
 X3J3/94-009 r3
 4-Oct-94

 TECHNICAL PROPOSALS

This document contains technical proposals for revisions to Fortran. This is
an internal working document of X3J3 and is regularly revised. These technical
proposals are all in response to requirements defined by WG5. It requires a
vote by X3J3 to add a proposal to this document or to change the status of one
of the proposals.

There are currently three possible status values for a proposal.

 D - Draft

This status indicates that the general concept of a proposal has been adopted,
but that the proposal needs further work.

 A - Approved

This status indicates that a proposal has been approved and is ready for
incorporation into the draft standard (document 007).

 I - Incorporated

This status indicates that a proposal has been incorporated into the draft
standard. An I* status indicates that a proposal has been incorporated
but not yet approved - such proposals might need to be pulled back out if
they are not eventually approved; in that case, their status would revert
to Draft.

The target date for a proposal can be either 95, 2k, or unspecified.

List of Proposals

Number
Status

Target date
Title

001 I 95 Changes to the MAXLOC and MINLOC intrinsics
002 I 95 NAMELIST comments
003 I 95 Minimal field widths
004 I 95 FORALL
005 I 95 PURE procedures
005a A 95 Rationale for FORALL and PURE (belongs as part of 004 and 005)
006 I 95 Object Initialization
007 I 95 Language evolution
008 I 95 Conflicts with IEEE 754/854
009 I 95 CPU time
010 I 95 Nested WHERE
011 I 95 Specification Functions
012 I* U Enable
013 I 95 ELEMENTAL procedures
014 I 95 Automatic deallocation
015 I* U Allocatable components

--
Number: 001
Title: Changes to the MAXLOC and MINLOC Intrinsics
 (B9 Item A5)
Status: Incorporated in 94-007r1
Target date: 95
Last revision: Feb 94
X3J3 reference: 94-037

Technical Description:
 HPF modified the MAXLOC and MINLOC intrinsic functions
 to include an optional argument, DIM, which specifies
 the dimension along which the search is to be
 performed. This includes this functionality in
 Fortran 9x.

Discussion:
 The HPF proposal creates an unfortunate incompatibility
 with Fortran 90. The incompatibility is a result of
 the new argument being inserted between the original
 first and second arguments. This was probably done for
 consistency with the argument location in the MAXVAL
 and MINVAL intrinsics. To avoid this incompatibility
 with Fortran 90, these functions are specified so that
 the two optional arguments may occur in either order.
 This places the burden on the processor to determine
 the order of the arguments (if the second argument is a
 scalar of type integer it is the DIM argument and if it
 is of type logical and conformable with the ARRAY
 argument it is the MASK argument). For consistency,
 this allowance for either order of the two optional
 arguments is extended to MAXVAL, MINVAL, PRODUCT, and
 SUM.

 As part of this proposal, a Fortran 90 compatibility
 section has been added. It does not replace the
 Fortran 77 compatibility section and it assumes that
 Fortran 9x will be upward compatible from Fortran 90.
 Both of these issues are yet to be decided and if the
 text below is accepted, it may require revision when
 these decisions are made.

Detailed Edits:
[3/3+]: Add the following section:
 1.4.1 Fortran 90 Compatibility

 Except as noted in this section, this
 International Standard is an upward compatible
 extension to the preceding Fortran
 International Standard, ISO/IEC 1539:1991,
 informally known as Fortran 90, and a standard-
 conforming processor for this International
 Standard is a standard-conforming processor for

 Fortran 90. Any standard-conforming Fortran 90
 program remains standard-conforming under this
 International Standard. The following
 Fortran 90 features have different
 interpretations in this International Standard:

 (1) The interfaces to the MAXLOC, MAXVAL,
 MINLOC, MINVAL, PRODUCT, and SUM intrinsics
 have been extended by this standard. This
 may conflict with a program that has
 supplied a generic interface to these
 intrinsics.

[3/4]: Change "1.4.1" to "1.4.2".
[219/6]: Add "DIM ," before "MASK" and add "or MAXLOC
 (ARRAY, MASK, DIM)" to the end of the line.
[219/7]: Add "DIM ," before "MASK".
[219/8]: Add "along dimension DIM" after "ARRAY".
[219/12+]: Add the following description of the DIM
 argument:
 DIM (optional) must be scalar and of type
 integer with a value in the
 range 1 <= DIM <= n, where n is
 the rank of ARRAY. The
 corresponding actual argument
 must not be an optional dummy
 argument.
[219/14]: Change "; it" to ". If DIM is absent the
 result".
[219/15]: Before "." add "; otherwise, the result is an
 array of rank n-1 and shape (d(1), ...,
 d(DIM-1), d(DIM+1), ..., d(n)), where (d(1),
 ..., d(n)) is the shape of ARRAY".
[219/17]: Change "If MASK is absent, the result" to "The
 result of MAXLOC (ARRAY)".
[219/24]: Change "If MASK is present, the result" to "The
 result of MAXLOC (ARRAY, MASK = MASK)".
[219/31+]: Add the following case to the description of
 the result value:
 Case (iii): If ARRAY has rank one, MAXLOC
 (ARRAY, DIM = DIM [, MASK = MASK])
 has a value equal to that of
 MAXLOC (ARRAY [, MASK = MASK]).
 Otherwise, the value of element
 (s(1), ..., s(DIM-1), s(DIM+1),
 ..., s(n)) of MAXLOC (ARRAY,
 DIM = DIM [, MASK = MASK]) is
 equal to MAXLOC (ARRAY (s(1),
 s(2), ..., s(DIM-1), :, s(DIM+1),
 ..., s(n)) [, MASK = MASK (s(1),
 s(2), ..., s(DIM-1), :, s(DIM+1),
 ..., s(n))]).
[219/36+]: Add the following case to the examples:
 Case (iii): The value of MAXLOC ((/ 5, -9, 3

 /), DIM=1) is 1. If B has the
 value | 1 3 -9 |
 | 2 2 6 |, MAXLOC
 (B, DIM=1) is [2 1 2] and
 MAXLOC (B, DIM=2) is [2 3].
 Note that this is true even if B
 has a declared lower bound other
 than 1.
[219/37]: Add "or MAXVAL (ARRAY, MASK, DIM)" to the end
 of the line.
[220/22,24]: Change "DIM" to "DIM = DIM".
[220/22,24]: Change "MASK" to "MASK = MASK".
[221/23]: Add "DIM ," before "MASK" and add "or MINLOC
 (ARRAY, MASK, DIM)" to the end of the line.
[221/24]: Add "DIM ," before "MASK".
[221/25]: Add "along dimension DIM" after "ARRAY".
[221/29+]: Add the following description of the DIM
 argument:
 DIM (optional) must be scalar and of type
 integer with a value in the
 range 1 <= DIM <= n, where n is
 the rank of ARRAY. The
 corresponding actual argument
 must not be an optional dummy
 argument.
[221/31]: Change "; it" to ". If DIM is absent the
 result".
[221/32]: Before "." add "; otherwise, the result is an
 array of rank n-1 and shape (d(1), ...,
 d(DIM-1), d(DIM+1), ..., d(n)), where (d(1),
 ..., d(n)) is the shape of ARRAY".
[221/34]: Change "If MASK is absent, the result" to "The
 result of MAXLOC (ARRAY)".
[222/6]: Change "If MASK is present, the result" to "The
 result of MAXLOC (ARRAY, MASK = MASK)".
[222/13+]: Add the following case to the description of
 the result value:
 Case (iii): If ARRAY has rank one, MINLOC
 (ARRAY, DIM = DIM [, MASK = MASK])
 has a value equal to that of
 MINLOC (ARRAY [, MASK = MASK]).
 Otherwise, the value of element
 (s(1), ..., s(DIM-1), s(DIM+1),
 ..., s(n)) of MINLOC (ARRAY,
 DIM = DIM [, MASK]) is equal to
 MINLOC (ARRAY (s(1), s(2), ...,
 s(DIM-1), :, s(DIM+1), ..., s(n))
 [, MASK = MASK (s(1), s(2), ...,
 s(DIM-1), :, s(DIM+1), ..., s9n))
]).
[222/18+]: Add the following case to the examples:
 Case (iii): The value of MINLOC ((/ 5, -9, 3
 /), DIM=1) is 2. If B has the
 value | 1 3 -9 |

 | 2 2 6 |, MINLOC
 (B, DIM=1) is [1 2 1] and
 MINLOC (B, DIM=2) is [3 1].
 Note that this is true even if B
 has a declared lower bound other
 than 1.
[222/19]: Add "or MINVAL (ARRAY, MASK, DIM)" to the end
 of the line.
[223/1,3]: Change "DIM" to "DIM = DIM".
[223/1,3]: Change "MASK" to "MASK = MASK".
[226/22]: Add "or PRODUCT (ARRAY, MASK, DIM)" to the end
 of the line.
[227/5,7]: Change "DIM" to "DIM = DIM".
[227/5,7]: Change "MASK" to "MASK = MASK".
[235/5]: Add "or SUM (ARRAY, MASK, DIM)" to the end of
 the line.
[235/27,29]: Change "DIM" to "DIM = DIM".
[235/27,29]: Change "MASK" to "MASK = MASK".
[Rationale]: Add the following sections to the new
 rationale:
 R13.13.65 MAXLOC

 Fortran 90 specified the MAXLOC intrinsic with
 only the ARRAY and MASK arguments. HPF added
 the DIM argument between the original two
 arguments for consistency with the MAXVAL
 intrinsic. This creates an incompatibility
 with Fortran 90 unless MAXLOC is specified as a
 generic interface with two specific interfaces:
 the first matching Fortran 90 and the second
 adding a non-optional DIM argument as the
 second argument. At X3J3 meeting 127, it was
 decided that this Standard should allow the DIM
 and MASK arguments to be specified in either
 order. For consistency, this provision for DIM
 and MASK to be specified in either order was
 extended to the other intrinsics, MAXVAL,
 MINVAL, PRODUCT, and SUM, which have the same
 arguments.

 R13.13.66 MAXVAL

 MAXVAL was extended to allow the DIM and MASK
 arguments to be specified in either order as
 part of the extensions to MAXLOC and MINLOC
 (R13.13.65,R13.13.70).

 R13.13.70 MINLOC

 Fortran 90 specified the MINLOC intrinsic with
 only the ARRAY and MASK arguments. HPF added
 the DIM argument between the original two
 arguments for consistency with the MINVAL
 intrinsic. This creates an incompatibility

 with Fortran 90 unless MINLOC is specified as a
 generic interface with two specific interfaces:
 the first matching Fortran 90 and the second
 adding a non-optional DIM argument as the
 second argument. At X3J3 meeting 127, it was
 decided that this Standard should allow the DIM
 and MASK arguments to be specified in either
 order. For consistency, this provision for DIM
 and MASK to be specified in either order was
 extended to the other intrinsics, MAXVAL,
 MINVAL, PRODUCT, and SUM, which have the same
 arguments.

 R13.13.71 MINVAL

 MINVAL was extended to allow the DIM and MASK
 arguments to be specified in either order as
 part of the extensions to MAXLOC and MINLOC
 (R13.13.65,R13.13.70).

 R13.13.81 PRODUCT

 PRODUCT was extended to allow the DIM and MASK
 arguments to be specified in either order as
 part of the extensions to MAXLOC and MINLOC
 (R13.13.65,R13.13.70).

 R13.13.103 SUM

 SUM was extended to allow the DIM and MASK
 arguments to be specified in either order as
 part of the extensions to MAXLOC and MINLOC
 (R13.13.65,R13.13.70).

History:
 X3J3/93-275r1 (meeting 127)
 X3J3/94-037 (meeting 128)

--
Number: 002
Title: WG5 B9, B4.3: NAMELIST comments
Status: Incorporated in 94-007r1
Target date: 95
Last revision: Feb 94
X3J3 reference: 94-021r1

Technical Description:

 Provide a mechanism to allow comments in namelist input records.

Discussion:

 The straw votes taken at meeting 127 indicated a preference for
 allowing comments, of the "to end of line" variety. Comments are
 allowed before and after "name-value" subsequences as well as before
 the initial "&" defining a particular namelist group name.

Detailed Edits:

On page 151, section 10.9.1, change item 1 to read:

 1) Optional blanks and namelist comments,

On page 152, section 10.9.1.2, add the following paragraph after the
4th paragraph:

 A namelist comment may appear after any value separator except a slash. A
 namelist comment is also permitted to start in the first position of an input
 record except within a character literal constant.

On page 154, renumber section 10.9.1.6 to be 10.9.1.7, and add a new 10.9.1.6:

 10.9.1.6 Namelist Comments

 Except within a character literal constant, a "!" character after a value
 separator or in the first non-blank position of a namelist input record
 initiates a comment. The comment extends to the end of the current input
 record. The comment is ignored. A slash within the namelist comment does
 not terminate execution of the namelist input statement.

History: WG5/N901, X3J3/93-204r4, item 4 in X3J3 SD004, WG5/N840,
 X3J3/93-272, X3J3/94-021

--
Number: 003
Title: WG5 B9 item: B4.1. Minimal Field Widths
Status: Incorporated in 94-007r1
Target date: 95
Last revision: Feb 94
X3J3 reference: 94-022r1

Technical Description:

 Allow a field width of zero for I, B, O, Z, and F edit descriptors (in
 formatted output) to request that the processor select the smallest field
 width which will avoid "*****"s (field overflow).

 For the I, B, O, and Z edit descriptors, no leading blanks are produced,
 and a leading "+" is never written. When an "m" (minimal printable digit
 count) is specified, the appropriate number of leading zeros is still
 produced, i.e., the processor will chose a width >= m.

 For the F edit descriptor, no leading blanks are produced, and a
 leading "+" is never written. The optional leading zero just before the
 decimal point is not produced unless d was specified to be zero.

 A field width of zero is not permitted for other edit descriptors.

Discussion:

 The straw votes taken at meeting 127 indicated a preference for this
 approach, rather than new edit descriptors (EX/LT, item 10 in SD004)
 to toggle the desired behavior.

 The processor, when it sees a zero field width specified, choses the
 smallest possible value for the field width, such that, if the user had
 specified that particular value, the processor would have printed
 "useful" data (not "*"s), and chosing any smaller field width would
 have resulted in the processor printing "*"s (field width overflow).

 This feature provides the ability to reduce the number of characters
 in an output file. Also, the user can maximize how many values can
 be printed on a single line and easily viewed on a terminal, while
 avoiding overflow "****"s in the output fields.

Detailed Edits:

On page 136, change the 3rd constraint to be:

 Constraint: e must be positive.

Add this constraint after the 3rd constraint on page 136:

 Constraint: w must be zero or positive for the I, B, O, Z, and F edit
 descriptors. w must be positive for all other edit descriptors.

In section 10.5.1.1, in the first paragraph, insert the following before
the "." ending the first sentence [139:34]:

 , except when w is zero. On input, w must not be zero. When w is zero,
 the processor selects the field width

In section 10.5.1.1, add the following to the end of the 4th paragraph [139:46]:

 When w is zero, the processor choses a positive field width such that no
 leading blanks are produced, nor a leading plus, and the characters produced
 do not exceed the processor selected field width.

In section 10.5.1.1, add the following to the end of the 5th paragraph [140:4]:

 When w is zero, the processor choses a positive field width such that no
 leading blanks are produced, and the characters produced
 do not exceed the processor selected field width.

In section 10.5.1.1, in the 6th paragraph, change the phrase "value of w" to
be [140:8]:

 value of w, except when w is zero

In section 10.5.1.1, add the following to the end of the 6th paragraph [140:9]:

 When w is zero, the processor choses a positive field width such that no
 leading blanks are produced, nor a leading plus, and the characters produced
 do not exceed the processor selected field width. When m and w are both
 zero, and the value of the internal datum is zero, no characters are
 produced, regardless of the sign control in effect.

In section 10.5.1.2.1, in the 1st paragraph, insert the following before the
1st ",":

 (except when w is zero)

In section 10.5.1.2.1, in the 1st paragraph, insert the following after the
last sentence:

 When w is zero, the processor selects the field width.

In section 10.5.1.2.1, in the last paragraph, insert the following after
the last sentence [140:36]:

 When w is zero, the processor choses a positive field width such that no
 leading blanks are produced, nor a leading plus, and the characters produced
 do not exceed the processor selected field width.

End of EDITS

History: WG5/N901, X3J3/93-204r4, items 9 and 10 in X3J3 SD004, X3J3/93-273,
 X3J3/94-022

--
Number: 004
Title: FORALL
Status: Incorporated in 94-007r2
Target date: 95
Last revision: May 94
X3J3 reference: 94-150r1

X3J3 94-150R1

TO: X3J3
FROM: Dick Hendrickson
SUBJECT: FORALL proposal
REFERENCE: 94-013, 94-054, 94-096, meeting 128 scribe notes,

B9 resolution items A2 and A3
DATE: May 4, 1994

This is the FORALL proposal modified by the straw votes and discussion at meetings 128 and 129.

The Rationale is in paper 94-097 which was passed at meeting 128 and covers both the FORALL
and PURE procedure proposal.

I did not do anything to resolve the copyright isues. As a result, I believe this text is still copyright
by Rice University and copied here with their permission. It is unclear to me how to proceed with
this. We can contact Rice and see if they will give us permission to include some of their text with-
out acknowledgement. We can contact ANSI/ISO/??? and see if we can include a copyright notice
in the text of the standard. We can rewrite the text to remove the dependence on Rice's material.
It is also possible that using small parts of the text, and modifing it as much as I already have, re-
moves any question of copyright "infringement". I believe that these issues are basically "editori-
al" and that we should decide what we want to do on a technical basis and then get the words right.
Leaving the words close to the HPF words for now allows us to see what we've done to their tech-
nical content .

As an unresolved editorial issue /edit should consider "merging" the text for WHERE and
FORALL with the text in Chapter 8 describing blocks. /edit should probably also consider "merg-
ing" the definitions and constraints for constructs which can have names.

FORALL proposal.

[add to 14.1.3 Statement entities after page 245, line 22. We need to define the index-name variables as statement
entities to the forall statement or construct. This was not in the original HPF draft nor in the original paper. The intent
is to say that the index name is purely local and its use does not affect the value of other variables with the same name
in the rest of the program. This is the same as the implied Do index in an array constructor. Note that there are several
other edits to this section from interpretations.]

The name of a variable that appears as an index-name in a FORALL statement or FORALL con-
struct has a scope of the statement or construct. It has the type and type parameters that it would
have if it were the name of a variable in the scoping unit that includes the FORALL and this type
must be INTEGER.

Change the section name for 14.1.3, [245:15] to "Statement and construct entities".

In [245:23-24] change the reference to "statement entities" to "statement or construct entities"
twice.

In 14.1.2, [241:23] change the reference to "statement entities" to "statement or construct entities".

[Extend rule R215 for executable-construct to include the forall-construct and R216 to include the forall-stmt:]

Page 8, add to R215 executable construct:
or forall-construct

Page 9, add to R216 action-stmt
or forall-stmt

[Add FORALL construct to the list of things that may be branch targets. This allows branching to a FORALL, but not
to an END FORALL]

Page 107, line 5: Add forall-construct-stmt to the list of possible branch targets.

[Add at the end of the first paragraph in section 7.5:]

Execution of a FORALL statement or FORALL construct controls the assignment to elements of
arrays by using a set of index variables and a mask expression.

[Add a new section to chapter 7 at the end 7.5.3 [page 94] after the WHERE assignment section, number the BNF rules
continuously:]

7.5.4 Element array assignment - FORALL

Element array assignment is used to mask the evaluation of expressions and assignment of values
in assignment statements with selection by sets of index values and an optional mask expression.

7.5.4.1 The FORALL Construct

The FORALL construct allows multiple assignments, masked array (WHERE) assignments, and
nested FORALL statements and constructs to be controlled by a single forall-triplet-spec-list and
scalar-mask.

General Form of the FORALL Construct

R781 forall-construct is
[forall-construct-name:] FORALL forall-header

 forall-body-stmt
[forall-body-stmt ...]
END FORALL [forall-construct-name]

R782 forall-header is (forall-triplet-spec-list [,scalar-
mask-expr])

R783 forall-triplet-specis index-name =
subscript:subscript[:stride]

R784 forall-body-stmt is forall-assignment-stmt
or where-stmt
or where-construct
or forall-stmt
or forall-construct

R785 forall-assignment-stmt isassignment-stmt
or pointer-assignment-stmt

Constraint: Any procedure referenced in the scalar-mask-expr of a forall-header, including
one referenced by a defined operation, must be a pure procedure (12.xxx).

Constraint: The scalar-mask-expr must be scalar and of type logical. {footnote 1}

begin footnote 1

The scalar-mask-expr may depend on the index-name values as well as
on the values of data items. This allows a wide range of masking
operations.

end footnote

Constraint: A forall-body-stmt must not define any of the index-names.

Constraint: The index-name must be a scalar integer variable.

Constraint: A subscript or stride in a forall-triplet-spec must not contain a reference to any
index-name in the forall-triplet-spec-list in which it appears.

Constraint: If the forall-construct has a forall-construct-name the END FORALL statement
must have the same forall-construct-name. If the END FORALL statement has
a forall-construct-name. the forall-construct must have the same construct-
name.

Constraint: Any procedure referenced in a forall-body-stmt, including one referenced by a
defined operation or assignment, must be a pure procedure.

Constraint: A forall-body-stmt must not be a branch target.

