blocks,
It sti1l makes me uncomfortab e, however, because it opens the door
to underhanded access to pointers.

* If a pointer is passed as an argument, the interface must be
explicit.

Since pointers do not exist in FORTRAN 77, I think we have to say
this, "don't we? At any rate, this is an attempt to prevent the
passing of a pointer to, say, an integer and thereb opening up a
world of wonderful things that could be done with (to¥ it.

Argument matching for pointers follows the same rules as for
assignment.

I hope it is becoming clear by now that my goal is to prevent access to
a pointer in all cases except where it is used as a pointer. I belleve
it is the only hope we have of pProducing a portable pointer facility.

OK, I've defined a pointer data type. What can you do with it? The
most obvious is, of course, to define a variable that may be used to
locate another data object. 1 propose the syntax:

pointer => object

The pointer qualifier variable must be scalar., It may be a simple
scalar pointer variable, an element of an array of pointers, or a scalar
structure component.

I chose the symbol "->" to indicate pointer qualification because it's
intuitive, mnemonic already used in " some other languages for the same
urgose (so it wil1 alrgady be ofamiliar to some rogrammers) and
unlike symbols like the "u arroy” that Pascal uses) the individual
characters are commonly found on keyboards and printers.

Note that I call the symbol a pointer qualifier. It denotes
qualification in the same manner that a gercent sign is used to qualify
8 structyre component and a subscript list qualifies an array name.,
Since it's a qualifier, not an opgrator, it may be used on the left-hand
side of an equal sign and may be "stacked" as in:

ME->HANDXF INGER->YQU%FACE
I oppose the Schonfelder/Martin syntax for the following reasons:

* I contend that the qualifier is not what is imgortant when
referencing a data object but rather the name of the object itself.
We do not reference an array element by somehow se ting ug a
declaration associating a subscript list with an array element then
referencinﬁ the array element on1¥ using the, (qualifying) subscript
list (with no array name present). We don't reference a structure
component by only specifying the ualifying) structure name. So I
can not understand why anyone would want to reference a data object
by only naming its (qualifying) pointer.

My syntax requires the object name as well as the pointer name to

appear when referencing a pointer qualified item because both names
are important.

13¢

* The Schonfelder/Martin syntax has a single form for both a pointey
qualified reference to a structure component and a “normal
reference to a structure component. That is,

PYMEMBER
means either

(a) the pointer P is locating the component HKEMBER of some
upidentified structure (that you can only find by hunting for
P's declaration), or

(b) a "normal” structure component reference.

This syntax does a major disservice to program readability and
maintainability. I am a firm believer in giving a programmer as
much help as possible bKAﬁxPOSing as much in the syntax as possible.
If I could change FORT such that array references_ could be
distinguished syntactically from function refersnces, I would do
that also. Oh, sure, no syntax solves all the problems but I think
we should provide as much help as we can.

% Because the Schonfeider/Martin syntax does not differentiate between
a pointer and the object to which it points, a sgecial pointer
assignment statement or symhol had to be invented. oppose both
the use of IDENTIFY and "=>. I contend the arrow is not even

ointing in the rifht direction because assignment is a movement or
ransference from right to left in the normal context. The intent
of my syntax is to eliminate the confusion that plagued those that
apparently first encountered pointers while learning a language like
Pascal. I believe my syntax prevents peopls from becoming confused
over wvhether it is the pointer that iz being referencod or the
object to which it points. Pascal-styled sgntax has never made
sense to me (having come from a PL/I background and a vendor systems
language that has PL/I-like pointer syntax). For example, in the
simple assignment statement

P4=Qa

gsee what 1 mean about character availability?) there is no
ndication in the syntax of the assigmment statement itself what
data is being moved. To me, the importaant thing to know when
reading such a line is what data is being moved, not its locator.
Thus, in a statement like

_ P->TARGET = Q->SOURCE
it is obvious in the syntax itself what data is being moved where.

As I said before, I am a firm believer in syntax being obvious in
sympathy for those that need to maintain software written by others.

Once a rcaeder knows that P and Q are pointers, my syntar makes it
obvious to the reader that
=G
is & pointer assignment whexe
P=->TARGET = Q->SOURCE
is a datg movement using pointers.
Next, we need to determine just what a gointer can point at. The first
thing we need to do is limit what can be accessed via a pointer. Since
one of the reasons for FORTRAN's success is its optimizability (and

therefore its execution _ speed), I want to maintain = these
characteristics. And since free-swinging pointers are the death of

137

optimization, I su gort the Schonfelder‘Martin introduction of the
TARGET attribute. % would prefer somethin like PTRTARGET, or better
et POINTER TARGET, but I can live with TAﬁGET. Propose that the
¥ARGET attribute be required for ﬁﬂ! object that maX be accessed via a
ointer. (Structure components inherit it if agplie to the structure.)
oppose the Schonfelder/Martin notion that al dynamic objects are/may
he accesged via pointers by default, (I am unclear as” to whether
amic "includeﬁ automatic. Their paper seems to be inconsistent in
defining "dynamic .) Our optimization peogle Say an automatic loop
control variable in such an environment could be "a disaster, Even
though it can't be changed in the loop, it would have to be aliased to
all “other automatic ifems in the program unit because it could be
changed outside the loop.

Recall that I said storage for a pointer-qualified item need not be
created by an ALLOCATE statement. That assertion should have sparked
two questions: '

(1) If the pointer's target Was not named in an ALLOCATE statement,
how do you obtain a value for the pointer?

(2) If the pointer's target ggﬁ named in an ALLOCATE statement, how do
you create (and delete) the storage and how do You obtain a value
for the pointer?

Let's take them in order. To generate an address for an object that was
not named in an ALLOCATE Statement, I propose the intrinsic function
LocC. ain, we can argue about the spell1n§. (My heart lies with ADDR
but LOC already exists in a couple of exist ng implementations so in the
spirit of standardizing common practice....) "I think there is no
question on the requirement for an intrinsic function that returns an
address. Of course, to make it complete, we nsed the usual rules that
the argument must be efined, etc. I Propose that ths function accept
arguments of any storage type.

Usage of the LOC function result is reqﬁired to follow the same rules as
for gointer variables, That is, if the result is assigned to g bound
pointer, the argument to LOC must be an object of the t e to which the
assignment target is bound. However, I propose to allov a window of
vulnerability here that ma¥ annoy the strong t ing camp: the LOC of
any daja oRject may be ass gnhed to an unboun pointer. i believe that
this "out" is necessary occasionally and that prohibitions of its use
should be legislated by the programming shop, not the language.

We can argue about whether the syntax
LOC(object)->another_object

should be permitted or not. I think it is ugly, largely unneeded, and
should be prohibited.

Note that if LOC is wused to obtain the address of a data object, the
object must have the TARGET attribute.

Let's move on to dynamic storage. A major use of pointers is in
manipulating linked 1ists. To create such a list, ome enerally makes
use of a dynamic storage scheme to create (and possibl elete) storage
for nodes “in the list. Fortran 8x already has an ALLO ATABLE attribute
and ALLOCATE /DEALLOCATE statements so I propose we generalize them. [
claim that not only do allocatable arrays and pointers live quite well
together but there are 8ood reasons for allocatable arrays to remain in
the language exactly as they are today.