To determine the set of values that each index-name in the forall-header takes let:

m1 be value of the first subscript ("lower bound");

m2 be value of the second subscript ("upper bound");

m3 be the stride; and

max be INT((m2 - m1 + m3)/m3)

If stride is missing, it is as if it were present with the value 1. Stride must not have the value 0.

The set of values is m1 + (k-1) * m3, k = 1, 2, ..., max. If max <= 0 for some index-name, the
statements within the forall-body are not executed.

Each forall-assignment-stmt contained in a forall-construct assigns a value to a variable specified
by the values of the index-name variables. A program must not assign multiple values to a variable
by a single forall-assignment-stmt in a forall-construct. A program may, however, assign to the
same variable in different forall-assignment-stmts in a forall-construct. For the purposes of this
restriction, any assignment (including array assignment or assignment to a variable of derived
type) to a data object is considered to assign to all subobjects contained in that object. {footnote 2}

begin footnote 2

A syntactic consequence of the semantic rule that no two execution
instances of a forall-assignment-stmt may assign to the same data
object is that each of the index-name variables must appear on the
left-hand side of a forall-assignment-stmt. The converse is not
true (i.e., using all of the index-name variables on the left-hand
side does not guarantee there will be no interference). Because the
condition is not sufficient, it does not appear as a constraint.
This restriction allows cases such as

FORALL (I = 1:10)
A(INDEX(I)) = B(I)

END FORALL

if and only if INDEX(1:10) contains no repeated values. Note that
it restricts FORALL behavior, but not syntax. Syntactic restric-
tions to enforce this behavior would be either incomplete (i.e.,
allow undefined behavior) or exclude useful programs such as the
above example.

Statements can use the results of computations in lexically earlier
statements, including computations done for other index-name val-
ues. However, an assignment never uses a value assigned in the same
statement by another index-name value combination.

end footnote

The scope of an index-name is the forall-construct itself(14.1.3). {footnote 3}

footnote 3

The index variables inherit their type and type parameters from the
host scope, but their use does not modify any host variables of the
same name. Given a sequence such as:

INTEGER X
REAL XX
REAL A(5,4)
X=-1
J=10
FORALL(X=1:5, J=1:4)

A(X,J) = J
END FORALL

After execution of the FORALL the variables X and J have the values
-1 and 10 and the columns of A have the values 1, 2, 3, and 4. It
would be a syntax error to use XX as a FORALL index.

end footnote

7.5.4.2 Interpretation of the FORALL Construct

Execution of a FORALL construct consists of the following steps:

Evaluation, in any order, of the subscript and stride expressions in the forall-trip-
let-spec-list. The set of combinations of index-name values is then the Cartesian
product of the sets defined by these triplets.

Evaluation of the scalar-mask-expr for all combinations of index-name values. If
the scalar mask expression is omitted, it is as if it were present with the value true.
The mask elements may be evaluated in any order. The set of active combinations
of index-name values is the subset of the combinations for which the scalar-mask-
expr evaluates to .TRUE.. {footnote 4}

Footnote 4
Right-hand sides and expressions on the left hand side of a forall-
assignment-stmt are defined as evaluated only for combinations of
index-names for which the scalar-mask-expr evaluates to .TRUE. This
has implications when the computation might create an error condi-
tion.
For example,

FORALL (I=1:N, Y(I).NE.0.0)
X(I) = 1.0 / Y(I)

END FORALL

does not cause a division by zero nor does it assign any values to
elements of X that correspond to zero elements of Y.

end footnote

Execution of the forall-body-stmts in the order they appear. Each statement is ex-
ecuted completely (that is, for all active combinations of index-name values) ac-
cording to the following interpretation:

forall-assignment-stmts evaluate the expr and all expressions within vari-
able (in the case of assignment-stmt) or target and all expressions within
pointer-object (in the case of pointer-assignment-stmt) of the forall-assign-
ment-stmt for all active combinations of index-name values. These evalua-
tions may be done in any order. The expr values are then assigned to the
corresponding variable (in the case of assignment-stmt) or the target values
are associated with the corresponding pointer-object (in the case of pointer-
assignment-stmt). The assignment or association operations may also be
performed in any order.

where-stmts and where-constructs evaluate their mask-expr for all active
combinations of values of index-names. All elements of all masks may be
evaluated in any order. The WHERE statements' assignment (or assign-
ments within the WHERE block of the construct) are then executed in order
using the above interpretation of array assignments within the FORALL,
but the only array elements assigned are those selected by both the active
index-name values and the WHERE mask. Finally, the assignments in the
ELSEWHERE block are executed if that block is present. The assignments
here are also treated as array assignments, but elements are only assigned if
they are selected by both the active combinations and by the negation of the
WHERE mask.

forall-stmts and forall-constructs first evaluate the subscript and stride ex-
pressions in the forall-triplet-spec-list for all active combinations of the out-
er FORALL constructs. The set of valid combinations of index-names for
the inner FORALL is then the union of the sets defined by these bounds and
strides for each active combination of the outer index-names, the outer in-
dex-names being included in the combinations generated for the inner
FORALL. The scalar-mask-expression is then evaluated for all valid com-
binations of the inner FORALL's index-names to produce the set of active
combinations. If there is no scalar-mask-expression, it is as if it were
present with the value true. Each statement in the inner FORALL is then
executed for each active combination (of the inner FORALL), recursively
following the interpretations given in this section. {footnote 5}

foot note 5
In general, any expression in a FORALL is evaluated only for valid
combinations of all surrounding index-names for which all the sca-
lar-mask-exprs are true.

Nested FORALL bounds and strides can depend on outer FORALL index-
names. They cannot redefine those names, even temporarily.
end footnote

7.5.4.3 General form of the element array assignment statement

An element array assignment statement is a FORALL statement.

R786 forall-stmt is FORALL forall-header
forall-assignment-stmt

A FORALL statement is equivalent to a FORALL construct containing a single forall-body-stmt
that is a forall-assignment. {footnote 6}

The scope of an index-name is the FORALL statement itself(14.1.3).

FORALL statements cannot have construct names.

footnote 6

A FORALL construct means roughly the same thing as does replicating
the FORALL header in front of each array assignment statement in the
block, except that any expressions in the FORALL header are evalu-
ated only once, rather than being re-evaluated before each of the
statements in the body. The exceptions to this rule are nested
FORALL statements and WHERE statements, which introduce syntactic
and functional complications into the copying.

end footnote

7.5.4.4 FORALL Examples

Example 1:

FORALL (J=1:M, K=1:N) X(K,J) = Y(J,K)
FORALL (K=1:N) X(K,1:M) = Y(1:M,K)

These statements both copy columns 1 through N of array Y into rows 1 through N of array X.
They are equivalent to

X(1:N,1:M) = TRANSPOSE(Y(1:M,1:N))

Example 2:

FORALL (I=1:N, J=1:N) X(I,J) = 1.0 / REAL(I+J-1)

This FORALL sets array element X(I,J) to the value 1/(I+J-1) for values of I and J between 1 and
N.

Example 3:

FORALL (I=1:N, J=1:N, Y(I,J).NE.0 .AND. I .NE. J) &
X(I,J) = 1.0/Y(I,J)

This statement takes the reciprocal of each non-zero non-diagonal element of array Y(1:N,1:N) and
assigns it to the corresponding element of array X. Elements of Y that are zero or on the diagonal
do not have their reciprocal taken, and no assignments are made to the corresponding elements of
X.

Example 4:

FORALL (I=2:N-1) X(I) = (X(I-1) + 2*X(I) + X(I+1))/4

Has the same effect as the statement

X(2:N-1) = (X(1:N-2) + 2*X(2:N-1) + X(3:N+1))/4

Example 5:

FORALL (I=1:N) A(I,I) = X(I)

This FORALL statement sets the elements of the main diagonal of matrix A to the elements of vec-
tor X.

Example 6:

FORALL (K=1:5) J(K) = SUM(J(1:K))

This FORALL statement computes five partial sums of subarrays of J. (SUM is allowed in a
FORALL because intrinsic functions are pure; see Section 12.xxx.) If before the FORALL

J =(/ 1, 2, 3, 4, 5/)

then after the FORALL

J =(/1, 3, 6, 10, 15/)

Example 7:

FORALL (I=2:N-1, J=2:N-1)
A(I,J) = A(I,J-1) + A(I,J+1) + A(I-1,J) + A(I+1,J)
B(I,J) = 1.0/A(I,J)

END FORALL

The assignment to array B uses the values of array A computed in the first statement, not the values
before the FORALL began execution.

Example 8:

FORALL (I=1:N-1)
FORALL (J=I+1:N) A(I,J) = A(J,I)

END FORALL

This FORALL construct assigns the transpose of the lower triangle of array A (i.e., the section be-
low the main diagonal) to the upper triangle of A. For example, if N=3 and A originally contained
the values

0 3 6
1 4 7
2 5 8

then after the FORALL it would contain

0 1 2
1 4 5
2 5 8

This could also be achieved with a single FORALL statement

FORALL (I = 1:N-1, J=1:N, J >I) A(I,J) = A(J,I)

Example 9:

INTEGER A(5,4), B(5,4)
FORALL (I=1:5)

WHERE (A(I,:) .EQ. 0) A(I,:) = I
B(I,:) = I / A(I,:)

END FORALL

This FORALL construct, when executed with the input array

A =
0 0 0 0
1 1 1 0
2 2 0 2
1 0 2 3
0 0 0 0

will produce as results

A =
1 1 1 1
1 1 1 2
2 2 3 2
1 4 2 3
5 5 5 5

and

B =
1 1 1 1
2 2 2 1
1 1 1 1
4 1 2 1
1 1 1 1

Note that assignments to A in the WHERE block may affect computations in the ELSEWHERE
block such as to B(1,1).

--
Number: 005
Title: Pure procedures
Status: Incorporated in 94-007r2
Target date: 95
Last revision: May 94
X3J3 reference: 94-149r2 as amended (amended text not yet available)

X3J3 94-149R2

TO: X3J3
FROM: Dick Hendrickson
SUBJECT: Pure procedures
REFERENCES: 94-013, 94-054, 94-098, meeting 128 scribe notes

B9 resolution item A4
DATE: May 4, 1994

This is a modified version of 94-098 based on the discussions and scribe notes from meetings 128
and 129.

The Rationale is in paper 94-097 which was passed at meeting 128 and covers both the FORALL
and PURE procedure proposal.

I did not do anything to resolve the copyright isues. As a result, I believe this text is still copyright
by Rice University and copied here with their permission. It is unclear to me how to proceed with
this. We can contact Rice and see if they will give us permission to include some of their text with-
out acknowledgement. We can contact ANSI/ISO/??? and see if we can include a copyright notice
in the text of the standard. We can rewrite the text to remove the dependence on Rice's material.
It is also possible that using small parts of the text, and modifing it as much as I already have, re-
moves any question of copyright "infringement". I believe that these issues are basically "editori-
al" and that we should decide what we want to do on a technical basis and then get the words right.
Leaving the words close to the HPF words for now allows us to see what we've done to their tech-
nical content .

PURE proposal

[Add a new section to chapter 12 at an /editorially appropriate place.]

12.xxxx Pure Procedures

12.xxxx.1 Pure Procedure Declaration and Interface

A pure procedure is a procedure that has no side effects; it does not change the status of any vari-
ables known outside of its scope, except possibly for dummy arguments to a pure subroutine, and
it does not perform any input or output to an external unit.

Intrinsic functions are always pure. Intrinsic subroutines are pure if they are elemental (e.g.,
MVBITS) but not otherwise. No explicit declaration of this fact is permitted for intrinsic proce-
dures. A statement function is pure if and only if all functions that it references are pure .

The following constraints apply to pure functions or subroutines.

Constraint: The specification-part of a pure function must specify that all dummy argu-
ments have INTENT (IN) except procedure arguments and arguments with the
POINTER attribute.

Constraint: The specification-part of a pure subroutine must specify the intents of all dum-
my arguments except procedure arguments, alternate return specifiers, and ar-
guments with the POINTER attribute.

Constraint: A local variable declared in the specification-part or internal-subprogram-part
of a pure procedure must not have the SAVE attribute. {footnote 1}

footnote 1
Variable initialization in a type-declaration-stmt or a data-stmt
implies the SAVE attribute; therefore, such initialization is also
disallowed.
end footnote

Constraint: If a procedure is used in a context that requires it to be pure, then its interface
must be explicit in the scope of that use and that interface must specify the
PURE keyword. {footnote 2}

footnote 2
It is expected that most mathematical library procedures will be
pure, this form of restriction allows these procedures to be used
in contexts where they are not required to be pure without the need
for an interface-block.
end footnote

Constraint: All internal procedures in a pure procedure must be pure.

Constraint: In a pure procedure any variable which is in common or accessed by host or use
association; is a dummy argument to a pure function, is a dummy argument with
INTENT (IN) to a pure subroutine, or an object that is storage associated with
any such variable or subobject thereof, must not be used in the following con-
texts

As the assignment variable of an assignment-stmt;

As a DO variable or implied DO variable;

As an input-item in a read-stmt from an internal file;

As an internal-file-unit in a write-stmt;

As an IOSTAT= or SIZE= specifier in an input or output statement with
an internal file;

In an assign-stmt;

As the pointer-object of a pointer-assignment-stmt;

As the target of a pointer-assignment-stmt;

As the expr of an assignment-stmt whose assignment variable is of a de-
rived type or is a pointer to a derived type, if the derived type has a point-
er component at any level of component selection;

As an allocate-object or stat-variable in an allocate-stmt or deallocate-
stmt, or as a pointer-object in a nullify-stmt; or

As an actual argument associated with a dummy argument with IN-
TENT (OUT) or INTENT (INOUT) or with the POINTER attribute.

Constraint: Any procedure referenced in a pure procedure, including one referenced via a
defined operation or assignment, must be pure.

Constraint: A pure procedure must not contain a print-stmt, open-stmt, close-stmt, back-
space-stmt, endfile-stmt, rewind-stmt, or inquire-stmt.

Constraint: A pure procedure must not contain a read-stmt or write-stmt whose io-unit is an
external-file-unit or *.

Constraint: A pure procedure must not contain a stop-stmt.

The above constraints are designed to guarantee that a pure procedure is free from side effects (i.e.,
modifications of data visible outside the procedure), which means that it is safe to reference it in
constructs such as a FORALL assignment-statement where there is no explicit order of evaluation.
{footnote 3}

footnote 3

The constraints on pure procedures may appear complicated, but it
is not necessary for a programmer to be intimately familiar with
them. From the programmer's point of view, these constraints can
be summarized as follows: a pure procedure must not contain any op-
eration that could conceivably result in an assignment or pointer
assignment to a common variable, a variable accessed by use or host
association, or an INTENT (IN) dummy argument, or perform any I/O
or STOP operation. Note the use of the word conceivably; it is not
sufficient for a pure procedure merely to be side-effect free in
practice. For example, a function that contains an assignment to a
global variable but in a block that is not executed in any invocation
of the function is nevertheless not a pure function. The exclusion
of functions of this nature is unavoidable if strict compile-time
checking is to be used. In the choice between compile-time checking
and flexibility, the committee decided in favor of enhanced check-
ing.

It is expected that most library procedures will conform to the con-
straints required of pure procedures (by the very nature of library
procedures), and so can be declared pure and referenced in FORALL

statements and constructs and within user-defined pure procedures.
It is also anticipated that most library procedures will not ref-
erence global data, whose use may sometimes inhibit concurrent ex-
ecution. See Annex X for further discussion of the constraints.

end footnote

Pure subroutines are included to allow subroutine calls from pure procedures in a safe way, and to
allow forall-assignments to be defined assignments. The constraints for pure subroutines are based
on the same principles as for pure functions, except that side effects to INTENT (OUT) and IN-
TENT (INOUT) dummy arguments are permitted. Pointer dummy arguments are always treated
as INTENT (INOUT).

[Add PUREness to the list of procedure characteristics. Add after "subroutine" on line 36, page 165, section 12.2]

"whether or not it is pure, "

[Replace BNF rules on page 175 and 177 with:]

R1217 prefix is prefix-spec [prefix-spec ...]

R1217A prefix-spec is type-spec
or RECURSIVE
or PURE

Constraint: A prefix must contain at most one of each prefix-spec.

R1220 subroutine-stmt is [prefix] SUBROUTINE
subroutine-name [([dummy-arg-list])]

Constraint: The prefix of a subroutine-stmt must not contain a type-spec.

[To define interface specifications for pure procedures, the following constraints are added to Rule R1204 in Section
12.3.2.1 (defining interface-body)]:

Constraint: An interface-body of a pure procedure must specify the intents of all dummy
arguments except POINTER, alternate return, and procedure arguments.

[To define pure procedure references, the following extra constraint is added to Rules R1209 and R1210 in Section
12.4.1 (defining function-reference and call-stmt):]

Constraint: In a reference to a pure procedure, a procedure-name actual-arg must be the
name of a pure procedure. {footnote 4}

footnote 4
This constraint ensures that the purity of a procedure cannot be
undermined by allowing it to call a non-pure procedure.
end footnote

Examples of Pure Procedure Usage

Pure functions may be used in expressions in FORALL statements and constructs, unlike general
functions which may have side effects. Several examples of this are given below.

! Intrinsic functions are always pure
FORALL (I = 1:N) A(I,I) = LOG(ABS(A(I,I)))

Because a forall-assignment may be an array assignment, the pure function can have an array re-
sult. Such functions may be particularly helpful for performing row-wise or column-wise opera-
tions on an array.

INTERFACE
PURE FUNCTION F(X)
REAL, DIMENSION(3) :: F
REAL, DIMENSION(3), INTENT (IN) :: X
END FUNCTION F

END INTERFACE
REAL V (3,10,10)
...
FORALL (I=1:10, J=1:10) V(:,I,J) = F(V(:,I,J))

Because pure procedures have no constraints on their internal control flow (except that they may
not use the STOP statement), they also provide a means for encapsulating more complex opera-
tions than could otherwise be nested within a FORALL. For example, the fragment below per-
forms an iterative algorithm on every element of an array. Note that different amounts of
computation may be required for different inputs.

PURE INTEGER FUNCTION ITER(X)
COMPLEX, INTENT (IN) :: X
COMPLEX XTMP
INTEGER I
I = 0
XTMP = -X
DO WHILE (ABS(XTMP).LT.2.0 .AND. I.LT.1000)

XTMP = XTMP * XTMP - X
I = I + 1

END DO
ITER = I
END FUNCTION

...
FORALL (I=1:N, J=1:M) &

IX(I,J) = ITER(CMPLX(A+I*DA,B+J*DB))

[Add to appendix B, the deleted features appendix.]

Constraint: A pure procedure must not contain a pause-stmt. {footnote 5}

footnote 5
A pause requires some form of input or output and is disallowed for
the same reasons that other I/O statements are disallowed.
end footnote

[Add to the annex as a description of the pure procedure constraints.]

The constraints on pure procedures are limited to those necessary to check
statically for freedom from side effects, for processor independence, and
for lack of saved internal state. Subject to these restrictions, maximum
functionality has been preserved in the definition of pure procedures.
This has been done to make function calls in FORALL as widely available
as possible, and so that quite general library procedures can be classi-
fied as pure.

A drawback of this flexibility is that pure procedures permit certain fea-
tures whose use may hinder, and in the worst case prevent, concurrent ex-
ecution in FORALL (that is, such references may have to be implemented by
sequentialization). Foremost among these features are the access of glo-
bal data, particularly distributed global data, and the fact that the ar-
guments and, for a pure function, the result may be pointers or data
structures with pointer components, including recursive data structures
such as lists and trees. The programmer should be aware of the potential
performance penalties of using such features.

The constraint requiring explicit INTENT (IN) for function arguments de-
clares behavior that is ensured by the following constraints. It is not
technically necessary, but is included for consistency with the explicit
declaration rules for defined operators. Note that POINTER arguments may
not have the INTENT attribute; the restrictions ensure that POINTER ar-
guments also behave as if they had INTENT (IN), for both the argument
itself and the object pointed to.

The constraint disallowing variables with the SAVE attribute ensures that
a pure procedure does not retain an internal state between calls, which
would allow side effects between calls to the same procedure

The constraint giving the restrictions on use of global (common or ac-
cessed by host or use association) variables and dummy arguments ensures
that dummy arguments and global variables are not modified by the proce-
dure. In the case of a dummy or global pointer, this applies to both its
pointer association and its target value, so it cannot be subject to a
pointer assignment or to an ALLOCATE, DEALLOCATE, or NULLIFY statement.
These constraints imply that only local variables and the dummy function
result variable can be subject to assignment or pointer assignment.

In addition, a dummy or global data object cannot be the target of a point-
er assignment (i.e., it cannot be used as the right hand side of a pointer
assignment to a local pointer or to the result variable), for then its
value could be modified via the pointer. (An alternative approach would
be to allow such objects to be pointer targets, but disallow assignments
to those pointers; syntactic constraints to allow this would be even more
draconian than these.)

In connection with the last point, it should be noted that an ordinary (as
opposed to pointer) assignment to a variable of derived type that has a
pointer component at any level of component selection may result in a

pointer assignment to the pointer component of the variable. That is cer-
tainly the case for an intrinsic assignment. In that case, the expression
on the right hand side of the assignment has the same type as the assign-
ment variable, and the assignment results in a pointer assignment of the
pointer components of the expression result to the corresponding compo-
nents of the variable (see section 7.5.1.5). However, it may also be the
case for a defined assignment to such a variable, even if the data type
of the expression has no pointer components; the defined assignment may
still involve pointer assignment of part or all of the expression result
to the pointer components of the assignment variable. Therefore, a dummy
or global object cannot be used as the right hand side of any assignment
to a variable of derived type with pointer components, for then it, or
part of it, might be the target of a pointer assignment, in violation of
the restriction mentioned above.

The last two paragraphs only prevent the reference of a dummy or global
object as the only object on the right hand side of a pointer assignment
or an assignment to a variable with pointer components. There are no
constraints on its reference as an operand, actual argument, subscript
expression, etc., in these circumstances.

Finally, a dummy or global data object cannot be used in a procedure ref-
erence as an actual argument associated with a dummy argument of INTENT
(OUT) or INTENT (INOUT) or with a dummy pointer, for then it may be mod-
ified by the procedure reference. This constraint, like the others, can
be statically checked, since any procedure referenced within a pure func-
tion must be either a pure function, which does not modify its arguments,
or a pure subroutine, whose interface must specify the INTENT or POINTER
attributes of its arguments. Incidentally, notice that in this context
it is assumed that an actual argument associated with a dummy pointer is
modified, since Fortran does not allow its intent to be specified.

The constraint that only pure procedures may be called ensures that all
procedures called from a pure procedure are themselves side-effect free,
except, in the case of subroutines, for modifying actual arguments asso-
ciated with dummy pointers or dummy arguments with INTENT (OUT) or INTENT
(INOUT).

A constraint prevents external I/O and file operations, whose order would
be non-deterministic in the context of concurrent execution. Note that
internal I/O is allowed, provided that it does not modify global variables
or dummy arguments.

Finally, a constraint disallows STOP statements. A STOP brings execution
to a halt, which is a rather drastic side effect.

--
Number: 005a
Title: Rationale for FORALL and PURE
Status: Approved
Target date: 95
Last revision: Feb 94
X3J3 reference: 94-097

X3J3 94-097

TO: X3J3
FROM: Dick Hendrickson
SUBJECT: Rationale for FORALL and PURE

The following is the rationale section for the FORALL and PURE features.

NOTE that the HPF document is copyrighted by Rice University. Rice has given
free permission to copy from the document, but the copyright must be mentioned.
Paper 94-013 should have mentioned this fact also.

Rational:

The FORALL statement and construct and PURE procedures were added to Fortran
95 to allow the majority of programs coded in High Performance Fortran (HPF) to
run on a standard conforming Fortran 95 processor with little change. These
added concepts are the major new syntatic features of HPF. HPF was primarily
designed to allow programs to execute efficiently on multi-processor systems.
Adding these features to Fortran 95 does not imply that a Fortran 95 processor
is a multi-processor nor that any features of the language are safe or consistent
on a multi-processor system.

Some of the text describing the FORALL and PURE features was taken directly
from the High Performance Fortran Language Specification, Version 1.0, May 3,
1993 c1993 Rice University, Houston Texas. The text was copied with the
permission of Rice University.

The purpose of the FORALL statement and construct is to provide a convenient
syntax for simultaneous assignments to large groups of array elements. Such
assignments lie at the heart of the data parallel computations that HPF is
designed to express. The multiple assignment functionality it provides is very
similar to that provided by the array assignment statement and the WHERE
construct in Fortran 90. FORALL differs from these constructs in its syntax,
which is intended to be more suggestive of local operations on each element of
an array, and in its generality, which allows a larger class of array sections
to be specified. In addition, a FORALL may invoke user-defined functions on the
elements of an array, simulating Fortran 90 elemental function invocation
(albeit with a different syntax).

HPF defines a new procedure attribute, PURE, to declare the class of functions
that may be invoked in this way. Both single-statement and block FORALL forms
are defined in this section, as well as the PURE attribute and constraints
arising from the use of PURE.

Fortran 90 places several restrictions on array assignments. In particular, it
requires that operands of the right side expressions be conformable with the left

hand side array. These restrictions can be relaxed by introducing the element
array assignment statement, usually referred to as the FORALL statement. This
statement is used to specify an array assignment in terms of array elements or
groups of array sections, possibly masked with a scalar logical expression. In
functionality, it is similar to array assignment statements and WHERE
statements. The FORALL statement essentially preserves the semantics of Fortran
90 array assignments and allows for convenient assignments like

FORALL (i=1:n, j=1:m) a(i,j)=i+j

as opposed to standard Fortran 90

a = SPREAD((/(i,i=1,n)/), DIM=2, NCOPIES=m) + &
SPREAD((/(i,i=1,m)/), DIM=1, NCOPIES=n)

It can also express more general array sections than the standard triplet
notation for array expressions. For example,

FORALL (i = 1:n) a(i,i) = b(i)

assigns to the elements on the main diagonal of array a.

It is important to note, however, that FORALL is not intended to be a general
parallel construct; for example, it does not express pipelined computations or
MIMD computation well. This was an explicit design decision made in order to
simplify the construct and promote agreement on the statement's semantics.

A PURE function is one that obeys certain syntactic constraints that ensure it
produces no side effects. This means that the only effect of a pure function
reference on the state of a program is to return a result---it does not modify
the values, pointer associations, or data mapping of any of its arguments or
global data, and performs no external I/O. A pure subroutine is one that
produces no side effects except for modifying the values and/or pointer
associations of INTENT (OUT) and INTENT (INOUT) arguments. These properties
are declared by a new attribute (the PURE attribute) of the procedure.

A pure procedure (i.e., function or subroutine) may be used in any way that a
normal procedure can. However, a procedure is required to be pure if it is
used in any of the following contexts:

 ! In the mask or body of a FORALL statement or construct;

 ! Within the body of a PURE procedure; or

 ! As an actual argument in a PURE procedure reference.

The freedom from side effects of a pure function allows the function to be
invoked concurrently in a FORALL without such undesirable consequences as
nondeterminism, and additionally assists the efficient implementation of
concurrent execution. Syntactic constraints (rather than semantic constraints
on behavior) are used to enable compiler checking.

--
Number: 006
Title: B9/B1 Object Initialization
Status: Incorporated in 94-007r2
Target date: 95
Last revision: May 94
X3J3 reference: 94-138r3

X3J3/94-138r3

To: X3J3
From: /OOF
Subject: Text for X3J3/009 re Object Initialization (B1)
References: WG5-N930 Resolutions of the Berchtesgaden WG5 Meeting, B9

 WG5-N932 Requirement for the Initialization of Pointers and Objects
 X3J3/93-207 Pointer and Derived Type Initialization
 X3J3/93-204r4 B9 Implementation Plan
 X3J3/93-237 OOF Report from Meeting 126
 X3J3/93-259 Proposal for Object Initialization (B1)
 X3J3/93-296 Constructors and Destructors plus Object Initialization (Tutorial)
 X3J3/94-030 OOF Report from Meeting 127
 X3J3/94-031r2 Proposal for Object Initialization (B1)
 X3J3/94-081 Object Initialization and Memory Conservation (Overheads)

Number: 006

Requirement Title: B9/B1 Object Initialization

Status: Approved

Technical Description: Currently all pointers are created with an undefined associa-
tion status. There is a requirement to change this to allow some pointers to be created
with a disassociated association status. The means chosen by straw vote within X3J3
to specify an initial association status of disassociated involves the appearance in ini-
tialization contexts of a new intrinsic function NULL with a single optional argument.
The syntax “=> NULL()” may appear in a type declaration statement. The intrinsic
function may also appear in a structure constructor to correspond with a pointer com-
ponent.

There is a further requirement to extend a type definition to contain the specification of
a default initial value for a nonpointer component and the specification of disassociated
status as the default for a pointer component. It is not necessary for a default value to
be specified for each nonpointer component in a definition nor to change the initial as-
sociation status of each pointer component from undefined to disassociated. If a com-
ponent is of derived type, its initial state may be specified in the type definition of that
type. Conversely, even though a derived-type component has an initial state specified
in its type definition, the initial state may be overridden by the use of a structure con-
structor for that type in the (higher-level) component specification. The effect of spec-
ifying default initial values for nonpointer components and the disassociated status for
pointer components is that whenever an object of the type is created, by declaration or

allocation, it will be automatically initialized as indicated in the type definition.

As is the case with objects of intrinsic type, it is possible to specify initial values for
objects of derived type in type declarations and DATA statements. For an object of de-
rived type, an initial value so specified overrides any default initialization contained in
the type definition. An object of a derived type with default initialization specified
must not appear in a DATA statement. Note that whereas initialization in a type dec-
laration statement or a DATA statement implies that the object initialized has the SAVE
attribute, specification of default initialization carries no such implication for objects of
the type.

The syntax needed to meet this requirement for nonpointer components, would seem to
be a natural extension of the initialization mechanism used for an object in a type dec-
laration. It is merely a matter of allowing = initialization to appear in a component
specification. The means described above for initializing a pointer to have an initial sta-
tus of disassociated can then be used to specify a default disassociated status for a point-
er component.

To summarize these extensions:

 - => NULL() can appear in a type declaration.
 - NULL([<pointer-name>]) can appear in a structure constructor.
 - Initialization specifications that can appear in a type declaration statement can also
 appear in a component specification to specify default initialization.
 - Default initialization can be overridden by a higher level default initialization or by
 explicit initialization.

Discussion: The specification of default initialization is a facility that is not available
for objects of intrinsic type.

The current proposal does not allow a pointer to have a default association status of de-
fined, although there is no conceptual problem with doing this so long as the target has
been declared with the TARGET and SAVE attributes.

Detailed Edits: [94-006r0 was integrated into these edits. The only collision was item
 87 as noted below.]

[32:36+] add a new paragraph

Default initialization is specified for a component of an object of de-
rived type when initialization appears in the component declaration.
The object will be initialized as specified in the derived type definition
(14.7.3, 14.7.5) even if the definition is private or inaccessible. Unlike
explicit initialization, default initialization does not imply that the object
has the SAVE attribute. Default initialization does not apply to dummy
arguments unless they have INTENT (OUT).

[33:29-30] replace with

R429 component-decl is component-name [(component-array-spec)]
 [* char-length] [component-initialization]

R429a component-initialization is = initialization-expr
or => NULL ()

[33:38+] add constraints

Constraint: If component-initialization appears, a double colon separa-
tor must appear before the component-decl-list.

Constraint: If => appears in component-initialization, the POINTER
attribute must appear in the component-attr-spec-list. If = appears in
component-initialization, the POINTER attribute must not appear in the
component-attr-spec-list.

Constraint: If an object with default initialization is specified in a com-
mon block, the common block must be saved, and if an object with de-
fault initialization is specifed in the specification part of a module, the
object must be saved.

Note that objects in named common may be initially defined only in a
block data program unit (5.5.2.4). Objects with default initialization
must not appear in blank common.

[34:1-2] replace with

The double colon separator in a component-def-stmt is required if the
DIMENSION attribute, the POINTER attribute, or component-initial-
ization is specified; otherwise, it is optional.

If initialization-expr appears, an object of the type becomes defined
with the default initial value determined from initialization-expr unless
the default initial value is overridden by explicit initialization. The ini-
tialization-expr is evaluated in the scoping unit of the type definition in
accordance with the rules of intrinsic assignment (7.5.1.4).

[34:6+] add

Note that default initialization of an array component may be specified
by a constant expression consisting of an array constructor, or of a single
scalar that becomes the value of each array element.

A component is a pointer if its component-attr-spec-list contains the
POINTER attribute. Pointers have an association status of “undefined”,
“disassociated”, or “associated”. If no default initialization is specified,
the initial status is “undefined”. Pointer nullification sets the status of
a pointer to “disassociated”. To specify that the default initialization of
a pointer component is to be “disassociated”, the pointer assignment
symbol (=>) must be followed by a reference to the intrinsic function
NULL() with no argument. No mechanism is provided to specify a de-
fault initial status of “associated”.

[35:30] insert after “component.”

The type definition may specify that in objects declared to be of this
type, such a pointer is initially disassociated.

[35:33] replace with

TYPE(NODE), POINTER :: NEXT_NODE => NULL()

[35:35+] Add

It is not required that initialization be specified for each component of a
derived type. For example:

TYPE DATE
INTEGER DAY
CHARACTER (5) MONTH
INTEGER :: YEAR = 1994 ! Partial default initialization

END TYPE DATE

If a component is of intrinsic type and is not a pointer, a default initial
value may be specified by an initialization expression. If the component
is an array, the initialization expression must be conformable; it may be
a scalar or an array constructor (4.5). If the component is a pointer, a
limited form of pointer assignment (7.5.2) may be used to specify that
in objects of the type, the pointer component is initially disassociated.
If the component is of derived type and does not have the pointer at-
tribute, its default initial value may be specified in the type definition for
that derived type or by a structure constructor that may override any
lower-level default initialization.

In the following example, the default initial value for the YEAR compo-
nent of TODAY is overridden by explicit initialization in the type dec-
laration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, “Feb.”, 1995)

The default initial value of a component of derived type may be overrid-
den by a higher level default initialization. For example:

TYPE SINGLE_SCORE
TYPE(DATE) :: PLAY_DAY = TODAY
INTEGER SCORE
TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL()

END TYPE SINGLE_SCORE

TYPE(SINGLE_SCORE) SETUP

The PLAY_DAY component of SETUP receives its initial value from
TODAY overriding the lower-level initialization for the YEAR compo-
nent.

Arrays of structures may be declared whose elements are partially or to-
tally initialized by default. For example:

TYPE MEMBER
CHARACTER (20) NAME
INTEGER :: TEAM_NO, HANDICAP = 0
TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL()

END TYPE MEMBER

TYPE (MEMBER) LEAGUE (36) ! Array of partially
! initialized elements

TYPE (MEMBER):: ORGANIZER=MEMBER ("I. Manage",1,5,NULL())

ORGANIZER is explicitly initialized, overriding the default initializa-
tion for an object of type MEMBER. Allocated objects may also be ini-
tialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) ! A partially initialized
! object of type
! SINGLE_SCORE is created.

[37:11] replace “constant expressions” with

constant expressions or pointer nullifications

[39:36-37] replace with

R504 entity-decl is object-name [(array-spec)]
[* char-length] [initialization]

[39:38+] add

R504a initialization is = initialization-expr
or => NULL ()

[40:1] = initialization-expr -> initialization

[40:3] The = initialization-expr -> initialization

[40:5] delete “a pointer,”

[40:6+] add constraint

Constraint: If => appears in initialization, the object must have the
POINTER attribute. If = appears in initialization, the ob-
ject must not have the POINTER attribute.

[40:34] = initialization-expr -> initialization

[40:44] an = initialization-expr -> explicit initialization.

[41:8+] add paragraph

If entity-decl contains a reference to the NULL intrinsic function, ob-
ject-name must be a pointer, and its initial association status is disasso-
ciated.

[41:9-10] change sentence to [includes edit from defect item 87]

The presence of initialization implies that object-name is saved, except
for an object-name in a named common block or an object-name with
the PARAMETER attribute.

[41:22+] add

TYPE(CHAIN), POINTER :: HEAD => NULL()

[44:6+] add

TYPE(NODE), PARAMETER :: DEFAULT = NODE(0, NULL())

[44:30] add before period, “except for components of an object of derived type
for which default initialization has been specified”.

[51:35+] add sentence, “If an object or subobject has been specified with default
initialization in a type definition, it must not appear in a data-stmt-ob-
ject-list.”

[76:22+] add

The intrinsic function NULL returns a disassociated pointer. A disasso-
ciated pointer has no shape but does have rank. The data type, type pa-
rameters, and rank of the result of the intrinsic function NULL when it
appears without an argument are determined by the pointer that becomes
associated with the result. If the intrinsic function appears on the right
of a pointer assignment statement, the type, type parameters, and rank
of the result are those of the pointer on the left. If the intrinsic function
appears in initialization for an object in a type declaration statement, the
type, type parameters, and rank of the result are those of the object. If
the intrinsic function appears as a default initialization specification in a
component-decl, the type, type parameters, and rank of the result are
those of the component. If the intrinsic function appears in a structure
constructor, the type, type parameters, and rank are determined by the
corresponding pointer component. If the intrinsic function appears as an
actual argument in a procedure reference, the type, type parameters, and
rank of the result are those of the corresponding dummy argument.

The optional argument is required when the intrinsic function NULL ap-
pears as an actual argument in a reference to a generic procedure if the
argument type, type parameters, and rank are required to resolve the ref-
erence. For example:

INTERFACE GEN
SUBROUTINE S1 (J, PI)

INTEGER J
INTEGER, POINTER :: PI

END SUBROUTINE S1
SUBROUTINE S2 (K, PR)

INTEGER K
REAL, POINTER :: PR

END SUBROUTINE S2
END INTERFACE

REAL, POINTER :: REAL_PTR
CALL GEN (7, NULL (REAL_PTR)) ! Invokes S2

[77:23+] add new item to list

(5a) A reference to the transformational intrinsic function NULL,

[78:5] add new item to list

(5a) A reference to the transformational intrinsic function NULL,

[79:10+] add new item to list

(8a) The transformational NULL,

[92:17] Replace “If the target is a pointer that is disassociated,” with “If the tar-
get is a pointer that is disassociated or a reference to the NULL intrinsic
function,” and delete “also”.

[92:28+] add

PTR => NULL ()

[187:32] change title to

13.8.10 Pointer association status functions

[187:33] The function -> The function NULL returns a disassociated pointer.
The inquiry function

[192:13] change title to

13.10.20 Pointer association status functions

[192:14] Association status or comparison -> Association status inquiry or com-
parison

[192:15+] add

NULL (MOLD) Returns disassociated pointer
 Optional MOLD

[225:19+] add

13.13.77a NULL (MOLD)

Optional Argument. MOLD

Description. Returns a disassociated pointer.

Class. Transformational function.

Argument. MOLD must be a pointer and may be of any type. Its point-
er association status may be undefined, disassociated, or associated. If
its status is associated, the target need not be defined with a value.

Result Type, Type Parameters, and Rank. Determined by context
(7.1.4.1) if MOLD is not present; otherwise, the same as MOLD.

Result. The result is a pointer with disassociated association status.

Example. REAL, POINTER, DIMENSION(:) :: VEC => NULL() sets
the initial association status of VEC to disassociated.

[243:13] add new paragraph

Note that if the intrinsic function NULL appears as an actual argument
in a reference to a generic procedure, the argument MOLD may be re-
quired to resolve the reference (7.1.4.1).

[246:35] becomes -> is

[246:35+] add (and reletter remaining items)

(a) The pointer is explicitly initialized in a type declaration (5.1)

(b) Default initialization is specified for the pointer in a type definition
 (4.4)

[249:38+] add new item to the list and adjust the list appropriately

(3) Components of SAVEd variables for which default initialization is
 specified, and

[251:6+] add new items to the list and adjust the list appropriately

(17) Allocation of an object of a derived type, in which default initial-
ization is specified for some components, causes those components of
the object to become defined.

(19) Invocation of a procedure that contains a nonSAVEd local object
that is not a dummy argument and is of a derived type in which default
initialization is specified for some components, causes those compo-
nents of the object to become defined.

(20) Invocation of a procedure that has an INTENT (OUT) dummy ar-
gument of a derived type that specifies default initialization for some
components, causes those components of the dummy argument to be-
come defined.

[256:10+] add new glossary item

default initialization (4.4) : If initialization is specified in a type defi-
nition, an object of the type will be automatically initialized. Nonpoint-
er components may be initialized with values by default; pointer
components may be initially disassociated by default. Default initializa-
tion is not provided for objects of intrinsic type.

[256:42+] add new glossary item

explicit initialization : Explicit initialization may be specified for ob-
jects of intrinsic or derived type in type declaration statements or DATA
statements. An object of a derived type that specifies default initializa-
tion may not appear in a DATA statement.

[268:2-3] replace with

INTEGER :: VAL = 0
TYPE(CELL), POINTER :: NEXT_CELL => NULL()

[268:5] replace with

TYPE(CELL), TARGET :: HEAD ! Automatically initialized

[268:9] delete

[268:15] delete

Add to new Rationale Section:

4.4 Derived types

The prime motivation for adding a means to specify default initialization for objects of
derived type is a need to eliminate situations in which dynamic memory becomes un-
available. This can occur in applications that manipulate objects of derived type with
pointer components. Most memory leakage can be avoided if it is possible to specify
that pointers be created with an initial status of disassociated. In order to allow the ini-
tial status of a pointer to be specified as disassociated in declarations, structure con-
structors, or type definitions, a new intrinsic function, NULL, with a single optional
argument is provided. When the intrinsic function NULL appears in a type definition,
the optional argument must not appear. When the intrinsic function NULL appears
elsewhere, the argument is optional if the type, type parameters, and rank of the re-
quired disassociated pointer are apparent from the context. If this is not the case, a
pointer object name must appear as the argument to indicate the type, type parameters,
and rank of the required disassociated pointer. The argument acts as a mold. Such an
argument may be necessary when a disassociated pointer is used as an actual argument
in a generic procedure reference (7.1.4.1). An example of the initialization of a pointer
as disassociated is:

REAL, POINTER, DIMENSION (:) :: VEC => NULL()

The following code fragment illustrates the memory leakage problem:

MODULE CHARACTER_VARYING
TYPE VARYING

PRIVATE
CHARACTER, POINTER :: CHARS(:)

END TYPE VARYING

! Generic interfaces for assignment, concatenation, conversion, etc.
...