I propose that the ALLOCATABLE attribute be used for %gx data object
declaration to mean that the declaration is only providing a tem ate
for laying out the data object in storaﬁe and that storage will be
allocated "at execution time.” I propose that the cyrrent ALLOCATE and
DEALLOCATE statements become special ("shorthand)

cases of my
generalized statement form. To whit:

13%

R610 allocate-stmt is ALLOCATE(allocatable-object-name l]
l 6 STAT=stat=-variable}) SET(pointer)
or ALLOCATE(allocation=1ist []
[]1 [, STAT=stet-variable]

R613 deallocate-stmt js DEALLOCATE []
pointer->allocatable~object-name []
STAT=stat-variable])
CATE (name=-1ist £1
] [, STAT=stat-variable])

My choice of the metaterm "allocatable-object-name” may mnot be 100%
correct byt take ft at face value for the purposes of this paper. The
metaterm "pointer” in the SET option and in the DEALLOCATE statement is
defined to be the name of a scalar pointer. It must be definable at the
time the ALLOCATE ctatement ies executed and defined at the time the
DEALLOCATE statement is executed.

or

First I'11 describe my generalized forms and how one uses them then
I'11 (attempt to) justify why the current form of the ALLOCATE statement
should also be retained.

In my feneralized scheme, basically the same rules exist for declaring
and allocating an arbitrar{ obgect as for the current allocatable array
scheme. That is, only &_data object, not a subobiect, may have the
ALLOCATABLE attribute, It must also have the TARGET attribute. Let me
illustrate by example. Suppose we want to build a linked list of
structures. Using the current derived-type declaration and my
generalized ALLOCATE:

TYFE person
C CTER*24 :: last_nsme
CHARACTER*24. ARRAY(10) :: child_name
POINTER(TYPE{person)) ¢: next

END TYPE

TYPE}Eersoné ALLOCATABLE, TARGET :: employes
POINTER(TYP iperson)) :: new, dalete

ALLOCATE (employee) SET (new)

Hz 106 version of this paper had a more cosplex examgle demonstratinﬁ
the use of typs parameters so that each structurc 1in the list coul

contain components of different sizes. If 8x retains structure type
parameters, my scheme will still work.

To delete a node in the linked list, one would first unlink it (code is
left to the reeder) then free the space:

DEALLOCATE (delete->employee)

The DEALLOCATE statement both deallocates the storage and sets the
pointer DELETE to NULLPTR (tc avoid the danger of dangl pointers).

The example makes use of a structure. I ect that typically
structures will be the main interest of use with pointers but I see mno
reason why we should prohibit scalars and arrays from being allocated.

As with the LOC function, if thefpointer in the SET option iz bound, the
object being allocated must be of the type to which the pointer is
bound. If the pointer in the SET option is unbound, the object being
allocated may be any object declared to be ALLOCATABLE.

Now that I have defined bound and unbound pointers and their gemeral

usage, I need to tighten up the definition of an unbound pointer
somewhat. Unbound pointers are not completely ard utterly unbound.

137

10

find T must impose Some restrictions in the interest of maintainin
efficient code feneration and execution Speed. The main restriction f

wish to impose Is this: The Processor may assume that"the obiect being

qualifieﬂ y an unbound pointer is a8llocated on g natural wmachine
boundary". “Let me illustrate by example:
INTEGER, TARGET :; i
CHARACKER*L TARGET :: c(4)
it p

POINTE

P = LOC(c(2))
Assume that the Processor is running on your favorite word-oriented

machine. Further assume that the processor 1likes to allocate a.

character array {such 8s the array C) on a word boundary for easy
access. And fina ; assume that the processor sugports some kind of
‘softwar simulated 5 pointer that hag a word address (the machine]
natural address) and a bit offset within the word so that obtaining
the LOC of an jtem not on a word boundary is possible.

Given the above code sequence my restriction says that because pointer
8 pointing at the second character of C assume it's in the second
byte of the word), if the user then writes the following statement:

j= p=>i

the grocessor is free to assume that the integer I starts on a word
boundary. This is because the natural® addressin boundary for

integer” on a word-oriented machine is a word boun ar¥. In practical

fset portion of

the pointer when accessing an item tha naturallx falls on a word

i above examgle is that

data beginning with the first bit of C(1) will be transferred to J not

data beginning with the first bit of C(2) as the Programmer might think,

So why do I want this restriction? Consider the code that would have to
be generated to access a numeric or logical item if unbound pointers
Were completely free-ranging. The processor would have to enerate a
test on the bit offset portion to determine whether or not t e pointer

ng at the beginning of a word. I doubt users want this kind of
execution degradation for every pointer-qualified access to a numeric or
logical item.

Lest anyone accuse me of parochialism due to my coincidental emp loyment
by a manufacturer of two word-oriented mainframes, let me hasten to say
that - all vendors that do not_have true bit-addressable machines (where
no boundaries are favored) will eventually hit this same Problem when a
full-scale bit data type is implemented in Fortran, That is,

byte boundary but what if Fortran had a bit data type and an unbound
pointer was set to point at the third bit of a byte?

Although my example on1¥ specifically mentions word-oriented machines,
the same problem max exist on a nominally byte-addressable machine that
prefers 2, 4, or 8 Yte boundaries for numeric items.

The C compiler group in oyr departmsnt tells me C has g cast operator
that may be used to “translate” 4 character pointer to an integer
ointer. In actuality, all it does is act as a flag to a Programmer
gecause the comgiler just ignores the bit offset" after the character
pointer is cast to an_ integer pointer, The wron% data is then
agcesged (or accessible) just 1like I mention;d above." his
C the user is Supposed to know what they're doing” environment but
it's not-sagisfactogy in Fortranos world., Propose the introduction of

may be OK in

nter is ointing at the same

/70

11

The usual sensible rules apgly: the pointer must be defined, the data
item must be in the allocated state, etc. My intention 1is just to
provide some guidance to the programmer that using an wunbound “pointer
may not be Erovidi them the information they assumed it was.” What
they do with the guldance is up to the programmer.

Using the code segment from above, the programmer could write:

IF (BOUNDARY(g i))
THEN j = p~ i ! Safe assignment.
ELSE ... ! Other actiom.

The result of BOUNDARY is processor-dependent. Notice that I'm
purposely avoiding saying that once an unbound pointer is set to point
at a numeric item, it may only be used to goint at numeric items because
then the pointer would not be unbound. I believe wusers mneed the power
jo 8et, at arbitrary storage without sacrificing execution speed.
Normal™ pointer-qualified references should be as efficient as
accessing an item of the same data type that is not pointer—-qualified
where possible. ‘

In .the section where I talked about the operations allowed on a pointer

I said that an unbound pointer can be assiﬁned to another " unboun

pointer. The restriction I have just described is not circumvented by
assignment. Given the code segment supplied above, suppose another
unbound gointer Q had been declared. If P is assignea to H (after the
LOC of C(2) was assigned to P) and Q is then used to reference I, the
bit offsgt porjion of the pointer is still ignored. I other yords, you
can not "force an integer to begin on other than a Tnatural® boundary
via assignment of pointers.

As promised, I will provide a éxstification for also retaining the
current form of the ALLOCATE (and DEALLOCATE) stotement.
Schonfeldeiéﬂartin has the concept that ALLOCATABLE is no longer needed
because ALLOCATABLE has exactly the same semantics as POI . In mg
model this is not true. ALLOCATABLE can bz used in conjunction wit

pointers but may also stand on its own. Let me explain. It is
conceivable that a user is only interested in a2 single instance of a
data object in dynamic storage as a method of managing temporary data
objects. I believe that the reason allocatable arrays were invented was
to manage temporary storage, and in particular 1large amounts of
temporary storage, without having to call a subprogram to create
automatic storage. The current scheme works because such temporary
storage management problems only necd a sjngle instance of the storage,
manipulate 1it, then discard it. They don t need a collection (list) of
such instances to exist simultaneously. If the need was sufficientl

strong to_have caused the invention of allocatable arrays, then the nee

must still be in existence (even with pointers). If a single instance
is all the user requires, then why force them to use a pointer
artificially (by eliminating the current ALLOCATE form)?

Although the single-instance allocation scheme was invented for arrays
it 1is _a sufficiently powerful scheme that I have generalize
array-allocation-list in_ the ALLOCATE BNF to include any allocatable
data object. This would provide the power of having the processor
manage the gointer if a2 user only needed one instance of an arbitra
data object. This generalized form is I think, a useful expansion o
the current allocatable array scheme and provides a nifty shorthand to
my generalized ALLOCATE.. Of course, the user may not mix methods; that
is, if the object iz allocated with a SET o tion, it must always be
accessed using a pointer. This also means that if the SET option is not
used and the object is not an argument to LOC, it need not have (indeed
should not have) the TARGET attribute.

For the user that wants to play with dynamic data objects, they would
now have three choices: the current single instance scheme, the
generalized ALLOCATE scheme (the item is then agcessed via a pointer),
or using true automatic storage (via Ivor et al. s AUTOMATIC attribute

/9!

12

Aside: The following is possible and permissible:

REAL, ALLOCATABLE, TARGET, ARRAY(:,:) :: al
POINTER :: pi

ALLOCATE(a1(10,10)) ! No SET option; only one instance
pi’= L0C(a1)
but I'm not sure why anyone would go to the trouble.

In the 106 version of this ¥aper I said that I could 1live without the
scalar IDENTIFY but that I hougﬁt the array IDENTIFY should remain din
the languafe. I wanted to keep it around because arrays of pointers are
conceptually too difficult to manipulate (people just don't think that
way). I said I liked the ability of the array IDENTIFY to compute
skewed sections, for example. Although the arra IDENTIFY is
sufficiently powerful and general enough to keep in the language and
would live quite well with (m;yprogosed) pointers, I now feel 1less
strongly about retaining IDENTIFY. find I need more information about
the direction of 8x to make a decision.

This has certainly been a lot of material to digest in one proposal, so
let me summarize:

* A new data type is proposed. It is called POINTER.

* The declaration form is POINTER l(type-info)]. If type-info is
absent, the pointer being declared 1s ~an unbound gointer (and may
point at any data object or subobject). If type-info is present,
the pointer being declared is bound to the type specified " and may
only point at objects of that type. Type-info must follow the form
rules for the attribute portion of a type declaration statement
(with some restrictions, of course).

* The null pointer value is denoted by the language-defined constant
NULLPTR. 4 v S

* The symbol that represents pointer qualification is "=->", Pointer
qﬁalifiers may be stacked. "If an object is accessed via a pointer,
the pointer name, the gointer qﬁalifxcation s¥mbol, and the name of
the object being qualified by the pointer must appear.

* The only operations permitted on pointer values are tests for
equality and inequality. A bound pointer mag only be compared to a
pointer bound to the same type. unbound pointer may only be
compared to another unbound pointer. NULLPTR may be compared to
either kind of pointer.

* A bound pointer may only be assigned to a Eointer bound to the same
type. An unbound "pointer may only be assigned to another unbound
pointer. NULLPTR may be assigned to either kind of pointer.

* A pointer may not be an I/0 list item, directly or indirectly.

* If a pointer is passed as an argument, the jinterface must be
explicit. The argument matching rules’ are the same as for
assignment.

* A pointer has no stotaﬁe sequence. I want to Rrohibit gointers from
:Epearing in EQUIVALENCE statements but might begrudgingly allow

* A LOC intrinsic function exists to compute the address of a data
object. The result LOC must obey the same rules as for pointer

em in common blocks.

/72

13

variables.

In order for an object to be accessed vie a pointer, it must have
the TARGET attribute.

The ALLOCATABLE attribute is extended to apply to any data object
(but not subobjects).

The ALLOCATE statement Is extended to set a Eointer variable and to
allocate space for any object declared to be allocatable. If no
pointer is provided, the rules remain the same as they are now but
are extended to all allocatable objects.

The DEALLOCATE statement is extended to free dxnamic space located

via a pointer and to set the pointer to NULLPTR. If no pointer is

grovided the rules remain the same as tley are now but are extended
o all allocatable objects.

The_scalar IDENTIFY seems to have alwost no usefulness given this
imglementation of pointers and could be abandoned. he array
IDENTIFY still has some usefulness and could remain in the language.

Disagreements with the Schonfelder/Martin model:
= Providing only strongly-type pointers is insufficient.

- I believe pointers should not be tied to "allocatableness".
Sin§le-leve1 allocatable objects as in the current S8 model ere
sufficiently useful to retain.

= The Schonfelder/Martin definition of a pointer is the combination
of an address, & descriptor, and the qualified item s storage
space. I define a bound pointer to be an address and optionally a
descriptor. I define e&n unbound pointer to be simply an address.

= The ASSOCIATED function in place of a null-valued pointer constant
is_inconsistent with other Fortran data typ2s in that it is the
only one that checks for an undefined state.

= I contend the Schonfclder/Martin model that a dynamic object is
both a pointer and a data_ object is confusing. I also contend
that not bheing able to distinguish between & reference to a
pointer and ¢ reference to the qualified object is a disservice to
maintenance (especially when used with a structure component).

I have tried to cover the major points of a pointer data type; I

recognize work remains. My obiective has been to be reasonably zgorough
e.

while rema2ining in overview mo

I imagine that most, if not all, of the ideas in this proposal are not
original in that they have likely been covered by the comnittee prior to
my arrival. I apologize for any toes I may have danced upon.

/173

14

Appendix A: Alternatives Rejected

int bo to e on t

Our 1100 series systems grogramming language has a mechanism to bind a
pointer to a collection o types. For example, since our 1100 machines
are not hardware paging machines, the UCS (new-generation) compilers run
in a software virtual gaging environmegt. Ye seﬁreﬁate the dictionary
(symbol table) information into one area’ _and gthe text entries that
represent the executable code into another ~ area . We have several
kinds of virtual entries in the form of 8x-like structures that may be
allocated jn thg dictionary area. Each entry may be thought of as an
individual "type". It is sufficient in most cases to pass and use a
pointer that points to any kind of dictionary entry. Each entry is
identified by a field in the entry itself.

Although we have found this ability to be very useful, I have not
included it in this proposal because I think Aust getting a cohesive
pointer facility implemented at this point would be a minor miracle, let
alone trying to add more functionality. If this proposal, or another
like it, advances in the committee, I would be happy to discuss this
type-grouping idea in more detail.

X7

15

Appendix B: Other points
1. Is LOC a good choice for a name?

In the body of the proposal, I said that we should probabI{ pick LOC as
the intrinsic name because the name already exists in some
implementations and performs bﬂsicnll{ jhe same operation. One of my
reviewers pointed out that the "basically” may be a groblem. Apparently
customer programs exist that assign the LOC result to integer variables
and other such nasties. Since the 8x definition of the function result
may be different than the result currently being returned by a vendor's
software and keeping an eye_ directed toward conversion costs, we perhaps
should use another name.” 1'd like to fall back on ADDR 1if LOC would
cause too many problems.