CONTAINS

SUBROUTINE VS_ASS_VS (VAR, EXPR) ! Assignment subroutine
TYPE(VARYING), INTENT(OUT) :: VAR
TYPE(VARYING), INTENT(IN) :: EXPR
ALLOCATE (VAR % CHARS (1:SIZE(EXPR % CHARS)))
VAR % CHARS = EXPR % CHARS

END SUBROUTINE VS_ASS_VS
...

END MODULE CHARACTER_VARYING

MODULE VOCABULARY
USE CHARACTER_VARYING
PRIVATE
TYPE(VARYING), PUBLIC :: WORDS (5000) ! Words in random order
WORDS(1) = “attack”
WORDS(2) = “at”
WORDS(3) = “dawn”
...

END MODULE VOCABULARY

PROGRAM DECIPHER_MESSAGE
USE CHARACTER_VARYING
USE VOCABULARY ! Get WORDS
TYPE(VARYING) MSG ! To collect message
INTEGER MSG_WDS(100) ! Indices to WORDS
INTEGER N, I ! No. of indices, loop index
READ *, N, MSG_WDS
MSG = “” ! Set to empty string
DO I = 1, N

MSG = MSG // WORDS(MSG_WDS(I)) ! Collect message
END DO
...

END PROGRAM DECIPHER_MESSAGE

Suppose the string of indices read into MSG_WDS is 125, 2, 3005, 7, 333, 4002, 66,
222, 2, 6, 901 and at the conclusion of the loop, MSG contains “meeting at five on
morning of may eighteen at abandoned mine”. Dynamic memory will contain the fol-
lowing:

meeting
meeting at
meeting at five
meeting at five on
meeting at five on morning
. . .

Because the pointer VAR % CHARS in the subroutine VS_ASS_VS may be undefined,
it cannot be tested for association so that space no longer needed can be released. In
applications manipulating objects of derived type with pointer components, most mem-
ory leakage can be avoided if initialization of pointers in the derived type can be spec-
ified in the type definition. Objects of the type can then be initialized automatically
when created by either declaration or allocation. If the module CHARACTER_VARY-
ING can be specified as:

MODULE CHARACTER_VARYING
TYPE VARYING

PRIVATE
CHARACTER, POINTER :: CHARS(:) => NULL()

END TYPE VARYING

! Generic interfaces for assignment, concatenation, conversion, etc.
...

CONTAINS
SUBROUTINE VS_ASS_VS (VAR, EXPR) ! Assignment subroutine

TYPE(VARYING), INTENT(OUT) :: VAR
TYPE(VARYING), INTENT(IN) :: EXPR
IF (ASSOCIATED (VAR % CHARS)) DEALLOCATE (VAR % CHARS)
ALLOCATE (VAR % CHARS (1:SIZE(EXPR % CHARS)))
VAR % CHARS = EXPR % CHARS

END SUBROUTINE VS_ASS_VS
...

END MODULE CHARACTER_VARYING

Then at the conclusion of the loop, dynamic memory would not be needlessly cluttered.

The previous standard allowed pointer assignment to occur when an object of a type
containing a pointer is defined with a structure constructor; see the example in section
4.4.4 [37:17-26]. It is only a small extension to allow pointer nullification in derived-
type constant expressions used for named constants or data initialization. For example:

TYPE LINK
REAL :: VALUE
TYPE(LINK), POINTER :: NEXT

END TYPE LINK

TYPE(LINK) :: HEAD = LINK(0.0, NULL())
TYPE(LINK), PARAMETER :: DEFAULT = LINK(0.0, NULL())
TYPE(LINK) :: END_OF_CHAIN = DEFAULT

This language extension does not completely solve the memory leakage problem; for
that, an automatic destructor is needed that would be invoked for local pointers and
structures with pointer components when the procedure in which they are created ter-
minates. Such a facility is not included in this standard; it could be provided automat-
ically by a processor that strove to conserve dynamic memory.

For reasons of determinancy and portability, an object for which default initialization
is specified is not allowed to appear in a DATA statement. In traditional implementa-
tions, a compiler passes along initialization information for nondynamic variables to a
loader, which is frequently designed to handle object code from several different lan-
guages. There could thus be no guarantee that initialization in a DATA statement
would override the default initialization specified in a type definition.

History: WG5-N930 Resolution of the Berchtesgaden WG5 Meeting
 WG5-N932 Requirement for the Initialization of Pointers and Objects
 X3J3/93-207 Pointer and Derived Type Initialization
 X3J3/93-259 Proposal for Object Initialization
 X3J3/94-031r2 Proposal for Object Initialization - moved to X3J3/009 with
 status “X3J3 consideration in progress” by unanimous consent
 X3J3/94-138r3 Text for X3J3/009 re Object Initialization (B1) moved to
 X3J3/009 (replacing previous text) with status “Approved” by unanimous
 consent

--
Number: 007
Title: Language evolution (B9 Item B4.2)
Status: Incorporated in 94-007r2
Target date: 95
Last revision: May 94
X3J3 reference: x3j3.1994-310 email ballot

Introduction

At meeting 128, X3J3 approved the following two proposals.

1. The following Fortran 90 features shall be deleted from the revised
language:
 Real and double precision DO variables
 Branching to END IF
 PAUSE
 ASSIGN, assigned GO TO, assigned formats
 cH edit descriptor

2. The following Fortran 90 features shall be deemed obsolescent in the
revised language:
 Computed GO TO
 Statement functions
 DATA statements amongst executables
 Assumed length character functions
 Fixed form source
 Assumed size arrays
 CHARACTER* form of CHARACTER declaration

The following specifies the edits necessary to implement these decisions.

Proposed edits are represented using the form of the Technical Corrigenda,
that is using location both relative to section and paragraph (for the
benefit of those without line-numbered copies of Fortran 90) and by page
and line number, shown in square brackets. The edits are ordered by
topic, rather than sequentially overall, except that the replacement Annex
B is presented as a whole, in order to facilitate consistency of style.
Where comments are made, they are shown within square brackets.

Edits for the font of text describing obsolescent features have been
proposed only for annexes A and C. It would be tedious in the extreme for
Annex B, which discusses deleted and obsolescent features, to have every
reference to an obsolescent feature in a different font.

Edits implementing deletion

D1. Edits relating to the deletion of real DO variables

In section 8.1.4.1.1, rule R821 [100:34-35]:
Change "scalar-numeric-expr" to "scalar-int-expr", three times.

In rule R822 [100:37]:
Change "scalar-variable" to "scalar-int-variable".

In rule R822, first constraint [100:38-39] :
Delete ", default real, or double precision real" ;

Delete the second constraint which follows rule R822 [100:40-41].

In section 8.1.4.4.1, third line, [102:22]:
Change "scalar-numeric-expr" to "scalar-int-expr", three times.

Replace the section numbered (1) [102:24-29] by:

"The initial parameter m1, the terminal parameter m2, and the
incrementation parameter m3 are established by evaluating scalar-int-
expr1, scalar-int-expr2, and scalar-int-expr3, respectively, including,
if necessary, conversion to the kind type parameter of the do-variable
according to the rules for numeric conversion (Table 7.9). If scalar-int-
expr3 does not appear, m3 is of type default integer and its value is 1.
The value m3 must not be zero."

In section 9.4.2, rule R918 [123:27-28]:
Change "scalar-numeric-expr" to "scalar-int-expr", three times.

In rule R918, second constraint [123:30] :
Delete ", default real, or double precision real" ;

Text for Annex B.1 is shown at B.1.1 below.

D2. Edits relating to the deletion of branching to END IF

In the second paragraph of section 8.1.2.2, second line [96:36]: Add
"only" before "from within" and delete ", and also from outside the
construct".

In the third paragraph of section 8.2, [107:7-8]:
Add "only" before "from within" and delete the text ", and also from
outside the construct".
[This is then consistent with the wording for the CASE construct].

Text for Annex B.1 is shown at B.1.2 below.

D3. Edits related to deletion of the PAUSE statement

In section 2.1, rule R216 [9:31]:
Delete the line "or pause-stmt".

Delete all of section 8.5 [108:32-37].

Text for Annex B.1 is shown at B.1.3 below.

D4. Edits relating to deletion of ASSIGN, assigned GO TO, assigned
formats

In section 2.1, rule R216 [9:29-30]:
Delete the lines "or assign-stmt" and "or assigned-go-to-stmt".

In section 8.1.4.1.2, rule R829, first constraint [101:20-21]: Add "or"
before "an arithmetic-if-stmt" and delete "or an assigned-go-to-stmt".

In section 8.1.4.1.2, rule R833, first constraint [101:33-34]: Add "or"
before "an arithmetic-if-stmt" and delete "or an assigned-go-to-stmt".

Delete section 8.2.4 [107:30-108:11] and renumber section 8.2.5
accordingly.

In section 9.4.1.1, rule R913 [121:5]:
Delete the line "or scalar-default-int-variable".
Delete the first paragraph following the constraint for rule R913
[121:8-9], that is delete, "The scalar-default-int-variable must have been
assigned (8.2.4) the statement label of a FORMAT statement that appears
in the same scoping unit as the format."

In section 14.7.5 [250:18-19]:
Delete the section numbered (6) and renumber accordingly.

In section 14.7.5 [250:33-34]:
In the section numbered (11) delete the text, ", except that variables
associated with the variable in an ASSIGN statement become undefined when
the ASSIGN statement is executed"

In section 14.7.6 [251:20-21]:
Delete the section numbered (2) and renumber accordingly.

Text for Annex B.1 is shown at B.1.4 below.

D5. Edits relating to the deletion of the cH edit descriptor

In section 10.2.1:
Delete the second line of rule R1016. [137:16]
Delete rule R1017 and the first three constraints following it.
[137:17-20]
Delete the penultimate paragraph in the section, that is, "In the H edit
descriptor, c specifies the number of characters following the H." [137:28]
In the last paragraph, delete the words, "except for the characters following
the H in the H edit descriptor and". [137:30]

Delete section 10.7.2 [148:4-6].

Text for Annex B.1 is shown at B.1.5 below.

Edits implementing the obsolescence of features

O1. Edits related to making computed GO TO obsolescent

The following should be in obsolescent font:

In section 2.1, rule R216, the line "or computed-goto-stmt" [9:6];
Section 8.2.3 [107:21-29].

Text for Annex B.2 is shown at B.2.1 below.

O2. Edits related to making statement functions obsolescent

The following should be in obsolescent font:

In section 2.1, rule R207, the line "or stmt-function-stmt" [8:12];
In section 2.3.1, figure 2.1 the text "Statement Function Statements"
[11:29];
In section 2.3.2, table 2.1, the text "Statement Function" [12:17];
In section 5.1, rule R505, second constraint, the text "or a statement
function" [39:42];
In section 5.1.1.5, the paragraph, "The length specified for a character-
valued statement function or statement function dummy argument of type
character must be an integer constant expression." [43:6-7];
In section 11.3, rule 1106, second constraint, the text "a stmt-function-
stmt," [157:21];
In section 11.3, penultimate paragraph, the text "statement function
definitions," [157:27];
In section 12.1.2, the text ", or a statement function" [163:18];
In section 12.1.2.2.1, item numbered (2), the text "in a stmt-function-
stmt," [164:4];
In section 12.1.2.2.1, item numbered (11), the text "or in a stmt-
function-stmt," [164:15-16];
Section 12.1.2.4 [165:33-34];
In section 12.3.1, the sentence "The interface of a statement function is
always implicit." [166:27];
In section 12.3.2.1, rule R1206, first constraint, the text ", or stmt-
function-stmt" [167:29-30];
In section 12.4.1, rule R1214, fourth constraint, the text "or of a
statement function" [172:7-8];
In section 12.5.2.4, first paragraph, the sentence "When a statement
function is invoked, an instance of that statement function is created."
[177:29 - added in corrigendum];
In section 12.5.2.4, second paragraph, the text "or statement function"
(three times) [177:31-34];
In section 12.5.2.5, the entire paragraph "In a subprogram, a name that
appears as a dummy argument in an ENTRY statement must not appear in the
expression of a statement function unless the name is also a dummy
argument of the statement function, appears in a FUNCTION or SUBROUTINE
statement, or appears in an ENTRY statement that precedes the statement
function statement." [178:39-42];
Section 12.5.4 [182:1-32];

In section 14.1.2, item numbered (1), the text "statement functions,"
[241:24];
In section 14.1.2.4, item numbered (2)(b), the text "or statement
function" [243:30-31];
In section 14.1.2.4.2, item numbered (3), the text "or statement function"
[244:29];
In section 14.1.3, the entire first paragraph [245:16-18];
In Annex A, definition of dummy argument, the text ", or a statement
function statement" [256:30];
In Annex A, definition of entity, the text "a statement function"
[256:38];
In Annex A, definition of implicit interface, the text ", or a statement
function" [257:33];
In Annex A, definition of procedure, the text ", or a statement function"
[259:21];
In Annex A, all of the definition of statement function [260:21-22].

Text for Annex B.2 is shown at B.2.2 below.

O3. Edits relating to making obsolescent DATA statements among
executables

The following should be in obsolescent font:

In section 2.1, rule 209, the line "or data-stmt" [8:17];
In section 2.3.1, figure 2.1, the text "DATA Statements" where it is
alongside "Executable Constructs" [11:32-33];
In section 2.3.2, first paragraph, the text "DATA statement," [12:3].

[A paragraph in section 12.1.2.2.1 [164:23-25] also relates to positioning
of DATA statements but does not need obsolescent font.]

Text for Annex B.2 is shown at B.2.3 below.

O4. Edits related to making obsolescent assumed length character
functions

In section 5.1.1.5, rule R509, constraint, delete the text, "if the
function is an internal or module function, array-valued, pointer-valued,
or recursive" and insert, in obsolescent font, "unless it is an external
or dummy function that is neither array-valued, pointer-valued, nor
recursive" [42:36-37];

The following should be in obsolescent font:

In section 5.1.1.5, the paragraph numbered (3) [43:1-5];
In section 12.2.2, the last sentence, i.e. "If the length of a character
data object is assumed, this is a characteristic." [166:16];
In section 12.3.1.1, paragraph (2)(d) [167:3-4];
In section 12.3.2.1.1, first paragraph, the text, "and the function result

must not have assumed character length" [169:18-19];
In Annex A, definition of characteristics item (5), the text ", and
whether the character length is assumed" [255:18];

Text for Annex B.2 is shown at B.2.4 below.

O5. Edits related to making fixed form source obsolescent

The following should be in obsolescent font:

In section 3.3, fourth paragraph, the texts "and fixed" and "and fixed
form" [21:39];
Section 3.3.2, including all subsections [23:23-24:14];
In section 4.3.2.1, in the definition of representable character, all of
the item numbered (1) [30:35-36];
In section 8.1, the pre-penultimate paragraph, all of the final sentence,
that is "In fixed source form, the name preceding the construct must be
placed after column 6." [95:20-21];
In section C.3.1, all of item (1) [264:28];
Section C.3.4 [265:5-33];
Section C.4.2, [265:37-40].
[the reasoning behind the last two is that if fixed source form did not exist,
the paragraphs would not exist; therefore the entire paragraphs should be in
obsolescent font.]

Text for Annex B.2 is shown at B.2.5 below.

O6. Edits related to making obsolescent assumed size arrays

The following should be in obsolescent font:

In section 5.1.2.4, rule R512, the line "or assumed-size-spec" [45:11];
Section 5.1.2.4.4 [47:1-29];
In section 6.2.1, third paragraph, second sentence [63:34-35];
In section 6.2.2, rule R621, second constraint [64:14-15];
In section 6.2.2.3.1, second paragraph [65:49];
In section 7.1.1.1, rule R702, second constraint [71:3];
In section 7.5.1.1, rule R735, constraint [89:12];
In section 9.4.2, rule R918, first constraint [123:29];
In section 12.2.1.1, last line, the text "size," [166:6];
In section 12.4.1.1, penultimate paragraph, the text "an assumed-size
array or" [173:27-28];
In section 12.4.1.4, the text "or assumed-size array" [174:16]; also the
last sentence [174:18:20]; [also change "assumed size" to "assumed-size"
as this is the only occurrence of the former.]
In section 13.8.1, first paragraph, last sentence [186:21-22];
In section 13.8.1, second paragraph, last sentence [186:24-25];
In section 13.13.95, definition of Argument, last sentence, [232:29-30];
In section 13.13.99, definition of argument ARRAY, last sentence,
[233:30-32];
In section 13.13.111, definition of argument ARRAY, last sentence,

[238:26-28];
In Annex A, all of the definition of assumed-size array [254:29-30];
In Annex A, definition of characteristics item (3), the text "size,"
[255:13].

Further, in the example in section 5.1.2.4, array S should be removed from
the SUBROUTINE statement and the related REAL statement should be deleted
since it is not policy to use obsolescent features in examples. [45:14 &
20]. Similarly the example in 5.2.5 [50:37] should be changed to be, say,
... C(:)

Text for Annex B.2 is shown at B.2.6 below.

O7. Edits related to making obsolescent CHARACTER*char-length

The following should be in obsolescent font:

In section 5.1.1.4, rule R507, the line "or * char-length[,]" [42:19].

[It appears that "*char-length" is used in section 5 where it is not clear
without close study whether it refers to a type-spec or an entity-decl.
However, there seems to be only the one place (rule R507) that requires
obsolescent font.]

In section 5.1.1.5, in the last line, delete "*10" [43:12].

Text for Annex B.2 is shown at B.2.7 below.

Other related edits

In the Foreword, at the end of the second paragraph, [xii] add "The
designation FORTRAN 66 is used to signify the first Fortran standard, ANS
X3.9-1966 (published as USAS X3.9-1966) or ISO 1539-1972.";
In section C.9.7, last sentence, replace "ANSI X3.9-1966 (FORTRAN 66)" by
"FORTRAN 66".

[This is because the term FORTRAN 66 is used in the Introduction (once), in
Annex C several times, and is needed in the revised Annex B, but the only
reference is hidden in C.9.7. Perhaps the bit about USAS is not needed - it
is relevant only if a library has the standard catalogued under the title on
the document. Fortran 66 was developed by an ASA committee but ASA was
renamed USASI on August 24, 1966.]

In section 1.6, replace the first sentence [5:21-22] by "This International
Standard protects the users' investment in existing software by including all
but five of the language elements of Fortran 90 that are not processor
independent.";
In the remainder of section 1.6 and subsections, replace "FORTRAN 77" by
"Fortran 90" four times [5:24, 5:25, 5:28, 5:31];
In section 1.6, third sentence, replace "none" by "five" [5:23].

Delete the content of section B.1 [262:3-6] and replace by the following.

B.1 Deleted features
The deleted features are those features of Fortran 90 that are redundant
and are considered largely unused. Section 1.6.1 describes the nature of
the deleted features. The deleted features in this International Standard
are:

(1) Real and double precision DO control variables
 The ability present in FORTRAN 77, and for consistency also in
 Fortran 90, for a do-variable to be of type real or double precision
 in addition to type integer, has been deleted.
(2) Branching to an END IF statement from outside its block
 In FORTRAN 77, and for consistency also in Fortran 90, it was
 possible to branch to an END IF statement from outside the IF
 construct; this has been deleted.
(3) PAUSE statement
 The PAUSE statement, present in FORTRAN 66, FORTRAN 77 and for
 consistency also in Fortran 90, has been deleted.
(4) ASSIGN and assigned GO TO statements and assigned format specifiers
 The ASSIGN statement and the related assigned GO TO statement,
 present in FORTRAN 66, FORTRAN 77 and for consistency also in
 Fortran 90, have been deleted. Further, the ability to use an
 assigned integer as a format, present in FORTRAN 77 and Fortran 90,
 has been deleted.
(5) cH edit descriptor
 In FORTRAN 77, and for consistency also in Fortran 90, there was an
 alternative form of character string edit descriptor, which had been the
 only such form in FORTRAN 66; this has been deleted.

Recommendations are given in the following sections for those processors
which extend the standard by implementing each of the deleted features.

[replacement text in subsections of B.1 below is copied from Fortran 90]

B.1.1 Real and Double Precision DO-Variables

Replace rules R821 and R822 in section 8.1.4.1.1 by the following:

"R821 loop-control is [,] do-variable = scalar-numeric-expr , n

n scalar-numeric-expr [, scalar-numeric-expr]

 or [,] WHILE (scalar-logical-expr)

R822 do-variable is scalar-variable

Constraint: The do-variable must be a named scalar variable of type
integer, default real, or double precision real.

Constraint: Each scalar-numeric-expr in loop-control must be of type
integer, default real, or double precision real."

Replace the first part of section 8.1.4.4.1, up and excluding the
paragraph numbered (2), by the following:

"When the DO statement is executed, the DO construct becomes active. If
loop-control is

 [,] do-variable = scalar-numeric-expr1 , scalar-numeric-expr2
 [, scalar-numeric-expr3]

the following steps are performed in sequence:

(1) The initial parameter m1, the terminal parameter m2, and the
incrementation parameter m3 are established by evaluating scalar-numeric-
expr1, scalar-numeric-expr2, and scalar-numeric-expr3, respectively,
including, if necessary, conversion to the type and kind type parameter
of the do-variable according to the rules for numeric conversion (Table
7.9). If scalar-numeric-expr3 does not appear, m3 is of type default
integer and its value is 1. The value m3 must not be zero."