2. Storage allocation of structures

While working through this pointer groposal, a related problem with 8x's
statement that a structure has no storage sequence reared its ugly head.
In Appendix A, I mentioned that our comgiler #s a nymber of dictionary
entries that are declared as having different "types" but that we access
them via a single pointer. Each dictionary entry has a tag field that
identifies the sntry. Moving from ona entry to another via a pointer
depends on the fact that the tag field is always in the same relative
location within the entry s storage. Thus, we can have a declaration
that covers just enough of the entry to include the tag field (a header
portion), nterrogate the tag field, and operate on the entry
accordingly.

I can not believe that we are the only programmers in ecxistence that
wish to do something like this. I am not makinf an argument to brin
back variant types, although this might be the place to do that.

would rather Tresurrect an idea we discussed some time ago (Mt. Xisco
maybe?): Can we develop an attribute to control the storage ordering of
members of a structure? I think we only mneed to control the ordering;
there should be no need to talk about” storage allocation: I think we
can have an attribute that tells the compiler to order the members
exactly as declared and yet continue to state that a structure has no
storage sequence (presumably to avoid EQUIVALENCE). If a user then
declares 2 multitude of derived-type objects each having a header
gortion declared in exactly the same way, can we not count on a compiler
o allocate storage exactly the same wayf

In case I'm not making myself clear, here's what I think we need:
TYPE header

INTEGER ta
INTEGER other_information
END TYPE
TYPE entry_1
TYPE(heaHeig header_info
CHARACTER(LEN=20) name
END TYPE
TYPE entry_2
TYPEéheaHer) header_info
INTEGER number
END TYPE

TYPE(header), ORDERED :: generic_header

TYPE(entry_1), ORDERED :: node_type_1l

TYPE(entry_2), ORDERED :: node_type_2
NTER it gp

195

16

IF (gp- generic_header%tag -EQ. 31) THEN
EL§E- node_type_l%name = its_name

=>node_type_2%number = its_number
ENﬁpIF P

I have chosen the attribute ORDERED and applied it to the declaration of

e structure. I would think we might want to allow such an attribute
(statement?) to occur in a type definition, la PRIVATE to allow a
user to ensure that all objects declared with" the derived type are
indeed ordered.

If any of you are involved with the PL/I committee, or have associates
that are, ¥ou might find it interesting to discuss with them the lengths
that committee has gone to in order to ensure that structures match in

. They needed to solve the same problem and did it ipn
a4 more restrictive manner. n_ order to appease the
anti-storage-association contingent of X3J3, I'm trying to be as general
as possible.

17¢

Appendix C: Code examples

The followiniogoded examples are one~to-one translations from those in

109~ABMSW=~ =57) to my syntax.

TYPE cell ! Define a recursive t
INTEGER 13 va
POINTER(TYPE(cell)) :: next_cell

END TYPE cel T

TYPE cellg TARGET :: head

TYPE cell), TARGET, ALLOCATABLE :: node
Declarngo nters

POINTER(T E(cell)) !t current, temp

INTEG :: loem, k
headZval =

current = LOC(head)

READ(*,*,iostat 1oem% k ! Read next value if any

(I
ALLOCATE nodel gET(temp) ! Create new cell each iteration
- 1 Assign value to cell

temp=->node%va
current->node%next cell = temp
current = temp
DO
current=>%next_cell = NULLPTR
The loop to "walk through"™ the 1list may be written:

current = LOC(head)
0
WRITE(*,%*) current=->node¥val
IF (current->node2next cell EQ NULLPTR) EXIT

current = current->node%next_cel
END DO

177

17

PROGRAM d
REAL ARRAY(TARGET ALLOCATABLE :: a, b
{ Declare RLinters
POINTER(REAL,ARRAY(:,:)) :: a_ptr, b_ptr, swap

READ %* %) n, m

! Allocate arra
ALLOCATE% E SETE a_ptr
ALLOCATE(b(n,m)) SET(b_ptr
! Read values into A

iter: DO

! Apply transformations of values in A to produce values in B

IF (convergeda EXIT iter
: Swap & t tr = b_pt b_pt

swap = a_ptr; a_ptr r; r = swa
ENDPDO ifgr ; ap -ptr; b_p P

END

178

18

PROGRAM iter

REAL,ARRAY(1000,1000) ,TARGET :: a, b

! Declare pointers

POINTER(REAL,ARRAY(:,:)) ¢: in, out, swap

i ‘Read values into A

in’=L0C(a) | Associate IN with target A
out:- = LOC(b) ! Associate OUT with target B

iéér; DO

i.ipply;transformations of values in A to produce values in B

IF (converged) EXIT iter
! Swap IN and OUT

swap = in; in = out; out = swap
END DO iter

END

/97

19

110-NHM-2

To: X3J3
From: N.H. Marshall
Subject: Mailing Address

Now that I am collecting the pre-meeting distribution items, several of you
have tried to send me material via Federal Express, or some other such
means. You have discovered, somewhat to your consternation, that I do not
have a street address listed in the meeting minutes. What follows is my
complete address, including a street address.

Neldon H. Marshall

EG&G Idaho, MS 2408

P.0. Box 1625

1580 Sawtelle St.

Idaho Falls, Idaho 83415

15/

1§

- f"

@)

To: X3J3 110-JKR-1
From: John Reid
Subject: Guidelines for scribes
Date: 25th Scptembef 1988
Once again, I w&;uid like to thank the scribes for their support at the last meeting,

I have prepared guidelines in the form of a specimen set of notes. Please note that everything ascribed to me
or the motions is genuine guidance and is not just ‘space-filling’.

Specimen scribe notes

Discussion leader: Reid Scribe: Another

Reference: 107-18 (JKR-1). Meeting minutes.

Reid: Begin with a brief overview of the topic by summarizing the presentation. Omit this if if the title
already does it.

Straw Vote: The scribe notes must be posted by air mail to the secretary (J. K. Reid, Blg 8.9, Harwell
Laboratory, Oxon OX11 ORA, England) in the week following the meeting. (30-0-0)
Jones: What format do you want?

Ans; Copy these notes as closely as possible. If you do not have bold, use underlinirig. Refer to
people by their last names (first names make it hard for readers who are not committee
members). Please send a top copy, printed on one side of the paper, with adequate margins (line
length at most 7 inches), avoid a grey tone (wom ribbon), and do not fold it.

Smith; How accurate do the scribe notes need to be?

Ans: They are not intended to be a verbatim record of what is said, but should record the major points
made. This is helpful to absent committee members, people who are not committee members
but like to follow the progress of the committee, and to committee members wishing to remind
themselves of the issues in a year or two’s time. If you do not hear something that you judge to
be important, ask the chairman for it to be repeated, or ask the speaker privately afterwards to
explain. It is not very useful to include something like ‘comment inaudible’. Also do not scribe
detailed editorial changes that will be recorded in the marked up version of the proposal that
will appear in the second supplement to the minutes.

Motion: If a proposal in a paper is amended, the discussion leader must provide an amended copy of the
paper to the librarian (Marshall) before the end of the meeting (Reid, Adams).

Formal Vote: 27-0. Passed.

155

25th September 1988 Tofl 110-JKR-1

159

To: X313 110-JKR-2
From: John Reid

Subject: Using i/o syntax for array constructors

Date: 25th September 1988

1 Introduction

This is a formal proposal for replacing the syntax of array constructors by that of i/o lists. I found that
I needed to make a small change in Section 9, but it is my belief that it represents an editorial
improvement in any case.

2 Proposal
Make the following changes to $8.108:-
1. Page 4-9, lines 41-42. Delete sentence ‘The sequence constructors.’.
2. Page 4-9, lines 43-44. Change ‘array-constructor-value’ 10 *output-item’, twice.

w

Page 4-9, line 46 to page 4-10, line 17. Replace ‘R423 ... the first.” by ‘Each array expression in
the output-item-list is treated as a sequence of values in array element order (6.2.4.2).’

Page 4-10, lines 19-20. Delete sentence ‘The scalar constructor.’.
Page 4-10, line 21. Changg'"‘ar'fay-constructor-value’ to ‘output-item’.
Page 4-10, line 29, Change ‘2[4.5]" to ‘4.5, 4.5".

Page 9-12, line 44. Change ‘io’ to ‘input’.

Page 9-13, line 1. Change ‘io’ t0 ‘outpur’.

Page 9-13, lines 2-4. Replace ‘R916 ... output-item’ by
R916 input-implied-do is (input-item-list, io-implied-do-control)
R917 output-implied-do is (output-item-list, io-implied-do-control)

¥ 2 N o o os

10. Page 9-13, lines 8-9. Delete constraint.
11. Page 13-40, line 5. Replace ‘1:6’ by ‘1,2,3,4,5,6°, twice.

P

-25th September 1988 1of1 110-JKR-2

156

To: X313 110-JKR-3
From: John Reid

Subject: The WGS5 plan
Date: 25th September 1988

1. Introduction

The plans of Weaver, Philips, Reid/Smith, and Brainerd et al. were presented to the ISO/WGS
meeting in Paris by Dick Weaver, Ivor Philips, Andy Johnson, and Lawrie Schonfelder, respectively.
It was decided quite quickly that neither the Weaver plan nor the Philips plan were suitable. They
were seen as too large a departure from the draft and likely to result in many no votes in a second ISO
ballot. The authors of the remaining plans meet to discuss how a compromise plan might be
constructed that met the objectives of both plans and was likely to be acceptable to WGS. This left
several decisions open, so straw votes of WG5S were taken before a final plan was proposed. This was
modified slightly by WGS and was adopted on the final day with a vote of 30-2-5 by individuals
(Dick Weaver and Ivor Philips voting no) and 8-0-1 by countries (USA abstaining).

WGS also adopted a resolution expressing its belief that the timely revision of the Fortran standard
is critical and adopting a set of milestones leading to the completion of a second ISO ballot before the
next WGS meeting (10-14 July 1989). This was passed with a vote of 24-4-9 by individuals (Weaver,
Philips, Johnson, and Warren (IBM, Canada) voting no) and 6-0-3 by countries (Japan, Sweden, and
USA abstaining).

This paper is an attempt to explain the plan informally. I (and WGS5) very much hope that X3J3 will
accept this plan, If it does not, then ISO will proceed on its own which is certainly not an outcome for
which I planned when joining X3J3 or accepting the post of Secretary.

The aim of my plan (see 109-37, JKR-4) was to reduce the size of Fortran 8x without needing a
massive editorial effort and without losing the essentials of the language improvements in S8. The
design objectives for the revision were discussed about ten years ago and are laid out in S6 (May
1983). I summarize these in section 2 and firmly believe that we should stay as close as possible to
them. This certainly is the view of WGS.

Each major change has a separate section. The first seven are those that were accepted individually
at Urbana but rejected as a package. I have tried to order the rest, with those making the biggest
change at the top. I conclude by summarizing the changes from the Urbana package and considering
whether the objective of reducing the language complexity has been achieved.

2. S6 design objectives

An agreed statement on design objectives for Fortran 8x is contained in S6 and was reproduced as
document 109-92 (JKR-6). The ‘core’ language was defined as consisting of Fortran 8x less its
decremental features (now just the obsolescent features) and was intended to be a complete and
consistent language conforming to the following criteria:-

(i) General purpose. ‘The core must especially strengthen Fortran's capability for general
purpose scientific programming applications.’

25th September 1988 1of4)S/ 110-JKR-3

(i) Portable. ‘A principal goal of the core is (program and people) portability (that is, after
all, the reason for standardization).’

(iii) Safe. ‘Preferred features for inclusion in the core are those
(2) which are least likely to be (inadvertently) mis-used,
(b) for which unexpected side-effects don’t occur,
(c) for which errors in use are most easily detected, and
(d) which maximize program readability.’

(iv) Efficient. ‘Features that preclude either compilation or execution efficiency with
conventional contemporary computing technology should not be included in the core.’

(v) Consise and consistent. ‘“The core should be a small language, easy to leam and use

effectively.” ‘All syntactic and semantic elements of the core should follow regular and
consistent pattems.’

(vi) Contemporary. “The core should be characterized by language features that are broadly
accepted as currently the best means of achieving the desired functionality,’

(vii) Upward compatibility. ‘The core should maintain a high degree of compatibility with
Fortran 77.’

3. Remove RANGZT.

Removing RANGE makes a big reduction in the size of the language and the complexity presented to
the user. Not only will the number of lines removed be substantial, but every time the size, shape, or
bounds of an array are mentioned, we will know what is meant without having to think about whether
it is the declared or effective ones that are involved.

4. Add pointers

The plan proposes the addition of the pointer facility explained by Jeanne Martin at the Jackson
meeting (see 109-57, ABMSW-3), They are typed and ranked and may not point to static objects that
have not been declared with the attribute TARGET.

5. Remove IDENTIFY

Removing IDENTIFY makes a big reduction in the size of the language. It removes a new form of
association that the new users will find hard to understand.

6. Simplify generalized precision

Brian Smith’s plan (109-61, ABMSW-7) with FLOAT_KIND spelt KIND was thought by WGS to be
a very acceptable way to simplify generalized precision.

7. Add bit intrinsics
The plan involves the addition of the Mil-Std bit intrinsics, as in 109-5§ (ABMSW-4) but with the

original names restored.

25th September 1988 20f4 (55 110-JKR-3

8. Remove the concept of deprecation

X313 has already vote formally to remove the concept of deprecation. The proposal adopted is 109-64
(ABMSW-10).

9, Add INCLUDE
The plan involves the addition of the INCLUDE statement, as in 109-60 (ABMSW-6).

10. Add parameterized INTEGER, CHARACTER, and LOGICAL

Given the acceptance of the KIND solution to the generalized precision problem, WGS saw it as
natural to use the same solution for the demand for short integers, long characters, and bits. They
welcomed the consistency of having a KIND parameter for all intrinsic types and regarded this as a
reduction of complexity.

11. Remove host association

My suggestion at Jackson was to remove internal and module procedures completely, but I realized
there that removing intenal procedures was sufficient if supported by the replacement of host
association in modules by use association. In a straw vote, 13 members said that the plan would be
acceptable with module procedures retained and 15 said that the plan would be acceptable with
module procedures removed. At Paris, there was some reluctance to accept the deletion of internal
procedures and a far greater resistance to the deletion of module procedures. The modularization and
name-hiding advantages of module procedures and the associated safety gains were seen as very
important. The differences between use and host association were minor and hard to remember, so the
change will represent a worthwhile reduction in complexity.