B.1.2 Branching to an END IF statement from outside its IF block

In section 8.1.2.2, second paragraph, change the second sentence to be,
"It is permissible to branch to an END IF statement from within the IF
construct, and also from outside the construct." In section 8.2, change
the third paragraph to read, "It is permissible to branch to an END IF
statement from within its IF construct, and also from outside the
construct."

B.1.3 PAUSE statement

The definition of the statement is:

 pause-stmt is PAUSE [stop-code]

Execution of a PAUSE statement causes a suspension of execution of the
executable program. Execution must be resumable. At the time of
suspension of execution, the stop code, if any, is available in a
processor-dependent manner. Leading zero digits in the stop code are not
significant. Resumption of execution is not under control of the program.
If execution is resumed, the execution sequence continues as though a
CONTINUE statement were executed.

For completeness, "or pause-stmt" should be added to rule R216 in section
2.1.

B.1.4 ASSIGN and assigned GO TO statements and assigned FORMAT specifiers

The definitions of the ASSIGN and assigned GO TO statements are:

 assign-stmt is ASSIGN label TO scalar-int-variable

Constraint: The label must be the statement label of a branch target
statement or format-stmt that appears in the same scoping unit as the
assign-stmt.

Constraint: scalar-int-variable must be named and of type default integer.

 assigned-goto-stmt is GO TO scalar-int-variable [[,] (label-list)]

Constraint: Each label in label-list must be the statement label of a
branch target statement that appears in the same scoping unit as the
assigned-goto-stmt.

Constraint: scalar-int-variable must be named and of type default
integer.

Execution of an ASSIGN statement causes a statement label to be assigned
to an integer variable. While defined with a statement label value, the
integer variable may be referenced only in the context of an assigned GO
TO statement or as a format specifier in an input/output statement. An
integer variable defined with a statement label value may be redefined
with a statement label value or an integer value.

When an input/output statement containing the integer variable as a format
specifier (9.4.1.1) is executed, the integer variable must be defined with
the label of a FORMAT statement.

At the time of execution of an assigned GO TO statement, the integer
variable must be defined with the value of a statement label of a branch
target statement that appears in the same scoping unit. Note that the
variable may be defined with a statement label value only by an ASSIGN
statement in the same scoping unit as the assigned GO TO statement.

The execution of the assigned GO TO statement causes a transfer of control
so that the branch target statement identified by the statement label
currently assigned to the integer variable is executed next.

If the parenthesized list is present, the statement label assigned to the
integer variable must be one of the statement labels in the list. A label
may appear more than once in the label list of an assigned GOTO
statement."

Further, "assigned-go-to-stmt" should be added to the lists of prohibited
statements in the first constraints to rules R829 and R833 in section
8.4.1.1. For completeness, "assigned-stmt" and "assigned-go-to-stmt"
should be added to rule R216 in section 2.1.

In section 14.7.5, the following section should be added: "Execution of
an ASSIGN statement causes the variable in the statement to become defined
with a statement label value."

In section 14.7.5, the sentence in section (10???), "When a numeric
storage unit becomes defined, all associated numeric storage units of the
same type become defined." should have the following qualification added
at the end, ", except that variables associated with the variable in an
ASSIGN statement become undefined when the ASSIGN statement is executed"

In section 14.7.6, the following section should be added: "Execution of
an ASSIGN statement causes the variable in the statement to become
undefined as an integer. Variables that are associated with the variable
also become undefined."

Use of assigned integers as formats

In section 9.4.1.1 add to rule R913: "or scalar-default-int-variable" with
the qualification that the scalar-default-int-variable must have been
assigned the statement label of a FORMAT statement that appears in the
same scoping unit as the format.

B.1.5 cH Edit Descriptor

In section 10.2.1, add the following line to rule R1016:
" or cH rep-char [rep-char] ..."

Add the following new rule with constraints, which logically follows rule
R1016:

" c is int-literal-constant

Constraint: c must be positive.
Constraint: c must not have a kind parameter specified for it.
Constraint: The rep-char in the cH form must be of default character
type."

In the H edit descriptor, c specifies the number of characters following
the H.

If a processor is capable of representing letters in both upper and lower
case, the edit descriptors are without regard to case except for the
characters following the H in the H edit descriptor and the characters in
the character constants.

Delete all of section B2, with subsections, [262:7-263:32] and replace by
the following:

B.2 Obsolescent features
The obsolescent features are those features of Fortran 90 that are
redundant and for which better methods are available in Fortran 90.
Section 1.6.2 describes the nature of the obsolescent features. The
obsolescent features in this International Standard are:

(1) Computed GO TO statement - see B.2.1
(2) Statement functions - see B.2.2
(3) DATA statements amongst executable statements - see B.2.3
(4) Assumed length character functions - see B.2.4
(5) Fixed form source - see B.2.5
(6) Assumed size arrays - see B.2.6
(7) CHARACTER* form of CHARACTER declaration - see B.2.7

B.2.1 Computed GO TO statement
The computed GO TO has been superseded by the CASE construct, which is a
generalized, easier to use and more efficient means of expressing the same
computation.

B.2.2 Statement functions
Statement functions are subject to a number of non-intuitive restrictions
and are a potential source of error since their syntax is easily confused
with that of an assignment statement.

The internal function is a more generalized form of the statement function
and completely supersedes it.

B.2.3 DATA statements amongst executables
The statement ordering rules of FORTRAN 66, and hence of FORTRAN 77 and
Fortran 90 for compatibility, allowed DATA statements to appear anywhere
in a program unit after the specification statements. The ability to
position DATA statements amongst executable statements is very rarely
used, is unnecessary and is a potential source of error.

B.2.4 Assumed character length functions
Assumed character length for functions is an irregularity in the language
since elsewhere in Fortran the philosophy is that the attributes of a
function result depend only on the actual arguments of the invocation and
on any data accessible by the function through host or use association.

This facility may be replaced by the use of a subroutine whose arguments
correspond to the function result and the function arguments.

B.2.5 Fixed form source
Fixed form source was designed when the principal machine-readable input
medium for new programs was punched cards. Now that new and amended
programs are generally entered via keyboards with screen displays, it is
an unnecessary overhead, and is potentially error-prone, to have to locate
positions 6, 7 or 72 on a line. Free form source was designed expressly for
this more modern technology.

It is a simple matter for a software tool to convert from fixed to free
form source.

B.2.6 Assumed-size arrays
Assumed-size arrays have been used for a wide variety of purposes in
Fortran. The introduction of automatic arrays, assumed-shape arrays and
deferred-shape arrays has given significantly increased functionality and
allows the programmer to specify these requirements more directly and more
securely.

B.2.7 CHARACTER* form of CHARACTER declaration
Fortran 90 had two different forms of specifying the length selector in
CHARACTER declarations. The older form (CHARACTER*char-length) was an
unnecessary redundancy.

--
Number: 008
Title: B9/B2 Conflicts with IEEE 754/854
Status: Incorporated in 94-007r3
Target date: 95
Last revision: May 94
X3J4 reference: 94-189r2

To: X3J3 94-189r2 page 1 of 2
From: Stan Whitlock
Subj: B9/B2 Conflicts with IEEE 754/854
Date: 13-May-1994

Rationale

 These edits remove perceived conflicts in F90 with the IEC 559
 (IEEE 754/854) standard.

Technical Description
--------- -----------

 If a processor supports IEC 559, -0. is distinct from +0. and certain
 computations like 0./0. or 0.**0. produce results, not errors. The
 edits below allow the SIGN intrinsic function to distinguish between
 -0. and +0., allow a -0 in formatted output, and do not disallow 0./0.
 or 0.**0..

Edits to the Standard
----- -- --- --------

 27:1-3 Delete this text.

 27:11+ Add the text:

 The integer type includes a zero value, which is
 considered neither negative nor positive. The value
 of a signed integer zero is the same as the value of
 an unsigned integer zero.

 28:29+ Add the text:

 The real type includes a zero value, which is generally
 considered neither negative nor positive. The value
 of a signed real zero is the same as the value of an
 unsigned real zero except, possibly, when used as the
 second argument to the SIGN intrinsic function.

 80:1-3 Replace the first two sentences with:

 The execution of any numeric operation whose result is
 not defined by the arithmetic used by the processor is
 prohibited.

 80:1-3 Delete the word "also" from the third sentence.

 139:23-24 Delete the sentence:

 However, the processor must not produce a negative
 signed zero in a formatted output record.

 233:5 Replace the line with

 Result value.
 Case (i): If B > 0, the value of the result is |A|.
 Case (ii): If B < 0, the value of the result is -|A|.
 Case (iii): If B is of type integer and B=0, the value
 of the result is |A|.
 Case (iv): If the processor can distinguish between
 positive and negative real zero,

 If B is positive real zero, the value
 of the result is |A|.
 If B is negative real zero, the value
 of the result is -|A|.

 Otherwise, B is of type real, B=0, and the
 value of the result is |A|.

 [Notes to Editor:

 - "Result value." above is bold.
 - "Case (i)", "Case (ii)", "Case (iii)", and "Case (iv)"
 above are italic.
]

 3:3+ in the new section 1.4.1 (see 94-009 item #1), add a new item:

 (2) If the processor can distinguish between positive and
 negative real zero, the behavior of the SIGN
 intrinsic function when the second argument is
 negative real zero has been changed by this standard.

[End of proposal]

--
Number: 009
Title: CPU time
Status: Incorporated in 94-007r3
Target date: 95
Last revision: May 94
X3J3 reference: 94-170r5

To: X3J3 94/170r5
From: John Reid
Subject: B9/C1 - CPU time
Date: 19 May 1994

Rationale
This feature is provided to allow the assessment of what processor
resources a piece of code consumed during execution.

Technical description
This feature is provided as an intrinsic subroutine that has a single
argument in which the time in seconds is returned. A subroutine is
chosen for consistency with DATE_AND_TIME and because all the intrinsic
functions of Fortran 90 have a result that is uniquely determined by
the values of the arguments.

Edits to the standard
188/4. Add: 'The subroutine CPU_TIME returns the processor time
consumed during execution.'

192/16+ Add:
 CPU_TIME (TIME) Processor time.

203/0+ Add:
13.13.24a CPU_TIME (TIME)

Description. Returns the processor time.

Class. Subroutine.

Argument. TIME must be scalar and of type real. It is an INTENT(OUT)
argument that is set to a processor-dependent approximation to the
processor time in seconds. If the processor cannot return a meaningful
time, the value is set to zero.

Example.
 REAL T1,T2
 :
 CALL CPU_TIME(T1)
 : ! Code to be timed.
 CALL CPU_TIME(T2)
 WRITE(*,*) 'Time taken by code was ',T2-T1,' seconds'
writes the processor time taken by a piece of code.

[Footnote: A processor for which a single result is inadequate (for
example, a parallel processor) might choose to provide an additional

version for which TIME is an array.

The exact definition of the time is left imprecise because of the
variability in what different processors are able to provide. The
primary purpose is to compare different algorithms on the same computer
or discover which parts of a calculation on a computer are the
most expensive.

The start time is left imprecise because the purpose is to time
sections of code, as in the example.

Most computer systems have multiple concepts of time. One common
concept is that of time expended by the processor for a given program.
this may or may not include system overhead, and has no obvious
connection to elapsed "wall clock" time.

End footnote]

--
Number: 010
Title: Nested WHERE
Status: Incorporated in 94-007r3
Target date: 95
Last revision: May 94
X3J3 reference: 94-154r2

To: X3J3
From: /parallel
Subject: A Second Proposal for Nested WHEREs.

1. Introduction.

 The WHERE construct may contain only assignment-stmts in both both F90 and F95. It is the only F90 construct
which cannot be named, (R215) and the only construct which cannot contain blocks.

F95 adds the FORALL construct in a similar category - it can be named, but it can't contain blocks. It can contain
WHERE constructs and other FORALL constructs. This proposal allows WHERE constructs to be named and to con-
tain FORALLs and other WHEREs.

The result is that the language is more regular, and that some nested IF constructs can be translated to array notation
without forming complicated mask expressions..

2. Details.

2.1 Nested WHEREs

The proposal is to remove a restriction of Rule 739 that a where-construct-stmt may not contain a where-construct-
stmt. That is a construct of the form

WHERE (mask1)
 vvv......
 WHERE (mask2)
 www....
 ELSEWHERE (mask3)
 xxx....
 ENDWHERE
 ELSEWHERE
 zzz....
 ENDWHERE

should be allowed. Thus, not only can WHERE constructs be nested but an ELSE WHERE, syntactically and seman-
tically analogous to ELSE, has been introduced. The meaning may be understood by rewrite rules.

First rewrite every WHERE statement into a WHERE construct:

WHERE(m)
WHERE (m) sss becomes sss

END WHERE

Next eliminate all occurrences of ELSE WHERE(..)

WHERE (m1) WHERE (m1)
 xxx xxx
ELSE WHERE (m2) becomes ELSE
 yyy WHERE (m2)
END WHERE yyy

 END WHERE
END WHERE

note that xxx & yyy represent any sequences of statements, so long as the
original WHERE , ELSEWHERE, and END WHERE match, and the ELSE WHERE
is the first ELSE WHERE of the construct (that is yyy may contain additional ELSE WHERE(..)
 (or ELSEWHERE) statements of the construct.). Next, eliminate ELSEWHERE:

WHERE(m) temp = m
 xxx WHERE (temp)
ELSE becomes xxx
 yyy END WHERE
END WHERE WHERE (.NOT. temp)

 yyy
END WHERE

Finally, eliminate nested WHERE constructs and statements:

WHERE (m1) temp = m1
 xxx WHERE (temp)
 WHERE (m2) xxx
 yyy becomes END WHERE
 END WHERE WHERE (temp .AND. (m2))
 zzz yyy
END WHERE END WHERE

WHERE (temp)
 zzz
END WHERE

2.2 WHEREs with nested FORALLs

A FORALL within a WHERE may be understood as a shorthand for an omitted enclosing FORALL which describes
a mask to be applied to the inner FORALL. Thus, an example,

REAL A(100,100), B(100,100),c(100)

WHERE (C .NE.0.0)
 C = 1.0/C
 FORALL (J=1:99) a(:,J) = (B(:,J) + B(J+1,:)) * C
END WHERE

is similar to

FORALL (J=1:100, C(I) .NE.0.0)
 C(I) = 1.0/C(I)
 FORALL (J=1:99) a(I,J) = (B(I,J) + B(J+1,I) * C(I)
END FORALL

The effect is to constrain all the assignment-stmts in the FORALL to be the same shape as the WHERE mask, just as
usual. The arrays on the LHS of the FORALL will be of higher rank than the WHERE mask.

2.3 Edits to the Standard.

Page 93. Rules R739 through R743 are replaced by

R739a where-construct is where-construct-stmt
 [where-body-construct]...
[masked-elsewhere-stmt
 [where-body-construct]...]...
[elsewhere-stmt]
 [where-body-construct]...]...
end-where-stmt

R740 where-construct-stmt is [where-construct-name:] WHERE (mask-expr)

R740a where-body-construct is where-assignment-stmt
or where-stmt
or where-construct

R740b where-assignment-stmt is assignment-stmt
or forall-construct

R741 mask-expr is logical-expr

R742a masked-elsewhere-stmt is ELSEWHERE (mask-expr)

R742b elsewhere-stmt is ELSEWHERE

R743 end-where-stmt is END WHERE [where-construct-name]

a rule number with the suffix 'a' or 'b' indicates a new or revised rule.

Page 93. 7.5.3.1, Add a new constraint

' If the where-construct-stmt is identified by a where-construct-name, the corresponding end-where-
stmt must specify the same where-construct-name. If the where-construct-stmt is not identified by
a where-construct-name, the corresponding end-where-stmt must not specify a where-construct-
name.'

Page 93. 7.5.3.2, 1st paragraph, (pink interpretation page) [93:21] add after '... arrays of the same shape.'

' If a where-construct contains a where-stmt, a masked-elsewhere-stmt or another where-construct
then each mask-expr within the where-construct must be the same shape.'

Page 93. 7.5.3.2, 2nd paragraph [93:25] Replace the last sentence 'Each assignment-stmt...'with

' Each where-construct-stmt acts as if it has a controlling mask. Each statement within a
where-construct is evaluated, in sequence, as if it were controlled by WHERE (control mask).
The control mask for an outermost WHERE is the mask-expr.. The control mask of an inner
WHERE is the conjunction of the mask-expr with the control mask of the enclosing where-
construct, masked-elsewhere-stmt, or elsewhere-stmt . Within a where-construct if an
ELSEWHERE is encountered the control mask becomes (.NOT. control mask) .AND.
mask-expr, if any.'

page 93. 7.5.3.2, 5th paragraph. 1st sentence. Replace

'only a WHERE statement or a WHERE construct'
with

' only a WHERE statement or an outermost WHERE construct'

Page 93, 7.5.3.1 Throughout, replace

'assignment-stmt'
with

'where-assignment-stmt'

Page 93, 7.5.3.2 Throughout, replace

'assignment-stmt'
with

'where-assignment-stmt'

Add a footnote

' As the expressions within a forall-construct must conform with the mask-expr the array which
receives the result of the forall will be of higher rank than the mask-expr.'

Number: 011
Title: Specification Functions
Status: Incorporated in 94-007r3
Target date: 95
Last revision: May 94
X3J3 reference: 94-173r2

94-173r2
To: X3J3
From: Len Moss
Subject: B9/C3 - Specification Functions

Note: This proposal makes use of the term "nonconstant specifica-
tion expression" in the same way it is currently used in the stan-
dard (e.g., to distinguish automatic and nonautomatic data
objects). However, this term is not explicitly defined in the
standard and the /JOR subgroup believes that the implied defini-
tion, namely, a specification expression that is not also a con-
stant expression, is incorrect in a number of contexts. As pointed
out in 94-127, the formal definition of the term "constant expres-
sion" does not appear to serve any useful purpose: the critical
definition is that for "initialization expression". As actually
used in the document, the phrase "nonconstant specification expres-
sion" could better be defined as "a specification expression that
is not also an initialization expression". The /JOR subgroup there-
fore recommends that one of the following changes be made: 1) pro-
vide somewhere (probably in 7.1.6.2) a formal definition of
"nonconstant specification expression" in terms of initialization
expressions; 2) change the term to something ("noninitialization
specification expression"?) that better suggests the correct def-
inition; or, 3) fix the concepts of constant and initialization ex-
pressions along the lines proposed in 94-127.

Proposal

Rationale:

A significant number of useful applications will be facilitated by
the ability to perform more complicated calculations when specify-
ing data objects than are permitted with Fortran 90. This will be
very substantially achieved by allowing a restricted class of non-
intrinsic functions in certain specification expressions.

Technical Description:

This feature permits a restricted class of user-defined functions,
called "specification functions", to be referenced in nonconstant
specification expressions. The restrictions are:

• the functions must be pure;
• the functions must not be internal;
• the functions must not be recursive;
• the arguments of such functions when used in specification ex-

pressions must be restricted expressions;
• the functions must not appear in any context which requires a

constant specification expression, e.g., any specification
not in a subprogram or an interface body, in a common or equiv-
alence specification, or a component specification; and,

• any object whose specification depends on such a function is
an automatic object and hence cannot be saved or initialized.

Edits:

5.1 [40/41]

Before "If" add the sentence,

A specification expression is considered to be noncon-
stant if it involves a reference to a specification
function.

7.1.6.2 [78/37+]

At the beginning of this section, add a new paragraph followed
by a footnote:

A function is a specification function if it is a pure
function, is not an internal function and is not de-
fined with the RECURSIVE keyword.

{Note: Specification functions are nonintrinsic functions
that can be used in specification expressions (7.1.6.2) to de-
termine the attributes of data objects. The requirement that
they be pure ensures that they cannot have side effects that
could affect other objects being declared in the same speci-
fication-part. The requirement that they not be internal en-
sures that they cannot inquire, via host association, about
other objects being declared in the same specification part.
Some requirement against direct recursion is necessary: since
specification expressions must be evaluated before the first
executable statement, there would be no way to break such a
recursion. Indirect recursion in specification functions ap-
pears to be possible but difficult to implement, and of little
value to the user, and so there is a general prohibition
against recursive specification functions.}

7.1.6.2 [79/16]

Insert before the last item in the numbered list (and renumber
the last item) the following new item:

(10) A reference to a specification function where
each argument is a restricted expression.

End Proposal

--
Number: 012
Title: Enable
Status: Incorporated in 94-007r2 but not approved
Target date: unspecified
Last revision: Aug 94
X3J3 reference: 94-258r4

To: X3J3 X3J3/94-258r4
From: John Reid
Subject: Enable proposal
Date: 19 August 1994

1. RATIONALE

If an operator invokes a process (for example, in hardware or in a procedure
for a defined operator) and hits a problem with which it cannot deal, such as
overflow, it needs to quit and ask the caller to do something else. A simple
example of this proposal is

 ENABLE (OVERFLOW)
 :
 ... = X*Y ...
 HANDLE
 :
 END ENABLE

If the multiply is intrinsic and an overflow occurs, a transfer of control is
made to the block of code following the HANDLE statement. Similarly, if the
multiply is a defined operator, it can be arranged that the OVERFLOW signals
in comparable circumstances. The handle block may contain very carefully
written code that is slow to execute but circumvents the problem, or may
arrange for a graceful termination.

2. TECHNICAL SPECIFICATION

For dealing with exceptional events, this proposal involves the addition of
integer-valued intrinsic conditions, a new construct, and some new statements.
The intrinsic values are all positive, but negative values may be set by
execution of a SIGNAL statement. For the definition of the conditions, see
the proposed new section 15 at the end of this paper. Also, there are more
examples in the proposed new sub-section 8.1.5.5.