12. Remove derived-type parameters

WGS was reluctant to see the removal of derived-type parameters because it leads to an inconsistency
with the intrinsic types. However, it was accepted that derived types without parameters would have
been far more common, and that the text describing derived-type parameters is quite complicated and
involves the need to define another kind of expression. Also the implicit intrinsic functions are easily
overlooked.

13. Remove elemental cails of user procedures

Most procedures would not have been called elementally, so the compiler writer would probably have
implemented elemental calls as a sequence of scalar calls. It will be more efficient to demand that the
user provide versions for the ranks actually wanted.

14. Add intrinsic procedures for stream i/o

The plan involves adding intrinsic procedures such as GET_CHAR and PUT_CHAR to provide the
primitive facilities for implementation of stream i/o in a module.

25th September 1988 Jof4 110-JKR-3
1577

15. Change array constructor syntax

The plan involves the removal of the use of square brackets and includes my suggestion to use the

syntax of output lists for array constructors, Users are very familiar with this syntax, Here are some
examples:

(/12,34,58)
(¢ LI=1,N))
¢/ (1.0,I=1,50) /)

16. Remove new form of DATA statement

The new form of DATA statement offers no functionality that is not available in the old form.

17. Add significant blanks to the new source form

The plan involves adding significant blanks as in 109-59 (ABMSW-5).

18. Add binary, octal, and hex constants and edit descriptors

The plan involves adding binary, octal, and hex constants and edit descriptors.

19. Overloading of user procedure names

WG5S saw overloading as an integral part of a derived-data facility and were not willing to see it
removed. For example, the fuction SIN is needed as part of a module for interval arithmetic and as
part of a module for extended precision arithmetic. WGS liked Dick Weaver’s idea for a generic
interface block and adopted it as part of its plan.

Note that under the rule in 14.1.1 of S8, external procedures must have distinct names; since the

plan removes intemnal procedures, only module procedures may be overloaded without the use of a
generic block.

20. Conclusions

The primary objective of the plan that I presented at Jackson was to provided a simplification over the
plan that was formed at the Urbana meeting and rejected there. The Urbana Plan contained the items
in Sections 3 to 9. Sections 11, 12, 13, 15, and 16 each represent a worthwhile reduction in
complexity. Section 10 represents an increase in language size in direct response to demands, but the
uniformity of the treatment of all intrinsic types represents a complexity reduction over other possible
ways to provide the functionality. Section 14 represents a small increase in complexity and Sections
17 to 19 represent very small increases, Overall, I believe that the WGS Plan meets the objectives of
my plan, while it certainly addresses the intemational comment better.

25th September 1988 4o0f4 [/ 2 110-JKR-3

L

10

15

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 1 of 10)
From: Kurt W. Hirchert

P — — —————— — —— —— — ————________________—_____J]

In this paper, I will look at how the concept of storage association has evolved, including
both the standard provisions and the nonstandard expectations. I will then look at
alternatives for extending storage association concepts to the features in Fortran 8x and
make a recommendation on the approach to follow. Finally, I will make specific
suggestions on how to describe this approach in the standard.

This paper does not include specific text changes to be made to the draft, but I hope that it
is sufficiently specific technically that it could be used as the basis for writing such text. I
have tried to allow fo expected changgs in the standard (e.g., the addition of pointers), but
changes may be necessary to accommodate the particular wording used to add these
features. -

The 1966 Standard

The 1966 standard had a storage model based on the idea that all machine representations
were constructed out of a common storage unit (i.., the computer word). A storage unit
could be used in one of seven.ways:

1. to store an integer value (type INTEGER)
2. to store a true/false value (type LOGICAL)

3. to store a “normal” floating point value (type REAL or the real or imaginary part
of type COMPLEX)

4. to store the first half of an extended floating point value (type DOUBLE
PRECISION) -

5. to store the second half of an extended floating point value (type DOUBLE
PRECISION)

6. to store a code address (with the ASSIGN statement)

7. to store a group of g characters, where g is a processor-dependent value (Hollerith

. data)

The number and relative placement of all aggregations of storage units was specified by
the standard. Different variables and arrays could be forced to use the same storage units.
If one variable was used to define a storage unit in one particular way, then if a second
variable referenced the storage unit in the same way, it would be defined to have the same
value. If the second variable referenced to storage unit in a different way, then its value
would be undefined, since no relation was assumed between the different ways of
interpreting a storage unit.

In this form, the storage association rules had two big advantages:

&)

110-KWH-1 (Page 1 of 10)

16/

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 2 of 10)
From: Kurt W. Hirchert

f

1. The rules were complete. A user could specify any storage sharing pattern he
wanted or needed. It was even possible to create a pool of storage that could be
allocated to different uses on a dynamic basis.

2. The rules were processor independent. A valid storage sharing pattern on one
machine would be valid on another.

These rules also had their disadvantages:
1. The size relations specified are not always appropriate:

a Giving the LOGICAL type the same amount of storage as the INTEGER
type is a waste of storage. (Fortunately, most programs had only a handful
of scalar flags, so the wastage was minimal.)

b. One would like the standard COMPLEX type to be sufficiently precise for
most computations that might use it. Limiting its components to the size
of the standard INTEGER sometimes prevents this.

c. On some machines based on the IEEE floating point standard, extended is
the fastest as well as the most precise representation, so one would like it
to cotrespond to one of the FORTRAN types, but this isn’t possible (without
serious storage wastage) because extended is neither half nor twice the size
of any of the other representations.

2. The rules treat all storage units as alike and thus do not allow for alignment
constraints. For example, on many machines there is a performance penalty if
double precision items are not stored on even (rather than odd) word boundaries.
The standard provided no way for the processor to handle this, so it became the
responsibility of the programmer on those machines, reducing portability.

3l The specified relative placement of storage units in aggregates is not always most
appropriate. For example, some processors would be able to generate better code
if arrays of type complex could be represented by parallel arrays for the real and
imaginary part rather than interleaved values. Other processors might perform
better if memory constraints such as page boundaries or bank conflicts could
modify the addressing formulas used for arrays.

The Nonstandard Standard

In addition to the properties provided by the standard, a number of additional properties
were assumed by many programs:

1. Different uses of a storage unit actually used the same memory. Iknow of no
processor that violates this assumption, but it should be noted that the rules in the
standard only allow such sharing without requiring it. One can imagine tagged

110-KWH-1 (Page 2 of 10)

yy

10

15

3o

35

e

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 3 of 10)
From: Kurt W. Hirchert -

W

machine architectures where it might be more convenient no to share memory for
incompatible uses.

2. “Undefined” means only a processor-dependent value. Many programs
assume that it is safe to look at storage units in a way different from the way they
were defined as long as you don’t mind the fact that the value you see would be
processor-dependent. This is ignores the fact that there may be representations
that are invalid for this kind of use and that machine interrupts may result.

3. Assignment and binary input/output are representation-preserving
operations. Typical of this assumption would be defining a REAL variable,
writing out an INTEGER variable equivalenced to it, reading the INTEGER back
later, and expecting that the value of the REAL variables would then be defined as
it was originally. This ignores the possibility that the processor may transform the
representation to some canonical representation appropriate to the type being used
in the transfer (e.g. normalizing what is apparently a floating point number).

4, The values in the INTEGER type are in 1-1 correspondence with the possible
representations in a storage unit, so INTEGERs can be used for comparing
and manipulating representations. This ignores things like 1’s complement
machines (2 representations for zero) and machines using decimal arithmetic for
INTEGERSs.

5. There are specific relations between the representations used in the different
uses of a storage unit:

a. The LOGICAL interpretation of a storage unit is TRUE. if and only
if the INTEGER interpretation is negative. (Alternatively, the
LOGICAL interpretation of a storage unit is .TRUE. if and only if the
INTEGER interpretation is nonzero.)

b. The INTEGER interpretation of a storage unit has the same sign as
the REAL interpretation of that storage unit.

c. INTEGER and REAL zero have the same representation.

d. The first storage unit in a DOUBLE PRECISION value can be
interpreted as a REAL value that is approximately equal to it.

e. If storage units contains Hollerith data, comparison as INTEGERs
will give the same results as character comparison. (Alternatively, it
gives the same results provided you take into account the interpretation of
the sign bit.)

f “Simple” Hollerith values never have the same representation as
“small” INTEGERs.

110-KWH-1 (Page 3 of 10)

163

10

15

20

30

35

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 4 of 10)
From: Kurt W. Hirchert

None of these assumptions is likely to be safe enough across the full range of machines
on which Fortran is implemented to be adopted into the standard, but all are true often
enough that people get upset when features deny them the possibility of taking advantage
of their favorite nonstandard assumption.

The 1978 Standard

The development of the 1978 FORTRAN standard provided a new complication — the
CHARACTER data type. As with LOGICAL, the use of an entire storage unit would be
a waste if storage, and, unlike LOGICAL, people tend to use enough characters that the
wastage would be significant. Two possibilities would have preserved the idea of a single
underlying storage unit:

1. The length in the CHARACTER type could have been interpreted as a minimum
capacity rather than an exact capacity. Thus, each CHARACTER entity could
have been allocated in storage units, based on the processor-dependent constant g
originally defined for Hollerith. The presence of a processor-dependent constant
would have complicated portability, this approach would not have provided a
meaningful EQUIVALENCE between a CHARACTER array and a
CHARACTER string declared to hold the same number of characters, and the
wastage (especially for CHARACTER*1 and on byte-addressable machines)
would still have been significant.

2. The storage unit for a character could have been made the new basis for a
complete mapping like the one in the 1966 standard (in effect, converting the
FORTRAN model from word addressing to byte addressing). Again, there would
have been problems with the processo -dependent nature of g, and the alignment
issue previously mentioned for DOUBLE PRECISION would likely now apply to
all of the “numeric” data types.

To avoid these kinds of problems, X3J3 chose to recognize two different kinds of storage
units — numeric and character. Each data entity consisted entirely of one or the other
and complete mapping was retained among objects composed of the same kind of storage
unit, but no mapping was allowed among objects composed of different kinds of storage
units. This solution provided storage efficiency, portability, and nominal upwards
compatibility from the 1966 standard but was unpopular with much of the FORTRAN
community for a number of reasons:

L. It was no longer possible to have aggregations containing all types of information.
Splitting collections of shared data in half to separate the character data from the
noncharacter data was a nuisance.

2. It was no longer possible to manage a single pool of available storage and allocate
it any possible usage.

110-KWH-1 (Page 4 of 10)

/4

@)

K

10

15

25

30

s

@

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 5 of 10)
From: Kurt W. Hirchert

3. The language no longer provided even the syntactic framework for applying some
of the nonstandard assumptions.

The 198x Drafts

Fortran 8x introduces several additional complications to the storage association model.
First, it introduces new types whose underlying storage units are likely to be different
from those already in the language. In particular, people want the BIT type to be storage
efficient. Second, it introduces parameterized types whose underlying representation (and
thus storage units) vary with the parameter value. Thus, we can’t portably determine how
many different kinds of storage units there need to be. Third, we have introduced
attributes such as ALLOCATABLE that alter the representation of the objects, thus
introducing still more kinds of storage units. A number of approaches has been
considered:

1. Ignore storage association altogether and allow only that which is necessary
to be upwards compatible with the 1978 standard. Public comment has made
it clear that this “solution” is not acceptable.

2. Have many kinds of storage units and handle them as in the 1978 standard —
“separate universes”. I think the displeasure already expressed about the 1978
standard on this point makes it clear that this “solution” would also not be
acceptable.

3. Build a new complete mapping based on a new basic storage unit
(presumably the storage unit for the BIT type). As noted before in the context
of the 1978 standard, this causes portability problems because of the processor-
dependent constants involved, and introduces the problem of expressing
alignment constraints. In addition, there is the problem that the model in the 1978
standard may actually be the right one for some architectures. There are a number
of hardware and software reasons why the bit-addressable store, the character-
addressable store, and the word-addressable store might not be identical. If
possible, we need the preserve the possibility of efficient implementations on such
machines. Again, I believe we have an unacceptable “solution”.

1 believe an acceptable solution lies somewhere between these latter two options. Start
with the idea of different storage units for different types, but recognize that these may be
composed of a smaller, more basic storage units that would allow different kinds of
storage units to placed in the same storage sequence. If a machine actually has multiple
kinds of memory, a Fortran storage sequence may actually have to be implemented as a
memory sequence in each kind of memory with a position in the storage sequence
implemented as a set of position (one for each kind of memory). (In fact, a good test of
the portability of storage association features is to ask whether the described behavior
applies to both a monolithic memory implementation and a multiple memory
implementation.)

110-KWH-1 (Page 5 of 10)

165

10

15

20

25

30

35

From: Kurt W. Hirchert

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 6 of 10)

-

I am suggesting the basic tactic that when two data objects have the same placement
constraints (are composed of the same kind of storage units), then the order specified by
the programmer should be honored, but when the data objects have different placement
constraints (are composed of unlike storage units), then the processor should be free to
reorder the objects (e.g. to improve efficiency by grouping objects with the same or
similar placement constraints). Thus, for example, a derived data type containing only
character data could be expected to portably overlay a character string, while a derived
data type containing an integer and a character string could not.

I have somewhat reluctantly decided to avoid the concept of a numerical storage units in
the description that follows. Instead, I will be talking about type specific storage units
which are the same size (equivalent) and may thus coincide in storage sequences. It
turned out to be easier to talk about different kinds of storage sequences than different
ways of using one kind of storage sequence.

The Proposed Approach

Variables in Fortran are composed of storage units which contain the component values
that make up the value of the variable. There are different kinds of values for storing
different types of values. Unless otherwise noted in the following material, there is a
different kind of storage unit for each combination of type and type parameters. In
addition, there is an additional storage unit for each variable that may be composed of
different storage units over the lifetime of the program unit in which the variable was
declared (i.e., variables with the ALLOCATABLE, ALIAS, or “pointer” attribute).
Unless otherwise noted in the following material, there are different kinds of such locater
storage units for each combination of type, type parameters, and rank. {« We might
prefer to distinguish based on the storage map for an element of the given type and type
parameter rather than on the type and type parameters themselves. This would allow
storage associated pointers under slightly more liberal circumstances. *}

When a variable is defined, its component storage units are defined. Conversely, when
all of the component storage units of a variable are defined, the variable is defined.
Locater storage units are always defined and indicate whether and which ordinary storage
units the variable is composed of.