The enable construct has the general form
 enable statement
 [enable block]
 [handle statement
 handle block]
 end enable statement
Nesting of enable constructs is permitted. An enable or handle block may
itself contain an enable-construct. Also, nesting with other constructs is
permitted, subject to the usual rules for proper nesting of constructs.

The enable statement lists the names of the conditions to be signaled. If any
of these conditions signals during the execution of the enable block, control
is transferred to the handle block. A simple example is the following:
 ! Example A
 ENABLE (OVERFLOW)
 ! First try a fast algorithm for inverting a matrix.
 :
 HANDLE
 ! Fast algorithm failed; use slow one.

 :
 END ENABLE
Here, the code in the enable block takes no precautions against overflow and
will usually execute correctly. Should it fail with overflow, the alternative
algorithm is used instead.

The transfer to the handle block is imprecise in order to allow for
optimizations such as vectorization. Any variable that is defined or
redefined in a statement of the enable block becomes undefined. In Example A,
a copy of the matrix itself would need to be available for the slow algorithm.

The transfer may be made more precise by adding within the enable block a
nested enable construct without a handler. If any of the conditions is
signaling when the inner enable statement is executed, control is transferred
to the handle block. This reduces the imprecision to either the statements
within the inner construct or those outside the inner construct. Adding such
a construct to the code of Example A gives:

 ! Example B
 ENABLE (OVERFLOW)
 ! First try a fast algorithm for inverting a matrix.
 : ! Code that cannot signal overflow
 DO K = 1, N
 ENABLE
 :
 END ENABLE
 END DO
 ENABLE
 :
 END ENABLE
 HANDLE
 ! Alternative code which knows that K-1 steps have executed normally.
 :
 END ENABLE
Note that the enable, handle, and end-enable statements provide effective
barriers to code migration by an optimizing compiler.

If there is no handler for a signaling condition (for example, if a condition
signals outside any enable construct for the condition), a transfer of control
as for a return statement takes place in a procedure or as for a stop
statement takes place in a main program. The condition continues to signal.

When an enable statement is encountered, if any conditions that are enabled or
are about to be enabled are signaling, a transfer of control to the next outer
handler for a signaling condition (or a return or stop) takes place. This
ensures that all enabled conditions are quiet on entering the enable block.
Upon normal completion of the handle block, any of the handled conditions that
is signaling is reset to quiet.

There is an option on the enable statement to specify that some of the
conditions enabled are 'immediate'. Any <executable-construct> of the enable
block that might signal one of the immediate conditions is treated as if it
were followed by an enable construct with an empty body and no handler. An
example of such an enable statement is
 ENABLE, IMMEDIATE (OVERFLOW)

For some conditions (mainly those that may require additional object code, for
example, BOUND_ERROR), the processor is required to signal the condition only
within the statements of the enable block. Whether such a condition signals
outside any enable block for the condition is processor dependent. There is
no requirement to signal such a condition in a procedure that is called from
within an enable block.

There is an option on the handle statement to specify the handling of further

conditions. For example,
 HANDLE (ALL_CONDITIONS)
specifies that any condition that signals during the execution of the enable
block be handled, including those that the processor handles outside enable
blocks. These conditions, as well as those enabled, cause a transfer of
control to an outer handler if they are signaling when an enable statement is
encountered.

There is a facility for making a specified condition signal with a specified
value. This is done with the SIGNAL statement. An example is
 SIGNAL(OVERFLOW, -3)
 ! Negative values of intrinsic conditions can be set this way.
It causes a transfer to the handler if in an enable block that has a handler
for the condition; otherwise, it causes a return in a subprogram or a stop in
a main program. This may also be used to set conditions quiet. For example,
 SIGNAL(ALL_CONDITIONS, 0)
sets all conditions quiet. In this case, there is no transfer of control.

In a handler, if it is desired to resignal the signaling conditions, this can
be achieved with the pair of statements
 ENABLE
 END ENABLE
A transfer of control to the next outer handler for a signaling condition (or
a return or stop) occurs without the values of the conditions changing.

There is a facility for finding the value of a condition. This is done with
the CONDITION_INQUIRE statement. An example is
 CONDITION_INQUIRE(OVERFLOW, I)
which stores the value of the overflow condition in the variable I. Another
form of the statement:
 CONDITION_INQUIRE(CHAR_ARRAY)
returns the names of the conditions that are signaling in the character array
variable CHAR_ARRAY.

Each condition has a default integer value. The scoping rules for intrinsic
conditions are as for intrinsic procedures. A future enhancement might allow
the declaration of user conditions with scoping rules similar to those for
variables.

If a condition is still signaling when the program stops, the processor must
issue a warning on the default output unit.

Neither a handle statement nor an end-enable statement is permitted to be a
branch target. A handle-block is intended for execution only following the
signaling of a condition that it handles, and an end-enable statement is not a
sensible target because it would permit skipping the handling of a condition.

Branching out of an enable construct is not permitted. This limits the extent
of uncertainty over which statements have been executed when a handler is
entered.

3. EDITS TO THE STANDARD

6/18+. Add
 IEC 559:1989, <Binary floating-point arithmetic for microprocessor
 systems>
 (also ANSI/IEEE 754-1985, IEEE standard for binary floating-point
 arithmetic).
...

8/45+. Add
 <<or>> <enable-construct>
...

9/4-24. Add to R216 (in alphabetic positions) the lines
 <<or>> <condition-inquire-stmt>
 <<or>> <signal-stmt>
...

12/50. After 'CASE constructs,', add 'ENABLE constructs,'.
...

12/53+. Add:
 (4) Execution of a signal statement (8.1.5.4) may change the execution
 sequence.
 (5) Execution of an enable statement (8.1.5.1) may change the execution
 sequence.
...

15/33+ Add

<<2.4.8 Condition>>

A <<condition>> is a default integer flag associated with the occurrence of an
exceptional event. The value 0 corresponds to the quiet state and this is its
initial value. Processor dependent nonzero values correspond to signaling
states. Negative values can occur only through execution of the SIGNAL
statement. The value may be found by execution of a CONDITION_INQUIRE
statement.

[Footnote: The reason for specifying that conditions have integer values is
that this leaves open the possibility of providing detailed information about
the condition. This will be useful when a procedure (for example, in a
library) signals a condition so that it can indicate the cause of the problem.
The intrinsic values are forced to be positive so that a negative value can be
seen to be created by source code and not by the system.]

[Footnote: Although multitasking is not part of Fortran 90, the interaction of
this proposal with multitasking extensions has been considered. A model is
that each virtual processor has a flag for each condition. For example,
condition handling is permissible within a pure procedure. Enable, handle,
and end-enable statements act as barriers at which the condition values are
merged.]
...

22/23+ Add to the Blanks Optional column:
 END ENABLE
...

67/39. After 'terminated', add 'unless the ALLOCATION_ERROR condition is
 enabled'.
...

68/40. After 'terminated', add 'unless the DEALLOCATION_ERROR condition is
 enabled'.
...

80/2. After 'program', add ', except in an enable block for a suitable
 condition'.
...

95/10+ Add

 (4) ENABLE construct
...

95/19. Delete 'three'.

..

107/0+. Add

<<8.1.5 Condition handling>>

A condition has a name with the same scoping rules as for intrinsic procedures
and a value of type default integer. The value zero corresponds to the normal
or 'quiet' state and nonzero values correspond to exceptional circumstances.
All conditions have initial value zero. The processor is required to signal a
condition if the associated circumstance occurs during execution of an
intrinsic operation or an intrinsic procedure call specified in the scope of
an enable block for the condition. Some conditions are also required to
signal when the circumstance occurs outside an enable block, but whether other
conditions signal outside an enable block is processor dependent. For the
detailed specification, see Section 15. When the processor signals a
condition, it has a positive value. The SIGNAL statement (8.1.5.4) may be
used to give it a negative value.

[Footnote: For a condition whose signaling outside enable blocks is processor
dependent, the control of whether the condition so signals is also processor
dependent. There might be an option on the command line or there might be an
intrinsic procedure that provides dynamic control. It is expected that by
default the conditions UNDERFLOW and INEXACT will not signal except inside
enable blocks.]

[Footnote: The proposal allows the in-lining of procedures with no change to
the enable constructs. On some processors, this may cause a condition that
does not signal outside enable blocks to signal.]

[Footnote: On many processors, it is expected that some conditions will cause
no alteration to the flow of control when they signal and that they will be
tested only when the enable block completes or another enable statement is
encountered. Thus the overheads of testing the condition are confined
precisely to the places where the programmer has requested a test. On other
processors, this may be very expensive. They may instead cause a transfer of
control to the handler (or a return or stop) as soon as the condition signals
or soon thereafter.]

[Footnote: If additional code is needed (for example, to diagnose integer
overflow), this is required only within the scope of the enable block.]

In a sequence of statements that contains no condition handling statements, if
the execution of a process would cause a condition to signal but after
execution of the sequence no value of a variable depends on the process,
whether the condition signals is processor dependent. For example, when Y has
the value zero, whether the code
 X = 1.0/Y
 X = 3.0
signals DIVIDE_BY_ZERO is processor dependent.

A condition must not signal if the signal could arise only during execution of
a process not required by the standard. For example, the intrinsic LOG in the
statement
 IF (F(X)>0.) Y = LOG(Z)
must not signal a condition when both F(X) and Z are negative and for the
statement
 WHERE(A>0.) A = LOG (A)
negative elements of A must not cause signaling.

[Footnote: In general, it is intended that implementations be free within
enable constructs to use the code motion techniques that they use outside
enable constructs.]

<<8.1.5.1. The enable construct>>

The ENABLE construct specifies a (possibly empty) set of conditions, an enable
block, and (optionally) a handle block with (optionally) a further set of
conditions. The handle block is executed only if execution of the enable
block leads to the signaling of one or more of the conditions.

R835a <enable-construct> <<is>> <enable-stmt>
 [<enable-block>]
 [<handle-stmt>
 <handle-block>]
 <end-enable-stmt>

R835b <enable-stmt> <<is>> [<enable-construct-name>:] #
 # ENABLE [(<condition-name-list>)] #
 # [,IMMEDIATE (<condition-name-list>)]

R835c <enable-block> <<is>> <block>

R835d <handle-stmt> <<is>> HANDLE [(<condition-name-list>)] #
 # [<enable-construct-name>]

R835e <handle-block> <<is>> <block>

R835f <end-enable-stmt> <<is>> END ENABLE [<enable-construct-name>]

Constraint: If the <enable-stmt> of an <enable-construct> is identified
 by an <enable-construct-name>, the corresponding
 <end-enable-stmt> must specify the same
 <enable-construct-name>. If the <enable-stmt> of an
 <enable-construct> is not identified by an
 <enable-construct-name>, the corresponding
 <end-enable-stmt> must not specify an
 <enable-construct-name>. If the <handle-stmt> is identified
 by an <enable-construct-name>, the corresponding
 <enable-stmt> must specify the same <enable-construct-name>.

Constraint: A condition name must not appear more than once in an
 <enable-stmt>.

Constraint: A condition name must not appear more than once in a
 <handle-stmt>.

The conditions named on the enable statement are enabled during execution of
the enable block. The set of conditions handled by the handle block consists
of all those named on the enable statement or on the handle statement. If the
enable construct is nested within an enable block, the conditions enabled for
the outer block are also enabled for the inner block.

An <enable-stmt> may be a branch target statement (8.2).

[Footnote: Neither a handle statement nor an end-enable statement is permitted
to be a branch target. A handle-block is intended for execution only
following the signaling of a condition that it handles, and an end-enable
statement is not a sensible target because it would permit skipping the
handling of a condition.]

[Footnote: Nesting of enable constructs is permitted. An enable or handle
block may itself contain an enable-construct. Also, nesting with other
constructs is permitted, subject to the usual rules for proper nesting of
constructs.]

Execution of an enable statement causes a transfer of control if a signaling
condition is handled by the enable construct or any enable construct within

which it is nested. If the enable statement is nested in an enable block that
has a handler for a signaling condition, the transfer is to the handler of the
innermost such enable block. Otherwise, it is as for a return if in a
subprogram, or a stop if in a main program. The values of the conditions are
not altered.

[Footnote: In an enable block, the pair of statements
 ENABLE
 END ENABLE
has a checking effect. If any handled condition is signaling, there will be a
transfer of control to an outer handler (or a stop or return).The values of
the conditions are not altered.]

[Footnote: Note that in a function subprogram it is very desirable to ensure
that the function value is defined even if an error condition has been
diagnosed and is expected to be handled in the calling subprogram. If the
function value is not defined, further conditions will probably be signaled
during the evaluation of the expression that gave rise to the function call,
which may mask the condition that was the root cause.]

[Footnote: If a condition handled by a handler signals again during execution
of the handler, this second signal will be indistinguishable from the first.
If it is desired to handle it separately, it must be set to the quiet value
and a nested enable must be provided.]

The value of each condition handled by the enable construct is set to the
quiet value upon completion of execution of the <handle-block>.

<<8.1.5.2 Execution of an enable construct>>

Execution of an <enable-construct> begins with the first executable construct
of the <enable- block>, and continues to the end of the block unless a handled
condition is signaled. If a condition handled by the <enable-construct>
signals outside any enable construct that handles the condition and is nested
within the enable block, control is transferred to the <handle-block>.
Transfer of control to the <handle-block> may take place on completion of
execution of the enable-block or may take place sooner after the signaling of
the condition. Any variable that might be defined or redefined by execution
of a statement of the enable block outside any enable construct that handles
the condition and is nested within the enable block is undefined, any pointer
whose pointer association might be altered has undefined pointer association
status, any allocatable array that might be allocated or deallocated may have
been allocated or become unallocated, and the file position of any file
specified in an input/output statement that might be executed is processor
dependent.

[Footnote: The transfer to the handle block is imprecise in order to allow for
optimizations such as vectorization. As a consequence, some variables become
undefined. In Example 3 of 8.1.5.6, a copy of the matrix itself would need to
be available for the slow algorithm.]

Branching out of an enable construct is not permitted. A CYCLE or EXIT
statement is not permitted in an enable construct unless the do construct to
which it belongs is nested within the enable construct. An alternate return
specifier in an enable construct must not specify the label of a statement
outside the construct. An ERR=, END=, or EOR= specifier in a statement in an
enable construct must not be the label of a statement outside the construct.
A RETURN or STOP statement is permitted in an enable construct. Conditions
retain their values on execution of a RETURN or STOP statement.

[Footnote: The ban on branching out of an enable construct limits the extent
of uncertainty over which statements have been executed when a handler is
entered.]

Any <executable-construct> of the enable block that might signal one or more
of the conditions in the immediate list on the enable statement is treated as
if it were followed by an <enable-construct> with an empty enable block and no
handler.

Execution of the <handle-block> completes the execution of the
<enable-construct>.

If no condition handled by the enable construct is signaling on completion of
execution of the <enable-block>, the execution of the entire construct is
complete.

[Footnote: Nested enable constructs without handlers can be employed to reduce
the imprecision of an interrupt. Note that enable, handle, and end-enable
statements provide effective barriers to code migration by an optimizing
compiler.]

<<8.1.5.3 Signaling conditions that are not enabled>>

A processor may signal a condition while executing a statement that is not in
an enable block for the condition. If in a subprogram, a return is executed
without alteration of the values of the conditions. If in a main program, a
stop is executed and the processor must issue a warning on the default output
unit.

[Footnote: On return to the caller, the condition will be signaling. If the
invocation is within an enable block that has a handler for the condition,
there will be a transfer to the handler (or a return or stop), but not
necessarily until the execution of the block is complete. If the invocation
is not within an enable block that has a handler for the condition, there may
be a return (or stop) at once, or the processor may continue executing.]

<<8.1.5.4 Signal statement>>

R835g <signal-stmt> <<is>> SIGNAL (<condition-name>,<scalar-int-expr>)

Constraint: The <scalar-int-expr> must be of type default integer.

Constraint: If the condition name is that of a combination condition (15.7),
the <scalar-int- expr> must be the literal constant 0.

The SIGNAL statement changes the value of the condition it names to that of
the expression it contains. If the value is nonzero, it causes a transfer of
control. If the statement is in an enable block of an enable construct that
has a handler for the condition, the transfer is to the handler of the
innermost such enable construct. Otherwise, it is as for a return if in a
subprogram, or a stop if in a main program.

[Footnote: In a handler, the pair of statements
 ENABLE
 END ENABLE
has a resignaling effect. If any handled condition is signaling, there will
be a transfer of control to an outer handler (or a stop or return).The values
of the conditions are not altered.]

<<8.1.5.5 Examples of ENABLE constructs>>

Example 1:

 MODULE MATRIX
! Module for matrix multiplication of real arrays of rank 2.
 INTERFACE OPERATOR(.mul.)

 MODULE PROCEDURE MULT
 END INTERFACE
 CONTAINS
 FUNCTION MULT(A,B)
 REAL, INTENT(IN) :: A(:,:),B(:,:)
 REAL MULT(SIZE(A,1),SIZE(B,2)
 ENABLE (INTRINSIC, OVERFLOW)
 MULT = MATMUL(A, B)
 HANDLE
 SIGNAL(INEXACT, -1)
 END ENABLE
 END FUNCTION MULT
 END MODULE MATRIX

This module provides matrix multiplication for real arrays of rank 2. Since
the condition INSUFFICIENT_STORAGE signals outside enable blocks (see Section
15.1), if there is insufficient storage for the necessary temporary array, the
module will signal the condition INSUFFICIENT_STORAGE. If an INTRINSIC or
OVERFLOW condition occurs, the module will signal the condition INEXACT with
value -1.

Example 2:

IO_CHECK: ENABLE (IO_ERROR, END_OF_FILE)
 :
 READ (*, '(I5)') I
 READ (*, '(I5)', END = 90) J
 :
 90 J = 0
 HANDLE
 CONDITION_INQUIRE(END_OF_FILE,K)
 IF (K/=0) THEN
 WRITE (*, *) 'Unexpected END-OF-FILE when reading ', &
 'the real data for a finite element'
 ELSE
 CONDITION_INQUIRE(IO_ERROR,K)
 IF (K /= 0) WRITE (*, *) 'I/O error when reading ', &
 'the real data for a finite element'
 END IF
 STOP
 END ENABLE IO_CHECK

In this example, if an input/output error occurs in either of the READ
statements or if an end- of-file is encountered in the first READ statement,
the appropriate condition will be signaled and the handler will receive
control, print a message, and terminate the program. However, if an
end-of-file is encountered in the second READ statement, no condition will be
signaled and control will be transferred to the statement indicated in the
END= specifier.

Example 3:

 ENABLE (USUAL)
 ! First try the "fast" algorithm for inverting a matrix:
 MATRIX1 = FAST_INV (MATRIX)
 ! MATRIX is not altered during execution of FAST_INV.
 HANDLE
 ! "Fast" algorithm failed; try "slow" one:
 SIGNAL (USUAL, 0)
 ENABLE (USUAL)
 MATRIX1 = SLOW_INV (MATRIX)
 HANDLE

 WRITE (*, *) 'Cannot invert matrix'
 STOP
 END ENABLE
 END ENABLE

In this example, the function FAST_INV may cause a condition to signal. If it
does, another try is made with SLOW_INV. If this still fails, a message is
printed and the program stops. Note the use of nested enable constructs.
Note, also, that it is important to set the signals to 'quiet' before the
inner enable. If this is not done, a condition will still be signaling when
the inner ENABLE is encountered, which will cause an immediate transfer to an
outer handler (or a stop or return).

Example 4:

 ENABLE (OVERFLOW)
 ! First try a fast algorithm for inverting a matrix.
 : ! Code that cannot signal overflow
 DO K = 1, N
 ENABLE
 :
 END ENABLE
 END DO
 ENABLE
 :
 END ENABLE
 HANDLE
 ! Alternative code which knows that K-1 steps have executed normally.
 :
 END ENABLE

Here the code for matrix inversion is in line and the transfer is made more
precise by adding to the enable block two enable constructs without handlers.

Example 5:

The following subroutine finds a zero of <f(x)> on an interval [<a,b>]. It is
limited to take one second of real time as measured by the system clock. If
it fails to obtain the requested accuracy after this time, the condition
INEXACT signals with the value -1.

 SUBROUTINE ZERO_SOLVER (A, B, X, TOLERANCE, F)
 REAL A, B, X, TOLERANCE
 INTERFACE; REAL FUNCTION F(X); REAL X; END INTERFACE

 INTEGER COUNT, RATE, START ! Local variables
 CALL SYSTEM_CLOCK(START, RATE)
 :
 ! The following code is executed every iteration
 CALL SYSTEM_CLOCK(COUNT)
 ! If time has run out, return, signaling condition INEXACT.
 IF (COUNT > START+RATE) SIGNAL (INEXACT,-1)
 :
 END SUBROUTINE ZERO_SOLVER

The application code handles the exception in a way that only it knows. An
example is:

 :
 ENABLE

 CALL ZERO_SOLVER (A, B, X, TOLERANCE, F)
 HANDLE (INEXACT)

 ! Exceeded time limit. Fix up and go on.
 :
 END ENABLE
 :

Example 6:

 REAL FUNCTION CABS (Z)
 COMPLEX Z
! Calculate the complex absolute value, using a scaled algorithm
! if the straightforward calculation underflows or overflows. Set the
! overflow condition to the value -1 if the result is too large to
! be representable.

 REAL S, ZI, ZR
 INTRINSIC REAL, AIMAG, SQRT, ABS, MAX

 ZR = REAL(Z)
 ZI = AIMAG(Z)

quick: ENABLE(OVERFLOW, UNDERFLOW)

! This is the quick and usual calculation.
 CABS = SQRT(ZR**2 + ZI**2)

 HANDLE quick

! Will try again using a scaled equivalent method.
 S = MAX(ABS(ZR),ABS(ZI))
 SIGNAL (OVERFLOW,0) ; SIGNAL (UNDERFLOW,0)
 slow: ENABLE(OVERFLOW, UNDERFLOW)
 CABS = S*SQRT((ZR/S)**2 + (ZI/S)**2)
 HANDLE slow
 CONDITION_INQUIRE(OVERFLOW,K)
 IF (K/= 0) THEN
! The result is too large to be representable.
 SIGNAL(OVERFLOW, -1)
 ELSE
 CONDITION_INQUIRE(UNDERFLOW,K)
 IF (K/= 0) CABS = S
 END IF
 END ENABLE slow

 END ENABLE quick

 END FUNCTION CABS

This illustrates the setting of a special condition value when the problem
really has a result that overflows.

Example 7:

 MODULE LIBRARY
 ...
 CONTAINS
 SUBROUTINE B
 ...
 X = Y*Z(I) ! No condition enabled.

 IF(X>10.)SIGNAL(OVERFLOW, 1)
 ...
 END SUBROUTINE B
 END MODULE LIBRARY

 SUBROUTINE A
 USE LIBRARY
 ENABLE
 CALL B
 HANDLE (OVERFLOW)
 ...
 END ENABLE
 END SUBROUTINE A

This illustrates the use of a library module that may signal the condition
OVERFLOW. The signal statement causes a transfer to the handler in the
calling subroutine A.

This also illustrates the effect of an intrinsic condition that is not
enabled. An overflow in Y*Z(I) would cause OVERFLOW to signal and hence a
transfer to the handler in the calling subroutine A. An out-of-range
subscript value I might or might not signal BOUND_ERROR, but it would not be
handled by subroutine A.

Example 8:

 ENABLE, IMMEDIATE (OVERFLOW)
 A = B*C
 WHERE(RAINING)
 X(:) = X(:)*A
 ELSEWHERE
 Y(:) = Y(:)*A
 END WHERE
 HANDLE

 END ENABLE

This illustrates the use of IMMEDIATE. The enable construct is equivalent to

 ENABLE (OVERFLOW)
 A = B*C
 ENABLE
 END ENABLE
 WHERE(RAINING)
 X(:) = X(:)*A
 ELSEWHERE
 Y(:) = Y(:)*A
 END WHERE
 ENABLE
 END ENABLE
 HANDLE

 END ENABLE

Note that the statements of a WHERE construct are not tested separately.

Example 9:

 SUBROUTINE LONG
 REAL, ALLOCATABLE A(:), B(:,:)
 : ! Other specifications
 ENABLE
 :

 ! Lots of code, including many procedure calls
 :
 HANDLE (ALL_CONDITIONS)
 ! Fix-up, including deallocation of any allocated arrays
 IF(ALLOCATED(A)) DEALLOCATE (A)
 IF(ALLOCATED(B)) DEALLOCATE (B)
 :
 END ENABLE
 END SUBROUTINE LONG

This illustrates the use of a handle statement with additional conditions.
Here the enable block enables no conditions because fast execution is desired,
but if anything goes wrong (for example, in one of the procedure invoked),
fix-ups are performed, including deallocation of any local allocated arrays.

..

107/5. After '<end-do-stmt,>' add 'an <enable-stmt>,'.
...

122/17-18. Replace sentence by
 If an error condition (9.4.3) occurs during execution of an input/output
 statement that lies in an enable block for the IO_ERROR condition or
 contains an ERR= specifier:
...

122/25. After 'continues with' add 'the handle block or'
...

122/27-28. Replace sentence by
 If an end-of-file condition (9.4.3) occurs and no error condition (9.4.3)
 occurs during execution of an input/output statement that lies in an enable
 block for the END_OF_FILE condition or contains an END= specifier.
...

122/34. After 'continues with' add 'the handle block or'
...

122/37-38. Replace sentence by

If an end-of-record condition (9.4.3) occurs and no error condition (9.4.3)
occurs during condition of an input/output statement that lies in an enable
block for the END_OF_RECORD condition or contains an EOR= specifier:
 ..

123/6. After 'continues with' add 'the handle block or'
..

125/10. Before 'contains' add 'is not in a enable block for the IO_ERROR
 condition and '.
..

125/11. Before 'contains' add 'is not in a enable block for the END_OF_FILE
 condition and '.
..

125/13. Before 'contains' add 'is not in a enable block for the END_OF_RECORD
 condition and '.
..

241/25. After 'procedures,' add 'intrinsic conditions,'.
..

241/35. After 'procedure,' add 'or condition'.

..

<<15. CONDITIONS>>

In this section, the conditions supported by the standard and a statement for
obtaining the value of a condition are specified.

The CONDITION_INQUIRE statement returns the value of a condition.

R835i <condition-inquire-stmt> <<is>> CONDITION_INQUIRE (<condition-name>, #
 # [STAT=]<scalar-default-int-variable>)
 <<or>> CONDITION_INQUIRE (<conditions-array>)

835j <conditions-array> <<is>> <default-char-variable>

Constraint: The condition name must not be that of a combination condition
(Section 15.7).

Constraint: The <conditions-array> must be a rank-one array that is not of
assumed size.

The STAT= variable is defined with the value 0 if the condition named is quiet
and a nonzero value otherwise. Negative values can occur only following
execution of a SIGNAL statement.

The <conditions-array> is defined with the names of signaling conditions and
blanks according to the rules of default assignment. If there are <s>
conditions signaling, the first <s> elements are defined with the names of
these conditions and the remaining elements are given the value blank. If the
processor provides additional conditions, the names of the conditions defined
by the standard must precede the names of any such additional intrinsics. If
there are more signaling conditions than the size of the array, all elements
are defined with condition names and which are chosen is processor dependent.

[Footnote: An array size 20 will always be adequate to return the names of all
the conditions defined by the standard. If the final element of the character
array has the value blank, the names of all signaling conditions will have
been returned. If it is not blank, the user may set the conditions named
quiet with SIGNAL statements and call CONDITION_INQUIRE again.]

<<15.1 Storage and addressing conditions>>

ALLOCATION_ERROR
This occurs when the processor is unable to perform an allocation requested by
an ALLOCATE statement (6.3.1) containing no STAT= specifier. It is not
signaled by an ALLOCATE statement containing a STAT= specifier. The signaling
values are the same as the STAT values. Whether it signals outside enable
blocks is processor dependent.

DEALLOCATION_ERROR
This occurs when the processor detects an error when executing a DEALLOCATE
statement (6.3.1) containing no STAT= specifier. It is not signaled when
executing a DEALLOCATE statement containing a STAT= specifier. The signaling
values are the same as the STAT values. Whether it signals outside enable
blocks is processor dependent.

INSUFFICIENT_STORAGE
This indicates that the processor is unable to find sufficient storage to
continue execution. It may occur prior to the execution of the first
executable statement of a main program or procedure and it may occur during
the execution of an executable statement. It need not signal if
ALLOCATION_ERROR signals. It signals outside enable blocks.

BOUND_ERROR
This occurs when an array subscript, array section subscript, or substring
range violates its bounds. This does not include violations of the
requirements derived from the size of an assumed-size array. Whether it
signals outside enable blocks is processor dependent.

SHAPE
This occurs when an array operation or assignment does not conform in shape.
Whether it signals outside enable blocks is processor dependent.

MANY_ONE
This occurs when a many-one array section (6.2.2.3.2) appears on the left of
the equals in an assignment statement or as an input item in a READ statement.
Whether it signals outside enable blocks is processor dependent.

NOT_PRESENT
This occurs when a dummy argument that is not present is accessed as if it
were present; that is, when one of the restrictions of 12.5.2.8 is violated.
Whether it signals outside enable blocks is processor dependent.

UNDEFINED
This occurs when a value that is required for an operation is detected by the
processor to be undefined. Whether it signals outside enable blocks is
processor dependent.

[Footnote: This wording is intended to allow the processor to be as thorough
as it chooses with respect to the detection of undefined values.]

<<15.2 Input/output conditions>>

IO_ERROR
This occurs when an input/output error (9.4.3) is encountered in an
input/output statement containing no IOSTAT= or ERR= specifier. It is not
signaled when executing an input/output statement containing an IOSTAT= or
ERR= specifier. The signaling values are the same as the IOSTAT values.
Whether it signals outside enable blocks is processor dependent.

END_OF_FILE
This occurs when an end-of-file condition (9.4.3) is encountered in an input
statement containing no IOSTAT= or END= specifier. It is not signaled when
executing an input statement containing an IOSTAT= or END= specifier. Whether
it signals outside enable blocks is processor dependent.

END_OF_RECORD
This occurs when an end-of-record condition (9.4.3) is encountered in an input
statement containing no IOSTAT= or EOR= specifier. It is not signaled when
executing an input statement containing an IOSTAT= or EOR= specifier. Whether
it signals outside enable blocks is processor dependent.

<<15.3 Floating-point conditions>>

OVERFLOW
This condition occurs when the result for an intrinsic real or complex
operation has a very large processor-dependent absolute value. Whether it
signals outside enable blocks is processor dependent.

UNDERFLOW
This condition occurs when the result for an intrinsic real or complex
operation has a very small processor-dependent absolute value. A processor
that does not conform to IEC 559:1989 is required to set this condition when
requested to do so by a SIGNAL statement, but is not required to set it
otherwise. Whether it signals outside enable blocks is processor dependent.

DIVIDE_BY_ZERO
This condition occurs when a real or complex division has a nonzero numerator
and a zero denominator. Whether it signals outside enable blocks is processor
dependent.

INEXACT
This condition occurs when the result of a real or complex operation is not
exact. A processor that does not conform to IEC 559:1989 is required to set
this condition when requested to do so by a SIGNAL statement, but is not
required to set it otherwise. Whether it signals outside enable blocks is
processor dependent.

INVALID
This condition occurs when a real or complex operation is invalid. A
processor that does not conform to IEC 559:1989 is required to set this
condition for real or complex division of zero by zero and when requested to
do so by a SIGNAL statement, but is not required to set it otherwise. Whether
it signals outside enable blocks is processor dependent.

[Footnote: It is expected that by default the conditions UNDERFLOW and INEXACT
will not signal except inside enable blocks.]

<<15.4 Integer conditions>>

INTEGER_OVERFLOW
This condition occurs when the result for an intrinsic integer operation has a
very large processor-dependent absolute value. Whether it signals outside
enable blocks is processor dependent.

INTEGER_DIVIDE_BY_ZERO
This condition occurs when an integer division has a zero denominator.
Whether it signals outside enable blocks is processor dependent.

<<15.5 Intrinsic procedure condition>>

INTRINSIC
This condition indicates that an intrinsic procedure or operation has been
unsuccessful. An unsuccessful intrinsic procedure may signal other conditions
instead of INTRINSIC. Whether it signals outside enable blocks is processor
dependent. If an intrinsic procedure is an actual argument in a procedure
call within an enable block for the INTRINSIC condition, the condition must
signal if the procedure is invoked through the argument association.

<<15.6 System error conditions>>

SYSTEM_ERROR
This condition occurs as a result of a system error. Whether it signals
outside enable blocks is processor dependent.

<<15.7 Combination conditions>>

Each of the following conditions may be specified on an enable, handle, or
signal statement and is equivalent to specifying a list of conditions.

STORAGE
This condition is equivalent to the list: ALLOCATION_ERROR,
DEALLOCATION_ERROR, and INSUFFICIENT_STORAGE.

IO
This condition is equivalent to listing all the input/output conditions.

FLOATING
This condition is equivalent to the list: OVERFLOW, INVALID, and
DIVIDE_BY_ZERO.

INTEGER
This condition is equivalent to listing the two integer conditions.

USUAL
This condition is equivalent to the list: STORAGE, IO, FLOATING, and INTRINSIC.

ALL_CONDITIONS
This condition is equivalent to listing all the conditions.
signal if ALLOCATION_ERROR signals. It signals outside enable blocks.

--
Number: 013
Title: ELEMENTAL procedures
Status: Incorporated in 94-007r2
Target date: 95
Last revision: Aug 94
X3J3 reference: 94-245r3

 X3J3/94-245r3

Elemental references to pure procedures
Revision of X3J3/94-245

Based on discussions at meeting 130, restrictions were added to non-intrinsic
elemental functions that prohibit passing dummy procedures as arguments to
elemental functions, prohibit passing elemental functions as dummy procedures,
prohibit recursive elemental procedures, and added an example to chapter 14.

Rationale
Elemental functions provide the programmer with expressive power and the
processor with additional opportunities for efficient parallelization.

Extending the concept of elemental procedures from intrinsic to both intrinsic
and user-defined procedures is very much analogous to, but simpler than,
extending the concept of generic procedures from intrinsic to both intrinsic
and user-defined procedures. Generic procedures were introduced to intrinsic
procedures in Fortran 77 and extended to user-defined procedures in Fortran
90. Elemental procedures were introduced to intrinsic procedures in Fortran
90 and, especially because of their usefulness in parallel processing, it is
quite natural that they be extended in Fortran 95 to user-defined procedures.

Technical Description
The extension of elemental to user-defined procedures is straightforward. A
minimal facility is proposed here, that involves a procedure's arguments being
elemental.

A user-defined elemental procedure must be a pure procedure, having both the
PURE keyword, and the ELEMENTAL keyword. All dummy arguments must be scalar
and must not be pointers.

The actual arguments in a reference to an elemental procedure must all be
conformable. Note that a scalar is conformable to any shape array, and thus
any actual argument may be scalar; an actual argument must be scalar if it is
associated with a dummy argument used in a specification expression in the
procedure definition.

To be referenced elementally, the procedure must have an explicit interface.
This allows there to be no change in the rules for how specific procedures
differ and a simple change (addition) to the rules for resolving generic
overloads: if there is no specific match the processor looks for an elemental
match (see section 14.1.2.4.1).

One way of extending this feature in the future is to specify an ELEMENTAL
attribute for any individual dummy argument(s) in lieu of the ELEMENTAL
procedure keyword; the ELEMENTAL keyword included here may be considered to
automatically give each dummy argument the elemental attribute.

Detailed Edits
section 7.1.3 - add a fifth paragraph
 A defined elemental operation is a defined operation for which the
 function is elemental (12.yyyy).
section 7.1.5 - change title

 change "intrinsic" to "elemental"
section 7.1.5 - new first sentence
 An elemental operation is an intrinsic operation or a defined elemental
 operation.
section 7.1.5 - second paragraph
 change "intrinsic" to "elemental"
section 7.1.7 - penultimate paragraph
 change "intrinsic binary" to "elemental binary"
section 7.1.7 - last paragraph
 change "intrinsic unary" to "elemental unary"
section 7.3.1 - in item (5) replace "The" with
 (a) The function is elemental, or
 (b) The

section 7.3.2 - in item (5) replace "The" with
 (a) The function is elemental and x1 and x2 are conformable, or
 (b) The
section 7.5.1.3 - add the following sentence to the paragraph
 A defined elemental assignment statement is a defined assignment
 statement for which the subroutine is elemental (12.yyyy).
section 7.5.1.6 - in item (5) replace "The" with
 (a) The subroutine is elemental and either x1 and x2 have the same
 shape or
 x2 is scalar, or
 (b) The
section 7.5.1.6 - add as a last paragraph
 If the defined assignment is an elemental assignment and the variable
 in the assignment is an array, the defined assignment is performed
 element-by-element, in any order, on corresponding elements of variable
 and expr. If expr is a scalar it is treated as if it were an array of
 the same shape as variable with every element of the array equal to the
 scalar value of expr.
section 7.5.3.2 - third paragraph
 change "elemental intrinsic operation" to "elemental operation"
section 8.1.1.2 - last sentence
 change "12.4.2, 12.4.3, 12.4.4, 12.4.5" to "12.4.2, 12.4.4, 12.yyyy"
section 12.1.1 - last paragraph
 replace "an intrinsic" with "a",
 and replace the references with "12.yyyy"
section 12.2 - first paragraph (as modified by 94-149r2)
 after "whether or not it is pure," add "whether or not it is
 elemental,"
section 12.3.1.1 - Add to list in part 2
 f) The ELEMENTAL keyword
section 12.4.1.1 - third paragraph
 change "12.4.3, 12.4.5" to "12.yyyy"
section 12.4.1.1 - insert phrase in last sentence of fourth-from-last
 paragraph
 change "procedure is referenced" to "procedure is nonelemental and is
 referenced"
section 12.4.1.1 - insert phrase in last sentence
 change "dummy argument" to "dummy argument of a nonelemental procedure"
section 12.4.2 - add to the paragraph
 A reference to an elemental function (12.yyyy) is an elemental
 reference if one or more actual arguments are arrays and all array
 arguments have the same shape.
section 12.4.3 - delete entire section
section 12.4.4 - add to the paragraph
 A reference to an elemental subroutine (12.yyyy) is an elemental
 reference if all actual arguments corresponding to INTENT(OUT) and
 INTENT(INOUT) dummy arguments are arrays that have the same shape and
 the remaining actual arguments are conformable with them.
section 12.4.5 - delete entire section
section 12.5.2.2 - add to syntax rule R1217a (as modified by 94-149r2)

 or ELEMENTAL
 Constraint: If ELEMENTAL is present, PURE must be present.

 Constraint: If ELEMENTAL is present, RECURSIVE must not be present.
section 13.1 - first paragraph
 change "elemental function" with "elemental intrinsic function"
section 13.2 - replace sections 13.2.1 and 13.2.2 with
 Elemental intrinsic procedures behave as described in 12.yyyy.
section 14.1.2.4.1 - insert a new rule (2), and renumber accordingly
 (2) If (1) does not apply, if the reference is consistent with an
 elemental reference to one of the specific interfaces of an
 interface block that has that name and either is contained in the
 scoping unit in which the reference appears or is made accessible
 by a USE statement contained in the scoping unit, the reference
 is to the specific elemental procedure in that interface block
 that provides that interface. Note that the rules in 14.1.2.3
 ensure that there can be at most one such specific interface.

[footnote 1]

 [footnote 1. These rules allow specific instances of a generic
 function to be used for specific array ranks and a general elemental
 version to be used for other ranks. Given an interface block such
 as:

 INTERFACE RANF

 ELEMENTAL FUNCTION SCALAR_RANF(X)
 REAL X
 END

 FUNCTION VECTOR_RANDOM(X)
 REAL X(:)
 REAL VECTOR_RANDOM(SIZE(X))
 END

 END INTERFACE RANF

 and a declaration such as:

 REAL A(10,10), AA(10,10)

 then the statement

 A = RANF(AA)

 is an elemental reference to SCALAR_RANF. The statement

 A(1,1:5) = RANF(AA(6:10,2))

 is a non-elemental reference to VECTOR_RANDOM.]

section 14.1.2.4.1 - new item (3)
 change ""If (1) does" to "If (1) and (2) do"
section 14.1.2.4.1 - new item (4)
 change ""If (1) and (2) do" to "If (1), (2), and (3) do"
section 14.1.2.4.1 - new item (5)
 change ""If (1), (2), and (3) do" to "If (1), (2), (3), and (4) do"
annex A - elemental
 remove the word "intrinsic"
 and replace the references with "12.yyyy"
section 12.yyyy - immediately after 12.xxxx (Pure procedures)
 12.yyyy Elemental procedures

 12.yyyy.1 Elemental procedure declaration and interface

 An elemental procedure is an elemental intrinsic procedure or a
 procedure that is defined with the prefix-spec ELEMENTAL.

 Procedures defined with the keyword ELEMENTAL must satisfy the
 additional constraints:

 Constraint: All dummy arguments must be scalar and must not have the
 POINTER attribute.

 Constraint: For a function, the result must be scalar and must not
 have the POINTER attribute.

 Constraint: A dummy-arg must not be *.

 Constraint: A dummy-arg must not be a dummy procedure.

 Constraint: A procedure with the elemental keyword must not be used
 as an actual argument.

 Note that an elemental procedure is a pure procedure and all of the
 constraints for pure procedures also apply.

 12.yyyy.2 Elemental function arguments and results

 <this paragraph is largely taken from what was originally section
 13.2.1>
 If a generic name or a specific name is used to reference an elemental
 function, the shape of the result is the same as the shape of the
 argument with the greatest rank. If the arguments are all scalar, the
 result is scalar. For those elemental functions that have more than
 one argument, all arguments must be conformable. In the array-valued
 case, the values of the elements, if any, of the result are the same
 as would have been obtained if the scalar-valued function had been
 applied separately, in any order, to corresponding elements of each
 argument. For an intrinsic function, an argument called KIND must be
 specified as a scalar integer initialization expression and must
 specify a representation method for the function result that exists on
 the processor. For a non-intrinsic function, an actual argument must
 be scalar if it is associated with a dummy argument that is used in a
 specification expression.