A scalar variable or element of an array variable always is a nonempty sequence of
storage units. Thus, there is a first storage unit, there is a last storage unit (not necessarily
different), each storage unit except the last has a successor in the sequence, and each
storage unit except the first is the successor of a storage unit in the sequence. Unless
covered by one of the following cases, that storage unit is an ordinary storage of kind
determined by the type and type parameters of the variable.

1. If the type is COMPLEX, then the sequence consists of two storage units of kind
corresponding to the type REAL with the same type parameters. The first storage
unit contains the value of the real part; the second contains the value of the

imaginary part.

110-KWH-1 (Page 6 of 10)

[bb

10

15

25

30

35

40

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 7 of 10)

From: Kurt W. Hirchert

2.

If the type is CHARACTER and the length parameter » is greater than 1, then the
sequence consists of n storage units of kind corresponding to the type
CHARACTER and length parameter 1. If the length parameter is zero, then the
storage unit is the same as for a zero-sized array of type CHARACTER and length

. parameter 1 (see below). {* If we a add a second parameter to CHARACTER to
_support Kanji, etc., then we should note that its value remains the same in both

these cases. ¢}

If the type and type parameters indicate double precision real, then the sequence
consists of two storage, the first of a kind specific to holding the first half of a
double precision real value, the second of a kind specific to holding the second
half of a double precision real value. Fortran provides no means for these halves
to be separately defined or referenced, but they may become undefined separately
due to storage mapping.

If the type is a derived type and the kind of storage units in the storage sequences
of its components are all compatible (see below), then the storage sequence
consists of the storage units of those components in the order they are declared.
(Le., the first storage unit of the first component is the first storage unit of the
overall sequence, the first storage unit of component i is the successor in the
overall sequence of the last storage unit of component i-1, and the last storage unit
of the last component is the last storage unit of the overall sequence.) Note that if
a component has attributes that give it a locater storage unit, it is this storage unit
(and not the storage units located by it) that applies to this rule and the following.
{* If we restore variant types or add union types, then we will get a storage map
rather than a storage sequence, and change from storage sequence to storage map
will have to be propagated to various points in this discussion. +}

If the type is a derived type and the kind of storage units in the storage sequences
of its components are not all compatible, then the storage sequence consists of a
single storage unit whose kind is determined not by the type and type parameters,
but by the storage sequence of the components in the order they are declared.
Note that this storage unit is different from the storage sequence which determines
its kind (and thus differs from the previous case).

For arrays which are contiguous {+ definition omitted here, but essentially equivalent to
arrays which can be sequence associated in the current draft »}, its storage units also form
a storage sequence in which the first storage unit of the first element in array element
order is the first storage unit of the overall sequence, the first storage unit of element i in
array element order is the successor in the overall sequence of the last storage unit of
element i-1 in aray element order, and the last storage unit of the last element in array
element order is the last storage unit of the overall sequence. If the array is zero-sized
(and thus has no elements), then the storage sequence consists of a special “null” storage
unit of kind determined by the kind of the first storage unit elements of arrays of that

e. If, in a storage sequence, the successor of such a “null” storage unit is a storage unit

(“null” or not) of a compatible kind, the “null” storage unit is removed from the sequence.

110-KWH-1 (Page 7 of 10)

167

10

15

20

25

30

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 8 of 10)
From: Kurt W. Hirchert

f

{* This may need some cleaning up to make clear that “null” storage units are no
interchangeable with non-“null” storage units, even when their kinds are compatible. *}

Certain kinds of storage units are compatible and can be used interchangeably in
compatible storage maps. In particular, the following kinds of storage units are
compatible:

1. the kind corresponding to the [default] INTEGER type

2 the kind corresponding to the [default] LOGICAL type

3. the kind corresponding to the default REAL type

4 the kind corresponding to the first half of a double precision value

5 the kind corresponding to the second half of a double precision value

The variables declared to in a COMMON block form a storage sequence, with the first
storage unit of the first variable being the first storage unit of the overall sequence, etc.
As with derived types, if the variable has an attribute that gives it a locater storage unit, it
is the locater storage unit that is part of the overall storage sequence, and not the storage
units that it Jocates.

A storage map is similar to a storage sequence, except that there may be multiple “first”
storage units (all synchronized — see below), there may be multiple “last” storage units,
and a storage unit may have multiple successors.

Synchronization is the process which converts multiple storage sequences into a storage
map (or multiple storage maps into a combined storage map).

Two storage elements if

1. they are each a first storage unit in the same COMMON block (presumably
declared in different scoping units);

2, they are the first storage units of variables that are EQUIVALENCEG,;

3. they are the first storage units of an actual argument and dummy argument that are
storage associated (synchronization lasts only as long as the argument
association); {* replacing current sequence association ¢}

4. they are the successors of synchronized compatible storage units; or

5. they are compatible and have a common Successor.

If two storage units are synchronized and one is the successor to a third storage storage
unit, then the other is also a successor to that storage unit.

110-KWH-1 (Page 8 of 10)

[68

10

15

20

25

o

Subject: Completing Storage Association in Fortrar 8x 110-KWH-1 (Page 9 of 10)
From: Kurt W. Hirchert

W

Two storage units which have a common successor must be compatible. { ILe.,
EQUIVALENCE statements that would cause incompatible storage units to have
common Successors are not permitted. ¢}

A storage unit is said io follow a second storage unit if it is the successor of that second
storage unit or of a third storage unit which follows the second storage unit.

Two storage units are disjoint if one of them follows ihe other.
When a storage unit is defined,

1. any storage unit of the same kind whick is synchronizec with it is defined with the
same value, and

2. any storage unit in the same storage map which is not disjoint from it is
undefined. {* This is the biggie that handles equivalencing of unlike data, etc. Its
implications can be extensive ¢}

The first storage unit of the first variabie declared in 2 COMMON block must not be the
successor to any other storage unit. {e Le., EQUIVALENCE can’t extend before the
beginning of a COMMON block. +}

Storage units from two different COMMON blocks must not be in the same storage map.
{« Le., you can’t equivalence variables in two different COMMON blocks. #}

A partial storage map is that part of the storage map that is defined in a single scoping
unit. Two partial storage maps are said to be compatible if synchronizing the first storage
units of two partial storage maps results ia a storage meap in. which each storage unit from
one scoping unit is synchronized with a compatible storage unit from the other scoping
unit. All partial storage maps of a named COMMON block must be compatible. {+Ie.,a
named COMMON block must have the same length in each program in which it appears.

°}

Any two storage units being synchronized by an EQUIVALENCE statement must be in
different storage maps if they are removed from that EQUIVALENCE. {+ Prevents
redundant or inconsistent EQUIVALENCE:s ¢}

A locater storage unit must be disjoint from all incompatible storage units in the same
storage map. {* You can’t EQUIVALENCE a nonpointer onto a pointer. ¢}

{+ Note that the result variables corresponding to different entry points in a function
subprogram can once again be storage associated (i.e, synchronized). «}

{« We may (or may not) need some additional work on pointers to protect optimization
(depending on exactly which optimization protecting attributes we include in the
standard). «}

110-KWH-1 (Page 9 of 10)

169

Subject: Completing Storage Association in Fortran 8x 110-KWH-1 (Page 10 of 10)
From: Kurt W. Hirchert

—_—

{* We may wish to require a processor to be able to be able to detect if a partial storage
map contains storage units which are neither disjoint nor synchronized and compatible. ¢}

Q

110-KWH-1 (Page 10 of 10)

170