 <this example was in the original section 12.4.3>
 An example of an elemental reference to the intrinsic function MAX:
 if X and Y are arrays of shape (m, n),
 MAX (X, 0.0, Y)
 is an array expression of shape (m, n) whose elements have values
 MAX (X (i, j), 0.0, Y (i, j)), i = 1, 2, ..., m, j = 1, 2, ..., n

 12.yyyy.3 Elemental subroutine arguments

 <this paragraph was originally section 13.2.1, with "intrinsic"
 deleted>
 An elemental subroutine is one that is specified for scalar arguments,
 but in a generic reference may be applied to array arguments. In a
 reference to an elemental subroutine, either all actual arguments must
 be scalar, or all INTENT (OUT) and INTENT (INOUT) arguments must
 be arrays of the same shape and the remaining arguments must be
 conformable with them. In the case that the INTENT (OUT) and INTENT
 (INOUT) arguments are arrays, the values of the elements, if any, of
 the results are the same as would be obtained if the subroutine with
 scalar arguments were applied separately, in any order, to
 corresponding elements of each argument.

--
Number: 014
Title: Automatic deallocation
Status: Incorporated in 94-007r2
Target date: 95
Last revision: Aug 94
X3J3 reference: 94-270r3

 X3J3/94-270r3

Subject: Automatic deallocation of ALLOCATABLE objects
References: WG5-N930, Resolutions of the Berchtesgaden WG5 Meeting, B9
 WG5-N931, Requirements for Allowing Allocatable derived-type
 Components

Revision History: 94-270r1, examples added, initial status text moved here
 from 94-269
 94-270, specific edits added
 94-211, original presentation, May 1994 (meeting 129)

Requirement Title: B9/B3 Allocatable derived-type components

Status: For consideration

Technical Description:
 Require automatic deallocation of unSAVEd allocatable objects on scope
 exit.

Motivation:
 Currently, the standard does not provide for automatic deallocation of
allocatable objects, even when they are local non-static variables. When such
objects go out of scope a memory leak can occur.
 The general handling of ALLOCATABLE is being regularised; removing
surprises is part of the task. Further, the general thrust of the Fortran
committee is to work to eliminate memory leakage opportunities.
 The main reason for the current situation appears to be a concern about
performance. The addition of automatic (i.e. managed by the processor rather
than the user) deallocation will not have a major performance impact. The
actual deallocation is what takes time, and that must occur in any event if a
memory leak is to be avoided. The proposed change merely adds a check on
whether the deallocation is required -- a few instructions at most, compared
with dozens of instructions for the actual deallocation.
 Note further that we have already accepted the "overhead" of explicit
"initialisation" of the allocation state of allocatable variables. This
initialisation was necessary to bring a semblance of order into the allocation
status. By adding automatic deallocation, we not only remove a source of user
annoyance and surprise, but also simplify the language definition. Currently,
there must be a third ("undefined") allocation state for allocatable objects
and fairly confusing words about the consequences of going out of scope with a
non- deallocated object.
 Finally, as the language currently stands it is impossible to create
opaque data types which need a variable amount of storage without the
possibility of leaking memory. In conjunction with the allocatable component
proposal (94- 269r2) automatic deallocation of allocatable objects provides
the user with this capability in a form which is safe to use.

Detailed EDITS:

Subclause 6.3.3.1
[69:12-15] {allocation status} {{the third and fourth paragraphs of 6.3.3.1}}
 {{specify we lose the old allocatable array on each new instantiation
 if not SAVEd}}

 replace with:
 "Any other allocated allocatable array that is a local variable of a
 procedure, is not a subobject of a pointer, is not accessed by use
 association, is not part of a dummy argument, is not part of a
 function return value, and is not a variable accessed from the host
 scoping unit is deallocated (as if by a DEALLOCATE statement)."

[69:13+] {allocation status}
 {{allow modules to always SAVE their allocatable arrays, or to always
 initialise them (e.g. if they are implemented via overlay segments),
 but do not penalise the user by forbidding subsequent access}}
 add a new paragraph:
 "The allocation status of any other allocatable array that is a local
 variable of a module is processor-defined; the ALLOCATED intrinsic may
 be used to determine whether the array is still currently allocated or
 has been deallocated."

[69:15+] {deallocation action}
 {{Here we define deallocation of an object containing allocatable
 components to deallocate any of these which happen to be allocated.
 Since this is described recursively, a nested tree of allocatable
 components will be deallocated bottom-up. Note that a system which
 stores allocatable objects on a stack or which performs automatic
 garbage collection already satisfies this definition.}}
 insert new paragraph:
 "When a derived-type object is deallocated, any ultimate allocatable
 components that are currently allocated are deallocated.

[Footnote: in the following example:

 MODULE USER
 TYPE, PRIVATE :: VARYING_STRING
 CHARACTER,ALLOCATABLE :: VALUE(:)
 END TYPE
 TYPE USER
 PRIVATE
 TYPE(VARYING_STRING) NAME
 TYPE(VARYING_STRING),POINTER :: DETAILS(:)
 END TYPE
 ...
 END MODULE
 SUBROUTINE PROCESS_ONE_USER
 USE USER
 TYPE(USER) X
 CALL READ_USER(X) ! Read user details into X
 ... ! Process the user
 END SUBROUTINE

on return from PROCESS_ONE_USER, X does not have the SAVE attribute and so
X%NAME%VALUE is deallocated. However, X%DETAILS has the POINTER attribute and
so its target and any of the target~s components are not automatically
deallocated.]

Subclause 14.8
[252:37-253:4] {{remove undefined allocation status from the possibilities, to
 avoid never-never land}}
 replace existing text with:
"(1) Not currently allocated. An allocatable object with this status must
 not be referenced, defined, or deallocated; it may be allocated with
 the ALLOCATE statement. The ALLOCATED intrinsic returns .FALSE. for
 such an object.
 (2) Currently allocated. An allocatable object with this status may be
 referenced, defined, or deallocated; it must not be allocated. The
 ALLOCATED intrinsic returns .TRUE. for such an object.

An allocatable array with the SAVE attribute has an initial status of not
currently allocated. An ALLOCATE statement changes this status to currently
allocated; it then remains currently allocated until execution of a DEALLOCATE
statement.

An allocatable array component of a derived-type variable that has the POINTER
attribute, or is a subobject of a pointer component, has no initial allocation
status, because it does not exist until brought into existence by the ALLOCATE
statement (or referred to by the pointer assignment statement).

Any other allocatable array without the SAVE attribute that is a local
variable of a procedure, is not accessed by use association, is not part of a
dummy argument, and is not a variable accessed from the host scoping unit has
a status of not currently allocated at the beginning of each invocation of the
procedure. During execution of the procedure its status may be changed by
execution of ALLOCATE and DEALLOCATE statements. On exit from the procedure
by execution of a RETURN or END statement, if such an allocatable array is not
part of a function return value and has the status of currently allocated, it
is deallocated (as if by a DEALLOCATE statement).

Any other allocatable array without the SAVE attribute that is a local
variable of a module has an initial status of not currently allocated. If the
array has an allocation status of currently allocated on execution of a RETURN
or END statement resulting in no executing scoping unit having access to the
module it is processor-defined whether the array~s allocation status remains
currently allocated or the array is deallocated (6.3.3.1) as if by a
DEALLOCATE statement."

add to Rationale Section:

6.3.3.1 Deallocation of allocatable arrays
 Automatic deallocation of allocatable arrays (including allocatable
array components) provides the user with a safe method of creating opaque data
types of variable size which do not leak memory. It also removes the burden
of manual storage deallocation both for simple allocatable arrays and for
allocatable components of non-opaque types.
 The "undefined" allocation status of Fortran 90 meant that an
allocatable array could easily get into a state where it could not be further
used in any way whatsoever, it could not be allocated, deallocated,
referenced, defined, or even used as the argument to the ALLOCATED function.
Removal of this status provides the user with a safe way of handling
allocatable arrays which he does not desire to be SAVEd, permitting use of the
ALLOCATED intrinsic function to discover the current allocation status of the
array at any time.

--
Number: 015
Title: Allocatable components
Status: Incorporated in 94-007r2 but not approved
Target date: U
Last revision: Aug 94
X3J3 reference: 94-269r2

 X3J3/94-269r2

Subject:Text for X3J3/009 re: Allocatable Components in Structures (B3)
References:WG5-N930, Resolutions of the Berchtesgaden WG5 Meeting, B9
WG5-N931, Requirements for Allowing Allocatable derived-type
 Components

Revision history: 94-269r2, resolve comments
94-269r1, move most initial status to 94-270, fix object init
 conflict, editorial fixes
94-269, specify initial status, use "ultimate component"
 classification
WG5-N1040, revised to resolve received comments
94-202r2 remove allocatable entities from COMMON, do not
 specify a storage unit; clarify/simplify constructors
 (revised post-meeting per meeting 129 comments)
94-202r1 provide restriction for entity-decls, add constructors
94-202 original presentation, May 1994 (meeting 129)

Requirement Title: B9/B3 Allocatable derived-type components

Status:X3J3 consideration in progress

Technical Description:
Currently, the ALLOCATABLE attribute is limited to local named array
data entities. One cannot have allocatable components of derived-type
objects, nor allocatable dummy arguments or function return values. There is
a requirement from WG5 that these restrictions be removed, that ALLOCATABLE be
extended and regularized.
In addition, if an ALLOCATABLE object is still allocated when it goes
out of scope, its allocation status becomes undefined. There is a desire that
the deallocation be provided "automatically" by the processor. That is
addressed in a separate paper (X3J3/94-270r2).
The current paper provides a major step towards ALLOCATABLE arrays as
full, first-class entities. It provides for them to appear as components of
derived types, as per WG5-N931, "Requirements for Allowing Allocatable
Derived-type Components".
Still outstanding from the general request:
- ALLOCATABLE dummy arguments and function return values
- ALLOCATABLE strings
- ALLOCATABLE derived types (needs Parameterized Derived Types)
While these are mostly fairly straightforward, a large number of edits appear
to be required. Due to the shortage of time, we recommend that this
development be undertaken for Fortran 2000.
Per direction from X3J3, this proposal does not provide for allowing
ALLOCATABLE objects, nor derived type objects with ALLOCATABLE components in
COMMON or EQUIVALENCE.

Motivation:
ALLOCATABLE provides functionality which shares much with that of the
POINTER features. Indeed, the underlying implementation is probably nearly
identical, with one important difference. The address pointer implicit in
ALLOCATABLE objects is not accessible to the user. ALLOCATABLE objects,
therefore, cannot be aliased with other objects as a result of pointer

assignments. For this reason, they behave much better than pointers with
respect to optimization.
Given the benefits of ALLOCATABLE, it appears advisable to extend the
facility to handle derived type components as well as normal variables. The
extension introduces little additional complexity into either the language
definition or implementation; in fact, one can argue that the generalization
serves to remove an arbitrary restriction from the language.
The duties of the implementor follow directly from current practice.
If a local object has the ALLOCATABLE attribute, the implementation must
arrange to set the object to non-allocated status at the time that the object
is created. This duty is now extended to components of derived type objects.
In addition, if a derived type object with an ALLOCATABLE component is itself
created via an ALLOCATE statement, the component must be set to non-allocated
status as part of the creation.
There exists some complication with regards to constructors. There is
no "null" value for an allocatable object, so the constructor must specify an
actual value set for an allocatable component. (This will generally be an
array constructor with an implied DO to provide the right number of elements.)
(Note that, even though "assignment semantics" apply, this value cannot be
given as a scalar, as there is no size given in the type definition.)
The value of the constructor will include the allocatable component in
an "allocated" state with the indicated contents. Note that the rules of
assignment for allocatable arrays involve copying the contents, not the
implicit pointer. Thus, if the constructor is used in an assignment
statement, the allocatable components of the target variable must already be
allocated.
Lastly, because allocation cannot be done prior to execution,
allocatable components cannot be initialized in DATA statements or with =
initialization.
(Note that some of these conditions may be changed slightly if we
approve the proposal for constructors with keyword and optional fields.)

Detailed EDITS:
{{note: edits are marked with a brief comment about the particular
 subject area being addressed. In some cases, a subject area
 is relevant but requires no edits; in such cases, a null edit
 (plus comment) is given. }}

[throughout]{general nomenclature}
{no problem. The Standard references the term "allocatable array"
 throughout. There is no problem, in general, with this terminology
 applying equitably to either data entities or to components; so no
 pervasive change is required.}

Subclause 4.4
[32:28] {make allocatable components ultimate}
after: "Ultimately, a derived type is resolved into ultimate
 components that are"
change:"either of intrinsic type"
to:"of intrinsic type, are allocatable,"

Subclause 4.4.1
[33:20] {definition of component-attr-spec}
after:"R427 component-attr-spec is POINTER"
add new line:
" or ALLOCATABLE"

[33:26]
add a new constraint following the third constraint of R427:
"Constraint: POINTER and ALLOCATABLE must not both appear in
 the same component-def-stmt."

[33:26+] {{WG5: Since allocatable components prohibit appearance in
 storage-associated contexts, do not allow sequence types to

 contain allocatable components.}}
add a new constraint following the above:
"Constraint: The ALLOCATABLE attribute must not be specified if
 SEQUENCE is present in the derived-type-def."

[33:31-32] {WG5(reworded):dimension info} in the first constraint of R429,
change:"If the POINTER attribute is not specified"
to: "If neither the POINTER attribute nor the ALLOCATABLE attribute is
 specified"

[33:33] {WG5(reworded):dimension info}
in the second constraint of R429,
change: "POINTER attribute" to "POINTER attribute or the ALLOCATABLE
 attribute"

[33:38+] {default initialization, per 94-138}
after:"the POINTER attribute must not appear"
add:"and the ALLOCATABLE attribute must not appear"

[33:39] {sequence types}
{{WG5: No changes needed. A sequence type cannot have allocatable
 components.}}

[34:2] {when one needs to have "::" in a component definition}
change:"or both"
to"the ALLOCATABLE attribute, or any combination thereof"

[35:35+] {edits to object initialization proposal in 94-009.006}
in paragraph 3 (immediately following the first example in this edit),
after:"If a component is of intrinsic type and is not"
insert:"allocatable or"
{{before "a pointer, a default initial value may be specified..."}}
later in the same paragraph,
after:"If the component is of derived type and does not have the"
replace:"pointer attribute"
with:"ALLOCATABLE attribute or POINTER attribute"

[35:35+] {examples}
add new paragraphs:
"A derived type may have a component that is allocatable. For example:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE, DIMENSION(:) :: CONTENTS
END TYPE STACK

 For each variable of type STACK, the shape of the component CONTENTS
 is determined by execution of an ALLOCATE statement."

Subclause 4.4.4
[37:28] {constructors}{{WG5: Interaction with 94-009.006 in last sentence of
 this addition}}
Add, at the end of this subclause, new paragraphs:
"Where a component of the derived type is an allocatable array, the
corresponding constructor expression must evaluate to an array. The value of
the constructor will have a component that is allocated (has an allocation
status of allocated), and with contents as given by the constructor
expression. Note that the allocation status of the allocatable component is
available to the user program if the constructor is associated with a dummy
argument, but generally not for other uses. Note, also, that when the
constructor value is used in assignment, the corresponding component of the
target must already be allocated.

Where a derived type contains an ultimate allocatable component, the

constructor must not appear as a data-stmt-constant in a DATA statement
(5.2.9), as an initialization-expr in an entity-decl (5.1), or as an
initialization-expr in a component-initialization (4.4.1)."

Subclause 5.1
[40:5] {=initialization}
after:"an allocatable array,"
add:"a derived-type object containing an ultimate allocatable
 component,"

[40:20] {addition to constraint so it is clear they cannot be initialised at
 compile time}
after:"allocatable arrays,"
add: "derived-type objects containing an ultimate allocatable
 component,"

Subclause 5.1.2.3
[44:24+] {edit to interpretation edit, paper 94-274r1}
change:"a stat-variable"
to:"an allocate-object or stat-variable"

Subclause 5.1.2.4.3
[46:8] {allocatable arrays are no longer necessarily named}
in the first line of the second paragraph, change: "a named array" to
 "an array"

[46:10] {shape of an allocatable component can also be determined by a
 structure constructor}
add to end of sentence:
"or evaluation of a structure constructor for a derived type with an
 allocatable component"

[46:11] {where & how you can declare ALLOCATABLEs}
after:"in a type declaration statement"
add:", a component definition statement,"

[46:13] {ditto}
after:"in a type declaration statement,"
add:"a component definition statement,"

[46:15] {ditto}
after:"type declaration statement"
add:"or a component definition statement"

Subclause 5.1.2.9
[48:24] {storage units, sequence}
{WG5: This change has been deleted as unnecessary since derived type
 objects containing allocatable components cannot appear in
 COMMON or EQUIVALENCE}.

Subclause 5.2.9
[52:34] {DATA statement restrictions}
change:"or an allocatable array"
to: "an allocatable array, or a derived-type object containing an
 ultimate allocatable component"

Subclause 5.4
[56:11] {WG5: do not allow allocatable components in NAMELIST}
change:", or an allocatable array"
to:", an allocatable array, or a derived-type object containing
 an ultimate allocatable component"
Subclause 5.5.1
[57:1] {WG5: do not allow allocatable components in EQUIVALENCE}
after:"an allocatable array,"

add: "a derived-type object containing an ultimate allocatable
 component,"

Subclause 5.5.2
[58:30] {{WG5: allocatable components are not allowed in COMMON since they are
 excluded from sequence types}}

Subclause 5.5.2.3
[59:42+] {Common Association}
{{no edit needed; not allowed in COMMON}}

Subclause 6.1.2
[63:8] {corresponding restriction to that preventing array ops on pointer
 components}
after:"attribute"
add:"and must not have the ALLOCATABLE attribute"

Subclause 6.3.1
[67:16] {allocate statement}
{ok - because POINTER components were allowed}

Subclause 6.3.1.1
[68:1+] {allocation of allocatable arrays - initial status}
{ok, existing text appears to be sufficient}

[68:7+] {{WG5: Specify initial state of allocatable components after ALLOCATE}}
Add new paragraph at the end of this subclause:
"If an object of derived type is created by an ALLOCATE statement, any
ultimate allocatable components have an allocation status of not currently
allocated."

Subclause 6.3.3.1
[69:8] {deallocation}
add footnote: "Allocatable array components of derived-type objects
 with the SAVE attribute also retain their allocation
 status."
{{note: similar issue for 69:29, for pointers }}

[69:9] add list items and renumber
"(2) An allocatable array that is part of the return value of a
 function,
 (3) An allocatable array that is part of a dummy argument,"

Subclause 7.1.6.1
[77:40] {{remove derived-type constructors with allocatable array components
 from initialization exprs}}
after: "(3) A structure constructor where each component is an
 initialization expression"
add:"and no component has the ALLOCATABLE attribute"

Subclause 7.5.1.5
[91:20] {interpretation of intrinsic assignment}
after:"nonpointer components."

add: "Note that for allocatable components the component in the
 variable being defined must already be allocated, and the shapes
 of the corresponding allocatable components of the variable
 being defined and the expression must be the same."

Subclause 9.4.2
[124:17] {we do not allow derived-types with pointer components in i/o
 statements, neither should we allow ones with allocatable components}
after:"If a derived type ultimately contains a pointer component"
add:"or allocatable component"

Annex A
[254:12-13] {Fix glossary copy of the definition of an allocatable array}
change:"A named"
to:"An"
append to end of definition:
"An allocatable array may be a named array or a structure
 component"

[261:21-22] {Fix glossary copy of the definition of ultimate component}
after:"a component that is of intrinsic type"
add:", has the ALLOCATABLE attribute,"

[261:23]
after:"does not have the"
add:"ALLOCATABLE attribute or"

add to Rationale Section:

5.1.2.9 ALLOCATABLE attribute

Allocatable arrays provide a degree of flexibility intermediate
between that of automatic arrays and pointers. The bounds of an automatic
array can be calculated on non-constant values, but only at scope entry.
Often, this is not sufficiently powerful; nor does it provide for SAVEd arrays
whose size is not given by a constant expression. Pointers do provide the
facility to arbitrarily determine the array bounds by execution of an ALLOCATE
statement. Because of the pointer assignment statement, pointers are a little
less closely controlled than allocatable arrays. More than one pointer may be
associated with a given object, a condition known as "aliasing" which can
negatively impact optimizing compilers. Pointers also allow memory leaks if
not properly deallocated.
Array variables, and components of derived types, can be specified as
ALLOCATABLE when it is desired to calculate their size as a function of some
value determined during execution.
Explicit initialization of allocatable arrays is not permitted for
SAVEd variables, because such initialization may take place prior to
execution, but the ALLOCATE action only occurs during execution.
Input/output of derived types containing allocatable components is not
permitted. This is because the storage of an allocatable component is
typically far removed from that of the other derived type components, so it
would be a non-trivial burden to the implementor for unformatted i/o. Also,
for derived types containing allocatable components, as for derived types
containing pointer components, the i/o action desired by the user is unlikely
to be that which can be provided automatically. User-defined i/o of derived
types is not part of this standard but we wish to avoid adding a facility
which will be little used and likely to conflict with the addition of the
proper facility in a later revision of the standard (or as a vendor
extension).
Allocatable arrays were not permitted in storage-associated contexts
(NAMELIST, COMMON, EQUIVALENCE) in Fortran 90. This restriction still holds,
and thus objects of derived type containing allocatable components are also
not permitted in such contexts. For this reason, and because the primary
purpose of SEQUENCE is to allow derived-type objects to appear in such
contexts, allocatable components are not permitted in sequence derived types.

